BIO

Bioinformatics

Adaptive Computation and Machine Learning

Thomas Dietterich, Editor

Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns,
Associate Editors

Bioinformatics: The Machine Learning Approach, Pierre Baldi and Seren Brunak

Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto

Pierre Baldi
Seren Brunak

Bioinformatics

The Machine Learning Approach

A Bradford Book

The MIT Press

Cambridge, Massachusetts
London, England

©2001 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from the
publisher.

This book was set in Lucida by the authors and was printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Baldi, Pierre.
Bioinformatics : the machine learning approach / Pierre Baldi,
Seren Brunak.—2nd ed.
p. cm.—(Adaptive computation and machine learning)

"A Bradford Book"

Includes bibliographical references (p.).

ISBN 0-262-02506-X (hc. : alk. paper)

1. Bioinformatics. 2. Molecular biology—Computer simulation. 3. Molecular
biology—Mathematical models. 4. Neural networks (Computer science). 5.
Machine learning. 6. Markov processes. 1. Brunak, Seren. II. Title. III. Series.
QH506.B35 2001
572.8'01'13—dc21

2001030210

Series Foreword

The first book in the new series on Adaptive Computation and Machine Learn-
ing, Pierre Baldi and Seren Brunak’s Bioinformatics provides a comprehensive
introduction to the application of machine learning in bioinformatics. The
development of techniques for sequencing entire genomes is providing astro-
nomical amounts of DNA and protein sequence data that have the potential
to revolutionize biology. To analyze this data, new computational tools are
needed—tools that apply machine learning algorithms to fit complex stochas-
tic models. Baldi and Brunak provide a clear and unified treatment of statisti-
cal and neural network models for biological sequence data. Students and re-
searchers in the fields of biology and computer science will find this a valuable
and accessible introduction to these powerful new computational techniques.
The goal of building systems that can adapt to their environments and
learn from their experience has attracted researchers from many fields, in-
cluding computer science, engineering, mathematics, physics, neuroscience,
and cognitive science. Out of this research has come a wide variety of learning
techniques that have the potential to transform many scientific and industrial
fields. Recently, several research communities have begun to converge on a
common set of issues surrounding supervised, unsupervised, and reinforce-
ment learning problems. The MIT Press series on Adaptive Computation and
Machine Learning seeks to unify the many diverse strands of machine learning
research and to foster high quality research and innovative applications.

Thomas Dietterich

Contents

Series Foreword

Preface

1 Introduction

1.1
1.2
1.3
1.4
1.5

Biological Data in Digital Symbol Sequences
Genomes—Diversity, Size, and Structure

Proteins and Proteomes

On the Information Content of Biological Sequences
Prediction of Molecular Function and Structure

2 Machine-Learning Foundations: The Probabilistic Framework

2.1
2.2
2.3
2.4
2.5

Introduction: Bayesian Modeling

The Cox Jaynes Axioms

Bayesian Inference and Induction

Model Structures: Graphical Models and Other Tricks
Summary

3 Probabilistic Modeling and Inference: Examples

3.1
3.2

The Simplest Sequence Models
Statistical Mechanics

4 Machine Learning Algorithms

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Introduction

Dynamic Programming

Gradient Descent

EM/GEM Algorithms

Markov-Chain Monte-Carlo Methods
Simulated Annealing

Evolutionary and Genetic Algorithms
Learning Algorithms: Miscellaneous Aspects

A%

xi

—

24
43

47
47
50
53
60
64

67
67
73

81
81
82
83
84
87
91
93
94

Contents

5 Neural Networks: The Theory

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction

Universal Approximation Properties
Priors and Likelihoods

Learning Algorithms: Backpropagation

Neural Networks: Applications

Sequence Encoding and Output Interpretation
Sequence Correlations and Neural Networks
Prediction of Protein Secondary Structure

Prediction of Signal Peptides and Their Cleavage Sites
Applications for DNA and RNA Nucleotide Sequences
Prediction Performance Evaluation

Different Performance Measures

7 Hidden Markov Models: The Theory

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3

9.1
9.2
9.3
9.4

9.5
9.6

Introduction

Prior Information and Initialization
Likelihood and Basic Algorithms
Learning Algorithms

Applications of HMMs: General Aspects

Hidden Markov Models: Applications

Protein Applications
DNA and RNA Applications
Advantages and Limitations of HMMs

Probabilistic Graphical Models in Bioinformatics

The Zoo of Graphical Models in Bioinformatics

Markov Models and DNA Symmetries

Markov Models and Gene Finders

Hybrid Models and Neural Network Parameterization of
Graphical Models

The Single-Model Case

Bidirectional Recurrent Neural Networks for Protein Sec-
ondary Structure Prediction

10 Probabilistic Models of Evolution: Phylogenetic Trees

10.1
10.2
10.3
10.4
10.5

Introduction to Probabilistic Models of Evolution
Substitution Probabilities and Evolutionary Rates
Rates of Evolution

Data Likelihood

Optimal Trees and Learning

99
99
104
106
111

113
114
119
120
133
136
153
155

165
165
170
172
177
184

189
189
209
222

225
225
230
234

239
241

255

265
265
267
269
270
273

Contents

10.6
10.7

Parsimony
Extensions

11 Stochastic Grammars and Linguistics

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Introduction to Formal Grammars

Formal Grammars and the Chomsky Hierarchy
Applications of Grammars to Biological Sequences
Prior Information and Initialization

Likelihood

Learning Algorithms

Applications of SCFGs

Experiments

Future Directions

12 Microarrays and Gene Expression

12.1
12.2
12.3
12.4

Introduction to Microarray Data
Probabilistic Modeling of Array Data
Clustering

Gene Regulation

13 Internet Resources and Public Databases

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11

A Statistics
Al
A2
A3
A4
A5
A.6
A7
A.8

A Rapidly Changing Set of Resources
Databases over Databases and Tools
Databases over Databases in Molecular Biology
Sequence and Structure Databases
Sequence Similarity Searches
Alignment

Selected Prediction Servers
Molecular Biology Software Links
Ph.D. Courses over the Internet
Bioinformatics Societies

HMM/NN simulator

Decision Theory and Loss Functions
Quadratic Loss Functions

The Bias/Variance Trade-off
Combining Estimators

Error Bars

Sufficient Statistics

Exponential Family

Additional Useful Distributions

273
275

277
277
278
284
288
289
290
292
293
295

299
299
301
313
320

323
323
324
325
327
333
335
336
341
343
344
344

347
347
348
349
350
351
352
352
353

viii

A9 Variational Methods

B Information Theory, Entropy, and Relative Entropy
B.1 Entropy
B.2 Relative Entropy

B.3 Mutual Information

B.4 Jensen’s Inequality

B.5 Maximum Entropy

B.6 Minimum Relative Entropy

C Probabilistic Graphical Models
C1 Notation and Preliminaries
C.2 The Undirected Case: Markov Random Fields
C.3 The Directed Case: Bayesian Networks

D HMM Technicalities, Scaling, Periodic Architectures,
State Functions, and Dirichlet Mixtures
D.1 Scaling
D.2 Periodic Architectures
D.3 State Functions: Bendability
D.4 Dirichlet Mixtures

E Gaussian Processes, Kernel Methods, and Support
Vector Machines

E.1l Gaussian Process Models
E.2 Kernel Methods and Support Vector Machines
E.3 Theorems for Gaussian Processes and SVMs

F Symbols and Abbreviations
References

Index

Contents

354

357
357
359
360
361
361
362

365
365
367
369

375
375
377
380
382

387
387
389
395

399
409
447

This page intentionally left blank

Preface

We have been very pleased, beyond our expectations, with the reception of
the first edition of this book. Bioinformatics, however, continues to evolve
very rapidly, hence the need for a new edition. In the past three years, full-
genome sequencing has blossomed with the completion of the sequence of
the fly and the first draft of the Human Genome Project. In addition, several
other high-throughput/combinatorial technologies, such as DNA microarrays
and mass spectrometry, have considerably progressed. Altogether, these high-
throughput technologies are capable of rapidly producing terabytes of data
that are too overwhelming for conventional biological approaches. As a re-
sult, the need for computer/statistical/machine learning techniques is today
stronger rather than weaker.

Bioinformatics in the Post-genome Era

In all areas of biological and medical research, the role of the computer has
been dramatically enhanced in the last five to ten year period. While the first
wave of computational analysis did focus on sequence analysis, where many
highly important unsolved problems still remain, the current and future needs
will in particular concern sophisticated integration of extremely diverse sets
of data. These novel types of data originate from a variety of experimental
techniques of which many are capable of data production at the levels of entire
cells, organs, organisms, or even populations.

The main driving force behind the changes has been the advent of new, effi-
cient experimental techniques, primarily DNA sequencing, that have led to an
exponential growth of linear descriptions of protein, DNA and RNA molecules.
Other new data producing techniques work as massively parallel versions of
traditional experimental methodologies. Genome-wide gene expression mea-
surements using DNA microrarrays is, in essence, a realization of tens of thou-
sands of Northern blots. As a result, computational support in experiment de-
sign, processing of results and interpretation of results has become essential.

xi

xii Preface

These developments have greatly widened the scope of bioinformatics.

As genome and other sequencing projects continue to advance unabated,
the emphasis progressively switches from the accumulation of data to its in-
terpretation. Our ability in the future to make new biological discoveries will
depend strongly on our ability to combine and correlate diverse data sets along
multiple dimensions and scales, rather than a continued effort focused in tra-
ditional areas. Sequence data will have to be integrated with structure and
function data, with gene expression data, with pathways data, with phenotypic
and clinical data, and so forth. Basic research within bioinformatics will have
to deal with these issues of system and integrative biology, in the situation
where the amount of data is growing exponentially.

The large amounts of data create a critical need for theoretical, algorithmic,
and software advances in storing, retrieving, networking, processing, analyz-
ing, navigating, and visualizing biological information. In turn, biological sys-
tems have inspired computer science advances with new concepts, including
genetic algorithms, artificial neural networks, computer viruses and synthetic
immune systems, DNA computing, artificial life, and hybrid VLSI-DNA gene
chips. This cross-fertilization has enriched both fields and will continue to do
so in the coming decades. In fact, all the boundaries between carbon-based
and silicon-based information processing systems, whether conceptual or ma-
terial, have begun to shrink [29].

Computational tools for classifying sequences, detecting weak similarities,
separating protein coding regions from non-coding regions in DNA sequences,
predicting molecular structure, post-translational modification and function,
and reconstructing the underlying evolutionary history have become an essen-
tial component of the research process. This is essential to our understanding
of life and evolution, as well as to the discovery of new drugs and therapies.
Bioinformatics has emerged as a strategic discipline at the frontier between
biology and computer science, impacting medicine, biotechnology, and society
in many ways.

Large databases of biological information create both challenging data-
mining problems and opportunities, each requiring new ideas. In this regard,
conventional computer science algorithms have been useful, but are increas-
ingly unable to address many of the most interesting sequence analysis prob-
lems. This is due to the inherent complexity of biological systems, brought
about by evolutionary tinkering, and to our lack of a comprehensive theory
of life’s organization at the molecular level. Machine-learning approaches (e.g.
neural networks, hidden Markov models, vector support machines, belief net-
works), on the other hand, are ideally suited for domains characterized by
the presence of large amounts of data, “noisy” patterns, and the absence of
general theories. The fundamental idea behind these approaches is to learn
the theory automatically from the data, through a process of inference, model

Preface xiii

fitting, or learning from examples. Thus they form a viable complementary
approach to conventional methods. The aim of this book is to present a broad
overview of bioinformatics from a machine-learning perspective.

Machine-learning methods are computationally intensive and benefit
greatly from progress in computer speed. It is remarkable that both computer
speed and sequence volume have been growing at roughly the same rate
since the late 1980s, doubling every 16 months or so. More recently, with the
completion of the first draft of the Human Genome Project and the advent of
high-throughput technologies such as DNA microarrays, biological data has
been growing even faster, doubling about every 6 to 8 months, and further in-
creasing the pressure towards bioinformatics. To the novice, machine-learning
methods may appear as a bag of unrelated techniques—but they are not. On
the theoretical side, a unifying framework for all machine-learning methods
also has emerged since the late 1980s. This is the Bayesian probabilistic
framework for modeling and inference. In our minds, in fact, there is little
difference between machine learning and Bayesian modeling and inference, ex-
cept for the emphasis on computers and number crunching implicit in the first
term. It is the confluence of all three factors—data, computers, and theoretical
probabilistic framework—that is fueling the machine-learning expansion, in
bioinformatics and elsewhere. And it is fair to say that bioinformatics and
machine learning methods have started to have a significant impact in biology
and medicine.

Even for those who are not very sensitive to mathematical rigor, modeling
biological data probabilistically makes eminent sense. One reason is that bio-
logical measurements are often inherently "noisy", as is the case today of DNA
microarray or mass spectrometer data. Sequence data, on the other hand,
is becoming noise free due to its discrete nature and the cost-effectiveness
of repeated sequencing. Thus measurement noise cannot be the sole reason
for modeling biological data probabilistically. The real need for modeling bi-
ological data probabilistically comes from the complexity and variability of
biological systems brought about by eons of evolutionary tinkering in com-
plex environments. As a result, biological systems have inherently a very high
dimensionality. Even in microarray experiments where expression levels of
thousands of genes are measured simultaneously, only a small subset of the
relevant variables is being observed. The majority of the variables remain “hid-
den” and must be factored out through probabilistic modeling. Going directly
to a systematic probabilistic framework may contribute to the acceleration of
the discovery process by avoiding some of the pitfalls observed in the history
of sequence analysis, where it took several decades for probabilistic models to
emerge as the proper framework.

An often-met criticism of machine-learning techniques is that they are
“black box” approaches: one cannot always pin down exactly how a complex

xiv Preface

neural network, or hidden Markov model, reaches a particular answer. We
have tried to address such legitimate concerns both within the general proba-
bilistic framework and from a practical standpoint. It is important to realize,
however, that many other techniques in contemporary molecular biology
are used on a purely empirical basis. The polymerase chain reaction, for
example, for all its usefulness and sensitivity, is still somewhat of a black box
technique. Many of its adjustable parameters are chosen on a trial-and-error
basis. The movement and mobility of sequences through matrices in gels is
another area where the pragmatic success and usefulness are attracting more
attention than the lack of detailed understanding of the underlying physical
phenomena. Also, the molecular basis for the pharmacological effect of most
drugs remains largely unknown. Ultimately the proof is in the pudding. We
have striven to show that machine-learning methods yield good puddings and
are being elegant at the same time.

Audience and Prerequisites

The book is aimed at both students and more advanced researchers, with di-
verse backgrounds. We have tried to provide a succinct description of the
main biological concepts and problems for the readers with a stronger back-
ground in mathematics, statistics, and computer science. Likewise, the book is
tailored to the biologists and biochemists who will often know more about the
biological problems than the text explains, but need some help to understand
the new data-driven algorithms, in the context of biological data. It should
in principle provide enough insights while remaining sufficiently simple for
the reader to be able to implement the algorithms described, or adapt them
to a particular problem. The book, however, does not cover the informatics
needed for the management of large databases and sequencing projects, or
the processing of raw fluorescence data. The technical prerequisites for the
book are basic calculus, algebra, and discrete probability theory, at the level of
an undergraduate course. Any prior knowledge of DNA, RNA, and proteins is
of course helpful, but not required.

Content and General Outline of the Book

We have tried to write a comprehensive but reasonably concise introductory
book that is self-contained. The book includes definitions of main concepts
and proofs of main theorems, at least in sketched form. Additional technical
details can be found in the appendices and the references. A significant por-
tion of the book is built on material taken from articles we have written over

Preface XV

the years, as well as from tutorials given at several conferences, including the
ISMB (Intelligent Systems for Molecular Biology) conferences, courses given at
the Technical University of Denmark and UC Irvine, and workshops organized
during the NIPS (Neural Information Processing Systems) conference. In par-
ticular, the general Bayesian probabilistic framework that is at the core of the
book has been presented in several ISMB tutorials starting in 1994.

The main focus of the book is on methods, not on the history of a rapidly
evolving field. While we have tried to quote the relevant literature in detail,
we have concentrated our main effort on presenting a number of techniques,
and perhaps a general way of thinking that we hope will prove useful. We have
tried to illustrate each method with a number of results, often but not always
drawn from our own practice.

Chapter 1 provides an introduction to sequence data in the context of
molecular biology, and to sequence analysis. It contains in particular an
overview of genomes and proteomes, the DNA and protein “universes” created
by evolution that are becoming available in the public databases. It presents
an overview of genomes and their sizes, and other comparative material that,
if not original, is hard to find in other textbooks.

Chapter 2 is the most important theoretical chapter, since it lays the foun-
dations for all machine-learning techniques, and shows explicitly how one
must reason in the presence of uncertainty. It describes a general way of think-
ing about sequence problems: the Bayesian statistical framework for inference
and induction. The main conclusion derived from this framework is that the
proper language for machine learning, and for addressing all modeling prob-
lems, is the language of probability theory. All models must be probabilistic.
And probability theory is all one needs for a scientific discourse on models
and on their relationship to the data. This uniqueness is reflected in the title
of the book. The chapter briefly covers classical topics such as priors, like-
lihood, Bayes theorem, parameter estimation, and model comparison. In the
Bayesian framework, one is mostly interested in probability distributions over
high-dimensional spaces associated, for example, with data, hidden variables,
and model parameters. In order to handle or approximate such probability
distributions, it is useful to exploit independence assumptions as much as
possible, in order to achieve simpler factorizations. This is at the root of
the notion of graphical models, where variable dependencies are associated
with graph connectivity. Useful tractable models are associated with relatively
sparse graphs. Graphical models and a few other techniques for handling
high-dimensional distributions are briefly introduced in Chapter 2 and further
elaborated in Appendix C. The inevitable use of probability theory and (sparse)
graphical models are really the two central ideas behind all the methods.

Chapter 3 is a warm-up chapter, to illustrate the general Bayesian proba-
bilistic framework. It develops a few classical examples in some detail which

XVi Preface

are used in the following chapters. It can be skipped by anyone familiar with
such examples, or during a first quick reading of the book. All the exam-
ples are based on the idea of generating sequences by tossings one or several
dices. While such a dice model is extremely simplistic, it is fair to say that a
substantial portion of this book, Chapters 7-12, can be viewed as various gen-
eralizations of the dice model. Statistical mechanics is also presented as an
elegant application of the dice model within the Bayesian framework. In addi-
tion, statistical mechanics offers many insights into different areas of machine
learning. It is used in particular in Chapter 4 in connection with a number
of algorithms, such as Monte Carlo and EM (expectation maximization) algo-
rithms.

Chapter 4 contains a brief treatment of many of the basic algorithms re-
quired for Bayesian inference, machine learning, and sequence applications, in
order to compute expectations and optimize cost functions. These include var-
ious forms of dynamic programming, gradient-descent and EM algorithms, as
well as a number of stochastic algorithms, such as Markov chain Monte Carlo
(MCMC) algorithms. Well-known examples of MCMC algorithms are described,
such as Gibbs sampling, the Metropolis algorithm, and simulated annealing.
This chapter can be skipped in a first reading, especially if the reader has a
good acquaintance with algorithms and/or is not interested in implementing
such algorithms.

Chapters 5-9 and Chapter 12 form the core of the book. Chapter 5 provides
an introduction to the theory of neural networks. It contains definitions of the
basic concepts, a short derivation of the “backpropagation” learning algorithm,
as well as a simple proof of the fact that neural networks are universal approxi-
mators. More important, perhaps, it describes how neural networks, which are
often introduced without any reference to probability theory, are in fact best
viewed within the general probabilistic framework of Chapter 2. This in turn
yields useful insights on the design of neural architectures and the choice of
cost functions for learning.

Chapter 6 contains a selected list of applications of neural network tech-
niques to sequence analysis problems. We do not attempt to cover the hun-
dreds of applications produced so far, but have selected seminal examples
where advances in the methodology have provided significant improvements
over other approaches. We especially treat the issue of optimizing training
procedures in the sequence context, and how to combine networks to form
more complex and powerful algorithms. The applications treated in detail
include protein secondary structure, signal peptides, intron splice sites, and
gene-finding.

Chapters 7 and 8, on hidden Markov models, mirror Chapters 5 and 6.
Chapter 7 contains a fairly detailed introduction to hidden Markov models
(HMMs), and the corresponding dynamic programming algorithms (forward,

Preface Xvil

backward, and Viterbi algorithms) as well as learning algorithms (EM, gradient-
descent, etc.). Hidden Markov models of biological sequences can be viewed
as generalized dice models with insertions and deletions.

Chapter 8 contains a selected list of applications of hidden Markov models
to both protein and DNA/RNA problems. It demonstrates, first, how HMMs
can be used, among other things, to model protein families, derive large multi-
ple alignments, classify sequences, and search large databases of complete or
fragment sequences. In the case of DNA, we show how HMMs can be used in
gene-finding (promoters, exons, introns) and gene-parsing tasks.

HMMs can be very effective, but they have their limitations. Chapters 9-11
can be viewed as extensions of HMMs in different directions. Chapter 9 uses
the theory of probabilistic graphical models systematically both as a unify-
ing concept and to derive new classes of models, such as hybrid models that
combine HMMs with artificial neural networks, or bidirectional Markov models
that exploit the spatial rather than temporal nature of biological sequences.
The chapter includes applications to gene-finding, analysis of DNA symme-
tries, and prediction of protein secondary structure.

Chapter 10 presents phylogenetic trees and, consistent with the framework
of Chapter 2, the inevitable underlying probabilistic models of evolution. The
models discussed in this chapter and throughout the book can be viewed as
generalizations of the simple dice models of Chapter 3. In particular, we show
how tree reconstruction methods that are often presented in a nonprobabilis-
tic context (i.e., parsimony methods) are in fact a special case of the general
framework as soon as the underlying probabilistic model they approximate is
made explicit.

Chapter 11 covers formal grammars and the Chomsky hierarchy. Stochas-
tic grammars provide a new class of models for biological sequences, which
generalize both HMMs and the simple dice model. Stochastic regular gram-
mars are in fact equivalent to HMMs. Stochastic context-free grammars are
more powerful and roughly correspond to dice that can produce pairs of let-
ters rather than single letters. Applications of stochastic grammars, especially
to RNA modeling, are briefly reviewed.

Chapter 12 focuses primarily on the analysis of DNA microarray gene ex-
pression data, once again by generalizing the die model. We show how the
Bayesian probabilistic framework can be applied systematically to array data.
In particular, we treat the problems of establishing whether a gene behaves
differently in a treatment versus control situation and of gene clustering. Anal-
ysis of regulatory regions and inference of gene regulatory networks are dis-
cussed briefly.

Chapter 13 contains an overview of current database resources and other
information that is publicly available over the Internet, together with a list
of useful directions to interesting WWW sites and pointers. Because these

xviii Preface

resources are changing rapidly, we focus on general sites where information is
likely to be updated regularly. However, the chapter contains also a pointer to
a page that contains regularly-updated links to all the other sites.

The book contains in appendix form a few technical sections that are im-
portant for reference and for a thorough understanding of the material. Ap-
pendix A covers statistical notions such as errors bars, sufficient statistics, and
the exponential family of distributions. Appendix B focuses on information
theory and the fundamental notions of entropy, mutual information, and rela-
tive entropy. Appendix C provides a brief overview of graphical models, inde-
pendence, and Markov properties, in both the undirected case (random Markov
fields) and the directed case (Bayesian networks). Appendix D covers technical
issues related to hidden Markov models, such as scaling, loop architectures,
and bendability. Finally, appendix E briefly reviews two related classes of ma-
chine learning models of growing importance, Gaussian processes and sup-
port vector machines. A number of exercises are also scattered throughout
the book: from simple proofs left to the reader to suggestions for possible
extensions.

For ease of exposition, standard assumptions of positivity or differentiabil-
ity are sometimes used implicitly, but should be clear from the context.

What Is New and What Is Omitted

On several occasions, we present new unpublished material or old material but
from a somewhat new perspective. Examples include the discussion around
MaxEnt and the derivation of the Boltzmann-Gibbs distribution in Chapter 3,
the application of HMMs to fragments, to promoters, to hydropathy profiles,
and to bendability profiles in Chapter 8, the analysis of parsimony methods in
probabilistic terms, the higher-order evolutionary models in Chapter 10, and
the Bayesian analysis of gene differences in microarray data. The presentation
we give of the EM algorithm in terms of free energy is not widely known and,
to the best of our knowledge, was first described by Neal and Hinton in an
unpublished technical report.

In this second edition we have benefited from and incorporated the feed-
back received from many colleagues, students, and readers. In addition to re-
visions and updates scattered throughout the book to reflect the fast pace of
discovery set up by complete genome sequencing and other high-throughput
technologies, we have included a few more substantial changes.

These include:

e New section on the human genome sequence in Chapter 1.

e New sections on protein function and alternative splicing in Chapter 1.

Preface XixX

e New neural network applications in Chapter 6.

e A completely revised Chapter 9, which now focuses systematically on
graphical models and their applications to bioinformatics. In particular,
this chapter contains entirely new section about gene finding, and the
use of recurrent neural networks for the prediction of protein secondary
structure.

e Anew chapter (Chapter 12) on DNA microarray data and gene expression.

e A new appendix (Appendix E) on support vector machines and Gaussian
processes.

The book material and treatment reflect our personal biases. Many relevant
topics had to be omitted in order to stay within reasonable size limits. At
the theoretical level, we would have liked to be able to go more into higher
levels of Bayesian inference and Bayesian networks. Most of the book in fact
could have been written using Bayesian networks only, providing an even more
unified treatment, at some additional abstraction cost. At the biological level,
our treatment of phylogenetic trees, for example, could easily be expanded
and the same can be said of the section on DNA microarrays and clustering
(Chapter 12). In any case, we have tried to provide ample references where
complementary information can be found.

Vocabulary and Notation

Terms such as “bioinformatics,” “computational biology,” “computational
molecular biology,” and “biomolecular informatics” are used to denote the
field of interest of this book. We have chosen to be flexible and use all those
terms essentially in an interchangeable way, although one should not forget
that the first two terms are extremely broad and could encompass entire areas
not directly related to this book, such as the application of computers to
model the immune system, or the brain. More recently, the term “computa-
tional molecular biology” has also been used in a completely different sense,
similar to “DNA computing,” to describe attempts to build computing devices
out of biomolecules rather than silicon. The adjective “artificial” is also im-
plied whenever we use the term “neural network” throughout the book. We
deal with artificial neural networks from an algorithmic-pattern-recognition
point of view only.

And finally, a few words on notation. Most of the symbols used are listed at
the end of the book. In general, we do not systematically distinguish between
scalars, vectors, and matrices. A symbol such as “D” represents the data, re-
gardless of the amount or complexity. Whenever necessary, vectors should be

XX Preface

regarded as column vectors. Boldface letters are usually reserved for proba-
bilistic concepts, such as probability (P), expectation (E), and variance (Var). If
X is a random variable, we write P(x) for P(X = x), or sometimes just P(X) if
no confusion is possible. Actual distributions are denoted by P,Q, R, and so
on.

We deal mostly with discrete probabilities, although it should be clear how
to extend the ideas to the continuous case whenever necessary. Calligraphic
style is reserved for particular functions, such as the energy (F) and the en-
tropy (). Finally, we must often deal with quantities characterized by many
indices. A connection weight in a neural network may depend on the units, i
and j, it connects; its layer, [; the time, t, during the iteration of a learning al-
gorithm; and so on. Within a given context, only the most relevant indices are
indicated. On rare occasions, and only when confusion is extremely unlikely,
the same symbol is used with two different meanings (for instance, D denotes
also the set of delete states of an HMM).

Acknowledgments

Over the years, this book has been supported by the Danish National Research
Foundation and the National Institutes of Health. SmithKline Beecham Inc.
sponsored some of the work on fragments at Net-ID. Part of the book was
written while PB was in the Division of Biology, California Institute of Technol-
ogy. We also acknowledge support from Sun Microsystems and the Institute
for Genomics and Bioinformatics at UCL

We would like to thank all the people who have provided feedback on early
versions of the manuscript, especially Jan Gorodkin, Henrik Nielsen, Anders
Gorm Pedersen, Chris Workman, Lars Juhl Jensen, Jakob Hull Kristensen, and
David Ussery. Yves Chauvin and Van Mittal-Henkle at Net-ID, and all the mem-
bers of the Center for Biological Sequence Analysis, have been instrumental to
this work over the years in many ways.

We would like also to thank Chris Bishop, Richard Durbin, and David Haus-
sler for inviting us to the Isaac Newton Institute in Cambridge, where the first
edition of this book was finished, as well as the Institute itself for its great en-
vironment and hospitality. Special thanks to Geeske de Witte, Johanne Keiding,
Kristoffer Rapacki, Hans Henrik Steerfeldt and Peter Busk Laursen for superb
help in turning the manuscript into a book.

For the second edition, we would like to acknowledge new colleagues
and students at UCI including Pierre-Francois Baisnée, Lee Bardwell, Thomas
Briese, Steven Hampson, G. Wesley Hatfield, Dennis Kibler, Brandon Gaut,
Richard Lathrop, Ian Lipkin, Anthony Long, Larry Marsh, Calvin McLaughlin,
James Nowick, Michael Pazzani, Gianluca Pollastri, Suzanne Sandmeyer, and

Preface xxi

Padhraic Smyth. Outside of UCI, we would like to acknowledge Russ Altman,
Mark Borodovsky, Mario Blaum, Doug Brutlag, Chris Burge, Rita Casadio, Piero
Fariselli, Paolo Frasconi, Larry Hunter, Emeran Mayer, Ron Meir, Burkhard
Rost, Pierre Rouze, Giovanni Soda, Gary Stormo, and Gill Williamson.

We also thank the series editor Thomas Dietterich and the staff at MIT
Press, especially Deborah Cantor-Adams, Ann Rae Jonas, Yasuyo Iguchi, Ori
Kometani, Katherine Innis, Robert Prior, and the late Harry Stanton, who was
instrumental in starting this project. Finally, we wish to acknowledge the sup-
port of all our friends and families.

This page intentionally left blank

Bioinformatics

This page intentionally left blank

Chapter 1

Introduction

1.1 Biological Data in Digital Symbol Sequences

A fundamental feature of chain molecules, which are responsible for the func-
tion and evolution of living organisms, is that they can be cast in the form
of digital symbol sequences. The nucleotide and amino acid monomers in
DNA, RNA, and proteins are distinct, and although they are often chemically
modified in physiological environments, the chain constituents can without
infringement be represented by a set of symbols from a short alphabet. There-
fore experimentally determined biological sequences can in principle be ob-
tained with complete certainty. At a particular position in a given copy of
a sequence we will find a distinct monomer, or letter, and not a mixture of
several possibilities.

The digital nature of genetic data makes them quite different from many
other types of scientific data, where the fundamental laws of physics or the so-
phistication of experimental techniques set lower limits for the uncertainty. In
contrast, provided the economic and other resources are present, nucleotide
sequences in genomic DNA, and the associated amino acid sequences in pro-
teins, can be revealed completely. However, in genome projects carrying out
large-scale DNA sequencing or in direct protein sequencing, a balance among
purpose, relevance, location, ethics, and economy will set the standard for the
quality of the data.

The digital nature of biological sequence data has a profound impact on
the types of algorithms that have been developed and applied for computa-
tional analysis. While the goal often is to study a particular sequence and its
molecular structure and function, the analysis typically proceeds through the
study of an ensemble of sequences consisting of its different versions in dif-
ferent species, or even, in the case of polymorphisms, different versions in

1

2 Introduction

the same species. Competent comparison of sequence patterns across species
must take into account that biological sequences are inherently “noisy,” the
variability resulting in part from random events amplified by evolution. Be-
cause DNA or amino acid sequences with a given function or structure will
differ (and be uncertain), sequence models must be probabilistic.

1.1.1 Database Annotation Quality

It is somehow illogical that although sequence data can be determined exper-
imentally with high precision, they are generally not available to researchers
without additional noise stemming from the joint effects of incorrect interpre-
tation of experiments and incorrect handling and storage in public databases.
Given that biological sequences are stored electronically, that the public
databases are curated by a highly diverse group of people, and, moreover,
that the data are annotated and submitted by an even more diverse group of
biologists and bioinformaticians, it is perhaps understandable that in many
cases the error rate arising from the subsequent handling of information may
be much larger than the initial experimental error [100, 101, 327].

An important factor contributing to this situation is the way in which data
are stored in the large sequence databases. Features in biological sequences
are normally indicated by listing the relevant positions in numeric form, and
not by the “content” of the sequence. In the human brain, which is renowned
for its ability to handle vast amounts of information accumulated over the life-
time of the individual, information is recalled by content-addressable schemes
by which a small part of a memory item can be used to retrieve its complete
content. A song, for example, can often be recalled by its first two lines.

Present-day computers are designed to handle numbers—in many coun-
tries human “accession” numbers, in the form of Social Security numbers, for
one thing, did not exist before them [103]. Computers do not like content-
addressable procedures for annotating and retrieving information. In com-
puter search passport attributes of people—their names, professions, and hair
color—cannot always be used to single out a perfect match, and if at all most
often only when formulated using correct language and perfect spelling.

Biological sequence retrieval algorithms can been seen as attempts to con-
struct associative approaches for finding specific sequences according to an
often “fuzzy” representation of their content. This is very different from the
retrieval of sequences according to their functionality. When the experimen-
talist submits functionally relevant information, this information is typically
converted from what in the laboratory is kept as marks, coloring, or scribbles
on the sequence itself. This “semiotic” representation by content is then con-
verted into a representation where integers indicate individual positions. The

Biological Data in Digital Symbol Sequences 3

numeric representation is subsequently impossible to review by human visual
inspection.

In sequence databases, the result is that numerical feature table errors,
instead of being acceptable noise on the retrieval key, normally will produce
garbage in the form of more or less random mappings between sequence posi-
tions and the annotated structural or functional features. Commonly encoun-
tered errors are wrong or meaningless annotation of coding and noncoding re-
gions in genomic DNA and, in the case of amino acid sequences, randomly dis-
placed functional sites and posttranslational modifications. It may not be easy
to invent the perfect annotation and data storage principle for this purpose.
In the present situation it is important that the bioinformatician carefully take
into account these potential sources of error when creating machine-learning
approaches for prediction and classification.

In many sequence-driven mechanisms, certain nucleotides or amino acids
are compulsory. Prior knowledge of this kind is an easy and very useful way
of catching typographical errors in the data. It is interesting that machine-
learning techniques provide an alternative and also very powerful way of de-
tecting erroneous information and annotation. In a body of data, if something
is notoriously hard to learn, it is likely that it represents either a highly atypical
case or simply a wrong assignment. In both cases, it is nice to be able to sift out
examples that deviate from the general picture. Machine-learning techniques
have been used in this way to detect wrong intron splice sites in eukaryotic
genes [100, 97, 101, 98, 327], wrong or missing assignments of O-linked glyco-
sylation sites in mammalian proteins [235], or wrongly assigned cleavage sites
in polyproteins from picornaviruses [75], to mention a few cases. Importantly,
not all of the errors stem from data handling, such as incorrect transfer of
information from published papers into database entries: significant number
of errors stems from incorrect assignments made by experimentalists [327].
Many of these errors could also be detected by simple consistency checks prior
to incorporation in a public database.

A general problem in the annotation of the public databases is the fuzzy
statements in the entries regarding who originally produced the feature an-
notation they contain. The evidence may be experimental, or assigned on the
basis of sequence similarity or by a prediction algorithm. Often ambiguities
are indicated in a hard-to-parse manner in free text, using question marks or
comments such as POTENTIAL or PROBABLE. In order not to produce circular
evaluation of the prediction performance of particular algorithmes, it is neces-
sary to prepare the data carefully and to discard data from unclear sources.
Without proper treatment, this problem is likely to increase in the future, be-
cause more prediction schemes will be available. One of the reasons for the
success of machine-learning techniques within this imperfect data domain is
that the methods often—in analogy to their biological counterparts—are able

4 Introduction

to handle noise, provided large corpora of sequences are available. New dis-
coveries within the related area of natural language acquisition have proven
that even eight-month-old infants can detect linguistic regularities and learn
simple statistics for the recognition of word boundaries in continuous speech
[458]. Since the language the infant has to learn is as unknown and complex
as the DNA sequences seem to us, it is perhaps not surprising that learning
techniques can be useful for revealing similar regularities in genomic data.

1.1.2 Database Redundancy

Another recurrent problem haunting the analysis of protein and DNA se-
quences is the redundancy of the data. Many entries in protein or genomic
databases represent members of protein and gene families, or versions of
homologous genes found in different organisms. Several groups may have
submitted the same sequence, and entries can therefore be more or less
closely related, if not identical. In the best case, the annotation of these very
similar sequences will indeed be close to identical, but significant differences
may reflect genuine organism or tissue specific variation.

In sequencing projects redundancy is typically generated by the different
experimental approaches themselves. A particular piece of DNA may for ex-
ample be sequenced in genomic form as well as in the form of cDNA comple-
mentary to the transcribed RNA present in the cell. As the sequence being
deposited in the databases is determined by widely different approaches—
ranging from noisy single-pass sequence to finished sequence based on five-
to tenfold repetition—the same gene may be represented by many database
entries displaying some degree of variation.

In a large number of eukaryotes, the cDNA sequences (complete or incom-
plete) represent the spliced form of the pre-mRNA, and this means again, for
genes undergoing alternative splicing, that a given piece of genomic DNA in
general will be associated with several cDNA sequences being noncontinuous
with the chromosomal sequence [501]. Alternative splice forms can be gener-
ated in many different ways. Figure 1.1 illustrates some of the different ways
coding and noncoding segments may be joined, skipped, and replaced during
splicing. Organisms having a splice machinery at their disposal seem to use
alternative splicing quite differently. The alternative to alternative splicing is
obviously to include different versions of the same gene as individual genes in
the genome. This may be the strategy used by the nematode Caenorhabditis
elegans, which seems to contain a large number of genes that are very similar,
again giving rise to redundancy when converted into data sets [315]. In the
case of the human genome [234, 516, 142] it is not unlikely that at least 30-
80% of the genes are alternatively spliced, in fact it may be the rule rather than

Biological Data in Digital Symbol Sequences 5

Figure 1.1: The Most Common Modes of Alternative Splicing in Eukaryotes. Left from top:
Cassette exon (exon skipping or inclusion), alternative 5’ splice site, alternative 3’ splice site.
Right from top: whole intron retention, pairwise spliced exons and mutually exclusive exons.
These different types of alternative pre-mRNA processing can be combined [332].

the exception.

Data redundancy may also play a nontrivial role in relation to massively
parallel gene expression experiments, a topic we return to in chapter 12. The
sequence of genes either being spotted onto glass plates, or synthesized on
DNA chips, is typically based on sequences, or clusters of sequences, deposited
in the databases. In this way microarrays or chips may end up containing more
sequences than there are genes in the genome of a particular organism, thus
giving rise to noise in the quantitative levels of hybridization recorded from
the experiments.

In protein databases a given gene may also be represented by amino acid
sequences that do not correspond to a direct translation of the genomic wild-
type sequence of nucleotides. It is not uncommon that protein sequences are
modified slightly in order to obtain sequence versions that for example form
better crystals for use in protein structure determination by X-ray crystallog-
raphy [99]. Deletions and amino acid substitutions may give rise to sequences
that generate database redundancy in a nontrivial manner.

The use of a redundant data set implies at least three potential sources
of error. First, if a data set of amino acid or nucleic acid sequences contains
large families of closely related sequences, statistical analysis will be biased
toward these families and will overrepresent features peculiar to them. Sec-
ond, apparent correlations between different positions in the sequences may
be an artifact of biased sampling of the data. Finally, if the data set is being
used for predicting a certain feature and the sequences used for making and
calibrating the prediction method—the training set—are too closely related to

6 Introduction

the sequences used for testing, the apparent predictive performance may be
overestimated, reflecting the method’s ability to reproduce its own particular
input rather than its generalization power.

At least some machine-learning approaches will run into trouble when cer-
tain sequences are heavily overrepresented in a training set. While algorithmic
solutions to this problem have been proposed, it may often be better to clean
up the data set first and thereby give the underrepresented sequences equal
opportunity. It is important to realize that underrepresentation can pose prob-
lems both at the primary structure level (sequence redundancy) and at the clas-
sification level. Categories of protein secondary structures, for example, are
typically skewed, with random coil being much more frequent than beta-sheet.

For these reasons, it can be necessary to avoid too closely related sequences
in a data set. On the other hand, a too rigorous definition of “too closely re-
lated” may lead to valuable information being discarded from the data set.
Thus, there is a trade-off between data set size and nonredundancy. The ap-
propriate definition of “too closely related” may depend strongly on the prob-
lem under consideration. In practice, this is rarely considered. Often the test
data are described as being selected “randomly” from the complete data set,
implying that great care was taken when preparing the data, even though re-
dundancy reduction was not applied at all. In many cases where redundancy
reduction is applied, either a more or less arbitrary similarity threshold is
used, or a “representative” data set is made, using a conventional list of pro-
tein or gene families and selecting one member from each family.

An alternative strategy is to keep all sequences in a data set and then assign
weights to them according to their novelty. A prediction on a closely related
sequence will then count very little, while the more distantly related sequences
may account for the main part of the evaluation of the predictive performance.
A major risk in this approach is that erroneous data almost always will be asso-
ciated with large weights. Sequences with erroneous annotation will typically
stand out, at least if they stem from typographical errors in the feature tables
of the databases. The prediction for the wrongly assigned features will then
have a major influence on the evaluation, and may even lead to a drastic un-
derestimation of the performance. Not only will false sites be very hard to
predict, but the true sites that would appear in a correct annotation will often
be counted as false positives.

A very productive way of exploiting database redundancy—both in relation
to sequence retrieval by alighment and when designing input representations
for machine learning algorithms—is the sequence profile [226]. A profile de-
scribes position by position the amino acid variation in a family of sequences
organized into a multiple alignment. While the profile no longer contains in-
formation about the sequential pattern in individual sequences, the degree of
sequence variation is extremely powerful in database search, in programs such

Genomes—Diversity, Size, and Structure 7

as PSI-BLAST, where the profile is iteratively updated by the sequences picked
up by the current version of the profile [12]. In later chapters, we shall re-
turn to hidden Markov models, which also implement the profile concept in
a very flexible manner, as well as neural networks receiving profile informa-
tion as input—all different ways of taking advantage of the redundancy in the
information being deposited in the public databases.

1.2 Genomes—Diversity, Size, and Structure

Genomes of living organisms have a profound diversity. The diversity relates
not only to genome size but also to the storage principle as either single- or
double-stranded DNA or RNA. Moreover, some genomes are linear (e.g. mam-
mals), whereas others are closed and circular (e.g. most bacteria).

Cellular genomes are always made of DNA [389], while phage and viral
genomes may consist of either DNA or RNA. In single-stranded genomes, the
information is read in the positive sense, the negative sense, or in both di-
rections, in which case one speaks of an ambisense genome. The positive
direction is defined as going from the 5’ to the 3’ end of the molecule. In
double-stranded genomes the information is read only in the positive direc-
tion (5’ to 3’ on either strand). Genomes are not always replicated directly;
retroviruses, for example, have RNA genomes but use a DNA intermediate in
the replication.

The smallest genomes are found in nonself-replicating suborganisms like
bacteriophages and viruses, which sponge on the metabolism and replica-
tion machinery of free-living prokaryotic and eukaryotic cells, respectively. In
1977, the 5,386 bp in the genome of the bacteriophage ¢X174 was the first
to be sequenced [463]. Such very small genomes normally come in one con-
tinuous piece of sequence. But other quite small genomes, like the 1.74 Mbp
genome of the hyperthermophilic archaeon Methanococcus jannaschii, which
was completely sequenced in 1996, may have several chromosomal compo-
nents. In M. jannaschii there are three, one of them by far the largest. The
much larger 3,310 Mbp human genome is organized into 22 chromosomes
plus the two that determine sex. Even among the primates there is variation
in the number of chromosomes. Chimpanzees, for example, have 23 chromo-
somes in addition to the two sex chromosomes. The chimpanzee somatic cell
nucleus therefore contains a total number of 48 chromosomes in contrast to
the 46 chromosomes in man. Other mammals have completely different chro-
mosome numbers, the cat, for example, has 38, while the dog has as many as
78 chromosomes. As most higher organisms have two near-identical copies
of their DNA (the diploid genome), one also speaks about the haploid DNA
content, where only one of the two copies is included.

8 Introduction

mammals

bTrds

amphibians

bony fish

insects

plants
fungi
bacteria

viruses

1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1le+10 le+l1l le+12

Figure 1.2: Intervals of Genome Sizes for Various Classes of Organisms. Note that the plot
is logarithmic in the number of nucleotides on the first axis. Most commonly, the variation
within one group is one order of magnitude or more. The narrow interval of genome sizes
among mammals is an exception to the general picture. It is tempting to view the second axis
as “organism complexity” but it is most certainly not a direct indication of the size of the gene
pool. Many organisms in the upper part of the spectrum, e.g., mammals, fish, and plants, have
comparable numbers of genes (see table 1.1).

The chromosome in some organisms is not stable. For example, the Bacillus
cereus chromosome has been found to consist of a large stable component
(2.4 Mbp) and a smaller (1.2 Mbp) less stable component that is more easily
mobilized into extra-chromosomal elements of varying sizes up to the order of
megabases [114]. This has been a major obstacle in determining the genomic
sequence, or just a genetic map, of this organism. However, in almost any
genome transposable elements can also be responsible for rearrangements, or
insertion, of fairly large sequences, although they have been not been reported
to cause changes in chromosome number. Some theories claim that a high
number of chromosomal components is advantageous and increases the speed
of evolution, but currently there is no final answer to this question [438].

Genomes—Diversity, Size, and Structure 9

It is interesting that the spectrum of genome sizes is to some extent seg-
regated into nonoverlapping intervals. Figure 1.2 shows that viral genomes
have sizes in the interval from 3.5 to 280 Kbp, bacteria range from 0.5 to 10
Mbp, fungi from around 10 to 50 Mbp, plants start at around 50 Mbp, and
mammals are found in a more narrow band (on the logarithmic scale) around
1 Gb. This staircase reflects the sizes of the gene pools that are necessary for
maintaining life in a noncellular form (viruses), a unicellular form (bacteria),
multicellular forms without sophisticated intercellular communication (fungi),
and highly differentiated multicellular forms with many intercellular signaling
systems (mammals and plants). In recent years it has been shown that even
bacteria are capable of chemical communication [300]. Molecular messengers
may travel between cells and provide populationwide control. One famous
example is the expression of the enzyme luciferase, which along with other
proteins is involved in light production by marine bacteria. Still, this type of
communication requires a very limited gene pool compared with signaling in
higher organisms.

The general rule is that within most classes of organisms we see a huge
relative variation in genome size. In eukaryotes, a few exceptional classes
(e.g., mammals, birds, and reptiles) have genome sizes confined to a narrow
interval [116]. As it is possible to estimate the size of the unsequenced gaps,
for example by optical mapping, the size of the human genome is now known
with a quite high precision. Table 1.2 shows an estimate of the size for each of
the 24 chromosomes. In total the reference human genome sequence seems to
contain roughly 3,310,004,815 base pairs—an estimate that presumably will
change slightly over time.

The cellular DNA content of different species varies by over a millionfold.
While the size of bacterial genomes presumably is directly related to the level
of genetic and organismic complexity, within the eukaryotes there might be as
much as a 50,000-fold excess compared with the basic protein-coding require-
ments [116]. Organisms that basically need the same molecular apparatus can
have a large variation in their genome sizes. Vertebrates share a lot of basic
machinery, yet they have very different genome sizes. As early as 1968, it was
demonstrated that some fish, in particular the family Tetraodontidae, which
contains the pufferfish, have very small genomes [254, 92, 163, 534, 526]. The
pufferfish have genomes with a haploid DNA content around 400-500 Mbp,
six-eight times smaller than the 3,310 Mbp human genome. The pufferfish
Fugu rubripes genome is only four times larger than that of the much simpler
nematode worm Caenorhabditis elegans (100 Mbp) and eight times smaller
than the human genome. The vertebrates with the largest amount of DNA per
cell are the amphibians. Their genomes cover an enormous range, from 700
Mbp to more than 80,000 Mbp. Nevertheless, they are surely less complex than
most humans in their structure and behavior [365].

10

Introduction

Group Species Genes Genome size
Phages Bacteriophage MS2 4 0.003569
Bacteriophage T4 270 0.168899
Viruses Cauliflower mosaic virus 8 0.008016
HIV type 2 9 0.009671
Vaccinia virus 260 0.191737
Bacteria Mycoplasma genitalium 473 0.58
Mycoplasma pneumoniae 716 0.82
Haemophilus influenzae 1,760 1.83
Bacillus subtilis 3,700 4.2
Escherichia coli 4,100 4.7
Myxococcus xanthus 8,000 9.45
Archaea Methanococcus jannaschii 1,735 1.74
Fungi Saccharomyces cerevisiae 5,800 12.1
Protoctista Cyanidioschyzon merolae 5,000 11.7
Oxytricha similis 12,000 600
Arthropoda Drosophila melanogaster 15,000 180
Nematoda Caenorhabditis elegans 19,000 100
Mollusca Loligo pealii 20-30,000 2,700
Plantae Nicotiana tabacum 20-30,000 4,500
Arabidopsis thaliana 25,500 125
Chordata Giona intestinalis N 165
Fugu rubripes 30-40,000 400
Danio rerio N 1,900
Mus musculus 30-40,000 3,300
Homo sapiens 30-40,000 3,310

Table 1.1: Approximate Gene Number and Genome Sizes in Organisms in Different Evolutionary
Lineages. Genome sizes are given in megabases. N = not available. Data were taken in part
from [390] and references therein (and scaled based on more current estimates); others were
compiled from a number of different Internet resources, papers, and books.

1.2.1 Gene Content in the Human Genome and other Genomes

A variable part of the complete genome sequence in an organism contains
genes, a term normally defined as one or several segments that constitute an
expressible unit. The word gene was coined in 1909 by the Danish geneticist
Wilhelm Johannsen (together with the words genetype and phenotype) long
before the physical basis of DNA was understood in any detail.

Genes may encode a protein product, or they may encode one of the many
RNA molecules that are necessary for the processing of genetic material and
for the proper functioning of the cell. mRNA sequences in the cytoplasm are
used as recipes for producing many copies of the same protein; genes encod-
ing other RNA molecules must be transcribed in the quantities needed. Se-

Genomes—Diversity, Size, and Structure 11

Human chromosome Size
Chr. 1 282,193,664
Chr. 2 253,256,583
Chr. 3 227,524,578
Chr. 4 202,328,347
Chr. 5 203,085,532
Chr. 6 182,415,242
Chr. 7 166,623,906
Chr. 8 152,776,421
Chr. 9 142,271,444
Chr. 10 145,589,288
Chr. 11 150,783,553
Chr. 12 144,282,489
Chr. 13 119,744,898
Chr. 14 106,953,321
Chr. 15 101,380,521
Chr. 16 104,298,331
Chr. 17 89,504,553
Chr. 18 86,677,548
Chr. 19 74,962,845
Chr. 20 66,668,005
Chr. 21 44,907,570
Chr. 22 47,662,662
Chr. X 162,599,930
Chr. Y 51,513,584

Table 1.2: Approximate Sizes for the 24 Chromosomes in the Human Genome Reference Se-
quence. Note that the 22 chromosome sizes do not rank according to the original numbering
of the chromosomes. Data were taken from the Ensembl (www.ensembl.org) and Santa Cruz
(genome.ucsc.edu) web-sites. In total the reference human genome sequence seems to contain
roughly 3,310,004,815 base pairs—an estimate that presumably will change slightly over time.

quence segments that do not directly give rise to gene products are normally
called noncoding regions. Noncoding regions can be parts of genes, either as
regulatory elements or as intervening sequences interrupting the DNA that di-
rectly encode proteins or RNA. Machine-learning techniques are ideal for the
hard task of interpreting unannotated genomic DNA, and for distinguishing
between sequences with different functionality.

Table 1.1 shows the current predictions for the approximate number of
genes and the genome size in organisms in different evolutionary lineages. In
those organisms where the complete genome sequence has now been deter-
mined, the indications of these numbers are of course quite precise, while in
other organisms only a looser estimate of the gene density is available. In some

Introduction

Species Haploid genome size Bases Entries
Homo sapiens 3,310,000,000 7,387,490,518 4,544,962
Mus musculus 3,300,000,000 1,527,228,639 2,793,543
Drosophila melanogaster 180,000,000 502,655,942 167,687
Arabidopsis thaliana 125,000,000 249,689,164 183,987
Caenorhabditis elegans 100,000,000 204,396,881 114,744
Oryza sativa 400,000,000 171,870,798 161,411
Tetraodon nigroviridis 350,000,000 165,542,107 189,000
Rattus norvegicus 2,900,000,000 114,331,466 229,838
Bos taurus 3,600,000,000 76,700,774 168,469
Glycine max 1,115,000,000 73,450,470 167,090
Medicago truncatula 400,000,000 60,606,228 120,670
Lycopersicon esculentum 655,000,000 56,462,749 109,913
Trypanosoma brucei 35,000,000 50,723,464 91,360
Hordeum vulgare 5,000,000,000 49,770,458 70,317
Giardia intestinalis 12,000,000 49,431,105 56,451
Strongylocentrotus purpur 900,000,000 47,633,412 77,554
Danio rerio 1,900,000,000 47,584,911 93,141
Xenopus laevis 3,100,000,000 46,517,145 92,041
Zea mays 5,000,000,000 45,978,459 98,818
Entamoeba histolytica 20,000,000 44,552,032 49,969

Table 1.3: The Number of Bases in GenBank rel. 123, April 2001, for the 20 Most Sequenced
Organisms. For some organisms there is far more sequence than the size of the genome, due to
strain variation and pure redundancy.

organisms, such as bacteria, where the genome size is a strong growth-limiting
factor, almost the entire genome is covered with coding (protein and RNA) re-
gions; in other, more slowly growing organisms the coding part may be as little
as 1-2%. This means that the gene density in itself normally will influence the
precision with which computational approaches can perform gene finding. The
noncoding part of a genome will often contain many pseudo-genes and other
sequences that will show up as false positive predictions when scanned by an
algorithm.

The biggest surprise resulting from the analysis of the two versions of the
human genome data [134, 170] was that the gene content may be as low as
in the order of 30,000 genes. Only about 30,000-40,000 genes were estimated
from the initial analysis of the sequence. It was not totally unexpected as the
gene number in the fruit fly (14,000) also was unexpectedly low [132]. But
how can man realize its biological potential with less than twice the number
of genes found in the primitive worm C. elegans? Part of the answer lies in
alternative splicing of this limited number of genes as well as other modes
of multiplexing the function of genes. This area has to some degree been ne-

Genomes—Diversity, Size, and Structure 13

glected in basic research and the publication of the human genome illustrated
our ignorance all too clearly: only a year before the publication it was expected
that around 100-120,000 genes would be present in the sequence [361]. For
a complex organism, gene multiplexing makes it possible to produce several
different transcripts from many of the genes in its genome, as well as many
diferent protein variants from each transcript. As the cellular processing of
genetic material is far more complex (in terms of regulation) than previously
believed the need for sophisticated bioinformatics approaches with ability to
model these processes is also strongly increased.

One of the big open questions is clearly how a quite substantial increase
in organism complexity can arise from a quite modest increase in the size of
the gene pool. The fact that worms have almost as many genes as humans is
somewhat irritating, and in the era of whole cell and whole organism oriented
research, we need to understand how the organism complexity scales with the
potential of a fixed number of genes in a genome.

The French biologist Jean-Michel Claverie has made [132] an interesting
“personal” estimate of the biological complexity K and its relation to the num-
ber of genes in a genome, N. The function f that converts N into K could in
principle be linear (K ~ N), polynomial (K ~ N4), exponential (K ~ a¥), K ~ N!
(factorial), and so on. Claverie suggests that the complexity should be related
to the organism’s ability to create diversity in its gene expression, that is to
the number of theoretical transcriptome states the organism can achieve. In
the simplest model, where genes are assumed to be either active or inactive
(ON or OFF), a genome with N genes can potentially encode 2N states. When
we then compare humans to worms, we appear to be

230,000/220,000 ~ 103,000 (11)

more complex than nematodes thus confirming (and perhaps reestablishing)
our subjective view of superiority of the human species. In this simple model
the exponents should clearly be decreased because genes are not indepen-
dently expressed (due to redundance and/or coregulation), and the fact that
many of the states will be lethal. On the other hand gene expression is not
ON/OFF, but regulated in a much more graded manner. A quite trivial math-
ematical model can thus illustrate how a small increase in gene number can
lead to a large increase in complexity and suggests a way to resolve the appar-
ent N value paradox which has been created by the whole genome sequencing
projects. This model based on patterns of gene expression may seem very
trivial, still it represents an attempt to quantify “systemic” aspects of organ-
isms, even if all their parts still may be understood using more conventional,
reductionistic approaches [132].

Another fundamental and largely unsolved problem is to understand why
the part of the genome that code for protein, in many higher organisms, is

14 Introduction

quite limited. In the human sequence the coding percentage is small no matter
whether one uses the more pessimistic gene number N of 26,000 or the more
optimistic figure of 40,000 [170]. For these two estimates in the order of 1.1%
(1.4%) of the human sequence seems to be coding, with introns covering 25%
(36%) and the remaining intergenic part covering 75% (64%), respectively. While
it is often stated that the genes only cover a few percent, this is obviously not
true due to the large average intron size in humans. With the estimate of
40,000 genes more than one third of the entire human genome is covered by
genes.

The mass of the nuclear DNA in an unreplicated haploid genome in a given
organism is known as its C-value, because it usually is a constant in any one
narrowly defined type of organism. The C-values of eukaryotic genomes vary
at least 80,000-fold across species, yet bear little or no relation to organismic
complexity or to the number of protein-coding genes [412, 545]. This phe-
nomenon is known as the C-value paradox [518].

It has been suggested that noncoding DNA just accumulates in the nuclear
genome until the costs of replicating it become too great, rather than having
a structural role in the nucleus [412]. It became clear many years ago that the
extra DNA does not in general contain an increased number of genes. If the
large genomes contained just a proportionally increased number of copies of
each gene, the kinetics of DNA renaturation experiments would be very fast.
In renaturation experiments a sample of heat-denatured strands is cooled, and
the strands reassociate provided they are sufficiently complementary. It has
been shown that the kinetics is reasonably slow, which indicates that the ex-
tra DNA in voluminous genomes most likely does not encode genes [116]. In
plants, where some of the most exorbitant genomes have been identified, clear
evidence for a correlation between genome size and climate has been estab-
lished [116]; the very large variation still needs to be accounted for in terms of
molecular and evolutionary mechanisms. In any case, the size of the complete
message in a genome is not a good indicator of the “quality” of the genome
and its efficiency.

This situation may not be as unnatural as it seems. In fact, it is somewhat
analogous to the case of communication between humans, where the message
length fails to be a good measure of the quality of the information exchanged.
Short communications can be very efficient, for example, in the scientific lit-
erature, as well as in correspondence between collaborators. In many E-mail
exchanges the “garbage” has often been reduced significantly, leaving the es-
sentials in a quite compact form. The shortest known correspondence between
humans was extremely efficient: Just after publishing Les Misérables in 1862,
Victor Hugo went on holiday, but was anxious to know how the sales were go-
ing. He wrote a letter to his publisher containing the single symbol “?”. The
publisher wrote back, using the single symbol “!”, and Hugo could continue his

Genomes—Diversity, Size, and Structure 15

Growth of the GenBank Database
100000000000 F T T T T T T T T T

10000000000 F
1000000000 F
100000000 -
510000000 -
e} L
E I
Z 1000000

100000 F

10000 -
Av. length

e aEozo
1000 ¢ E/"ELE{E},BVBBBBBEEEHEEE‘EEEBEDDBEEEEI

100 L 1 1 1 1 1 1 1 1 1
1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002
Year

Figure 1.3: The Exponential Growth in the Size of the GenBank Database in the Period 1983-
2001. Based on the development in 2000/2001, the doubling time is around 10 months. The
complete size of GenBank rel. 123 is 12,418,544,023 nucleotides in 11,545,572 entries (average
length 1076). Currently the database grows by more than 11,000,000 bases per day.

holiday without concern for this issue. The book became a best-seller, and is
still a success as a movie and a musical.

The exponential growth in the size of the GenBank database [62, 503] is
shown in figure 1.3. The 20 most sequenced organisms are listed in table 1.3.
Since the data have been growing exponentially at the same pace for many
years, the graph will be easy to extrapolate until new, faster, and even more
economical sequencing techniques appear. If completely new sequencing ap-
proaches are invented the growth rate will presumably increase even further.
Otherwise, it is likely that the rate will stagnate when several of the mammalian
genomes have been completed. If sequencing at that time is still costly, fund-
ing agencies may start to allocate resources to other scientific areas, resulting
in a lower production rate.

In addition to the publicly available data deposited in GenBank, proprietary
data in companies and elsewhere are also growing at a very fast rate. This

16 Introduction

means that the current total amount of sequence data known to man is un-
known. Today the raw sequencing of a complete prokaryotic genome may—in
the largest companies—take less than a day, when arrays of hundreds of se-
quencing machines are operating in parallel on different regions of the same
chromosome. Part of this kind of data will eventually be deposited in the
public databases, while the rest will remain in the private domain. For all or-
ganisms speed matters a lot, not the least due to the patenting that usually is
associated with the generation of sequence data.

1.3 Proteins and Proteomes

1.3.1 From Genome to Proteome

At the protein level, large-scale analysis of complete genomes has its counter-
part in what has become known as proteome analysis [299, 413]. Proteomes
contain the total protein expression of a set of chromosomes. In a multicellu-
lar organism this set of proteins will differ from cell type to cell type, and will
also change with time because gene regulation controls advances in develop-
ment from the embryonic stage and further on. Proteome research deals with
the proteins produced by genes from a given genome.

Unlike the word “genome” which was coined just after the First World War
by the German botanist Hans Winkler [561, 65], the word “proteome” entered
the scientific literature recently, in 1994 in papers by Marc Wilkins and Keith
Williams [559].

Proteome analysis not only deals with determining the sequence, location,
and function of protein-encoding genes, but also is strongly concerned with
the precise biochemical state of each protein in its posttranslational form.
These active and functional forms of proteins have in several cases been suc-
cessfully predicted using machine-learning techniques.

Proteins often undergo a large number of modifications that alter their ac-
tivities. For example, certain amino acids can be linked covalently (or nonco-
valently) to carbohydrates, and such amino acids represent so-called glycosy-
lation sites. Other amino acids are subjected to phosphorylation, where phos-
phate groups are added to the polypeptide chain. In both cases these changes,
which are performed by a class of specific enzymes, may be essential for the
functional role of the protein. Many other types of posttranslational modifica-
tions exist, such as addition of fatty acids and the cleavage of signal peptides
in the N-terminus of secretory proteins translocated across a membrane. To-
gether with all the other types, these modifications are very interesting in a
data-driven prediction context, because a relatively large body of experimen-
tally verified sites and sequences is deposited in the public databases.

Proteins and Proteomes 17

1.3.2 Protein Length Distributions

The evolution of living organisms selects polypeptide chains with the ability
to acquire stable conformations in the aqueous or lipid environments where
they perform their function. It is well known that interaction between residues
situated far from each other in the linear sequence of amino acids plays a cru-
cial role in the folding of proteins. These long-range effects also represent
the major obstacle to computational approaches to protein folding. Still, most
research on the topic concentrates on the local aspects of the structure eluci-
dation problem. This holds true for strategies involving prediction and clas-
sification as well as for computational approaches based on molecular forces
and the equations of motion.

Statistical analysis has played a major role in studies of protein sequences
and their evolution since the early studies of Ycas and Gamow [195, 575, 555].
Most work has focused on the statistics of local nonrandom patterns with a
specific structure or function, while reliable global statistics of entire genomes
have been made possible by the vast amounts of data now available.

The universe of protein sequences can be analyzed in its entirety across
species, but also in an organism-specific manner where, for example, the
length distribution of the polypeptide chains in the largest possible proteome
can be identified completely. A key question is whether the protein sequences
we see today represent “edited” versions of sequences that were of essentially
random composition when evolution started working on them [555]. Alterna-
tively, they could have been created early on with a considerable bias in their
composition.

Using the present composition of soluble proteins, one can form on the
order of 102 “natural” sequences of length-100 amino acids. Only a very tiny
fraction of these potential sequences has been explored by Nature. A “random
origin hypothesis,” which asserts that proteins originated by stochastic pro-
cesses according to simple rules, has been put forward by White and Jacobs
[556, 555]. This theory can be taken formally as a null hypothesis when exam-
ining different aspects of the randomness of protein sequences, in particular
to what extent proteins can be distinguished from random sequences.

The evidence for long-range order and regularity in protein primary struc-
ture is accumulating. Surprisingly, species-specific regularity exists even at a
level below the compositional level: the typical length of prokaryotic proteins
is consistently different from the typical length in eukaryotes [64]. This may
be linked to the idea that the probability of folding into a compact structure in-
creases more rapidly with length for eukaryotic than for prokarytic sequences
[555]. It has been suggested that the observed differences in the sequence
lengths can be explained by differences in the concentration of disulfide bonds
between cysteine residues and its influence on the optimal domain sizes [304].

18 Introduction

H. influenzae predicted coding regions M. genitalium predicted coding regions
100 b “hi.dis’ 100 b ‘mg.dis’
» sof |l 2 80
g g
2 2
2 2
= 60 = 60
1] 1]
5 5
£ £
g 40 g 40
3 3
Z Z
) |) MWWWM |
0 Ao n . 0 o — e n
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
A Length in amino acids B Length in amino acids
M. jannaschii predicted coding regions S. cerevisiae predicted coding regions
= T T T T T T 500 T T T T T
100 + ’mj.dis’ 1 450 L “yeast.dis”
| 400 - ||
@ 80 P
g g
o} o}
° °
& 60t &
s s
I} I}
£ £
g 40 g
3 3
Z Z
20
0 —Mn . 0
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
C Length in amino acids D Length in amino acids

Figure 1.4: Length Distributions for Predicted Protein Coding Regions in Entire Genomes. A. H.
influenzae, among the 1,743 regions, amino acid chains of lengths between 140 and 160 are the
most frequent. B. M. genitalium with 468 regions, and preferred amino acid chains of length
between 120 and 140 or 280 and 300. C. The archaeon M. jannaschii with 1,735 regions; amino
acid chains of length between 140 and 160 are the most frequent. D. §. cerevisiae, among the
6,200 putative protein coding regions, amino acid chains of length between 100 and 120 are
the most frequent; this interval is followed by the interval 120 to 140. As described in a 1997
correspondence in Nature, the S. cerevisiae set clearly contains an overrepresentation (of artifact
sequences) in the 100-120 length interval [144].

Several other types of long-range regularities have been investigated, for
example, the preference for identical or similar residue partners in beta-sheets
[543, 570, 268, 45] and in close contact pairs [273], the long- and short-distance
periodicity in packing density [175], and whether mutations in the amino acid
sequence are significantly correlated over long distances [515, 485, 214].

The advent of the complete genomes from both prokaryotic and eukaryotic
organisms has made it possible to check whether earlier observations based
on incomplete and redundant data hold true when single organisms are com-
pared. One quite surprising observation has been that proteins appear to be
made out of different sequence units with characteristic length of ~ 125 amino
acids in eukaryotes and ~ 150 amino acids in prokaryotes [64]. This indicates a

Proteins and Proteomes 19

possible underlying order in protein sequence organization that is more funda-
mental than the sequence itself. If such a systematics has indeed been created
by evolution, the length distributions of the polypeptide chains may be more
fundamental than what conventionally is known as the “primary” structure of
proteins.

In 1995 the first complete genome of a free living organism, the prokary-
ote Haemophilus influenzae, was published and made available for analysis
[183]. This circular genome contains 1,830,137 bp with 1,743 predicted pro-
tein coding regions and 76 genes encoding RNA molecules. In figure 1.4 the
length distribution of all the putative proteins in this organism is shown. For
comparison, the figure also shows the length distributions of the ~ 468 pro-
teins in the complete Mycoplasma genitalium genome [189], as well as the
~ 1,735 predicted protein coding regions in the complete genome of the ar-
chaeon Methanococcus jannaschii [105].

By comparing Saccharomyces cerevisiae (figure 1.4) against the distribu-
tions for the prokaryotes, it is possible by mere inspection to observe that
the peaks for the prokaryote H. influenzae and the eukaryote S. cerevisiae are
positioned in what clearly are different intervals: at 140-160 and 100-120,
respectively.

Performing redundancy reduction together with spectral analysis has led
to the conclusion that a eukaryotic distribution from a wide range of species
peaks at 125 amino acids and that the distribution displays a periodicity based
on this size unit [64]. Figure 1.4D also clearly shows that weaker secondary and
tertiary peaks are present around 210 and 330 amino acids. This distribution
is based on the entire set of proteins in this organism, and not a redundancy
reduced version.

Interestingly, the distribution for the archaeon M. jannaschii lies in be-
tween the H. influenzae and the S. cerevisiae distributions. This is in accor-
dance with the emerging view that the archaeon kingdom shares many sim-
ilarities with eukaryotes rather than representing a special kind of bacteria
in the prokaryotic kingdom [564, 105, 197]. This indicates that the universal
ancestral progenote has induced conserved features in genomes of bacteria,
archaea, and eucaryota:

prokaryota(nonucleus) # bacteria. 1.2)

This classification issue for archaeon organisms has led to confusion in text-
books and in the rational basis for classifying organisms in sequence data-
bases [197].

Annotated protein primary structures also accumulate rapidly in the public
databases. Table 1.4 shows the number of protein sequences in the top-scoring
organisms in one of the protein sequence databases, SWISS-PROT [24]. Figure

20 Introduction

Species Sequences
Homo sapiens 6,742
Saccharomyces cerevisiae 4,845
Escherichia coli 4,661
Mus musculus 4,269
Rattus norvegicus 2,809
Bacillus subtilis 2,229
Caenorhabditis elegans 2,163
Haemophilus influenzae 1,746
Schizosaccharomyces pombe 1,654
Drosophila melanogaster 1,443
Methanococcus jannaschii 1,429
Arabidopsis thaliana 1,240
Mycobacterium tuberculosi 1,228
Bos bovis 1,202
Gallus gallus 948

Table 1.4: The Number of Sequences for the 15 Most Abundant Organisms in SWISS-PROT rel.
39.16, April 2001.

1.5 shows the development of the size of this database. Like GenBank, it grows
exponentially, although at a much slower pace. This illustrates how much
more slowly the biologically meaningful interpretation of the predicted genes
arises. New techniques are needed, especially for functional annotation of the
information stemming from the DNA sequencing projects [513].

Another database which grows even more slowly is the Protein Data Bank
(PDB). This reflects naturally the amount of experimental effort that normally
is associated with the determination of three dimensional protein structure,
whether performed by X-ray crystallography or NMR. Still, as can be seen in
Figure 1.6 this database also grows exponentially, and due to the initiation of
many structural genomics projects in the US, Japan and Europe it is very likely
that this pattern will continue for quite a while.

1.3.3 Protein Function

Many functional aspects of proteins are determined mainly by local sequence
characteristics, and do not depend critically on a full 3D structure maintained
in part by long-range interactions [149]. In the context of overall functional
prediction, these characteristics can provide essential hints toward the precise
function of a particular protein, but they can also be of significant value in
establishing negative conclusions regarding compartmentalization—for exam-
ple, that a given protein is nonsecretory or nonnuclear.

Proteins and Proteomes

Growth of the SwissProt Database

21

100000000 T T T T T T T T
Amino acids
10000000]
1000000]
8
O
§ 100000 ¢ Entries _+/,,+,_++—+>“+’“+ 3
“ ’f/*”+/f"4’+//_++_
-+
*VHM’H‘
10000 | P .
#****
1000 Av. length]
a ._BE‘,BE‘,B.QBEBEEE}BEIBEEEE‘—E}BEHZH}BE!”"BE'-'E}”"'E‘*'—EI'EF"B—'—'D'-"B
@O
100 1 1 1 1 1 1 1 1 1
1986 1988 1990 1992 1994 1996 1998 2000 2002
Year

Figure 1.5: The Exponential Growth of the SWISS-PROT Database in the Period 1987-2001. The
size of SWISS-PROT rel. 39.16 is in the order of 34,800,000 amino acids from 95,000 entries.

One of the major tasks within bioinformatics in the postgenome era will
be to find out what the genes really do in concerted action, either by simul-
taneous measurement of the activity of arrays of genes or by analyzing the
cell’s protein complement [408, 360, 413]. It is not unlikely that it will be hard
to determine the function of many proteins experimentally, because the func-
tion may be related specifically to the native environment in which a particular
organism lives. Bakers yeast, Saccharomyces cerevisiae, has not by evolution
been designed for the purpose of baking bread, but has been shaped to fit
as a habitant of plant crops like grapes and figs [215]. Many genes may be
included in the genome for the purpose of securing survival in a particular
environment, and may have no use in the artificial environment created in the
laboratory. It may even, in many cases, be almost impossible to imitate the
natural host, with its myriad other microorganisms, and thereby determine
the exact function of a gene or gene product by experiment.

The only effective route toward the elucidation of the function of some of

22 Introduction

Growth of the Protein Data Bank

10000000 f T T T T T
- Amino acids
1000000 [3
100000 £ E
- 10000 E
Q
g I
g I Entries
Z 1000 F 1
100 i Av. length E
10 + o -
it
.
3 s
1 HH/’ 1 1 1 1 1 1
1975 1980 1985 1990 1995 2000

Year

Figure 1.6: The Exponential Growth of the PDB Database in the Period 1972-2001. The size
of PDB (April 19, 2001) is in the order of 6,033,000 amino acids from 14,910 entries (average
length 405 aa).

these so-called orphan proteins may be computational analysis and prediction,
which can produce valuable indirect evidence for their function. Many protein
characteristics can be inferred from the sequence. Some sequence features will
be related to cotranslational or postfolding modifications; others, to structural
regions providing evidence for a particular general three-dimensional topol-
ogy. Prediction along these lines will give a first hint toward functionality that
later can be subjected to experimental verification [288].

In the last couple of years a number of methods that do not rely on direct
sequence similarity have been published [380, 162, 271, 378]. One quite suc-
cessful method has been exploiting gene expression data obtained using DNA
array [425] and chip technology (see chapter 12). Genes of unknown function
that belong to a cluster of genes displaying similar expression over time, or tis-
sue types, may be assigned the function of the most prevalent gene function in
that cluster (provided the cluster has genes with known function as members).

Proteins and Proteomes 23

In this way functional information may be transferred between genes with lit-
tle or no sequence similarity. However, coregulated genes may also in many
cases have widely different functions, so often this approach cannot be used
alone. Another problem is that as the DNA arrays become larger and larger,
covering for example an entire mammalian genome, more and more clusters of
genes significantly down- or upregulated will appear, where not a single gene
has functional information assigned to it.

Another approach is the so-called “Rosetta stone” method, which is based
on patterns of domain fusions [379, 167]. The underlying idea is that if two
proteins in one organism exist as one fused multidomain protein in another
organism, this may indicate that the two proteins are involved in performing
the same function even though they are not directly related in sequence.

A third tool that can be used for linking together proteins of similar func-
tion is phylogenetic profiles [423]. In phylogenetic profiles each protein is
represented as the organisms in which homologs are observed. If two pro-
teins have identical (or very similar) phylogenetic profiles it indicates that they
normally are observed together—an organism encodes either both or neither
of the proteins in its genome. One possible explanation for this is that the
proteins together perform a similar function. Phylogenetic profiles should be
expected to become more powerful as more genomes become available. They
have been successfully applied to the yeast genome but until several multicel-
lular organisms have been sequenced they are of limited use for predicting the
function of human proteins.

1.3.4 Protein Function and Gene Ontologies

Genomewide assignment of function requires that the functional role of pro-
teins be described in a systematic manner using well defined categories, key-
words, and hierachies. A gene ontology is essentially a specification of relevant
concepts in molecular biology and the relationships among those concepts. If
information in the scientific literature and in databases is to be shared in the
most useful way, ontologies must be exchanged in a form that uses standard-
ized syntax and semantics. In practice this means for example that functional
categories and systematics must be designed to cover a wide range of organ-
isms, if not all, and that the system is able to incorporate new discoveries as
they appear over time.

One of the major developments [21, 22] in this area has been the creation of
the Gene Ontology Consortium, which has participation from different areas,
including fruitfly (FlyBase), budding yeast (Saccharomyces Genome Database),
mouse (Mouse Genome and Gene Expression Databases), brassica (The Ara-
bidopsis Information Resource), and nematode (WormBase). The goal of the

24 Introduction

Gene Ontology Consortium is to produce a dynamic controlled vocabulary that
is based on three organizing principles and functional aspects: (1) molecular
function, (2) biological process and (3) cellular component. A protein can rep-
resent one or more molecular functions, be used in one or more biological
processes, and be associated with one or more cellular components.

Molecular function describes the tasks performed by individual gene prod-
ucts; examples are transcription factor and DNA helicase. Biological process
describes broad biological goals, such as mitosis or purine metabolism, that
are accomplished by ordered assemblies of molecular functions. Cellular com-
ponent encompasses subcellular structures, locations, and macromolecular
complexes; examples include nucleus, telomere, and origin recognition com-
plex.

There are many ways to construct ontologies, including some with focus on
molecular complexes or the immune system; see for example the RiboWeb on-
tology [123] or the ImMunoGenetics ontology [213]. Another prominent exam-
ple is the EcoCyc ontology [307, 308], which is the ontology used in a database
describing the genome and the biochemical machinery of E. coli. The database
describes pathways, reactions, and enzymes of a variety of organisms, with
a microbial focus. EcoCyc describes for example each metabolic enzyme of E.
coli, including its cofactors, activators, inhibitors, and subunit structure. When
known, the genes encoding the subunits of an enzyme are also listed, as well
as the map position of a gene on the E. coli chromosome.

1.4 On the Information Content of Biological Sequences

The concept of information and its quantification is essential for understand-
ing the basic principles of machine-learning approaches in molecular biology
(for basic definitions see appendix B, for a review see [577]). Data-driven pre-
diction methods should be able to extract essential features from individual
examples and to discard unwanted information when present. These methods
should be able to distinguish positive cases from negative ones, also in the
common situation where a huge excess of negative, nonfunctional sites and
regions are present in a genome. This discrimination problem is of course in-
timately related to the molecular recognition problem [363, 544, 474] in the
cellular environment: How can macromolecules find the sites they are sup-
posed to interact with when similar sites are present in very large numbers?
Machine-learning techniques are excellent for the task of discarding and
compacting redundant sequence information. A neural network will, if not un-
reasonably oversized, use its adjustable parameters for storing common fea-
tures that apply to many data items, and not allocate individual parameters to
individual sequence patterns. The encoding principle behind neural network

On the Information Content of Biological Sequences 25

training procedures superimposes sequences upon one another in a way that
transforms a complex topology in the input sequence space into a simpler rep-
resentation. In this representation, related functional or structural categories
end up clustered rather than scattered, as they often are in sequence space.

For example, the set of all amino acid segments of length 13, where the
central residue is in a helical conformation, is scattered over a very large part
of the sequence space of segments of length 13. The same holds true for
other types of protein secondary structures like sheets and turns. In this se-
quence space, 203 possible segments exist (when excluding the twenty-first
amino acid, selenocysteine). The different structural categories are typically
not found in nicely separated regions of sequence space [297, 244]; rather,
islands of sheets are found in sequence regions where segments preferably
adopt a helical conformation, and vice versa. Machine-learning techniques are
used because of their ability to cope with nonlinearities and to find more com-
plex correlations in sequence spaces that are not functionally segregated into
continuous domains.

Some sequence segments may even have ability to attain both the helix
and the sheet conformation, depending on the past history of interaction with
other macromolecules and the environment. Notably, this may be the case for
the prion proteins, which recently have been associated with mad cow disease,
and in humans with the Creutzfeldt-Jakob syndrome. In these proteins the
same sequence may adopt different very stable conformations: a normal con-
formation comprising a bundle of helices and a disease-inducing “bad” con-
formation with a mixture of helices and sheets. The bad-conformation prions
even have an autocatalytic effect, and can be responsible for the transforma-
tion of normal conformation prions into bad ones [266, 267, 444]. In effect,
the protein itself serves as carrier of structural information which can be in-
herited. To distinguish this pathogen from conventional genetic material, the
term “prion” was introduced to emphasize its proteinaceous and infectious
nature. The 1997 Nobel Prize for Physiology or Medicine was given to Stanley
B. Prusiner for his work on prions. The proposal that proteins alone can trans-
mit an infectious disease has come as a considerable surprise to the scientific
community, and the mechanisms underlying their function remain a matter of
hot debate.

Based on local sequence information, such conformational conflicts as
those in the prion proteins will of course be impossible to settle by any
prediction method. However, a local method may be able to report that a
piece of sequence may have a higher potential for, say, both helix and sheet
as opposed to coil. This has actually been the case for the prion sequences
[266, 267] when they are analyzed by one of the very successful machine-
learning methods in sequence analysis, the PHD method of Rost and Sander.
We return to this and other methods for the prediction of protein secondary

26 Introduction

structure in chapter 6.

Another issue related to redundancy is the relative importance of individual
amino acids in specifying the tertiary structure of a protein [347]. To put it
differently: What fraction of a protein’s amino acid sequence is sufficient to
specify its structure? A prize—the Paracelsus Challenge—has even been put
forth to stimulate research into the role of sequence specificity in contrast to
protein stability [450, 291, 449]. The task is to convert one protein fold into
another, while retaining 50% of the original sequence. Recently, a protein that
is predominantly beta-sheet has in this way been transmuted into a native-like,
stable, four-helix bundle [143]. These studies clearly show that the residues
determine the fold in a highly nonlinear manner. The identification of the
minimal requirements to specify a given fold will not only be important for
the design of prediction approaches, but also a significant step towards solving
the protein folding problem [143].

The analysis of the redundancy and information content of biological
sequences has been strongly influenced by linguistics since the late 1950s.
Molecular biology came to life at a time when scientific methodology in general
was affected by linguistic philosophy [326]. Many influential ideas stemming
from the philosophical and mathematical treatment of natural languages
were for that reason partly “recycled” for the analysis of “natural” biological
sequences—and still are for that matter (see chapter 11). The digital nature
of genetic information and the fact that biological sequences are translated
from one representation to another in several consecutive steps have also
contributed strongly to the links and analogies between the two subjects.

The study of the translation genetic code itself was similarly influenced by
the time at which the code was cracked. The assignment of the 20 amino acids
and the translation stop signal to the 64 codon triplets took place in the 1960s,
when the most essential feature a code could have was its ability to perform
error correction. At that time the recovery of messages from spacecraft was a
key topic in coding and information theory. Shannon’s information-theoretical
procedures for the use of redundancy in encoding to transmit data over noisy
channels without loss were in focus. In the case of the genetic code, its block
structure ensures that the most frequent errors in the codon-anticodon recog-
nition will produce either the same amino acid, as intended, or insert an amino
acid with at least some similar physicochemical properties, most notably its
hydrophobicity. The importance of other nonerror-correcting properties of
the genetic code may have been underestimated, and we shall see in chapter 6
that a neural network trained on the mapping between nucleotide triplets and
amino acids is simpler for the standard code, and much more complex when
trained on more error-correcting genetic codes that have been suggested as
potential alternatives to the code found by evolution [524].

The amount of information in biological sequences is related to their com-

On the Information Content of Biological Sequences 27

pressibility. Intuitively, simple sequences with many repeats can be repre-
sented using a shorter description than complex and random sequences that
never repeat themselves. Data-compression algorithms are commonly used in
computers for increasing the capacity of disks, CD-ROMs, and magnetic tapes.
Conventional text-compression schemes are so constructed that they can re-
cover the original data perfectly without losing a single bit. Text-compression
algorithms are designed to provide a shorter description in the form of a less
redundant representation—normally called a code—that may be interpreted
and converted back into the uncompressed message in a reversible manner
[447]. The literature on molecular biology itself is full of such code words,
which shortens this particular type of text. The abbreviation DNA, for deoxyri-
bonucleic acid, is one example that contributes to the compression of this book
[577].

In some text sequences—for example, the source code of a computer
program—losing a symbol may change its meaning drastically, while com-
pressed representations of other types of data may be useful even if the
original message cannot be recovered completely. One common example is
sound data. When sound data is transmitted over telephone lines, it is less
critical to reproduce everything, so “lossy” decompression in this case can be
acceptable. In lossless compression, the encoded version is a kind of program
for computing the original data. In later chapters both implicit and explicit
use of compression in connection with machine learning will be described.

In section 1.2 an experimental approach to the analysis of the redundancy
of large genomes was described. If large genomes contained just a proportion-
ally increased number of copies of each gene, the kinetics of DNA renaturation
experiments would be much faster than observed. Therefore, the extra DNA in
voluminous genomes most likely does not code for proteins [116], and conse-
quently algorithmic compression of sequence data becomes a less trivial task.

The study of the statistical properties of repeated segments in biologi-
cal sequences, and especially their relation to the evolution of genomes, is
highly informative. Such analysis provides much evidence for events more
complex than the fixation and incorporation of single stochastically generated
mutations. Combination of interacting genomes, both between individuals in
the same species and by horizontal transfer of genetic information between
species, represents intergenome communication, which makes the analysis of
evolutionary pathways difficult.

Nature makes seemingly wasteful and extravagant combinations of gen-
omes that become sterile organisms unable to contribute further to the evo-
lution of the gene pool. Mules are well-known sterile crosses of horses and
donkeys. Less well known are ligers, the offspring of mating male Llons and
female tiGERS. Tigrons also exist. In contrast to their parents, they are very
nervous and uneasy animals; visually they are true blends of the most char-

28 Introduction

Figure 1.7: A Photograph of a Liger, the Cross between a Lion and a Tiger. Courtesy of the Los
Angeles Wild Animal Way Station (Beverly Setlowe).

acteristic features of lions and tigers. It is unclear whether free-living ligers
can be found in the wild; most of their potential parents inhabit different
continents!, but at the Los Angeles Wild Animal Way Station several ligers
have been placed by private owners who could no longer keep them on their
premises. Figure 1.7 shows this fascinating and intriguing animal.

In biological sequences repeats are clearly—from a description length
viewpoint—good targets for compaction. Even in naturally occurring se-
quence without repeats, the statistical biases—for example, skew dipeptide,
and skew di- and trinucleotide, distributions—will make it possible to find
shorter symbol sequences where the original message can be rewritten using
representative words and extended alphabets.

The ratio between the size of an encoded corpus of sequences and the
original corpus of sequences yields the compression rate, which quantifies

lIn a few Asian regions, lions and tigers live close to one another, for example, in Gujarat in
the northwestern part of India.

On the Information Content of Biological Sequences 29

globally the degree of regularity in the data:

_ 3

Re = . 1.
€3, (1.3)

One important difference between natural text and DNA is that repeats oc-
cur differently. In long natural texts, repeats are often quite small and close to
each other, while in DNA, long repeats can be found far from each other [447].
This makes conventional sequential compression schemes [56] less effective
on DNA and protein data. Still, significant compression can be obtained even
by algorithms designed for other types of data, for example, the compress rou-
tine from the UNIX environment, which is based on the Lempel-Ziv algorithm
[551]. Not surprisingly, coding regions, with their reading frame and triplet
regularity, will normally be more compressible than more random noncoding
regions like introns [279]. Functional RNAs are in general considered to be less
repetitive than most other sequences [326], but their high potential for fold-
ing into secondary structures gives them another kind of inherent structure,
reducing their randomness or information content.

Hidden Markov models are powerful means for analyzing the sequential
pattern of monomers in sequences [154]. They are generative models that can
produce any possible sequence in a given language, each message with its own
probability. Since the models normally are trained to embody the regularity
in a sequence set, the vast majority of possible sequences end up having a
probability very close to 0. If the training is successful, the sequences in the
training set (and, hopefully, their homologues) end up having a higher proba-
bility. One may think of a hidden Markov model as a tool for parameterizing
a distribution over the space of all possible sequences on a given alphabet. A
particular family of proteins—globins, for example—will be a cloud of points
in sequence space. Training a model on some of these sequences is an attempt
to create a distribution on sequence space that is peaked over that cloud.

1.4.1 Information and Information Reduction

Classification and prediction algorithms are in general computational means
for reducing the amount of information. The input is information-rich se-
quence data, and the output may be a single number or, in the simplest case,
a yes or no representing a choice between two categories. In the latter case the
output holds a maximum of one bit if the two possibilities are equally likely.
A segregation of amino acid residues, depending on whether they are in an
alpha-helical conformation or not, will be such a dichotomy, where the aver-
age output information will be significantly under one bit per residue, because
in natural proteins roughly only 30% of the amino acids are found in the heli-

30 Introduction

cal category. On average less than one yes/no question will then be required
to “guess” the conformational categories along the sequences.

The contractive character of these algorithms means that they cannot be
inverted; prediction programs cannot be executed backward and thus return
the input information. From the output of a neural network that predicts the
structural class of an amino acid residue, one cannot tell what particular input
amino acid it was, and even less its context of other residues. Similarly, the log-
likelihood from a hidden Markov model will not make it possible to reproduce
the original sequence to any degree.

In general, computation discards information and proceeds in a logically
irreversible fashion. This is true even for simple addition of numbers; the sum
does not hold information of the values of the addends. This is also true for
much of the sequence-related information processing that takes place in the
cell. The genetic code itself provides a most prominent example: the degen-
erate mapping between the 64 triplets and the 20 amino acids plus the trans-
lation stop signal. For all but two amino acids, methionine and tryptophan,
the choice between several triplets will make it impossible to retrieve the en-
coding mRNA sequence from the amino acids in the protein or which of the
three possible stop codons actually terminated the translation. The individ-
ual probability distribution over the triplets in a given organism—known as its
codon usage—determines how much information the translation will discard
in practice.

Another very important example is the preceding process, which in eukary-
otes produces the mature mRNA from the pre-mRNA transcript of the genomic
DNA. The noncoding regions, introns, which interrupt the protein coding part,
are removed and spliced out in the cell nucleus (see also sections 1.1.2 and
6.5.4) But from the mature mRNA it seems difficult or impossible to locate
with high precision the junctions where the intervening sequences belonged
[495, 496], and it will surely be impossible to reproduce the intron sequence
from the spliced transcript. Most of the conserved local information at the
splice junctions is in the introns. This makes sense because the exons, making
up the mature mRNA sequence, then are unconstrained in terms of their pro-
tein encoding potential. Interestingly, specific proteins seem to associate with
the exon-exon junctions in the mature mRNA only as a consequence of splicing
[256], thus making the spliced messenger “remember” where the introns were.
The splicing machinery leaves behind such signature proteins at the junctions,
perhaps with the purpose of influencing downstream metabolic events in vivo
such as mRNA transport, decay and translation.

Among the more exotic examples of clear-cut information reduction are
phenomena like RNA editing [59] and the removal of “inteins” from proteins
[301, 257]. In RNA editing the original transcript is postprocessed using guide
RNA sequences found elsewhere in the genome. Either single nucleotides or

On the Information Content of Biological Sequences 31

longer pieces are changed or skipped. It is clear that the original RNA copy of
the gene cannot in any way be recovered from the edited mRNA.

It has also been discovered that polypeptide chains in some cases are
spliced, sequence fragments known as inteins are removed, and the chain
ends are subsequently ligated together. In the complete genome of the ar-
chaeon Methanococcus jannaschii, a surprisingly large number of inteins were
discovered in the predicted open reading frames. Many other examples of
logically and physically irreversible processes exist. This fact is of course
related to the irreversible thermodynamic nature of most life processes.

The information reduction inherent in computational classification and
prediction makes it easier to see why in general it does not help to add extra
input data to a method processing a single data item. If strong and valuable
correlations are not present in the extra data added, the method is given the
increased burden of discarding even more information on the route toward
the output of a single bit or two. Despite the fact that the extra data contain
some exploitable features, the result will often be a lower signal-to-noise level
and a decreased prediction performance (see chapter 6).

Protein secondary structure prediction normally works better when based
on 13 amino acid segments instead of segments of size 23 or higher. This is
not due solely to the curse of dimensionality of the input space, with a more
sparse coverage of the space by a fixed number of examples [70]. Given the
amount of three-dimensional protein structure data that we have, the amount
of noise in the context of 10 extra residues exceeds the positive effect of the
long-range correlations that are in fact present in the additional sequence data.

Machine-learning approaches may have some advantages over other meth-
ods in having a built-in robustness when presented with uncorrelated data
features. Weights in neural networks vanish during training unless positive or
negative correlations keep them alive and put them into use. This means that
the 23-amino-acid context not will be a catastrophe; but it still cannot outper-
form a method designed to handle an input space where the relation between
signal and noise is more balanced.

Information reduction is a key feature in the understanding of almost any
kind of system. As described above, a machine-learning algorithm will create
a simpler representation of a sequence space that can be much more powerful
and useful than the original data containing all details.

The author of Alice in Wonderland, the mathematician Charles Dodgson
(Lewis Carroll), more than 100 years ago wrote about practical issues in re-
lation to maps and mapping. In the story “Sylvie and Bruno Concluded” the
character Mein Herr tells about the most profound map one can think of, a
map with the scale one kilometer per kilometer. He is asked, “Have you used it
much?” He answers, “It has not been unfolded yet. The farmers were against
it. They said that it would cover all the soil and keep the sunlight out! Now we

32 Introduction

use the country itself, as its own map. And I can assure you that it is almost
as good.”

In the perspective of Mein Herr, we should stay with the unstructured, flat-
file public databases as they are, and not try to enhance the principal features
by using neural networks or hidden Markov models.

1.4.2 Alignment Versus Prediction: When Are Alignments Reliable?

In order to obtain additional functional insights as well as additional hints
toward structural and functional relationships, new sequences are normally
aligned against all sequences in a number of large databases [79]. The fun-
damental question is: When is the sequence similarity high enough that one
may safely infer either a structural or a functional similarity from the pairwise
alignment of two sequences? In other words, given that the alignment method
has detected an overlap in a sequence segment, can a similarity threshold
be defined that sifts out cases where the inference will be reliable? Below
the threshold some pairs will be related and some will not, so subthreshold
matches cannot be used to obtain negative conclusions. It is well known that
proteins can be structurally very similar even if the sequence similarity is very
low. At such low similarity levels, pure chance will produce other pairwise
alignments that will mix with those produced by genuinely related pairs.

The nontrivial answer to this question is that it depends entirely on the par-
ticular structural or functional aspect one wants to investigate. The necessary
and sufficient similarity threshold will be different for each task. Safe struc-
tural inference will demand a similarity at one level, and functional inference
will in general require a new threshold for each functional aspect. Functional
aspects may be related to a sequence as a whole—for example, whether or not
a sequence belongs to a given class of enzymes. Many other functional aspects
depend entirely on the local sequence composition. For example, does the N-
terminal of a protein sequence have a signal peptide cleavage site at a given
position or not?

In general, one may say that in the zone of safe inference, alignment should
be preferred to prediction. In the best situations, prediction methods should
enlarge the regions of safe inference. This can be done by evaluation of the
confidence levels that are produced along with the predictions from many
methods, a theme treated in more detail in chapter 5.

Sander and Schneider pioneered the algorithmic investigation of the rela-
tionship between protein sequence similarity and structural similarity [462]. In
a plot of the alignment length against the percentage of identical residues in
the overlap, two domains could be discerned: one of exclusively structurally
similar pairs, and one containing a mixture of similar and nonsimilar pairs.

On the Information Content of Biological Sequences 33

Structural similarity was defined by more than 70% secondary structure assign-
ment identity in the overlap. It was observed that this criterion corresponds
to a maximum root-mean-square deviation of 2.5A for a structural alignment
of the two fragments in three dimensions. The mixed region reflects the fact
that the secondary structure identity may exceed 70% by chance, especially for
very short overlaps, even in pairs of completely unrelated sequences.

The border between the two domains, and thereby the threshold for se-
quence similarity, measured in percentage identity, depends on the length
of the aligned region (the overlap). Sander and Schneider defined a length-
dependent threshold function: for overlap length I < 10, no pairs are above
the threshold; for 10 < [< 80, the threshold is 290.151-9562%; and for I > 80,
the threshold is 24.8%.

This threshold can be used to answer the question whether alignment is
likely to lead to a reliable inference, or whether one is forced to look for pre-
diction methods that may be available for the particular task. If the new
sequence is superthreshold, alignment or homology building should be the
preferred approach; if it is subthreshold, prediction approaches by more ad-
vanced pattern-recognition schemes should be employed, possibly in concert
with the alignment methods.

In this type of analysis the “safe zone of inference” is of course not 100%
safe and should be used as a guideline only, for example when constructing
test sets for validation of high-throughput prediction algorithms. In many
cases the change of a single amino acid is known to lead to a completely dif-
ferent, possibly unfolded and unfunctional protein. Part of the goal in the
so-called single-nucleotide polymorphism projects is to identify coding SNPs,
which may affect protein conformation and thereby for example influence dis-
ease susceptibility and/or alter the effect of drugs interacting with a particular
protein [394].

1.4.3 Prediction of Functional Features

The sequence identity threshold for structural problems cannot be used di-
rectly in sequence prediction problems involving functionality. If the aim is
safe inference of the exact position of a signal peptide cleavage site in a new
sequence from experimentally verified sites in sequences from a database, it
is a priori completely unknown what the required degree of similarity should
be.

Above, “structurally similar” was defined by quantification of the mean
distance in space. In an alignment, functional similarity means that any two
residues with similar function should match without any shift. Two cleavage
sites should line up exactly residue by residue, if a site in one sequence should

34 Introduction

be positioned unambiguously by the site in the other. In practice, whether
a perfect separation between a completely safe zone and a mixed zone can
be obtained by alignment alone will depend on the degree of conservation of
different types of functional sites.

This binary criterion for successful alignment can, together with a defini-
tion of the zone-separating principle, be used to determine a threshold func-
tion that gives the best discrimination of functional similarity [405]. The prin-
ciple for establishing a nonarbitrary threshold is general; the approach may
easily be generalized to other types of sequence analysis problems involving,
for instance, glycosylation sites, phosphorylation sites, transit peptides for
chloroplasts and mitochondria, or cleavage sites of polyproteins, and to nu-
cleotide sequence analysis problems such as intron splice sites in pre-mRNA,
ribosome binding sites, and promoters. But for each case a specific threshold
must be determined.

For problems such as those involving splice sites in pre-mRNA or glycosyla-
tion sites of proteins, there are several sites per sequence. One way of address-
ing this problem is to split each sequence into a number of subsequences, one
for each potential site, and then use the approach on the collection of sub-
sequences. Alternatively, the fraction of aligned sites per alignment may be
used as a functional similarity measure, in analogy with the structural similar-
ity used by Sander and Schneider (the percentage of identical secondary struc-
ture assignments in the alignment). In this case, a threshold value for func-
tional similarity—analogous to the 70% structural similarity threshold used by
Sander and Schneider—must be defined before the similarity threshold can be
calculated.

1.4.4 Global and Local Alignments and Substitution Matrix Entropies

The optimality of pairwise alignments between two sequences is not given by
some canonical or unique criterion with universal applicability throughout the
entire domain of sequences. The matches produced by alignment algorithms
depend entirely on the parameters quantitatively defining the similarity of
corresponding monomers, the cost of gaps and deletions, and most notably
whether the algorithms are designed to optimize a score globally or locally.
Some problems of biological relevance concern an overall, or global, com-
parison between two sequences, possibly with the exception of the sequence
ends, while others would be meaningless unless attacked by a subsequence an-
gle for the localization of segments or sites with similar sequential structure.
Classical alignment algorithms are based on dynamic programming—for
optimal global alignments, the Needleman-Wunsch algorithm [401, 481], and
for optimal local alignments, the Smith-Waterman algorithm [492] (see chapter

On the Information Content of Biological Sequences 35

4). Dynamic programming is a computing procedure to manage the combina-
torial explosion that would result from an exhaustive evaluation of the scores
associated with any conceivable alignment of two sequences. Still, dynamic
programming is computationally demanding, and a number of heuristics for
further reduction of the resources needed for finding significant alignments
have been developed [417, 419]. Other very fast and reliable heuristic schemes
do not build on dynamic programming, but interactively extend small subse-
quences into longer matches [13, 14]. The conventional alignment schemes
have been described in detail elsewhere [550, 428]; here we will focus on some
of the important aspects related to the preparation of dedicated data sets.

How “local” a local alignment scheme will be in practice is strongly influ-
enced by the choice of substitution matrix. If the score level for matches is
much higher than the penalty for mismatches, even local alignment schemes
will tend to produce relatively long alignments. If the mismatch score will
quickly eat up the match score, short, compact overlaps will result.

A substitution matrix specifies a set of scores s;; for replacing amino acid i
by amino acid j. Some matrices are generated from a simplified protein evolu-
tion model involving amino acid frequencies, p;, and pairwise substitution fre-
quencies, q;j, observed in existing alignments of naturally occurring proteins.
A match involving a rare amino acid may count more than a match involving
a common amino acid, while a mismatch between two interchangeable amino
acids contributes a higher score than a mismatch between two functionally
unrelated amino acids. A mismatch with a nonnegative score is known as a
similarity or a conservative replacement. Other types of substitution matrices
are based on the relationships between the amino acids according to the ge-
netic code, or physicochemical properties of amino acids, or simply whether
amino acids in alignments are identical or not.

All these different substitution matrices can be compared and brought on
an equal footing by the concept of substitution matrix entropy. As shown
by Altschul [8], any amino acid substitution matrix is, either implicitly or ex-
plicitly, a matrix of logarithms of normalized target frequencies, since the
substitution scores may be written as

1 dij
sii=—|In 1.4
. A(pip) 149

where A is a scaling factor. Changing A will change the absolute value of the
scores, but not the relative scores of different local alignments, so it will not
affect the alignments [405].

The simplest possible scoring matrices are identity matrices, where all the
diagonal elements have the same positive value (the match score, s), and all
the off-diagonal elements have the same negative value (the mismatch score,

36 Introduction

3). This special case has been treated by Nielsen [405]. An identity matrix may
be derived from the simplest possible model for amino acid substitutions,
where all 20 amino acids appear with equal probability and the off-diagonal
substitution frequencies are equal:

L

pi = 3 for all i,

0
S q fori=j (1.5)
dij = q fori=j.

In other words, when an amino acid mutates, it has equal probabilities G of
changing into any of the 19 other amino acids.

There is a range of different identity matrices, depending on the ratio be-
tween the positive and negative scores, s/S. If s = —§, a local alignment must
necessarily contain more matches than mismatches in order to yield a positive
score, resulting in short and strong alignments, while if s > —§, one match
can compensate for many mismatches, resulting in long and weak alignments.
The percentage identity p in gapfree local identity matrix alignment has a min-
imum value

We define » = G/q, the mutability or the probability that a given position in
the sequence has changed into a random amino acid (including the original
one). * = 0 corresponds to no changes, while » = 1 corresponds to an infinite
evolutionary distance.

Since the sum of all g;; must be 1, we use the relation 20g + 3804 = 1 to
calculate the target frequencies

r

dg= — "1
and 4= 5073801

qa (1.7)

1

20 + 3807
and the s;; values may be calculated using (1.4). Since the score ratio, s/§, is
independent of A and therefore a function of 7, we can calculate » numerically
from the score ratio.

The relative entropy of an amino acid substitution matrix was defined thus
by Altschul:

H = zqijsijbits (1.8)
1]

where the s;;s are normalized so that A = In2 (corresponding to using the
base-2 logarithm in (1.4)). The relative entropy of a matrix can be interpreted
as the amount of information carried by each position in the alignment (see
also appendix B for all information-theoretic notions such as entropy and rel-
ative entropy).

On the Information Content of Biological Sequences 37

The shorter the evolutionary distance assumed in the calculation of the
matrix, the larger H is. At zero evolutionary distance (» = 0), the mismatch
penalty § is infinite, that is, gaps are completely disallowed, and the rela-
tive entropy is equal to the entropy of the amino acid distribution: H =
—>;pilog, pi. In the identity model case, H{ = log, 20 ~ 4.32 bits, and
the local alignment problem is reduced to the problem of finding the longest
common substring between two sequences. Conversely, as the evolutionary
distance approaches infinity (+ =~ 1), all differences between the g;; values
disappear and #{ approaches 0.

1.4.5 Consensus Sequences and Sequence Logos

When studying the specificity of molecular binding sites, it has been common
practice to create consensus sequences from alignments and then to choose
the most common nucleotide or amino acid as representative at a given po-
sition [474]. Such a procedure throws a lot of information away, and it may
be highly misleading when interpreted as a reliable assessment of the molecu-
lar specificity of the recognizing protein factors or nucleic acids. A somewhat
better alternative is to observe all frequencies at all positions simultaneously.

A graphical visualization technique based on the Shannon information con-
tent at each position is the sequence logo approach developed by Schneider
and coworkers [473]. The idea is to emphasize the deviation from the uniform,
or flat, distribution, where all monomers occur with the same probability, p. In
that case, p = 0.25 for nucleotide sequence alignments and p = 0.05 in amino
acid sequence alignments.

Most functional sites display a significant degree of deviation from the flat
distribution. From the observed frequencies of monomers at a given position,
i, the deviation from the random case is computed by

|Al

D(i) =1log, |Al + > pi(i)log, pi(i), (1.9)
k=1

where |A| is the length of the alphabet, normally 4 or 20. Since the logarithm
used is base 2, D(i) will be measured in bits per monomer. In an amino acid
alignment D (i) will be maximal and equal log, 20 = 4.32 when only one fully
conserved amino acid is found at a given position. Similarly, the deviation will
be two bits maximally in alignments of nucleotide sequences.

With the logo visualization technique a column of symbols is used to dis-
play the details of a consensus sequence. The total height of the column is
equal to the value of D(i), and the height of each monomer symbol, k, is
proportional to its probability at that position, pk(i). Monomers drawn with
different colors can be used to indicate physicochemical properties, such as

38 Introduction

charge and hydrophobicity, or nucleotide interaction characteristics, such as
weak or strong hydrogen bonding potential. Compared with the array of num-
bers in a weight matrix covering the alignment region, the logo technique is
quite powerful and fairly easy to use. When D is summed over the region of
the site, one gets a measure of the accumulated information in a given type of
site, for example, a binding site. D may indicate the strength of a binding site,
and can be compared against the information needed to find true sites in a
complete genome or protein sequence [474]. With this information-theoretical
formulation of the degree of sequence conservation, the problem of how pro-
teins can find their required binding sites among a huge excess of nonsites can
be addressed in a quantitative manner [474, 472].

Figures 1.8 and 1.9 show two examples of alignment frequencies visualized
by the logo technique. The first is from an alignment of translation initia-
tion sites in E. coli. In the nuclear part of eukaryotic genomes, the initiation
triplet—the start codon—is very well conserved and is almost always AUG, rep-
resenting the amino acid methionine. In prokaryotes several other initiation
triplets occur with significant frequencies, and the logo shows to what extent
the nucleotides at the three codon positions are conserved [422]. Since the
same E. coli ribosome complex will recognize all translation initiation sites,
the logo indicates the specificity of the interaction between ribosomal com-
ponents and the triplet sequence. The conserved Shine-Dalgarno sequence
immediately 5’ to the initiation codon is used to position the mRNA on the
ribosome by base pairing.

Alogo is clearly most informative if only sequences that share a similar sig-
nal are included, but it can also be used in the process of identifying different
patterns belonging to different parts of the data. In the extremely thermophilic
archaeon Sulfolobus solfataricus, translation initiation patterns may depend on
whether genes lie inside operons or at the start of an operon or single genes.
In a recent study [523], a Shine-Dalgarno sequence was found upstream of
the genes inside operons, but not for the first gene in an operon or isolated
genes. This indicates that two different mechanisms are used for translation
initiation in this organism.

Figure 1.9 displays a logo of mammalian amino acid sequence segments
aligned at the start of alpha-helices [99]. The logo covers the transition region:
to the left, the conformational categories of coil and turn appear most often,
and to the right, amino acids frequent in alpha-helices are found at the tops
of the columns. Interestingly, at the N-terminus, or the cap of the helix, the
distribution of amino acids is more biased than within the helix itself [435].
A logo of the C-terminus helix shows the capping in the other end. Capping
residues are presumably an integral part of this type of secondary structure,
because their side chain hydrogen bonds stabilize the dipole of the helix [435].
An analogous delimitation of beta-sheets—so-called beta breakers—marks the

On the Information Content of Biological Sequences 39

bits

Q=== B e WL e e
FANMITINDONOIOTrANILONONO
Frrvrrrrrcrccee o

Figure 1.8: Logo Showing an Alignment of Translation Start Triplets That Are Active in E. coli.
Translation starts at position 21 in the logo. The conventional initiation triplet ATG encoding
methionine is by far the most abundant and dominates the logo. The data were obtained from
[422].

termini of this chain topology [133].

Sequence logos are useful for a quick examination of the statistics in
the context of functional sites or regions, but they can also show the range
in which a sequence signal is present. If one aligns a large number of O-
glycosylation sites and inspects the logo, the interval where the compositional
bias extends will immediately be revealed. Such an analysis can be used not
only to shape the architecture of a prediction method but also to consider
what should actually be predicted. One may consider lumping O-glycosylated
serines and threonines together if their context shares similar properties [235].
If they differ strongly, individual methods handling the two residue types sep-
arately should be considered instead. In the cellular environment, such a
difference may also indicate that the enzymes that transfer the carbohydrates
to the two residues are nonidentical.

Sequence logos using monomers will treat the positions in the context of
a site independently. The logo will tell nothing about the correlation between
the different positions, or whether the individual monomers appear simulta-
neously at a level beyond what would be expected from the single-position
statistics. However, the visualization technique can easily handle the occur-
rence of, say, dinucleotides or dipeptides, and show pair correlations in the
form of stacks of combined symbols. The size of the alphabets, |A[, in (1.9)

40 Introduction

0.5—

bits

Figure 1.9: Logo Showing an Alignment of Alpha-Helix N-termini. The data comprised a nonre-
dundant set of mammalian proteins with known three-dimensional structure [99]. The helix
starts at position 7 in the logo. The secondary structure assignment was performed by the Kab-
sch and Sander algorithm [297]. The largest compositional bias in this region is observed at the
position just before the helix start.

will change accordingly; otherwise, the same formula applies.

Figure 1.10 shows an example of a dinucleotide-based logo of donor splice
sites in introns from the plant Arabidopsis thaliana. In addition to the well-
known consensus dinucleotides GT and GC (almost invisible) at the splice junc-
tion in the center of the logo, the logo shows that the GT dinucleotide, which
appears inside the intron at the third dinucleotide position, occurs more fre-
quently than expected.

A slight variation of the logo formula (1.9), based on relative entropy (or
Kullback-Leibler asymmetric divergence measure [342, 341]), is the following:

|Al

H (i) = H(PGE),Q0) = S prli) log 2D

k=1 ax(i)

. (1.10)

This quantifies the contrast between the observed probabilities P (i) and a ref-
erence probability distribution Q(i). Q may, or may not, depend on the po-
sition i in the alignment. When displaying the relative entropy, the height of
each letter can also, as an alternative to the frequency itself, be computed from
the background scaled frequency at that position [219].

In order for the logo to be a reliable description of the specificity, it is
essential that the data entering the alignment be nonredundant. If a given

On the Information Content of Biological Sequences 41

site is included in multiple copies, the probability distribution will be biased
artificially.

In chapter 6 we will see how neural networks go beyond the positionwise
uncorrelated analysis of the sequence, as is the case for the simple logo visual-
ization technique and also for its weight matrix counterpart, where each posi-
tion in the matrix is treated independently. A weight matrix assigns weights to
the positions that are computed from the ratio of the frequencies of monomers
in an alignment of some “positive” sites and the frequencies in a reference dis-
tribution. A sum of the logarithms of the weights assigned to given monomers
in a particular sequence will give a score, and a threshold may be adjusted so
that it will give the best recognition of true sites, in terms of either sensitivity
or specificity.

Neural networks have the ability to process the sequence data nonlinearly
where correlations between different positions can be taken into account.
“Nonlinear” means essentially that the network will be able to produce correct
predictions in cases where one category is correlated with one of two features,
but not both of them simultaneously. A linear method would not be able to
handle such a two-feature case correctly.

In more complex situations, many features may be present in a given type
of site, with more complex patterns of correlation between them. The ability to
handle such cases correctly by definition gives the neural network algorithms
great power in the sequence data domain.

An O-glycosylation site may be one case where amino acids of both pos-
itive and negative charges may be acceptable and functional, but not both
types at the same time. A conventional monomer weight matrix cannot han-
dle this common situation. However, for some prediction problems one can
get around the problem by developing weight matrices based on dipeptides
or more complex input features. Another strategy may be to divide all the
positive cases into two or more classes, each characterized by its own weight
matrix. Such changes in the approach can in some cases effectively convert a
nonlinear problem into a linear one.

In general, the drawback of linear techniques is that it becomes impossible
to subtract evidence. In linear methods two types of evidence will combine and
add up to produce a high score, even if the biological mechanism can accept
only one of them at a time. A nonlinear method can avoid this situation simply
by decreasing the score if the combined evidence from many features exceeds
a certain level.

A clever change in the input representation will in many cases do part of the
job of transforming the topology of the sequence space into a better-connected
space in which isolated islands have been merged according to the functional
class they belong to. Since the correlations and features in sequences often are
largely unknown, at least when one starts the prediction analysis, the nonlinear

4?2 Introduction

== & L 55 xx ==
0_ S —= —— - ——— E=—— = B = =
E E E E E | | | | |

Figure 1.10: A Logo of Donor Splice Sites from the Dicot Plant A. thaliana (cress). The logo
is based on frequencies of nonoverlapping dinucleotides in the exon/intron transition region,
using the standard Shannon information measure entering equation (1.9) with the alphabet size
|A] = 16. The logo was prepared on a nonredundant data set of sequences extracted from
GenBank [327].

potential of neural networks gives them a big advantage in the development
phase for many types of tasks.

The issue of which method to use has for many years been a highly dog-
matic matter in artificial intelligence. In the data domain of biological se-
quences, it is clear that many different methods will be able to perform at the
same level if one knows in advance which features to look for. If an analysis of
the weights in a neural network trained on a given task (see chapter 6) shows
that the network is being excited (or inhibited) toward a positive (or negative)
prediction by specific sequence features, rules can often be constructed that
also will have a high discriminatory power. It is the experience of many people
that machine-learning methods are productive in the sense that near-optimal
methods can be developed quite fast, given that the data are relatively clean;
it often can be much harder to try to design powerful rules from scratch.

Prediction of Molecular Function and Structure 43

1.5 Prediction of Molecular Function and Structure

The methods and applications described in this book will be targeted toward
the agenda formulated by von Heijne in his early book on sequence analysis:
“What can you do with your sequence once you have it?” [540]. Applications
well suited for treatment by machine-learning approaches will be described
in detail in later chapters; here we give an annotated list of some important
computational problems that have been tackled within this framework in the
analysis of data from DNA, RNA, and protein sequences. In some cases se-
quences are represented by experimentally determined biochemical character-
istics rather than symbols from a finite alphabet of monomers.

1.5.1 Sequence-based Analysis

In most cases, single-stranded sequences are used, no matter whether the
object in the cellular environment is DNA or RNA. One exception is the anal-
ysis of structural elements of DNA, such as bendability or intrinsic bending
potential, which must be based on a true double-stranded interpretation of
the double helix.

Intron splice sites and branch points in eukaryotic pre-mRNA. Intervening
sequences that interrupt the genes of RNA and proteins are characterized, but
not unambiguously defined, by local features at the splice junctions. Introns
in protein-encoding genes present the most significant computational chal-
lenge. In some organisms, nuclear introns are few and their splice sites are
well conserved (as in S. cerevisiae), but in many other eukaryotes, including
man, it is a major problem to locate the correct transition between coding
and noncoding regions, and thus to determine the mature mRNA sequence
from the genomic DNA. In yeast, introns occur mainly in genes encoding
ribosomal proteins. The fact that genes in many organisms are being spliced
differently, depending on tissue type or stage of development, complicates
the task considerably. Weight matrices, neural networks, and hidden Markov
models have been applied to this problem in a multitude of different versions.

Gene finding in prokaryotes and eukaryotes. Machine-learning techniques
have been applied to almost all steps in computational gene finding, including
the assignment of translation start and stop, quantification of reading frame
potential, frame interruption of splice sites, exon assignment, gene modeling,
and assembly. Usually, highly diverse combinations of machine-learning
approaches have been incorporated in individual methods.

44 Introduction

Recognition of promoters—transcription initiation and termination. Initi-
ation of transcription is the first step in gene expression and constitutes an
important point of control in the organism. The initiation event takes place
when RNA polymerase—the enzyme that catalyzes production of RNA from
the DNA template—recognizes and binds to certain DNA sequences called
promoters. This prediction problem is hard due to both the large variable dis-
tance between various DNA signals that are the substrate for the recognition
by the polymerase, and the many other factors involved in regulation of the
expression level. The elastic matching abilities of hidden Markov models have
made them ideal for this task, especially in eukaryotes, but neural networks
with carefully designed input architecture have also been used.

Gene expression levels. This problem may be addressed by predicting
the strength of known promoter signals if the expression levels associated
with their genes have been determined experimentally. Alternatively, the
expression level of genes may be predicted from the sequence of the coding
sequence, where the codon usage and/or in some cases, the corresponding
codon adaption indices, have been used to encode the sequence statistics.

Prediction of DNA bending and bendability. Many transactions are influ-
enced and determined by the flexibility of the double helix. Transcription
initiation is one of them, and prediction of transcription initiation or curva-
ture/bendability from the sequence would therefore be valuable in the context
of understanding a large range of DNA-related phenomena.

Nucleosome positioning signals. Intimately related to the DNA flexibility is
the positioning of eukaryotic DNA when wrapped around the histone octamers
in chromatin. Detection of the periodicity requires non-integer sensitivity—or
an elastic matching ability as in hidden Markov models—because the signals
occur every 10.1-10.6 bp, or every full turn of the double-stranded helix.

Sequence clustering and cluster topology. Because sequence data are noto-
riously redundant, it is important to have clustering techniques that will put
sequences into groups, and also to estimate the intergroup distances at the
same time. Both neural networks, in the form of self-organizing maps, and
hidden Markov models have been very useful for doing this. One advantage
over other clustering techniques has been the unproblematic treatment of
large data sets comprising thousands of sequences.

Prediction of RNA secondary structure. The most powerful methods for
computing and ranking potential secondary structures of mRNA, tRNA, and
rRNA are based on the minimization of the free energy in the interaction be-

Prediction of Molecular Function and Structure 45

tween base pairs and between pairs of base pairs and their stacking energies
[586, 260]. This is nontrivial for many reasons, one being that loop-to-loop
interactions are hard to assess without a combinatorial explosion in the num-
ber of structures to be evaluated. Neural networks and grammar methods
have had some success in handling features at which the more traditional
minimization procedures for obtaining the energetically most favored confor-
mation are less successful.

Other functional sites and classes of DNA and RNA. Many different types of
sites have been considered for separate prediction, including branch points
in introns, ribosome binding sites, motifs in protein-DNA interactions, other
regulatory signals, DNA helix categories, restriction sites, DNA melting points,
reading frame-interrupting deletions in EST sequences, classification of ri-
bosomal RNAs according to phylogenetic classes, and classification of tRNA
sequences according to species.

Protein structure prediction. This area has boosted the application of
machine-learning techniques within sequence analysis, most notably through
the work on prediction of protein secondary structure of Qian and Sejnowski
[437]. Virtually all aspects of protein structure have been tackled by machine
learning. Among the specific elements that have been predicted are categories
of secondary structure, distance constraints between residues (contacts), fold
class, secondary structure class or content, disulfide bridges between cysteine
residues, family membership, helical transmembrane regions and topology of
the membrane crossing, membrane protein class (number of transmembrane
segments), MHC motifs, and solvent accessibility.

Protein function prediction. Functionally related features that have been
considered for prediction are intracellular localization, signal peptide cleav-
age sites (secreted proteins), de novo design of signal peptide cleavage sites
(optimized for cleavage efficiency), signal anchors (N-terminal parts of type-II
membrane proteins), glycosylation signals for attachment of carbohydrates
(the state and type of glycosylation determines the lifetime in circulation;
this is strongly involved in recognition phenomena and sorting), phosphory-
lation and other modifications related to posttranslational modification (the
presence of phosphorylation sites indicates that the protein is involved in
intracellular signal transduction, cell cycle control, or mediating nutritional
and environmental stress signals), various binding sites and active sites in
proteins (enzymatic activity).

Protein family classification. The family association has been predicted from
a global encoding of the dipeptide frequencies into self-organizing maps

46 Introduction

and feed-forward neural networks, or local motif-based prediction that may
enhance the detection of more distant family relationships.

Protein degradation. In all organisms proteins are degraded and recycled. In
organisms with an immune system the specificity of the degradation is es-
sential for its function and the successful discrimination between self and
nonself. Different degradation pathways are active; in several of them pro-
teins are unfolded prior to proteolytic cleavage, and therefore the specificity
is presuambly strongly related to the pattern in the sequence and not to its 3D
structure. This general problem has therefore quite naturally been attacked by
machine-learning techniques, the main problem being the limited amount of
experimentally characterized data.

Chapter 2

Machine-Learning Foundations:
The Probabilistic Framework

2.1 Introduction: Bayesian Modeling

Machine learning is by and large a direct descendant of an older discipline,
statistical model fitting. Like its predecessor, the goal in machine learning is
to extract useful information from a corpus of data D by building good prob-
abilistic models. The particular twist behind machine learning, however, is to
automate this process as much as possible, often by using very flexible models
characterized by large numbers of parameters, and to let the machine take care
of the rest. Silicon machine learning also finds much of its inspiration in the
learning abilities of its biological predecessor: the brain. Hence, a particular
vocabulary is required in which “learning” often replaces “fitting.”

Clearly, machine learning is driven by rapid technological progress in two
areas:

e Sensors and storage devices that lead to large databases and data sets
e Computing power that makes possible the use of more complex models.

As pointed out in [455], machine-learning approaches are best suited for areas
where there is a large amount of data but little theory. And this is exactly the
situation in computational molecular biology.

While available sequence data are rapidly increasing, our current knowl-
edge of biology constitutes only a small fraction of what remains to be dis-
covered. Thus, in computational biology in particular, and more generally in
biology and all other information-rich sciences, one must reason in the pres-
ence of a high degree of uncertainty: many facts are missing, and some of

47

48 Machine Learning: The Probabilistic Framework

the facts are wrong. Computational molecular biologists are, then, constantly
faced with induction and inference problems: building models from available
data. What are the right class of models and the right level of complexity?
Which details are important and which should be discarded? How can one
compare different models and select the best one, in light of available knowl-
edge and sometimes limited data? In short, how do we know if a model is
a good model? These questions are all the more acute in machine-learning
approaches, because complex models, with several thousand parameters and
more, are routinely used and sequence data, while often abundant, are inher-
ently “noisy.”

In situations where few data are available, the models used in machine-
learning approaches have sometimes been criticized on the ground that they
may be capable of accommodating almost any behavior for a certain setting
of their parameters, and that simpler models with fewer parameters should
be preferred to avoid overfitting. Machine-learning practitioners know that
many implicit constraints emerge from the structure of the models and, in fact,
render arbitrary behavior very difficult, if not impossible, to reproduce. More
important, as pointed out in [397], choosing simpler models because few data
are available does not make much sense. While it is a widespread practice and
occasionally a useful heuristic, it is clear that the amount of data collected and
the complexity of the underlying source are two completely different things. It
is not hard to imagine situations characterized by a very complex source and
relatively few data. Thus we contend that even in situations where data are
scarce, machine-learning approaches should not be ruled out a priori. But in
all cases, it is clear that questions of inference and induction are particularly
central to machine learning and to computational biology.

When reasoning in the presence of certainty, one uses deduction. This is
how the most advanced theories in information-poor sciences, such as physics
or mathematics, are presented in an axiomatic fashion. Deduction is not con-
troversial. The overwhelming majority of people agree on how to perform
deductions in specific way: if X implies Y, and X is true, then Y must be
true. This is the essence of Boole’s algebra, and at the root of all our digital
computers. When reasoning in the presence of uncertainty, one uses induc-
tion and inference: if X implies Y, and Y is true, then X is more plausible.
An amazing and still poorly known fact is that there is a simple and unique
consistent set of rules for induction, model selection, and comparison. It is
called Bayesian inference. The Bayesian approach has been known for some
time, but only recently has it started to infiltrate different areas of science and
technology systematically, with useful results [229, 372, 373]. While machine
learning may appear to some as an eclectic collection of models and learning
algorithms, we believe the Bayesian framework provides a strong underlying
foundation that unifies the different techniques. We now review the Bayesian

Introduction: Bayesian Modeling 49

framework in general. In the following chapters, we apply it to specific classes
of models and problems.

The Bayesian point of view has a simple intuitive description. The Bayesian
approach assigns a degree of plausibility to any proposition, hypothesis, or
model. (Throughout this book, hypothesis and model are essentially synony-
mous; models tend to be complex hypotheses with many parameters.) More
precisely, in order properly to carry out the induction process, one ought to
proceed in three steps:

1. Clearly state what the hypotheses or models are, along with all the back-
ground information and the data.

2. Use the language of probability theory to assign prior probabilities to the
hypotheses.

3. Use probability calculus for the inference process, in particular to eval-
uate posterior probabilities (or degrees of belief) for the hypotheses in
light of the available data, and to derive unique answers.

Such an approach certainly seems reasonable. Note that the Bayesian ap-
proach is not directly concerned with the creative process, how to generate
new hypotheses or models. It is concerned only with assessing the value of
models with respect to the available knowledge and data. This assessment
procedure, however, may be very helpful in generating new ideas.

But why should the Bayesian approach be so compelling? Why use the lan-
guage of probability theory, as opposed to any other method? The surprising
answer to this question is that it can be proved, in a strict mathematical sense,
that this is the only consistent way of reasoning in the presence of uncertainty.
Specifically, there is a small set of very simple commonsense axioms, the Cox
Jaynes axioms, under which it can be shown that the Bayesian approach is the
unique consistent approach to inference and induction. Under the Cox Jaynes
axioms, degrees of plausibility satisfy all the rules of probabilities exactly.
Probability calculus is, then, all the machinery that is required for inference,
model selection, and model comparison.

In the next section, we give a brief axiomatic presentation of the Bayesian
point of view using the Cox Jaynes axioms. For brevity, we do not present
any proofs or any historical background for the Bayesian approach, nor do we
discuss any controversial issues regarding the foundations of statistics. All of
these can be found in various books and articles, such as [51, 63, 122, 433,
284].

50 Machine Learning: The Probabilistic Framework

2.2 The Cox Jaynes Axioms

The objects we deal with in inference are propositions about the world. For
instance, a typical proposition X is “Letter A appears in position i of sequence
0.” A proposition is either true or false, and we denote by X the complement
of a proposition X. A hypothesis H about the world is a proposition, albeit a
possibly complex one composed of the conjunction of many more elementary
propositions. A model M can also be viewed as a hypothesis. The difference is
that models tend to be very complex hypotheses involving a large number of
parameters. In discussions where parameters are important, we will consider
that M = M(w), where w is the vector of all parameters. A complex model M
can easily be reduced to a binary proposition in the form “Model M accounts
for data D with an error level €” (this vague statement will be made more
precise in the following discussion). But for any purpose, in what follows
there is no real distinction between models and hypotheses.

Whereas propositions are either true or false, we wish to reason in the
presence of uncertainty. Therefore the next step is to consider that, given
a certain amount of information I, we can associate with each hypothesis a
degree of plausibility or confidence (also called degree or strength of belief).
Let us represent it by the symbol 7t (X|I). While 7t(X|I) is just a symbol for
now, it is clear that in order to have a scientific discourse, one should be able
to compare degrees of confidence. That is, for any two propositions X and Y,
either we believe in X more than in Y, or we believe in Y more than in X, or we
believe in both equally. Let us use the symbol > to denote this relationship,
so that we write m(X|I) > (Y |I) if and only if X is more plausible than Y.
It would be very hard not to agree that in order for things to be sensible, the
relationship > should be transitive. That is, if X is more plausible than Y,
and Y is more plausible than Z, then X must be more plausible than Z. More
formally, this is the first axiom,

m(X|I)>m((Y|I) and m(Y|I)>mw(Z|I) imply m(X|I)> w(Z|I). (2.1)

This axiom is trivial; it has, however, an important consequence: > is an or-
dering relationship, and therefore degrees of belief can be expressed by real
numbers. That is, from now on, 1w (X|I) represents a number. This of course
does not mean that such a number is easy to calculate, but merely that such a
number exists, and the ordering among hypotheses is reflected in the ordering
of real numbers. To proceed any further and stand a chance of calculating
degrees of belief we need additional axioms or rules for relating numbers rep-
resenting strengths of belief.

The amazing fact is that only two additional axioms are needed to con-
strain the theory entirely. This axiomatic presentation is usually attributed to

The Cox Jaynes Axioms 51

Cox and Jaynes [138, 283]. To better understand these two remaining axioms,
the reader may imagine a world of very simple switches, where at each instant
in time a given switch can be either on or off. Thus, all the elementary hypothe-
ses or propositions in this world, at a given time, have the simple form “switch
X is on” or “switch X is off.” (For sequence analysis purposes, the reader may
imagine that switch X is responsible for the presence or absence of the letter
X, but this is irrelevant for a general understanding.) Clearly, the more con-
fident we are that switch X is on (X), the less confident we are that switch X
is off (X). Thus, for any given proposition X, there should be a relationship
between 1 (X|I) and 1r(X|I). Without assuming anything about this relation-
ship, it is sensible to consider that, all else equal, the relationship should be
the same for all switches and for all types of background information, that is,
for all propositions X and I. Thus, in mathematical terms, the second axiom
states that there exists a function F such that

(X |I) = F[m(X|I)]. (2.2)

The third axiom is only slightly more complicated. Consider this time two
switches X and Y and the corresponding four possible joint states. Then our
degree of belief that X is on and Y is off, for instance, naturally depends on our
degree of belief that switch X is on, and our degree of belief that switch Y is off,
knowing that X is on. Again, it is sensible that this relationship be independent
of the switch considered and the type of background information I. Thus, in
mathematical terms, the third axiom states that there exists a function G such
that

(X, Y|I) = G (X|I), m(Y|X,I)]. (2.3)

So far, we have not said much about the information I. I is a proposition
corresponding to the conjunction of all the available pieces of information. I
can represent background knowledge, such as general structural or functional
information about biological macromolecules. I can also include specific ex-
perimental or other data. When it is necessary to focus on a particular corpus
of data D, we can write I = (I, D). In any case, I is not necessarily fixed and
can be augmented with, or replaced by, any number of symbols representing
propositions, as already seen in the right-hand side of (2.3). When data are
acquired sequentially, for instance, we may write I = (I, D1,...,Dy). In a dis-
cussion where I is well defined and fixed, it can be dropped altogether from
the equations.

The three axioms above entirely determine, up to scaling, how to calculate
degrees of belief. In particular, one can prove that there is always a rescaling
k of degrees of belief such that P(X|I) = k(1r(X|I)) is in [0, 1]. Furthermore,
P is unique and satisfies all the rules of probability. Specifically, if degrees of
belief are restricted to the [0, 1] interval, then the functions F and G must be

52 Machine Learning: The Probabilistic Framework

given by F(x) = 1 — x and G(x,y) = xy. The corresponding proof will not be
given here and can be found in [138, 284]. As a result, the second axiom can
be rewritten as the sum rule of probability,

P(X|I) +P(X|I) =1, (2.4)
and the third axiom as the product rule,
P(X,Y|I) =P X|)P(Y|X,I). (2.5)

From here on, we can then replace degrees of confidence by probabilities. Note
that if uncertainties are removed, that is, if P(X|I) is O or 1, then (2.4) and (2.5)
yield, as a special case, the two basic rules of deduction or Boolean algebra,
for the negation and conjunction of propositions [(1) “X or X” is always true;
(2) “X and Y” is true if and only if both X and Y are true]. By using the
symmetry P(X, Y|I) = P(Y, X|I) together with (2.5), one obtains the important
Bayes theorem,

P(Y|X,)P(X|I)
P(Y|I)

= P(XII)%)'(I’)I). (2.6)

P(X|Y,I) =

The Bayes theorem is fundamental because it allows inversion: interchanging
conditioning and nonconditioning propositions. In a sense, it embodies infer-
ence or learning because it describes exactly how to update our degree of belief
P(X|I) in X, in light of the new piece of information provided by Y, to obtain
the new P(X|Y,I). P(X|I) is also called the prior probability, and P(X|Y,I), the
posterior probability, with respect to Y. This rule can obviously be iterated as
information becomes available. Throughout the book, P(X) is universally used
to denote the probability of X. It should be clear, however, that the probability
of X depends on the surrounding context and is not a universal concept. It
is affected by the nature of the background information and by the space of
alternative hypotheses under consideration.

Finally, one should be aware that there is a more general set of axioms for
a more complete theory that encompasses Bayesian probability theory. These
are the axioms of decision or utility theory, where the focus is on how to take
“optimal” decisions in the presence of uncertainty [238, 63, 431] (see also ap-
pendix A). Not surprisingly, the simple axioms of decision theory lead one to
construct and estimate Bayesian probabilities associated with the uncertain
environment, and to maximize the corresponding expected utility. In fact, an
even more general theory is game theory, where the uncertain environment in-
cludes other agents or players. Since the focus of the book is on data modeling
only, these more general axiomatic theories will not be needed.

Bayesian Inference and Induction 53

2.3 Bayesian Inference and Induction

We can now turn to the type of inference we are most interested in: deriving a
parameterized model M = M(w) from a corpus of data D. For simplicity, we
will drop the background information I from the following equations. From
Bayes theorem we immediately have

P(D|M)P(M)

_ P(D|M)
P(M|D) = PD) =P(M) PD)

(2.7)

The prior P(M) represents our estimate of the probability that model M is

correct before we have obtained any data. The posterior P(M|D) represents

our updated belief in the probability that model M is correct given that we have

observed the data set D. The term P(D|M) is referred to as the likelihood.
For data obtained sequentially, one has

P(D!'|M,D!,...,Dt"1)

1 ty _ 1 t-1
P(MID',...,D") = P(MID',...., D!™1) =g

(2.8)

In other words, the old posterior P(M|D!,...,D!"1) plays the role of the new
prior. For technical reasons, probabilities can be very small. It is often easier
to work with the corresponding logarithms, so that

logP(M|D) =1logP(D|M) +logP(M) —logP(D). (2.9)

To apply (2.9) to any class of models, we will need to specify the prior P(M)
and the data likelihood P(D|M). Once the prior and data likelihood terms are
made explicit, the initial modeling effort is complete. All that is left is cranking
the engine of probability theory. But before we do that, let us briefly examine
some of the issues behind priors and likelihoods in general.

2.3.1 Priors

The use of priors is a strength of the Bayesian approach, since it allows in-
corporating prior knowledge and constraints into the modeling process. It is
sometimes also considered a weakness, on the ground that priors are sub-
jective and different results can be derived with different priors. To these
arguments, Bayesians can offer at least four different answers:

1. In general, the effects of priors diminish as the number of data increases.
Formally, this is because the likelihood —logP(D|M) typically increases
linearly with the number of data points in D, while the prior —logP(M)
remains constant.

54 Machine Learning: The Probabilistic Framework

2. There are situations where objective criteria, such as maximum entropy
and/or group invariance considerations, can be used to determine non-
informative priors (for instance, [228]).

3. Even when priors are not mentioned explicitly, they are used implicitly.
The Bayesian approach forces a clarification of one’s assumption without
sweeping the problem of priors under the rug.

4. Finally, and most important, the effects of different priors, as well as
different models and model classes, can be assessed within the Bayesian
framework by comparing the corresponding probabilities.

It is a matter of debate within the statistical community whether a general
objective principle exists for the determination of priors in all situations, and
whether maximum entropy (MaxEnt) is such a principle. It is our opinion that
such a general principle does not really exist, as briefly discussed at the end
of Appendix B. It is best to adopt a flexible and somewhat opportunistic atti-
tude toward the selection of prior distributions, as long as the choices, as well
as their quantitative consequences, are made explicit via the corresponding
probabilistic calculations. MaxEnt, however, is useful in certain situations. For
completeness, we now briefly review MaxEnt and group-theoretical considera-
tions for priors, as well as three prior distributions widely used in practice.

Maximum Entropy

The MaxEnt principle states that the prior probability assignment should be
the one with the maximum entropy consistent with all the prior knowledge
or constraints (all information-theoretic notions, such as entropy and rela-
tive entropy, are reviewed for completeness in appendix B). Thus the resulting
prior distribution is the one that “assumes the least,” or is “maximally non-
committal,” or has the “maximum uncertainty.” In the absence of any prior
constraints, this leads of course to a uniform distribution corresponding to
Laplace’s “principle of indifference.” Thus, when there is no information avail-
able on a parameter w, other than its range, a uniform prior over the range is
a natural choice of prior. MaxEnt applies in modeling situations parametrized
by a distribution P or by the corresponding histogram. MaxEnt is equivalent
to using the entropic prior P(P) = e~ (®) /7, where H (P) is the entropy of
P. MaxEnt is applied and further discussed in section 3.2. MaxEnt can also be
viewed as a special case of an even more general principle, minimum relative
entropy [486] (see appendix B).

Bayesian Inference and Induction 55

Group-Theoretic Considerations

In many situations some, if not all, of the constraints on the prior distribution
can be expressed in group-theoretical terms, such as invariance with respect
to a group of transformations. A typical example is a scale parameter, such
as the standard deviation o of a Gaussian distribution. Suppose that we have
only an idea of the range of ¢, in the form e? < o < e?. Then, within such
range, the density f (o) of o should be invariant to scaling of o, and therefore
f should be proportional to do /o . By simple normalization, we find

1 do
b-a o

flo) = (2.10)
This is equivalent to having log o uniformly distributed on the interval [a, b]
or having the densities of o and o™ identical. Other examples of group in-
variance analysis can be found in [282, 228].

Useful Practical Priors: Gaussian, Gamma, and Dirichlet

When prior distributions are not uniform, two useful and standard priors for
continuous variables are the Gaussian (or normal) prior and the gamma prior.
Gaussian priors with 0 mean are often used for the initialization of the weights
between units in neural networks. A Gaussian prior, on a single parameter, has
the form

1 (w—p)?

exp(——5——

N 2072
In the present context, one of the reasons the Gaussian distribution is preemi-
nent is related to the maximum entropy principle. When the only information
available about a continuous density is its mean u and its variance o2, then
the Gaussian density N (u, o) is the one achieving maximal entropy [137] (see
Appendix B).

The gamma density [177] with parameters « and A is given by

N(wlu,o) =). (2.11)

(0.4
T(wlo,A) = S (2.12)

')
for w > 0, and 0 otherwise. I'(«) is the gamma function I'(x) = f0°° e Xx%1ldx.
By varying « and A and translating w, the gamma density allows a wide range
of priors, with more mass concentrated in one specific region of parameter
space. Gamma priors are useful whenever the range of a parameter is bounded
on one side—for instance, in the case of a positive parameter such as a stan-

dard deviation (o > 0).

Finally, in the case of multinomial distributions that play an essential role
in this book, such as the choice of a letter from an alphabet at a given position

56 Machine Learning: The Probabilistic Framework

in a sequence, an important class of priors are the Dirichlet priors [63, 376]. By
definition, a Dirichlet distribution on the probability vector P = (py,..., pk),

with parameters « and Q = (q1,...,qk), has the form
R 9] K «gi-1 _ K p;xq,'—l
Do (P) = 1T o) ﬂpi = E TOR (2.13)

with &, pi,q; = 0 and > p; = > q; = 1. For such a Dirichlet distribution,
E(pi) = qi, Var(p;) = qi(1 — q;)/(x + 1), and Cov(p;p;) = —qiq;/(x + 1).
Thus Q is the mean of the distribution, and « determines how peaked the dis-
tribution is around its mean. Dirichlet priors are important because they are
the natural conjugate priors for multinomial distributions, as will be demon-
strated in chapter 3. This simply means that the posterior parameter distri-
bution, after having observed some data from a multinomial distribution with
Dirichlet prior, also has the form of a Dirichlet distribution. The Dirichlet
distribution can be seen as the multivariate generalization of the beta distri-
bution, and can also be interpreted as a maximum entropy distribution over
the space of distributions P, with a constraint on the average distance (i.e. rela-
tive entropy) to a reference distribution determined by Q and « (see appendix
B).

2.3.2 Data Likelihood

In order to define P(D|M), one must come to grips with how a model M could
also give rise to a different observation set D’: in a Bayesian framework, se-
quence models must be probabilistic. A deterministic model assigns a prob-
ability O to all the data except the one it can produce exactly. This is clearly
inadequate in biology and perhaps is one of the major lessons to be derived
from the Bayesian point of view. Scientific discourse on sequence models—
how well they fit the data and how they can be compared with each other—is
impossible if the likelihood issue is not addressed honestly.

The likelihood question is clearly related to issues of variability and noise.
Biological sequences are inherently “noisy,” variability resulting in part from
random events amplified by evolution. Mismatches and differences between
specific individual sequences and the “average” sequence in a family, such as
a protein family, are bound to occur and must be quantified. Because the
same DNA or amino acid sequence will differ between individuals of the same
species, and even more so across species, modelers always need to think in
probabilistic terms. Indeed, a number of models used in the past in a more
or less heuristic way, without clear reference to probabilities, are suddenly
illuminated when the probabilistic aspects are made explicit. Dealing with

Bayesian Inference and Induction 57

the probabilistic aspects not only clarifies the issues and allows a rigorous
discourse, but often also suggests new modeling avenues.

The computation of the likelihood is of course model-dependent and can-
not be addressed in its generality. In section 2.4, we will outline some general
principles for the derivation of models where the likelihood can be estimated
without too many difficulties. But the reader should be aware that whatever
criterion is used to measure the difference or error between a model and the
data, such a criterion always comes with an underlying probabilistic model
that needs to be clarified and is amenable to Bayesian analysis. Indeed, if
the fit of a model M = M(w) with parameters w is measured by some error
function f(w,D) = 0 to be minimized, one can always define the associated

likelihood to be
—f(w,D)

P(DIMw)) = “——, (2.14)
where Z = [, e7/@P)dw is a normalizing factor (the “partition function” in
statistical mechanics) that ensures the probabilities integrate to 1. As a re-
sult, minimizing the error function is equivalent to maximum likelihood (ML)
estimation, or more generally maximum a posteriori (MAP) estimation. In par-
ticular, when the sum of squared differences is used to compare quantities,
a rather common practice, this implies an underlying Gaussian model. Thus
the Bayesian point of view clarifies the probabilistic assumptions that must
underlie any criteria for matching models with data.

2.3.3 Parameter Estimation and Model Selection

We now return to the general Bayesian inference machinery. Two specific mod-
els M; and M, can be compared by comparing their probabilities P(M;|D)
and P(M»|D). One objective often is to find or approximate the “best” model
within a class—that is, to find the set of parameters w maximizing the poste-
rior P(M|D), or logP(M|D), and the corresponding error bars (see appendix
A). This is called MAP estimation. In order to deal with positive quantities, this
is also equivalent to minimizing —logP(M|D):

E =—-logP(M|D) = —logP(D|M) —logP(M) + logP(D). (2.15)

From an optimization standpoint, the logarithm of the prior plays the role
of a regularizer, that is, of an additional penalty term that can be used to
enforce additional constraints, such as smoothness. Note that the term P(D)
in (2.15) plays the role of a normalizing constant that does not depend on the
parameters w, and is therefore irrelevant for this optimization. If the prior
P(M) is uniform over all the models considered, then the problem reduces to
finding the maximum of P(D|M), or logP(D|M). This is just ML estimation. In

58 Machine Learning: The Probabilistic Framework

summary, a substantial portion of this book and of machine-learning practice
is based on MAP estimation, that is, the minimization of

F = —logP(D|M) — logP(M), (2.16)
or even the simpler ML estimation, that is, the minimization of
F = —logP(D|M). (2.17)

In most interesting models, the function being optimized is complex and its
modes cannot be solved analytically. Thus one must resort to iterative and
possibly stochastic methods such as gradient descent or simulated annealing,
and also settle for approximate or suboptimal solutions.

Bayesian inference, however, is iterative. Finding a highly probable model
within a certain class is only its first level. Whereas finding the optimal model
is common practice, it is essential to note that this is really useful only if the
distribution P(M|D) is sharply peaked around a unique optimum. In situations
characterized by a high degree of uncertainty and relatively small amounts of
data available, this is often not the case. Thus a Bayesian is really interested in
the function P(M|D) over the entire space of models rather than in its maxima
only, and more precisely in evaluating expectations with respect to P(M|D).
This leads to higher levels of Bayesian inference, as in the case of prediction
problems, marginalization of nuisance parameters, and class comparisons.

2.3.4 Prediction, Marginalization of Nuisance Parameters, and Class
Comparison

Consider a prediction problem in which we are trying to predict the output
value y of an unknown parameterized function f,,, given an input x. It is easy
to show that the optimal prediction is given by the expectation

E(y) = L., fu (OP(W|D)dw. (2.18)

This integral is the average of the predictions made by each possible model
fw, weighted by the plausibility P(w|D) of each model. Another example is
the process of marginalization, where integration of the posterior parameter
distribution is carried out only with respect to a subset of the parameters, the
so-called nuisance parameters [225]. In a frequentist framework, where proba-
bilities are defined in terms of observed frequencies, the notion of distribution
over the parameters is not defined, and therefore nuisance parameters cannot
be integrated out easily. Finally, one is often led to the problem of compar-
ing two model classes, C; and C>. To compare C; and C, in the Bayesian

Bayesian Inference and Induction 59

framework, one must compute P(C;|D) and P(C>|D) using Bayes’ theorem:
P(C|D) =P(D|C)P(C)/P(D). In addition to the prior P(C), one must calculate
the evidence P(D|C) by averaging over the entire model class:

P(D|C) = J PD,w|C)dw = P(D|w,C)P(w|C)dw. (2.19)
weC weC

Similar integrals also arise with hierarchical models and hyperparameters (see
below). In cases where the likelihood P(D|w,C) is very peaked around its
maximum, such expectations can be approximated using the mode, that is, the
value with the highest probability. But in general, integrals such as (2.18) and
(2.19) require better approximations—for instance using Monte Carlo sampling
methods [491, 396, 69], as briefly reviewed in chapter 4. Such methods, how-
ever, are computationally intensive and not always applicable to the models to
be considered. This book is mostly concerned only with likelihood calculations
and the first level of Bayesian inference (ML and MAP). The development of
methods for handling higher levels of inference is an active area of research,
and these should be considered whenever possible. The available computer
power is of course an important issue in this context.

2.3.5 Ockham’s Razor

As a final point raised in section 2.1, it does not make sense to choose a simple
model on the basis that available data are scarce. Everything else being equal,
however, it is true that one should prefer a simple hypothesis to a complex
one. This is Ockham’s razor. As pointed out by several authors, Ockham’s
razor is automatically embodied in the Bayesian framework [285, 373] in at
least two different ways. In the first, trivial way, one can introduce priors
that penalize complex models. But even without such priors, parameterized
complex models will tend to be consistent with a larger volume of data space.
Since a likelihood P(D|M) must sum to 1 over the space of data, if P(D|M)
covers a larger expanse of data space, the likelihood values for given data sets
will be smaller on average. Therefore, all else equal, complex models will tend
to assign a correspondingly smaller likelihood to the observed data.

2.3.6 Minimum Description Length

An alternative approach to modeling is the minimum description length (MDL)
[446]. MDL is related to ideas of data compression and information transmis-
sion. The goal is to transmit the data over a communication channel. Trans-
mitting the data “as is” is not economical: nonrandom data contains structure
and redundancies, and therefore must be amenable to compression. A good

60 Machine Learning: The Probabilistic Framework

model of the data should capture their structure and yield good compression.
The optimal model is the one that minimizes the length of the total message
required to describe the data. This includes both the length required to specify
the model itself and the data given the model. To a first approximation, MDL is
closely related to the Bayesian point of view. According to Shannon’s theory of
communication [483], the length of the message required to communicate an
event that has probability p is proportional to — log p. Thus the most probable
model has the shortest description. Some subtle differences between MDL and
the Bayesian point of view can exist, however, but these will not concern us
here.

2.4 Model Structures: Graphical Models and Other Tricks

Clearly, the construction or selection of suitable models is dictated by the data
set, as well as by the modeler’s experience and ingenuity. It is, however, pos-
sible to highlight a small number of very general techniques or tricks that can
be used to shape the structure of the models. Most models in the literature
can be described in terms of combinations of these simple techniques. Since in
machine learning the starting point of any Bayesian analysis is almost always a
high-dimensional probability distribution P(M, D) and the related conditional
and marginal distributions (the posterior P(M|D), the likelihood P(D|M), the
prior P(M), and the evidence P(D)); these rules can be seen as ways of decom-
posing, simplifying, and parameterizing such high-dimensional distributions.

2.4.1 Graphical Models and Independence

By far the most common simplifying trick is to assume some independence
between the variables or, more precisely, some conditional independence of
subsets of variables, conditioned on other subsets of variables. These indepen-
dence relationships can often be represented by a graph where the variables
are associated with the nodes, and a missing edge represents a particular in-
dependence relationship (precise definitions can be found in appendix C). See
[416, 350, 557, 121, 499, 106, 348, 286] for general reviews, treatments, or
pointers to the large literature on this topic.

The independence relationships result in the fundamental fact that the
global high-dimensional probability distribution, over all variables, can be fac-
tored into a product of simpler local probability distributions over lower-
dimensional spaces associated with smaller clusters of variables. The clusters
are reflected in the structure of the graph.

Graphical models can be subdivided into two broad categories depending
on whether the edges of the associated graph are directed or undirected. Undi-

Model Structures: Graphical Models and Other Tricks 61

rected edges are typical in problems where interactions are considered to be
symmetric, such as in statistical mechanics or image processing [272, 199,
392]. In the undirected case, in one form or another, these models are called
Markov random fields, undirected probabilistic independence networks, Boltz-
mann machines, Markov networks, and log-linear models.

Directed models are used in cases where interactions are not symmetric
and reflect causal relationships or time irreversibility [416, 286, 246]. This
is typically the case in expert systems and in all problems based on temporal
data. The Kalman filter, a tool widely used in signal processing and control, can
be viewed in this framework. In the case of temporal series, the independence
assumptions are often those used in Markov models. Not surprisingly, most if
not all of the models discussed in this book—NNs and HMMs in particular—
are examples of graphical models with directed edges. A systematic treatment
of graphical models in bioinformatics is given in chapter 9. Typical names
for such models in the literature are Bayesian networks, belief networks, di-
rected probabilistic independence networks, causal networks, and influence
diagrams. It is also possible to develop a theory for the mixed case [557],
where both directed and undirected edges are present. Such mixed graphs are
also called chain independence graphs. The basic theory of graphical models
is reviewed in appendix C.

Here we introduce the notation needed in the following chapters. By G =
(V,E) we denote a graph G with a set V of vertices and a set E of edges. If
the edges are directed, we write G = (V,E). In an undirected graph, N(i)
represents the sets of all the neighbors of vertex i, and C(i) represents the set
of all the vertices that are connected to i by a path. So,

N@G@)={jeV:(,j €E}. (2.20)

In a directed graph, we use the obvious notation N~ (i) and N* (i) to denote
all the parents of i and all the children of i, respectively. Likewise, C~ (i) and
C*(i) denote the ancestors, or the “past,” and the descendants of i, or the
“future” of i. All these notations are extended in the obvious way to any set of
vertices I. So forany I € V,

NI)={jeV:3iel (j eE}-LI (2.21)

This is also called the boundary of I.

One fundamental observation is that in most applications the resulting
graphs are sparse. Thus the global probability distribution factors into a rel-
atively small number of relatively small local distributions. And this is key
to the implementation of efficient computational structures for learning and
inference, based on the local propagation of information between clusters of
variables in the graph. The following techniques are not independent of the
general graphical model ideas, but can often be viewed as special cases.

62 Machine Learning: The Probabilistic Framework

2.4.2 Hidden Variables

In many models, it is typical to assume that the data result in part from the
action of hidden or latent variables, or causes, that either are not available in
the data gathered or perhaps are fundamentally unobservable [172]. Missing
data can also be treated as a hidden variable. The activations of the hidden
units of a network, or the state sequence of an HMM, are typical examples of
hidden variables. Another example is provided by the coefficients of a mix-
ture (see below). Obviously the parameters of a model, such as the weights
of an NN or the emission/transition probabilities of an HMM, could also be
regarded as hidden variables in some sense, although this would be an uncon-
ventional terminology. Typical inference problems in hidden variable models
are the estimation of the probability distribution over the set of hidden vari-
ables, its modes, and the corresponding expectations. These often appear as
subproblems of the general parameter estimation problem in large parameter-
ized models, such as HMMs. An important algorithm for parameter estimation
with missing data or hidden variable is the EM algorithm, described in chapter
4 and further demonstrated in chapter 7 on HMMs.

2.4.3 Hierarchical Modeling

Many problems have a natural hierarchical structure or decomposition. This
can result, for instance, from the existence of different time scales or length
scales in the problem. The clusters described above in the general section
on graphical modeling can also be viewed as nodes of a higher-level graphical
model for the data (see, for instance, the notion of junction tree in [350]).
In a related but complementary direction, the prior on the parameters of a
model can have a hierarchical structure in which parameters at one level of
the hierarchy are used to define the prior distribution on the parameters at
the next level in a recursive way, with the number of parameters typically
decreasing at each level as one ascends the hierarchy. All the parameters
above a given level are often called “hyperparameters” with respect to that
level.

Hyperparameters are used to provide more flexibility while keeping con-
trol over the complexity and structure of the model. Hyperparameters have
“high gain” in the sense that small hyperparameter variations can induce large
model variations at the level below. Hyperparameters also allow for parameter
reduction because the model prior can be calculated from a (usually smaller)
number of hyperparameters. In symbolic form,

P(w) = J P(w|x)P(x)d«, (2.22)

Model Structures: Graphical Models and Other Tricks 63

where « represents hyperparameters for the parameter w with prior P(x). As
a typical example, consider the connection weights in a neural network. In
a given problem, it may be a good idea to model the prior on a weight by
using a Gaussian distribution with mean p and standard deviation o. Having
a different set of hyperparameters y and o for each weight may yield a model
with too few constraints. All the os of a given unit, or in an entire layer, can
be tied and assumed to be identical. At a higher level, a prior can be defined
on the os, and so on. An example of a hierarchical Dirichlet model is given in
appendix D.

2.4.4 Hybrid Modeling/Parameterization

Parameterization issues are important in machine learning, if only because
the models used are often quite large. Even when the global probability dis-
tribution over the data and the parameters has been factored into a product
of simpler distributions, as a result of independence assumptions, one of-
ten must still parameterize the component distributions. Two useful general
approaches for parameterizing distributions are mixture models and neural
networks.

In mixture models, a complex distribution P is parameterized as a linear
convex combination of simpler or canonical distributions in the form

n
P=> AP, (2.23)
i=1

where the A; > 0 are called the mixture coefficients and satisfy >; A; = 1.
The distributions P; are called the components of the mixture and can carry
their own parameters (means, standard deviations, etc.). A review of mixture
models can be found in [173, 522].

Neural networks are also used to reparameterize models, that is, to com-
pute model parameters as a function of inputs and connection weights. As we
shall see, this is in part because neural networks have universal approximation
properties and good flexibility, combined with simple learning algorithms. The
simplest example is perhaps in regression problems, where a neural network
can be used to calculate the mean of the dependent variable as a function
of the independent variable, the input. A more subtle example will be given
in chapter 9, where neural networks are used to calculate the transition and
emission parameters of an HMM. The term “hybrid” is sometimes used to de-
scribe situations in which different model classes are combined, although the
combination can take different forms.

64 Machine Learning: The Probabilistic Framework

2.4.5 Exponential Family of Distributions

The exponential family of distributions is briefly reviewed in appendix A. Here
it suffices to say that many of the most commonly used distributions (Gaus-
sian, multinomial, etc.) belong to this family, and that using members of the
family often leads to computationally efficient algorithms. For a review of the
exponential family, with a comprehensive list of references, see [94].

2.5 Summary

We have briefly presented the Bayesian approach to modeling and inference.
The main advantage of a Bayesian approach is obvious: it provides a princi-
pled and rigorous approach to inference, with a strong foundation in proba-
bility theory. In fact, one of the most compelling reasons in favor of Bayesian
induction is its uniqueness under a very small set of commonsense axioms.
We grant that mathematicians may be more receptive than biologists to such
an argument.

The Bayesian framework clarifies a number of issues, on at least three dif-
ferent levels. First, a Bayesian approach forces one to clarify the prior knowl-
edge, the data, and the hypotheses. The Bayesian framework is entirely open
to, and actually encourages, questioning any piece of information. It deals
with the subjectivity inherent in the modeling process not by sweeping it un-
der the rug but, rather, by incorporating it up front in the modeling process. It
is fundamentally an iterative process where models are progressively refined.
Second, and this is perhaps the main lesson here, sequence models must be
probabilistic and come to grips with issues of noise and variability in the data,
in a quantifiable way. Without this step it is impossible to have a rigorous
scientific discourse on models, to determine how well they fit the data, and
ultimately to compare models and hypotheses. Third, the Bayesian approach
clarifies how to proceed with inference, that is, how to compare models and
quantify errors and uncertainties, basically by cranking the engine of proba-
bility. In particular, it provides unambiguous, unique answers to well-posed
questions. It defines the set of rules required to play a fair modeling game.
The basic step is to compute model plausibilities, with respect to the available
data and the associated expectations, using the rules of probability theory and
possibly numerical approximations.

The Bayesian approach can lead to a better understanding of the weak-
nesses of a model, and thereby help in generating better models. In addition,
an objective way of comparing models, and of making predictions based on
models, will become more important as the number, scope, and complexity of
models for biological macromolecules, structure, function, and regulation in-

Summary 65

crease. Issues of model comparison and prediction will become progressively
more central as databases grow in size and complexity. New ideas are likely
to emerge from the systematic application of Bayesian probabilistic ideas to
sequence analysis problems.

The main drawback of the Bayesian approach is that it can be computa-
tionally intensive, especially when averages need to be computed over high-
dimensional distributions. For the largest sequence models used in this book,
one is unlikely to be able to carry out a complete Bayesian integration on cur-
rently available computers. But continuing progress in Monte Carlo [491, 69]
and other approximation techniques, as well as steady increases in raw com-
puting power in workstations and parallel computers, is encouraging.

Once the general probabilistic framework is established, the next central
idea is that of graphical models: to factor high-dimensional probability dis-
tributions by exploiting independence assumptions that have a graphical sub-
strate. Most machine-learning models and problems can be represented in
terms of recursive sparse graphs, at the levels of both the variables involved,
observed or hidden, and the parameters. Sparse recursive graphs appear as a
universal underlying language or representational structure for most models
and machine-learning applications.

This page intentionally left blank

Chapter 3

Probabilistic Modeling and
Inference: Examples

What are the implications of a Bayesian approach for modeling? For any type
of model class, it is clear that the first step must be to make the likelihood
P(D|M) and the prior P(M) explicit. In this chapter, we look at a few simple
applications of the general probabilistic framework. The first is a very simple
sequence model based on die tosses. All other examples in the chapter, includ-
ing the basic derivation of statistical mechanics, are variations obtained either
by increasing the number of dice or by varying the observed data.

3.1 The Simplest Sequence Models

The simplest, but not entirely trivial, modeling situation is that of a single
coin flip. This model has a single parameter p and the data consist of a string,
containing a single letter, over the alphabet A = {H, T}, Hfor head and T for tail.
Since we are interested in DNA sequences, we shall move directly to a slightly
more complex version with four letters, rather than two, and the possibility of
observing longer strings.

3.1.1 The Single-Die Model with Sequence Data

The data D then consist of DNA strings over the four-letter alphabet A =
{A,C,G, T}. The simple model we want to use is to assume that the strings
have been obtained by independent tosses of the same four-sided die (figure
3.1).

67

68 Probabilistic Modeling and Inference: Examples

&

Figure 3.1: Two Views of the Four-Sided DNA Die Used to Generate of DNA Strings.

Because the tosses are independent and there is a unique underlying die,
for likelihood considerations it does not really matter whether we have many
strings or a single long string. So we assume that the data consist of a single
observation sequence of length N: D = {O}, with O = X1... XN and X' € A. Our
model M has four parameters pa, pc, pc, pr satisfying pa + pc + p¢c + pr = 1.
The likelihood is then given by

P(DIM) = [] px* = pR*pCPE P, (3.1)
XeA
where ny is the number of times the letter X appears in the sequence O. The
negative log-posterior is then

~logP(M|D) = — > nxlogpx — logP(M) + logP(D). (3.2)
XeA
If we assume a uniform prior distribution over the parameters, then the MAP
parameter estimation problem is identical to the ML parameter estimation
problem and can be solved by optimizing the Lagrangian

L=~ nxlogpx—A(1- > px) (3.3)
XeA XeA
associated with the negative log-likelihood and augmented by the normalizing
constraint. Here, and in the rest of the book, positivity constraints are checked
directly in the results. Setting the partial derivatives 0L/0px to zero immedi-
ately yields px = nx/A. Using the normalization constraint gives A = N so that
finally, as expected, we get the estimates

pi="0 for all XeA. (3.4)

The Simplest Sequence Models 69

Note that the value of the negative log-likelihood per letter, for the optimal
parameter set P*, approaches the entropy (see appendix B) HH (P*) of P* as
N — o

1\1}520_% > nxlog% =— > pilogps = H (P*). (3.5)

XeA XeA

Another way of looking at these results is to say that except for a constant
entropy term, the negative log-likelihood is essentially the relative entropy
between the fixed die probabilities px and the observed frequencies nyx/N. In
the section on statistical mechanics below, we will see how this is also related
to the concept of free energy.

The observed frequency estimate px = nx/N is of course natural when N is
large. The strong law of large numbers tells us that for large enough values of
N, the observed frequency will almost surely be very close to the true value of
px. But what happens if N is small, say N = 4? Suppose that in a sequence of
length 4 we do not observe the letter A at all? Do we want to set the probability
pa to zero? Probably not, especially if we do not have any reason to suspect
that the die is highly biased. In other words, our prior beliefs do not favor
model parameters with value 0. As described in chapter 2, the corresponding
natural prior in this case is not a uniform prior but rather a Dirichlet prior on
the parameter vector P. Indeed, with a Dirichlet prior Dyq (P) the negative
log-posterior becomes

~1ogP(M|D) = — > [nx + aax — 11log px + log Z + log P(D). (3.6)
XeA

Z is the normalization constant of the Dirichlet distribution that does not
depend on the probabilities px. Thus the MAP optimization problem is very
similar to the one previously solved, except that the counts ny are replaced by
nx + xqx — 1. We immediately get the estimates

*_nx+(qu—1

px = Nt oAl for all Xe A (3.7)

provided this estimate is positive. In particular, the effect of the Dirichlet prior
is equivalent to adding pseudocounts to the observed counts. With the proper
choice of average distribution Q (for instance, Q uniform) and «, the estimates
px can never be negative or 0. When Q is uniform, we say that the Dirichlet
prior is symmetric. Notice that the uniform distribution over P is a special
case of symmetric Dirichlet prior, with gx = 1/ = 1/|A|. It is also clear from
(3.6) that the posterior distribution P(M|D) is a Dirichlet distribution Dgg with
B=N+xand rx = (nx + xgqx)/ (N + x).

The expectation of the posterior is the vector rx which is slightly different
from the MAP estimate (3.1). This suggests using an alternative estimate for

70 Probabilistic Modeling and Inference: Examples

px, the predictive distribution or MP (mean posterior) estimate

« _ Nx + &Xqgx
PX = "Ntiax ° (3.8)
This is in general a better choice. Here in particular the MP estimate mini-
mizes the expected relative entropy distance f(P*) = E(H (P,P*)), where the
expectation is taken with respect to the posterior P(P|D).
The die model with a single Dirichlet prior is simple enough such that one
can proceed analytically with higher levels of Bayesian inference. For instance,
we can compute the evidence P(D):

P(D) = JP(DIw)P(w)dw = Jz ppxroax-l (o) dpx. (3.9)

px=1 XeA r((qu))

This integral is very similar to the integral of a Dirichlet distribution and there-
fore can be easily calculated, yielding

I'(x) [Ixea T (Brx)
[Ixea T (xax) r'B) ’

This evidence is the ratio of the normalizing constants of the prior and poste-
rior distributions.

We leave it as an exercise for the reader to continue playing with the
Bayesian machinery. Useful exercises would be to find the values of « and
qx that maximize the evidence, to define a prior on & and gx using hyperpa-
rameters, and to study MAP and MP estimates when the prior distribution is a
mixture of Dirichlet distributions

P(D) = (3.10)

P(P) = > AiDyq,(P) (3.11)

(see also appendix D and [489]). In the latter case, the posterior is also a
mixture of Dirichlet distributions. This is a general result: whenever the prior
distribution is a mixture of conjugate distributions, the posterior is also a
mixture of conjugate distributions.

3.1.2 The Single-Die Model with Counts Data

With the same die model, we now assume that available data consists of the
counts themselves, D = {nyx}, rather than the actual sequence. A simple com-
binatorial calculation shows that the likelihood now has the form

N!
P(D|M) = P(nxlpx) = Thesnid 1_[P (3.12)
XeA *XEA

The Simplest Sequence Models 71

with >ynyx = N. This is similar to (3.1), except for the factorial term that
counts the number of ways the set of numbers (71x) can be realized in a se-
quence of length N. This distribution on the counts ny generated by a simple
die model is also called a multinomial distribution, generalizing the notion of
binomial distribution associated with coin (that is, two-sided die) flips. With a
little abuse, the die model itself will sometimes be called a multinomial model.

With a Dirichlet prior Dyq(P) on the parameter vector P, a calculation
similar to the one above shows that the posterior distribution on P is also a
Dirichlet distribution Dgr(P) with B = N + & and rx = (nx + aqx)/B. Not
surprisingly, the MAP and MP estimates P* are identical to (3.7) and (3.8).

We now consider the distribution that a fixed vector P induces on the
counts ny. Taking the logarithm of (3.12) and using Stirling’s approximation
formula for factorials

nl ~ (g)”\/zrm, (3.13)
we get
log(P(D|P) = C — H (nx/N, px), (3.14)

where C is a constant independent of nyx and 7 is the relative entropy between
the empirical distribution and P. When P is uniform except for constant terms,
the relative entropy above reduces to the entropy of the empirical distribution.

Therefore in this case
e}[(nx/N

P(D|P) ~ T (3.15)

This is called the entropic distribution. In other words, a uniform P induces an
entropic distribution over the counts ny, that is, over the space of all possible
histograms. As we will see in section 3.2, this is one of the standard justifica-
tions for the MaxEnt principle that amounts to using an entropic prior. Notice
the similarities but also the differences between a Dirichlet distribution and an
entropic distribution

exp(— 2x Pxlog px)

4

over P. We leave it as an exercise to show that if P has an entropic prior,
the posterior after observing ny is not entropic, nor Dirichlet. The entropic
distribution is not the conjugate of a multinomial. With an entropic prior, the
MAP estimate is still of the form pg = nx/N.

While the simple die model is of course very crude, it is important to note
that this is exactly the model we adopt when we compute first-order statis-
tics, that is, the proportion of each letter in a given family of sequences, such
as exons, introns, or a protein family. This can be viewed as a first step in
an iterative modeling process, and therefore the performance of subsequent
models must be evaluated with respect to the first-order model. The multiple-
die model of the next section and, in chapter 7, hidden Markov models (HMMs)

(3.16)

72 Probabilistic Modeling and Inference: Examples

are just slightly more complex generalizations of the simple die model. The
simple die model can trivially be extended by having strings of letters on each
face. This is equivalent to extending the alphabet. For instance, one can use a
die with 64 faces to model DNA triplets.

3.1.3 The Multiple-Die Model with Sequence Data

Another simple sequence model is the multiple-die model. Here the data con-
sist of K sequences, each of length N. For instance, the reader could think of a
multiple alignment of K sequences in which case the gap symbol “-” could be
considered one of the symbols in the alphabet. In the multiple-die model we
assume that there are N independent dice, one for each position, and that each
sequence is the result of flipping the N dice in a fixed order. Let p)i(denote the
probability of producing the letter X with die number i, and n)i(the number of
times the letter X appears in position i. Because the dice and the sequences
are assumed to be independent, the likelihood function is

N .
POIM) =[]]] px* (3.17)
i=1XEA

With uniform prior across all dice, a calculation identical to the single-die case
yields
i

pi = 2% for all XeA. (3.18)

Again we leave it as an exercise for the reader to study the effect of Dirichlet
priors on this model, and to consider possible generalizations (see also [376]).
A well-known class of models used in language modeling is the n-gram models.
In an n-gram model, there are |A|"~! dice. Each die is associated with a differ-
ent prefix of length n — 1. Each die is a simple die with |A| faces, one letter
per face. Sequences are generated by scanning a window of length n, selecting
the die associated with the current prefix, and flipping it at random. Thus the
choice of the die to be flipped is not independent of the previous flips. These
n-gram models can be viewed as Markov models of order equal to the length
of the prefix, also called the “memory” of the model. The single-die model has
memory of length 0. There exist also variants with variable memory length (see
[448] for an example with application to biological sequences), as well as mix-
tures of higher-order Markov models, also called interpolated Markov models.
Higher-order models are computationally more expensive, with the number of
possible prefixes growing very rapidly with the size of the alphabet and the
memory length. With the small DNA alphabet, however, Markov models of
order 5 or so remain feasible.

Statistical Mechanics 73

3.2 Statistical Mechanics

There are at least five good reasons to understand the rudiments of statistical
mechanics in connection with machine learning and computational biology.
First, statistical mechanics can be viewed as one of the oldest and best exam-
ples of Bayesian reasoning [280, 281], although the presentation often given is
slightly flawed in our opinion because of the confusion between MaxEnt and
Bayes. Second, statistical mechanics has traditionally been concerned with
deriving the statistical macroscopic properties of large ensembles of simple
microscopically interacting units—the equilibrium behavior, the phase tran-
sitions, and so on. The results and techniques of statistical mechanics are
useful in understanding the properties and learning evolution of a number of
graphical models used in machine learning [252, 482, 50]. Statistical mechan-
ical models have also been applied directly to biological macromolecules—
for instance, in the protein-folding problem (see [151] for a review). Finally,
statistical mechanics is useful for understanding several algorithms that are
fundamental for machine learning, such as simulated annealing and the EM
algorithms described in chapter 4.

Here we give a Bayesian derivation of statistical mechanics from first princi-
ples, and develop the basic concepts, especially those of the Boltzmann-Gibbs
distribution and free energy, that will be needed in the next chapters. In the
basic statistical mechanics framework, one considers a stochastic system that
can be in a number of “microscopic” states: S = {s1,..., S5/}, with p,; denoting
the probability of being in state s for a distribution P = (ps). This can be
viewed as a die model M (w), with parameters w = py, although for the time
being it is not necessary to assume that the tosses are independent. The key
difference from the examples above is in the data. The faces of the die, the
microscopic states, are not observable but act as hidden variables. Instead, we
assume that there is a function f(s) of the states and that the only “macro-
scopic” observable quantity, the data, is the expectation or average of f. So,
with a slight abuse of notation, in this section we write D = E(f) = > ps.f(s).

Very often in statistical mechanics the states have a microscopic structure
so that s = (x1,...,Xx5n), where the x; are local variables. For instance, the x;
can be binary spin variables, in which case |S| = 2". Likewise, f is typically
the energy of the system and can be written as a quadratic function in the
local variables: f(s) = f(x1,...,xn) = X;j wijXiX; + 2; wiX;. The interaction
parameters w;; can be local, as in the case of spins on a lattice, or long-range,
and are related to the underlying graphical model. While such assumptions are
important in modeling particular systems and developing a detailed theory,
they will not be needed in the following sections. The first question we can
ask is: Given the observation of the average of f, what can we say about the
state distribution P?

74 Probabilistic Modeling and Inference: Examples

3.2.1 The Boltzmann-Gibbs Distribution
Standard Derivation

Most standard treatments at this point are based on the maximum entropy
principle. Without any additional information, one ought to choose the distri-
bution P that satisfies the constraint > f(s)ps = D and has the highest en-
tropy, because this is the solution that is the most “spread out” and makes the
fewest additional assumptions. This problem can easily be solved by writing
down the Lagrangian £, which consists of a linear combination of the function
being optimized with the relevant constraints:

L= pslogps =AY psf(s) =D) —u(X ps = 1). (3.19)

By equating the partial derivatives of £ with respect to p; to 0, we immediately
find that the only solution distributions are of the form
e*Af(S)

* _
ps(A) = 70

(3.20)

where the normalizing factor Z(A) = > e~ is called the partition function.
In statistical mechanics, the Lagrange multiplier is related to the temperature
T of the system by the definition A = 1/kT, where k is the Boltzmann constant.
For all our purposes here we will not need to consider the temperature and will
work directly with the parameter A. Note, however, that A, and therefore the
temperature, are entirely determined by the observation D, since we must have

e*Af(S)

> f(s) = D. (3.21)
Z(A)

s

Often, it will even be sufficient to assume that A = 1. The optimal distribution
P* is called the Boltzmann-Gibbs distribution of the system. It is important
to realize that any distribution P can be represented as a Boltzmann-Gibbs
distribution, at least at a fixed temperature, by using an energy function pro-
portional to —log P. Itis also easy to see that a similar formula is derived when
there are multiple linear constraints on the parameters p;.

While the Boltzmann-Gibbs distribution is very useful, from a Bayesian
standpoint the standard derivation is not entirely satisfactory for three rea-
sons: (1) The prior distribution is not explicit. As a result, how would one
incorporate additional prior information on the p;, such as knowing that the
first state occurs more frequently than the others? (2) The probabilistic model
is not explicit. In particular, how one would calculate the likelihood P(D|ps);
(3) The justification for the use of MaxEnt is weak. In particular, is there any

Statistical Mechanics 75

connection between MaxEnt and ML or MAP estimation? In all fairness, the
use of MaxEnt is partially justified by the combinatorial argument given above,
which shows that maximizing the entropy is essentially equivalent to max-
imizing the number of possible realizations N!/ []; ns! when the tosses are
independent [282]. In this sense, the MaxEnt solution is the one that can be
realized in the largest number of ways. Such an argument, however, is based
only on the number of realizations and does not take into account their rela-
tive probabilities. We now address these three criticisms.

Bayesian Derivation

The main problem with the standard derivation is that the probabilistic model
is not really explicit. In particular, the likelihood function P(D|ps) is not
clearly defined and little progress can be made in this direction without con-
sidering actual runs of the system. Thus we must enlarge the initial setup by
assuming that there is a fixed number N that is very large and that the sys-
tem is observed over such a period. Variable observation times could also be
considered but would further complicate the analysis. Accordingly, we decide
to parameterize the model using the counts n;. Note also that what is really
observedis D = (3 nsf(s))/N # > psf(5).

Several priors on the counts n; are possible. As we have seen, a natural
prior would be to use a Dirichlet prior on ng/N. A nonsymmetric Dirichlet
prior could easily incorporate any additional information regarding the fre-
quency of occurrence of any particular state. We leave it as an exercise for the
reader to calculate the posterior obtained with a Dirichlet prior, but this is ob-
viously not the Boltzmann-Gibbs solution. For instance, if the prior is uniform
and f(s1) = D, then the vector (N,0,...,0), with the lowest possible entropy,
maximizes the probability of the data by rendering it certain! Here we rather
decide to use the entropic prior, which is the distribution on »n obtained when
P is uniform. Again, such a prior is best justified when the runs are indepen-
dent, that is, the underlying probabilistic model is a simple die with |S| faces.
Although in what follows we confine ourselves to this zeroth-order Markov
model, one could consider higher-order Markov models. A Markov model of
order 1, for instance, would include a different set of parameters associated
with the transition probabilities from state to state, equivalent to |S| dice. Cer-
tain aspects of Markov models of order 1 and Boltzmann-Gibbs distributions
are treated in chapter 4.

The likelihood function is then trivial and has value 1 or 0, depending on
whether or not D = >, f(s)ns/N. We can finally proceed with the first step of
Bayesian inference, and estimate the parameters n; by MAP estimation. Using

76 Probabilistic Modeling and Inference: Examples

the formalism introduced earlier this leads immediately to the Lagrangian

£=—Z1;; ?\(z(f()——D)—u(ZnS—N), (3.22)

s

where the entropy act as a regularizer. This is of course virtually identical
to (3.19) and yields a MAP Boltzmann-Gibbs distribution for ns;/N. A similar
result can be derived using the parameters p; instead of ng, but in a more
cumbersome way in terms of both justifying the entropic prior and calculating
the likelihood function, since different values of 1, can be consistent with D.

In conclusion, the Boltzmann-Gibbs distribution corresponds to a first step
of Bayesian inference by MAP, with an entropic prior. Therefore MaxEnt is
best viewed not as an universal principle but simply as a shortcut for the first
level of Bayesian inference in a multinomial setting associated with an entropic
prior. Such prior can be challenged and examples can be constructed where
MaxEnt leads to the “wrong” solution. We leave it as an exercise for the reader
to construct such examples and envision how to proceed again with higher
steps of Bayesian inference (hyperparameters, integration over priors).

3.2.2 Thermodynamic Limit and Phase Transitions

The temperature is a good example of an intensive quantity, that is, a quantity
that by definition is independent of system size. On the other hand, extensive
quantities, such as the energy, grow with the size of the system. For large
systems with local interactions, this growth is typically linear with the size of
the system. Thus the value of an extensive quantity per unit of volume tends
to a limiting value as the size of the system goes to infinity, the so-called
thermodynamic limit.

One of the main goals of statistical mechanics is to estimate the thermo-
dynamic limit of macroscopic quantities, that is, to approximate expectations
with respect to the Boltzmann-Gibbs distribution. In particular, one of the
main goals is to approximate the partition function Z(A), since this function
contains most of the relevant information about the system. In particular, it
is easy to show that all the moments of the function f can be computed from
Z(A), and more precisely from its logarithm. For instance, for the first two
moments, the mean and the variance, an elementary calculation gives

E(f) = a logZ(A) (3.23)
02
Var(f) = TV log Z(A). (3.24)

Statistical Mechanics 77

Likewise, the entropy of the Boltzmann-Gibbs distribution P* can be expressed
as

H(P*) = = > P*(s)log P*(s) = log Z(A) + AE(f). (3.25)

Another central topic of statistical mechanics is the study of phase tran-
sitions, that is abrupt changes in the behavior of the system as some of the
parameters, especially the temperature T or equivalently A, are varied. A first-
order phase transition is said to occur at a critical value A¢ if E(f) is discontin-
uous at A¢. A second-order phase transition occurs at A¢ if E(f) is continuous
but Var (f) is discontinuous. The study of phase transitions is also important
in learning theory [252, 482], but this is beyond the scope of this book.

3.2.3 The Free Energy

The logarithm of the partition function is called the free energy because of its
important role (see (3.23), (3.24), and (3.25)). More precisely, the free energy
F =TF(f,A) = F(A) is defined to be

1

F@A)=-

log Z(A). (3.26)
The above formula can obviously be rewritten in terms of the free energy. For
instance,

H(P*) = —AF(A) + AE(f). (3.27)
This is equivalent to

FQA) =E(f) - %J{(P*), (3.28)

which is sometimes used as an alternative definition of the free energy. In this
definition, the free energy depends on the function f, the parameter A, and
the distribution P* over states. The definition therefore can be extended to
any other distribution Q(s):

FU QA = F(Q,A) = Eq(f) - %J{(Q), (3.29)

where Eg denotes expectations with respect to the distribution Q. Here we
drop the dependency on f, but the choice of f as a negative log-probability
is important in statistical applications, such as the derivation of the EM algo-
rithm, as described below and in chapter 4. By comparing this free energy with
the Lagrangian above, it is also clear that the Boltzmann-Gibbs distribution is
equivalently characterized as the distribution that minimizes the free energy.

78 Probabilistic Modeling and Inference: Examples

Consider now any two distributions Q(s) and R(s). We want to be able to
compare their free energies. A simple calculation gives

1 1
FQA) = FR,A) =2 [Q(s) =R(ILF(s) + F 108 R($)] + 3 H(Q,R), (3.30)
s
where H (Q,R) = >, Q(s)log(Q(s)/R(s)) is the relative entropy between Q
and R.

It is useful to remark that if we take the energy of s to be the negative
likelihood f(s) = —log R(s), where R is some distribution over the states, then
the Boltzmann-Gibbs distribution is proportional to R*(s). In particular, at
A = 1 the Boltzmann-Gibbs distribution of the system is R itself: P*(s,1) = R,
and the free energy reduces to 0. Furthermore, for any other distribution Q,
the difference in free energies is then equal to the relative entropy

FQ,1) - F(R,1) = H(Q,R). (3.31)

Since the relative entropy is always nonnegative, then F(Q,1) > F(R,1),
with equality if and only if Q = R. Again the Boltzmann-Gibbs distribution
minimizes the free energy. It is also important to note that there is noth-
ing special about the A = 1 temperature. We could, for instance, define
f(s) = —1ogR(s)/A, and then obtain F(Q,A) — F(R,A) = H(Q,R)/A.

3.2.4 The Hidden Variables Case

In many modeling situations there are hidden/unobserved/latent variables or
causes denoted by H. If D denotes the data, we assume that there is available
a joint distribution on the hidden and observed variables P(D, H|w), parame-
terized by w. In the case of interest to us, w as usual denotes the parameters
of a model. From a statistical mechanics perspective, we can consider that the
states of the system are the values assumed by the hidden variables. If we
define f by

f(H) = —1logP(D, Hlw), (3.32)
then at A = 1 the Boltzmann-Gibbs distribution is given by the posterior
P* =P*(H,1) =P(H|D,w) (3.33)
and the free energy by
F(P*,1) = —logP(D|w), (3.34)

which is the negative log-likelihood of the data. Furthermore, for any other
distribution Q, the difference in free energies is given by

F(Q,1) = F(P*,1) =H(Q,P*) (3.35)

Statistical Mechanics 79

or

logP(D|w) = =F(Q,1) + H(Q,P*). (3.36)

In order to maximize the data likelihood, when the posterior P(H|D,w) and
the corresponding expectations are difficult to calculate, one can sometimes
use a suboptimal strategy based on a different family of distributions Q for
which calculations are more tractable, without departing too much from the
true posterior. This idea of minimizing the free energy term F(Q,A) is de-
veloped in [146, 255] and in the section on variational methods in appendix
A.

This page intentionally left blank

Chapter 4

Machine Learning Algorithms

4.1 Introduction

In this chapter we cover the main algorithms for machine-learning applications
that will be used thoughout the rest of the book. We briefly describe each of
the algorithms and provide pointers to the vast literature on this topic.

Once a parameterized model M(w) for the data has been constructed, we
have seen that the next steps are the following:

1. The estimation of the complete distribution P(w, D) and the posterior
P(w|D)

2. The estimation of the optimal set of parameters w by maximizing
P(w|D), the first level of Bayesian inference

3. The estimation of marginals and expectations with respect to the
posterior, that is, for instance, of integrals of the form E(f) =
[f(w)P(w|D)dw, the higher levels of Bayesian inference

Thus the algorithms can be subdivided into three categories, depending on
whether the goal is to estimate a probability density, one of its modes, or the
corresponding expectations. For practical reasons we shall use this distinction,
although it is somewhat arbitrary. Indeed, any problem can be reformulated
as an optimization problem, and the probability of an event is the expectation
of the corresponding indicator function: P(A) = E(14). Likewise, dynamic
programming, which is often used to estimate sequence data likelihoods, can
be viewed as an optimization technique.

In section 4.2, we briefly review dynamic programming, one of the key al-
gorithms in sequence analysis, and its application in the estimations of se-
quence likelihoods. In the following two sections we look at algorithms for

81

82 Machine Learning Algorithms

the optimization of P(w|D), including gradient descent and EM (expectation
maximization)/GEM (generalized expectation maximization). The treatment of
simulated annealing is postponed to section 4.6, after the treatment in section
4.5 of Monte Carlo Markov chain methods (MCMC) for the stochastic sampling
of high-dimensional distributions and the computation of the corresponding
expectations. This is because simulated annealing relies heavily on stochastic
sampling. In section 4.7 we take a brief look at evolutionary algorithms, and
conclude in section 4.8 with several complements and practical aspects.

4.2 Dynamic Programming

Dynamic programming [66] is to a very general optimization technique that
can be applied any time a problem can be recursively subdivided into two sim-
ilar subproblems of smaller size, such that the solution to the larger problem
can be obtained by piecing together the solutions to the two subproblems. The
prototypical problem to which dynamic programming can be applied is that of
finding the shortest path between two nodes in a graph. Clearly the shortest
path from node A to node B, going through node C, is the concatenation of
the shortest path from A to C with the shortest path from C to B. This is also
called the “Bellman principle.” A general solution to the original problem is
then constructed by recursively piecing together shorter optimal paths.

Dynamic programming and its many variations are ubiquitous in sequence
analysis. The Needleman-Wunch and Smith-Waterman algorithms [401, 481,
492], as well as all other sequence-alignment algorithms such as the Viterbi
decoding algorithm of electrical engineers, are examples of dynamic program-
ming. Alignment algorithms can be visualized in terms of finding the shortest
path in the appropriate graph with the appropriate metric. Aligning two se-
quences of length of N requires finding a shortest path in a graph with N2
vertices. Since dynamic programming essentially requires visiting all such ver-
tices once, it is easy to see that its time complexity scales as O (N?).

In chapters 7 and 8, dynamic programming and the Viterbi algorithm are
heavily used to compute likelihoods and align sequences to HMMs during the
training and exploitation phases. Accordingly, we give there a detailed deriva-
tion of the corresponding algorithms. Other variations on dynamic program-
ming used in other chapters are sketched or left as an exercise. Because dy-
namic programming is very well known and is at the root of many conventional
algorithms for sequence analysis, we refer the reader to the abundant litera-
ture on the topic (in particular [550] and references therein). Reinforcement-
learning algorithms are also another important class of learning algorithms
that can be viewed as generalizations of dynamic programming ideas [298].

Gradient Descent 83

4.3 Gradient Descent

Often we are interested in parameter estimation, that is, in finding the best
possible model M(w) that minimizes the posterior f(w) = —logP(w|D), or
possibly the likelihood —logP(D|w). Whenever a function f(w) is differen-
tiable, one can try to find its minima by using one of the oldest optimization
algorithms, gradient descent. As its name indicates, gradient descent is an
iterative procedure that can be expressed vectorially as

of
owt’
where 1 is the step size, or learning rate, which can be fixed or adjusted during
the learning process.

While the general gradient-descent principle is simple, in complex param-
eterized models it can give rise to different implementations, depending on
how the gradient is actually computed [26]. In graphical models, this often
requires the propagation of information “backwards.” As we will see in the
next chapters, this is the case for gradient-descent learning applied to neural
networks (the backpropagation algorithm) and to hidden Markov models (the
forward-backward procedure). Obviously the outcome of a gradient-descent
procedure depends on the initial estimate. Furthermore, if the function being
optimized has a complex landscape, gradient descent in general will terminate
in a local minimum rather than a global one. Whenever feasible, therefore, it
is wise to run the procedure several times, with different starting points and
learning rates.

It is well known that there are situations where plain gradient descent can
be slow and inefficient. To overcome such problems, a number of variations
on gradient descent are possible, such as conjugate gradient descent, that use
second-order information or more complex directions of descent constructed
from the current gradient and the history of previous directions. Additional
details and references can be found in [434]. In spite of its relative crudeness,
gradient descent remains useful, easy to implement, and widely used.

t+1

wil =wt —p 4.1)

4.3.1 Random-Direction Descent

There are a number of other descent procedures that do not necessarily fol-
low the line of steepest descent. These can be useful when the gradient is
difficult to compute, when the physics of the hardware directly supports such
approaches, or when escaping from local minima is important. For instance,
one could generate a random perturbation of the current estimate and accept
it only if it lies below the current level. If it does not, the opposite pertur-
bation is accepted, or alternatively a new perturbation is tried. In line search

84 Machine Learning Algorithms

wt wi+l

Figure 4.1: Three Consecutive Points of the EM Algorithm. Starting from w!, in order to mini-
mize the likelihood surface F(w) = —logP(D|w), the EM algorithm minimizes a surface G(w),
with G(w?) = F(w!) = A. The surface G dominates the surface F, and the two surfaces have
the same gradient at w = w!. w!*! corresponds to point B, the minimum of G. Point C is
determined by calculating the new posterior on the hidden variables P(H|D, witly,

algorithms, once a direction of descent has been determined, the lowest point
along that direction is searched before generating a new direction. Ideas re-
lated to line search and random descent are also found in the EM algorithm in
the next section, and in evolutionary algorithms toward the end of the chapter.

4.4 EM/GEM Algorithms

Another important class of optimization algorithms is the expectation max-
imization (EM) and generalized expectation maximization (GEM) algorithms
[147, 387]. Such algorithms have been used in many different applications and
also in sequence analysis [352, 113]. In the case of HMMs, the EM algorithm
is also called the Baum-Welch algorithm [54]. Since the usefulness of these
algorithms goes beyond HMMs, we give here a general treatment of EM/GEM
algorithms, using the concept of free energy of chapter 3, along the lines sug-
gested in [400].

The EM algorithm is useful in models and situations with hidden variables.
Typical examples of hidden variables are missing or unobservable data, mix-
ture parameters in a mixture model, and hidden node states in graphical mod-
els (hidden units in NNs, hidden states in HMMs). If D denotes the data, we

EM/GEM Algorithms 85

assume that there is available a parameterized joint distribution on the hidden
and observed variables P(D, H|w), parameterized by w. In the case of main
interest to us, w denotes, as usual, the parameters of a model. Let us assume
that the objective is to maximize the likelihood logP(D|w). The same ideas
can easily be extended to the case of MAP estimation. Since in general it is
difficult to optimize logP(D|w) directly, the basic idea is to try to optimize
the expectation E(logP(D|w)):

E(logP(D|w)) = E(logP(D,H|w) —logP(H|D,w)). 4.2)

The EM algorithm is an iterative algorithm that proceeds in two alternating
steps, the E (expectation) step and the M (maximization) step. During the E
step, the distribution of the hidden variables is computed, given the observed
data and the current estimate of w. During the M step, the parameters are
updated to their best possible value, given the presumed distribution on the
hidden variables. Starting with an estimate w? at time 0, the EM algorithm can
be written more precisely at time t as follows:

1. E step: Compute the distribution Q*(H) over H such that Q*(H) =
P(H|D,w!).

2. M step: Set w! = arg,, maxEqg+[logP(D,H|w)].

As seen in chapter 3, if we define the energy of a hidden configuration H
tobe f(H) = —logP(D, H|w), then the Boltzmann-Gibbs distribution at A = 1
is given by the posterior P(H|D,w). In other words, the first step of the EM
algorithm is the minimization, with respect to Q, of the free energy

Ff,Q1D =Fw,Q,1) = F(w,Q) =Eq(f) - H(Q). (4.3)

The second step is a minimization with respect to f, that is, with respect to
w. Thus, omitting the constant parameter A = 1, the EM algorithm can be
rephrased in the following form:

1. E step: Compute the Boltzmann-Gibbs distribution Q* (H) that mini-
mizes F(wt1, Q).

2. M step: Set w! to minimize F(w!~!,Q*).

It is important to note that although Q* depends on w, Q* is held fixed dur-
ing the M step. Also from chapter 3, the value of the free energy for the
Boltzmann-Gibbs distribution is equal to the negative log-likelihood of the
data, F(w,Q*,1) = —logP(D|w).

86 Machine Learning Algorithms

In summary, the EM algorithm is an optimization procedure on the free
energy F that proceeds by alternate optimization in the Q and w directions.
Hence it produces a sequence of estimates of the form

(wt,Qt) - (wt’Qt+l) - (wt+l’Qt+l) - (wt+l’Qt+2) e (44)
satisfying, for every t
1. j_"(wt’Qt) > j:(wt’QPd) > f(wt+l’Qt+l) > f(wt+l’Qt+2) > ...
2. F(wt, Q1) = —logP(D|w?)
3. Q"' =P(H|D,w') and F(w',Q") - F(w, Q") = H(Q", Q")

It is then clear that, except for rare saddle points, the EM algorithm converges
to a local minimum of F(w, Q) which is also a local minimum of —logP(D|M),
as desired.

Itis instructive to look at the EM algorithm from the point of view of w only.
Suppose we have an estimate w! at time t, with the corresponding likelihood
—logP(D|w!). Then

w'*! = arg,, min[-Eqi+1 logP(H, D|w)] (4.5)
with Qt*! = P(H|D, wt). By writing P(H,D|w) = P(H|D,w)P(D|w) and col-
lecting terms, this is equivalent to

w't! = arg,, min[—logP(D|w) + H (Q'"!,P(H|D,w))]. (4.6)

Thus, starting from wt!, the EM algorithm finds the minimum of the sur-
face G(w) = —logP(D|w) + H(Q'*,P(H|D,w)) that dominates the surface
F(w) = —logP(D|w) that one really wants to optimize. Thus the optimiza-
tion procedure tends to maximize the likelihood, without going too far from
the current value of P(H|D, w!), to keep the cross-entropy term small. Taking
derivatives vectorially yields

a_G _alogP(DIw) 3 0P(H|D,w)/ow

_ _vlosriViw) t+1
ow dw %Q DB HID, w) @7
The second term in the right-hand side cancels when w = wt. Therefore,
oG dlogP(D|w)
ﬁ|w=wt = _g#'hu:wf- 4.8)

The tangent to the new surface G is identical to the tangent to the original
surface F(w) = —logP(D|w). Thus gradient descents on the negative log-
likelihood and the EM algorithm are descending in the same directions (figure

Markov-Chain Monte-Carlo Methods 87

4.1). The EM algorithm is further simplified when the distribution P(D, H|w)
belongs to the exponential family. In particular, in this case, the function G
is always convex. The particularization of the EM algorithm to exponential
distributions is left as an exercise.

Finally, any algorithm that descends the function G (without necessarily
finding its minimum), and hence improves the likelihood, is called a GEM (gen-
eralized EM) algorithm [147]. The geometric picture above shows that gradient
descent on the likelihood can be viewed as a GEM algorithm (see also [400] for
a discussion of how the E and M steps can be executed partially, for instance,
online).

4.5 Markov-Chain Monte-Carlo Methods

Markov-chain Monte-Carlo (MCMC) methods belong to an important class of
stochastic methods that are related to statistical physics and are increasingly
used in Bayesian inference and machine learning [578, 202, 396, 520, 69]. Re-
call that one of the basic goals derived from the general Bayesian framework
is to compute expectations with respect to a high-dimensional probability dis-
tribution P (xq,..., X5), where the x; can be the values of model parameters or
hidden variables, as well as observed data. The two basic ideas behind MCMC
are very simple. The first idea (Monte Carlo) is to approximate such expecta-
tions by

T
E(f)= > f(xl,...,xn)P(xl,...,xn)z%zf(xf,...,x,ﬁ) (4.9)
t=0

X1 yueny Xn
for large T, provided (x!,...,x%) are sampled according to their distribution
P(xi,...,x5n). In order to sample from P, the second basic idea is to construct

a Markov chain having P as its equilibrium distribution, then simulate the
chain and try to sample from its equilibrium distribution.

Before we proceed with the rudiments of Markov chains, it is worth noting
a few points. The mean of the estimator on the right-hand side of (4.9) is E(f).
If the samples are independent, its variance is Var(f)/T. In this case, the
precision of the estimate does not depend on the dimension of the space be-
ing sampled. Importance sampling and rejection sampling are two well-known
Monte-Carlo algorithms for generating independent samples that will not be
reviewed here. Both algorithms tend to be inefficient in high-dimensional state
spaces. The samples created using Markov-chain methods are not indepen-
dent. But at equilibrium they are still representative of P. The dependence of
one sample on the previous one is the key to the better efficiency of MCMC
methods with higher-dimensional spaces. After all, if P is differentiable or

88 Machine Learning Algorithms

even just continuous, the probability P(xi,...,x5,) of a sample provides in-
formation about its neighborhood. This remains true even in cases where P
can be computed efficiently only up to a constant normalizing factor. Finally,
MCMC methods, like any other method based on a single estimator, are at best
an approximation to the ideal Bayesian inference process that would rely on
the calculation of P(E(f)|D) given any sample D.

4,5.1 Markov Chains

The theory of Markov chains is well established [176]. Here we review only the
most basic concepts and refer the reader to the textbook literature for more
information. As in statistical mechanics, consider a system S = {51, $2,..., 85|}
with |S| states. Let SY,S1,..., S, ... be the sequence of variables representing
the state of the system at each time. Thus each integer from 1 to |S| is associ-
ated with one state of the chain, and at any time the chain is in one particular
state. The variables S* form a Markov chain if and only if for any ¢t

P(StH1S0, . Sty = P(StTL|St). (4.10)

Intuitively, this can be rephrased by saying that the future depends on the
past only through the present. S! is called the state of the chain at time t.
A Markov chain is entirely defined by the initial distribution P(S°) and the
transition probabilities Pt = P(S'*!|S!). Here we will be concerned only with
stationary Markov chains, where the transition probabilities are constant, that
is, independent of time. The transition matrix of the chain is then the matrix
T = (tij), where t;; is the probability of moving from state s; to state s;.
Note that, in relation to (4.9), the state space of the chain is defined by the
coordinates x1,...,Xxy; that is, each S! is an n-dimensional variable.

A distribution over the state space of the chain is said to be stable if, once
reached, it persists forever. Thus a stable distribution Q must satisfy the
balance equation

[S]
Q(si) = > tixQ(sk) = (1= > t;)Q(si) + > t;;Q(s5) (4.11)

k=1 J#i i#i

or equivalently

= > tjiQ(si) + > t;jQ(s;) = 0. 4.12)
Jj#i Jj#i

Thus, a sufficient condition for stability is the pairwise balance equation

t;iQ(s;) = t;;Q(s5) (4.13)

Markov-Chain Monte-Carlo Methods 89

for every i and j. This expresses the fact that the average number of transi-
tions from s; to s; is equal to the average number of transitions from s; to s;,
and therefore the overall distribution over states is preserved.

A Markov chain can in general have several stable distributions. Markov
chains with finite state space always have at least one stable distribution. Ob-
viously, in MCMC sampling procedures, we will be interested in stable distri-
butions, in fact in the even stronger conditions of ergodic distributions. Here,
a distribution is defined to be ergodic if and only if the chain always converges
to it, regardless of the choice of the initial distribution at time 0. In the case
of an ergodic Markov chain, there is only one stable distribution, called the
equilibrium distribution. Conditions for the ergodicity of a Markov chain, and
bounds on the rate of convergence to the equilibrium distribution, are well
known [150, 180].

In order to achieve our goal of sampling from P (x1,..., X,), we now turn to
the two main MCMC algorithms: Gibbs sampling and the Metropolis algorithm.

4.5.2 Gibbs Sampling

Gibbs sampling, also known as the heatbath method, is the simplest MCMC
algorithm [199]. It can be applied to a wide range of situations, especially
when the conditional distributions P (x;|x;: j # i) can be computed easily, or
when the variables X; take on values from a small set. In Gibbs sampling, one
iteratively samples each single variable, conditioned on the most recent value

of all the other variables. Starting from (x{, e X)),
1. Select x{*! according to P(Xi|x%, x4, ..., x4).
2. Select xL™1 according to P(X»|x!tt, x5, ..., xL).
3. ...
n. Select x.*! according to P (X, |xi™t, x5t .. xttY).

In this version, we cycle through the variables sequentially. It is also possible
to cycle through the variables in any order, or to uniformly select the vari-
ables at each step. One can even use any other fixed distribution, as long as
each variable has a nonzero probability of being visited. It is also possible to
sample variables by groups rather than one by one. By applying the defini-
tion, it is trivial to check that the Gibbs sampling algorithm leads to a stable
distribution. Proofs of ergodicity and further information can be found in the
general references on MCMC methods given above and in [209, 191, 490]. An
example of specific Gibbs sampling equations for Bayesian networks is given in
appendix C. We now turn to another MCMC method, the Metropolis algorithm,
of which Gibbs sampling is a special case.

90 Machine Learning Algorithms

4.5.3 Metropolis Algorithm

Again let us suppose that the goal is to sample from a given distribution
P(s) = P(x1,...,Xn). The Metropolis algorithm [388] randomly generates per-
turbations of the current state, and accepts or rejects them depending on how
the probability of the state is affected.

More precisely, the Metropolis algorithm is defined using two auxiliary fam-
ilies of distributions Q and R. Q = (q;;) is the selection distribution; g;; is the
probability of selecting state s; while being in state s;. R = (r;jj) is the ac-
ceptance distribution; 7;; is the probability of accepting state s; while being in
state s; and having selected s; as a possible next state. Obviously, we must
have g;; = 0 and 7;; = 0, and >; q;; = 1. For the time being, and in most prac-
tical cases, one can assume that Q is symmetric, g;j = qj;, but this hypothesis
can also be relaxed. Starting from a state s; at time t (S' = s;), the algorithm
proceeds as follows:

1. Randomly select a state s; according to the distribution g;;.

2. Accept s; with probability #;;. That is, S+ L = s; with probability 7; j and
St*l = s; with probability 1 — 77;.

In the most common version of the Metropolis algorithm, the acceptance dis-

tribution is defined by
. P(si)
ii = 1, . 4.14
= min 1,555 e
We leave it as an exercise to show that Gibbs sampling can be rewritten as

a Metropolis algorithm. When P is expressed in terms of an energy function
P(s) = e £6)/KT | 7 this can be rewritten as

1/'1] = mln(l’ e*[f(Si)*f(S‘j)]/kT) — 1’1’111’1(1, e*A,’jf/kT). (415)

Note that only the ratio of the probabilities is needed, not the partition func-
tion. As a result, the algorithm can be expressed in its most familiar form:

1. Randomly select a state s; according to the distribution g;;.

2. If E(s;) < E(sj) accept s;. If E(s;) > E(s;), accept s; only with probability
e~ EIKT [1f i is rejected, stay in ;.

It is easy to see that the distribution P is stable under the Metropolis algo-
rithm. We have &;; = q;;P(s;)/P(s;) and tj; = gqj;. Since Q is symmetric, this
immediately gives

P(Sj)tij =P(Si)tji. (4.16)

In other words, since the pairwise balance equations are satisfied, P is stable.

Simulated Annealing 91

To ensure ergodicity, it is necessary and sufficient to ensure that there are
no absorbing states in the chain, or equivalently that there is always a path
of transitions with nonzero probability from any s; to any s;. This of course
depends on the structure of g;;. Several general remarks can be made. We
can construct a graph G by connecting two points i and j with an edge if and
only if g;; > 0. If the resulting graph is complete (or even just very dense),
the chain is clearly ergodic. This type of Metropolis algorithm can be termed
“global” because there is a nonzero probability of moving from any state i to
any state j in one step, or at most very few steps, if the graph is dense but not
complete. When the graph is more sparse, one obtains more “local” versions of
the Metropolis algorithm. Ergodicity is still preserved, provided any two points
are connected by at least one path. An example of this situation is when the
algorithm is applied componentwise, perturbing one component at a time. In
most practical applications, the selection probability g;; is chosen uniformly
over the neighbors j of vertex i. Usually, g;; is also chosen to be 0, although
this does not really impact any of the results just described.

Finally, there are several variations and generalizations of the Metropolis
algorithm using, for instance, the derivatives of the energy function, other ac-
ceptance functions [242, 396], and cluster Monte Carlo algorithms [510, 547].
In particular, it is even possible to remove the condition that Q be symmetric,
as long as the balance is preserved by modifying the acceptance function R
accordingly:

. P(si)qj
¥ij = min (1, P(sj)qﬁ> 4.17)

4.6 Simulated Annealing

Simulated annealing [321] (see also [67] for a review) is a general-purpose opti-
mization algorithm inspired by statistical mechanics. It combines MCMC ideas
such as the Metropolis algorithm with a schedule for lowering the temperature.
The name has its origin in metallurgy, where metals that have been annealed
(cooled slowly) exhibit strength properties superior to metals that have been
quenched (cooled rapidly). The greater macroscopic strength is associated
with internal molecular states of lower energy.

Consider the problem of minimizing a function f(xi,...,x,). Without
any loss of generality, we can assume that f > 0 everywhere. As usual,
we can regard f as representing the energy of a statistical mechanical sys-
tem with states s = (x1,...,X,). We have seen that the probability of be-
ing in state s at temperature T is given by the Boltzmann-Gibbs distribution
P(s) = P(x1,...,xn) = e f&IKkT 7 The first key observation in order to
understand simulated annealing is that at low temperatures, the Boltzmann-

92 Machine Learning Algorithms

Gibbs distribution is dominated by the states of lowest energy, which become
the most probable. In fact, if there are m states where the minimum of the
function f is achieved, we have

lTirr(l)P(s) _ {l/m if s is a ground state 4.18)

0 otherwise.

If we could simulate the system at temperatures near 0, we would immediately
have the ground states, that is, the minima of f. The catch is that any MCMC
method fails in general to reach the Boltzmann-Gibbs equilibrium distribution
in a reasonable time, because movement in state space is inhibited by regions
of very low probability, that is, by high energy barriers. Simulated annealing
attempts to overcome this problem by starting with a high temperature, where
the Boltzmann-Gibbs distribution is close to uniform, and progressively low-
ering it according to some annealing schedule. While simulated annealing is
usually used in combination with the Metropolis algorithm, it is in fact appli-
cable to any MCMC method, and in particular to Gibbs sampling.

The annealing schedule of course plays a crucial role. There are a number
of theoretical results [199] showing that for a logarithmic annealing schedule
of the form

¢ K

~logt
(t = 1), the algorithm converges almost surely to one of the ground states, for
some value of the constant K (see [230] for a lower bound on K). (From the
context, no confusion should arise between T the temperature and T the time
horizon.) Intuitively, this is easy to see [396]. If we let smax and Spin denote
two states with maximal and minimal energy, then from the Boltzmann-Gibbs
distribution we have,

4.19)

P! (Smax) _ (I)Af/kK

Pi(spn) \L ! @20

t

where A = F (Smax) — E (Smin). If we take K = AF /k, we then have P! (Spax) =
P!(smin)/t. Therefore, for any state s,

PL(s) > P! (smax) = %P%smm) > %Pl(Smin)- @.21)

In particular, the number of times any state s is visited during the annealing
is lower-bounded by P! (smin) >.; 1/t, which is divergent. Thus, with K scaled
with respect to the highest energy barrier, it is impossible for the algorithm to
remain trapped in a bad local minimum.

It must be noted, however, that a logarithmic annealing schedule is very
slow and generally impractical. A logarithmic schedule suggests that a signifi-
cant fraction of all possible states is visited, and therefore is essentially equiv-
alent to an exhaustive search. Thus it is not surprising that it is guaranteed

Evolutionary and Genetic Algorithms 93

to find the global optimum. On the other hand, if an exhaustive search had
been an alternative, it would have been used in the first place. Most problems
of interest are typically NP complete, with an exponential number of possible
states ruling out any possibility of conducting exhaustive searches. In practice,
simulated annealing must be used with faster schedules, such as geometric an-
nealing schedules of the form

Tt = uTt ! (4.22)

for some 0 < u < 1. Naturally, the best one can then hope for is to converge in
general to approximate solutions corresponding to points of low energy, but
not to the global minima.

Other interesting algorithms related to simulated annealing [547, 381] and
MCMC basic ideas, such as dynamical and hybrid Monte Carlo methods [152,
396], are discussed in the references.

4.7 Evolutionary and Genetic Algorithms

In the present context, evolutionary algorithms [261, 476] perhaps have a spe-
cial flavor since their source of inspiration, evolution, is at the heart of our
domain. Evolutionary algorithms are a broad class of optimization algorithms
that attempt to simulate in some way the inner workings of evolution, as we
(think we) understand it. One component common to all these algorithms is
the generation of random perturbations, or mutations, and the presence of a
fitness function that is used to assess the quality of a given point and filter
out mutations that are not useful. In this sense, random descent methods
and even simulated annealing can be viewed as special cases of evolutionary
algorithms. One of the broadest subclasses of evolutionary algorithms is the
genetic algorithms.

Genetic algorithms [328, 330] and the related field of artificial life push the
evolutionary analogy one step further by simulating the evolution of popula-
tions of points in fitness space. Furthermore, in addition to mutations, new
points are generated by a number of other operations mimicking genetic op-
erators and sexual reproduction, such as crossover. While genetic algorithms
are particularly flexible and make possible the evolution of complex objects,
such as computer programs, they remain quite slow even on current com-
puters, although this is of course subject to yearly improvements. Applica-
tions of genetic algorithms to problems in molecular biology can be found in
[329, 233, 415]. Other evolutionary algorithms are described in [53] and ref-
erences therein. Evolutionary algorithms will not be considered any further in
this book.

94 Machine Learning Algorithms

4.8 Learning Algorithms: Miscellaneous Aspects

In connection with learning algorithms, there is a wide range of implementa-
tion details, heuristics, and tricks that have significant practical importance.
Abundant material on such tricks can be found, for instance, in the annual pro-
ceedings of NIPS (Neural Information Processing Conference). Here we cover
only a small subset of them from a general standpoint. A few model-specific
tricks are presented in the relevant chapters.

4.8.1 Control of Model Complexity

In one form or another, modelers are constantly confronted with the problem
of striking a balance between underfitting and overfitting the data, between
models that have too few and too many degrees of freedom. One approach
to this problem is to regularize the objective likelihood function with a term
that takes model complexity into account. The most principled versions of
this approach are based on equalities or bounds relating the training error Zr
to the generalization error E;. These bounds typically state that with high
probability Zs < Er + C, where C is a term reflecting the complexity of the
model. Examples of such a formula can be found in [533], using the concept
of VC dimension, and in [5, 16], using statistical asymptotic theory. The gener-
alization error is then minimized by minimizing the regularized training error
Er + C. The term E1 measures the data fit and the term C can often be viewed
as a prior favoring simpler models. Such practices can yield good results and
have heuristic value. But, as pointed out in chapter 2, from a Bayesian point
of view they also have some weaknesses. With complex data, a prior expect-
ing the data to be generated by a simple model does not make much sense.
In general, we would recommend instead using powerful flexible models, with
many degrees of freedom and strong priors on their parameters and structure,
rather than their overall complexity, to control overfitting.

4.8.2 Online/Batch Learning

Training is said to be online when some degree of model fitting or parameter
adjustment occurs as the data come in, or after the presentation of each ex-
ample. In batch or offline learning, on the other hand, parameter values are
adjusted only after the presentation of a large number of examples, if not the
entire training set. Obviously there is a spectrum of possibilities in between.
Online learning can have some advantages in that it does not require hold-
ing many training examples in memory, and it is more flexible and easier to
implement. It is also closer to the Bayesian spirit of updating one’s belief as

Learning Algorithms: Miscellaneous Aspects 95

data become available, and to the way biological systems seem to learn. More
important, perhaps, learning after the presentation of each example may in-
troduce a degree of stochasticity that may be useful to explore the space of
solutions and avoid certain local minima. It can also be shown, of course,
that with sufficiently small learning rates, online learning approximates batch
learning (see also [49]). Accordingly, in this book we usually provide online
learning equations.

4.8.3 Training/Test/Validation

One of the most widely used practices consists in using only a subset of the
data for model fitting and the remaining data, or portions of it, for the valida-
tion of the model. It is important to note that such a practice is not entirely
Bayesian, since in the general framework of chapter 2 all the data are used for
model fitting, without any reference or need for validation. In practice, cross-
validation techniques remain very useful because they are generally easy to
implement and yield good results, especially when data are abundant. A sec-
ond remark, of course, is that there are many ways of splitting the data into
different subsets and allocating such subsets to training or validation experi-
ments. For instance, different data sets can be used to train different experts
that are subsequently combined, or validation sets can be used to determine
the values of hyperparameters. Such matters become even more important
when data are relatively scarce. Whenever feasible, it is good to have at least
three distinct data sets: one for training, one for validation and training ad-
justments, and one for testing overall performance.

Special additional care is often required in bioinformatics because se-
quences have a high probability of being related through a common ancestor.
In chapter 1 the problem of constructing low-similarity test sets, which may be
essential to assess reliably the predictive performance of a method obtained
by machine learning, was addressed in detail.

4.8.4 Early Stopping

When a model is too flexible with respect to the available data—because it
contains too many parameters—overfitting is observed during training. This
means that while the error on the training set decreases monotonically as a
function of training epochs, the error on a validation set also decreases at
first, then reaches a minimum and begins to increase again. Overfitting is then
associated with the model’s memorizing the training data or fitting noise in
the data to a point that is deleterious for generalization. The correct approach
in such a situation of course would be to modify the model. Another widely

96 Machine Learning Algorithms

used but less sound alternative is early stopping, whereby training is stopped
as soon as the error rate on the training set reaches a certain threshold, or
after a fixed number of training cycles. The threshold itself, or the number of
cycles, is not easy to determine. One possibility is to stop training as soon as
the error rate begins to increase on a validation set different from the training
set. The drawback of such an approach is that data must be sacrificed from the
training set for validation. Furthermore, this type of early stopping can still
lead to a partial overfitting of the validation data with respect to the test data.
In other words, the performance of the model on the validation set used to de-
cide when to stop is typically somewhat better than the overall generalization
performance on new data. Early stopping, like other validation methods, is,
however, easy to implement and useful in practice, especially with abundant
data.

4.8.5 Ensembles

When a complex model is fitted to the data by ML or MAP optimization, dif-
ferent model parameters are derived by varying a number of factors dur-
ing the learning procedure, such as the initial parameter values, the learn-
ing rate, the order of presentation of the examples, the training set, and so
on. Furthermore, different classes of models may be tried. It is natural to
suspect that better prediction or classification may be achieved by averag-
ing the opinion of different models or experts in some way (appendix A and
[223, 237, 277, 568, 426, 340, 339]). A pool of models for a given task is also
called an ensemble, in analogy to statistical mechanics (see also the notion
of the committee machine in the literature). Mathematically, this intuition is
based on the fact that for convex error functions, the error of the ensemble
is less than the average error of its members (Jensen’s inequality in appendix
B). Thus the ensemble performs better than a typical single expert. There are
different ways of combining the predictions produced by several models. Uni-
form averages are widely used, but other schemes are possible, with variable
weights, including the possibility of learning the weights during training. Note
that in the case of a well-defined class of models within the Bayesian frame-
work of chapter 2, the optimal prediction is obtained by integrating over all
possible models (see (2.18)). Thus averaging models can be construed as an
approximation to such an integral.

4.8.6 Balancing and Weighting Schemes

An important issue to consider is whether or not training sets are balanced.
In binomial classification problems, the number of available positive exam-

Learning Algorithms: Miscellaneous Aspects 97

ples can differ significantly from the number of negative examples. Likewise,
in multinomial classification problems, significant variations can exist in the
proportions in which each class is represented in the data. This situation can
be particularly severe with biological databases where, for instance, certain
organisms or certain types of sequences are overrepresented due to a large
number of different factors, as described in chapter 1.

Ideally, for the purpose of correct classification, all relevant classes should
be equally represented in the training set. In chapter 6 such balanced train-
ing strategies will be described. In some cases, underrepresentation of a cer-
tain class in the training data has led to a low test prediction performance on
that particular class. Such behavior has often been interpreted as evidence
for missing information, for example that beta-sheet prediction requires more
long-range sequence information than does helix prediction. While any protein
structure prediction method will gain from the proper addition of long-range
information, beta-sheet performance has been substantially improved just by
applying a balanced training scheme [452].

Another possibility is to use weighting schemes to artificially balance train-
ing sets, equivalent to effectively duplicating rare exemplars several times
over. A number of weighting schemes have been developed for DNA and pro-
tein sequences, especially in the context of multiple alignments [10, 536, 487,
201, 249, 337]. The weighting scheme in [337] is particularly interesting, and
optimal in a maximum entropy sense.

There is a number of other techniques that we do not cover for lack of
space. Again these can easily be found in the literature (NIPS Proceedings) and
other standard references on neural network techniques. They include:

e Active sampling.

e Pruning methods. These are methods that perform simplification of
models during or after learning. Typically, they consist of finding ways
to determine which parameters in a model have little impact on its per-
formance, and then removing them. Redundant parameters will often be
equivalent not just to those with small numerical values, but also large
weights that inhibit each other may contribute little to the quality of a
model.

e Second-order methods. These methods take advantage of second-
order information by computing or approximating the Hessian of the
likelihood—for instance, to adjust learning rates or compute error bars.
The efficient approximation of the Hessian is an interesting problem that
must be considered in the context of each model.

This page intentionally left blank

Chapter 5

Neural Networks: The Theory

5.1 Introduction

Artificial neural networks (NNs) [456, 252, 70] were originally developed with
the goal of modeling information processing and learning in the brain. While
the brain metaphor remains a useful source of inspiration, it is clear today that
the artificial neurons used in most NNs are quite remote from biological neu-
rons [85]. The development of NNs, however, has led to a number of practical
applications in various fields, including computational molecular biology. NNs
have become an important tool in the arsenal of machine-learning techniques
that can be applied to sequence analysis and pattern recognition problems.

At the most basic level, NNs can be viewed as a broad class of param-
eterized graphical models consisting of networks with interconnected units
evolving in time. In this book we use only pairwise connections but, if desir-
able, one can use more elaborate connections associated with the interaction
of more than two units, leading to the “higher-order” or “sigma-pi” networks
[456]. The connection from unit j to unit i usually comes with a weight de-
noted by w;;j. Thus we can represent an NN with a weight-directed graph or
“architecture.” For simplicity, we do not use any self-interactions, so that we
can assume that w;; = 0 for all the units.

It is customary to distinguish a number of important architectures, such as
recurrent, feed-forward, and layered. A recurrent architecture is an architec-
ture that contains directed loops. An architecture devoid of directed loops is
said to be feed-forward. Recurrent architectures are more complex with richer
dynamics and will be considered in chapter 9. An architecture is layered if
the units are partitioned into classes, also called layers, and the connectivity
patterns are defined between the classes. A feed-forward architecture is not
necessarily layered.

99

100 Neural Networks: The Theory

Output layer

Hidden layers

e ——e

Input Layer |

Figure 5.1: Layered Feed-Forward Architecture or Multilayer Perceptron (MLP). Layers may con-
tain different numbers of units. Connectivity patterns between layers also may vary.

In most of this chapter and in many current applications of NNs to molecu-
lar biology, the architectures used are layered feed-forward architectures, as in
figure 5.1. The units are often partitioned into visible units and hidden units.
The visible units are those in contact with the external world, such as input
and output units. Most of the time, in simple architectures the input units
and the output units are grouped in layers, forming the input layer and the
output layer. A layer containing only hidden units is called a hidden layer. The
number of layers is often referred to as the “depth” of a network. Naturally
NNs can be assembled in modular and hierarchical fashion to create complex
overall architectures. The design of the visible part of an NN depends on the
input representation chosen to encode the sequence data and the output that
may typically represent structural or functional features.

The behavior of each unit in time can be described using either differen-
tial equations or discrete update equations (see [26] for a summary). Only the
discrete formalism will be used in this book. In a layered feed-forward ar-
chitecture, all the units in a layer are updated simultaneously, and layers are
updated sequentially in the obvious order. Sometimes it is also advantageous
to use stochastic units (see appendix C on graphical models and Bayesian net-
works). In the rest of this chapter, however, we focus on deterministic units.
Typically a unit i receives a total input x; from the units connected to it, and
then produces an output y; = f;(x;), where f; is the transfer function of the
unit. In general, all the units in the same layer have the same transfer function,

Introduction 101

and the total input is a weighted sum of incoming outputs from the previous
layer, so that

Xi= Q. Wiyt wi (5.1)
JEN-(i)
vi = fi(xi) =fi(> wijyj+wi>, (5.2)
JEN-(i)

where w; is called the bias, or threshold, of the unit. It can also be viewed as a
connection with weight w; to an additional unit, with constant activity clamped
to 1. The weights w;; and w; are the parameters of the NNs. In more general
NNs other parameters are possible, such as time constants, gains, and delays.
In the architectures to be considered here, the total number of parameters
is determined by the number of layers, the number of units per layer, and
the connectivity between layers. A standard form for the connectivity between
layers is the “fully connected” one, where each unit in one layer is connected to
every unit in the following layer. More local connectivity patterns are obviously
more economical. Note, however, that even full connectivity between layers is
sparse, compared with complete connectivity among all units. In situations
characterized by some kind of translation invariance, it can be useful for each
unit in a given layer to perform the same operation on the activity of translated
groups of units in the preceding layer. Thus a single pattern of connections
can be shared across units in a given layer. In NN jargon this is called “weight
sharing.” It is routinely used in image-processing problems and has also been
used with some success in sequence analysis situations where distinct features
are separated by variable distances. The shared pattern of weights defines a
filter or a convolution kernel that is used to uniformly process the incoming
activity. With weight sharing, the number of free parameters associated with
two layers can be small, even if the layers are very large. An example of this
technique is given below in section 6.3 on secondary structure prediction.

There are a number of transfer functions that are widely used. Sometimes
the transfer function is linear—like the identity function, as in regression prob-
lems, in which case the unit is called a linear unit. Most of the time, however,
the transfer functions are nonlinear. Bounded activation functions are often
called squashing functions. When f is a threshold function,

1 ifx>0

0 otherwise, (5.3)

oo =1
the unit is also called a threshold gate. A threshold gate simulates a binary
decision based on the weighted “opinion” of the relevant units. Obviously,
the bias can be used to offset the location of the threshold. In this book we
use a (0,+1) formalism that is equivalent to any other scale or range, such

102 Neural Networks: The Theory

as (—1,+1). Threshold gates are discontinuous. Thus they are often replaced
with sigmoidal transfer functions, which have the advantage of being continu-
ous and differentiable. In this book, we use the logistic transfer function

1
l1+eXx

fx)=0(x)= (5.4)
especially to estimate the probability of binary events. But other possible
sigmoidal transfer functions lead to essentially equivalent results, such as
f(x) = tanh(x) and f(x) = arctan(x). It is also possible to introduce a gain
A; for each unit by writing v; = f;(A;x;). Another important type of unit in
what follows is the normalized exponential unit, also called softmax, which is
used to compute the probability of an event with n possible outcomes, such as
classification into one of n possible classes. Let the index j run over a group
of n output units, computing the n membership probabilities, and x; denote
the total input provided by the rest of the NN into each output unit. Then the
final activity 7y; of each output unit is given by

e Xi

Yi= W (5.5)

Obviously, in this case >I"; y; = 1. When n = 2, the normalized exponential
is equivalent to a logistic function via a simple transformation

e X1 1
e X1 +e X2 1+4e (ex)’

Y1 = (5.6)
It is important to note that any probability distribution P = (p;) (1 < i < n)
can be represented in normalized exponential form from a set of variables x;
1 =j=m),

e Xi
P = TR (5.7)
as long as m > n. This can be done in infinitely many ways, by fixing a positive
constant K and letting x; = logp; + K fori=1,...,n (and x; = —co for j > n

if needed). If m < n there is no exact solution, unless the p; assume only m
distinct values at most.

Another type of widely used functions is the radial basis functions (RBFs),
where typically f is a bell-shaped function like a Gaussian. Each RBF unit i
has a “reference” input x, and f operates on the distance d(x;, x;) mea-
sured with respect to some metric y; = f(d(x/,x;)). In spatial problems, d is
usually the Euclidean distance.

Clearly a modeler should be able to choose the type of units, connectiv-
ity, and transfer functions as needed in relation to the task to be solved. As

Introduction 103

a result, the reader may be under the impression that the concept of NN is
somewhat fuzzy, and rightly so! According to our loose definition, one can
take the position that polynomials are NNs. Alternatively, one could of course
put further restrictions on the definition of NNs. Historically, the term NN
has been used mostly to refer to networks where the inputs satisfy (5.1) and
the transfer functions are threshold functions or sigmoids. We do not think
that much is to be gained by adopting such a dogmatic position. The current
nomenclature of model classes is in part the product of historical accidents.
The reality is that there is a continuous spectrum of possible parameterized
models without precise boundaries. A modeler should be as free as possible
in designing a model and proceeding with Bayesian inference.

In NN applications, it has been customary to distinguish between regression
and classification or recognition problems. In regression problems, the goal is
to approximate or fit a given surface. In classification or recognition problems,
the goal is to be able to classify a given input into a relatively small number of
classes. While useful, this distinction is also somewhat arbitrary since in the
limit, classification—for example, into two classes—can be viewed as fitting a
usually discontinuous binary function. The problem of learning the genetic
code (see chapter 6) is a good example of a problem at the boundary of the
two classes of problems. Classification problems have perhaps been slightly
more frequent in past applications of NNs to molecular biology, due to the
discrete nature of the sequence data and the standard problem of recognizing
particular patterns such as alpha helices, fold classes, splice sites, or exons.
But continuous data, such as hydrophobicity scales or stacking energies, can
also be important. We shall examine both regression and classification NNs
more closely in the coming sections.

One of the most important aspects of NNs is that they can learn from exam-
ples. Obviously, in the general Bayesian statistical framework this is nothing
else than model fitting and parameter estimation. Very often the data D con-
sist of input-output sample pairs D = (D,...,Dg), with D; = (d;, t;) (d for
data, t for target) from the regression or classification function to be approx-
imated. In practice, the data are often split into training data and validation
data in some way. The training data are used for model fitting, and the val-
idation data in model validation. The validation data can also be split into
validation and test data, where the validation set is used for early stopping
and the test data for assessing the overall performance of the model. These
model-fitting tasks, where the target values of the outputs in the fitted data are
known, are usually described in the literature as supervised learning. When the
target values are not known, the terms unsupervised or self-organization are
often used. Again, this historical distinction has its usefulness but should not
be taken too dogmatically. As for supervised learning algorithms, one of the
main practices in the past has been, starting from a random set of parameters,

104 Neural Networks: The Theory

to define an “error function” by comparing the outputs produced by the net-
work against the target outputs. Then the network parameters are optimized
by gradient descent with respect to the error function. As pointed out in chap-
ter 2, such practice is best analyzed in the general Bayesian statistical frame-
work by explicitly stating the underlying probabilistic models and assump-
tions, and proceeding with the proper Bayesian inductions. Many forms of
supervised and unsupervised learning for NNs in the literature can be viewed
as ML or MAP estimation.

In the rest of the chapter we shall focus on layered feed-forward NN ar-
chitectures, the multilayer perceptrons with inputs given by (5.1) and lin-
ear/threshold/sigmoidal/normalized exponential transfer functions, and their
application within sequence analysis. In the next section, we briefly cover the
universal approximation properties of NNs. In particular, we prove that any
reasonable function can be approximated to any precision by a shallow, and
possibly very large, NN. In section 5.3, we apply the general framework of
chapter 2 to NNs. We examine priors and likelihood functions, how to design
NN architectures, and how to carry out the first level of Bayesian inference.
In section 5.4, we apply the general framework of chapter 4 to learning al-
gorithms and derive the well-known backpropagation algorithm. Many other
theoretical results on NNs, beyond the scope of this book, can be found in
the references. Computational complexity issues for NNs and machine learn-
ing in general are reviewed in [314]. A more complete Bayesian treatment of
NNs, including higher levels of Bayesian inference, is given in [373, 398, 517].
In addition to NNs, there are a number of other flexible parameterized mod-
els for regression and classification, such as splines [546], Gaussian processes
[559, 206, 399] (appendix A), and support vector machines [533, 475].

5.2 Universal Approximation Properties

Perhaps one reassuring property of NNs is that they can approximate any rea-
sonable function to any degree of required precision. The result is trivial! for
Boolean functions, in the sense that any Boolean function can be built using a
combination of threshold gates. This is because any Boolean function can be
synthesized using NOT and AND gates, and it is easy to see that AND and NOT
gates can be synthetized using threshold gates. For the general regression
case, it can be shown that any reasonable real function f(x) can be approxi-
mated to any degree of precision by a three-layer network with x in the input
layer, a hidden layer of sigmoidal units, and one layer of linear output units,

LThis section concentrates primarily on threshold/sigmoidal units. Obviously the result is
also well known if polynomials are included among NNs.

Universal Approximation Properties 105

as long as the hidden layer can be arbitrarily large. There are a number of dif-
ferent mathematical variations and proofs of this result (see, e.g., [264, 265]).

Here we give a simple constructive proof of a special case, which can easily
be generalized, to illustrate some of the basic ideas. For simplicity, consider
a continuous function vy = f(x) where both x and y are one-dimensional.
Assume without loss of generality that x varies in the interval [0, 1], and that
we want to compute the value of f(x) for any x within a precision €. Since f
is continuous over the compact interval [0, 1], f is uniformly continuous and
there exists an integer n such that

o=l = 5 = 1fGe) - foa)| <e (5.8)

Therefore it is sufficient to approximate f with a function g such that g(0) =
f(0), and g(x) = f(k/n) for any x in the interval ((k — 1)/n,k/n] and any
k = 1,...,n. The function g can be realized exactly by a NN with one input
unit representing x, n+1 hidden threshold gate units all receiving connections
from the input unit, and one output unit receiving a connection from each
hidden unit. The hidden units are numbered from O to n. The output has a
linear transfer function in order to cover the range of ys (figure 5.2). All the
weights from the input unit to the n hidden units are set to 1, and the kth
hidden unit has a threshold (bias) of (k — 1) /n. Thus, for any x in the interval
((k—=1)/n,k/n], all the hidden unit activations are set to 0 except for the first
k + 1, which take the value 1. Thus the value of the input is directly coded in
the number of hidden units that are turned on. The weight of the connection
from the kth hidden unit to the output unitis Ay f = f(k/n)—f(k—1/n), with
Aof = f(0). The output unit is just the identity function, with 0 bias. Thus if
x=0,g(x)=0.Forany k =1,2,...,n,if x is in the interval [(k — 1)/n,k/n],
then g(x) = f(0) + £j_1 f(j/n) = f(j = 1/n) = f(k/n), as desired.

It should be clear that it is not too difficult to generalize the previous result
in several directions, to encompass the following:

1. Multidimensional inputs and outputs

2. Sigmoidal transfer functions and other types

3. Inputs on any compact set

4. Functions f that may have a finite number of discontinuities and more

While it is useful to know that any function can be approximated by an NN,
the key point is that the previous proof does not yield very economical archi-
tectures. In fact, one can show that for essentially random functions, compact
architectures do not exist. It is only for “structured” functions that compact

106 Neural Networks: The Theory

g(x)

Linear output unit (identity)

f(1/n)-£(0) £(1)-f(n-1/n)

n+1 hidden
threshold
gates

Linear input unit (identity on [0,1])

X

Figure 5.2: Universal Approximation Architecture with One Input Unit, n + 1 Hidden Threshold
Gate Units, and One Linear Output Unit Computing the Approximation g(x) to f(x).

architectures exist, and in this case the architecture constructed in the uni-
versal approximation theorems are far from optimal. Better architectures may
exist, with a better allocation of hidden units, and possibly with more than
a single hidden layer. It is for these cases that learning approaches become
important.

5.3 Priors and Likelihoods

We now apply the general theory of chapter 2. In particular, we show how
the theory can be used to determine the choice of an objective function and
of the transfer functions of the output units. In this section we shall assume
that the data consist of a set of independent input-output pairs D; = (d;, t;).
The data are noisy in the sense that for a given d;, different outputs t; could
be observed. Noise at the level of the input d could also be modeled, but will
not be considered here. The operation of the NN itself is considered to be
deterministic. We have

P((di, t)|lw) =P(d;|lw)P(t;ld;i, w) = P(d)P(E;1di, w), (5.9)

the last equality resulting from the fact that in general we can assume that the
inputs d are independent of the parameters w. Thus, for a given architecture

Priors and Likelihoods 107

parameterized by w, we have, using (2.9),

K K
—logP(w|D) = — > logP(t;|di, w)— > logP(d;) —logP(w) +log P(D), (5.10)
i=1 i=1

where we have used the fact that P((d;, t;)|w) = P(d;)P(t;|d;, w), and have
taken into account the independence of the different data points. In the first
level of Bayesian inference (MAP), we want to minimize the left-hand side. We
can ignore P(D) as well as P(d;), since these terms do not depend on w, and
concentrate on the prior term and the likelihood.

In order to calculate the likelihood, we shall have to distinguish different
cases, such as regression and classification, and further specify the probabilis-
tic model. In doing so, we follow the analysis in [455]. But the basic idea is to
consider that, for a given input d;, the network produces an estimated output
v (d;). The model is entirely defined when we specify how the observed data
t; = t(d;) can statistically deviate from the network output y; = y(d;). If the
output layer has many units, we need to write y;; for the output of the jth
unit on the ith example. For notational convenience, in what follows we will
drop the index that refers to the input. Thus we derive online equations for
a generic input-output pair (d,t). Offline equations can easily be derived by
summing over inputs, in accordance with (5.10).

5.3.1 Priors

Unless additional information is available, the most natural and widely used
priors for NN parameters are zero-mean Gaussian priors. Hyperparameters,
such as the standard deviation of the Gaussians, can be chosen differently for
connection weights and biases and for units in different layers. If a weight w
has a Gaussian prior with standard deviation o, the corresponding contribu-
tion to the negative log-posterior, up to constant factors, is given by w?2/20?2.
This can also be viewed as a regularization factor that penalizes large weights
often associated with overfitting. In gradient-descent learning, this adds a fac-
tor —w/o? to the update of w. This factor is also called weight decay. Weight
sharing is a different kind of prior obtained when different groups of units
in a given layer are assumed to have identical incoming connection weights.
Weight sharing is easily enforced during gradient-descent learning. It is use-
ful in problems characterized by some form of translational invariance where
the same operation, such as the extraction of characteristic features, needs
to be applied to different regions of the input. The pattern of shared units
essentially implements a convolution kernel, whence the name convolutional
networks.

108 Neural Networks: The Theory

Gaussian and other priors for NN parameters and hyperparameters are
studied in detail in [373, 398, 517]. In [373] Laplace approximation techniques
are used to determine optimal hyperparameters. In [398] Monte Carlo meth-
ods are derived for the integration of priors and Bayesian learning in MLPs.
The advantages of Bayesian learning include the automatic determination of
regularization parameters without the need for a validation set, the avoidance
of overfitting when using large networks, and the quantification of prediction
uncertainty. In [398] it is shown that in the limit of a single hidden layer with
an infinite number of hidden units, an NN with Gaussian weight priors defines
a Gaussian process on the space of input-output functions. Hence the idea
of using Gaussian processes directly [559, 399, 206], bypassing any NN im-
plementation. While Gaussian processes provide a very flexible tool for both
regression and classification problems, they are computationally demanding
and can be applied only to moderate-size problems with currently available
technology.

5.3.2 Gaussian Regression

In the case of regression, the range of y can be arbitrary, and therefore the
simplest transfer functions in the output layer are linear (actually the identity)
functions. It is also natural to assume a Gaussian probabilistic model, that is,
P(t|ld,w) = P(t|y(d),w) = P(t|y) is Gaussian, with mean vector vy = y(d).
Assuming further that the covariance matrix is diagonal and that there are n
output units indexed by j, we have

(tj —y))*

1
- . A1
V21 o exp 207) 61D

P(tld,w) =[]
j=1

The standard deviations o are additional parameters of this statistical model.

If we further assume that they are constant o; = o, then the negative log-
likelihood for the current input boils down to

ti-yj)? 1

E = ——=— — —log2m —logo |. 5.12

% (507 5 log 2 —log (5.12)

Again the last two terms are independent of w, and can be ignored while

trying to estimate the optimal set of parameters w. The first term of course is

the usual least-mean-square (LMS) error, routinely used in many applications,

sometimes without explicating the underlying statistical model. The derivative
of the negative log-likelihood Z with respect to an output y; is

0F _0F _ ti-yi -y

0y; 0x; oj o 19

Priors and Likelihoods 109

the first equality resulting from the assumption that the output transfer func-
tion is the identity.

In summary, we see that in the regression case with Gaussian noise, the
output transfer function should be linear, the likelihood error function is the
LMS error function (possibly scaled by o; along each component j), and the
derivative of £ with respect to the total input activity into the output layer, for
each example, has the simple expression —(t; — y;)/0; = —(t; — ¥j) /0.

5.3.3 Binomial Classification

Consider now a classification problem with only two classes, A and A. For a
given input d, the target output t is 0 or 1. The natural probabilistic model is
a binomial model. The single output of the network then represents the prob-
ability that the input is a member of the class A or A, that is the expectation
of the corresponding indicator function. This can be computed by a sigmoidal
transfer function. Thus,

y=y(d)=PdecA) =P(tldw)=y"(1-y)"" (5.14)
and
F =-logP(t|ld,w) = —-tlogy — (1 —t)log(1l — y). (5.15)

This is the relative entropy between the output distribution and the observed

distribution, and
0 t—y

oy ya-y)
In particular, if the output transfer function is the logistic function, then

(5.16)

0FE
i (t—y). (5.17)
Therefore, in the case of binomial classification, the output transfer func-
tion should be logistic; the likelihood error function is essentially the relative
entropy between the predicted distribution and the target distribution. The
derivative of E with respect to the total input activity into the output unit, for
each example, has the simple expression —(t —).

5.3.4 Multinomial Classification

More generally, consider a classification task with 7 possible classes
Aq,...,A,. For a given input d, the target output t is a vector with a sin-
gle 1 and n — 1 zeros. The most simple probabilistic model is a multinomial

110 Neural Networks: The Theory

model. The corresponding NN has n output units, each one giving the
probability of the membership of the input in the corresponding class. Thus

P(tld,w) = [¥/, (5.18)
j=1

with, as usual, t; = tj(d) and y;j = y;(d). For each example,

n
T = —logP(tld,w) = - > tjlogy;. (5.19)
j=1

Again, this is the relative entropy between the output distribution and the
observed distribution, and

0F tj

— = ——. (5.20)

0y Y
In particular, if the output layer consists of a set of normalized exponentials,
then for each input d;, 5

E
a—xj=—(tj—yj), (5.21)

where x; is the total input into the jth normalized exponential.

Thus, in multinomial classification, the output transfer function should
be normalized exponentials. The likelihood error function is essentially the
relative entropy between the predicted distribution and the target distribution.
The derivative of E with respect to the total input activity into the output layer,
for each example and each component, has the simple expression —(t; — ;).

5.3.5 The General Exponential Family Case

In fact, results similar to the previous cases can be derived every time the likeli-
hood function belongs to the exponential family of distributions (see appendix
A and [384, 94]). The exponential family contains many of the most common
distributions such as Gaussian, gamma, binomial, multinomial, exponential,
beta, Poisson, and negative binomial. For each member of the family, there
is an appropriate choice of output transfer function y = f(x) such that the
derivative 0F /0x; of E with respect to the total input activity into the jth out-
put unit has a simple expression, proportional for each example to (t; — y;),
the difference between the target output t; and the actual output y;.

We have just seen that the proper statistical framework allows one to con-
struct suitable transfer functions for the output layer, as well as suitable error
functions to measure network performance. The design of the hidden lay-
ers, however, is more problem-dependent, and cannot be dealt with in much

Learning Algorithms: Backpropagation 111

quadratic cross-entropy
o S
N A (&)
o
> 4 | > o |
e] [V
o. 4
| o |
o | -
o
0.0 0.4 0.8 0.0 0.4 0.8
X X

Figure 5.3: Comparison of the One-Dimensional Quadratic and Cross-Entropy Error Functions,
with Respect to the Target Value of 0.5. Note the difference in ranges: the cross-entropy is
infinite for x = 0 and x = 1.

generality. The framework described above has emerged only in recent years,
and has not always been followed by NN practitioners, including many of the
examples to be examined in the next sections. Many authors have used an
LMS error function even in binomial classification problems, where a relative
entropy error is more appropriate.

The question, then, is: “How have reasonably good results been derived,
even when using a somewhat improper framework?” The answer to this ques-
tion is best understood in the simple example above. Suppose that in a binary
classification problem, the probability we wish to learn is, for the sake of ar-
gument, p = 0.5. For each x in [0, 1] the LMS error is (0.5 — x)?, whereas the
relative entropy is —0.5log x — 0.51og(1 — x). These two functions are plotted
in figure 5.3. Both functions are convex (U), with a a minimum at p = 0.5,
as desired. The main difference, however, is in the dynamic range: unlike the
relative entropy, the LMS error is bounded. The dynamic range difference can
be important when the errors of many examples are superimposed, and also
during learning.

5.4 Learning Algorithms: Backpropagation

In the majority of applications to be reviewed, MAP or ML estimation of NN
parameters is done by gradient descent (see [26] for a general review). The

112 Neural Networks: The Theory

calculations required to obtain the gradient can be organized in a nice fashion
that leverages the graphical structure of NN. Using the chain rule, weights are
updated sequentially, from the output layer back to the input layer, by prop-
agating an error signal backward along the NN connections (hence the name
“backpropagation”). More precisely, in the online version of the algorithm, and
for each training pattern, we have for any weight parameter w;;

0F 0F 0y; °F ,,
= = T(x;) Vi (5.22)
awij a_’)/i awij a_’)/ifl VY

Thus the gradient-descent learning equation is the product of three terms,

0
Awij = =N7 = = e (5.23)
where 1 is the learning rate, y; is the output of the unit from which the connec-
tion originates (also called the presynaptic activity), and €; = (0F/0y;) f; (xi)
is a postsynaptic term called the backpropagated error. The backpropagated
error can be computed recursively by

0F 0F
z

aykf;i(xk)wki- (5.24)

0i keN+(i)

The propagation from the children of a node to the node itself is the signature
of backpropagation. While backpropagation is the most widely used algorithm
for MAP estimation of MLPs, EM and simulated annealing have also been used.
Algorithms for learning the architecture itself can also be envisioned, but they
remain inefficient on large problems.

We can now review some of the main applications of NNs to molecular
biology. Other general surveys of the topics can be found in [432, 571, 572].

Chapter 6

Neural Networks: Applications

The application of neural network algorithms to problems within the field of
biological sequence analysis has a fairly long history, taking the age of the
whole field into consideration. In 1982 the perceptron was applied to the pre-
diction of ribosome binding sites based on amino acid sequence input [506].
Stormo and coworkers found that the perceptron algorithm was more success-
ful at finding E. coli translational initiation sites than a previously developed
set of rules [507]. A perceptron without hidden units was able to generalize
and could find translational initiation sites within sequences that were not
included in the training set.

This linear architecture is clearly insufficient for many sequence recogni-
tion tasks. The real boost in the application of neural network techniques first
came after the backpropagation training algorithm for the multilayer percep-
tron was brought into common use in 1986 [456], and especially after Qian and
Sejnowski published their seminal paper on prediction of protein secondary
structure in 1988 [437]. This and other papers that quickly followed [78, 262]
were based on an adaptation of the NetTalk multilayer perceptron architecture
[480], which from its input of letters in English text predicted the associated
phonemes needed for speech synthesis and for reading the text aloud. This
approach could immediately be adapted to tasks within the field of sequence
analysis just by changing the input alphabet into alphabets of the amino acids
or nucleotides. Likewise, the encoding of the phonemes could easily be trans-
formed into structural classes, like those commonly used for the assignment
of protein secondary structure (helices, sheets, and coil), or functional cate-
gories representing binding sites, cleavage sites, or residues being posttrans-
lationally modified.

In this chapter we review some of the early work within the application
areas of nucleic acids and proteins. We go into detail with some examples of

113

114 Neural Networks: Applications

more recent work where the methodologies are advanced in terms of either
the training principles applied or the network architectures, especially when
networks are combined to produce more powerful prediction schemes. We do
not aim to mention and describe the complete spectrum of applications. For
recent reviews see, for example, [432, 61, 77, 320, 571, 572].

6.1 Sequence Encoding and Output Interpretation

One important issue, before we can proceed with NN applications to molecu-
lar biology, is the encoding of the sequence input. In any type of prediction
approach, the input representation is of cardinal importance. If a very clever
input representation is chosen, one that reveals exactly the essentials for a
particular task, the problem may be more or less solved, or at least can be
solved by simple linear methods. In an MLP the activity patterns in the last
hidden layer preceding the output unit(s) should represent the transformed
input information in linearly separable form. This clearly is much easier if
the input representation has not been selected so as further to increase the
nonlinearity of the problem.

One would think that a very “realistic” encoding of the monomers in a se-
quence, using a set of physical-chemical features of potential relevance, should
always outperform a more abstract encoding taken from the principles and
practice of information theory [137]. However, in line with the contractive na-
ture of most prediction problems (see section 1.4), it does not always help just
to add extra information because the network has to discard most of it before
it reaches the output level.

During training of an MLP, the network tries to segregate the input space
into decision regions using hyperplanes. The numerical representation of the
monomers therefore has a large impact on the ease with which the hidden
units can position the planes in the space defined by the representation that
has been chosen.

In many sequence analysis problems, the input is often associated with
a window of size W covering the relevant sequence segment or segments.
Typically the window is positioned symmetrically so that the upstream and
downstream contexts are of the same size, but in some cases asymmetric win-
dows perform far better than symmetric ones. When the task is to predict
signal peptide cleavage sites (section 6.4) or intron splice sites in pre-mRNA
(section 6.5.2), asymmetric windows may outperform symmetric ones. Both
these sequence types (N-terminal protein sorting signals and noncoding in-
tronic DNA) are eventually removed, and it makes sense to have most of the
features needed for their processing in the regions themselves, leaving the
mature protein least constrained. Windows with holes where the sequence

Sequence Encoding and Output Interpretation 115

appears nonconsecutively have been used especially for the prediction of pro-
moters and the exact position of transcriptional initiation in DNA, but also for
finding beta-sheet partners in proteins [268, 46] and for the prediction of dis-
tance constraints between two amino acids based on the sequence context of
both residues [368, 174].

For each position in a window W, there are |A| different possible
monomers. The most used representation is the so-called orthogonal (also
called local, as opposed to distributed) encoding, where the letters X1, X, ...
are encoded by the orthogonal binary vectors (1,0,...,0), (0,1,...,0), and
so on. Such a representation has the advantage of not introducing any al-
gebraic correlations between the monomers. N- and C-terminal positions in
incomplete windows of amino acid sequences are usually encoded using a
dedicated character. Sometimes this character is also used to encode un-
known monomers in a sequence, but unknown monomers may be handled
better using just a string of zeros so that they have no impact on the input
layer.

The sparse encoding scheme has the disadvantage of being wasteful be-
cause it requires an input layer of size |A| x W. |A| letters could in principle
be encoded using as few as log, |A| binary units. Furthermore, using contin-
uous values in the input layer of an MLP, even a single unit could encode all
possible letters. Such a compact encoding would in almost all cases give rise
to drastically increased nonlinearity in the prediction problem at hand. If all
amino acids were encoded using values between, say, 0 and 1, many of the in-
duced correlations between the monomers would have no biological relevance,
almost no matter in what order the monomers were mapped to the interval.

Obviously, there are trade-offs between different encodings that involve the
complexity of the space in which the input windows live, the network architec-
ture size, and ease of learning. In much of the best work done so far in this
field, the orthogonal representation has been the most successful encoding
scheme. With a more complex encoding of the sequence, whether orthogonal
or not, the network must filter this extra information through a representation
as a point in a space with dimensionality according to the number of hidden
units, and then further on to a few, often a single, output unit(s). If one in-
cludes too much extra information related to the physicochemical properties
of the residues in the input layer, possibly information that is not strongly
correlated to the output, one makes the network’s task harder. In this case, it
is best to use more hidden units in order to be able to discard this extra infor-
mation and find the relevant features in a sea of noise. This situation, with the
lack of a better alternative, has contributed to the success of the orthogonal
representation.

If one wants to use real-numbered quantification of residue hydrophobic-
ity, volume, charge, and so on, one should be aware of the harmful impact it

116 Neural Networks: Applications

can have on the input space. Instead of just using a seemingly better represen-
tation of the input residues, it may be much better to use preprocessed ver-
sions of the original sequence segments. When designing such preprocessed
versions, one may exploit the statistics of certain words present in the win-
dow, the average hydrophobicity over the window or separately in the left and
right parts of a symmetric window, and so on. Another interesting possibility,
demonstrated in one of the examples below, is to let an NN learn its own rep-
resentation. In another example a binary word encoding was shown to have a
positive effect on protein secondary structure prediction [313, 548, 17]. In this
case, it was possible, from the optimal encoding scheme generated by a simu-
lated annealing approach, to discover physicochemical properties relevant to
the formation of secondary structure.

An important strategy for decreasing the nonlinearity of a prediction prob-
lem is to switch from a representation based on monomers to one based on
dimers or trimers. In the case of nucleotides, 16- and 64-letter alphabets re-
sult, and in a large number of biological recognition problems, the pair or
triplet correlations are so large that the gain in significant correlations com-
pares favorably with the negative impact of the increased dimensionality of
the input space. In DNA, base pair stacking is the most important thermo-
dynamic contribution to helical stability (more important than base pairing).
Pair correlations in RNA-RNA recognition interactions, for example, have their
physical basis in the stacking energies between adjacent base pairs [112]. In
proteins the dipeptide distribution similarly has a strong bias associated with
steric hindrance, translation kinetics, and other purely biochemical factors.

If RNA and DNA sequences are encoded by dinucleotides or trinucleotides,
there is also the possibility of letting the multimers overlap. The sparse encod-
ing of the multimers ensures that no a priori relationship is imprinted on the
sequence data. The advantage of the encoding of the sequence as overlapping
triplets is that the hidden units directly receive context information for each
single nucleotide that they otherwise would have to deduce from the training
process.

Yet another strategy for decreasing (or in some cases increasing) the non-
linearity of a prediction problem is to group monomers from one alphabet to
form new alphabets in which the pattern that should be detected will have
more contrast to the background [306]. The reduced alphabets can then be
encoded using the orthogonal vector representation, and at the same time re-
duce the dimensionality of the input space and thus the number of adjustable
parameters in the network. Meaningful groupings can be based on physic-
ochemical properties or on estimated mutation rates found in evolutionary
studies of protein families. Table 6.1 lists some of the previously used group-
ings based on ab initio descriptions of the monomers or on their structural or
functional preferences as observed in experimental data.

Sequence Encoding and Output Interpretation 117

Molecule Size Grouping

DNA 2 Purines vs. pyrimidines: R=A, G Y=C, T
DNA 2 Strong vs. weak hydrogen bonding: S=C, GG W=A, T
DNA 2 Less physiochemical significance:

keto, K =T, G vs. amino, M = A, C

Protein 3 Structural alphabet:
ambivalent (Ala, Cys, Gly, Pro, Ser, Thr, Trp, Tyr)
external (Arg, Asn, Asp, GIn, Glu, His, Lys)
internal (Ile, Leu, Met, Phe, Val)
Protein 8 Chemical alphabet:
acidic (Asp, Glu)
aliphatic (Ala, Gly, Ile, Leu, Val)
amide (Asn, GIn)
aromatic (Phe, Trp, Tyr)
basic (Arg, His, Lys)
hydroxyl (Ser, Thr):
imino (Pro)
sulfur (Cys, Met)
Protein 4 Functional alphabet:
acidic and basic (same as in chemical alphabet)
hydrophobic nonpolar (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val)
polar uncharged (Asn, Cys, Gln, Gly, Ser, Thr, Tyr)
Protein 3 Charge alphabet:
acidic and basic (as in chemical alphabet)
neutral (all the other amino acids)
Protein 2 Hydrophobic alphabet:
hydrophobic (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val)
hydrophilic
(Arg, Asn, Asp, Cys, GIn, Glu, Gly, His, Lys, Ser, Thr, Tyr)

Table 6.1: Merged Alphabets of Biomolecular Monomers. Some of these alphabets are based
on ab initio descriptions of the monomers, others are derived from statistical properties of
the monomers as indicated by structural or functional preferences. Random partition of the
amino acids into k classes that maximizes a similarity measure between sequences can also be
constructed. Source: [306]. See also references therein.

In one case, it has been shown recently that a protein can largely main-
tain its folded structure, even if the total number of different amino acids in
its composition is reduced from the conventional twenty down to five [443].
Apart from a few positions close to a binding site, fifteen amino acid types
were replaced by other residues taken from the smaller, representative group
of five (I, K, E, A, and G). Further reduction in the diversity down to three

118 Neural Networks: Applications

different amino acids did not work. This means that proteins in earlier evolu-
tionary time still may have been able to obtain stable, folded structures with
a much smaller repertoire of amino acid monomers. It should be noted that
this reduced alphabet is in no way canonical: many proteins will certainly
not be able to do without cysteines. While the recoding of sequences using
smaller alphabets (table 6.1) at first may seem purely a computational trick,
more experimental work on “essential” amino acids can possibly be exploited
in bioinformatics approaches to construct simpler sequence spaces that can
be better covered by the limited amounts of data available. The simplification
strategy arrived at here was also inspired by the phylogenetic variation in this
protein. This is exactly the type of information that has been used to improve
protein structure prediction methods, as described in the next sections of this
chapter.

In other applications the encoding does not preserve the consecutive order
of the residues in a sequence but seeks to cast the whole sequence, or large
segments of it, into global preprocessed measures that can be used as input
information in a network. For example, this is the case when the aim is to
predict the fold class or family relationship of a protein from the frequencies
of the 400 dipeptides it contains [179, 18]. In the indirect sequence encoding
used in one approach to discriminate between exons and introns, 6-mer statis-
tics, GC composition, sequence vocabulary, and several other indicators are
included as global measures in the input layer [529].

In the NN applications described below, we also show how important it is
to design good strategies for output interpretation or postprocessing. In most
cases, however, intelligent postprocessing may be as important as, or even
more important than, selecting optimal network architectures in terms of the
smallest numerical generalization error as quantified by the activities of the
output neurons. Often the number of output neurons corresponds directly
to the number of output classes, again using sparse encoding by orthogonal
vectors of zeros and ones. The output interpretation and postprocessing will
always be designed individually for each task, based on features known previ-
ously from the biological frame of reference. If it is known a priori that, say,
alpha-helices in proteins have a minimum length of four amino acids, small
“helices” that are predicted can often be removed and lead to a better over-
all predictive performance. In cases where a sequence is known to possess
a single functional site of a given type only—for example, a cleavage site in
the N-terminal signal peptide—a carefully designed principle for the numeri-
cal threshold used for assignment of sites may lead to much better recognition
of true sites and significantly lower rates of false positives. A discussion of the
relation between the analog network error and the discrete classification error
can be found in [90].

Sequence Correlations and Neural Networks 119

AUMAN

Figure 6.1: English-Reading People Will Normally Interpret the Two Identical Symbols in this
Word Differently: the first as an h and the second as an a. In biological sequences a similar
information processing capability is needed as structural and functional features most often
result from the cooperativity of the sequence rather than from independent contributions from
individual nucleotides or amino acids. The neural network technique has the potential to detect
such short- and long-range sequence correlations, and in this way complement what can be
obtained by conventional alignment and analysis by hidden Markov models.

6.2 Sequence Correlations and Neural Networks

Many structural or functional aspects of sequences are not conserved in terms
of sequence, not even when amino acid similarities are taken into account. It
is well known that protein structures, for example, can be highly conserved
despite a very low sequence similarity when assessed and quantified by the
amino acid identity position by position. What makes up a protein structure,
either locally or globally, is the cooperativity of the sequence, and not just
independent contributions from individual positions in it.

This holds true not only for the protein as a whole but also locally, say for a
phosphorylation site motif, which must be recognized by a given kinase. Even
for linear motifs that are known to interact with the same kinase, sequence pat-
terns can be very different [331]. When the local structures of such sequence
segments are inspected (in proteins for which the structure has been deter-
mined and deposited in the Protein Data Bank), they may indeed be conserved
structurally despite the high compositional diversity [74].

The neural network technique has the potential of sensing this coopera-
tivity through its ability to correlate the different input values to each other.
In fact, the cooperativity in the weights that result from training is supposed
to mirror the relevant correlations between the monomers in the input, which
again are correlated to the prediction task carried out by the network.

The ability of the artificial neural networks to sense correlations between
individual sequence positions is very similar to the ability of the human brain
when interpreting letters in natural language differently based on their lan-
guagematuralcontext. This is well known from pronunciation where, for ex-
ample, the four a’s in the sentence Mary had a little lamb correspond to three
different phonemes [480]. Another illustration of this kind of ability is shown

120 Neural Networks: Applications

in figure 6.1. Here the identical symbol will be interpreted differently pro-
vided the brain receiving the information that is projected onto the retina has
been trained to read the English language, that is, trained to understand the
sequential pattern in English language!Englishtext.

It is precisely this ability that has made the neural networks successful in
the sequence analysis area, in particular because they complement what one
can obtain by weight matrices and to some degree also by hidden Markov mod-
els. The power of the neural network technique is not limited to the analysis
of local correlations, as the sequence information being encoded in the in-
put layer can come from different parts of a given sequence [368]. However,
most applications have focused on local and linear sequence segments, such
as those presented in the following sections.

6.3 Prediction of Protein Secondary Structure

When one inspects graphical visualizations of protein backbones on a com-
puter screen, local folding regularities in the form of repeated structures are
immediately visible. Two such types of secondary structures, which are main-
tained by backbone hydrogen bonds, were actually suggested by theoretical
considerations before they were found in the first structures to be solved by
X-ray crystallography. There is no canonical definition of classes of secondary
structure, but Ramachandran plots representing pairs of dihedral angles for
each amino acid residue show that certain angular regions tend to be heav-
ily overrepresented in real proteins. One region corresponds to alpha-helices,
where backbone hydrogen bonds link residues i and i + 4; another, to beta-
sheets, where hydrogen bonds link two sequence segments in either a parallel
or antiparallel fashion.

The sequence preferences and correlations involved in these structures
have made secondary structure prediction one of the classic problems in com-
putational molecular biology [362, 128, 129, 196]. Many different neural net-
work architectures have been applied to this task, from early studies [437, 78,
262, 370, 323] to much more advanced approaches [453, 445].

The assignment of the secondary structure categories to the experimen-
tally determined 3D structure is nontrivial, and has in most of the work been
performed by the widely used DSSP program [297]. DSSP works by analysis of
the repetitive pattern of potential hydrogen bonds from the 3D coordinates of
the backbone atoms. An alternative to this assignment scheme is the program
STRIDE, which uses both hydrogen bond energy and backbone dihedral angles
rather than hydrogen bonds alone [192]. Yet another is the program DEFINE,
whose principal procedure uses difference distance matrices for evaluating
the match of interatomic distances in the protein to those from idealized sec-

Prediction of Protein Secondary Structure 121

ondary structures [442].

None of these programs can be said to be perfect. The ability to assign
what visually appears as a helix or a sheet, in a situation where the coordinate
data have limited precision, is not a trivial algorithmic task. Another factor
contributing to the difficulty is that quantum chemistry does not deliver a nice
analytical expression for the strength of a hydrogen bond. In the prediction
context it would be ideal not to focus solely on the visual, or topological, as-
pects of the assignment problem, but also to try to produce a more predictable
assignment scheme. A reduced assignment scheme, which would leave out
some of the helices and sheets and thereby make it possible to obtain close
to perfect prediction, could be very useful, for example in tertiary structure
prediction, which often uses a predicted secondary structure as starting point.

6.3.1 Secondary Structure Prediction Using MLPs

The basic architecture used in the early work of Qian and Sejnowski is a fully
connected MLP with a single hidden layer [437]. The input window has an odd
length W, with an optimal size typically of 13 amino acids. Orthogonal encod-
ing is used for the input with an alphabet size |A| = 21, corresponding to 20
amino acids and one terminator symbol to encode partial windows at the N- or
C-terminal. Thus, the input layer has 13 x 21 = 273 units. The typical size of
the hidden layer consists of 40 sigmoidal units. The total number of parame-
ters of this architecture is then 273 x40+40x3+40+3 = 11,083. The output
layer has three sigmoidal units, with orthogonal encoding of the alpha-helix,
the beta-sheet, and the coil classes. The output represents the classification,
into one of the three classes, of the residue located at the center of the input
window. The classification is determined by the output unit with the greatest
activity, an interpretation strategy known as the winner-take-all principle. This
principle acts as an extra nonlinear feature in the relation between the input
and the final output classification. Networks without hidden units will there-
fore, when interpreted by the winner-take-all principle, not be entirely linear.
Another way to put it is that the internal representation in the hidden layer of
the sequence input does not need to be perfectly linearly separable. As long
as the distance to the separating hyperplane is smallest for the correct output
unit, it does not matter that the input representation ends up slightly in the
wrong decision region.

The networks are initialized using random uniform weights in the
[-0.3,0.3] interval, and subsequently trained using backpropagation with
the LMS error function (note that a normalized exponential output layer with
the relative entropy as error function would have been more appropriate).
The typical size of a training set is roughly 20,000 residues extracted from

122 Neural Networks: Applications

the Brookhaven Protein Data Bank (PDB). Thus the ratio of parameters to
examples is fairly high, larger than 0.5. Today many more protein structures
have been solved experimentally, so that a similar database of secondary
structure assignments will be much larger.

When training on protein sequences, a random presentation order of in-
put windows across the training set is used to avoid performance oscillations
associated with the use of contiguous windows. With this architecture, per-
formance goes from a 33% chance level to 60%, after which overfitting begins.
More precisely, the overall correct percentage is Q3 = 62.7%, with the cor-
relation coefficients Cy = 0.35, Cg = 0.29, and C. = 0.38 [382]. As a con-
sequence of the imbalance in the amount of helix, sheet, and coil in natural
proteins (roughly found in proportions 0.3/0.2/0.5), mere percentages of cor-
rectly predicted window configurations can be bad indicators of the predictive
performance. A much used alternative measure, which takes into account the
relation between correctly predicted positives and negatives as well as false
positives and negatives, is the correlation coefficient [382],

_ (PxNx) — (N%PY)
Ny + NNy + PL) Py + ND) (Py + PY)

Cx 6.1)

where X can be any of the categories helix, sheet, coil, or two or more of these

categories merged as one. Py and Ny are the correctly predicted positives and

negatives, and P){ and N)J; are similarly the incorrectly predicted positives and

negatives. A perfect prediction gives C(X) = 1, whereas a fully imperfect one
gives C(X) = —1 (for a more detailed discussion of this and other performance
measures, see section 6.7 below).

The authors conducted a number of experiments to test architectural and
other variations and concluded that increasing the size of the input beyond 13
or adding additional information, such as amino acid hydrophobicities, does
not lead to performance improvement. Likewise, no improvement appears
to result from using finer secondary structure classification schemes, higher-
order or recurrent networks, or pruning methods.

The main improvement is obtained by cascading the previous architecture
with a second network that can take advantage of the analog certainty values
present in the three output units and their correlations over adjacent posi-
tions. The second network also has an input window of length 13, correspond-
ing to 13 successive outputs of the first network. Thus the input layer of the
top network is 13 x 3. The top network also has a hidden layer with 40 units,
and the usual 3 output units. With