المحاهلد الصنـاعيـة الثانويـة

الحقيبة التلدريبية:
مختبر الكترونيـات القوى
في تخصص الكترونيات

المقدمة

الحمد للّه وحده،والصـلاة والسـلام على من لا نبي بعده، محمد بن عبداللّه وعلى آله
وصـحبـه ، وبعـل :
تسعى المؤسسة العامة للتدريب التقني والمهني لتأهيل الكوادر الوطنية المدربة القادرة على شغل الوظائف التقنية والفنية والمهنية المتوفرة يٌ سوق العمل، ويأتي هذا الاهتمام نتيجة للتوجهات السديدة من لدن قادة هذا الوطن التي تصب يٌٌ مجملها نحو إيجاد وطن متكامل يعتمد ذاتياً على الله ثم على موارده وعلى قوة شبابه المسلح بالعلم والإيمان من أجل الاستمرار
 وقد خطت الإدارة العامة لتصميم وتطوير المناهج خطوة إيجابية تتفق مع التجارب الدولية المتقدمة يٌْ بناء البرامـج التدريبية، وفق أساليب علمية حديثة تحاكي متطلبات سوق العمل بكافة تخصصاته لتلبي متطلباته ، وقد تمتلت هذه الخطوة يٌٌ مشروع إعداد المعايير المهنية الوطنية الذي يمثل الركيزة الأسـاسية يٌِ بناء البرامج التدريبية، إذ تعتمد المعايير يون بنائها على تشكيل لجان تخصصية تمتل سوق العمل والمؤسسة العامة للتدريب التقني والمهني بحيث تتوافق الرؤية العلمية مع الواقع العملي الذي تفرضه متطلبات سوق العمل، لتخرج هذه اللجان پٌ النهاية بنظرة متالكاملة لبرنامج تدريبي أكثر التصاقاً بسوق العمل، وأكثر واقعية وٌ تحقيق متطلباته الأسـاسية. وتتتاول هذه الحقيبة التدريبية " مختبر الكترونيات القوى " ملتدربي دبلوم " الكترونيات " للمعاهد الصناعية الثانوية موضوعات حيوية تتـاول كيفية اكتساب المهارات اللازمة لهذا التخصص.
والإدارة العامة لتصميم وتطوير المناهج وهي تضع بين يديك هذه الحقيبة التدريبية تأمل من اللّه عز وجلً أن تسهم بالشكل مباشر پٌ تأصيل المهارات الضرورية اللازمة، بأسلوب مبسط يخلو من التعقيد، مدعم بالتطبيقات والأشكـال التي تدعم عملية اكتساب هذه المهارات.

والله نسأل أن يوفق القائمين على إعدادها والمستفيدين منها لما يحبه ويرضاه؛ إنه سميع

> الإدارة العامة لتصميم وتطوير المناهج

رقّم الصفحة	الموضـــوع
1	المقلدمة
2	الفهرس
6	التههيل
8	الوحلدة الاولى
9	ثنـائيـاتالقلدرة
11	
12	! إجراءات الأمن والسلاملة عنلد دراسلة ثنـائيـات القدرة
13	مقدمـة
14	1-
17	FORWARD BIAS حالة الانحياز الأمامي -
17	Reverse Bias حالة الانحياز العكسي -
18	(دوائر التقويم
19	2
19	SCHOTTKY DIODE
20	2/ب الثائي النفقي TUNNL DIODE
20	ثنائيات ذات صفات خاصة والتي صمهت لتستعهل فِّ تطبيقات مختلفة
20	VARIABLE CAPACITANCE DIODE ألموحدات متفيرة السعة بالجهد
21	ب/ ثنائي تتظيم الجهد
22	ج/
22	د/ ثنائي الباعث للضوء (LED)
24	تمرين عملي رقم (1) (ثنائيات القدرة)
25	أسئلة تقويم

رقم الصفحة	الموضـوعو
31	الوحلدة الثانية
32	الموحد السيليكوني المحكوم (الثايرستور)
33	السلوك اللهني اللي يجب التقيد به خلال التلريب على مفردات هلده الوحلدة التلدريبية
34	إجراءاتالالمن والسلامة عند دراسلة تطبيقات الثايرستور
35	\|الموحد السيليكوني المحكوم (الثايرستور)
36	تحديد أطراف الثايرستور
39	تمرين عملي رقم (1) (قدح الثايرستور وخواصه)
48	ترانزيستور أحادي الوصلة (UJT) UNIJUNCTION TRANSISTOR
49	\|استخدام ترانزيستور أحادي الوصلة (UJT) يٌّ التحكم بالثايرستور
49	ترانزيستور أحادي الوصلة كمذبذب استرخاء
50	قدح الثايرستور بواسطة مذبذب الاسترخاء
51	تمرين عملي رقم (2) (قدح الثايرستور بواسطة مذبدبات الاسترخاء)
57	أسئلة تقويم
58	تطبيقات عناصر القدرة هِّ دوائر الثايرستور
58	- التحكم الضوئي بالثايرستور
59	-
61	تمرين عملي رقم (3) (التحكم الكهروضوئي ٌِ الثايرستور باستخدام المقاومة الضوئية (LDR
65	أسئلة تقويم

رقّم الصفحة	الموضـــوع
66	الوحلدة الثالثة
67	التزيــكاكوالتطبيقات المهلية
68	السلوك المهني اللني يجب التقيل به خلال التلدريب على مفردات هله الوحلة التلريبيلة
69	! ججراءات الأمن والسلامهة عند دراسلة تطبيقات التزيـاك
70	The TRIAC الترياك
71	فحص الترياك
72	قدح الترياك
76	The DIAC الدياك
77	استخدام الدياك يفّ قدح الترياك
78	تمرين عملي رقم (1) (قدح الترياك بواسطة الدياك)
82	أسئلة تقويم
83	دائرة التحكم
83	شرح عمل الدائرة
86	تمرين عملي رقم (2) (دائرة مفتاح خافض شدة الإضاءة DIMMER SWITCH)
91	الوحدة الرابهة
92	التحكم في سرعة محركات التيـار المستهر
93	السلوك المهني اللني يجب التقيل به خلال التلريب على مفردات هله الوحلدة التلريبيلة
94	إجراءات الأمن والسلامل عنلد دراسة دوائر التحكم في سرعة محركات التيـارالمستمر
95	مقدمـة
96	تركيب محركات التيار المستمر
97	مبدأ عمل محركات التيار المستمر
98	التحكم بسرعة محركات التيار المستمر

رقم الصفحة	الموضــوع
100	التحكم باستخدام مقطعات التيار المستمر
101	تعريف المقطع (DC CHOPPER)
101	أساسيات دائرة التحكم بالهمطع والشكل الموجي
103	SCR التحويل بين الوصل والقطع للثايرستور
105	تمرين عملي رقم (1) (التحكم هٌ سْرعة محرك (DC) باستخدا
110	أسئلة تقويم
111	الوحدة الخامسة
112	التحكم في سرعة محركات التيار المتزدد
113	
114	إجراءاتالأمز والسلاملة عند دراسة التحكم في سرعة محركات التيار المتّدد
115	مقدمة
116	مبدأ عمل المحرك الحثي أحادي الوجه
118	التحكم بسرعة المحركات أحادية الطور
119	التحكم المفتوح المسار أحادي الوجه لمحرك (AC) باستخدام ترياك ودياك
119	طريقة عمل هذه الدائرة
120	تمرين عملي رقم (1) (التحكم يٌ سـرعة محركات التيار المتردد (AC) يٌ نظام تحكم مفتوح النظام)
125	أسئلة تقويم
126	المراجع

أشـكر الله وأحمده أولاً وآخراً... وأصلي بعد ذلك على من جعله الله سـبـاً لنعمـائه على خلقه رسول اللّه ونبينا هحمد صلى الله عليـه وسلـم وآله وصحبـه والتابعـين الذين حملوا هذا الدين العظيم إلينـا فجزاهـم الله خيراً ... - إن أهم مـا يميز العصر الحاضر أنه عصر الإلكترونيات... وإن علم الإلكترونيات هو أصل العلوم الحديثة يِ عصـرنا هذا فالا تجد عمـلاً ولا مجالاً من مجالات الحا الحياة إلا ويحتاج إليها. ولما لهذا العلم من دور أسـاسي ٌِْ تسيير العديد من الآلات والأجهزة المستخخدمة يٌ الكثير ِّْ مجالات الحياة ومـا تحقق من تطوير وتقدم وٌِ هذا العلم قد مكن البشرية من تحقيق الكثير من الإنجازات، كانت فِغ عصور سـابقة تعد من المستحيل تحقيقها وتعتبر ضرباً من الخيال. وما زال علم الإلكترونيـات يتطور بسرعة هـائلة وتطبيقاته غزت كل مجالات الحياة. فعلى سبيل المثال ِِْ مجال الاتصـالات نجـد أن أجهزة الإرسـال والاستقبال تتكون من دوائر إلكترونية وكذلك يٌ مجال الحواسب الإلكترونية فإن التركيب الأسـاسي للحاسب يتـكون من عناصر ودوائر إلكترونية وكذلك تستخدم العناصر الإلكترونية ِيٌ هجال التحكم يِّ كثير من التطبيقات الصناعية .. وعلم الإلكترونيـات يختص بدراسـة العناصر الفعالة مثل الدايودات والترانزستورات والدوائر المتكاملة "IC". بينمـا تتم دراسـة العناصر

غير الفعالة مثل المقاومات والملفات والمكثفات وِ علم الهندسـة الكهربيـة. - ومهجال الهندسـة الإلكترونية ينقسم إلى ثلاثة أقسـام هي: مجال أسـاسيات الإلكترونيات وهجال إلكترونيات القوى وهجال التحكم. ومجال أسـاسيات الإلكترونيات يتعامل مع دراسـة عناصر أشبـاه الموصـلات والدوائر التي تعمل مـع مستوى الطاقة المنخفضة.
 مجال التحكم فٌِ القدرات العالية وهذه العناصر مصنعة من أشباه الموصـلات مثل الثايرستور (SCR) والترياك وهي تتميز بسرعة عالية يٌ عملية الفتح والغلق الإلكتروني ولذلك فهي تستخخدم ٌِْ تطبيقات التحكم بالقدرة المستتمرة والمتتاوبة.

وسـوف نتتاول دراسـة هذه العناصر وطرق استخخدامها ٌٌِ الحياة العملية وبعض التطبيقات العملية مثل التحكم يوْ المحركات الكهربية من خلال دراسـة هذه الحقيبة الدراسيـة لمقرر إلكترونيـات القوى. - وباكتمـال دراستهها ، أرجو من الله التوفيق لجميع المتدربين والوصول إلى الهدف المنشود .

الوحدة الأولى

ثـائيات القدرة

اسه الوحلدة: ثنـائيـات القلرة

الجــــــلارة: قـدرة المتدرب على دراسـة خواص ثنـائيات القدرة وتطبيقاتها العهليـة

الأهداف :
1/ أن يصنف المتدرب الأنواع المختلفة من الثنائيات ومعرفة مجال استتخدام كل نوع.
2/ أن يميز المتدرب بين الثنائيات المنخفضة القدرة والعالية القدرة من حيث الشكل.

والرمز ومجالات استتخدام كل نوع.

4/ أن يطبـق المتـدرب تـمرينـا عمليـا لتتحديـد نـوع قــدرة الثــائي وذلـك بقيـاس شــدة تيـار الخرج وحسـاب القدرة.
5/ أن يتقيــد المتــدرب بالسـلوك المهـني السـليم ويحــرص علـى اتبـاع إجــراءات الأمـن والسـلامة أثـاء تـدربها ٌِْ الورشـة. مستوى الأداء المطلوب: أن يصل المتدرب إلى إتقان الجـدارة بنسبـة 90٪ الوقتت المتوقّع للتلدريب على الجدارة: (18) سـاعة.

الوسـائل المسـاعلدة:

- الاستعانة بـأنواع مختلفة من ثنائيـات السـيلكون والجرهـانيوم ذات القـدرة المنـخفضـة والعاليـة.
- الاستعانة بكتاب البيانات (DATA SHEET) الخاص بالثنائيات.
- الاستتعانة ببعض الأنواع من الثنائيات المختلفة مثل:
(ثـائي الزينر - الثنائي الضـوئي LED - ثــائي الليـزر - ثنـائي شـوتكي - الثــائي
النفقي)
- وسـائل الأمن والسـلامة.
- جهاز عرض علوي (DATA SHOW).

متطلبـاتات الجلارة:

أن يكون المتدرب متمـكناً من التمييز بـين الأنواع المختلفة من الثنائيـات ومعرفـة مـجـال
 مفردات هذه الحقيبة التـريبيـة متبعاً إجراءات الأمن والســلامـة والسـلوك المهني السـليمر .

السلوك المهني اللذي يجب التقيد به خلال التدريب على مفردات هله الوحدة التلدربيية

إن تطبيقك للسلوك المهني السليم أثناء تدربك على مفردات هذه الوحدة هو الطريق الأمثل لنجاحك وتفوقك واكتساب احترام وتقدير الآخرين وتجنبك للحوادث المحتمل حدوثها أثناء تواجدك ِِّ بيئة العمل ومـن هذه السلوكيات مـا يلي:

1 / التقيد بالزي المناسب المخصص للتدريب مثل حذاء السـلامة ونظارات السـلامة أثتاء العمل ِّخْ الورشـة أو المختبر وهذا دليل وعيك.

2/ احرص على تتظيم وترتيب العدد والأدوات بشكل منظم ومرتب وٌِ أماكنها الخاصة.
3/ المداومة على المحافظة على نظافة الورشـة والمختبر ومـكان العمل. 4/ الالتزام بالمحافظة على الهدوء والنظام پٌِ الورشـة والمختبر وومكان العمل . 5 / الحرص على حسن التعامل مـع المدربين والتعاون معهم. 6/ تقيد بالإرشـادات والأنظمة المتبعة يٌِ الورشـة والمختبر ومـكان العمل. 7/ الحرص على حسـن التعامل مع زمـلائك المتدربين والتعاون معهم. 8/ التحلي بالأخـلاق والتعاليم الإسـلامية يٌ تعاملك وأثناء عملك. 9/ عنـد رغبتك يِّ التعرف على أي جهاز جديد ٌِ الورشة اطلب مسـاعدة المدرب لتوضيحاه لك. 10 / لا تخرج من الورشة دون إذن المدرب. 11 / حافظ على وقت التدريب بحضورك مبكراً ومغادرتك مع نهاية الوقت. 12 / حافظ على العدد والأدوات من الضياع أو التلف فهي مسؤوليتك.

\triangle

إجراءاءاتالأمن والسلامة عنلد دراسلة تطبيقات ثنـائيـات القدرة

1 / تقيد بلباس التدريب داخل الورشة والتزم بهتطلبـات السـلامة الأخرى .
2 2/ تقيد باستخدام العدد والأدوات حسـبها أعـدت لـه ولا تستخدم أداة خاصـة لعمـل معـين ون عمل مغاير

3 / تدرب على استخدام طفايات الحريق.
4 ض 14 / احذر حدوث تماس مباشر بين جسم الكاوية الساخن وكابل توصيل التيار الكهرجي لها

6 / احذر من لمس الأحهاض الخاصة بعملية تحميض اللوحات واحرص على لبس القفازات. 7 / احذر من اسنتشثـاق الأبخرة المتصـاعدة مـن عمليـة التحمـيض وإن كانت بسـيطة واحـرص ع على لبس الكهمامات

8 / احذر عند تسخنين الماء المستخدم و2 عملية التحميض وتجنب المزاح مع زمـلائك . 19 لا تعبث بالعدد والأدوات فِ الورشة وقد تتسبب ي2 حوادث مؤسفة لك ولغيرك لا قدر اللّه. 10 /كن على حذر يو نقل الأدوات والعدد أو مناولتها لزهـلاءك وناولها يداً بيد بطريقة آمنة. 11 / تجنب المزاح حو الورشة وأثناء التدريب حتى تحهي نفسـك وزهـالاءك من الخطر . 12 / تقيد بإرشادات المدربين والمشرفين على تدريبك و2 الورشة والتدريب الميداني فهـذا يجنبك الحوادث بإذن اللّه تعالى.

13 / عند الانتهاء من العمل احرص على تتظيم وترتيب العدد بش الخاصة

المقدمة

يتكـــون الثــــائي مـــن طـــرفين أحـــدهـما المصــــد (ANODE) والآخــــر المهــبط (CATHODE) وِّ اتجاه واحد، ويهنع مروره وِْ الاتجاه العكسي .

ويــتم مــرور التيــار داخـل الثتـائي عنــدما يوصـل الأنـود بجهـــد موجـب والكــاثود بجهــــ سـالب

ويمـكـن تصــنيف الثنائيــات مــن حيــث القـــدرة إلى ثـائيـــات منـخفضـــة القــدرة
وثتائيــات عاليــة القـــدرة، وكــنذلك تصــنف الثنائيــات مــن حيــث الــتردد إلى ثنائيــات منخفضــة الـتردد وثنائيـات عاليــة الـتردد وســوف نقـوم وِّ هــذه الوحــدة بدراســة الثنائيـات المنخفضــة القـدرة والعاليـة القــدرة هـع التمييـز بــين أنـواع هــذه الثتائيـات ومعرفـة خصـــائص كل منها.

المستخخدمة ثنائيـات عالية القدرة .
وكذلك سـوف نتعرض لدراسـة أنواع من ثـائيات التردد المنخفض والتردد العالي، ونلقي الضوء على أنواع أخرى من الثنائيات ذات الصفات الخاصة.

1/ ثنـائيـات القدرة المنخفضة والعـالية:

يوجد كثير من أنواع الثنائيات والتي عرفت مـن قبل مثل ثـائيـات السيلينيوم وثنائيـات
أكسيد النحـاس ومـع تقـدم أبحـاث أشـباه الموصـلات فإنـه تم التوصـل إلى ثـائيـات السيلكـون والجرمانيوم .

وبمقارنــة هــذه الثنائيـات بثـائيـات السـيلينيوم وثـائيـات أكسـيد النحـاس فـإن ثـائيـات
أشـبـاه الموصـلات تتميـز بــرور تيـار عـالٍ وقيهـة تحهـل أعلـى للجهــد العكســي الـذي يمـكـن تطبيقه على الثنائي.

ويمكـن تقسـيم ثنائيـات أشـباه الموصــلات حسـب كميـة التيـار الـتي تمـر خلالها إلى
الحمل وبالتالي مدى تحملها للقدرة إلى قسهـين هـما : ثـائيات منخفضــة القـدرة وثنائيـات عاليـة القدرة .

والثنائيات المصنعة من السيلكون والتي يمكـن أن يمـر خلالها تيـار إلى الحمـل بقيمـة
 تستخدم پٌ دوائر تقويم التيار المتردد ذي القدرة العاليـة والشــكـل رقـم (1) يوضـح ثـــائي عـالي

القدرة .
وبالتـالي فـإن ثنائيـات السـيلكون الـتي يمـر خـالهـا تيـار إلى الحهـل بقيهــة أقـل مـن (200MA) فهي ثـائيات منخفضـة القدرة، الشــكل رقمى (2) يوضـح ثــائي القـدرة المنخفضـة
 الثنائيات تستخدم يٌ دوائر تقويم التيار ذي القدرة المنخفضة.

الشكل رقم (2)
ثـائي منخفض القدرة

الشكل رقم (1)
ثنائي عالي القدرة

ولقد سبق دراسـة تطبيقات عملية على استخخدام الثنائيات المنخفضة القدرة ٌِ الفصول الدراسيـة السـابقة مثل تطبيقات دوائر الكاشف والتي تتعامل مـع الإشـارات المنخفضـة ،
 ورمز الثنائي مبين كمـا يٌٌ الشكل رقم (3) .

أخي المتلدرب:

لا تستخدم أداة مـكان أخرى واحرص على استخخدام الأداة للغرض ! ! !

وتصـنـع ثـائيـات السـيلكون يِّ أشــكـال وأحجــام متعـددة وثنـائيـات السـيلكون ذات
 تـكـون ثـائيـات السـيلكون ذات القـدرة العـاليـة كـبيرة الحـجـم وهـي مبينـة يِّ الثـــكل رقـم 4- ب) وبعضـها يصـنـع بنــلاف معـدني ولـه رأس بصـمولة ليثبـت وٌ الشـاســية وذلـكـ ليعهـل كمسرب حراري, وهي مبينة يٌ الشكل رقم (4- ج) .

الشكل رقم (4)

- ولقد سبق أن درسنا خواص الموحد (الثنائي) وعرفنـا أن لـه حالتي انحيـاز همـا :

> أ- حـالة الانحيـازالأمامي FORWARD BIAS

وفيها يوصل الثنائي بجهد مستـر (DC) بحيث يتصل القطب الموجـب بـالأنود (A)
والقطب السـالب بالكاثود(K). وِوْ هـذه الحالة سـوف يــر التيـار مـن الأنود إلى الكـاثود عبر الوصلة وتزيد شـدة التيـار بزيـادة الجهـد الأمـامي وعلـى ذلـك تصـبح مقاومـة الثــائي ِوِ هذه الحالة صغيرة جداً .

ب- حاله الانحيـازالعكسي REVERSE BIAS

وٌِِ هــنه الحالـة يتصـل القطب الموجـب للمصـدر بالكـاثود (K) والقطب السـالب

- والشكل رقم (5) يبـين العلاقة بين الجهد والتيار وٌِ الثنائي (السيليكوني والجيرهـانيوم)

- ومـع ذلـك فإنـه إذا زاد الجهـد العكسـي عـن قيهـة معينـة فـإن التيـار يمـر بصـورة مفاجئـة،

دوائر التقويم RECTIFYING CIRCUITS :

- تقوم دوائر التوحيد بتحويل التيـار المتفير (AC) إلى تيـار ثابـت (DC) ويمـكن تقسـيمها إلى دوائر توحيد نصف موجة ودوائر توحيد موجة كاملة، وتبين الأشكـال رقم (6- أ)، (6- ب) ، (6- ج) علـى الترتيـب موحـدات نصـف موجـة وموجـة كاملـة باسـتختدام محـول بنقطة منتصف ، وموجة كاملة باستخخدام القنطرة .

(i)

(ب)

الشكل رقم (6)

أخي المتدرب:

تركيزك يِ التدريب يزيد مـن قـدراتك المهاريـة ويقيك من المخاطر

2 / ثنـائيـات التزدد المنخفض والتزدد والعالي:

- لقد قمنا هٌِ الجزء السابق من هذه الوحدة بدراسة الثتائيات المنخفضـة القـدرة والعاليـة القدرة وتطبيقاتها مثل دوائر التوحيد.
 لتستعمل يٌٌ تطبيقات مختلفة عن الثنائيات العادية فهنها مـا يستخدم يٌ مْ مجال الـدوائر ذات التترددات المنخفضـة ومنهـا مـا يستخخدم مـع الـدوائر التي تعهـل ٌٌِ مجـال الـترددات العالية

ومز أهم هلذه الأنواع هي:

2/أ ثنـائي شوتكي SCHOTTKY DIODE - يتكون هنا الثتائي من وصلة من جزأين أحدهمـا معدنية والأخرى شبه موصلة. أي وصلة (معدن - شبهه موصل) كما يوضح الشكل رقم (7).

الشكل رقم (7)

ثــائي شـوتكي هـو عنصـر أحـادي القطبيـة حيـث المصــد(A) مصـنوع مـن المـــدن والمهبط(K) مصنوع من مادة شبة موصلة مـن نوع (N)، والمــدن لا يملك ثقوب، لــنـلك ليس هنـاك طبقـة اسـتـزاف أو حـاجز سـوف تظهر ، مهـا يتيح للثـائي أن يقوم بعمليـة
 توحيد الإثارات العالية التردد .

2/ب الثنائي النفتي TUNNEL DIODE :

- عنــد تكــوين وصــلات ثـائيــة بأشــبـاه موصــلات بهـا نســبه عاليــة هـن الشوائـب 10^{20} atom / cm^{3} ثــائي (إيزاكي) ذو الصـفـات كهربائيـة المميـزة والـتي تعتمـد علـى أن اتسـاع الوصـلة يكون قليلاً جداً نظراً لتركيز الشوائب.
- ورمز الثنائي ومنحنى الخواص موضتح بالشكل رقم (8)، وطبقاً لمنحنى الخواص فإن زيـادة الجهـد الأهـامي (VFF) مـن القيهــة (0.065V) إلى (0.35V) تـؤدي إلى انخفـاض التيـار الأمـامي (I) من (2MA) إلى (0.3MA)، وبذلك نجــد أن زيـادة الجهـد الأمـامي يصطحبها نقص يْ التيار الأمامي مهـا يعطي مـا يسـى بالمقاومـة السـالبة، وباسـتفـلال هــذه الخاصـية ونتيجـة لصـفـات الثتـائي الخاصــة فإنـه سيسـتخخدم وْ العديــد مـن التطبيقـات مثــل المذبـذبات العاليـة الـتردد ومـكـبـرات الموجـات الدقيقــة وتطبيقـات التوصيل العاليـة السرعة والشكل رقم (8) يوضـح الرمز والشكل للثنائي النفقي .

الثكل رقم (8) الثنائي النفقي

ثنـائيـات ذات صفـات خاصلة والتي صهمت لتستعمل في تطبيقات مختلفة ومنها ما يلي :

أ/ الموحلات متفيرة السعةّ بـالجهل VARIABLE CAPACITANCE DIODE

 يسـمى بالاســم المختصـر فاريكـاب (VARICAP) أو فــاراكتور(VARACTOR). وتكـون حالـة المنطقـة الخاليـة هـن حـامـلات الثـحنـة للوصـلة الثنائيـة كهـا ـٌِ الشــكل رقـم (9- أ)، واتسـاع هــنه المنطقـة يزيـد كلمـا زاد الجهـد العكسـي. ومـن خـلال هـذه الحالـة يمكننا أن ننظر إلى الوصلة الثنائية كمـا لو أنها مكثف متغير السعة بالجهد، حيث إنقيمة سعة هذا المكثف تتـاسب عكسياً مع عرض المنطقة الخالية (W) الذي يعتمد على قيمة الجهد العكسي، ورمز الثنائي مبين ٌِِ الشـكل رقم (9 - ب) .
 دوائر الـتحكـم عـن بعـد ودوائـر التوليـف الإلكترونـي والتعـديل السـعوي ٌِ أجهـزة الإرســال والاستقبال وكذلك يمكن استخدامهه كمـكث متغير السعة بالجهد يِّ دوائر الرنين

الشكل رقم (9) موحدات متغيرة السعة بالجهد

ب/ ثنـائي تنظيم الجهل VOLTAGE REGULATOR DIODES : ثنائيات تتظيم الجهد تسـى أيضاً بثنائيات زينر (ZENER DIODE) هذا النوع من
 دوائر التغذية للـجهد المستتمر وهـذا الثتـائي عبـارة عـن وصـلة ثـائيـة تعهـل وِّ منطقـة الانحيـاز
 بالشكل رقم (10) .

الشكل رقم (10) ثـائي تتظيم الجهد

ج/ : LASER DIODE :

يستخدم ثـائي الليزر يِّ نظم الاتصـالات الضـوئية التي تحتاج إلى كميـة كـبيرة مـن

 يـتم تقويته عن طريق الانعكـاس مـن المـرآتين ويخـرج ليكـون شـعاع الليـزر والشــكل رقـم (11) يوضح تركيب الثنائي .

د/ ثـنائي الباعث للضوء (LED) :

هو ثـائي ذو وصلة ثنائية مصنوعة من مادة مثـل جـاليوم أرسـينيد (GAAS) أو جاليوم فوسفايد (GAP) له خاصية انبعاث الضوء عند مرور تيار أمامي ويستخدم (LED) پٌِ قراءة
 التطبيقات .

وتوجد ثنائيات باعثة للضوء بألوان مختلفة مثل الأحمر والبرتقالي والأصفر والأخضـر والأزرق ويعتمد لون الضـوء المنبعث مـن الثــائي علي نـوع المادة المصنـع منها الثــائي. وتتميـز
 الطول, الطرف القصير هو المهبط (K) والطـرف الطويل هـو المصـد (A A والشــكـل رقم (12) يوضح الرمز والأشكال العملية للثائي الباعث للضوء.

الشكل رقم (12) ثنائي الباعث للضوء

تـريزن عملي

أخي المتدرب:

يجب الانتباه عند استخخدام ثـائي منخفض القدرة وعند توصيل أحمـال ذات قيم صغيرة فإن الثتائي سوف لا يتحمل شدة التيار الذي يقوم الحمل بسـحبة وربما 1 يؤدي إلى تلفه، لذلك ينصح بوضع فيوز (مصهر) قبل الخرج ذي قيمة (400mA).

(1)	رقّم التمرين
ثنــائيات القلرة	اسهم التهريز
1/ التمييز بين الثنائيات المختلفة القدرة عن طريق الشكل والحجم. 2/ التعـرف علـى نـوع الثـــائي (مـنـخفض أو عـالي القــدرة) مـن خــلال اسـتتخدام كتاب البيانات (DATA SHEET). 3/ حساب قدرة الحمل (PL) وتحديد قدرة الثنائي (عالي أو منخفض القدرة).	الهدف هن التمرين
1/ لوحة اختبار TEST BOARD. أو دائرة مطبوعة . 2/ جهاز فولتميتر 3/ جهاز أميتر .	الأدواتالمستخلدمة
1 / محول خافض للجهد من (240V إلى الم 12-0-12- له شدة تيـار حتى (2A). 3/ عدد من المقاومات (100 $/$ ($10 / 2.5 \mathrm{~W}$) ، ($150 \Omega / 2 \mathrm{~W}$) ، ($220 \Omega / 1.5 \mathrm{~W}$) (مقاومات حسب المتوفر لديه . 4/ مكثف كيمائي (4 ($2200 \mu \mathrm{~F}-35 \mathrm{~V}$) 5/ فيوز (400MA (الخامات

1- المخطط النظري للتمريز:

2- المخطط العملي للتمرين (مقتزح)

3- اللائرةالتنفيلزية :

4- القيـاساتوالنتتائج :
أ- ثـائيـات عالية القدرة (1N5404) :

1/ وصـل مصــدر الجهـد إلى الـدائرة مـع توصـيل جهـاز الأمـيتر بـين النقطـتين (E,D) وكــنلك الفولتميتر بين النقطتين (C , E) .

$$
\begin{aligned}
& \text { 2/ قم بتوصيل مقاومة الحمل حسب القيم الموضـحة وٌِ الجدول رقم (1) . } \\
& \text { 3/ سـجل قيمة قراءة جهاز الاميتر وجهاز الفولتميتر وِْ كل حالة. }
\end{aligned}
$$

4/ احسـب قيمـة القـدرة المنـاظرة لكـل قيمـة للتيـار حسـب قيمـة RL وذلـك باسـتخدام القـانون التالي:
5/ سـجل النتائج جِّ الجدول رقّم (1).

$$
P_{L}=I^{2} \times R_{L}
$$

جدول النتائج رقم (1): هِّ حالة الثنائي رقم: 1N5404

${ }_{\text {, }} \mathrm{L}_{\mathrm{L}}$ (Ω	$\begin{aligned} & \Omega 220 \\ & W 1.5 \end{aligned}$	$\begin{aligned} & \Omega 150 \\ & \mathrm{~W} 2.0 \end{aligned}$	$\begin{aligned} & \Omega 100 \\ & W 5.2 \end{aligned}$	$\begin{aligned} & \Omega 56 \\ & \mathrm{~W} 5 \end{aligned}$	$\begin{aligned} & \Omega 33 \\ & \text { W5 } \end{aligned}$	$\begin{aligned} & \Omega 22 \\ & \mathrm{~W} 7 \end{aligned}$	$\begin{aligned} & \Omega 10 \\ & \mathrm{~W} 7 \end{aligned}$
, V_{O} (V							
1 L (MA							
${ } \mathrm{P}_{\mathrm{L}}$ (W							

6/ استخخدم كتاب البيانات الخاص بالثتائيات (DATA SHEET) لتحديد مواصفات الثنائيات التالية .

رقم الثنائي	نوع الثتـائي	جهد التشغيل	أقصى تيـار	تحديد قدرة الثـائي	الثنائي المكافئ ل
N3101					
N40011					
N54041					

الاستنتـاج:
من خلال نتائج التجربة ومن خـلال بيانات (مواصفات)الثنائي التي حصلت عليها من كتاب (1N5404) بيأنـة هـن ثـائيـات (DATA SHEET) القدرة العالية

أخي المتلدرب:

نتيجـة لشــدة التيـار العـالي الـذي يمـر خـلال مقاوهـات الحهـل والقـدرة الـتي تققــد داخلـهـا فـإن ذلــك يـؤدي إلى ارتقـاع حـرارة المقاومـات وبالتـالي ينصـح بعـدم تـرك المقاوهـة وِ الـدائرة لفـترة كبيرة ويجـب اسـتـبد الها بـأخرى بعــ أخذ النتائج مباشرة

ب- ثنـائيـات منخفضة القدرة (1N4001):

شـدة التيـار يكون أقل من 200MA .

2/ قم بإجراء الخطوات (من 2 إلى5) مرة ثانيـة على الثـائي الجديد وسـجل النتائج التي
حصلت عليها يِّ الجدول رقم (2):
جدول النتائج رقم (2): يِّ حالة الثنائي الجديد رقم (1N4001)

$\mathrm{R}_{\mathrm{L}} \quad(\Omega)$	$\begin{gathered} \Omega 220 \\ \text { W } 1.5 \end{gathered}$	$\begin{aligned} & \Omega 150 \\ & \text { W2.0 } \end{aligned}$	$\begin{gathered} \Omega 100 \\ \text { W } 5.2 \end{gathered}$	$\begin{aligned} & \Omega 56 \\ & W 5 \end{aligned}$	$\begin{aligned} & \Omega 33 \\ & \text { W } 5 \end{aligned}$	$\begin{aligned} & \Omega 22 \\ & W 7 \end{aligned}$	$\begin{aligned} & \Omega 10 \\ & W 7 \end{aligned}$
V_{O} (V)							
I_{L} (A)							
P_{L} (W)							

3/ استتخدم كتاب البيانات (DATA SHEET) وِّ تحديد مواصفات الثـائي الجديد رقم
(1N4001)

رقم الثنائي	نوع الثـائي	التشغيلـ	تيـار أقصى	تحديد قدرة الثنائي	الثنائي المكافئ لـه
(1N4001)					

يهكنك الاستدلال عمليا على ما إذا ككان الموحد عالي القدرة أو منخفض القدرة من درجة حرارة الموحد أثناء ستحبة تيارا أعلى من 200ma فإذا ارتفعت درجة حرارته

بدرجة لا تتحملها يدك دل ذلك على أن الثنائي خاصر بالقدرة المنخفضة والعكسر إذا
 كانت درجة حرارة الثنائى عادية دل على أن الثنائى خاص بالقدرة العالية.

أسئلة تققويم

س1 : أكمل ما يلي:

و ثــائيـات
أ/ تصنف الثتائيات من حيث القدرة إلى ثــائيات
التردد ، وثـائيـات
وعندمـا تصنف من حيث الترددد فيوجد ثـائيات
. التردد .
\qquad
ب/ معظم ثــائيات الجرمـانيوم بصفة عامة هي ثـنائيـات

ج/ ثـائيات السيلكون التي يمر خـلالها تيـار قدرة (800MA) هي ثـائيات

.، ، أمـا الثـائيات المصنـة بغـلاف \qquad إن حجمها يكون وتصنع من معدني ولها رأس بصمولة فهي ثـائيات

س2 استخدم كتاب البيانـات (DATA SHEET) لتحديد مواصفـات كل من الثنائيـات التالية من حيـث إنها (سيلكون أم جيرمانيوم، أقصى جهد عكسي، أقصى تيار، ثنائي قدرة عاليـة أم ثــائي قدرة منـخفضة):

س3- إذا كان لديك مصدر قدرة (10V) موصل مع ثـائي سيلكون وقمنا بتوصيل عـدد مـن مقاومات الحمل عبر أطراف الخرج ووكانت مقاومات الحمل لها القيم التالية:
($\mathrm{RL}_{1}=100 \Omega, \mathrm{RL}_{2}=50 \Omega, \mathrm{RL}_{3}=20 \Omega$) حمل من الأحمال السابقة وكذذلك حدد قدرة الثنائي پٌ كل حالة .
\qquad
س4-1 اذ اذكر مجال استخخدام كل من الثنـائيـات التاليـة :
2- الثـائي النفقي.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4- ثنائي الباعث الضوئي (LED).
\qquad
\qquad
\qquad
\qquad

الوحدةالثانية

الموحد السيليكوني المحكوم (الثايرستور)

اسم الوحلةة: الموحد السيليكوني المحكوم (الثايرستور)

الجـــــارة: قدرة المتدرب على دراسـة خواص الموحد السيليكوني المححكوم وتطبيقاتها العملية

1 / أن يُعرف المتدرب عنصر الثايرستور من حيث الشكل العملي والرمـز النظري ومنتحنى الخواص لـه .

2/ أن يجري المتدرب بعض التجارب العملية على عنصر الثايرستور لمعرفة تأثير تيـار البوابـة
المستمر(DC) والمتردد (AC) على قدح وخواص الثايرستور (SCR) .
3/ أن ينفذ المتدرب دائرة عملية للتحكم الضوئي باستتخدام الثايرستور .
4/ أن يتقيد المتـدرب بالسلوك المهني السـليم ويحـرص على اتبـاع إجـراءات الأمـن والســلامة أثناء تدربه ٌِْ الورشة.

مستوى الأداء المطلوب: أن يصل المتدرب إلى إتقان الجدارة بنسبة 90٪

$$
\text { الوقت المتوقـع للتدريب على الجدارة: (} 18 \text {) سـاعة. }
$$

الوسائل المساعلة:

- الاستعانة ببعض عناصر القدرة مثل الثايرستور وترانزيستور أحادي الوصلة.
- الاستعانة ببعض التطبيقات العملية لبعض عناصر القدرة من واقع الحياة.
- مصدر تيار مستهر وآخر متردد - عدة لحام وأجهزة قياس - جهاز أوسيليسكوب. - وسـائل الأمن والسـلامة.
- جهاز عرض علوي (DATA SHOW) لعرض رموز ومنحنيات الخواص.

متطلبـاتالجدارة:

أن يكون المتدرب متمكناً من فهم عنصر الثايرستور وتطبيقاته العملية من خلال تدربه على مفردات هذه الحقيبة التدريبية متبعا إجراءات الأمن والســلامة والسـلوك المهني السـليم .

السلوك المهني اللذي يجب التقيد به خلال التدريب على مفردات هله الوحدة التدرببية

أخي المتدرب:
إن تطبيقك للسلوك المهني السليم أثناء تدربك على مفردات هذه الوحدة هو الطريق الأمثل لنجاحك وتفوقك واكتساب احترام وتقدير الآخرين وتجنبك للحوادث المحتمل حدوثها أثناء تواجدك يٌ بيئة العمل ومن هذه السلوكيات ما يلي:

1/ تقيدك بالزي المخصص للتدريب والسـلامة المناسبة مثل حذاء السـلامة ونظارات السـلامة أثناء العمل وٌِ الورشـة أو المختبر دليل وعيك.

2/ احرص على تتظيم وترتيب العدد والأدوات بشكل منظم ومرتب وهٌ أماكنها الخاصة.
3/ داوم على المحافظة على نظافة الورشـة والمختبر ومـكان العمل. 4/ التزم بالمحافظة على الهدوء والنظام هٌِ الورشـة والمختبر ومكان العمل . 5/ احرص على حسن التعامل مع المدربين والتعاون معهم. 6/ تقيد بالإرشـادات والأنظمة المتبعة يٌ الورشـة والمختبر ومكـان العمل. 7 7/ احرص على حسـن التعامل مع زمـلائك المتدربين والتعاون معهم. 8/ تحلى بالأخلاق والتعاليم الإســلامية وِّ تعاملك وأثناء عملكـ. 9/ عند رغبتك هٌِ التعرف على أي جهاز جديد پٌ الورشة اطلب مساعدة المدرب لتوضيحه لك. 10/ لا تخرج من الورشة دون إذن المدرب.

11/ حافظ على وقت التدريب بحضورك مبكراً ومغادرتك مع نهاية الوقت. 12/ حافظ على العدد والأدوات من الضياع أو التلف فهي مسؤوليتك.

إجراءاتاتالأمن والسلامة عنلد دراسة تطبيقات الثايرستور

1 / تقيد بلباس التدريب داخل الورشة والتزم بهتطلبات السـلامة الأخرى . 2 / تقيد باستخخدام العدد والأدوات حسبها أعـدت لـه ولا تستتخدم أداة خاصـة لعهـل معـين وپ ع عمل مغاير

$$
3 \text { / تدرب على استخخدام طفايات الحريق. }
$$

14 ضت كاوية اللحام 2 منكانها المناسب بعد إجراء اللحام مباشرة.
5 / احذر حدوت إلتماس بين جسم الكاوية الساخن وكابل توصيل التيار الكهربي لها . 6/ احذر من لمس الأحماض الخاصة بعملية تحميض البوردات واحرص على لبس القفازات. 7 / احذر من استتشاق الأبخرة المتصاعدة مـن عمليـة التحمـيض وإن كانت سـيطة واحرص على لبسق كمـامـات على الأنف.

8 / احذر عند تستخين الماء المستخدم

10 / كن على حذر فِ نقل الأدوات والعدد أو مناولتها لزهـلائك وناولها يدا بيد. 11 / تجنب المزاح حِ الورشة وأثناء التدريب حتى تحمي نفسك وزمـلاءك من الخطر . 12 / تقيــ بإرشـادات المـدربين والمشـرفين على تـدريبك وِ الورشـة والتـريب الميـداني فهـذا يجنبك الحوادث بإذن اللله تعالى.

113 عنـل الانتهاء مـن العهـل احـرص على تتظيم وترتيـب العـدد بشــكل مـنظم ومرتـب 2 أمـاكنها الخاصة

THYRISTOR (SCR) الموحد السيليكوني المحكوم (الثايرستور)

- هو عنصر من مادة شباه موصلة، يتكون من أربع طبقات كهما هو مبين بالثشكل رقم

والثايرستور يشبه يٌِ عمله الدايود، ولكن لـه طرف ثالث يستخدم للتحكـم يسمي البوابة (GATE) وقبل تسليط جهد على طرف التحكم (البوابة) فإن الثايرستور يعمل
 وعند تسليط جهد بالقطبية الصحيحة على طرف البوابة أو مرور تيار محدد عبرهـا تتشكل قناة ناقلة للتيار بين المصعد(A) والمهبط (K) ويمر تيار باتجاه واحد عبر الثايرستور تماماً مثل الثنائي العادي . ويطلق على هذا النوع من الثايرستور اسمم الموحد السيليكوني المحكوم (SILICON CONTROLLED RECTIFIER) أو باختصـار
(SCR) ورمزه مبين بالشكل رقم (1- ب) .

- ويمكن دراسة الثايرستور على أنـه يتكون بشـكل أساسي من ترانزستورين كهما هو مبين بالثشكل رقم (1- ج) حيث تشكل الطبقات الثلاث العليا ترانزستور (PNP) بينما تشكل الطبقات الثـلاث السفلى ترانزستور نوع (NPN) وتتصل قاعدة كـل ترانزستور مع مجمع الترانزستور الآخر لتكون إحداها طرف البوابة بينما يصبح طرف المشع لترانزستور NPN هو المهبط (CATHODE) ويصبح طرف المشع لترانزيستور PNP هو المصعد (ANODE)

الشكل رقم (1)

تحليـلد أطراف الثايرستور :

بوجـه عـام يمـكـن تحديــد أطـراف جميـع أنـواع الثايرســتورات ذات القــدرات المنـخفضــة والمتوسـطة والعاليـة وفـحص ســلامتها باسـتخدام جهـاز أومـيتر تتـاظري (بمؤشـر) وذلـك بقيـاس المقاومة الأمـامية والعكسية بـين أطراف الثايرستور بالتبديل وباتباع الخطوات الآتية: 1/ اضـبط جهـاز الأفوميتر علـى تـدريج الأوم R X 1 اواختبر صـلاحية الأسـلاك مـع مـلاحظـة عكس أطراف مجسـات القياس لتتاسب بطارية الجهاز .

2/ قس المقاومـة بـين أطـراف الثايرسـتور طـرفين طـرفين بالتبـديل هـع مجسـي جهـاز القيـاس (توصيل أمـامي وتوصيل عكسي). 3/ الطرفان اللذان يعطيان مقاومة كبيرة جداً (مالا نهاية) يٌ فِكلا الاتجاهـين كمـا يوضح الشكل (3 - أ) أحدهما الأنود (A) والآخر الكاثود (K)

تحديد أطراف الثايرستور

الشكل رقم (3 - أ)

4/ الطرف الثالث يعطي مقاومة صغيرة يِّ أحد الاتجاهات مع أحد الطرفين السـابقين و
(G) مقاومة كبيرة يِّ الاتجاه الآخر مع نفس الطرف فيكون هذا الطرف هو البوابة (G) والآخر هو الكاثود (K) والبوابة (G) هو المتصل هع المجس الأحمر لجهاز القياس كمما هو موضـح بالشكل (3 - ب) .

5/ إذا كان للثايرستور مسـرب حراري فمن السهولة تحديد الأنود (A) وذلك بقياس المقاومة بين المسـرب الحراري وجميع أطـراف الثايرستـور، والطـرف الذي يعطي مقاوهــة أوميـة (صفر) هـع المسـرب الحراري هو الأنود (A).

6/ بعد تحديد الأنود (A) يمكن بسهولة تحديد كل من الكاثود (K) والبوابة (G) وذلك بإتباع نفس الطريقة پِ الخطوة رقم (4). إذا كانت المقاومة بين جميع الأطراف (طرفين- طرفين) كبيرة جداً (فالدائرة هفتوحة ه) أو صغيرة جداً (فالدائرة دائرة قصر صفر (ی) ويكون الثايرستور تالفا . ** أشكال وأنواع الثايرستور الشائعة الاستخخدام وأرقام بعض الثايرستورات .

الشكل رقم (4) أشكال وأنواع الثايرستورات

تترين عملي

 يتوفر فيهـكن تتفيـنه على لوحـة مطبوعـة حسـب قيهم العناصـر الموجـودة 2 الشـك

6 سـاعات	الزهن	(1)	رقّم التمرين
		قتلح الثايرستوروخواصه	اسه التهرين
 وعلى القدرة المزودة للحمل .			الهدف مز التمريّ
1 / 12 V. AC () و 			الأدواتالمستخلمةّ
1/ 1 / وحدة التدريب الإلكترونية ELECTRONIC UNIVERSAL UNIT 3/ مجموعة من أسـالاك التوصيل + مجموعة من المقابس .			الخامات

1- المخطط النظري للتمرين:
يــتم اختيــار عنصــر الثايرســتور (SCR) مــن مجهموعــة عناصــر مخطـــــ التوصــيل ويتم توصيله بالدائرة المبينة وِّشكل رقم (5)

الشكل رقم (5)

2- المخطط العملي للتمريز (مقتزح)

الشكل رقم (6)

3- الدائرةالتنفيلذية :

الشكل رقم (7)

4- القياساتاتوالنتـائج :

أولاً : استخدام مصلدرالتيـار المستمر (DC) في قدح (SCR) :

الخطوات :
 . (12 V DC)

2- افصل مصدر القدرة ثم استختدام جهـاز الأوميتر لضبط المقاومـة المتغيرة على أقصى
قيمة لها .

3- وصل مصدر القدرة ثم قم بتغيير المقاومة المتفيرة حتى يتم قدح (إثشال الثايرستور) .
 ثم سـجل النتائج هِ الخطوات التالية :

$I_{\text {THY }} . \quad(S C R)=\cdots \cdots \cdots(A M P$.
5- احسب قيمة المقاومة الأمامية للثايرستور كـالآتي :-
$\mathrm{R}_{\text {THY }} \cdot(\mathrm{SCR})=\frac{V_{\text {thy }}}{I_{\text {thy }}}=\cdots \cdots \cdots \cdots \cdots \cdots(\Omega)$
6- قم بفصل طرف سلك البوابة عن الدائرة - ماذا تلاحظ ؟

أ- هل مـزال الـ (SCR) فٌِ حالة (ON) بعد فصل البوابة؟

ب- هل تفيرت قيمة كل من : الجهد على V THY .) SCR) و التيار المار (. I THY) ؟

مـا استتتاجك مـن هذه الخطوة ؟
־

د- بين كيف يمكن تحويل الـ (SCR) إلى حالة الفصل (OFF) ؟

هــ - هل يمـكن استتخدام (SCR) كمفتاح (ON/OFF) مـع مصـدر التيـار المسـتـمر - بــين ذلك ؟
\qquad
\qquad
\qquad
\qquad

أسئلة التقوليم :

س1- مـا وظيفة البوابة يِْ الثايرستور ؟

. التطبيق
س3- اذكر بعضـاً من استتخدامـات الثايرستور ِوْ الحياة العهلية .
س4- مـا العوامل التي تساعد على تحول SCR إلى حالة الفصل (OFF) ؟

الإدارة العـامة" لتصهيم وتطوير المنـاهج

ثانياً : استخدام مصلدر التيـارالمتردد (AC) في قلدحSCR:

الخطوات :
1/ قم بتغيير (استبدال) المصدر المستمر (12 VDC) بمصدر تيار متردد (12 VAC)
 طـرٌِ الثايرسـتور (الطـرف الموجـب مـع الأنـود A) و(الطـرف الأرضـي مـع الكـاثود K) وكذلك قـم بتوصـيل جهـاز قيـاس للجهـد علـى طـرِِّ مقاومـة الحهـل (RL) وذلـك على
وضع DCV

3/ قـم بتغـيير المقاومـة المتغيرة على طـول مـداهـا (مـن أدنى قيمـة إلى أقصـى قيــة) ولاحـ
تأثير ذلك على شـدة إضـاءة المصبـاح ثم أجب عن الآتي :
أ ـ عند وضـع المقاومـة على أدنى قيمـة لها ـ مـا شـدة إضـاءة المصبـاح

ب - عند وضع المقاومة على أقصى قيمة لها ـ مـا شدة إضاءة المصباح ؟

جـ ـ مـاذا تستتتج من ذلك ؟ اكتب استتناجك

4/ اضبط المقاومة المتغيرة للحصول على النتـائج المبينـة يوْ الجـدول التـالي وذلـك تبعـاً لقـيم زوايا الإشعال المبينة بالجدول .
 مقاومة الحمل (RL) عند كل زاوية إثثعال .
أخي المتلدرب:

احذر الصدمة الكهريائية عند اختبار الدائرة فهناك جزء منها عليه جهد

$$
\text { كهريائي } 220 \text { فولت (جهد المصدر) . }
$$

٪ ملحوظة :
يجـب ضـبط مفتـاح مـدخل الإشــارة لجهـاز الأسلســكـوب على وضـع (DC) وليس
على وضع (AC) وذلك لأن الـ (SCR) يعمل كموحد .

جلدول النتتائج :

RL الجهد		الجههد على		$\begin{gathered} \mathrm{V}_{\mathrm{RL}} \\ \mathrm{DC}-\mathrm{V} \end{gathered}$	زاوية الإشعال
$\mathrm{V}_{\text {P-P }}$	شكل الموجه	$\mathrm{V}_{\text {P-P }}$	شكل الموجه		
	FIG(2)		FIG(1)		α MIN
	FIG(4)		FIG(3)		α MAX

6- ارسم النتائج التي حصلت عليها على ورقة الرسـم التالية وذلك حسب ترتيب الأشكال

(3) الشُشكل الجهن على SCR
(3)

(1) الشيُكل
SCR
الجهد على

-								
-								

الخلاصة : أولاً :

\% نستتتج من التطبيق الأول يٌ حالة استخدام مصدر تيار مستمر :
أن SCR يعمل كمفتاح ويكون وٌ حالة توصيل (ON) وذلك عندما يصل الجهد الأمامي (VBO) إلى قيمة كافية. أو باستخدام تيار مستمر على البوابة يساعد على تقليل قيمة (VB) (V)

٪ \% ويهكن تحويل SCR إلى حالة (OFF) وذلك بإحدى الطرق التالية: 1- بتطبيق جهد عكسي على أطراف الثايرستور .
2- بفتح الدائرة بـين (ANODE) و(CATHODE) أي جعل التيـار(I) المـار يسـاوي صفرا
3- بتقليـل الجهــد بـين (ANODE) و(CATHODE) إلى قيهــة أقــل مـن جهــد
الإمسـاك (VH).

* يلاحظ أنه عند استتخدام البوابـة يٌِ قدح SCR مـع مصـدر تيـار مسـتمر فإن البوابـة لا يكون لها أي تأثير بعد القطع حتى لو تم فصلها عن الدائرة .

ثانياً :
هِّ التطبيق الثاني وٌِِ حالة استبدال التيار المتردد بدلاً من التيار المستمر : أن الثايرستور يحتاج إلى نبضة قدح كل نصف موجة موجبة وٌِْ النصف الثاني (السالب)

 القدرة المرسلة للحمل.

أسئلة التقويم :

س1- هل يزيد الجهد على الحمل بتقليل زاوية الإشعال أم يقل الجهد ؟ ولماذا ؟

س3- ما أقصى زاوية قدح (إثشعال) يمكن الوصول إليها باستخدام المقاومة المتغيرة ؟ س4- تعلـم أن SCR يمكــن أن يسـتخدم كموحــد, ولكــن مــا الفـرق بـــن موحـــ السليكون SCR العادي وبين ؟

: UNIJUNCTION TRANSISTOR (UJT) ترانزيستور أحادي الوصلة

 يتكون من قضيب سيليكوني من النوع (N) ويوصل طرفا القضيب بطريٌ توصيل يسهى أحدهما بالقاعدة الأولى (B) والأخر بالقاعدة الثانية (B) (B2) ويتم وضع طبقة من السيليكوني من نوع (P) بالقرب من القاعدة (B2) ويسمى هذا الطرف بالمشثع (E) وتك (B) وتكون

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{BB}}=\mathrm{R}_{\mathrm{B} 1}+\mathrm{R}_{\mathrm{B} 2}
\end{aligned}
$$

ويوضح الشكل رقم (5) ككلا من الرمز والتركيب للترانزيستور(UJT) بينما يوضح الثــكل رقم (6) الدائرة المكافئة للترانزيستور .

الثكل رقم (5) رمز وتركيب ترانزيستور UJT

UJT الشكل رقم (6) الدائرة المكافئة لترانزيستور

استخلدام تـرانزيستور أحادي الوصلة (UJT) في التـحكم بـالثايرستور :
رأينا أن دوائر القدح (TRIGGER)التي تم عرضها حتى الآن استخدمت نوعين من تيار البوابة وهما التيار المستمر (DC) والتيار المتردد(AC) مع المقاومة المتغيرة فقط ولأن أقصى زاوية قدح تم الحصول عليها بواسطة المقاومة المتغيرة هي (90ㅇ) فقط ، فعند تصميـم دوائر القـدح يجـب الأخذ بعين الاعتبار القيم المميزة العظمى للثايرستور والترياك ومنها : 1- مصدر تغذية منخفض على البوابة قد يتسبب وِّ قدح غريب (شاذ) .
 البوابة وبالتالي إتلافها
ويمكن تجنب هذه العوامل وما يتبعها بتطبيق نبضات عالية القدرة لفترات قصيرة بحيث لا تتجاوز ذروة ومعدل تحمل قدرة بوابة الثايرستور والترياك . ومن العناصر التي تستخدم ٌِِ توليد الذبذبات (النبضات) هي الترانزيستور الأحادي الوصلة U.J.T حيث سنقوم پِّ هذا الجزء بدراسـة هذا النوع من المذبذبات والدائرة المستخدمة 2ٌ القدح

ترانزيستور أحادي الوصلة كمذلبـذب استرخحاء

من أكثر تطبيقات الترانزيستور أحادي الوصلة استخخدامـه كمذبذب اسـترخاء كمـا هو مبين یِ الشـكل رقم (7- أ) وهذه الدائرة تقوم بتوليد إثـارة جيبيـه على شكل سن المنشار وذلك كمها هو مبين بالشكل رقم(7- ب).

الشكل رقم (7)

قدح الثايرستور بواسطة ملبذبَ الاستزخاء :

الدائرة المبينة يِن الشكل رقم (8) يستخدم فيها (U.J.T) كمذبذب استرخاء، حيث
يتم تحديد الجهد الناتج على طريٌِ المكثف (C) بواسطة الثابت الزمني (R.C) وبتفيير قيمة (يتم ضبط قدح الثايرستور على نقاط مختلفة من موجة المصعد النابضة وسبب استخخدام موحد الموجة الكاملة كهصدر قدرة لتفذية الثايرستور وليس موجة جيبيه هو إمكانية مضاعفة تيار الحمل للدائرة، حيث يعكس هذا الترتيب نصف الدورة التي يكون خلالها
 ووضـع المقاومـة (RS) وثنائي الزينر (Z) مهم جداً حيـث يحـد
 لهذا المستــوى خـــلال المقاومة(R).
 وذلك لأن تردد النبضة الناتجة للـ (U.J.T) سوف لا يتزامن مع تردد التيار المستمر النابض على الثايرستور .
وبـالرغم مـن أن الـتردد الأساسـي للمذبـذب يتحـدد بواسـطة الثابـت الـزمني (R*C) فـإن تردد النبضة المتكرر ثابت بواسطة مصدر التغذية وبهـذه الطريقة فإن موحـد الموجـة الكاملـة يزود (SCR) ودوائر القدح بالقدرة والتزامن المطلوبين .

الشكل رقم (8) (U.J.T) كمذبذب استرخاء

تمرين عملي

تأكـد من فصل جميع الأجهزة والمعـدات عـن مصـادر الطاقـة عنـد الانتهاء
من التـدريب العملي.

(2) (2) (الرمز 6	رقّم التمرين
قـل الثايرستور بِواسطة ملبِلْب الاستزخاء	اسه التهريز
دراسـة تأثير استتخدام مذبذب الاسترخاء على قدح الثايرستور .	الهدف مز التمرين
2/ جهاز قياس الأسلسـيار AMMETER	الأدواتالمستخلمة.
1/ محول جهد من (240 V) إلى (24V) بشدة تيار (.1AMP). 2/ قنطرة توحيد (240 V) - (1AMP.) 3/ دايود زينر (جهد التتبيت 18 V). 4/ ترانزستور آحادي الوصلة رقم (2N2160) (2N1 (2N) 5/ 5 ثايرستور رقم(6 (2N1596) . 6/ عدد من المقاومـات ذات القيم التالية: $\{250 \Omega\} 5 \mathrm{~W} \&\{33 \Omega-220 \Omega-470 \Omega-1200 \Omega\} 0.5 \mathrm{~W}$ \} 8 8/ مكثف ($0.1 \mu \mathrm{~F}-400 \mathrm{~V}$) .	الخامات

> توصيل التمرين وجدول النتائج .

1- المخطط النظري للتمرين :

2- المخطط العملي للتمرينز (مقترح)

أخي المتدرب:

قِم بكتابة ملحوظاتك وتقرير عن المشكـلة التي حدثت ِوْ الجهاز مـدوناً
 ذلك يِ الحالات المشثابهة أو عند تكرار العطل .

3- الدائرةالتنفيليّية :

4- القيـاساتوالنتتائج :

1- وصـل مصــدر قــدرة مـتغيرة (24V - AC) بـــن النقطـتـين (A,B) وضـع المفتـاح SW على وضـع ON

2- استخخدم القناة الأولى بجهاز الأسعلسكوب لملاحظة شكل موجة جهد الدخل بين النقطتين (A,B) وقس ودون اتسـاع الموجة وسـجل النتائج پٌِ جدول النتائج . 4- اسـتخدم القنـاة الثانيـة لـلأسيلوســكوب لملاحظـة الأشــكـال الموجيـة (VD $)$ (V) و وقس ودون اتسـاع الموجة يِّ جدول النتائج 5- وصـل جهـاز أمـيتر ٌِْ الــدائرة لقيـاس تيـار الحهـل ثــم صــل أطـراف الأسلســكـوب بـــن النقطــتين (J,D) ثــم غــير قيهــة المقاوهــة المـتتفيرة (R $)$ علــى طــول مـــداهـا كامـلاً ولاحظ تأثير ذلك على شـكل الموجة.

 النقطتين (J,D) وسـجل قراءة تيـار الحمل (IF).

7- أعــد رســم كـل الأشــكال الموجيــة الـواردة وِّ جـدول النتـائج بــذات القيـاس وعلـى ورقة الرسـم البيـاني مـع تزامـن رسـم الموجات .

زوايا القدح	Test point نقاط القياس	Wave Form الشكل الموجي	Volt Peak to Peak الجهد من القمـة إلى القمة	Load current I_{f} تيار الحمل(if) (mA)
	AB	Fig(1)		
	CD	Fig(2)		
	FD	Fig(3)		
18°	JD	Fig(4)		
90°	JD	Fig(5)		
162°	JD	Fig(6)		

C , D الشكل(2) الجهد بين النقطينين

J, D الشكل(5) الجهد بين النقطّين

الخلاصة :

وذلك باستتخدام عنصـر جديد هـو ترانزيسـتور أحـادي الوصـلة (UJT) وِّ داــرة القـدح بـدلا مـن

 التيار المستمـر مثل التحكَ مِّ سـرعة محركـات التيار المستـمر (DC -MOTORS).

يمـكن تعيـن قيمة انحراف (.DIV) أي زاوية قدح وذلك بالطريقة التالية:
 الموجة على المحور الأفقي (محور الزمن) يسـاوي (8CM) مـثلا ، وبـذلك يكـون نصـ الموجـة الموجبـة الــني سـوف يـتم فيـه قـدح (SCR) يســاوي (4CM) وهـو يـــادل تغييـر الموجــة من زاويـــة (${ }^{\circ}$ ($\pi=180^{\circ}$). وعلـى ذلـك يمكـن حسـاب الانحـراف (.DIV) لأي زاوية إشعال كما يلي:

$$
\begin{aligned}
& (d i v)_{1}=\frac{\left[4(\mathrm{~cm}) \times 90^{\circ}\right]}{180^{\circ}}=2 \mathrm{~cm} \quad \rightarrow \quad \text { at } \quad \alpha=90^{\circ} \\
& (d i v)_{2}=\frac{\left[4(\mathrm{~cm}) \times 18^{\circ}\right]}{180^{\circ}}=0.4 \mathrm{~cm} \quad \rightarrow \quad \text { at } \quad \alpha=18^{\circ} \\
& (d i v)_{3}=\frac{\left[4(\mathrm{~cm}) \times 162^{\circ}\right]}{180^{\circ}}=3.6 \mathrm{~cm} \rightarrow \quad \text { at } \quad \alpha=162^{\circ}
\end{aligned}
$$

س1 / من خلال هذه التجربة هل يمكن الوصول إلى زاوية القدح (التحكمّ) مٌ SCR إلى
(إذا كانت إجابتك نعم وضح ذلك ؟
\qquad

س2/ مـ العلاقة بين المقاومة المتغيرة (RV) وبين زاوية التوصيل (CONDITION ANGEL) لـ SCR موضحاً إجابتك من خلال نتائج التجربة ؟
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
س3/ من خلال النتائج التي حصلت عليها - ما قيمة جهد دايود الزينر ؟
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

تطبيقات عنـاصر القدرة في دوائر الثايرستور

التحكه الضوئي بـالثايرستور :

 للمرحـل (RELAY CONTACTS) وذلــك عـن طريـق جهــد صـفير علـى طــرف الـتـحكـم (البوابـة GATE) وقــد تسـتخدم يٌٌ هـــا الأســلوب المقاومــة الضـوئية (LDR). حيـث تقـوم هــذه الخليــة بـــدح الثايرســتور تحـتـ ظــروف إضــاءة معينــة وبالتـالي ســيعمل الثايرســتور كمفتاح وصل وفصل للتيار عن الحمل بالتأثير على المرحل (RELAY).
 الثايرســتور عــن طريـق شـــــة الضــوء الســاقط علـى المقاومــة الضــوئية. وتسـتـخدم هــنه
 الضوء الساقط على المقاومة الضوئية .

الشكل رقم (9) قدح الثايرستور

افصـل القـدرة الكهربـائيـة (Turn off) عـن الـدائرة عنــد تركيـب أو فصل عنصر من الدائرة

مبلـأ عمل الدائرة :

عنــدما لا تكــون هنــاك إضـاءة ســاقطة علــى المقاومــة الضـوئية تكــون مقاومتهـا
 غـير كــاف لقــدح الثايرسـتور، ومــع زيـادة مسـتوى الإضـاءة فـإن مقاومــة الخليــة الضـوئية تتـــاقص ويــزداد الجهــد علــى طــرِو (R2) وبالتــالي ســوف يكـون تيــار البوابــة كافيـاً . لقدح الثايرستور

ويـتـم تحـديـد شــدة الإضــاءة اللازمهـة لتقليـل مقاومـة الخليــة الضـوئية لقيهــة تســمح بهـرور تيـار كــاف وذلــك بضـبط قيهـة مجــزئ الجهـــ (RV) الموصـل بــالتوالي مـع الخليــة الضـوئية، هــذا ويقـوم الــدايود (D) بتمريــر النصــف الموجـب مـن الإثـــارة المـترددة (AC)

 يكـون الثايرســتور موصــلا فـإن ملـف المرحـل ســيثار وبالتــالي سـيؤدي إلى فصــل نقطـتي الـــتـلامس (NC,COM) للمرحـــل. وبالتـــالـي ســـيؤدي إلى قطـــع التيـــار عـــن الحمهـــل (LAMP.) المطبـق فــإن المكثْف (C) الموصـل بـالتوازي علـى طــرِوْ ملـف المرحـل ســيحافظ علـى عــدم فقــدان ملــف المرحــل لطاقتـهـ يٌ أثنــاء النصــف الســالب مــن الــدورة، حيــث إن شــحنـات المكثغ سـتتتقل إلى ملـف المرحـل خــلال الجـزء الســالب مـن الــدورة، محافظـة علـى تيـار كاف ِوْ ملف المرحل لجعله موصـلا (ON) وهذا بدوره يمنع ذبذبة المرحل بسـرعة .

ملحوظة:

عند استخخدام هذه الدائرة للتحكـم يٌ إضـاءة الشوارع أوتومـاتيكيا فإن : - معنى سقوط ضوء كايِّ على المقاومة الضوئية (LDR) أنتا ـٌِ حالة النهار ولذلك سوف يوصل الثايرستور وبالتالي سوف يفصل المرحل نقاط التـلامس ويفصل الجهد عن لمبات الإنارة .

- أمـا وِّ حالة الظلام فيقل الضوء الساقط على الخلية الضوئية (LDR) وبالتالي سوف يتوقف الثايرستور عن التوصيل وترجع نقاط تـلامس المرحل إلى وضعها ويتم توصيل الجهد إلى اللمبات.

التماريِن العملية

أخي المتلدرب:
يجب الإنتبـاه عنـد تغذيـة هـذه الـدائرة فـإن جهـد التغذيـة هـو (24V AC) وأن جهد تغذية نقاط تلامس المرحل هع اللمبـة هو (220V AC).

1- المخطط النظري للتهرين:

2- المخطط المهلي للتمرينز (مقترح)

3- الدائرةالتنفيليةية :

4- القيـاساتوالنتتائج :

1- وصل الدائرة المبينة كمـا ِِخ المخطط النظري بعد تتفيذهـا على لوحـة مطبوعـة حسـب المخطط .

2- قم بتوصيل مصدر التغذية (24V AC) بين النقطتين (Q ، P) وهنا يجب التأكد من

> فتح المفتاح (S) وغلق القابس (J) .

3- قم بتوصيل أطراف الملامسـات المفلقة طبيعياً (NC) مع أحد أطراف المصباح الخارجي والطرف الآخر للمصباح مع مصدر التيار . وقم بتوصيل النقطة المشتركة (220V) لمالامس المرحل بالطرف الآخر لمصدر التيـار (COM)
4- تأكد من فتح المفتاح (S) \} وهـذا يـني حالة ظلام للمقاومة الضوئية\{ ، وقم بتغيير المقاومة المتفيرة (RV) على مداهـا كامـلا وتأكد من أن المرحل لا يعمل . 5- وصل أحد مداخل الأسلسـكوب على طريٌْ النقطتين (P,Q) وقس وسـجل قيمة الجهد بين (P ,Q) يٌِ الجدول (1) ثم ارسم هذا الشكل على ورق رسم بياني واعتبر هذا الشكل هو شـكل الموجة المرجعي 6- وصل الطرف الأرضي للقناة الثانية لجهاز الاوسيلوسـكوب على النقطة(Q) واستخخدم الطرف الآخر لقياس وتدوين ورسم الجهود على طرٌِ (R3, R2) وعلي الثايرستور وذلك بزمن وطور مناسبـين بالنسبـة للشـكل المرجعي وعلى نفس ورق الرسم البيـاني وسـجل النتائج جٌِ الجدول (1) .
7- وصل أطراف القناة الثانية لـلاوسيلوسـكوب على طرٌٌِ المكثف (C) - قس وسـجل قيمة الجهد يٌ الجدول (1) وارسـم شـكل الموجة على نفس ورق الرسـم البيـياني . 8- اغلق المفتاح (S) (وهذا يعني سقوط الضوء على المقاومة الضوئية) - قم بضبط المقاومة المتفيرة (RV) حتى يتم عمل المرحل ويقوم بتبديل المـلامسـات، ثم كرر
الخطوات (7، 6) وسـجل النتائج ٌِِ الجدول (2).

9- افصل المقابس (J) لمدة قصيرة جداً ولاحظ تأثير ذلك على عمل المرحل ثم أعد غلقه
بسـرعة .

جلداول النتــائج :

ح		
نقطة القياس	V P. P	شكل الموجة
$\mathrm{V}_{\text {PQ }}$		Fig(1)
$\mathrm{V}_{\mathrm{R} 2}$		Fig(2)
$\mathrm{V}_{\text {R3 }}$		Fig(3)
V_{AK}		Fig(4)
V_{C}		Fig(5)
الجدول (2)		

حالة الظالام		
نقطة القيـاس	$\mathrm{V}_{\text {P. P }}$	شكل الموجة
V_{PQ}		Fig(1)
$\mathrm{V}_{\text {R2 }}$		Fig(2)
$\mathrm{V}_{\text {R3 }}$		Fig(3)
V_{AK}		Fig(4)
V_{C}		Fig(5)
الجدول (1)		

أسئلة تقويم :

> س1- مـا فائد كل من:
> المكثف (C)
> (D) الموحد
> المقاومة المتقيرة (RV)

س2- مـ قيمة مقاومـة (LED) وِْ حالة الظلام وِوْ حالة الإضاءة ؟ وهل تتأثر مقاومتها بزيادة شـدة الضوء السـاقط عليها أم بتقليله ؟

س3- مـاذا تعني نقاط التلامس للمرحل (NC \& NO) ؟ ولماذا تم توصيل النقاط (NC) مع اللمبة ٌِِ هذه الدائرة ؟

الوحدة الثالثة

الترياك والتطبيقات العملية

اسه الوحلدة : التزيــك والتطبيقات العملية

الجـــــلارة: قدرة المتدرب على دراسـة خواص الترياك وتطبيقاته العمليـة

1/ أن يفسر المتدرب منحنى الخواص لكل من الترياك والدياك .
2/ أن يرسم المتدرب الرمز والشكل العـلـ العملي لكل من الترياك والدياك .
 4/ أن ينفذ المتدرب دائرة عملية للتحكم وٌ شْـدة الإضـاءة باستـخدام التريـاك والـدياك كعنصر قدح
5 5/ أن يتقيــد المتــدرب بالســلوك المهـنـي السـليم ويحـرص علـى اتبـاع إجـراءات الأمـن والسـلامة أثتاء تدربها هٌِ الورشة .

مستوى الأداء المطلوب: أن يصل المتدرب إلى إتقان الجدارة بنسبة 90٪ الوقت المتوقع للتدريب على الجدارة: (18) سـاعة.

الوسائل المساعلة :

- الاستعانة ببعض العناصر مثل الدياك والترياك
- الاستعانة ببعض الثفافيات لعرض رمز ومنحنيات الخصائص .
- كتـاب البيانـات (DATA SHEET) الخـاص بالعناصـر الإلكترونيــة (الــدياك

والترياك).

- مصدر تيار متردد - لوحة اختبار - عدة لحام - أجهزة قياس - جهاز اوسلسكوب. - وسـائل الأمن والسـلامة.
- جهاز عرض علوي (DATA SHOW).

متطلبـات الجدارة:

أن يكون المتدرب متمكناً من فهم منحنى الخواص لكل من الترياك والدياك وتنفيــذ تمـرين
 التدريبية متبعاً إجراءات الأمن والسـلامة والسـلوك المهني السليم.

السلوك المهني الذي يجب التقيد به خلال التدريب على مفردات هذها الوحدةالتلدربيية

أخي المتلدرب:
إن تطبيقك للسلوك المهني السليم أثناء تدربك على مفردات هذه الوحدة هو الطريق الأمثل لنجاحك وتفوقك واكتسـاب احترام وتقدير الآخرين وتجنبك للحوادث المحتمل حدوثها أثناء تواجدك يٌ بيئة العمل ومن هذه السلوكيـات ما يلي:

1/ تقيدك بالزي المخصص للتدريب والسـلامة المناسبة مثل حذاء السـلامة ونظارات السـلامة أثناء العمل يْ الورشـة أو المختبر دليل وعيك.

2/ الحرص على تتظيم وترتيب العدد والأدوات بشكل منظم ومـرتب وٌِ أماكنها الخاصة.
3/ المداومة على المحافظة على نظافة الورشـة والمختبر ومكان العمل. 4/ الالتزام بالمحافظة على الهدوء والنظام پِ الورشـة والمختبر ومـكان العمل . 5 / الحرص على حسن التعامل هـ المدربين والتعاون معهم. 6/ التقيد بالإرشـادات والأنظمة المتبعة يِ الورشـة والمختبر ومـكان العمل. 7/ الحرص على حسـن التعامل مع زمـلائك المتـربين والتعاون معهم. 8/ التحلي بالأخـلاق والتعاليم الإسـلامية يِّ تعاملك وأثناء عملك. 9/ عند رغبتك يْ التعرف على أي جهاز جديد يٌ الورشة اطلب مسـاعدة المدرب لتوضيحه لك. 10/ لا تخرج من الورشة دون إذن المدرب.

11 / المحافظة على وقت التدريب بحضورك مبكراً ومغادرتك مع نهاية الوقت. 12/ المحافظة على العدد والأدوات من الضياع أو التلف فهي مسؤوليتك.

1 / تقيد بلباس التـريب داخل الورشة والتزم بهتطلبـات السـلامة الأخرى
2/ تقيـد باستخخدام العـدد والأدوات حسـبها أعـدت لـه ولا تستخخدم أداة خاصـة لعهـل معـين 2و
عمل مغاير

$$
3 \text { / تدرب على استتخدام طفايات الحريق. }
$$

4/ تقيد بإرشـادات المدربين والمشرفين على تدريبك يو الورشة والتدريب الميـداني فهذا يجنبك الحوادث بإذن اللّه تعالى.
/ لا تعبث بالعدد والأدوات وِ الورشة وقد تتسبب فِ حوادث مؤسفة لك ولفيرك لا قدر اللله. $6 /$ كن على حذر يو نقل الأدوات والعدد أو مناولتها لزمـالئك وناولها يداً بيد. 7 تجنب المزاح حِ الورشة وأثاء التدريب حتى تحمي نفسك وزهـلاءك من الخطر 8 / تقيد بإرشادات المدربين والمشرفين على تدريبك يو الورشة والتدريب الميـداني فهـذا يجنبك الحوادت بإذن اللّه تعالى.

19 عند الانتهاء من العمل احرص على تتظيم وترتيب العدد بشكل منظم ومرتب الخاصة

التزيـك THE TRIAC

- الترياك هو عنصر من مادة شبه موصلة من السليكون ذو طبقات متعددة كما يوِ

الشكل رقم (1).
وللتريـك ثلاثـــة أطراف ANODE2 (A2), ANODE1 (A1) وطرف البوابــ ANATE وتسهى كذلك هذه الأطراف (MT1G, MT 2) وهو يشبه الموحد السليكوني المحكوم حيث يعمل كل منهما كهفتاح (ON/OFF SWITCH) وبعكس الثايرستور الذي يمرر التيار يٌْ اتجاه واحد فقط فإن الترياك يمرر التيار وِّ كـلا الاتجاهين ولذلك لا يمكن اعتبار أحد الطرفين الأسـاسيين (A1 و A1) على أنه أنود للعنصر .
 البوابة الصغير والذي يكون إما موجبا أو سالبا. ويحتاج الترياك إلى تيار بوابة ذي قيمة أكبر من تلك التي يحتاجها الثايرستور حتى ينتقل إلى حالة التوصيل (ON). - تستخدم البوابة هٌِ عملية قدح الترياك أي تحويله من حالة القطع إلى حالة التوصيل ولا يمكن إطفاء الترياك (أي تحويله إلى حالة القطع) بواسطة البوابة، ولتحويل الترياك لحالة القطع يجب أن يقل التيار المار فيه إلى قيمة أقل من تيار الإمسـاك (IH)

- وتصنع الترياكات بقدرات منخفضة أو متوسطة، وعادة تصنع لتمرر تيار بقيمة صغيرة وِّ حدود (100 AMP.) وبتيارات بقيمة متوسطة (تقريباً أقل من أي أن الترياك لا يتحمل القدرات العالية بعكس الثايرستور الذي يمكن أن يمرر تيارا بقيم أكبر من (100 .(AMP.
 تعمل بالتيار المتردد وذلك مثل التحكَم يٌّ شدة الإضاءة وٌٌِ درجة الحرارة وٌٌِ سرعة محركات التيار المتردد.

الشكل رقم (1 ـ أ) يوضح منحنى خصائص الترياك وهو(العـلاقة بين الجهد - والتيار) .

الشكل رقم (1 - ج) يوضح تركيب الترياك الذي يكافئ من حيث المبدأ ثايرستورين
(متوازيين ومتعاكسين).
الشكل رقم (1 ـ د) يوضح بعض الأنواع والأشكال العملية للترياك.

الثكل رقم(1) الترياك

فحصص التريـك :

 يعطي مقاومة تقريباً صفر (Short) هو
2- ضح الأوميتر على المجال R×1.
 الموجب مـح الأنود MT2 وطـرف المجس السـالب مـع الأنود MT1 يجـب ان يشـير الجهـاز الى قيمـة مقاومة عاليه .
4- اقصر طرف الأنود MT2 مع طرف البوابة، ثم أزل القصر ، ستلاحظ أن المقاومة تتخفض
 لقيمتها العالية.

5- كـرر الخطـوات السـابقة هـع عكس المجسـات، سـتـلاحظ أن المقاومـة تـنخفض وتسـتمر على هـه القيمـة حتى بعد إزالة القصر، حتى يتم فصل أحد المجسـات حيـث تعـود لقيمتهـا

العالية
قلح التزيـاك في دوائر التيــار المتزدد :
الشــكـل رقـم (2) يوضــح الــدائرة الأسـاســية لتوصـيل التريـاك مـع كــل مـن الحهـل ومصدر التيار المتردد ويوضح كذلك الأشـكال الموجية على كل من الحمل والترياك

الشـكل رقم (2) الدائرة الأسـاسيـة لتوصيل الترياك

- عندما يتحول الترياك لحالة التوصيل ON تصبح مقاومته الداخلية صغيرة جداً وينهار الجهد بين طرفيـه (يصبح الجهد صغيراً ومسـاويا لجهد الإمسـاك). ويمرر تيار كبير جداً بين الطرفين
. وقيمة هذا التيـار تتحدد بقيمة الحمل الموصل وٌِ الدائرة (A2، A1)

وعنـدما يقـل الجهـد بـين طـرٌِ التريـاك عـن جهـد الإمسـاك (V) أو يقـل التيـار عـن تيـار
 هـذا القطـع عنـد اقتـراب جهـد المصــدر المـتردد مـن الصـفر (أي عنـدمـا تكـون الموجـه عنـــ زاوية 180° ومضاعفاتها).

الأمـن والسـلامـة ِ2 الورشـة ومـكان العمل مسـؤولية الجميع فـك متعاوناً وحريصاً على ذلك.

- والجدول التالي يبين الأوضـاع التي يقدح فيها الترياك .

1	MODE 1	$\mathrm{V}_{\mathrm{A} 2}>\mathrm{V}_{\mathrm{A} 1}$	$\mathrm{V}_{\mathrm{G}}>0$	$\mathrm{I}_{\mathrm{G}}>0$	يمر تيار من A ${ }^{\text {ع }}$ ع
2	MODE 2	$\mathrm{V}_{\mathrm{A} 2}>\mathrm{V}_{\mathrm{A} 1}$	$\mathrm{V}_{\mathrm{G}}<0$	$\mathrm{I}_{\mathrm{G}}<0$	يمر تيار من A ${ }^{\text {2 }}$ على
3	MODE 3	$\mathrm{V}_{\mathrm{A} 1}>\mathrm{V}_{\mathrm{A} 2}$	$\mathrm{V}_{\mathrm{G}}>0$	$\mathrm{I}_{\mathrm{G}}>0$	يمر تيار من ${ }^{\text {A }}$ ع ${ }^{\text {ع }}$
4	MODE 4	$\mathrm{V}_{\mathrm{A} 1}>\mathrm{V}_{\mathrm{A} 2}$	$\mathrm{V}_{\mathrm{G}}<0$	$\mathrm{I}_{\mathrm{G}}<0$	

 الوضــعـين الأول والرابــع ويـكــون أقــل حسـاســـية وِْ الوضـــع الثـــاني وتقريبــاً غـــير حسـاس ِथٌ الوضـ الثالث.

وعلــى ســبيل المثنـال فــإن التريــاك مــن سلســـلة (WT20 إلى WT60) لـــه الخــواص
التالية:

$\mathrm{V}_{\mathrm{G}}=+3 \quad(\mathrm{VOLT}) \ldots . . . \mathrm{I}_{\mathrm{G}}=+50$ ((MA	الوضع الأول
$\begin{array}{ll} \mathrm{V}_{\mathrm{G}}=-3 & (\mathrm{VOLT}) \ldots . ~ \\ (\mathrm{M} & =-50 \\ ((\mathrm{MA} \end{array}$	الوضع الثاني
 ((MA	الوضح الثالث
	الوضع الرابع

- ولـذلك من المستحسن عدم اسـتخدام التريـاك وفْ الوضـع الثالـث لحسـاسـيتـه القليلـة، وذلـك لأنـه ســوف لا يـكـون متهـاثلا يِْ التوصـيـل يِّ النصـف الموجـب والنصـف السـالب للـدورة الواحدة .
- وأيضـاً يجـب الرجـوع إلى كتـاب البيانـات (DATA SHEET) الخـاص بالتريـاك لمعرفـة بيانات وخواص الترياك المراد استتخدامـه هٌِ الدائرة .

: THE DIAC الديـك

يتكون الدياك مـن ثـلاث طبقـات مـن أشـباه الموصـلات، وينتهي بطـرٌِ توصـيل فقط همـا (A1, A2) وهو يشبه هٌِ عمله الموحـد العـادي حيـث أنـة يعمـل ووأنه موحـدان موصـلان بالتوالي ومتعاكســين يقوم كـل منههـا بالتوصيل خـالال نصف

الموجه فقط .

- ولذلك فإن الدياك هو عبارة عن عنصر ثـائي الاتجاه يمكن أن يتحول إلى حالة التوصيل . ويتم توصـيل التيـار الـداخل للـدياك (أي تحويلـه إلى وضـع (ON) وذلـك عنــد بلـوغ الجهـد VOLTAGE (\pm VBO) المطبق عليه إلى قيمة جهد الانهيـار الأمـامي أو العكس للدياك BREAK OVER

 خلاله ويقل الجهد المطبق على أطرافة) وعلى ذلك يمر التيار من A ثم خلال طبقات أشباه
 وعندما يبلغ الجهد قيمة (0V) ثم يبدأ يٌِ النصف السالب يعود مرة أخرى الـدياك إلى حالـة القطع أو الفصل (OFF).
 قيمــة (وهكذا تتكرر الدورة كل نصف موجة موجب أو سالب .
والثكل (3/أ) يوضح تركيب الدياك، والشكل (3/ب) يوضح رمز الدياك . والشكل (3/ج) يوضح خصائص منحنى الدياك، والشكل (3/د) يوضح الثكل العملي

i	ب	ج	J

أخي المتدرب: بالإلكترونيات

إتقانـك للحاسـب الآلـي سـوف يسـهل عليـك التعامـل مـع الـبرامـج الخاصـة

تطبيقـات التزيــك

استخدام اللديـك في قدح التزيـك

- إن من أهم استخدامات الدياك استتخدامهه كعنصـر قدح للتريـاك وٌ معظم التطبيقـات
 درجة الحرارة وهٌِ دوائر التحكـم پٌ المحركات الكهربائية. - وكما عرفنا سـابقاً فإن من خصائص الـدياك أنـه عنـد استـخدام الفولطيـة عبر أطرافهـ وعنـدما تصـبح هـذه الفولطيـة أكبر مـن فلوطيـة القطـ (VBR) يكـون الـدياك مقيـدا بخصائص المقاومة السـالبة بحيث تتخفض مقاومته إلى قيمة منخفضة جداً وتكون هـن ألـد

 للقدح
 النبضـات بهقـدار (180) ويعتهــد موقعهـا علـى الثابـت الـزمني RC ولــذلك يمكــن استخدام المقاومة المتغيرة (RV) لتتظيم الثابت الزمني .

الثشل (4) استخدام الدياك پِّ قدح الترياك

تتريِّ عملي

أخي المتلدرب:

يجـب مـراعـاة شـروط الأمـن والســلامـة بعـدم توصـيل جهـاز الأومـيتر إلا بعد فصل مصدر القدرة عن الدائرة .

9	الزهن	(1)	رقّم التمرين
		قّدح الثتيـياك بواسطة الديـاك	اسهم التهرين
الترياك بواسطة الدياك. لرياك والحمل. اف الترياك والحمل. بتفير زاوية الإشعال.		1/ تتفيذ دائرة عملية للتحص 2/ قيـاس الجهد على كل دن 3/ 3 / رسـم أشـكال الموجه على 4/ مشـاهـدة التغير بِخ شـدة إض	الهدفى من التمرين
		1 / مصدر تيار متردد (VAC 2/ جهاز أوسيلسـكوب ذو ونا 3/ جهاز قياس متعدد (أفوم	الأدواتالمستخدمهة
(VARIABLE), R2=3 . (B بديل يعمل بوصفه ذا جهد		R1=100 $\Omega / 5 \mathrm{~W}\}$: المقاومات $\{\mathrm{RV}=50 \mathrm{~K} \Omega / 2 \mathrm{~W}$ 2/ المكثفات: 3/ تريـــاك: \} (TXCO2A10) 4/ ديــــاك: \} (D3202Y) أو) انهيار حتى 18V 5/ الحمـل: مصباح (24V) 6/ مفـتاح: (SWITCH	الخامات

1- المخطط النظري للتمريز:

2- المخطط العملي للتمريز (مقتزح)

DIAC IN THE USE DF TRIGGERED TRIAC

> 3- الدائرةالتنفيلذية :

4- القيـاسات والنتـائج :

تأكد من ضبط جهاز الأفوميتر على الكميـة الكهربائيـة المـراد قيـاسـها والمدى المنـاسب للقياس.

أخي المتلدرب:

 فتح المفتاح (S S)، ثم وصل الفولتميتر بين النقطتين (B,A) .

2/ صـل القنـة (1) لإلسيلوســكوب بــين النقطـتين (B,A) بحيـث تتصـل النقطـة (B) مـع (الأرضـي) واضـبط الأوسيلوســكـوب بحيـث تظهـر الموجـة الجيبيـة علـى الشاشـــة ثــم

.FIG

 قدح (A MIN) .
4/ ارسـم الإثشـارة الظـاهرة علـى الأوسيلوســكـوب بـزمن وطـور مناسـب بالنسـبة للشــكـل المرجعي لـإلشارة وبذات المقياس وعلى ورق رسم بياني.

 الأشـكال الموجية بذات المقياس وعلى ورق الرسم البيـني.
 امـلأ الجدول التالي حسب النتائج المطلوبة.

$\mathrm{R}_{\mathrm{V}}(\mathrm{K} \Omega)$	(a^{0})	$\mathrm{V}_{\text {IB }}$		V_{KI}		$\begin{gathered} \mathrm{I}_{\mathrm{L}} \\ (\mathrm{MA}) \end{gathered}$
		WAVE FORM	$\mathrm{V}_{\text {P. } \mathrm{P}}$	WAVE FORM	$\mathrm{V}_{\text {P. } \mathrm{P}}$	
MIN.		FIG(1)		FIG(2)		
MAX.		FIG(3)		FIG(4)		

س1/ اشـرح مبدأ عمل الترياك من خـلال الدائرة السـابقة ؟
\qquad

س2/ هــل تــزداد شــدة الإضــاءة للهصـباح پِ الــدائرة الســابقة بتغـيير المقاوهـة المـتفيرة مـن أدنى قيمة إلى أقصى قيمـه لها ؟
\qquad

دائرة التحكم في شلة إضاءة مصبـاح :

تسهى هذه الدائرة بدائرة مفتاح خافض شـدة الإضاءة "ديهـر" (DIMMERSWITCH)
والميزة الأسـاسية لهذه الدائرة هي أن استهـلاك القدرة يتتاسب طردياً مع شـدة إضـاءة المصباح الا ويمـكن اسـتخدام التريـاك ِِْ هـذه الـدوائر لخفض الإضـاءة باسـتخدام مبـدأ التتحكم بالقدرة وِِّ هذا النوع من الدوائر يتم وصل وفصل (قطع) الترياك مـرة وِّ كـل دورة هـن موجـة جهد التغذية (يٌ كل نصف دورة) وتحتاج هذه الدوائر التي من هذا النوع إلى استخدام مرشـح بسيط ِضْ خط تغذية المصباح من أجل التقليل مـا أمكن من التداخالات الراديوية المتولدة أثناء تحول الترياك من القطع للوصل والتي تسبب تشويشاً لـلأجهزة الكهربـائية المجاورة .

شرح عمل الدائرة :

الشــكل رقـم (4) يوضـح الــدائرة العمليـة للتحكـم وِ شــدة إضـاءة مصـباح باسـتتخدام الترياك وٌٌِ هذه الدائرة تستخدم شبـكة تأخير الطور (RC) المزدوجة ودياك لقدح الترياك .

الشـكل رقم (4) دائرة التحكم يٌ شـدة إضـاءة مصباح

- تتغذى الدائرة من مصدر قدرة بفرق جهد (240V). وعندمـا تزود الدائرة بالقدرة يبدأ المكثف(C2) بالشـحن عبر المجزئ (المقاومة المتفيرة R2) إلى فلوطية التتحول للدياك، فإن الدياك يوصل ويأخذ المكثف (C2) بالتفريخ فجأة مهـا يؤدي إلي تزويد بوابة الترياك بالنبضـة الثلازمة للتوصيل .

أخي المتلدرب:
يجـب الانتبـاه عنــد اسـتخخدام جهـاز الأوسيلوســكوب لـرسـم الموجـات على كل من الحمل والترياك إلى أنـك تتعامـل مـع جهـد عـال ولــذلك يجـب عهـل خفض لمدخل جهاز

- ولأن المقاومة R2 والمكثفين (C2، ${ }_{2}$ (${ }^{\text {(}}$ يمثلان دائرة التحك كلما قلت قيمة R2 فإن فولطية التحول للدياك تصل بسرعة وتبا وتبعاً لذلك تكون شـدة إضاءة المصباح عالية وذلك لان الترياك يوصـل لفترة زمنية أهـرب مـا تكـون لفترة إثــارة المصـدر ومن ناحية أخرى إذا كانت المقاومـة (R2) عاليـة القيمة فإن زمن الثـحن للمكثف C2 يكون عاليا ويتم قدح الترياك يِن نهاية الـدورة وهـذا يــدل على أن زمن

والآن سوف نقوم بتتفيذ دائرة عملية للتحك مِّ شدة الإضاءة باستخدام الترياك والدياك كعنصر قدح للترياك، وسنقوم بإجراء القياسـات الـلازمة للجهد على كل من أطراف الحمل والتريـاك بين النقطتــين (A2 ، A1) وكــلـك رســم الأشـكال الموجيــة على كــل منههـا باستتخــدام جهــاز الأوسيلوسـكوب ومشثاهدة كـيفية التحكـم ٌِِ شـدة الإضـاءة عن طريق التحكم پِ زاوية الإشعال (م) للترياك .

تتريزن عملي

يجب عدم لمس أطراف كـل من الحمـل والترياك حتى لا تتعرض لصدمـة

(2)	رقّم التمرين
دائرة مفتتاح خافض شلدة الإضـاءة	اسه التهرين
1 / تتفيذ دائرة عملية للتحكم 2/ قياس الجهد على كل من أطراف الترياك والحمل. 3/ رسم أشـكال الموجية على كل من أطراف الترياك والحمل 4/ مشـاهدة التفير وِ شـدة إضـاءة المصباح بتفير زاوية الإشـعال	الهدف مز التمرين
1 / مصدر تيار متردد (240VAC). 2/ جهاز أوسيلوسـكوب ذو قنـاتين 3/ جهاز قياس متعدد (أفوميتر) .	الأدوات المستخلمة
$\text { . }\{\mathrm{R} 2=500 \mathrm{~K} \Omega / 2 \mathrm{~W}$ 2/ المكثفات: 4/ تريـــــاك: \} (BTB04-600V) أو (BTB08-400V) أو (BTB06-400V) \{ أو أي بديل يعمل على جهد (240V) ويتحمل تيار حتى (3A) . 5/ ديـــــاك: (TI43A) أو أي بديل يعمل بوصفه ذا جهد انهيار حتى . 32 V) 6/ الحمـــل: هصباح (240V)بقدرة (40W)أو (60W).	الخامات

1- المخطط النظري للتمريز:

2- المخطط العملي للتمرين (مقتزح)

3- الدائرةالتنفيليةية :

4- القيـاساتوالنتـائج :
1/ اضبط المقاومة المتفيرة على أقل قيمة لها ثم وصل مصدر القدرة .
2/ وصــل أحــد قنـاتي الاوسيلوســـكوب علـى أطــراف الحمــل والقنــاة الثانيــة علـى
أطراف الترياك (A2 ، A1) ثم أغلق المفتاح (S1).
3/ بـبطء غـير المقاومـة المـتغيرة (R3) مــن أقـل قيهـة إلى أقصـى قيمـة لهـا ثـم شــاهـد
الجهد على أطراف كل من الدياك والترياك والحمل باستتخدام (.OSC) .
4/ اضــبط المقاوهـة المـتغيرة للحصـول علـى أقـل زاويــة إثــعال للتريـاك وقـّم برســم الأشــكال الموجيـة علـى أطـراف كــل مـن الحهــل والتريـاك. ثـمَ اسـتتخدم جهـاز

الفولتميتر لقياس الجهد على الحمل والترياك .
5/ سـجل النتائج التي حصلت عليها يٌِ الجـداول التالية .

الإدارة العـامة لتصهيم وتطوير المنـاهج

(1) الشثكل

الشُكل(2)

6/ أضـبط المقاومــة المـتغيرة (R2) مــرة أخـرى للحصــول علــى أكـبـر زاويــة إثثـعال

الأفوميتر

(4) الثُ

الاستنتـاج:

- هل زاوية الإشعال يِ نصفي الدورة الموجبة والسـالبة متسـاوية (نعم/لا) ؟
\qquad
\qquad
\qquad
\qquad

الوحلدة الرابمة
 التحكم بِّ سـرعة محركات التيار المستمـر

اسم الوحلدة : التحكم في سرعة محركات التيـار المستمر

الجــــــلـارة: قدرة المتدرب على تطبيق دوائر التحكـم وِّ سـرعة محرك التيـار المستمر

1/ التعرف على محرك التيار المستمر من حيث التركيب ومبدأ العمل . 2/ دراسة أساسيات دائرة التحكم بالُقططع والأثشكال الموجية للمُقطع

3/ استخدام الثايرستور كَمُقط إلكتروني للتحكم يٌٌ سـرعة محرك التيار المستمر
وذلك عندمـا يكون المصدر تيارا مستمرا (DC) .

4/تتفيذ دائرة مُقطع (DC-CHOPPER) للتحكم هٌِ سـرعة محرك تيار مستمر
باستخدام SCR.

5/ التقيد بالسلوك المهني السليم والحرص على اتباع إجراءات الأمن والسـلامة أثنـاء
تدربـه هٌِ الورشـة

مستوى الأداء المطلوب: أن يصل المتدرب إلى إتقان الجدارة بنسبة 90٪

الوقتتالمتوقع للتدريب على الجدارة: (12) ساعة.

الوسائل المساعلةة :

- محرك تيار مستمـر ذو جهد تشغيل منخفض .
- جهاز الأوسيلوسـكـ
- وسـائل الأمن والسـلامة.
- جهاز عرض علوي (DATA SHOW)

متطلبـاتالجدارة:
 مستمر من خلال تدربه على مفردات هذه الحقيبة التدريبية متبعاً إجراءات الأمن والسـلامة والسـلوك المهني السـليم .

السلوك المهني اللذي يجب التقيد به خلال التلدربب على مفردات هله الوحدة التلدربيية

أخي المتدرب:
إن تطبيقك للسلوك المهني السليم أثتاء تدربك على مفردات هذه الوحدة هو الطريق الأمتل لنجاحك وتفوقك واكتسـاب احترام وتقدير الآخرين وتجنبك للحوادث المحتمل حدوثها أثناء تواجدك يٍِ بيئة العمل ومن هـذه السلوكيات مـا يلي:

1/ تقيدك بالزي المخصص للتدريب ووسـائل السـلامة المناسبة مثل حذاء السـلامة ونظارات السـلامة أثناء العمل يِّ الورشـة أو المختبر دليل وعيك.

2/ احرص على تتظيم وترتيب العدد والأدوات بشكل منظم ومرتب وپٌ أمـاكنها الخاصة.
3/ داوم على المحافظة على نظافة الورشـة والمختبر ومـكان العمل. 4/ التزم بالمحافظة على الهدوء والنظام يِّ الورشـة والمختبر ومـكان العمل . 5/ احرص على حسن التعامل مـع المدربين والتعاون معهم. 6/ تقيد بالإرشـادات والأنظمة المتبعة يٌِ الورشـة والمختبر ومـكان العمل. 7/ احرص على حسـن التعامل مع زمـلاءك المتـدربين والتعاون معهم. 8/ تحلى بالأخلاق والتعاليم الإسـالامية يٌ تعاملك وأثناء عملك. 9/ عند رغبتك يٌ التعرض على أي جهاز جديد يٌ الورشة اطلب مسـاعدة المدرب لتوضيحه لك. 10 / لا تخرج من الورشة دون إذن المدرب.
11 / حافظ على وقت التدريب بحضورك مبكراً ومغادرتك مع نهاية الوقت. 12 / حافظ على العدد والأدوات من الضياع أو التلف فهي مسؤوليتك.

إجراءاتا الأمن والسلامة عند دراسة دوائر التحكم في سرعة محركات التيـار المستمر

1 / تقيد بلباس التدريب داخل الورشة والتزم بهتطلبـات السـالامة الأخرى
 عمل مغاير

13
4 ا ضع كاوية اللحام
/ احذر حدوث التماس بين جسى الكاوية السـاخن وكابل توصيل التيار الكهربي لها . 6 / احذر من لمس الأحماض الخاصة بعملية تحميض البوردات واحرص على لبس القفازات. 7 / احذر مـن استتشاق الأبخـرة المتصـاعدة مـن عمليـة التحمـيض وإن كانت بسـيطة واحـرص على لبس كمـامات على الأنف

8 / احذر عند تسخين الماء المستخدم 2 عملية التحميض وتجنب المزاح مع زمـالاكك . 19 لا تعبث بالعدد والأدوات وِ الورشة وقد تتسبب پو حوادث مؤسفة لك ولفيرك لا قدر اللّه. 10 11 / تجنب المزاح پِ الورشة وأثناء التدريب حتى تحمي نفسك وزمـلائك من الخطر . 12 / تقيد بإرشـادات المدربين والمشرفين على تدريبك يو الورشة والتدريب الميداني فهذا يجنبك الحوادث بإذن الله تعالى.

13 أماكنها الخاصة

مقدمة

إن أهمية إلكترونيات القوى تكون واضحـة دون شـك هٌِ هذا المجـال وذلك لأن عناصـر إلكترونيات القوى عناصر لها فائدة كبيرة پِّ مجال التحكـم وِّ القدرة العالية وتتبع هذه الفائــدة من كون هذه العناصر رخيصة السعر وذات كفاءة عالية ومتعددة الاستخدامـات ولأنها تستخـدم للحصول على مصدر "DC" من مصدر قدرة "AC"وك "Aذلك تحويل القدرة "إلى القدرة "AC" وبالإضافة إلى ذلك فإن عناصر إلكترونيات القدرة يمكن استخدامها لتغيير إثشـارة "AC" عنــد تـردد (FREQUENCY) معين إلى إثشارة AC عند تردد آخر .

ولذلك فإن جميع هذه الدوائر تكون ذات فائـدة عاليـة جداً عند تعاملها مع
 والشكل رقم (1) يبين رسمـاً توضيحياً مبسطاً لمحرك يعمل بالتيار المستمر حيث إن محرك التيار المستمر يتكون بشكل عام من جزأين هـما : 1- العضو الثابت (STATOR).
2- العضو الدوار (ROTOR).

ويتضمن محرك التيار المستمر نوعين رئيسين من الملفات هـما :
1- ملفات المجال (FIELD WINDINGS) .
2- ملفات عضو الإنتاج (ARMATURE WINDINGS) .

وتعرف ملفات عضو الإنتاج بأنها الملفات التي تتولد فيها الفولطية بالحث، وتعرف
ملفات المجال بأنها الملفات التي تتتج الفيض المفناطيسي الرئيسي يٌ المحرك .
وسـوف نقوم پٌ هذه الوحدة بدراسة الدوائر الأساسية التي تستخدم عناصر
إلكترونيات القدرة من أجل التحكم بمحركات التيار المستمر "DC"

الشكل رقم (1) محرك يعمل بالتيار المستمر

تركيب محرك التيار المستمر :

يتركب من جزأين أسـاسـيـين همـا :
1- جزء دوار يسمى بالمنتج أو عضو الاستتتاج أو العضو الدوار (ARMATURE) .
2- جزء ثابت يسـى "بالعضو السـاكن" أو الإطار الرئيس "STATOR" .
والأشكال رقم (2) ورقم (3) يوضـحان العضو السـاكن والعضو الدوار لمحرك التيـار

الشكل رقم (2) العضو السـاكن والعضو الدوار لمحرك التيار المستمـر .

الشكل رقم (3) العضو السـاكن والعضو الدوار لمحرك التيـار المستمر .

نعلم أن مرور تيار خـلال لفات المجال يؤدي إلى توليد مـجال مغناطيسي يحدد اتجاهـه بواسطة قاعدة اليد اليمنى بحيث إذا كانت لفة الأصابع "FINGERS" باتجـاه التيـار يكون اتجاه المجال باتجاه إصبع الإبهام .

وحيث إن العضو الثابت لمحرك "DC" يتألف من عدد زوجي من الأقطاب المغناطيسية

المار يِّ ملفات المجال المفناطيسي.
أما العضو الدوار فيتـكون من قضيب حديدي يحمل موصـلات فعالة مدموجة داخل شقوق ومتصلة بنصلات عضو التقويم ويتم انتقال التيار من وإلى عضو الإنتاج (BRUSHES) كريونية ثابتة ويعمل عضو (فـحمات) (ARMATURE) التقويم أوتوماتيكياً على تحويل الموصـلات بحيث يكون العزم الخارج من المحرك ثابتاً وأحادي الاتجاه .
ولتشغيل المحرك يجب تغذية كلا الجزأين (المنتج، والثابت) بتيار مستمر "DC" بحيث
يتغذى المنتج بالتيـار المستمر عن طريق طرٌِ الفحهـة (الفرشـة) بينمـا تتغذى لفات المجال بالتيـار المستمر عن طريق هذه الملفات. هذا ويولد التيار پٌِ لفـات المجـال مجالاً مغناطيسياً ثابـت القيمة ويقطع لفات المنتج، الشـكل رقم (4) يوضح ذلك .

الشكل رقم (4) مبدأ عمل محرك التيار المستمـر

التحكم في سرعة محرك التيـارالمستمر :

يمكننا تفيير سـرعة محرك التيـار المستمر وخاصة محرك التوازي وذلك بواسطة تغيير تيار المنتج أو تيار المجال أو بتغيير جهد المنتج وذلك باستخدام المقاوهـات المتغيرة والتي توصل بالتوالي مع ملفات المنتج والمجال وذلك كـمـا هو مبين ٌِِ الشـكل رقم (5) .

$$
\begin{aligned}
& \text { حيث أن : } \\
& \text { 1- } \\
& \text { 2- جهد المنتج(}{ }^{2} \text { (V). } \\
& \text { 3- ملفات المجال التوازي . }
\end{aligned}
$$

- كما رأينا يهكن استخدام المقاومة المتفيرة لتتظيه سرعة محرك (التيار المستمر) التوازي وذلك بواسطة تفيير الجهد المطبق على المنتج (VA) ولكن لهنه الطريقة مسامناوئ كثيرة

ومنها :
تتظيم بسيط للسـرعة بتغيير الحمل، لأن زيادة الحمل تؤدي إلى زيادة ٌِْ هبوط الجهد على طرِوْ المقاومة المتغيرة الموصلة بالتوالي مع ملفات المنتج وهذه الزيادة يٌ الجهد على طرٌِ المقاومة المتفيرة ستطرح من مصدر التفذية المستخدم لتفذية التيار المستمر وبالتالي يقل الجهد المطبق على المنتج ونتيجة لذلك سـوف يتباطأ المحرك مع زيادة
 حرارة ولذلك يمكننا تجاوز هذه المسـاوئ السـابقة والتي تتتج من استخدام المقاومة المتفيرة يِ التتحكم يِّ سـرعة المحرك باستبدالها باستخدام دوائر إلكترونية تحتوي على عناصر إلكترونية مثل الترانزيستور والثايرستور • والثـكل رقَ (6) يبـين إحدى الطرق الإلكترونية المستخدمـة يِ التحكم بهذه العناصر .

الشكل رقم (6) إحدى الطرق الإلكترونية المستخدمـة ِِْ التحكم بهذه العناصر
أخي المتـدرب:

! ! لخروج المتواجدين بهدوء ونظام.

التحكم بـاستخلدام مقطمات التيـار المستمر :
كما تعلم يوجد نوعان من مصـادر القدرة همـا مصدر التيار المتردد (AC) ومصدر
التيـار المستمر (DC) ولذلك يوجد نظامـان للتحكم وٌِ سـرعة محركات التيار المستمـر: فإذا كـان المصدر مترددا نستخدم نظام التحكم پِّ إزاحة زاوية الوجه (PHASE . وذلك بالتحكم بقيمة تيار بوابة الثايرستور (CONTROL وإذا كان المصدر مستمراً نستخدم نظام التحكم بالمُقطع (DC CHOPPER) وذلك باستخدام الثايرستور كمفتاح، وهذه الطريقة أكثر كفاءة وِ عملية التحكمَ. والشك رقم (7) يوضـح مبدأ التحكم بالمقطع حيث يتم تقطيع جهد البطارية (DC) لتعطي نبضـات من التيـار إلى الحمل.

تعريفالمُقطع (DC CHOPPER) :

يعرف المقطع ببساطة على أنه مفتاح إلكتروني يوصل ويفصل تيار الدخل (المصدر) المستمر ويكون خرجه عبارة عن نبضات كما هو مبين يٌْ الشكل رقم (8) .

أساسيـات دائرة التحكه بـالُمقطع والشكل الموجي :

- الشكل رقم (9) يوضح الدائرة الأساسية للتحكم بالُّهقع، وٌِْ هذه الدائرة يقوم الثايرستور (SCR) بمد المحرك بالقدرة المستمرة للتوصيل والقطع (SWITCHING . (ON/OFF ويتم التحكم هٌِ القيمة المتوسطة للجهد المستمر والتي يمدهـا الُمقطع SCR للمحرك بزيادة وتقليل زمن التوصيل للثايرستور مع الحفاظ على التردد ثابتاً .

الشكل قم (9) الدائرة الأسـاسية للتحكم بالُمقطع

أخيالمتدرب:
تـــاول العناصـر الإلكترونيــة برفـق وبــد تعرفـك علـى مواصـفـاتها عـاود تخزينها مرة أخرى مع المحافظة عليها من التلف .

- والأشكال الموجيـة الموضحـة بالشكل رقم (10) تبين كيـف يمـكن التحكـم ـوِ القيمـة المتوسطة للجهد بتغيير زمن التوصيل والفصل للثايرستور SCR

الثشكل رقم (10)

- وكذلك يمكن التحكم هٌِ القيمة المتوسطة لجهد المحرك وذلك بتفيير عرض النبضات .

التحويل بين الوصل والقطع للثايرستور SCR :

- عندما يعمل الثايرستور مع مصدر (DC) وبعد قدحه وتحويله إلى حالة التوصيل ON فإنه يبقى يٌْ حالة توصيل حتى ولو تم رفع (إزالة) تيار البوابة عن الثايرستور، أي أن البوابة تفقد سيطرتها على الثايرستور ولا يمكن تحويله إلى حالة الفصل (OFF) إلا باستخدام طريقة واحدة من الطرق الآتية:
1- تقليل الجهد بين الأنود والكاثود إلى قيمة أقل من جهد الإمسـاك (VH) .
2- عكس قطبية الجهد بين الأنود والكاثود .
3- جعل التيار بين الأنود والكاثود يسـاوي صفراً .

وحتى يتحول الثايرستور للإطفاء أو القطع (OFF) فإنتا بحاجة لدائرة إطفاء مسـاعدة لكي نحصل على تشغيل متحكم فيه.

والشكل رقم (11) يوضح دائرة إطفاء خارجية تعمل على تطبيق جهد انحياز عكسي على طريٌ الثايرستور ويتم ذلك بتطبيق نبضة على قاعدة الترانزيستور (Q) وعندئن يكون الترانزيستور پٌِ حالة (ON) ويصبح كأنه دائرة قصر فيسمح لجهد البطارية العكسي بأن يطبق على طريٌ SCR فيحوله إلى حالة القطع (OFF) .

الشكل رقم (11) دائرة إطفاء خارجية

- ويوجد طـرق أخرى لإطفـاء الثايرستور مثل استتخــدام ثايرستـور آخر لإطفـاء الثايرستــور الرئيسـي الموصل مـع الحمل (المحرك) پٌِ دائرة الإطفاء الخارجية المسـاعدة وذلك كمـا پِ الشكل رقم (12).

وتعتمد الدائرة ٌِِ تشغيلها على أن (SCR2، SCR $)$) غير مسـوح لهها بإمرار تيار أمامي
 يوصل جهد المصدر عبر الحمل فيشحن المكثف (C) لهذا الجهد(جهد المصدر) من خـلال

 SCR2

تتريز عملي

أخي المتلدرب:

$$
\begin{aligned}
& \text { يجب الانتباه إلى تثبيت المحرك جيداً أثــاء إجراء التجربـة حتى لا تؤدي } \\
& \text { حركته أثناء التجربة إلى وقوع أي أضرار بالمتدربين . }
\end{aligned}
$$

الدزهز 12 سـاعات	رقّم التمرين
التحكم في سرعة محرك (DC) بـاستخدام دائرة مقطع	اسه التهرين
1/ تتفيذ دائرةُ مقطع (DC- CHOPPER) للتحك تيار مستمر (DC- MOTOR) باستتخدام SCR 2/ استخخدام الفولتميتر لقياس الجهود على كـل من الحمل والثايرستور . 3/ 4/ استتنتاج تأثير تغير المقاومة المتفيرة على سـرعة المحرك .	الهدف مز التمريز
12 VDC 1 / مصدر جهد مستمر 2 / جهاز أفوميتر 3/ 3 / جهاز أوسلو سكـي 4/ لوحة اختبار (TEST BOARD)	الأدوات المستخلمهة
2/ ثايرستوران رقم (BTX30) أو (TIC126) أو ما يكافئه . 3/ ترانزستوران رقم (2N3053) أو المكافئ لهها . - ($2 \times 100 \mathrm{~K} \Omega) 1 \mathrm{~W}$ ، (200Ω) 1W•($5 \mathrm{~K} \Omega$ متقاومات: $(3 \times 100 \Omega) 1 \mathrm{~W}$ 5 مكثفان : 6/ مفـــتاح: (ON/OFF SWITCH) .	الخامات

1- المخطط النظري للتهريز:

2- المخطط العملي للتمرين (مقتزح)

3- الدائرةالتنفيديّية:

وصفالدائرة :

- تتكون الدائرة من جزأين هما دائرة المذبذب المتعدد التوافقيات (غير المستقر) ودائرة
 (C3)
 الربط بين دائرة المقطع ودائرة المذبذب عن عن طريق المفتاح (S (S) .

 (SCR $)$ ويستهر المحرك بالدوران بجهد المصدر حتى يتم تطبيق نبضة المذبذب الثانية على بوابي

 . مهـا يؤدي إلى فصل الجهد عن المحرك لمدة فصل (OFR $)$ (OFF
وبالتالي تقل سـرعة دوران المحرك .

وتتكرر الدورة مرة أخرى بتطبيق نبضة على بوابة (SCR1) مما تسبب پٌ قدحهـ مرة ثانية وبالتالي يرتفع الجهد على المحرك مرة مرة ثانية وتتـكرر العملية . وعن طريق تفيير تردد المذبذب يمكن أيضا التحكم وِّ زمن عرض النبضة ونـة وبالتالي
 ملفات المحرك .

الخطوات :

> 1.قم بتتفيذ الدائرة المبينـة ٌِِ الشـكل السـابق على لوحة مطبوعة .
> 2. قم بتثبيت المحرك جيداً لإجراء القيـاسـات عليـه .
3. ضـ المفتاح (S ${ }^{\text {3 }}$)
4. قم بضبط مصدر الجهد المستهـر على (12V) ثم ووصله بالدائرة .

ولماذا ؟
\% هل يدور المحرك ؟ (نعم/لا)

وصل القناة الأولى لجهاز الأوسيلوسـكوب بين النقطتين (X , Y) مع أطراف المحرك .
 .(ON)
ولاحظ كـلاً من سـرعة المحـرك والشـكل الموجي على الأوسيلوسـكوب .
6. استتخدم جهاز الفولتميتر على وضع (DC) لقياس الجهد على أطراف كل من المحرك و (SCR)- ثم قم برسـم أشـكال الموجات على (SCR) والمحرك. على الأشـكال (1 2) . 7. قم بتقليل قيمـة المقاومة المتفيرة (R) إلى أقل قيمـه لها ثم تابع ولاحظ مـاذا يحـدث لسـرعة المحرك وكـذلك الأشـكال الموجية على جهاز الأوسيلوسـكـوب, ثم قس الجهد على أطراف
كل من (SCR) والمحرك.
8. قم بتقليل قيمة المقاومة (R) على أقل قيمة لها ، ولاحظ مـاذا يحـدث لسـرعة المحرك
وكذلك الشـكل الموجي على جهاز الأوسـيلوسـكوب.

- ارسم الأشكـال الموجية للخطوة (6, 7) (على الأشكال 4, 3, 3 , 3).

$V_{A K}$ $(D C-V)$	
$V_{X Y}$	
$(D C-V)$	

$V_{A X}$ $(D C-V)$	
$V_{X Y}$	
$(\mathrm{DC}-\mathrm{V})$	

- اكتب استتتاجك للنتائج التي حصلت عليها وبين العـلاقة بين تفيير المقاومة (R) وسـرعة

المحرك.

أخي المتلدرب:

تـرب على استخخدام طفايات الحريق المختلفة،واحرص على معرفة مـكان حقيبة الإسعافـات الأوليـة داخل الورشـة ، لتتتفع بها والآخرون عند الحاجة.

أسئلة تقتولم :

س1/ ماذا لم يدر المحرك قبل غلق المفتاح (S) ؟
س2/ما فائدة الثايرستور (SCR2) وِّ هذه الدائرة ؟
س3/بين تأثير تفير المقاومة (R) على سرعة المحرك ؟
س4/ما فائدة كل من المقاومة (R6،C3) وٌّ هذه الدائرة ؟
س5/استعن بأشكال الموجات التي حصلت عليها من خلال النتائج واشرح بإيجاز مبدأ عمل هذه الدائرة؟

س6/لماذا يتم توصيل مخرجي المـنـبذب المتعـدد التوافقيات (غير المستقر) إلى بوابتي ؟(SCR1، SCR2)

الوحلدة|الخامسة

التحكثم وِ سـرعة مدركات التيار المتردد

اسم الوحلة : التحكم في سرعة محركات التيـار المتزدد

الجــــــارة: قدرة المتدرب على تطبيق دوائر التحكـم هِّسرعة محرك التيار المتردد

1/ التعرف على أنواع محركات التيار المتردد (AC) ومبدأ عملها . 2/ التعرف على كيفية التحكم هِ سـرعة المحركات أحادية الوجهه .

3/ استخدام الدياك والترياك للتحكَم پٌ سـرعة محرك تيار متردد پٌِ نظام تحكم مفتوح المسـار .

4/ مشاهدة العلاقة بين التفير بٌِ الجهد المطبق على المحرك والتغير وِّ السرعة.
5/ أن يتقيد المتدرب بالسلوك المهني السليم ويحرص على اتباع إجراءات الأمن والسـلامة أثتاء تدربه هٌِ الورشـة

مستوى الأداء المطلوب: أن يصل المتدرب إلى إتقان الجدارة بنسبة 90٪

الوقتتالمتوقع للتدريب على الجدارة: (12) سـاعة.

الوسائل المساعلة :

- الاستعانة بدائرة مفتاح خافض الإضاءة (DIMMER) للتحكـم پٌ شـدة إضاءة لمبة

$$
\begin{aligned}
& \text { - محرك تيار متردد أحادي الوجه. } \\
& \text { - وسائل الأمن والسـلامة. }
\end{aligned}
$$

- جهاز عرض علوي (DATA SHOW).

متطلبـاتالجدارة:

أن يكون المتدرب متمكناً من تطبيق دوائر التحكم هِّ سـرعة محرك التيار المتردد
من خلال تدربه على مفردات هذه الحقيبة التدريبية متبعاً إجراءات الأمن والسـلامة والسلوك المهني السليه.

السلوك المهني الذي يجب التقيد به خلال التلدربب على مفردات هذه الوحدة التلدربيية

إن تطبيقك للسلوك المهني السليم أثناء تدربك على مفردات هذه الوحدة هو الطريق الأمثل لنجاحك وتفوقك واكتساب احترام وتقدير الآخرين وتجنبك للحوادث المحتمل حدوثها أثناء تواجدك يٌ بيئة العمل ومن هذه السلوكيات ما يلي: 1/ تقيدك بالزي المخصص للتدريب ووسائل السـلامة المناسبة مثل حذاء السـامة ونظارات السـلامة أثنـاء العمل پٌِ الورشــة أو المختبر دليلـ وعيك. 2 2/ احرص على تتظيم وترتيب العدد والأدوات بشكل منظم ومرتب وٌِ أماكنها الخاصة. 3/ داوم على المحافظة على نظافة الورشـة والمختبر ومكان العمل. 4/ التزم بالمحافظة على الهدوء والنظام هٌِ الورشـة والمختبر ومكان العمل . 5/ احرص على حسن التعامل مع المدربين والتعاون معهم. 6/ تقيد بالإرشـادات والأنظمة المتبعة يٌ الورشـة والمختبر ومكان العمل. 7/ احرص على حسـن التعامل مع زمـلائك المتدربين والتعاون معهم. 8/ تحل بالأخلاق والتعاليم الإسـالامية يٌ تعاملك وأثناء عملك. 9/ عند رغبتك وِّ التعرف على أي جهاز جديد بالورشة اطلب مساعدة المدرب لتوضيحها لك.
10/ لا تخرج من الورشة دون إذن المدرب.

11/ حافظ على وقت التدريب بحضورك مبكراً ومغادرتك مـع نـا نهاية الوقت. 12/ حافظ على العدد والأدوات من الضياع أو التلف فهي مسؤوليتك.

إجراءات الأمن والسلامة عند دراسة التحكم في سرعة محركات التيـار المتردد

1 / تقيد بلباس التدريب داخل الورشة والتزم بهتطلبـات السـلامة الأخرى
2 / تقيد باستخدام العدد والأدوات حسبها أعـدت لـه ولا تستخدم أداة خاصـة لعهـل معـين يْ عمل مغاير

3 / تدرب على استخدام طفايات الحريق.
4 / يجب وضع كاوية اللحام ف2 محكانها المناسب بعد إجراء اللحام مباشرة .
5 / احذر حدوث إلتماس بين جسم الكاوية الساخن وكـابل توصيل التيار الكهربي لها 6 / احذر من لمس الأحماض الخاصة بعملية تحميض البوردات واحرص على لبس القفازات. 7 / احذر من استتشـاق الابجـرة المتصـاعدة مـن عمليـة التحمـيض وإن كانت بسـيطة واحـرص على لبس كـمامـات على الأنف .

8/ احذر عند تسخين الماء المستخدم 2 عملية التحميض وتجنب المزاح مع زمـلاءك 19 لا تعبث بالعدد والأدوات وِ الورشة وقد تتسبب هِ حوادث مؤسفة لك ولغيرك لا قدر اللّه. 10 11 / تجنب المزاح حِ الورشة وأثتاء التدريب حتى تحمي نفسـك وزمـلاءك من الخطر . 12 / تقيد بإرشـادات المدربين والمشرفين على تدريبك وِ الورشة والتدريب الميداني فهذا يجنبك الحوادث بإذن اللّه تعالى.

13 / عنـد الانتهاء مـن العهـل احـرص على تتظيم وترتيـب العـدد بشـكـل مـنظم ومرتـب وٌ أماكنها الخاصة

مقدمة

لقد أصبحت محركات التيار المتردد يٌْ الآونة الحديثة، تحتل مسـاحة كبيرة ٌِِ الصناعة ولقد جاء هذا الاهتمام بمحركات التيار المتردد بسبب مـا تتميز به هذه المحركـات المات عن محركات التيار المستمر ومن هذه المميزات:

1. محركات التيار المتردد كثيراً مـا يكون حجمها أصغر من محركات التيار المستمر (DC) 2. صيانة محركات (AC) أقل تكلفة من صيانة محركات (DC). 3. محركات (AC) أكثر أمناً من محركات (DC) وذلك لوجود الفرش الكربونية يوْ محركات (DC) والتي يمكن أن يتولد عنها شرر كهربائي.
2. تعمل محركات (AC) على سرعات عالية مقارنة بمحركات (DC) (DC) حيث إن أقصى سرعة لمحركات (DC) هي (2500 R.P.M) بينما محركات التيار المتردد الحثية لها ضعف هـذه السـرعة .

إن محركات التيار المتردد عادة تكون ثلاثية الأوجه، وتصنع من جزأين أسـاسيين: جزء ثابت يدعي العضو الساكن (RTATOR) وجزء متحرك يدعى العضو الدوار (ROTOR) إلى تطوير وإنتاج نوع آخر من المحركات يسمى المحرك الحثي الأحادي الوجه وهو يشبه المحرك الحثي الثڭلاثي الوجه من حيث مبدأ التشغيل. ولكن بسبب تشغيله من مصدر أحادي الوجه فإن ملفات العضو الساكن تختلف بشكل واضح عمـا هي عليه هٌِ المحرك الحثي ثلاثي الوجه.

وهناك فرق آخر بين المحرك الحثي الثڭلاثي الأوجه والمحرك الحثي أحادي الوجه وهو
يتعلق ببدء (STARTING) هذه المحركات.

وتستخدم طرق خاصة لبدء المحرركات الحثية أحادية الوجه لتتكون مشمولة وٌ المحرك وتعتبر جزءاً مكهملاً للأجزاء الرئيسية الأخرى للمـحرك .

إن العدد والأدوات داخل الورشـة لك ولزمـلاءك المتدربين فـحافظ عليها.

مبلدأ عمل المحرك الحثي أحادي الوجه :

- يعتمد مبدأ تشغيل المحرك الحثي أحادي الوجاه على إنتاج مجال دوار . فعند مرور تيـار
 الوقت بسبب التيار المتردد ولكن هذا المجال لا يدور ولا يسـاعد على دوران الصضو المتحرك، ولكن إذا أمكن تحليل هذا المجال المفناطيسي إلى مجالين مغناطيسيين متسـاويين يدوران پِ اتجاهـين متعاكسـين. وبسـرعة زاوية ثابتة مقدارهـا يسـاوي سـرعة التزامن، فإناه سـوف يستحث من كل مجال تياراً پٌِ العضو الدوار ينتجان عليه عزمـين متعاكسـين وطالما أن العضو الدوار متوقف فإن هذين المجالين يتعادلان وتكون
محصلتهما تسـاوي صفراً، ممـا لا يسبب أي حركة.
 العزم الآخر هذا الدوران ولكن العضو الدوار يستهر ِِْ حركته باتجاه دوران المجال الأقوى.
- وعلى ذلك يتطلب لتشغيل المحرك الحثي الأحادي الوجاء استعمـال آلة للبدء تعمل على تسريع العضو الدوار إلى السـرعة الـلازمة للبدء. ويتم هذا البدء بإدخال ملف إضاٌٌِ مع مقاومة على التوالي معاه يِخ العضو السـاكن ويوصل على التوازي مع الملف الرئيسي ويسري ֵِِ هذا الملف المسـاعد (AUXILIARY WINDING) تيـار (IA) يختلف الطور (OUT OF PHASE) بالنسبـة إلى التيار (I) المار پِ الملف الأسـاسـي وذلك بسبب وجود المقاومة فيهه .

كما يولد التيار (IA)مجالاً مغناطيسياً مختلف وٌِ الطور مع المجال الرئيسي فينتج عن هذين المجالين مجال دوار قادر على بدء المحرك وعندما تصل سرعة المحرك إلى قيمة معينة ينفصل الملف المساعد بواسطة مبدل طرد مركزي (CENTRIFUGAL .(SWITCH

وهناك طريقة أخرى للحصول على زاوية فرق پٌ الطور بين المجالين، وذلك بإدخال مكثف بدلاً من المقاومة. وهذه الطريقة ذات مزايا تفوق طريقة إدخال المقاومة.

التحكم في سرعة المحركات أحادية الطور :

يمكن التحكم بسرعة محركات التيار المتردد التزامنية أو الحثية أحادية الطور أو
ثلاثية الطور باستخخدام إحدى الطرق الآتية:
1/ تفيير التردد الكهربائي .
2/ تغيير عدد أقطاب المحرك .
3/ تغيير الجهد الطرِوْ المطبق على المحرك .

وحيث إن التجهيز العملي للتحكم بسـرعة المحركات باستتخدام تغير التردد أصعب من
أن يذكر ٌِ هذه المادة لأنه يتطلب لتتفيذه دوائر كثيرة ومعقدة جداً لـذلك سـوف نقوم بدراسـة كيفية التحكم بالسـرعة عن طريق تغيير الجهد المطبق على أطراف المحرك .

ويعتبر تغيير الجهد الطرِ2 المطبق على المحرك من أكثر الطرق الثلاثة شيوعاً، ويعود الفضل ِِّ ذلك إلى استخدام العناصر الإلكترونية والتي سبق دراسـة خصـائصها من قبل ومن أمثلة العناصر الإلكترونية والتي تستخدم وٌ تتظيم سـرعة محركات التيار المتردد (الثايرستور والترياك) والشكل رقم (1) يبين كيفية توصيل (ربط) الترياك على التوالي مع أطراف الجهد

الشكل رقم (1) كيفية توصيل (ربط) الترياك على التوالي مع أطراف الجهد والمحرك.

التحكم المفتوح المسار أحادي الوجه لمحرك (AC) بـاستخلام تريــك وديـاك:

- يبين الشكل رقم (2) دائرة تستخدم للتحكم يٌ القدرة المطبقة على محرك تيار متردد وتسهى هذه الدائرة باسم دائرة تحكم يٌّ مسـار مفتوح (OPEN LOOP) (أي يستخدم فيها التحكم اليدوي لضبط سرعة المحرك) ولذلك فإن لهذا النظام مسـاوئ منها عدم الدقة وٌ عملية الضبط و استهلالك جزء كبير من القدرة يٌ المقاومة. وهذه الدائرة هي عبارة عن شبكة (RC) يستخدم فيها الدياك لقدح الترياك،

والترياك يستخدم كمفتاح ليمد المحرك بالقدرة أثناء فترة توصيله .

الشكل رقم (2) دائرة تحكم थٌ مسـار مفتوح (OPENLOOP)

طريقة عمل هلّه الدائرة:
كما نعلم فإنه عند تطبيق جهد عبر أطراف الدياك يكون أكبر من جهد القطع (VRR) انعكاس الفولطية (أي يٌ نصف الموجة الموجب والسـالب للتيار المتردد). وعندما تصل الفولطية على أطراف المكثف (C) نتيجة لضبط المقاومة المتفيرة إلى قيمة جهد التحول للدياك فإن الدياك يقدح ويأخذ المكثف بالتفريغ عبر الدياك وبوابة الترياك وبذلك يتم تزويد بوابة الترياك بالنبضة اللازمة للقدح ويتم تطبيق القدرة على المحرك. ويعطي الدياك نبضتين متعاكستين لكل دورة للإثشارة الجيبية وتتباعد هذه النبضات
بهقدار (180) ويعتمد موقعها على الثابت الزمني (RC) باستخدام المقاومة المتغيرة (R) ليمكن تظظيم الثابت الزمني وبالتالي يمكن تفيير سرعة المحرك .

تترين عملي

أخي المتلدرب:

يجب مراعاة شروط الأمن والسـلامة أثتاء التعامل المباشر مع مصدر الجهد وذلك بعدم لمس أطراف المحرك أو أطراف الترياك أثناء قياس الجهد أو مشاهدة الموجات على جهاز الأوسيلوسكوب.

الـزهن 12 ساعات	رقّم التمرين
التحكم في سرعة محركات التيـار المترد (AC) في نظام تّككم مفتوح النظام	اسم التهريز
تحك مفتوح المسـار. 2/ مشاهدة العلاقة بين التفير پِ الجهد المطبق على المحرك والتفير थِ السـرعة. 3/ تفيير زاوية قدح الترياك ومشاهدة تأثير ذلك على سـرعة المحرك .	الهدف مز التمريّن
1/ لوح اختبار (TEST BOARD) 2/ جهاز قياس فولتميتر . 3/ جهاز الأوسيلوسكوب	الأدوات المستخلمهة
	الخامات

1- المخطط النظري للتمرين:

الشكل رقم (3)

الإدارة العـامة" لتصهيه وتطوير المنــاهج

الخطوات :

1/ قم بإنشاء الدائرة المبينة يٌٌ الشكل (3) على لوحه هطبوعة مع مراعاة سمك خطوط التوصيل لتحمل شدة التيار الذي سوف يمر عبر المحرك.
2/ قم بتثبيت المحرك (خارج الدائرة) على الطاولة قبل أن توصل أطرا افـر افـهـ
3/ قم بفتح المفتاح (S) وعدم توصيل القدرة للدائرة .
4/ قم بضبط جهاز الفولتميتر على وضع (AC) وعلى تدريج مناسب (B) (220V)، ثم وصل جهاز الفولتميتر بين النقطتين (B, A).
5/ اضبط المقاومة المتغيرة (P1) على أقصى قيمة لها (حتى لا يبدأ المحرك بالدوران عند

> تطبيق القدرة على الدائرة).

6/ اغلق المفتاح (S) وطبق مصدر التغذية المتردد (220V). هل يدور المحرك؟.............. ولماذا 5.
7/ قم بتقليل قيمة المقاومة المتغيرة (P1) ببطء حتى يبدأ المحرك بالدوران وسـجل قيمة الجهد
V (A , B) = .. (VOLT) عند هذه الحالة

8/ قم بتغيير المقاومة المتغيرة حتى تكون قراءة الفولتميتر (120V) ولاحظ ماذا يحدث
لسرعة المحرك .

9/ استمر پٌ تفيير قيمة المقاومة المتفيرة حتى تحصل على أكبر سـرعة للمحرك وعندئذ V (A , в) $=$ (VOLT) .

10/ قم بهحاولة رسـم أشكال الموجات على أطراف الترياك بين (A 10) (A2 وعلى أطراف المحرك بين (A,B) وذلك عند كـل ضبط لقيمـة المقاومـة (P1) وذلك بالتزامن مع بعضها البعض

	(A, B) قياس الجهو ($V_{P . P}$)
	(A2 , A1) ($\mathrm{V}_{\mathrm{P}, \mathrm{P}}$)

	(A , B) قَّاس الجه ($V_{P, P}$)
	قياس الجها ($\mathrm{V}_{\mathrm{P}, \mathrm{P}}$)

الاستنتـاج :
من خـلال النتائج التي حصلت عليها - اكتب استتتاجك من خلال العـلاقة بين تغير الجهد المطبق على المحرك وسـرعتـه .
\qquad

أسئلة التقويه :

س1/ من خـلال النتائج التي حصلت عليها هل سـرعة المحرك تتغير هع تفير الجهد المطبق عليه ؟

س2/ مـا فائدة ضبط المقاومة المتغيرة (P1) وِّ كـل مرة .؟ س3/ مـا فائدة كل من: الدياك والترياك والمكثف (C1) وِّ هذه الدائرة ؟
 نظام مغلق؟

س5/ بـين العـلاقة بين تفيير زاوية قدح الترياك وكل من : أ- تغيير قيمة المقاومة المتغيرة (P1).

ب- الجهد على أطراف المحرك بين النقطتين (A , B) .
جـ- سـرعة المحـرك .

المراجـع العربية

المؤلف	اسه المرجع
	8/تقنية الإلكترونيات - الجزء الأول () .
	9/ إلكترونيات القوى.

المراجـع الأجنبية

المؤلف	اسمر المرجع
A TEXT - LAB MANUAL - PAUL B.ZBAR - ALBERT P. MALVINO	1/ BASIC ELECTRONICS (FIFTH EDITION)
A TEXT - LAB MANUAL - PAUL B.ZBAR	2/INDUSTRIAL ELECTRONICS (THIRD EDITION)
- TIMOTHY J.MALONEY	3/MODERN INDUSTRIAL ELECTRONICS (THIRD EDITION)
- TOM DUNCAN	4/ ELECTRONICS FOR TODAY AND TOMRROW
- BY IRVING M.GOTTLIEB	5/ POWER SUPPLIES SWITCHING REGULATORS INVERTERS AND CONVERTERS
	6/ CONTROL DEVICES AND STEPPER MOTORS
- R.S. RAMS HAW , LONDON 1973	7/ POWER ELECTRONICS AND CONTROL

