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Preface

We take bioinformatics to mean the emerging field of science growing from
the application of mathematics, statistics, and information technology, in-
cluding computers and the theory surrounding them, to the study and
analysis of very large biological, and particularly genetic, data sets. The
field has been fuelled by the increase in DNA data generation leading to the
massive data sets already generated, and yet to be generated, in particular
the data from the human and other genome projects.

Bioinformatics does not aim to lay down fundamental mathematical laws
that govern biological systems parallel to those laid down in physics. Such
laws, if they exist, are a long way from being determined for biological
systems. Instead, at this stage the main utility of mathematics in the field
is in the creation of tools that investigators can use to analyze data. For
example, biologists need tools for finding genes in genomic DNA, and for
estimating differences in how genes are expressed in different tissues. Such
tools involve statistical modeling of biological systems, and it is our belief
that there is a need for a book that introduces probability, statistics, and
stochastic processes in the context of bioinformatics. We hope to fill that
need here.

The material in this text assumes little or no background in biology. The
basic notions of biology that one needs in order to understand the mate-
rial are outlined in Appendix A. Some further details that are necessary to
understand particular applications are given in the context of those appli-
cations. The necessary background in mathematics is introductory courses
in calculus and linear algebra. In order to be clear about notation and
terminology, as well as to organize several results that are needed in the
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text, a review of basic notions in mathematics is given in Appendix B. No
computer science knowledge is assumed and no programming is necessary
to understand the material.

Why are probability and statistics so important in bioinformatics? Bioin-
formatics involves the analysis of biological data. Many chance mechanisms
are involved in the creation of these data, most importantly the many ran-
dom processes inherent in biological evolution and the randomness inherent
in any sampling process. Stochastic process theory involves the description
of the evolution of random processes occurring over time or space. Bio-
logical evolution over eons has provided the outcome of one of the most
complex stochastic processes imaginable, and one that requires complex
stochastic process theory for its description and analysis.

Our aim is to give an introductory account of some of the probability
theory, statistics, and stochastic process theory appropriate to computa-
tional biology and bioinformatics. This is not a “how-to” book, of which
there are several in the literature, but it aims to fill a gap in the literature
on the statistical and probabilistic aspects of bioinformatics. The first three
chapters in this book contain standard introductory material suitable for
any statistics course. Our main aim in these chapters is to establish nota-
tion and to provide material needed in later chapters, so as to make the
book more-or-less self-contained. We have chosen to illustrate principles
by simple examples, not necessarily having a biological relevance, since a
simple statistical principle can often be obscured if it is placed in a compli-
cated biological context. We are well aware of the possible shortcomings,
particularly those involving “relevance,” of this approach.

Despite the introductory aim of the introductory chapters, we have de-
parted in them somewhat from well-trodden paths, focussing on material of
interest in bioinformatics, for example the theory of the maximum of several
random variables, moment-generating functions, geometric random vari-
ables and their various generalizations, together with information theory
and entropy. We have provided, in Appendix B, some standard mathemat-
ical results that are needed as background for these and other concepts
discussed in this book.

This text is by no means comprehensive. There are several books that
cover some of the topics we consider at a more advanced level. The reader
should approach this text in part as an introduction and a means of assess-
ing his/her interest in and ability to pursue this field further. Thus we have
not tried to cover a comprehensive list of topics, nor to cover those topics
discussed in complete detail. No book can ever fulfill the task of providing
a complete introduction to this subject, since bioinformatics is evolving
too quickly. To learn this subject as it evolves one must ultimately turn to
the literature of published articles in journals. We hope that this book will
provide a first stepping stone leading the reader in that direction.

We also wish to appeal to trained statisticians and to give them an
introduction to bioinformatics, since their contributions will be vital to the
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analysis of the biological data already at hand and, more important, to
developing analyses for new forms of data that will arrive in the future.
Such readers should be able to proceed to the later chapters of the book
directly.

The statistical procedures currently used in this subject are often ad
hoc, with different methods being used in different parts of the subject.
For this reason we have attempted a more formal presentation of statisti-
cal methods, so as to give an account that does not encounter the problems
of an ad hoc approach. We have also tried to provide as many threads run-
ning through the book as possible in order to overcome this problem and
to integrate the material. One such thread is provided by aspects of the
material on stochastic processes. BLAST (Basic Local Alignment Search
Tool) is one of the most frequently used algorithms in applied statistics, one
BLAST search being made every few seconds on average by bioinformat-
ics researchers around the world. However, the stochastic process theory
behind the statistical calculations used in this algorithm is not widely un-
derstood. We approach this theory by starting with random walks, and
through these to sequential analysis theory and to Markov chains, and
ultimately to BLAST. This sequence also leads to the theory of hidden
Markov models and to evolutionary analyses.

We have chosen this thread for three reasons. The first is that BLAST
theory is intrinsically important. The second, as just mentioned, is that this
provides a coherent thread to the often unconnected aspects of stochastic
process theory used in various areas of bioinformatics. The final reason is
that, with the human genome data and the genomes of other important
species complete, at least in first draft, we wish to emphasize procedures
that lead to the analysis of these data. The analysis of these data will
require new and currently unpredictable statistical analyses, and in partic-
ular, the theory for the most recent and sophisticated versions of BLAST,
and for its further developments, will require new advanced theory.

So far as more practical matters are concerned, we are well aware of the
need for precision in presenting any mathematically based topic. However,
we are also aware of the perils of a too mathematically precise approach
to probability, perhaps through measure theory, , in an applied field. Our
approach has tended to be less rather than more pedantic, and detailed
qualifications that interrupt the flow and might annoy the reader have been
omitted. As one example, we assume throughout that all random variables
we consider have finite moments of all orders. This assumption enables us
to avoid many minor qualifications to the analysis we present.

So far as statistical theory is concerned, the focus in this book is on
discrete as opposed to continuous random variables, since (especially with
DNA and protein sequences) discrete random variables are more relevant
to bioinformatics. However, some aspects of the theory of discrete random
variables are difficult, with no limiting distribution theory available for
the maximum of these random variables. In this case progress is made
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by using theory from continuous random variables to provide bounds and
approximations. Thus continuous random variables are also discussed in
some detail in the early chapters.

The focus in this book is, as stated above, on probability, statistics,
and stochastic processes. We do, however, discuss aspects of the impor-
tant algorithmic side of bioinformatics, especially when relevant to these
probabilistic topics. In particular, the dynamic programming algorithm is
introduced because of its use in various probability applications, especially
in hidden Markov models. Several books are already available that are
devoted to algorithmic aspects of the subject.

In a broad interpretation of the word “bioinformatics” there are several
areas of the application of statistics to bioinformatics that we do not de-
velop. Thus we do not cover aspects of the statistical theory in genetics
associated with disease finding and linkage analysis. This subject deserves
an entire book on its own. Nor do we discuss the increasingly important
applications of bioinformatics in the stochastic theory of evolutionary pop-
ulation genetics. Again, each of these topics deserves a complete treatment
of its own.

This book is based on lectures given to students in the two-semester
course in bioinformatics and computational biology at the University of
Pennsylvania given each year during the period 1995–2003. We are most
indebted to Elisabetta Manduchi, from PCBI/CBIL, who helped at every
stage in revising the material. We are also grateful to the late Chris-
tian Overton for guidance, inspiration, and friendship. We thank all other
members of PCBI/CBIL who supported us in this task and patiently an-
swered many questions, in particular Brian Brunk, Jonathan Schug, Chris
Stoeckert, Jonathan Crabtree, Angel Pizarro, Deborah Pinney, Shannon
McWeeney, Joan Mazzarelli, and Eugene Buehler. Bob Smythe pointed
out an error in Section 5.4 of the first edition of this book which has been
corrected in this edition. We thank Warren Gish for his help on BLAST,
and for letting us reproduce his BLAST printout examples. We thank Chris
Burge, Roger Day, Sandrine Dudoit, Terry Speed, Matt Werner, Alessandra
Gallinari, Sam Sokolovski, Helen Murphy, Etienne Pardoux, Peter Petraitis,
Stéphane Robin, Mike Morley, Ethan Fingerman, Aaron Shaver, Mireille
Régnier, and Sue Wilson for their help. Finally, we thank students in the
computational biology courses we have taught for their comments on the
material, which we have often incorporated into this book. Any errors or
omissions are, of course, our own responsibility. An archive of errata will
be maintained at http://www.textbook-errata.org.

Warren J. Ewens
Gregory R. Grant
Philadelphia, Pennsylvania
February, 2001
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1
Probability Theory (i): One Random
Variable

1.1 Introduction

We start by reminding the reader that the aims of this chapter, and the
two following, are described in the Preface.

The DNA in an organism consists of very long sequences from an alpha-
bet of four letters (nucleotides), a, g, c, and t (for adenine, guanine, cytosine,
and thymine, respectively).1 These sequences are copied from generation
to generation, and undergo changes within any population over the course
of many generations, as random mutations arise and become fixed in the
population. Therefore, two rather different sequences may derive from a
common ancestor sequence. Suppose we have two small DNA sequences
such as those in (1.1) below, perhaps from two different species, where the
arrows indicate paired nucleotides that are the same in both sequences.

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
g g a g a c t g t a g a c a g c t a a t g c t a t a
g a a c g c c c t a g c c a c g a g c c c t t a t c

(1.1)

We wish to gauge whether the two sequences show significantly more sim-
ilarity than we would expect from two arbitrary segments of DNA from
the two species, in order to obtain evidence as to whether they derive from

1The reader unfamiliar with the basic notions of biology should refer to Appendix A
for the necessary background.
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a remote common ancestor. This kind of calculation is very common in
bioinformatics.

If the sequences were each generated at random, with the four letters a,
g, c, and t having equal probabilities of occurring at any position, then the
two sequences should tend to agree at about one quarter of the positions.
The two sequences above agree at 11 out of 26 positions. How unlikely is
this outcome if the sequences were generated at random? We cannot answer
this question until we understand some properties of random sequences. It
will be shown that under the assumptions of equal probabilities for a, g, c,
and t at any site, and independence of all nucleotides involved, that the
probability that there will be 11 or more matches in a sequence comparison
of length 26 is approximately 0.04. (The concept of independence is dis-
cussed more fully in Section 2.2.)Therefore, our observation of 11 matches
might give some evidence that something other than chance is at work. We
may not however say in practice that this procedure provides strong evi-
dence until we check that sequences arising in practice behave as we have
assumed, that is with equal probabilities for a, g, c, and t at any site, and
independence of all nucleotides involved.

The calculation in the previous paragraph is a statistical operation. That
is, we have observed some data, in this case the number of matches between
two sequences of length 26, and on the basis of some probability calculation
and using some hypothetical value for some parameter (that the unknown
probability of a match is 1/4), we made a statement about our level of
belief in this value of that parameter.

As a further point, the calculation made above concerned the probability
of obtaining the observed number of matches or more. This was done since
the true value of the parameter should be higher than the hypothetical
value 1/4 if indeed the two sequences are related.

Whatever statement is made on the basis of the observed value of some
random variable depends on some probability calculation. No valid sta-
tistical operation can be carried out without first making the probability
calculation appropriate to that operation. Thus a study of probability the-
ory is essential for an understanding of statistics. Probability theory is
important also on its own account, quite apart from its underpinning of
statistics, particularly in bioinformatics. Thus because of the intrinsic im-
portance of probability theory, and because of its relevance to statistics,
this chapter provides an introduction to the probability theory relating to
a single random variable. In the next chapter we extend this theory to the
case of many random variables.

Statistics concerns the optimal methods of analyzing data generated
from some chance mechanism. A significant component of this optimal-
ity requirement is the appropriate choice of what is to be computed from
the data in order to carry out the statistical analysis. Should we focus,
as above, on the total number of matches (in this case, 11) between the
two sequences? Should we focus on the size of the longest observed run of
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matches (here 3, occurring in positions 9–11 and also positions 23–25)? We
shall see later that the most frequently used statistical method for assessing
the similarity of two sequences uses neither of these quantities. The ques-
tion of what should be computed from complex data in order to make a
statistical inference leads to sometimes difficult statistical and probabilistic
calculations. We address these matters in Chapters 8 and 9.

The probability calculations that led to our conclusion were based on as-
sumptions about the nature of unrelated sequences (equal probabilities and
independence). The accuracy of such conclusions depends on the accuracy
of the assumptions made. Methods to test for the accuracy of assumptions
lie in the realm of statistics, and will be discussed at length later. The
necessity of having to make simplifying assumptions, even when they do
not hold, brings up one of the most important issues in the application of
statistics to bioinformatics. This issue is discussed in Section 4.10.

1.2 Discrete Random Variables, Definitions

1.2.1 Probability Distributions and Parameters
In line with the comments made in the Preface, we give relatively informal
definitions in this book for random variables, probability distributions, and
parameters, rather than the formal definitions found in many statistics
textbooks.

To motivate the discussion we refer to the sequence matching example
of Section 1.1, where the two sequences agree at 11 of the 26 positions
considered. In effect we asked the question: “If two sequences of length 26
are laid down at random, with each nucleotide type arising in any position
with probability 1/4, how surprised would we be if we were to observe 26 or
more matches?” This question was addressed by calculating the probability
of obtaining 11 or more matches, assuming that indeed the two sequences
were laid down at random, with a sufficiently small probability suggesting
some form of non-randomness. Probability calculations of this type are
intrinsic to testing hypotheses in any area of the biological sciences, and in
particular in bioinformatics.

Probability calculations refer to random variables and to some concep-
tual experiment to be carried out in the future. In the above example this
experiment is the planned generation of two sequences and the random
variable is the number of matches that will be obtained. The probability
distribution of this random variable is needed to answer the “How surprised
are we?” question raised above. This then leads us to a formal definition
of random variables and their probability distributions.

A discrete random variable is a numerical quantity that, in some ex-
periment that involves some degree of randomness, takes one value from
some discrete set of possible values. For example, the experiment might
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be the rolling of two six-sided dice, and the random variable the sum
of the two numbers showing on the dice. In this case the possible val-
ues of the random variable are 2, 3, . . . , 12. In practice the possible values
of a discrete random variable often consist of some subset of the integers
{. . . ,−2,−1, 0, 1, 2, . . . }, but the theory given below allows a general dis-
crete set of possible values. In some cases there are infinitely many possible
values for a random variable; for example, the random number of tosses of
a coin until the first head appears can take any value 1, 2, 3, . . . .

By convention, random variables are written as uppercase symbols, often
X, Y , and Z, while the observed values of a random variable are written
in lowercase, for example x, y, and z. Thus Y might be the conceptual
(random) number of matches between two randomly chosen DNA sequences
of length 26 before they are actually obtained, and assuming the observed
comparison given in (1.1) is a comparison of randomly chosen sequences,
the observed value y of this random variable is 11.

We discuss both discrete and continuous random variables and will also
discuss the relation between them. In order to clarify the distinction be-
tween the two, we frequently use the notation Y for a discrete random
variable and X for a continuous random variable. If some discussion ap-
plies for both discrete and continuous random variables, we shall use the
notation X for both.

The probability distribution of a discrete random variable Y is the set of
values that this random variable can take, together with their associated
probabilities. Probabilities are numbers between zero and one inclusive that
always add to one when summed over all possible values of the random
variable. An example is given in (1.2).

The probability distribution is often presented in the form of a table,
as in (1.2), with a listing of the possible values that the random variable
can take together with the probabilities of each value. This would be the
probability distribution if, for example, if we toss a fair coin twice, and Y
is the total number of heads that turn up.

Possible values of the random variable Y 0 1 2
Associated probabilities .25 .50 .25

(1.2)

We show how these probabilities are calculated in the next section. In
practice, the probabilities associated with the possible values of the random
variable of interest are often unknown. For example, if a coin is biased,
and the probability of a head on each toss is unknown to us, then the
probabilities for 0, 1, or 2 heads when this coin is tossed twice are unknown.

We call the set of values that a discrete random variable can take with
positive probability the range of that random variable. In the example
above, the range of Y is the set {0, 1, 2}.

There are two other frequently used methods of presenting a probabil-
ity distribution. The first is by using a “chart,” or “diagram,” in which
the possible values of the random variable are indicated on the horizontal
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axis, and their corresponding probabilities by the heights of vertical lines,
or bars, above each respective possible value (see Figure 1.1). When the
possible values of the random variable are integers there is an appealing
geometric interpretation. In this case the rectangles all have width one,
and so the probability of a set of values is equal to the total area of the
rectangles above them. This representation bears a strong analogy to that
for the continuous case, to be discussed in Section 1.8.

�

�

1 2 3 4 5 6 7 8 9 10 11 possible values of
the random variable

probabilities

Figure 1.1.

However, a third method of presentation is more appropriate in theo-
retical work, namely through a mathematical function. In this functional
approach we denote the probability that discrete random variable Y takes
the value y by PY (y). For example, PY (4) is the probability that the random
variable Y takes the value 4. The suffix “Y ” indicates that the probability
relates to the random variable Y . This is necessary since we often discuss
probabilities associated with several random variables simultaneously. In
the functional approach PY (y) is written in the form

PY (y) = g(y), y = y1, y2, y3, . . . , (1.3)

where g(y) is some specific mathematical function of y. Apart from spec-
ifying the mathematical function g(y), it is also necessary to indicate the
range of the random variable, that is, the set of values that it can take.
In (1.3) above, y1, y2, y3, . . . are the possible values of Y. The range of Y
should not be confused with the range of the function g(y). The range of
Y is in fact the domain of g(y).
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As an example, suppose that the possible values of the random variable
Y are 1, 2, and 3, and that

PY (y) = y2/14, y = 1, 2, 3.

Here g(y) = y2/14. Of course, in this simple case we could rewrite the
probabilities explicitly in tabular form:

Possible values of the random variable Y 1 2 3
Associated probabilities 1/14 4/14 9/14

(1.4)
However, the functional form is often more convenient, and further, for
random variables with an infinite range, listing all possible values and their
probabilities in tabular form is impossible.

As another example, suppose that Y can take the possible values 1, 2,
and 3, and that now

PY (y) =
θ2y

θ2 + θ4 + θ6 , y = 1, 2, 3,

where θ is some fixed nonzero real number. Whatever the value of θ,
PY (y) > 0 for y = 1, 2, 3, and PY (1) + PY (2) + PY (3) = 1. Therefore,
Y is a well-defined random variable. This is true even though the value
of θ might be unknown to us. In such cases we refer to θ as a parameter:
a parameter is some constant, usually unknown, involved in a probability
distribution. The important thing to note is that Y is a well-defined ran-
dom variable even though we may not know any of the actual probabilities
of its possible values.

Another important function is the cumulative distribution function FY (y)
of the discrete random variable Y, often called simply the distribution func-
tion. This is the probability that the random variable Y takes a value y or
less, so that

FY (y) =
∑
y′≤y

PY (y′). (1.5)

An example of the functions PY (y) and FY (y) is given in Figure 1.2. Notice
that the rightmost rectangle of the distribution function has height one. We
reserve the notation PY (y) throughout this book to denote the probability
that the discrete random variable Y takes the value y, and the notation
FY (y) as defined in (1.5) to denote the cumulative distribution function of
this discrete random variable.

1.2.2 Independence
The concept of independence is central in probability and statistics. We
formally define independence of discrete random variables in Section 2.2.
It is, however, convenient to give an informal definition here.
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Figure 1.2. An example of a probability distribution (left) and its cumulative
distribution function (right).

For the moment we take the word “independent” to have an intuitive
meaning: Discrete random variables are independent if knowing the value
of one of them does not affect in any way the probabilities associated with
the possible values of any of the other random variables.

A common example of independent random variables is given by the
outcomes of different rolls of a die. If a die is rolled any number of times,
the number turning up on any one roll is assumed to be independent of the
number turning up on any other roll.

As another example, suppose that two fair dice are to be rolled. Let one
random variable S be the the sum of the two numbers showing on the dice,
and the other random variable D be the difference of the two numbers. D
can be any integer from −5 to 5, but if it is known that the observed value
s of S equals 3, then it must be that the observed value d of D is ±1, each
with probability 1/2. Thus knowing a value of S affects the probability
distribution of D, and so they are not independent.

There is a similar concept of independence of “events,” which we discuss
in Section 1.12.5.
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1.3 Six Important Discrete Probability
Distributions

In this section we describe the six discrete probability distributions that
occur most frequently in bioinformatics and computational biology. They
are all presented in the functional form (1.3).

1.3.1 One Bernoulli Trial
A Bernoulli trial is a single trial with two possible outcomes, often called
“success” and “failure.” The probability of success is denoted by p and the
probability of failure 1 − p is sometimes denoted by q.

A Bernoulli trial is so simple that it seems unnecessary to introduce
a random variable associated with it. Nevertheless, it is useful to do so,
and indeed there are two random variables that we shall find it useful to
associate with a Bernoulli trial.

The first of these, the Bernoulli random variable, is the number of suc-
cesses Y obtained on this trial. Clearly, Y = 0 with probability 1 − p and
Y = 1 with probability p. The probability distribution of Y can then be
written in the mathematical form (1.3) as

PY (y) = py(1 − p)1−y, y = 0, 1. (1.6)

This random variable is natural when, for example, counting the number
of matches between two aligned sequences. Sometimes it is more natural to
consider a random variable whose possible values are ±1. For example, a
gambler might win one dollar (with probability p) or lose one dollar (with
probability 1− p) depending on the result of a coin flip. We think of losing
one dollar as winning minus one dollar. If the number of dollars the gambler
wins (±1) on any flip is denoted by S,

PS(s) = p(1+s)/2(1 − p)(1−s)/2, s = −1,+1. (1.7)

1.3.2 The Binomial Distribution
The binomial random variable is the number of successes in a fixed number
n of independent Bernoulli trials with the same probability of success for
each trial. The number of heads in some fixed number of tosses of a coin is
an example of a binomial random variable.

More precisely, the binomial distribution arises if all four of the follow-
ing requirements hold. First, each trial must result in one of two possible
outcomes, often called (as with a Bernoulli trial) “success” and “failure.”
Second, the various trials must be independent. Third, the probability of
success must be the same on all trials. Finally, the number n of trials must
be fixed in advance, not determined by the outcomes of the trials as they



1.3. Six Important Discrete Probability Distributions 9

occur. The probability of success on any trial is denoted, as in the Bernoulli
case, by p. We call p the parameter, and n the index, of this distribution.

The random variable of interest is the total number of successes in the
n trials, denoted by Y . The probability distribution of Y is given by the
formula

PY (y) =
(

n

y

)
py(1 − p)n−y, y = 0, 1, 2, . . . , n. (1.8)

Appendix B.4 provides the definition of
(
n
y

)
. We derive this mathematical

form for the binomial distribution when discussing the combinatorial term(
n
y

)
in Appendix B.6.

Figure 1.3 shows the probability distribution for two different binomials,
the first for n = 10 and p = 1

2 , the second for n = 20 and p = 1
4 . The

first is symmetric, while the second is not. The probabilities in the second
distribution are nonzero up to and including y = 20, but the probabilities
for values of y exceeding 12 are too small to be visible on the graph.
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Figure 1.3. Two binomial distributions, the first with n = 10 and p = 1
2 , the

second with n = 20 and p = 1
4 .

When using a binomial distribution one must be careful that the four
defining conditions above all hold. This comment is relevant to the com-
parison of the two DNA sequences given in (1.1). Our assumptions leading
to the probability of observing 11 or more matches were based on the as-
sumption that the number of matches between randomly chosen sequences
follows a binomial distribution. Suppose that a “success” is the event that
the two nucleotides in corresponding positions in the two sequences match.
It is not necessarily true that the probability of success is the same at all
sites. Nor is it necessarily true that independence holds: It is a result of
population genetics theory, for example, that the nucleotide frequencies at
very close sites tend to evolve in a dependent fashion, leading to a po-
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tential non-independence of observing a success at close sites. Thus two
of the central requirements for a binomial distribution might not hold for
this sequence comparison. Depending on our purposes, however, it might
still be desirable to make these assumptions as an approximation. When
we construct probabilistic models, we almost invariably must make some
simplifying assumptions about the processes leading to the data. This issue
is discussed further in Section 4.10.

There are several further comments to make concerning Bernoulli trials
and the binomial distribution. First, the single Bernoulli trial distribution
(1.6) is the special case (n = 1) of the binomial distribution. Second, the
quantity p in (1.8) is often an unknown parameter. Third, there is no simple
formula for the cumulative distribution function FY (y) (defined in (1.5))
for the binomial distribution. Probabilities associated with this function
are often approximated by the “normal approximation to the binomial,”
discussed in Section 1.10.3, or are calculated numerically by summation,
using equations (1.5) and (1.8). Current computing power makes direct
calculation possible even for quite large values of n. Some perhaps unex-
pected aspects of the computation of this distribution function are given in
Appendix C. Fourth, there is no unique “binomial distribution,” but rather
a family of distributions indexed by n and p. It is nevertheless standard
to refer to the binomial distribution. A parallel comment applies for all
distributions that we consider.

The final point illustrates a concept that will arise again in Chapter 4
and it is instructive to illustrate it with an example. A fair 400-sided die
is rolled once. The probability that the number 1 turns up on the die is
p = 1/400. Intuition might lead one to assume that the probability of seeing
a 1 is approximately doubled if the die is rolled twice, is tripled if the die
is rolled three times, and so on. The binomial distribution shows, more
precisely, that the probability that the number 1 turns up at least once in
two rolls is 2p−p2, not 2p. With three rolls the probability is 3p−3p2 +p3,
not 3p. The intuition, however, is correct. When p is small, the probability
of rolling a 1 at least once in n rolls is np + o(np) (as np → 0), and so
it is very nearly np as long as np is small. (The “o” notation is defined
in Appendix B.8.) The graph in Figure 1.4 shows the probability that the
number 1 turns up at least once in n rolls. The graph is nearly linear in n
up to about n = 15, and only after that does it significantly deviate from
the straight line. This kind of approximation will be important when we
discuss Poisson processes in Chapter 4.

1.3.3 The Hypergeometric Distribution
We introduce the hypergeometric distribution in an abstract context and
then give a biological example where it can be used.

Suppose that an urn contains N objects, of which n are red and N −n are
white. Of these, m objects are taken out of the urn at random, in particular
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Figure 1.4. The probability of at least one success in n binomial trials, with
probability p = 1/400 for success on each trial, as a function of n, is approximately
linear when n is small.

without reference to the color of any object, and without replacement. The
number of red objects taken out is a random variable Y, with probability
distribution given by the formula

PY (y) =

(
n
y

)(
N−n
m−y

)(
N
m

) , y = A, A + 1, . . . , B. (1.9)

Here A = max (0, n + m − N), B = min (n, m). The upper bound B arises
because the number of red objects taken out cannot exceed either the num-
ber of red objects in the urn or the number of objects taken out of the urn.
The lower bound arises because the number of red objects drawn must be
at least n + m − N if the number of objects taken out of the urn exceeds
the number of white objects initially in the urn.

The probability distribution in (1.9) is the hypergeometric distribution.
For for values of y in the range (A, A + 1, . . . , B), it may be derived by
observing that the probability that y red objects are drawn out in some
specified order is

n(n − 1) · · · (n − y + 1)(N − n)(N − n − 1) · · · (N − n − m + y + 1)
N(N − 1) · · · (N − m + 1)

,

(1.10)
which may be re-written as

n!(N − n)!(N − m)!
(n − y)!(N − n − m + y)!N !

. (1.11)
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The hypergeometric probability in (1.9) is obtained upon multiplication
of this quantity by the number

(
m
y

)
of different orders in which the y red

objects can be taken out of the urn.
Although a fixed number (m) of trials is conducted in this experiment

and there are two possible outcomes on each trial (“red” or “white”), the
number of red objects taken from the urn does not have the binomial dis-
tribution, because the outcomes of the various trials are not independent.
If, for example, an unusually large number of red objects had been taken
from the urn in the earlier trials, the probability of a red object on a later
trial is less than it would have been if an unusually large number of white
objects had been taken from the urn in the earlier trials. If each object were
replaced in the urn immediately after it was drawn the requirements for a
binomial distribution would hold and the number of red objects drawn out
would have a binomial distribution.

Here is a more biologically relevant example. Suppose that N laboratory
mice, n of which are males and N − n females, are irradiated. We wish to
test whether a certain mutation is more likely to arise in male mice than in
females. After the radiation it is found that, in all, there are m new mutant
mice in the joint sample of males and females, and thus N −m mice which
are non-mutant. Conditional on the event that the total number of mutant
mice is m, the number Y of mutant males has the hypergeometric distri-
bution (1.9) if there is no association between gender and the propensity
to be a mutant.

This example differs from the “urn” example in that, while in the urn
case the number m of objects to be taken out of the urn is known in
advance, the eventual number m of mutant mice is not known in advance
of the radiation experiment. Despite this, conditioning on the event that m
mice in total are mutant implies that the hypergeometric distribution for
Y still applies in the radiation example, under the assumption that there
is no association between gender and the propensity to be a mutant – see
Problem 1.4.

A further example, in which n and m are both unknown before the ex-
periment, is the following. Suppose that a square box with sides of length 1
is divided into four rectangular compartments, with side lengths as shown
in Figure 1.5. Suppose that N objects are thrown, independently and at
random, into the box, so that the probability that any object is thrown into
any compartment is equal to the area of that compartment: for example,
the probability that any object is thrown into the upper right-hand com-
partment is a(1 − b). Conditional on the event that n objects in total are
thrown into the two top compartments and m objects in total are thrown
into the two left-hand compartments, the number of objects thrown into
the top left-hand compartment has the hypergeometric distribution (1.9) –
see Problem 2.6. Thus the hypergeometric distribution arises in all three ex-
amples, once the appropriate conditioning is made in the second and third
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Figure 1.5. The “hypergeometric” box

examples. This fact is central to Fisher’s exact test, discussed in more detail
in Section 3.5.

There are two important concept of independence involved in the second
and third examples. The first concept might be called individual-to-
individual independence. In the second example, this is that, unconditional
on the total number of mutant mice, the event that any one mouse is a mu-
tant is independent of the event that any other mouse is a mutant. In the
third example, this is that the compartment into which any object is thrown
is independent of the compartment into which any other object is thrown.

The second concept of independence might be called category-to-
category independence. In the mouse example, this is the assumption that a
mouse’s gender is independent of its propensity to be a mutant, or, equiva-
lently, that there is no association between a mouse’s gender and its mutant
status. In the third example, this is that with the configuration of compart-
ments shown in Figure 1.5, whether an object is thrown into one of the top
two or one of the bottom two compartments is independent of whether it
is thrown into one of the two left-hand or one of the two right-hand com-
partments. In other words, if we think of the box as divided into two rows
and two columns, there is no association between which row any object is
thrown into and which column it is thrown into.

It is this category-to-category assumption that is tested in Fisher’s exact
test. For example, in the mouse case, the assumption that there is no associ-
ation between a mouse’s gender and mutant status is the (null) hypothesis
tested in this test.

1.3.4 The Uniform Distribution
Perhaps the simplest discrete probability distribution is the uniform dis-
tribution. In the case of most interest to us, a random variable Y has the
uniform distribution if the possible values of Y are a, a + 1, . . . , a + b − 1,
for two positive integer constants a and b, with b > 1, and the probability
that Y takes any specified one of these b possible values is b−1. That is,

PY (y) = b−1, y = a, a + 1, . . . , a + b − 1. (1.12)
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Properties of a random variable having this uniform distribution are
discussed later.

A more general uniform distribution arises when the possible values of Y
are a, a + c, a + 2c, . . . , a + c(b − 1), for any constant a, any constant c > 0,
and any integer b > 1, so that

PY (y) = b−1, y = a, a + c, a + 2c . . . , a + c(b − 1). (1.13)

An important case arises when a = 0, c(b − 1) = 1, so that

PY (y) =
c

c + 1
, y = 0, c, 2c, . . . , 1. (1.14)

1.3.5 The Geometric Distribution
The geometric distribution arises in a situation similar to that of the bino-
mial. Suppose that a sequence of independent Bernoulli trials is conducted,
each trial having probability p of success. The random variable of interest
is the number Y of trials before but not including the first failure. The
possible values of Y are 0, 1, 2, . . . . As will be shown in Section 1.12.5, the
probability that several independent events all occur is the product of the
probabilities of the individual events. Since if Y = y there must have been
y successes followed by one failure, it follows that

PY (y) = (1 − p)py, y = 0, 1, 2, . . . . (1.15)

The geometric distribution with p = .7 is shown in Figure 1.6. The
cumulative distribution function FY (y) can be calculated from (1.15) as

FY (y) = Prob(Y ≤ y) = 1 − py+1, y = 0, 1, 2, . . . . (1.16)

From this,

Prob(Y ≥ y) = py, y = 0, 1, 2, . . . . (1.17)

We also call Y the length of a “success run.” It is often of interest to
consider the length of a success run immediately following a failure. The
length of such a run also has the distribution (1.15). Note that a possible
value of Y is 0, and this value will arise if another failure occurs immediately
after the initial failure considered.

One example of the use of success runs occurs in the comparison of
the two sequences in (1.1), where the length of the longest success run
in this comparison is three. We might wish to use geometric distribution
probabilities to assess whether this is a significantly long run. “Significance”
in this sense will be defined formally in Section 3.4, and aspects of this test
will be discussed in Section 6.3.

The Shifted Geometric Distribution

In some contexts it will be more appropriate to consider the number of
trials until the first failure, but now counting the trial on which this failure
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Figure 1.6. The geometric distribution with p = .7.

occurs. If Y is the number of trials defined in this way, equation (1.15)
shows immediately that

PY (y) = (1 − p)py−1, y = 1, 2, 3, . . . . (1.18)

It is perhaps more customary to refer to this distribution as the geometric
distribution, rather than to use this term for the distribution (1.15). How-
ever we use (1.15) more often than we use (1.18) in the remainder of this
book, so we use the name “shifted geometric” for the distribution (1.18).

Geometric-Like Random Variables

Suppose that Y is a random variable with range 0, 1, 2, . . . and that, as
y → ∞,

1 − FY (y − 1) = Prob(Y ≥ y) ∼ Cpy, (1.19)

for some fixed constant C, 0 < C < 1. In this case we say that the random
variable has the geometric-like distribution. The symbol “∼” in (1.19) is
the asymptotic symbol defined in Appendix B.8. From equation (1.17), the
geometric distribution behaves as in (1.19) if C = 1 and the asymptotic
relation is replaced by an equality.

Geometric-like distributions are not typically part of a standard treat-
ment of elementary probability theory. However, we introduce them here,
since they are central to BLAST theory.
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1.3.6 The Negative Binomial and the Generalized Geometric
Distributions

Suppose that a sequence of independent Bernoulli trials is conducted, each
with a probability p of success. The binomial distribution arises when the
number of trials n is fixed in advance, and the random variable is the
number of successes in these n trials. In some applications the role of the
number of trials and the number of successes is reversed, in that the number
of successes is fixed in advance (at the value m), and the random variable N
is the number of trials up to and including this mth success. The random
variable N is then said to have the negative binomial distribution. The
probability distribution of N is found as follows.

The probability PN (n) that N = n is the probability that the first n − 1
trials result in exactly m − 1 successes and n − m failures (in some order)
and that trial n results in success. The former probability is found from
(1.8) to be(

n − 1
m − 1

)
pm−1(1 − p)(n−1)−(m−1), n = m, m + 1, m + 2, . . . ,

while the latter probability is simply p. Thus

PN (n) =
(

n − 1
m − 1

)
pm(1 − p)n−m, n = m, m + 1, m + 2, . . . . (1.20)

An example for p = .75 and m = 10 is shown in Figure 1.7.
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Figure 1.7. The negative binomial distribution with p = .75 and m = 10.
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We shall later be interested in the case where we fix the number of failures
in advance (at the value k+1), and consider the random number Y of trials
preceding but not including this (k + 1)th failure. An argument similar to
that giving (1.20) shows that

PY (y) =
(

y

k

)
py−k(1 − p)k+1, y = k, k + 1, k + 2, . . . . (1.21)

Although (1.21) also describes a negative binomial distribution, it is also
the generalization of the geometric distribution equation (1.15) to the case
of general k, reducing to that distribution when k = 0. For this reason
we use a non-standard terminology and refer to the distribution given in
equation (1.21) as the generalized geometric distribution, with parameters
p and k. (This distribution should not be confused with the geometric-like
distribution defined in Section 1.3.5).

The cumulative distribution functions for these distributions do not ad-
mit a simple mathematical form. We discuss aspects of these cumulative
distribution functions in Section 6.3 and Appendix C.

1.3.7 The Poisson Distribution
A random variable Y has a Poisson distribution (with parameter λ > 0) if

PY (y) =
e−λλy

y!
, y = 0, 1, 2, . . . . (1.22)

An example with λ = 5 is given in Figure 1.8.
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Figure 1.8. The Poisson distribution with λ = 5.
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The fact that (1.22) does indeed provide a probability distribution follows
from the basic identity

∞∑
n=0

λn

n!
= eλ

which holds for all λ (see Appendix B.12), together with the fact that when
λ > 0, each term on the right-hand side of (1.22) is positive.

The Poisson distribution arises mainly in two contexts. The meaning of
the word “random” is an elusive one, but the Poisson distribution arises
first when events occur in some sense “randomly” in time or space. We for-
malize this concept of “time/space” randomness mathematically in Section
4.1 and show how the Poisson distribution arises through this concept of
randomness.

The Poisson distribution also arises as a limiting form of the binomial
distribution. If the number of trials n in a binomial distribution is large,
the probability of success p on each trial is small, and the product np = λ
is moderate, then the binomial probability of y successes is very close to
the probability that a Poisson random variable with parameter λ takes the
value y. A more precise statement, with a formal mathematical derivation,
is given in Section 4.2. This limiting property makes the Poisson distribu-
tion particularly useful, since the condition “n large, p small, np moderate”
arises often in applications of the binomial distribution in bioinformatics,
and the Poisson distribution is often easier to work with – for example the
Poisson has one parameter while the binomial has two.

In the binomial case events can be thought of as occurring at n discrete
time points. In contrast, in the Poisson case, the occurrences are in contin-
uous time (e.g. clicks on a geiger counter). Beyond being an approximation
to the binomial, the Poisson distribution also arises in its own right in
certain biological processes; an example is described in Section 4.1.

1.3.8 Approximations
While the probability distributions described above arise frequently in ap-
plications, there are also many cases where the random variable of interest
does not have one of these distributions. Sometimes the distribution of the
random variable is complicated and might not be easily calculated. In such
cases this distribution is often approximated by one of the distributions
described above. If this is done it is important to be able to place an upper
bound on the error involved in the approximation. There are several ways
in which this bound can be defined. The method used most frequently in
bioinformatics is to calculate the total variation distance between the true
distribution and the approximating distribution. The total variation dis-
tance dTV(P1, P2) between two probability distributions P1(Y ) and P2(Y )
taking positive values for non-negative integer values of Y only is defined
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as follows. Let A be a set of non-negative integers and let Ri(A) be the
probability that Y takes a value in A when Y has probability distribution
Pi(Y ). Then dTV(P1, P2) is the maximum value of |R1(A) − R2(A)|, the
maximum being taken over all possible sets A. Thus dTV(P1, P2) is the
maximum error one can make when calculating the probability of any set
of values of Y if one distribution is assumed when the other is appropriate.
An equivalent formula is given by

dTV(P1, P2) =
1
2

∑
y

|P1(y) − P2(y)|, (1.23)

the sum being taken over all non-negative integers. In many cases arising
in practice an upper bound for dTV(P1, P2) is available for this sum by
using the Chen-Stein method (Chen, (1975)); see Arratia et al. (1989) for
a user-friendly account of this method. We return to this topic in Section
5.7.2.

1.4 The Mean of a Discrete Random Variable

The mean of a random variable is often confused with the concept of an av-
erage, and it is important to keep the distinction between the two concepts
clear. The mean of a discrete random variable Y is defined as∑

y

yPY (y), (1.24)

the summation being over all possible values that the random variable Y
can take (i.e., over its range). The expressions “the mean of the random
variable Y ” and “the mean of the probability distribution of the random
variable Y ” are equivalent and are used interchangeably, depending on
which is more natural in the context. As an example, the mean of a random
variable having the binomial distribution (1.8) is

n∑
y=0

y

(
n

y

)
py(1 − p)n−y, (1.25)

and this can be shown (see Problem 1.2) to be np.
If the range of the random variable is infinite, the mean might not exist

(that is, the sum in (1.24) might diverge). In all cases we consider, the mean
exists (i.e., is some finite number), and since qualifications to the theory are
needed when the mean might be infinite, we assume throughout, without
further discussion, that all means of interest are finite.

There are several remarks to make regarding the mean of a discrete
random variable.

(i) The notation µY is often used for a mean of Y . When the random
variable is clear from the context, as will usually be the case, we
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suppress the subscript Y . An alternative name for the mean of a
random variable is the “expected value” of that random variable,
and this leads to a second frequently used notation, namely E(Y ),
for the expected value, or mean, of the random variable Y .

(ii) The word “average” is not an alternative for the word “mean,”
and has a quite different interpretation from that of “mean.” Their
relation and distinction is discussed further in Section 2.10.1.

(iii) In many practical situations the mean µ of a discrete random variable
Y is unknown to us, because we do not know the numerical values of
the probabilities PY (y). That is to say, µ is a parameter. Of all the
estimation and hypothesis testing procedures discussed in detail in
Chapters 3, 8, and 9, estimation of, and testing hypotheses about, a
mean are among the most important.

(iv) The mean is not necessarily a realizable value of a discrete random
variable. For example, the distribution in (1.4) has mean

1 × 1
14

+ 2 × 4
14

+ 3 × 9
14

=
18
7

,

yet 18/7 is not a realizable value of the random variable.

(v) The concept of the mean of a discrete random variable Y can be
generalized to the mean, or expected value, of any function g(Y ) of
Y . The function g(Y ) is itself a random variable, and the expected
value of g(Y ), denoted by E(g(Y )), is defined (using (1.3)) by

E(g(Y )) =
∑

z

zPg(Y )(z), (1.26)

where Pg(Y )(z) is the probability that the random variable g(Y ) takes
the value z and the sum is over all possible values z of g(Y ). This is
also equal to

E(g(Y )) =
∑

y

g(y)PY (y), (1.27)

where the sum is over all values y of Y , as can be seen from the
equality

Pg(Y )(z) =
∑

y such
that g(y)=z

PY (y).

Equation (1.27) is more convenient than (1.26) to use in practice,
since it does not require us to find the probability distribution of
g(Y ).

An important case of equation (1.27) is

E(Y 2) =
∑

y

y2PY (y). (1.28)
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This quantity is sometimes called the second moment of Y about the
origin, with the mean being called the first moment about the origin.
In general the second moment is different from the square of the first
moment, that is E(Y 2) �= (E(Y ))2.

A linearity property of the mean follows from equation (1.27): If
Y is a random variable with mean µ, and if α and β are constants,
then the random variable α + βY has mean

E(α+βY ) =
∑

(α+βy)PY (y) = α
∑

PY (y)+β
∑

yPY (y) = α+βµ.

(vi) If the graph of a probability distribution function is symmetric about
some vertical line y = a, the mean is equal to a.

Various problems at the end of this chapter ask for calculation of the
means of the distributions described above. A summary of these means is
given in Table 1.1 on page 23.

1.5 The Variance of a Discrete Random Variable

A quantity of importance equal to that of the mean of a random variable is
its variance. The variance (denoted by σ2

Y ) of the discrete random variable
Y is defined by

σ2
Y =

∑
y

(y − µ)2PY (y), (1.29)

the summation is taken over all possible values of Y . When the random
variable is clear from the context, the subscript on σ2 will be suppressed.
The expressions “the variance of the random variable Y ” and “the variance
of the probability distribution of the random variable Y ” are equivalent and
are used interchangeably. The variance, like the mean, is often unknown to
us.

The variance is a measure of the dispersion of the probability distribution
of the random variable around its mean (see Figure 1.9).

There are several points to note concerning the variance of a discrete
random variable.

(i) The standard deviation of a probability distribution is defined as the
positive square root of the variance of that distribution, and (nat-
urally enough) is denoted by σ. This is often more useful than the
variance since is measured in the same units as the random variable
having that probability distribution, and thus admits a more ready
and often more convenient measure than the variance. For example,
if the random variable is the weight of a randomly chosen individ-
ual, the standard deviation is measured in kilograms, whereas the
variance has the almost incomprehensible unit of a kilogram squared.
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smaller variance larger variance

Figure 1.9.

A quantity sometimes used for random variables taking positive
values only is the coefficient of variation, defined as the standard
deviation of the random variable divided by its mean.

(ii) If Y is a random variable with variance σ2, and if α and β are con-
stants, then the variance of the random variable α + βY is β2σ2 (see
Problem 1.5).

(iii) An equivalent and often more convenient formula for the variance is

σ2 =

(∑
y

y2PY (y)

)
− µ2 = E(Y 2) − (E(Y ))2 , (1.30)

from which it follows that the second moment of Y about the origin,
defined in (1.28), can be expressed as

E(Y 2) = σ2 + µ2 (1.31)

(see Problem 1.6).

(iv) A further formula, particularly useful for random variables that take
non-negative integer values, is

σ2 =

(∑
y

y(y − 1)PY (y)

)
+ µ − µ2 (1.32)

(see Problem 1.6).

(v) Table 1.1 shows that the mean and the variance of a Poisson random
variable are identical. In practice, equality or near equality of the



1.6. General Moments of a Probability Distribution 23

mean and the variance of a random variable often suggest that its
distribution is approximately Poisson.

Various problems at the end of this chapter ask for the calculation of the
variances of the distributions described above, and Problem 1.6 asks for
verification of equations (1.30) and (1.32).

As with the mean, the variance of any random variable we consider in
this book is finite, so in order to avoid qualifications we assume from now
on that every variance of interest to us is finite.

The means, variances, and probability distribution functions of the
distributions discussed above are listed in Table 1.1.

distribution mean variance probability distribution

Bernoulli p p(1−p) py(1 − p)1−y, y = 0, 1

Binomial np np(1−p)
(

n
y

)
py(1 − p)n−y, y = 0, 1, . . . , n

Hypergeom. mn/N
mn(N−m)(N−n)

N2(N−1)

(
n
y

)(
N−n
m−y

)
/
(

N
m

)
, y = A, A + 1, . . . , B.

Uniform a+ b−1
2

b2−1
12 b−1, y = a, a + 1, . . . , a + b − 1

Geometric p/(1−p) p/(1−p)2 (1 − p)py, y = 0, 1, 2, . . .

Neg. Binom. m/p m(1−p)/p2
(

n−1
m−1

)
pm(1 − p)n−m, n ≥ m

Poisson λ λ e−λλy/y!, y = 0, 1, 2, . . .

Table 1.1. Means, variances, and probability distribution functions of discrete
random variables. The interpretations of A and B are given in the text.

1.6 General Moments of a Probability Distribution

The mean and variance are special cases of moments of a discrete proba-
bility distribution, and in this section we explore these moments in more
detail.

If r is any positive integer, then E(Y r) is called the rth moment of
the probability distribution about zero, and is usually denoted by µ′

r. From
(1.27),

E(Y r) =
∑

y

yrPY (y). (1.33)

The mean is thus the first moment of the distribution about zero. Through-
out this book we assume that for any random variable considered and for
any r, the rth moment exists (i.e., the sum in (1.33) converges). This as-
sumption holds for all of the random variables we consider. Note that E(Y r)
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is not the same as
(
E(Y )

)r, and the numerical values of the two are equal
only in certain special cases.

Of almost equal importance for discrete integer-valued random variables
is the rth factorial moment of a probability distribution. This is denoted
by µ′

[r] and is defined by

µ′
[r] = E (Y (Y − 1) · · · (Y − r + 1))

=
∑

y

(
y(y − 1) · · · (y − r + 1)

)
PY (y). (1.34)

As an example, suppose that the random variable Y has the binomial
distribution (1.8). Then the rth factorial moment is

E (Y (Y − 1) · · · (Y − r + 1))

=
n∑

y=0

y(y − 1) · · · (y − r + 1)
(

n

y

)
py(1 − p)n−y, (1.35)

which reduces (see Problem 1.7) to

n(n − 1) · · · (n − r + 1)pr. (1.36)

The rth moment about the mean of the probability distribution, denoted
by µr, is defined by

µr =
∑

y

(y − µ)rPY (y). (1.37)

The first such moment, µ1, is identically zero, and is thus not of interest.
The second, µ2, is the variance σ2 of the random variable. The third, µ3,
is related to the skewness of the probability distribution. The skewness γ1
of a distribution is a scale-free quantity, defined as

γ1 = µ3/σ3. (1.38)

Distributions with positive skewness have long tails to the right, and
distributions with negative skewness have long tails to the left.

1.7 The Probability-Generating Function

An important quantity for many of the discrete random variables we shall
encounter is the probability-generating function, or pgf for short. The pgf
for a discrete random variable Y is a function of a real variable t, given by

pY (t) = E(tY ) =
∑

y

PY (y) ty. (1.39)

We discuss below some standard uses of a pgf; other applications of the
concept are found later in the book.
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The pgf of the random variable Y will be denoted by pY (t), or some-
times q Y (t), and when Y is clear from the context the subscript Y will
be suppressed. The summation is taken over all possible values of Y . This
sum always converges for t = 1 (to 1). If the sum only converges for t = 1,
then p(t) is not useful. For cases of interest p(t) exists in some interval
(1 − a, 1 + a) of values of t surrounding 1, where a > 0. The variable t is
sometimes called a “dummy” variable, since it has no meaning or interpre-
tation of its own. Instead, it is a mathematical tool that can be used, in
conjunction with Taylor series properties such as those given in Appendix
B.12, to arrive efficiently at various desired results.

When the possible values of a random variable Y consist of finitely many
non-negative integers then pY (t) is a polynomial in t. If the possible values
of a random variable consist of positive and negative integers, as for exam-
ple the random variable S in Section 1.3.1, then then the sum above is not
a Taylor series but is a Laurent series. For background on such series, see
Appendix B.12 through B.14.

The original purpose for the pgf is to generate probabilities, as the name
suggests. If the pgf of a random variable can be found easily, as is often the
case, then the coefficient of tr in the pgf is the probability that the random
variable takes the value r.

Another use of the pgf is to derive moments of a probability distribution.
This is done as follows. The derivative (when it exists) of the pgf pY (t) of
a discrete random variable with respect to t, taken at the value t = 1, is
the mean of that random variable. That is,

µY =
(

d

dt
pY (t)

)
t=1

. (1.40)

The variance of a random variable with mean µ and whose probability
distribution has pgf pY (t) is found from

σ2
Y =

(
d2

dt2
pY (t)

)
t=1

+ µY − µ2
Y . (1.41)

The verification of these identities is left as an exercise (see Problem 1.18).
As a straightforward example, the pgf of the Bernoulli random variable

(1.6) is

1 − p + pt. (1.42)

Similarly, the pgf of the random variable defined in (1.7) is

(1 − p)t−1 + pt. (1.43)

As a less straightforward example, the pgf of a random variable having the
binomial distribution (1.8) is

p(t) =
n∑

y=0

(
n

y

)
py(1 − p)n−yty, (1.44)
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and this can be shown (see Problem 1.17) to be

p(t) = (1 − p + pt)n. (1.45)

In most cases of interest to us, a pgf is either a polynomial in t or an
infinite Taylor series in t. In many cases such an infinite series converges
for sufficiently small values of t. We therefore end with a useful theorem
about pgfs whose proof is discussed in Appendix B.14, and which applies
to all random variables of interest to us.

Theorem. Suppose that two discrete random variables Y1 and Y2 have pgfs
p1(t) and p2(t), respectively, and that both pgfs converge in some open
interval I containing 1. If p1(t) = p2(t) for all t in I, then Y1 and Y2 have
identical distributions.

This theorem implies immediately that if the pgf of a random vari-
able converges in an open interval containing 1, then the pgf completely
determines the distribution of the random variable.

1.8 Continuous Random Variables

Some random variables, by their nature, are discrete, such as the number
of successes in n Bernoulli trials. Other random variables, by contrast, are
continuous. Random variables such as the height or the blood pressure of
a person chosen at random, or the time taken until an event occurs, are
all of this type. We denote a continuous random variable by X, and the
observed value of the random variable by x. Continuous random variables
usually take any value in some continuous range of values, for example
−∞ < X < ∞ or L ≤ X < H.

Probabilities for continuous random variables are not allocated to spe-
cific values, but rather are allocated to intervals of values. Each continuous
random variable X has an associated density function fX(x), and the prob-
ability that the random variable takes a value in some given interval (a, b) is
obtained by integrating the density function over that interval. Specifically,

Prob(a < X < b) =
∫ b

a

fX(x) dx. (1.46)

See Figure 1.10. The set of values of x for which f(x) is positive is called
the support of the continuous random variable.

The definition (1.46) implies that the probability that a continuous ran-
dom variable takes any specific nominated value is zero. It thus implies the
further equalities

Prob(a < X < b) = Prob(a < X ≤ b)
= Prob(a ≤ X < b) = Prob(a ≤ X ≤ b). (1.47)
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P (a<X<b)=
∫ b

a
fX(x)dx

.

...............
...............
...............
...............
.....

..............

x

fX(x)

Figure 1.10. P (a < X < b) =
∫ b

a
fX(x)dx.

The concept of a continuous random variable should not be confused with
the concept of a continuous density function. Any positive valued function,
continuous or not, which integrates to one over its domain, is a density
function for a continuous random variable. By elementary calculus, when
fX(·) is continuous on [x, x + h], (1.46) gives

lim
h→0+

Prob(x < X < x + h)
h

= fX(x). (1.48)

We will use this identity several times in what follows, as well as the ap-
proximation that follows from it, namely that when fX(·) is continuous on
[x, x + h], and h is small,

Prob(x < X < x + h) ∼= fX(x)h. (1.49)

(The symbol “∼=” is used here and throughout to indicate approximate
equality of fixed quantities.)

As a particular case of equation (1.46), if the range of the continuous
random variable X is either L ≤ X ≤ H, L ≤ X < H, L < X ≤ H, or
L < X < H, then ∫ H

L

fX(x) dx = 1. (1.50)

This L and H notation is used throughout this and the next section to
mean the limits of the range of a continuous random variable.

An important function associated with a continuous random variable X
is its cumulative distribution function FX(x), which is the probability that
the random variable takes a value x or less. The cumulative distribution
function is therefore given by

FX(x) =
∫ x

L

fX(u)du. (1.51)

This definition implies that 0 ≤ FX(x) ≤ 1, that FX(x) is non-decreasing in
x, and the fundamental theorem of calculus shows that when f is continuous

fX(x) =
d

dx
FX(x). (1.52)
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We reserve the notation fX(x) and FX(x) throughout this book to de-
note, respectively, the density function and the cumulative distribution
function of the continuous random variable X.

1.9 The Mean, Variance, and Median of a
Continuous Random Variable

1.9.1 Definitions
The mean µX and variance σ2

X of a continuous random variable having
range (L,H) and density function fX(x) are defined by

µX =
∫ H

L

xfX(x)dx (1.53)

and

σ2
X =

∫ H

L

(x − µX)2fX(x)dx. (1.54)

We will suppress the subscripts when the identity of the random variable
is clear. These definitions are the natural analogues of the corresponding
definitions for a discrete random variable, and the remarks about the mean
and the variance of a continuous random variable are very similar to those
of a discrete random variable that were given on pages 20 through 23. In
particular remarks (i), (ii), (iii), and (vi) for the mean of a discrete random
variable remain unchanged for a continuous random variable (except for the
replacement of “probability distribution function” with “density function”
where necessary), and property (v) requires only replacing a summation by
an integration. That is, the mean value E (g(X)) of the function g(X) of
the continuous random variable X is given by

E (g(X)) =
∫ H

L

g(x)fX(x)dx, (1.55)

where fX(x) is the density function of X. One important case, parallel to
the discrete random variable formulae (1.28) and (1.31), is that

E
(
X2) =

∫ H

L

x2fX(x)dx = σ2 + µ2. (1.56)

All of the variance properties given for a discrete random variable apply
also for a continuous random variable.

Higher moments for a continuous random variable are defined in a man-
ner parallel to those for a discrete random variable discussed in Section 1.6.
For example, the r-th moment µr about the mean of a continuous random
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variable X having mean µ and density function fX(x) is defined by

µr =
∫ H

L

(x − µ)rfX(x)dx, (1.57)

which is the natural parallel of the discrete random variable definition
(1.37).

For continuous random variables whose range is (0, H) (for some positive
H, possibly +∞), an alternative formula for the mean (see Problem 1.14)
is

µ =
∫ H

0
(1 − FX(x)) dx. (1.58)

For most continuous random variables arising in practice there is a unique
median, denoted here by M , having the property that

Prob(X < M) = Prob(X > M) =
1
2
. (1.59)

The mean and median coincide for random variables with symmetric den-
sity functions, both being at the point of symmetry, but the two are usually
different for asymmetric density functions. Examples of mean, variance, and
median calculations are given below.

1.9.2 Chebyshev’s Inequality
The concepts of the mean and the variance of a random variable, discrete
or continuous, allow us to prove an inequality that is of great use.

Let X be a random variable, discrete or continuous, having mean µ
and variance σ2. Then Chebyshev’s inequality states that for any positive
constant d,

Prob(|X − µ| ≥ d) ≤ σ2

d2 . (1.60)

The proof of this statement is straightforward, and is given here for the
continuous random variable case where the range of the random variable
is (−∞, +∞). The proof for any other range, and for a discrete random
variable, is essentially identical. From the definition of σ2,

σ2 =
∫ +∞

−∞
(x − µ)2 fX(x) dx

≥
∫ µ−d

−∞
(x − µ)2 fX(x) dx +

∫ +∞

µ+d

(x − µ)2 fX(x) dx

≥ d2
∫ µ−d

−∞
fX(x) dx + d2

∫ +∞

µ+d

fX(x) dx

= d2 Prob(|X − µ| ≥ d).

The result (1.60) follows immediately.
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1.10 Five Important Continuous Distributions

1.10.1 The Uniform Distribution
A continuous random variable X has the uniform distribution if, for some
constants a and b with a < b, its range is one of the intervals I = [a, b],
(a, b), (a, b], or [a, b) (this interval notation is discussed in Appendix B.1)
and its density function fX(x) is

fX(x) =
1

b − a
, for x in I. (1.61)

This density function is graphed in Figure 1.11. The mean and variance

�

�

� ................

1
b−a

. .............

x

PX(x)

a b

. ......................................................................................................................................................................................................................

Figure 1.11. The density function of the uniform distribution fX(x) = 1
b−a

.

are given by

µ =
a + b

2
, σ2 =

(b − a)2

12
. (1.62)

The uniform distribution we consider most frequently is the particular
case of (1.61) for which a = 0, b = 1. For this uniform distribution,

fX(x) = 1, FX(x) = x, 0 ≤ x ≤ 1. (1.63)

From (1.62) the mean and variance of this distribution are, respectively,
1/2 and 1/12.

We use the term “uniform distribution” to describe any continuous uni-
form distribution and any discrete uniform distribution. The context will
make clear whether the discrete or the continuous uniform distribution is
intended.
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1.10.2 The Normal Distribution
The most important continuous random variable is one having the nor-
mal , or Gaussian, distribution. The (continuous) random variable X has a
normal distribution if it has range (−∞,∞) and density function

fX(x) =
1√
2πβ

e
− (x−α)2

2β2 ,

where α and β are parameters of the distribution. The value of α is
unrestricted, but it is required that β > 0.

It may be checked, either by using equation (1.53) or from symmetry, that
the mean of this distribution is α. Symmetry also implies that the median
of this distribution is α. It is also possible, although less straightforward,
to then use equation (1.54) to show that the variance of the distribution is
β2. Thus the distribution is usually written in the more convenient form

fX(x) =
1√
2πσ

e− (x−µ)2

2σ2 , (1.64)

so that the mean µ and the variance σ2 are built into the mathematical
form of the density function. Usually the normal distribution is presented
directly in the form (1.64), but we have preferred the above approach,
which derives the mean and variance from (1.53) and (1.54). A common
notation is to refer to a random variable having the distribution (1.64) as
an N(µ, σ2) random variable.

A particularly important normal distribution is the one for which µ = 0
and σ2 = 1, whose density function is shown in Figure 1.12. This is some-
times called the standard normal distribution. Suppose that a random
variable X is N(µ, σ2). Then the “standardized” random variable Z, de-
fined by Z = (X − µ)/σ, is N(0, 1). If x is the observed value of X, the
value z = (x − µ)/σ is often called a z-score.

One of the original uses of this standardization is the following. If X is
a random variable having a normal distribution with mean 6 and variance
16, we cannot find Prob(5 < X < 8) by integrating the function in (1.64)
in closed form. However, for the standardized variable Z, accurate approx-
imations of such integrals are widely available in tables. These tables may
be used, in conjunction with the standardization procedure, to find proba-
bilities for a random variable having any normal distribution. Thus in the
above example, we can rewrite Prob(5 < X < 8) in terms of the standard
normal Z by

Prob(5 < X < 8) = Prob
(

5 − 6√
16

<
X − 6√

16
<

8 − 6√
16

)
= Prob(−0.25 < Z < 0.5), (1.65)

and this probability is found from tables as 0.2902.
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Figure 1.12. The density function for the standard normal distribution with µ = 0,
σ = 1.

Computers have all but replaced tables; however, z-scores are still useful
for many reasons. For example, if we want to compare the significance of two
values drawn from two different normal distributions, instead of calculating
probabilities, we can simply compare their z-scores. The standardization
can also used for deriving results theoretically, for example to show that
the probability that an observation from any normal random variable is
within two standard deviations from the mean is 0.9545, or approximately
.95. This two standard deviation rule is useful as a quick approximation for
probabilities concerning random variables whose probability distribution
is in some sense close to a normal distribution (although it can also be
misleading (see Problem 1.23)).

1.10.3 The Normal Approximation to a Discrete Distribution
One of the many uses of the normal distribution is to provide approxima-
tions for probabilities for certain discrete random variables. The first we
consider is the normal approximation to the binomial. If the number of tri-
als n in the binomial distribution (1.8) is very large, the normal distribution
with mean np and variance np(1 − p) provides a very good approximation.
Figure 1.13 shows the approximation of the binomial with p = 1

4 and n = 20
by the normal with µ = 5 and σ2 = 15

4 .
The normal approximation to the binomial is a consequence of the central

limit theorem, which is discussed in Section 2.10.1. How large n must be
for any desired degree of accuracy depends on the value of p. For p = 1

2
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Figure 1.13. The normal approximation to the binomial random variable with
p = 1

4 and n = 20.

(the only case where the binomial probability distribution is symmetric)
the approximation is good even for n as small as 20, as is shown in an
example below. The closer p is to zero or one, the further the binomial
distribution is from being symmetric, and the larger n must be for the
normal distribution to fit the binomial distribution well.

If Y is binomial with parameters p and n, and X is normal with µ = np
and σ2 = np(1−p), then for integers a and b, with a < b, the approximation
is

Prob(a ≤ Y ≤ b) ∼= Prob
(

a − 1
2

≤ X ≤ b +
1
2

)
.

The reason for the term 1
2 in this approximation can be seen from the graph

in Figure 1.13. The rectangle whose area equals Prob(Y = a) lies above the
interval (a− 1

2 , a+ 1
2 ). Without the term 1

2 in the approximation we would
underestimate by (Prob(Y = a) + Prob(Y = b)) /2. The term 1

2 is known
as the “continuity correction.”

As an example, the probability that a binomial random variable with
p = 1

2 and n = 20 takes a value of 15 or more can be evaluated exactly
from (1.8) to be 0.0207. The probability that a normal random variable
with mean 10 and variance 5 (the appropriate mean and variance for this
binomial distribution) exceeds the value 14.5 is 0.0222. This is a far more
accurate approximation than that found without the continuity correction,
which is 0.0127.
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As a second example, the probability that a binomial random variable
with p = 1

4 and n = 20 takes a value of 9 or more is 0.0409. The normal
approximation is 0.0353, not as accurate as the approximation in the case
p = 1

2 for the same value of n. Indeed as p decreases, n must increase in
order to achieve a good approximation.

A second application is to use the normal distribution to approximate
the Poisson distribution. As can be seen from the example of a Poisson
distribution in Figure 1.8, the Poisson has a normal-like shape when λ = 5.
It follows from the central limit theorem, discussed in Section 2.10.1, that
when λ is large, the Poisson is closely approximated by a normal with mean
λ and variance λ.

1.10.4 The Exponential Distribution
A third probability distribution arising often in computational biology is
the exponential distribution. A (continuous) random variable having this
distribution has range [0, +∞) and density function

fX(x) = λ e−λx, x ≥ 0. (1.66)

Here the single positive parameter λ characterizes the distribution. The
graph of this density function is shown in Figure 1.14.
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Figure 1.14. The density function of the exponential distribution, fX(x) = λe−λx.

The cumulative distribution function FX(x) is found by integration as

FX(x) = 1 − e−λx, x ≥ 0. (1.67)
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The mean and variance of the exponential distribution are, respectively,
1/λ and 1/λ2 (see Problem 1.21). The median M , found by solving the
equation FX(x) = 1/2, is given by

M =
log 2

λ
. (1.68)

This value is just over two-thirds of the mean, implying (as the graph of
the density function shows) that the exponential distribution is skewed to
the right.

The Relation of the Exponential with the Geometric Distribution

The exponential distribution is the continuous analogue of the geometric
distribution, as can be seen by comparing Figure 1.14 to Figure 1.6 (page
15). Therefore, the exponential may be used as a continuous approximation
to the geometric. This is discussed further in Section 2.11.2.

A further relationship between the exponential and geometric distri-
butions is the following. Suppose that the random variable X has the
exponential distribution (1.66) and that Y = 	X
 is the integer part of
X (i.e., the greatest integer less than or equal to X). Then Prob(Y = y) =
Prob(y ≤ X < y + 1). By integration of (1.66), this probability is

Prob(Y = y) = (1 − e−λ) e−λy, y = 0, 1, 2, . . . . (1.69)

With the identification p = e−λ, this is in the form of the geometric
probability distribution (1.15). It follows from equation (1.16) that

Prob(Y ≤ y − 1) = 1 − e−λy, y = 1, 2, . . . . (1.70)

This relation of the exponential distribution with the geometric distribu-
tion is useful in computational biology and bioinformatics, so that we shall
sometimes refer to the geometric distribution as being given in the nota-
tion of equation (1.69) rather than in the notation of equation (1.15). In
the notation of (1.69), the mean and variance of the geometric distribution
are, respectively,

µ =
1

eλ − 1
, σ2 =

eλ

(eλ − 1)2
. (1.71)

The density function fD(d) of the fractional part D of a random variable
X having the exponential distribution, defined by D = X − 	X
 = X − Y,
can be shown to be

fD(d) =
λe−λd

1 − e−λ
, 0 ≤ d < 1. (1.72)

This density function does not depend on the value of X. The mean
and variance of this distribution are found from (1.53) and (1.54) to be,
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respectively,

µ =
1
λ

− 1
eλ − 1

, σ2 =
1
λ2 − 1

(eλ − 1)
− 1

(eλ − 1)2
. (1.73)

More Comments on Geometric-Like Random Variables

Random variables having a geometric-like distribution were defined by the
asymptotic relation (1.19). It is useful to express this relation in the nota-
tion developed in this section, that is, with p replaced by e−λ. With this
notation, a discrete random variable Y has a geometric-like distribution if,
as y → ∞,

Prob(Y ≥ y) ∼ Ce−λy, (1.74)

for some fixed positive constant C < 1. This equation, and geometric-like
random variables, will be central to the theory of generalized random walks
and of BLAST, developed respectively in Chapters 7 and 10.

1.10.5 The Gamma Distribution
The exponential distribution is a special case of the gamma distribution.
The density function for the gamma distribution is

fX(x) =
λkxk−1e−λx

Γ(k)
, x > 0. (1.75)

Here λ and k are arbitrary positive parameters and Γ(k) is the gamma
function (see Appendix B.17). The value of k need not be an integer, but
if it is, then Γ(k) = (k −1)!. The density function can take several different
shapes, depending on the value of the parameter k (see Figure 1.15).

The mean µ and variance σ2 of the gamma distribution are given by

µ =
k

λ
, σ2 =

k

λ2 . (1.76)

The exponential distribution is the special case of the gamma distribution
where k = 1. Another important special case is where λ = 1

2 and k = 1
2ν,

with ν a positive integer, so that

fX(x) =
1

2ν/2 Γ( 1
2ν)

x
1
2 ν−1 e− 1

2 x, x > 0. (1.77)

This is called the chi-square distribution with ν degrees of freedom, and is
important for statistical hypothesis testing. It can be shown (see Section
1.11) that if Z is a standard normal random variable, then Z2 is a random
variable having the chi-square distribution with one degree of freedom. The
exponential distribution with λ = 1

2 is the chi-square distribution with two
degrees of freedom.

When k is a positive integer, the cumulative distribution function FX(x)
of the gamma distribution may be found by repeated integration by parts,
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Figure 1.15. Examples of the density function of a gamma distribution with λ = 1
and k = 1

2 , 1, 2, 3.

and is given by the sum of k Poisson distribution terms. This result is
developed in Section 4.3. When k is not an integer, no simple expression
exists for the cumulative distribution function of the gamma distribution.

1.10.6 The Beta Distribution
A continuous random variable X has a beta distribution with positive
parameters α and β if its density function is

fX(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, 0 < x < 1. (1.78)

Here Γ(·) is the gamma function, discussed above in connection with the
gamma distribution. The mean µ and the variance σ2 of this distribution
are

µ =
α

α + β
, σ2 =

αβ

(α + β)2(α + β + 1)
. (1.79)

The uniform distribution (1.63) is the special case of this distribution for
the case α = β = 1. Beta distributions, unlike Gaussian distributions, have
finite range, and their shape can be varied widely by adjusting the two
parameters, α and β.
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1.11 The Moment-Generating Function

An important quantity for any random variable, discrete or continuous,
or equivalently for its probability distribution, is its moment-generating
function, or mgf for short. The moment-generating function is a function
of a real variable θ and, for a discrete random variable Y, will be denoted
by mY (θ), or m(θ) when the random variable is clear from the context. In
this case

mY (θ) = E(eθY ) =
∑

y

eθyPY (y), (1.80)

the sum being taken over all possible values of Y . Clearly, mY (0) = 1, and
for all random variables that we consider, mY (θ) exists (i.e., the sum or
integral defining it converges) for θ in some interval (−a, a) about 0, a > 0.
In this definition θ is a “dummy” variable, as was the quantity t in the pgf.
For discrete random variables, the change of variables t = eθ changes the
probability-generating function to the moment-generating function.

The mgf of a continuous random variable X is the natural analogue of
(1.80), namely

m(θ) = E(eθX) =
∫ H

L

eθxfX(x)dx, (1.81)

where L and H are the boundaries of the range of X, as in Section 1.8.
The original purpose for the mgf was to generate moments, as the name

suggests. Any moment of a probability distribution can be found by appro-
priate differentiation of the mgf m(θ) with respect to θ, with the derivative
being evaluated at θ = 0. That is, if a random variable has a distribution
whose mgf is m(θ), the mean µ of that random variable is given by

µ =
(

d m(θ)
d θ

)
θ=0

, (1.82)

and the variance is given by

σ2 =
(

d2 m(θ)
d θ2

)
θ=0

− µ2. (1.83)

An analogue of the uniqueness property of pgfs discussed on page 26
holds for mgfs: If two mgfs agree in an open interval containing zero, the
corresponding probability distributions are identical. In some cases an mgf
is defined, that is exists, only for certain values of θ, while in other cases it
exists for all θ. In the former case we restrict θ to those values for which
the mgf is defined.

Example 1. The mgf of the exponential distribution (1.66) is∫ +∞

0
eθxλe−λxdx =

λ

λ − θ
. (1.84)
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The integral on the left-hand side converges only when θ < λ, so that θ is
assumed to be restricted to these values.

Equations (1.82) and (1.84) jointly show that the mean of the exponential
distribution (1.66) is

µ =
(

λ

(λ − θ)2

)
θ=0

=
1
λ

,

and equations (1.83) and (1.84) jointly show that the variance is

σ2 = 2
(

λ

(λ − θ)3

)
θ=0

− µ2 =
1
λ2 ,

confirming the results of Problem 1.21, where these moments are found by
integration.

Example 2. The mgf of the normal distribution (1.64) is∫ + ∞

− ∞

1√
2πσ

eθx − (x−µ)2

2σ2 dx.

Completing the square in the exponent, we find that this reduces to

eµθ+ 1
2 σ2θ2

. (1.85)

In this case θ can take any value in (−∞,∞). Equations (1.82) and (1.85)
jointly show that the mean of the normal distribution is(

(µ + σ2θ)eµθ+ 1
2 σ2θ2

)
θ=0

= µ,

as claimed in the discussion surrounding (1.85). A further differentiation
and application of (1.83) confirms that the variance of the normal distri-
bution (1.85) is σ2.

Example 3. The mgf of the chi-square distribution (1.77) is∫ +∞

0
eθx 1

2ν/2 Γ( 1
2ν)

x
1
2 ν−1 e− 1

2 x dx. (1.86)

Taking θ < 1/2, the change of variable y = x(1 − 2θ) transforms this into

(1 − 2θ)−ν/2
∫ +∞

0

1
2ν/2 Γ( 1

2ν)
y

1
2 ν−1 e− 1

2 y dy, (1.87)

and since the integral in this expression is 1, being the integral of the
original chi-square distribution, the required mgf is

(1 − 2θ)−ν/2. (1.88)

Application of equations (1.82) and (1.83) show that the mean of the chi-
square distribution is ν, the number of degrees of freedom associated with
the distribution, and that the variance is 2ν.
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The moment-generating function is useful when it can be evaluated as
a comparatively simple function, as in the above examples. This is not
always possible; for the beta distribution (1.78), for example, the moment-
generating function does not in general take a simple form.

It is often more useful to use the logarithm of the mgf than the mgf itself.
If X is a random variable whose distribution has mgf m(θ), then the mean
µ and the variance σ2 of X are found from

µ =
(

d log m(θ)
d θ

)
θ=0

, σ2 =
(

d2 log m(θ)
d θ2

)
θ=0

. (1.89)

We conclude this section with two important properties of mgfs. First,
let X be any continuous random variable with density function fX(x),
L < x < H, and let g(X) be any function of X. Then g(X) is itself a
random variable, and from (1.55) the moment-generating function of g(X)
can be written in terms of the density function for X as

mg(X)(θ) =
∫ H

L

eθg(x)fX(x) dx. (1.90)

A similar definition holds for a discrete random variable, namely

mg(Y )(θ) =
∑

y

eθg(y) PY (y), (1.91)

the summation being over all possible values of the random variable Y .

Example. If z has a normal distribution with mean 0, variance 1, the mgf
of Z2 is

mZ2(θ) = E(eθZ2
) =
∫ + ∞

− ∞

1√
2π

eθx2 − x2/2 dx, θ < 1/2. (1.92)

The change of variable y = x(1 − 2θ)1/2 shows that this is (1 − 2θ)−1/2.
Comparison of this with (1.88), together with the uniqueness theorem dis-
cussed after (1.8), shows that Z2 has a chi-square distribution with one
degree of freedom. �

The second property of mgfs is important for BLAST theory, and we
state it as a theorem.

Theorem 1.1. Let Y be a discrete random variable with mgf m(θ). Sup-
pose that Y can take at least one negative value (say −a) with positive
probability PY (−a) and at least one positive value (say b) with positive
probability PY (b), and that the mean of Y is non-zero. Then there exists
a unique non-zero value θ∗ of θ such that m(θ∗) = 1.

Proof. We prove the theorem for the case where the mgf is defined for all
θ in (−∞,∞). The general case is proved in a similar way.
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Since all terms in the sum (1.80) defining m(θ) are positive,

m(θ) > PY (−a)e−θa and m(θ) > PY (b)eθb.

Thus m(θ) → + ∞ as θ → − ∞ and also as θ → + ∞. Further,

d2m(θ)
dθ2 =

∑
y

y2PY (y)eθy, (1.93)

and since this is positive for all θ, the curve of m(θ), as a function of θ, is
convex. The definition (1.80) of an mgf shows that m(0) = 1. By (1.82), the
mean of Y is the slope of m(θ) at θ = 0, and this is non-zero by assumption.
The above shows that if the mean of Y is negative, then the slope of the
graph of m(θ) at θ = 0 is negative, and together with the other properties
of m(θ) determined above, its graph must be approximately as shown in
the left-hand graph in Figure 1.16. Consequently, there is a unique positive
value θ∗ of θ such that m(θ∗) = 1.

If the mean of Y is positive, then the graph of m(θ) is approximately as
shown in the right-hand graph in Figure 1.16, and so in this case also there
is a unique negative value θ∗ of θ such that m(θ∗) = 1.
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�
The same conclusions also hold for continuous random variables, making

the appropriate changes to the statement of the theorem.

1.12 Events

1.12.1 What Are Events?
So far, the development of probability theory has been in terms of ran-
dom variables, that is, quantities that by definition take one or another
numerical value. In many contexts, however, it is more natural, or more
convenient, to consider probabilities relating to events rather than to ran-
dom variables. For example, if we examine the nucleotides in two aligned
DNA sequences, it might be more natural to say that the event Aj occurs
if the two sequences have the same nucleotide at position j, rather than
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to define a random variable Ij , taking the value +1 if the two sequences
have the same nucleotide at this position and taking the value 0 if they do
not. This section provides some elementary probability theory relating to
events.

Our definition of an event is deliberately casual, since in bioinformatics
a detailed sample-space-based definition is not necessary. We simply think
of an event as something that either will or will not occur when some
experiment is performed. For example, if we plan to roll a die, A1 might
be the event that the number turning up will be even and A2 might be the
event that the number turning up will be a 4, 5, or 6. The experiment in
this case is the actual rolling of the die, and none, one, or both of these
two events will have occurred after the experiment is carried out.

A certain event is an event that must happen, such as rolling a number
less than seven on one regular die. A null or empty event is one that cannot
happen, such as rolling a number greater than seven on a regular die. The
empty event for a random experiment will denoted ∅.

In different contexts an event might be described in quite different ways,
but in fact is the same event. For example, in one context S1 might be
defined as the event that the number turning up on a die is less than 7,
and in another context S2 might be defined as the event that the number
is divisible by 1. S1 and S2 are just different ways of describing the certain
event.

1.12.2 Complements, Unions, and Intersections
Before considering the probability theory associated with events we
consider some aspects of events themselves.

Associated with any event A is its complementary event “notA,” usually
denoted by Ā. The event Ā is the event that A does not occur. For example,
if A is the event “an even number turns up on the roll of a die,” then Ā is
the event “an odd number turns up.”

If A1 and A2 are two events, the union of A1 and A2 is the event that
either A1 or A2 (or both) occurs. The union of the events A1 and A2 is
denoted by A1 ∪ A2. For any event A, the event A ∪ Ā is the certain event.
More generally, in some cases at least one of A1 or A2 must occur, so that
A1 ∪ A2 is the certain event. In such a case we say that A1 and A2 are
exhaustive.

The intersection of two events A1 and A2 is the event that both occur.
The intersection of the events A1 and A2 is denoted by A1 ∩ A2 or, more
frequently, simply by A1A2.

In some cases the events A1 and A2 cannot occur together, that is, they
are mutually exclusive. In this case the intersection of A1 and A2 is empty.
For any event A, A ∩ Ā = ∅.

These definitions extend in a natural way to any number of events. Thus
the union of the events A1, A2, . . . , An, denoted by A1 ∪A2 ∪· · ·∪An, is the
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event that at least one of the events A1, A2, . . . , An occurs. The intersection
of the events A1, A2, . . . , An, denoted by A1A2 · · ·An, is the event that all
of the events A1, A2, . . . , An occur.

More complicated events such as (A1A2)∪A3 may be defined. These lead
to various useful identities, of which we list four here:

(1) A1 ∪ A2 = Ā1 ∩ Ā2,
(2) A1 ∩ A2 = Ā1 ∪ Ā2,
(3) A1 ∩ (A2 ∪ A3) = (A1 ∩ (A2) ∪ (A1 ∩ (A3),
(4) A1 ∪ (A2 ∩ A3) = (A1 ∪ (A2) ∩ (A1 ∪ (A3).

The first two of these are known as DeMorgan’s laws. A proof of (1) is
that A1 ∪ A2 occurs ⇔ A1 ∪ A2 does not occur ⇔ A1 does not occur and
A2 does not occur ⇔ A1 occurs and A2 occurs. ⇔ Ā1 ∩ Ā2 occurs.

1.12.3 Probabilities of Events
Probability refers to the assignment of a real number P (A) to each event
A. These numbers must satisfy the following “axioms of probability”:

(1) P (A) ≥ 0 for any event A.
(2) For any certain event S, P (S) = 1.
(3) If A1 ∩ A2 = ∅, then

P (A1 ∪ A2) = P (A1) + P (A2).

It follows from the axioms that for any event A, 0 ≤ P (A) ≤ 1 and P (Ā) =
1 − P (A).

Often one wishes to find the probability that at least one of the events
A1, A2, . . . , An occurs. If the events are mutually exclusive for all i �= j,
then it follows by mathematical induction from the above axioms that this
probability is

P (A1 ∪ A2 ∪ · · · ∪ An) =
∑

i

P (Ai). (1.94)

A more complicated formula arises when some of the events A1, A2, . . . , An

are not mutually exclusive. The simplest case concerns two events, A1 and
A2. The sum P (A1) + P (A2) counts the probability of the intersection
A1A2 twice, whereas it should be counted only once (see Figure 1.17). This
argument leads to

P (A1 ∪ A2) = P (A1) + P (A2) − P (A1A2). (1.95)

This formula can be generalized to find the probability of the union of an
arbitrary number of events in terms of probabilities of intersections. This
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A1 A2
A1 ∩ A2

Figure 1.17. Diagram showing P (A1 ∪ A2) = P (A1) + P (A2) − P (A1 ∩ A2).

is discussed at length in Feller (1957), and we reproduce his results here
without proof.

Define S1, S2, . . . , Sn by the formulae

S1 =
∑

i

P (Ai), S2 =
∑
i<j

P (AiAj), S3 =
∑

i<j<k

P (AiAjAk), . . . .

(1.96)
Then the probability P1 of the union A1 ∪ A2 ∪ · · · ∪ An is given by

P1 = S1 − S2 + S3 − · · · + (−1)n−1Sn. (1.97)

This implies that the probability that none of the events A1, A2, . . . , An

occurs is

1 − S1 + S2 − S3 − · · · + (−1)nSn. (1.98)

One simple consequence of equation (1.97) is that, whether the events
are independent or not,

P1 ≤ S1. (1.99)

This is seen from Figure 1.17 for the case of two events and is easily shown
to hold for any number of events.

1.12.4 Conditional Probabilities
Suppose that a fair die is rolled once. If it is known that the number turning
up is less than or equal to three, elementary arguments show that the
probability that it is odd is 2

3 . We write this

P(number is odd | number is less than or equal to 3) =
2
3
. (1.100)

This is an example of a conditional probability calculation.
More precisely, suppose that A1 and A2 are two events and that P (A2) �=

0. Then the conditional probability that the event A1 occurs, given that
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the event A2 occurs, denoted by P (A1 |A2), is defined by

P (A1 |A2) =
P (A1A2)
P (A2)

. (1.101)

This is a crucial formula. The intuition behind the formula can be seen
from Figure 1.17, page 44: If it is given that the event A2 occurs, the only
part of the diagram of relevance is the right-hand circle, corresponding to
the event A2. Of the probability associated with this circle, the proportion
P (A1A2)/P (A2) corresponds to the event that A1 occurs. This proportion
is the right-hand side in (1.101).

Conditional probability calculations are often counterintuitive (some ex-
amples are given in the Problems), and it is essential that the definition
(1.101) be used when calculating them.

The calculation in (1.100) can be arrived at from (1.101) from the fact
that if A1 is the event that the number is odd and A2 is the event that
the number is less than or equal to three, then A1A2 is the event that the
number is 1 or 3. The probability of A1A2 is then 1

3 and that of A2 is 1
2 .

Equation (1.100) follows from this.
In using (1.101), care must be exercised in assessing what the intersection

event A1A2 means. For example, suppose that a die (fair or unfair) is rolled
twice. Let A1 be the event that the number turning up on the first roll is
y1 and the number turning up on the second roll is y2, and let A2 be the
event that the sum of the two numbers is y3. Then the event A1A2 is
empty unless y1 + y2 = y3, so that when y1 + y2 �= y3, P (A1 |A2) = 0.
When y1 + y2 = y3, the event A1 implies the event A2, so that A1A2 = A1.
In this case P (A1 |A2) = P (A1)/P (A2).

It should be noted that P (A1 |A2) does not necessarily equal P (A2 |A1).
For example, if a fair die is rolled once and A1 is the event that the number
turning up is not a one, and A2 is the event that the number is odd, then
P (A1 |A2) = 2

3 , whereas P (A2 |A1) = 2
5 .

Equation (1.101) has various important consequences. It shows immedi-
ately, for example, that

P (A1A2) = P (A2)P (A1 |A2), (1.102)

and in this form its truth is almost self-evident: The probability that both
A1 and A2 occur is the probability that A2 occurs multiplied by the prob-
ability that A1 occurs given that A2 occurs. Further, the left-hand side in
equation (1.102) is symmetric in A1 and A2, so that the right-hand side
may be replaced by P (A1)P (A2 |A1). This implies that

P (A1)P (A2 |A1) = P (A2)P (A1 |A2), (1.103)

or

P (A2 |A1) =
P (A2)P (A1 |A2)

P (A1)
. (1.104)
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This is known as Bayes’ formula, which allows for the writing of P (A2 |A1)
in terms of P (A1 |A2). In this form the formula is used in Bayesian
statistics; see Section 3.9.

A second implication of equation (1.101) is the following. Suppose that
B1, B2, . . . , Bk is a set of mutually exclusive and exhaustive events, so that
exactly one of these events must occur. Then for any event A,

P (A) =
k∑

j=1

P (ABj).

Equation (1.101) then implies

P (A) =
k∑

j=1

P (Bj)P (A |Bj), (1.105)

which is used frequently in this book as it is often the most convenient way
to calculate P (A).

All the above formulae for events have direct analogues for probabili-
ties of random variables. In fact, the latter probabilities may be derived
immediately from the former. These are discussed at length in the next
chapter.

1.12.5 Independence of Events
An event A1 is independent of another event A2 if

P (A1) = P (A1 |A2). (1.106)

The natural interpretation of this requirement is that knowledge of the
occurrence of A2 does not affect the probability of the occurrence of A1.
The definition of P (A1 |A2) in (1.101) shows that A1 is independent of A2
if and only if

P (A1A2) = P (A1) · P (A2). (1.107)

This equation provides a useful way to check for independence. Note that
it follows from this that if A1 is independent of A2, then A2 is independent
of A1, so that we simply say that A1 and A2 are independent.

As an example, if a fair die is to be rolled, the events A1 (an even number
turns up) and A2 (4, 5, or 6 turns up) are not independent. Each of these
events separately has probability 1

2 , and the probability of their intersection
(the event that either a 4 or a 6 will turn up) is 1

3 . Thus equation (1.107)
does not hold, and the events are not independent. On the other hand, if A3
is the event that a 3, 4, 5, or 6 turns up, then A1 and A3 are independent.
These statements all assume that the die is fair. If the die is unfair, they
will usually no longer hold.
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More generally, the events A1, A2, . . . , An are defined to be independent
if and only if the requirements

P (AiAj) = P (Ai)P (Aj) for all distinct i, j, (1.108)
P (AiAjAk) = P (Ai)P (Aj)P (Ak) for all distinct i, j, k, (1.109)

P (AiAjAkAl) = P (Ai)P (Aj)P (Ak)P (Al) for all distinct i, j, k, l,
· · ·

P (A1A2A3 · · ·An) = P (A1)P (A2)P (A3) · · ·P (An), (1.110)

all hold.
As in the case of two random variables, this definition is equivalent to

saying that the probability of any collection of the events is not affected by
knowledge of any collection of the remaining events.

It is not sufficient for independence of the events A1, A2, . . . , An that the
“pairwise” conditions (1.108) hold: All of the conditions (1.108)–(1.110)
must be satisfied for the events to be independent. It is possible that
the pairwise conditions (1.108) hold but that the “triple-wise” conditions
(1.109) do not hold. The following example demonstrates this.

Example. Suppose that two fair dice are thrown, and that the events A1,
A2, and A3 are, respectively, “number on first die is odd,” “number on
second die is odd,” “sum of the two numbers is odd.” Clearly, both A1
and A2 have probability 1

2 and it is not hard to show that A3 also has
probability 1

2 . Each pairwise intersection event has probability 1
4 ; the event

A1A3, for example, that the first number is odd and the sum of the two
numbers is odd, is the event “first number is odd, second number is even,”
and this has probability 1

4 . The probability of the triple-wise event A1A2A3
is zero, since this event cannot occur. However, P (A1)P (A2)P (A3) = 1

8 , so
that condition (1.109) is not met, and the three events are not independent.

If the events A1 and A2 are independent, then so are their respective
complementary events Ā1 and Ā2. This follows using the laws of probability,
DeMorgan’s laws (see page 43), and the independence of A1 and A2:

P (Ā1Ā2) = 1 − P (A1 ∪ A2)
= 1 − P (A1) − P (A2) + P (A1A2) = 1 − P (A1) − P (A2) + P (A1)P (A2)
= {1 − P (A1)}{1 − P (A2)} = P (Ā1)P (Ā2).

This argument can be extended to any number of events. The probability
that none of the independent events A1, A2 . . .An occurs is

n∏
j=1

{1 − P (Aj)}. (1.111)
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1.13 The Memoryless Property of the Geometric
and the Exponential Distributions

Suppose that y1 and y2 are two positive integers and that a random variable
Y having the geometric distribution (1.15) takes a value y1 or more. What
is the probability that it takes a value y1 + y2 or more? The intersection of
the events Y ≥ y1 and Y ≥ y1 + y2 is the event that Y ≥ y1 + y2. In this
case the conditional probability formula (1.101) becomes

Prob(Y ≥ y1 + y2)
Prob(Y ≥ y1)

, (1.112)

and from equation (1.16), this is py1+y2/py1 = py2 . But this is just the
unconditional probability that Y ≥ y2. Therefore,

Prob(Y ≥ y1 + y2 |Y ≥ y1) = Prob(Y ≥ y2).

This is called the memoryless property of the geometric distribution. The
memoryless concept is discussed below in connection with the exponential
distribution.

The exponential distribution, like the geometric distribution, also has the
memoryless property. This is shown as follows. If X is a random variable
having the exponential distribution (1.54) and if x2 > 0, then from (1.67),

Prob(X ≥ x2) = e−λx2 . (1.113)

From the conditional probability formula (1.101), if also x1 > 0, then

Prob(X ≥ x1 + x2 |X ≥ x1) =
e−λ(x1+x2)

e−λx1
= e−λx2 . (1.114)

Thus

Prob(X ≥ x1 + x2 |X ≥ x1) = Prob(X ≥ x2). (1.115)

An application of this property follows.
Cellular proteins and RNA molecules are regulated in many ways, involv-

ing the degradation and generation of molecules in a cell. Some molecules
may eventually break down with age, while others are actively degraded.
Molecules that are not actively degraded can be equally likely to degrade
spontaneously at any given time. This phenomenon is, in effect, the mem-
oryless property. The (random) lifetime of such a molecule is modeled by
an exponential distribution.

A further property of the exponential distribution is relevant to this
behavior. Suppose that h is small. The probability that a random variable
having the exponential distribution (1.66) takes a value in the interval
(x, x + h), given that its value exceeds x, is, from (1.101) and (1.67),∫ x+h

x
λe−λu du

e−λx
= 1 − e−λh = λh + o(h), (1.116)



1.14. Entropy and Related Concepts 49

where the second equality follows from (B.21) and the o(h) notation is dis-
cussed in Appendix B.8. In the case of cellular molecules, this implies that
having lived to age at least x, the probability that a molecule degrades in
the time interval (x, x+h), where h is small, is approximately proportional
to the length h of the interval. This example will be pursued further in
Sections 2.11.1 and 4.1.

1.14 Entropy and Related Concepts

1.14.1 Entropy
Suppose that Y is a discrete random variable with probability distribution
PY (y). The entropy H(PY ) of this probability distribution is defined by

H(PY ) = −
∑

y

PY (y) log PY (y), (1.117)

the sum (as with all sums in this section) being taken over all values of y
in the range of Y. Since this quantity depends only on the probabilities of
the various values of Y , and not on the actual values themselves, it can be
thought of, as the notation indicates, as being a function of the probability
distribution PY = {PY (y)} rather than the random variable Y .

In some areas of computational biology the base of the logarithm in
this definition is taken to be 2. The reason for this, in terms of “bits” of
information, is discussed in Appendix B.10. Although we will use the base
2 in the definition (1.117) later in this book, for the moment we use natural
logarithms (and the notation “log” for these).

The entropy of a probability distribution is a measure of how close to
uniform that distribution is, and thus, in a sense, of the unpredictability of
any observed value of a random variable having that distribution. If there
are s possible values for the random variable, the entropy is maximized
when PY (y) = s−1. In this case it takes the value log s, and the value to be
assumed by Y is in a sense maximally unpredictable. At the other extreme,
if only one value of Y is possible, the entropy of the distribution is zero,
and the value to be assumed by the random variable Y is then completely
predictable.

Despite the fact that both the entropy and the variance of a probability
distribution measure in some sense the uncertainty of the value of a random
variable having that distribution, the entropy has an interpretation different
from that of the variance. The entropy is defined only by the probabilities of
the possible values of the random variable and not by the values themselves.
On the other hand, the variance depends on these values. Thus if Y1 takes
the values 1 and 2 each with probability 0.5, and Y2 takes the values 1 and
100 each with probability 0.5, the distributions of Y1 and Y2 have equal
entropies but quite different variances.
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1.14.2 Relative Entropy
Several procedures in bioinformatics use the relative entropy of two differ-
ent probability distributions PY0(y) and PY1(y). It is convenient to denote
the first of these probability distributions by P 0 and the second by P 1.
We assume that these are different distributions but have the same range,
that is, that PY0(y) > 0 if and only if PY1(y) > 0. There are two relative
entropies associated with these two distributions, namely H(P 0||P 1) and
H(P 1||P 0), defined respectively by

H(P 0||P 1) =
∑

y

PY0(y) log
PY0(y)
PY1(y)

, (1.118)

H(P 1||P 0) =
∑

y

PY1(y) log
PY1(y)
PY0(y)

, (1.119)

the summation in both cases being over all values in the (common) range
of the two probability distributions. A proof that both H(P 0||P 1) and
H(P 1||P 0) are positive can be based on the fact that for positive x,
− log x ≥ 1−x, with equality holding only when x = 1. Then, for example,

H(P 0||P 1) =
∑

y

PY0(y)
(

− log
PY1(y)
PY0(y)

)
≥
∑

y

PY0(y)
(

1 − PY1(y)
PY0(y)

)
=
∑

y

PY0(y) −
∑

y

PY1(y) = 0, (1.120)

with equality holding only when PY0(y) = PY1(y).
The relative entropy of two probability distributions measures in some

sense the dissimilarity between them. However, since H(P 0||P 1) is not
equal to H(P 1||P 0), the sometimes-used practice of calling one or the
other of these quantities the distance between the two distributions is
not appropriate. On the other hand, the quantity J(P 0||P 1), defined by
J(P 0||P 1) = H(P 0||P 1)+H(P 1||P 0), does satisfy this requirement. In the
information theory literature, J(P 0||P 1) is called the divergence between
the two distributions (see Kullback (1978)).

1.14.3 Scores and Support
We define the support S0,1(y) given by an observed value y of Y in favor
of P 0 over P 1 by

S0,1(y) = log (PY0(y)/PY1(y)) , (1.121)
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and similarly we define S1,0(y), given by

S1,0(y) = log (PY1(y)/PY0(y)) , (1.122)

as the support given by the observed value y of Y in favor of P 1 over P 0.
The term “support” derives from the fact that if S0,1(y) > 0, the observed
value y of Y is more likely under P 0 than it is under P 1. If it happens, for
some specific value of y of Y , that PY0(y) = PY1(y), then both measures
of support are zero, and this accords with the commonsense view that if
Y is equally likely to take the value y under the two distributions, then
observing the value y of Y affords no support for one distribution over
the other. The definition of support also has the reasonable property that
for any observed value y, S0,1(y) = −S1,0(y). A general description of the
concept of support is given in Edwards (1992).

If the true distribution of Y is P 0, then S0,1(Y ) is a random variable
whose mean I0,1 is found from equation (1.26) to be

I0,1 =
∑

y

PY0(y)S0,1(y), (1.123)

which is identical to H(P 0||P 1). Correspondingly, if the true distribution
is P 1, then the mean support for P 1 over P 0 is

I1,0 =
∑

y

PY1(y)S1,0(y), (1.124)

and this is identical to H(P 1||P 0).
One single observation is not enough for us to assess which distribution

we believe is more likely to be correct. In equation (2.78) we define the
concept of the accumulated support afforded by a number of observations.
In Section 9.9.1 we discuss the question of how much accumulated support
is needed to reasonably decide between two values of a binomial parameter,
and in Section 10.6 we shall discuss accumulated support in the context of
a BLAST procedure. We later call S1,0(y) a “score” statistic, and in Section
10.2.4 we consider the problem of the optimal choice of score statistics for
the substitution matrices used in BLAST.

1.15 Transformations

Suppose that Y1 is a discrete random variable and that g(t) is a function of
a real variable which is one-to-one on the range of Y1. Then if Y2 = g(Y1),

Prob(Y2 = y2) = Prob(Y1 = y1).

This equation makes it easy to find the probability distribution of Y2 from
that of Y1. In the case where the transformation is not one-to-one, a simple
addition of probabilities yields the distribution of Y2. For example, if Y1
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can take the values −1, 0, and +1, each with probability 1
3 , and if Y2 = Y 2

1 ,
then the possible values of Y2 are 0 and 1, and Y2 takes these values with
respective probabilities 1

3 and 2
3 .

The corresponding calculation for a continuous random variable is less
straightforward. Suppose that X1 is a continuous random variable and that
X2 = g(X1) is a one-to-one function of X1. In most cases of interest this
means that g(x) is either a monotonically increasing, or a monotonically de-
creasing, function of x, and we assume that one of these two cases holds. Let
f1(x) be the density function of X1 and let f2(x) be the density function of
X2, which we wish to find from that of X1. Let F1(x) and F2(x) be the two
respective cumulative distribution functions. (Here for typographic reasons
we depart from the notation previously adopted for density functions and
cumulative distribution functions.)

Suppose first that g(x) is a monotonically increasing function of x and
that X2 = g(X1). Then

F2(x) = Prob(X2 < x) = Prob(X1 < g−1(x)) = F1(g−1(x)), (1.125)

where g−1(x) is the inverse function of g(x). Differentiating both sides with
respect to x and using the chain rule, we get

f2(x) =
(

f1(y) ÷ dg(y)
dy

)
y=g−1(x)

. (1.126)

When X2 is a monotonically decreasing function of X1, similar arguments
show that

f2(x) = −
(

f1(y) ÷ dg(y)
dy

)
y=g−1(x)

. (1.127)

Both cases are covered by the equation

f2(x) =
∣∣∣∣(f1(y) ÷ dg(y)

dy

)∣∣∣∣
y=g−1(x)

. (1.128)

As an example, suppose that X1 has density function f1(x) = 2x, 0 <
x < 1, and that X2 = g(X1) = X3

1 . Then dg(y)/dy = 3y2, and equation
(1.128) shows that

f2(x) =
∣∣∣∣ 2y

3y2

∣∣∣∣
y= 3√x

=
2
3
x−1/3, 0 < x < 1. (1.129)

The form of this density function is quite different from that of X1.

Theorem 1.2. A particularly important function of X1 is X2 = F (X1), where
F (X1) is the distribution function of X1. Here application of (1.128) shows
that

f2(x2) = 1, 0 < x2 < 1. (1.130)
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That is, X2 has the uniform distribution in (0, 1), whatever the distribution
of X1 might be. This is an important observation and is used several times
in this book.

1.16 Empirical Methods

We often encounter random variables with distributions that cannot be
calculated mathematically, or at least whose calculation appears difficult.
In other cases the mean and/or the variance can be calculated but not the
entire probability distribution: An example is given in Section 2.9.2. Often
we cannot even calculate these quantities. One consequence of currently
available computational power, however, is that, with a good model, we can
simulate an experiment many times and obtain data from each simulated
replication. We can then approximate probability distributions and their
means and variances using these simulation data. The “plug-in” method
discussed in Section 8.6 also uses this approach.

We illustrate the simulation approach with an example relating to the
problem of gene mapping. Suppose we are given a DNA sequence consisting
of L consecutive nucleotides. For convenience we say that this sequence is
of “length” L. A number of possibly overlapping segments of this sequence
are observed, the first segment consisting of i1 consecutive nucleotides, the
second consisting of i2 consecutive nucleotides, and so on. We will say that
these segments are of respective lengths i1, i2, . . .. Figure 1.18 shows the
four possible positions of a single segment of length ij = 3 when L = 6. In
general there are L − ij + 1 possible positions for a segment of length ij .

� � �
� � �

� � �
� � �

� � � � � �

Figure 1.18. The 4 possible positions of a segment of length 3 in a sequence of
length 6.

The direct-IBD mapping procedure of Cheung et al. (1998) produced
data which can be represented as a collection of such segments. Cheung
et al. aimed at testing whether the various segments in the data showed a
significant tendency to cover the same positions. This was done by finding
the maximum number M of segments that cover the same position. A
sufficiently large value of M then supports the hypothesis that significant
overlap of the segments does occur.

The elements of the theory used for testing hypotheses of this type will
be described in Section 3.4. For our purposes now it is sufficient to say that
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the hypothesis testing procedure requires the calculation of the probability
distribution of M when the segments are placed at random on the DNA
sequence of length L. (By “random” we mean, for example, that the seg-
ment of length ij occurs in each of the L − ij + 1 possible positions with
equal probability.) From this it is required to find the “random placement”
probability that M is equal to or exceeds the observed value m of M .

When the number n of segments is large, it is difficult if not impossible
to find this probability by mathematical methods. Thus Cheung et al. used
approximate and conservation calculations to find an upper bound for this
probability.

The approximations used were sufficient for the example studied; however
as a general procedure the approximation is less efficient than is desirable.
Another approach is to use simulation. If n and L are sufficiently small, it
is possible to enumerate all possible configurations of the n segments by
computer and from this obtain the exact distribution by counting. When n
and L are large this approach is not feasible. An alternative and relatively
simple approach is to replicate the experiment of randomly placing the n
segments on a sequence of DNA of length L many times, and in this way
obtain an empirical distribution of M , under the randomness assumption.
The larger the number of replications, the closer the empirical distribution
of M will be to the true one.

This is known as a Monte Carlo approach. There are simple computer
programs for generating the uniform random variables necessary to do this
simulation (see, for example, Press et al. (1992)).

For n = 7, L = 100, and (i1, . . . , i7) = (6, 5, 6, 5, 5, 8, 4) a simulation in-
volving 10,000 replications gave the empirical distribution shown in Figure
1.19.

Suppose that, in a data set with L = 100 and 7 segments, with respective
lengths i1, . . ., i7 equal to 6,5,6,5,5,8,4, the observed value m of M is 4.
From the empirical distribution, the estimated “randomness” probability
that M ≥ 4 is quite small, being .0163. We might then be unwilling to
believe that the segments in the data were placed randomly, preferring the
hypothesis that significant evidence of overlap occurs for some reason.

An empirical approach such as this was taken in Grant et al. (1999) to
refine the calculations in Cheung et al. (1998), which led to a probability
estimate that was an order of magnitude more precise than the Cheung et
al. value.

In the previous example, all that was needed was to generate random
numbers from a uniform distribution. Often it is necessary, to perform
the appropriate simulations, to generate numbers from other distributions.
The result at the end of the previous section allows us to transform uni-
formly distributed random variables into random variables following any
continuous distribution whose cumulative distribution function is available.
Suppose that we wish to generate random values of a continuous random
variable X1 having cumulative distribution function F1(x). Theorem 1.2
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Figure 1.19. Empirical probabilities for M when n = 7 and L = 100. Estimated
probabilities are: PM (1) = .0722, PM (2) = .7137, PM (3) = .1978, PM (4) = .0160,
PM (5) = .0003. The values M = 6 and 7 were not observed in the simulation.

shows that if we generate a uniformly distributed random variable X2, and
then define X1 by X1 = F−1

1 (X2), where F−1
1 is the inverse function of F1,

then X1 is a random variable having the required density function. For ex-
ample, (1.67) shows that the cumulative distribution function of a random
variable having the exponential distribution (1.66) is F1(x) = 1 − e−λx,
x ≥ 0. Thus if X2 has a uniform distribution in (0, 1), and if X1 is defined
by X1 = − 1

λ log(1 − X2) (so that X2 = 1 − e−λX1 = F1(X1)), then X1 is
a random variable having the exponential distribution (1.66). We can thus
easily simulate exponentially distributed data.

A useful application of empirical methods in computational biology and
bioinformatics concerns the distribution of test statistics used in statisti-
cal inference. The DNA segment example above provides an illustration of
such an application. Further examples of this approach are given later in
this book, in particular in connection with the complex theory of BLAST
and of inference concerning phylogenetic trees. In some cases these exam-
ples demonstrate, using empirical methods, that various approximations
commonly used for the distributions of test statistics are not as accurate
as would be desired.

One might ask why, if empirical methods are so convenient, we should go
to the trouble to calculate theoretical properties of distributions. One rea-
son is that an exact theoretical distribution is preferred to an approximate
empirical distribution is because the mathematical form of the distribution
is often informative. Second, a drawback of empirical methods is that they
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can be slow and might take an unacceptably long time to run. Sometimes
estimates have to be calculated in a matter of microseconds. When empir-
ical methods are not adequate for this task, theoretical methods, even at
the possible cost of some accuracy, become necessary.

Problems

1.1. If Y is a random variable having the distribution (1.2), show E(Y 2) �=
(E(Y ))2.

1.2. Use equation (1.36) to prove that the mean of a random variable hav-
ing the binomial distribution is np, and together with equation (1.32) show
that the variance of this random variable is np(1 − p).

1.3. Use definition (1.24) and equation (B.18) to show that the mean of
a random variable having the geometric distribution (1.15) is p/q, where
q = 1 − p. From this, show immediately that the mean of the distribution
(1.18) is q−1. Also show that the mean of a random variable having the
Poisson distribution (1.22) is λ.

1.4. This problem refers to the radiation example in Section 1.3.3. Suppose
that the probability that a mouse of either gender is a mutant is p. The
number of mutant male mice has a binomial distribution with parameter
p and index n and the number of mutant female mice has a binomial dis-
tribution with parameter p and index N − n. The total number number of
mutant mice has a binomial distribution with parameter p and index N.

Let A1 be the event that y male mice are mutants and A2 be the event
that, in all, m mice are mutants. Use the conditional probability formula
(1.101) to derive the hypergeometric distribution in Section 1.3.3 for the
number of mutant male mice, given the total number m of mutant mice.
Hint: The event A1A2 is identical to the event that y males and m − y fe-
males are mutants. Calculate the probability of the event A1A2 using this
fact.

1.5. Derive property (ii) of the variance on page 22 from the variance defi-
nition (1.29).

1.6. Show that equations (1.30) and (1.32) follow from the variance defini-
tion (1.29).



Problems 57

1.7. Prove (1.36) as follows: First, evaluate the expression (1.35) for the
case r ≤ n. Next, show that

y(y − 1) · · · (y − r + 1)
(

n

y

)
= n(n − 1) · · · (n − r + 1)

(
n − r

y − r

)
.

From this, equation (1.35) reduces to

E
(
Y (Y − 1) · · · (Y − r + 1)

)
= n(n − 1) · · · (n − r + 1)pr

n∑
y=r

(
n − r

y − r

)
py−r(1 − p)n−y. (1.131)

Finally, show that the sum in this expression equals 1.

1.8. Let Y be a random variable having a Poisson distribution with pa-
rameter λ. Show that the probability that the observed values y of Y is
an even number exceeds 1/2. Hint: use the exponential series in equation
(B.20) for x = λ and also for x = −λ. What is the asymptotic value of this
probability as λ → ∞?

1.9. Let Y be a random variable having a Poisson distribution with pa-
rameter λ. If λ is small (say less than 0.05), show that the probability
that Y ≥ 1 is approximately λ. Hint: Let A be the event Y = 0, so
that the probability required is P (Ā). Find P (A) and then use the formula
P (Ā) = 1 − P (A). Also use the approximation (B.21).

1.10. Suppose that the random variable Y has the Poisson distribution
(1.22). Find the mean of the function Y (Y − 1). Then generalize your
result to find the rth factorial moment of this distribution, that is,

E
(
Y (Y − 1) · · · (Y − r + 1)

)
.

Hint: Use an approach analogous to that leading to equation (1.36).

1.11. Use formula (1.32) and the results of Problem 1.10 for the case r = 2
to find the variance of a random variable having the Poisson distribution
(1.22).

1.12. Suppose that calls arrive at a telephone exchange according to a
Poisson process with parameter λ. If the lengths of the various calls are iid
random variables, each with cumulative distribution function FX(x), find
the probability distribution of the number of calls in progress at any time.

1.13. Suppose that a sequence of independent Bernoulli trials is conducted,
with the same probability of success on each trial. The event that r − 1 or
fewer successes occur in the first n trials implies the event that the number
of trials needed to achieve r successes is n + 1 or more. Use this result to
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find a relation between the cumulative distribution functions of the bino-
mial and the generalized geometric distributions.

1.14. Prove equation (1.58). Hint: Write the right-hand side as∫ H

0
1 · (1 − FX(x)) dx;

then use integration by parts.

1.15. Is Chebyshev’s inequality (1.60) useful when d = σ? When X has a
normal distribution, mean µ, variance σ2, compare the exact probability
that |X − µ| ≥ d with the values found in Chebyshev’s inequality for the
cases d = 2σ, d = 3σ.

1.16. Use equation (B.19) and further manipulation to show that the vari-
ance of a random variable having the geometric distribution (1.15) is
p/q + (p/q)2 = p/q2, where q = 1 − p. Argue, without using mathematics,
that the same variance applies for a random variable having the probability
distribution (1.18).

1.17. Derive the expression (1.45) for the pgf of the binomial distribution.
Also, show that the pgfs of the geometric, the shifted geometric and the
Poisson distribution are, respectively, (1−p)/(1−pt), (1−p)t/(1−pt) and
eλ(t−1).

1.18. Use definition (1.24), and equations (1.32) and (1.39) to prove equa-
tions (1.40) and (1.41).

1.19. Use the results of Problems 1.17 and 1.18 to rederive the results of
Problems 1.2 and 1.3.

1.20. Use the pgfs found in Problem 1.17, together with (1.40) and (1.41),
to find the variance of a random variable having (i) the Poisson distribu-
tion, (ii) the geometric distribution, and check that your results agree with
those found respectively in Problem 1.11 and Problem 1.16.

1.21. Use equations (1.53) and (1.54) to prove that the mean of the expo-
nential distribution (1.66) is 1/λ and that the variance is 1/λ2. (Hint: Use
equations (B.42) and (B.43).) Confirm your calculation for the mean by
using equations (1.67) and (1.58).

1.22. Show that the mean and variance of a uniform random variable are
as given in (1.62).
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1.23. Show that the probability that a random variable having the expo-
nential distribution (1.66) is within two standard deviations of its mean
is close to 0.95, (so that the two standard deviation rule of Section 1.10.2,
applying for a normal random variable, also applies for an exponential
random variable). Despite this fact, the normal distribution and the ex-
ponential distribution have quite different shapes. The probability that a
normal random variable having mean µ and variance σ2 is less than µ−σ is
about 0.1587. What is the corresponding value for an exponential random
variable?

1.24. Find the skewness of the exponential distribution (1.66), thus showing
that it is a positive constant independent of λ.

1.25. Find the mean and variance given in (1.73) by using integration meth-
ods and (1.72).

1.26. Show that the mean and variance of a random variable having the
chi-square distribution (1.77) with ν degrees of freedom are, respectively,
ν and 2ν.

1.27. Find the mgfs of the binomial, the geometric, the Poisson, and the
uniform distributions.

1.28. Use definitions (1.24) and (1.80) to prove (1.82), (1.83), and (1.89).

1.29. Suppose a discrete random variable Y takes the values −2 with prob-
ability 0.2, −1 with probability 0.3, and +1 with probability 0.5. Show
that the mean of this random variable is negative. Confirm the result of
Theorem 1.1, page 40, by showing that there is a unique positive solution
θ∗ for θ of the equation m(θ) = 1, where m(θ) is the mgf of Y .

1.30. Suppose that X is a random variable having a normal distribution
with mean µ, variance σ2. Use the mgf of X to find, in one line, the mean
of the function eX .

1.31. A fair die is to be rolled once. Define A1 to be the event that an
even number turns up and A2 the event that a 4, 5, or 6 turns up. Define
the event A1 ∪ A2 and find its probability using a direct argument. Now
check that the answer that you found agrees with that found by applying
equation (1.95).

1.32. Two fair coins are tossed and you are told that at least one coin came
up heads. What is the probability that both coins came up heads? Note:
The two “instinctive” answers 1

2 and 1
4 are both incorrect: it is necessary
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to use the conditional probability formula (1.101).

1.33. Suppose that the random variable Y has the geometric-like distribu-
tion (1.19). Assuming for the moment that the probability given in (1.19)
is exact rather than asymptotic, calculate Prob(Y ≥ y1) for any y1 ≥ 1
and also calculate Prob(Y ≥ y1 +1). Then use equation (1.101) to find the
conditional probability that Y ≥ y1 + 1, given that Y ≥ y1. Compare your
result with that following (1.112).

Noting now that the probability in (1.19) is asymptotic rather than ex-
act, what asymptotic statement can you make?

1.34. Suppose an unfair die has the property that the probability that the
number i turns up is i

21 . Are the events “an even number turns up” and “a
number 4 or less turns up” independent? What is the corresponding result
for a fair die?

1.35. The classic example of the use of equations (1.97)–(1.98) arises
through the procedure of taking a random permutation of the integers
(1, 2, . . . , n). In any such random permutation, any given integer i will
match its original position with probability n−1. More generally, if Ai is
the event that the integer i does indeed match its original position, then

P (Ai) = n−1,

P (AiAj) =
(
n(n − 1)

)−1
,

P (AiAjAk) =
(
n(n − 1)(n − 2)

)−1
,

and so on. Use equation (1.98) to show that the probability that no number
in the random permutation is in its original position is

1 − 1 +
1
2!

− 1
3!

+ · · · + (−1)n 1
n!

. (1.132)

Find the limit of this probability as n → +∞.

1.36. Suppose that the various triple-wise intersection probabilities as-
sociated with three events A1, A2 and A3 are generated from the
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formulae

P (A1A2A3) = pqr + d,

P (A1A2Ā3) = pq(1 − r) − d,

P (A1Ā2A3) = p(1 − q)r − d,

P (A1Ā2Ā3) = p(1 − q)(1 − r) + d,

P (Ā1A2A3) = (1 − p)qr − d,

P (Ā1A2Ā3) = (1 − p)q(1 − r) + d,

P (Ā1Ā2A3) = (1 − p)(1 − q)r + d,

P (Ā1Ā2Ā3) = (1 − p)(1 − q)(1 − r) − d,

where 0 < p, q, r < 1 and d is chosen small enough so that all probabilities
are positive. Show that the requirement (1.108) holds for such a probability
scheme, but that the only case for which the events A1, A2, and A3 are
independent is when d = 0.

1.37. Let PY0(y) and PY1(y) be two probability distributions defined on the
same range R. It can be shown that −∑y∈R PY0(y) log PY1(y) is maximized
(with respect to choice of PY1(y)) by the choice PY1(y) = PY0(y). Use this
fact to show that the relative entropy (1.118) is non-negative. Hint: Write
log(PY0(y)/PY1(y)) as log PY0(y) − log PY1(y).

1.38. Suppose that X1 has the exponential distribution (1.66). Show that
X2 = log X1 has a variance that does not dependent on λ.



2
Probability Theory (ii): Many
Random Variables

2.1 Introduction

In almost every application of statistical methods we consider the analysis
of many observations. For example we might measure the level of proteins
in a cell for many proteins simultaneously, or we might measure the level
of one protein many times in many different cells, in order to carry out
some statistical hypothesis testing or estimation procedure. In BLAST we
compare a “query” sequence with a large number of database sequences,
leading to a large number of match scores. In order to understand the
theory for testing hypotheses and estimating parameters in bioinformat-
ics applications, we must therefore consider the theory of many random
variables.

Perhaps the most basic issue concerning the theory of many random
variables is that of independence. The concept of independence was referred
to informally in Sections 1.1 and 1.2.2, and independence of events was
defined in Section 1.12.5. This concept will be made precise below, but
informally, several random variables are independent if knowledge of the
values of some of them does not affect the probability of the values of the
others. For example, the numbers appearing on different rolls of a die are
independent. Thus if we know that a die is fair, the fact that ten rolls have
produced ten ones does not change the fact that the probability of obtaining
a one on the next roll is 1/6. (On the other hand, if we do not know that
the die is fair, and observe ten ones on ten rolls, we might reasonably infer
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that the die is biased. This however is a different matter from doubting
independence of the outcomes of the various rolls.)

Similarly, measurements of the level of proteins in cells from two un-
related individuals are generally assumed to be independent. However,
measurements of the level of several proteins simultaneously in the same
cell may not be independent. For example, two proteins might always have
approximately the same level in any given cell, so knowledge of one of the
proteins in a cell changes the probability of the level of the unknown one
in the same cell.

In the die example, the random variables Yi, i = 1, . . . , 6, giving the
respective numbers of times that the number i appears in a fixed number
of rolls of a six-sided die, comprise a dependent set of six random variables,
since, for example, knowing the value of any five of them determines the
sixth.

Consider n random variables X1, X2, . . . , Xn associated with an experi-
ment. These can be either continuous or discrete. The joint range R is the
set of all vectors (x1, x2, . . . , xn) in n-dimensional space that the random
vector (X1, X2, . . . , Xn) can take. It is important to note that if x1 is in
the range of X1 and x2 is in the range of X2, it is not necessarily the case
that (x1, x2) is in the range of (X1, X2). For example, suppose we observe
two cells until they both die. Let X1 be the time it takes until the first of
the two cells dies, and let X2 be the time it takes until both cells die. The
range of both X1 and X2 is (0,∞), but it is impossible that X1 > X2.

We shall first discuss how probabilities are allocated for many discrete
random variables. We continue to use the notation established in Chapter
1, with Y referring to a discrete random variable. We also write the random
variables Y1, Y2, . . . , Yn in vector form as Y = (Y1, Y2, . . . , Yn). Throughout
this chapter we shall reserve the boldface notation for vectors of random
variables or their possible values.

We associate with the vector Y of discrete random variables the joint
probability distribution PY (y), defined by

PY (y) = Prob(Y1 = y1, Y2 = y2, . . . , Yn = yn), (2.1)

for any vector y = (y1, y2, . . . , yn) in the joint range of Y1, Y2, . . . , Yn.
In the continuous case, probabilities are allocated to regions of the joint

range of the random variables X1, X2, . . . , Xn, and not to individual points.
This generalizes the corresponding procedure for a single continuous ran-
dom variable. That is, we associate with the continuous random variables
X1, X2, . . . , Xn with joint range R a joint density function fX(x1, x2, . . .
, xn), defined on R, such that

Prob((X1, X2, . . . , Xn) is in Q)

=
∫

· · ·
∫

Q

fX(x1, x2, . . . , xn)dx1dx2 · · · dxn, (2.2)
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for any region Q ⊆ R for which the integral in (2.2) exists (see Figure 2.1).
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Figure 2.1. The probability that (x1, x2) ∈ Q is the integral over Q of the joint
density function fX1,X2 of X1 and X2.

2.2 The Independent Case

Consider n discrete random variables Y1, Y2, . . . , Yn. Each Yi has its own
probability distribution PYi(yi) = Prob(Yi = yi), with range Ri. The ran-
dom variables Y1, Y2, . . . , Yn are said to be independent if their joint range
R is the Euclidean product of the respective ranges Ri, and if

PY (y) =
n∏

i=1

PYi
(yi) (2.3)

for all y = (y1, y2, . . . , yn) in R. The equivalence of (2.3) with the concep-
tual interpretation of independence described on page 62 is made precise
in Section 2.6 below.

The n continuous random variables X1, X2, . . . , Xn with individual re-
spective density functions fXi(xi), (i = 1, 2, . . . , n) and ranges Ri are
independent if their joint range R equals the Euclidean product of the
respective ranges Ri and

fX(x1, x2, . . . , xn) =
n∏

i=1

fXi
(xi) (2.4)
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for all (x1, . . . , xn) in the joint range of (X1, . . . , Xn). The conceptual mean-
ing of independence of continuous random variables is the same as that for
discrete random variables.

It often occurs that the independent random variables X1, X2, . . . , Xn,
discrete or continuous, all have the same probability distribution. If this
is the case, we say that they are iid (independently and identically dis-
tributed). As an example, in the case of rolling a die n times, we normally
assume that the numbers appearing on rolls 1, 2, . . . , n are iid.

The condition for independence of several random variables might appear
to be less stringent than those given in (1.108)–(1.110) for the indepen-
dence of events A1, A2, . . . , An, but in fact the conditions for independence
of events and that for independence of random variables are identical. This
is so for discrete random variables since, if Ai is the event that Yi = yi,
the independence requirement (2.3) implies that all the conditions (1.108)–
(1.110) are satisfied. Verification of this is left as an exercise (Problem 2.1).
A parallel remark holds for continuous random variables, where the event
Ai is of the form ai ≤ Xi ≤ bi.

Example 1. If Y1, Y2, . . . , Yn are independent random variables each having
the Poisson distribution (1.22), with parameters λ1, . . . , λn, respectively,
then (2.3) implies that

PY (y) =
e− ∑

λi
∏

λyi

i∏
(yi!)

, (2.5)

the summation and both products being from 1 to n. If Y1, Y2, . . . , Yn are
iid, each having a Poisson distribution with parameter λ, then

PY (y) =
e−nλλ

∑
yi∏

(yi!)
. (2.6)

Example 2. If the probability of success on each trial in a sequence of n
independent Bernoulli trials is p, and if Yi = 1 when trial i results in
success and Yi = 0 when trial i results in failure, then Y1, Y2, . . . , Yn are
iid, and by (2.3)

PY (y) = p
∑

yi(1 − p)n−∑
yi = py(1 − p)n−y, (2.7)

where y =
∑

yi is the total number of successes. The probability (2.7)
differs from the binomial probability (1.8), since (1.8) includes the com-
binatorial term

(
n
y

)
. The binomial distribution gives the probability of y

successes and n − y failures regardless of their order, while (2.7) gives the
probability of y successes and n−y failures in a nominated order. As shown
in Appendix B.4, the binomial term

(
n
y

)
is the number of orderings of y

successes and n − y failures, and this observation explains the difference
between the two probabilities.
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Example 3. If X1, X2, . . . , Xn are iid, each having a normal distribution
with mean µ and variance σ2, – in which case we say that X1, X2, . . . , Xn

are NID(µ, σ2) – then by (2.4) their joint density function is

fX(x1, x2, . . . , xn) =
n∏

i=1

1√
2πσ

e− (xi−µ)2

2σ2 =
(

1√
2πσ

)n

e−
∑

(xi−µ)2

2σ2 ,

− ∞ < xi < +∞. (2.8)

Example 4. The result corresponding to Example 3 for the joint distribution
of n iid random variables having the exponential distribution (1.66) is

fX(x1, x2, . . . , xn) = λne−λ
∑

xi , 0 ≤ xi < +∞. (2.9)

2.3 Generating Functions

Probability-generating functions and moment-generating functions are well
defined for both independent and dependent random variables. However,
we shall use them almost entirely for independent random variables, so we
discuss them here in connection with the theory of independent random
variables.

2.3.1 Properties of Probability-Generating Functions
Let Y1, Y2, . . . , Yn be independent discrete random variables, having prob-
ability distributions with respective pgfs p1(t), p2(t), . . . , pn(t). Then the
sum Sn, defined by

Sn = Y1 + Y2 + · · · + Yn, (2.10)

is itself a random variable, and the pgf of its probability distribution is the
product

pSn
(t) = p1(t) · p2(t) · · · pn(t). (2.11)

The most direct proof of this statement uses the induction method de-
scribed in Appendix B.18, and we outline it here. In the case n = 2, the
probability that S2 = j is

∑
i Prob(Y1 = i) · Prob(Y2 = j − i). This sum

is the coefficient of tj in p1(t) · p2(t), so that (2.11) is true for the case
n = 2. Suppose now that (2.11) is true for n = m for some m ≥ 2, so that

pSm
(t) = p1(t) · p2(t) · · · pm(t). (2.12)

We write Y1 + · · · + Ym+1 as Y ′ + Ym+1, where Y ′ = Y1 + · · · + Ym. By
the induction hypothesis, the pgf of Y ′ is as given in (2.12). The case
n = 2 then shows that the pgf of Y1 + · · · + Ym+1, that is of Y ′ + Ym+1,



2.3. Generating Functions 67

is (p1(t) · p2(t) · · · pm(t)) · pm+1(t). This is of the same form as the right-
hand side of (2.12), but with m replaced by m + 1. By induction, (2.11) is
therefore true for all n.

An important particular case of (2.11) occurs when the random variables
Yi have the same probability distribution. If the common pgf of the random
variables Yi is p(t), then

pSn
(t) = pgf of Sn =

(
p(t)
)n

. (2.13)

Suppose we recognize the pgf found in (2.11) as the pgf of a known
random variable Y . The uniqueness theorem for pgfs given in Section 1.7
shows that Y1 + Y2 + · · · + Yn has the same distribution as Y . Use of this
theorem is often the most straightforward way of finding the distribution
of the sum of several random variables.

Example 1. If Y1, Y2, . . . , Yn are independent Poisson random variables,
with respective parameters λ1, λ2, . . . , λn, then equation (2.11), together
with one of the calculations in Problem 1.17, shows that the pgf of

∑
i Yi

is e
∑

i λi(t−1). The uniqueness property shows immediately that
∑

i Yi has
a Poisson distribution with parameter

∑
i λi.

This result can be understood in an intuitive way by an example. Prop-
erties of the spontaneous degradation of cellular molecules were discussed
in Section 1.13. As will be shown in Chapter 4, if a cell holds the number
of a certain type of spontaneously degrading molecule constant, by synthe-
sizing them at the same rate they degrade, then the number of molecules
to degrade in any given time interval is a random variable having a Poisson
distribution. Now consider two non-overlapping time intervals. We would
expect that the distribution of the total number of molecules to degrade in
the two time intervals of length A and B is identical to the distribution of
the number of molecules to degrade in a single time interval whose length
is A + B. The above result shows that this is indeed the case.

Example 2. The pgf (1.45) of the binomial distribution can be derived from
equations (1.42) and (2.13) as follows. The number of successes in n trials
is a sum, namely the sum of the number of successes on trial 1 (either 0 or
1) plus the number of successes on trial 2, (again 0 or 1), plus the number
of successes on trial 3, and so on. From (1.42), the pgf of the number of
successes on any one trial is 1 − p + pt. Thus from (2.13), the pgf of the
total number of successes in n trials is (1 − p + pt)n, and this is (1.45).

By expanding (1.45) in powers of t and considering the coefficient of
ty in this expansion, we arrive at (1.8) for the probability of y successes
in n trials. This calculation gives us an alternative way of arriving at the
binomial distribution formula (1.8).
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2.3.2 Properties of Moment-Generating Functions
Moment-generating functions (mgfs) have properties parallel to those for
probability-generating functions discussed in Section 2.3.1. These proper-
ties are identical for both discrete random variables and continuous random
variables, and we develop them using continuous random variable notation.

If X1, X2, . . . , Xn are independent random variables, discrete or continu-
ous, whose distributions have respective mgfs m1(θ), . . . , mn(θ), then their
sum Sn = X1 + X2 + · · · + Xn is a random variable whose mgf is

mSn(θ) = m1(θ) · m2(θ) · · · mn(θ). (2.14)

In the discrete case the proof of this is similar to the proof of (2.12). In the
continuous case the equation is still valid but the proof is less straightfor-
ward, involving manipulations of integrals. In particular, if X1, X2, . . . , Xn

are iid random variables whose common probability distribution has mgf
m(θ), then

mSn
(θ) = (m(θ))n

. (2.15)

Equations (1.82), (1.83), and (2.15) are useful for finding properties of sums
of iid random variables. For example, suppose that X1, X2, . . . , Xn are iid
random variables, each having mean µ and variance σ2. From (2.15), the
derivative of the mgf of their sum Sn is

n (m(θ))n−1 dm(θ)
dθ

. (2.16)

Carrying out a further differentiation and then putting θ = 0, we find from
(1.82) and (1.83) that

mean of Sn = nµ (2.17)

and

variance of Sn = nσ2. (2.18)

When X1, X2, . . . , Xn are independent random variables with possibly
different distributions, with respective means µ1, µ2, . . . , µn and variances
σ2

1 , σ2
2 , . . . , σ2

n, equations (1.82), (1.83), and (2.14) show that

mean of Sn = µ1 + µ2 + · · · + µn (2.19)

and

variance of Sn = σ2
1 + σ2

2 + · · · + σ2
n. (2.20)

More generally, if Sn = a1X1 + a2X2 + · · · + anXn, then

mean of Sn = a1µ1 + a2µ2 + · · · + anµn, (2.21)

variance of Sn = a2
1σ

2
1 + a2

2σ
2
2 + · · · + a2

nσ2
n. (2.22)
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As will be shown in Section 2.7, (2.21) also holds when X1, X2, . . . , Xn are
dependent, but other than in exceptional cases, (2.22) does not.

As stated in Section 1.11, moment-generating functions for continuous
random variables have a uniqueness property similar to that of discrete
random variables. As in the discrete case, often the best way to find the
distribution of some random variable is to find its mgf and recognize it as
the mgf of a known distribution. This is often done in conjunction with
equation (2.14) or (2.15).

Example 1. The mgf of the gamma distribution (1.75) is∫ +∞

0

λk xk−1e−λx eθx

Γ(k)
dx =

(
λ

λ − θ

)k

. (2.23)

The fact that this is the kth power of the mgf of the exponential distribu-
tion implies that the sum of k independent random variables, each having
the exponential distribution (1.66), is a random variable having the gamma
distribution (1.75).

Example 2. A result closely related to that of Example 1, deriving from the
mgf (1.88) of the chi-square distribution

(1 − 2θ)−ν/2,

is that the sum of independent chi-square random variables is itself a chi-
square random variable with degrees of freedom equal to the sum of the
degrees of freedom of the various chi-squares in the sum. The results of the
examples in Section 1.11 then show that if Z1, Z2, . . . , Zn are independent
normal random variables, each having mean 0 and variance 1, (that is, they
are NID(0,1)), then Z2

1 + Z2
2 + · · · + Z2

n has a chi-square distribution with
n degrees of freedom. An extension of this result is that if X1, X2, . . . , Xn

are NID(µ, σ2), and if X̄ = (X1 + · · · + Xn)/n is their average, then it can
be shown that

∑
(Xi − X̄)2/σ2 has a chi-square distribution with n − 1

degrees of freedom. Results such as this are central to the theory behind
the ANOVA analyses discussed in Section 9.3.3.

Example 3. In Chapter 7 we shall need to consider “random walks” that
consist of a sequence of random steps; each step goes up (a value of +1)
with probability p and down (a value of −1) with probability q = 1 − p.
Thus the value of a random step is similar to the number of successes in a
Bernoulli trial, except that its possible values are −1 and +1 rather than
0 and 1. The mgf of a random step S is

m(θ) = qe−θ + peθ. (2.24)

We can check (2.15) by considering the position, or displacement, of this
random walk after two steps have been taken. The two-step random vari-
able is the sum of two one-step random variables. The total displacement
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is either −2 (with probability q2), 0 (with probability 2pq), or +2 (with
probability p2). Thus the mgf of this “two-step” displacement is

q2e−2θ + 2pq + p2e2θ,

and this is indeed the square of the expression given in (2.24). This result
can be extended to the case of three steps (Problem 2.15) and any higher
number of steps.

2.4 The Dependent Case

The theory for dependent random variables is naturally more complex than
that for independent random variables. While the joint distribution of in-
dependent random variables can be described simply by multiplying the
respective distributions, as in (2.3) and (2.4), obtaining formulas for the
joint distribution of dependent random variables is often difficult, even
when the distributions of the individual random variables are known.

In this section we define first some quantities which measure certain
kinds of dependence. We then give some important examples of dependent
random variables whose joint distributions are known.

2.4.1 Covariance and Correlation
Two important concepts concerning the relationship between two random
variables are their covariance and their correlation. We introduce these
concepts first for continuous random variables. Let X1 and X2 be contin-
uous random variables with means µ1 and µ2 and variances σ2

1 and σ2
2 ,

respectively. The covariance σX1,X2 of X1 and X2 is defined by

σX1,X2 =
∫∫
R

(x1 − µ1)(x2 − µ2)fX(x1, x2)dx1dx2, (2.25)

the integration being taken over the joint range R of X1 and X2. The
correlation ρX1,X2 between X1 and X2 is then defined by

ρX1,X2 =
σX1,X2

σ1σ2
. (2.26)

The covariance between two discrete random variables Y1 and Y2 is
defined as

σY1,Y2 =
∑
y1,y2

(y1 − µ1)(y2 − µ2)PY (y1, y2), (2.27)

where µi is the mean of Yi (i = 1, 2) and the summation is taken over all
(y1, y2) in the joint range R of Y1 and Y2.
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The correlation ρY1,Y2 between Y1 and Y2 is then defined by

ρY1,Y2 =
σY1,Y2

σ1σ2
. (2.28)

The numerical value of any correlation is always in the interval [−1,+1]
(see Problem 2.13). The covariance and correlation between independent
random variables is always zero.

On the other hand, the correlation ρX1,X2 can be zero, even if X1 and X2
are dependent. For example, if X1 has a uniform distribution in [−1,+1]
and X2 = X2

1 , the correlation between X1 and X2 is zero. This arises
because the relation between X1 and X2 is quadratic and has no linear
component. For a further example, see Problem 2.5.

In both the discrete and the continuous case correlation is a measure
of the degree of linear association between the random variables involved.
In other words, if X1 and X2 are dependent in such a way that X2 tends
to be close to aX1 + b for some constants a > 0, b, then the random
variables will have positive correlation, and if a < 0 they will tend to have
negative correlation. In extreme case when the linear relationship is an
actual equality X2 = aX1 + b, then the correlation between X1 and X2 is
+1 if a > 0 and −1 if a < 0. An example is given in the next section.

In some contexts it is necessary to find the covariance of a random
variable with itself. It is natural in the discrete case to make the definition

PY,Y (y, y) = PY (y), (2.29)

since both sides of this equation give the probability that the random vari-
able Y takes the value y. Use of this identity in (2.27) shows that the
covariance of Y with itself is its variance. A similar conclusion holds for a
continuous random variable.

2.4.2 The Multinomial Distribution
An important example of a joint discrete probability distribution where the
individual random variables are dependent is the multinomial distribution.
This is a direct generalization of the binomial distribution to the case where
there are n possible outcomes on each of m independent trials, with n ≥ 3.
It is assumed that the probability of outcome i (i = 1, 2, . . . , m) is the same
for all trials, and this probability is denoted by pi.

The random variables of interest are the numbers Y1, Y2, . . . Yn, where
Yi as the number of times that outcome i occurs in the m trials (i =
1, 2, . . . , n). Each Yi considered on its own has a binomial distribution with
mean mpi and variance mpi(1 − pi). The probability that Yi = yi, i =
1, 2, . . . , n, is given by the multinomial distribution formula

PY (y) =
m!∏
i(yi!)

∏
i

pyi

i , (2.30)
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both products being over i = 1, 2, . . . , n. This formula can be derived in a
manner generalizing the derivation of the binomial distribution.

A simple example is provided by the outcomes of m rolls of a possibly
unfair die, where the probability that the number i turns up on any roll of
the die is pi.. Here n = 6 and Yi is the number of times that the number i
turns up in the m rolls.

In the multinomial distribution the random variables Y1, Y2, . . . , Yn are
dependent, since necessarily

∑
i Yi = m. The most extreme case of de-

pendence occurs for the case n = 2, where the value of Y2 is completely
determined by Y1 as Y2 = m − Y1. Here it is clear that (2.3) does not
hold: for example, Prob(Y1 = 1) > 0 and Prob(Y2 = m) > 0, but
Prob(Y1 = 1, Y2 = m) = 0.

Application of (2.27) shows that the covariance between Yi and Yj (i �= j)
in the multinomial distribution (2.30) is

σYiYj
= −mpipj . (2.31)

From this and (2.28), the correlation between Yi and Yj (i �= j) is

ρYi,Yj = −
√

pipj√
(1 − pi)(1 − pj)

. (2.32)

In the extreme case when n = 2, this correlation is −√
p1p2/

√
p2p1 = −1,

the largest negative values that a correlation can take. This occurs because
y1 = m − y2 is a linear function of y2 with negative slope.

2.4.3 The Multivariate Normal Distribution
The variances and covariances of n random variables X1, X2, . . . , Xk can be
gathered into a symmetric k × k variance–covariance matrix Σ, whose ith
diagonal element is the variance σ2

i of Xi and whose (i, j) element (i �= j)
is the covariance between Xi and Xj . The continuous random variables
X1, X2, . . . , Xk have the multivariate normal distribution with mean vector
µ = (µ1, . . . , µk) and variance–covariance matrix Σ if their joint density
function is

fX(x) =
1

(2π)k/2|Σ|1/2 e− 1
2 (x−µ)′Σ−1(x−µ), −∞ < xi < +∞. (2.33)

Here |Σ| is the determinant of the matrix Σ and µi is the mean of Xi. Note
that the exponent is the product of a row vector, a matrix, and a column
vector, and is therefore a scalar.

The multivariate normal distribution arises often in practice for the same
reason that the (univariate) normal distribution arises, since a random
vector X = (X1, . . . , Xk) often has, either exactly or approximately, the
multivariate normal distribution.



2.5. Marginal Distributions 73

2.5 Marginal Distributions

Suppose Y1 and Y2 are two discrete random variables. Their joint distribu-
tion assigns probabilities to pairs (y1, y2) in the joint range of Y1 and Y2.
The probability that Y1 = y1 can be recovered from this joint distribution
from the formula

Prob(Y1 = y1) =
∑
y2

Prob(Y1 = y1, Y2 = y2),

where the sum is over all y2 in the range of Y2. This yields the probability
that Y1 = y1 as the sum of the probabilities of all possible pairs (y1, y2).
This procedure gives the marginal probability distribution of Y1, which is
the probability distribution of Y1 ignoring Y2. It suggests how marginal
distributions can be calculated in general, and we now discuss this in more
detail.

The marginal distribution of the subset (Y1, Y2, . . . , Yi) of n discrete ran-
dom variables (Y1, Y2, . . . , Yn) is the distribution of Y1, Y2, . . . , Yi ignoring
Yi+1, Yi+2, . . . , Yn. If the joint distribution of Y1, Y2, . . . , Yn is given, this
marginal distribution is found in the discrete case as above by summation,
and in the continuous case by integration. Thus in the discrete case

Prob(Y1 = y1, . . . , Yi = yi) =
∑

yi+1,...,yn

Prob(Y1 = y1, . . . , Yn = yn),

(2.34)
the summation being over all possible values yi+1, . . . , yn such that y1, . . . ,
yn is in the joint range of Y1, . . . , Yn.

In the above example we have found the marginal distribution of
Y1, Y2, . . . , Yi for notational convenience only. A formula parallel to (2.34)
applies for the marginal distribution of any subset of Y1, Y2, . . . , Yn.

Example 1. As an example of a marginal distribution, suppose that
Y1, Y2, . . . , Yn have the multinomial distribution (2.30). In a later appli-
cation we shall want the marginal distribution of Y1, Y2, . . . , Yi, for i < n.
Equation (2.34) can be used to give

Prob(Y1 = y1, . . . , Yi = yi)

=
m!

y1! · · · yi!m!
py1
1 · · · pyi

i (1 − p1 − · · · − pi)k, (2.35)

where k = m − y1 − · · · − yi (see Problem 2.10).

The analogue of (2.34) in the continuous case is the following. Define Xi

by Xi = (x1, . . . , xi). If X1, . . . , Xn have joint density function fXn
(x1, . . . ,

xn), the marginal density function fXi(x1, . . . , xi) of X1, . . . , Xi is given
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by

fXi(x1, . . . , xi) =
∫

· · ·
∫

R

fX(x1, x2, . . . , xn)dxi+1 · · · dxn, (2.36)

the domain R of integration being over all possible values xi+1, xi+2, . . . , xn

such that (x1, . . . , xn) is in the joint range of X1, . . . , Xn. Care must be
taken in finding the correct domain of integration, since this can depend
on the values of x1, x2, . . . , xi.

For independent random variables, problems of the appropriate domain
of integration do not arise: The range of any one random variable is in this
case independent of the values of all other random variables.

In practice the procedure for independent random variables of going from
the joint density function to the marginal density functions is often re-
versed: Given that the random variables are independent, then the joint
probability distribution or density function is obtained, from (2.3) or (2.4),
as the product of the individual density functions.

Example 2. Suppose that the joint density function of X1 and X2 is

f(X1,X2)(x1, x2) =
1
2
, (2.37)

with the range of X1 and X2 being the square region bounded by the lines
X2 = X1, X2 = −X1, X1 + X2 = 2 and X1 − X2 = 2 (see Figure 2.2).
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Figure 2.2. The region bounded by the lines X2 = X1, X2 = −X1, X1 + X2 = 2
and X1 − X2 = 2.

The marginal density function of X1 is found by integrating out X2 in the
joint density function (2.37). When this is done, different terminals in the
integration are needed for the two ranges 0 ≤ X1 ≤ 1 and 1 ≤ X1 ≤ 2.
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Specifically, the density function fX1(x) of X1 is

fX1(x1) =

{ ∫ +x1

−x1

1
2 dx2 = x1, 0 ≤ X1 ≤ 1∫ 2−x1

x1−2
1
2 dx2 = 2 − x1, 1 ≤ X1 ≤ 2.

Similarly,

fX2(x2) =
{

1 + x2, −1 ≤ x2 ≤ 0
1 − x2, 0 ≤ x2 ≤ 1.

Since the joint range is X1 and X2 is not a rectangle with sides parallel
to the axes, X1 and X2 cannot be independent.

Example 3. Suppose that X1, X2, . . . , Xn have the multivariate normal dis-
tribution (2.33). Then any subset of X1, X2, . . . , Xn has a multivariate
normal distribution, with means found from the appropriate elements in
the mean vector µ in (2.33) and variances and covariances taken from the
appropriate elements in the variance–covariance matrix Σ. For example,
the marginal distribution of X1, X2, . . . , Xj , for any j < n, is multi-
variate normal with mean vector given by the first j elements in µ and
variance–covariance matrix given by the j × j upper left-hand sub-matrix
of Σ.

2.6 Conditional Distributions

The conditional probability formula for events (1.101) has a direct analogue
in conditional distributions of random variables, and the conditional prob-
ability formulae given in (2.38), (2.39), and (2.43) below all derive from
(1.101).

The intuition behind the concept of conditional probabilities of events
was discussed in Section 1.12.4. For random variables there are many kinds
of conditional distributions that arise. In the simplest case, if Y1 and Y2
are two discrete random variables, then the conditional probability that
Y2 = y2, given that Y1 = y1, denoted Prob(Y2 = y2 |Y1 = y1), is given by

Prob(Y2 = y2 |Y1 = y1) =
Prob(Y2 = y2, Y1 = y1)

Prob(Y1 = y1)
, (2.38)

where it is assumed that Prob(Y1 = y1) > 0.
More generally, for discrete random variables Y1, Y2, . . . , Yn, the condi-

tional probability distribution of Yi+1, . . . , Yn given Y1 = y1, . . . , Yi = yi

is

Prob(Yi+1 = yi+1, . . . , Yn = yn |Y1 = y1, . . . , Yi = yi)

=
Prob(Y1 = y1, . . . , Yn = yn)
Prob(Y1 = y1, . . . , Yi = yi)

, (2.39)
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where the denominator of the right-hand side is again assumed to be pos-
itive. In the above example we have found the conditional probability of
Yi+1, Yi+1, . . . , Yn for notational convenience only, a formula parallel to
(2.39) applies for any subset of Y1, Y2, . . . , Yn.

The formula corresponding to (2.39) in the continuous case is that
the conditional density function of X = (Xi+1, . . . , Xn), given Xi =
(X1, . . . , Xi), is

fX|Xi
=

fX(x1, . . . , xn)
fXi(x1, . . . , xi)

, (2.40)

where the denominator is assumed to be positive.
When the random variables Y1, Y2, . . . , Yn are independent, equation

(2.3) shows that

Prob(Yi+1 = yi+1, . . . , Yn = yn |Y1 = y1, . . . , Yi = yi)

=

∏n
j=1 Prob(Yj = yj)∏i
j=1 Prob(Yj = yj)

= Prob(Yi+1 = yi+1, . . . , Yn = yn). (2.41)

More generally, the conditional probability distribution of any subset of
independent random variables, given the remaining random variables,
is identical to the marginal distribution of that subset. An analogous
statement applies for the continuous case.

Conversely, if (2.41) holds, we say Yi+1, Yi+2,. . . , Yn is independent of Y1,
Y2,. . . , Yi. In this case knowing the values of Y1, Y2,. . . , Yi does not change
the probabilities of the values of the random variables Yi+1, Yi+2,. . . , Yn.
This is perhaps the most intuitive interpretation of the word “independent,”
though this is a weaker kind of independence than that captured in (2.3)
and (2.4). Definition (2.3) can be cast in terms of (2.41) however. Indeed
if (2.41) holds for all subsets of the Y1,Y2,. . . , Yn, given the remaining
ones, then definition (2.3) is satisfied. A similar statement holds for the
continuous case.

More interesting cases of equation (2.39) and (2.40) arise when the ran-
dom variables are dependent.

Example 1. Suppose that the random variables Y1, Y2, . . . , Yn have the
multinomial distribution (2.30) and we wish to find the conditional prob-
ability of (Yi+1, Yi+2, . . . , Yn), given the Y1 = y1, Y2 = y2, . . . , Yi = yi.
Application of the probability formula (2.30), the marginal probability
formula (2.35), and the conditional probability formula (2.39) shows that

Prob(Yi+1 = yi+1, . . . , Yn = yn |Y1 = y1, . . . , Yi = yi)

=
k!∏n

j=i+1(yj !)

n∏
j=i+1

q
yj

j , (2.42)
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where k = m − y1 − y2 − · · · − yi = yi+1 + yi+2 + · · · + yn and qj =
pj/(pi+1 +pi+2 + · · ·+pn). This is itself a multinomial distribution, having
suitably amended parameter values. �

Another kind of conditional distribution involving random variables X1,
. . . , Xn is the joint distribution of X1, . . . , Xn given the value of some
function or functions of X1, . . . , Xn. The following is an example.

Example 2. A particularly important case arises for the conditional dis-
tribution of Y1, Y2, . . . , Yn given their sum Sn =

∑
j Yj . Even if the

random variables Y1, Y2, . . . , Yn are independent, the random variables
Y1, Y2, . . . , Yn and Sn are not, since Sn is determined by Y1, Y2, . . . , Yn.
The required conditional distribution is found as follows. The event that
Y1 = y1, . . . , Yn = yn and that their sum Sn is equal to s, where
s = y1 + · · · + yn, is the same as the event that Y1 = y1, . . . , Yn = yn.
Thus

Prob(Y1 = y1, . . . , Yn = yn |Sn = y1 + · · · + yn = s)

=
Prob(Y1 = y1, . . . , Yn = yn)

Prob(Sn = s)
. (2.43)

As an example of the use of this formula, suppose that Y1, Y2, . . . , Yn

are independent Poisson random variables, having respective parameters
λ1, λ2, . . . , λn. Their sum has a Poisson distribution with parameter

∑
i λi

(Problem 2.2). In this case the right-hand side in equation (2.43) becomes

e− ∑
λi
∏

λyi

i /
∏

(yi!)
e− ∑

λi(
∑

λi)
∑

yi/(
∑

yi)!
, (2.44)

all sums and products being over i = 1, 2, . . . , n. This reduces to

(
∑

yi)!∏
(yi!)

∏
i

(
λi∑
j λj

)yi

, (2.45)

and with appropriate changes in notation, this becomes the multinomial
probability distribution (2.30). In the particular case where λ1 = λ2 =
· · · = λn = λ, this conditional probability does not depend on λ.

The formula corresponding to (2.43) in the continuous case is that the
conditional density function of X = X1, . . . , Xn, given that their sum Sn =
X1 + X2 + · · · + Xn takes the value s, is

fX|Sn=s(x1, . . . , xn | s) =
fX(x1, . . . , xn)

fSn(s)
, (2.46)

where the numerator on the right-hand side is the joint density function of
X1, . . . , Xn and the denominator is the density function of Sn.

As an example, if X1, . . . , Xn are iid random variables having the ex-
ponential distribution (1.66), their joint density function (given in (2.9))
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is

fX(x1, x2, . . . , xn) = λne−λ
∑

xi .

The sum Sn has a gamma distribution (see page 69), so its distribution is
found from (1.75) by replacing k by n. That is, since n is an integer,

fSn(s) =
λn sn−1 e−λs

(n − 1)!
.

The conditional density function of X1, . . . , Xn, given that Sn = s, is, from
(2.46),

fX|Sn=s(x1, . . . , xn |Sn = s) =
(n − 1)!

sn−1 , (2.47)

where the joint range of X1, . . . , Xn given Sn = s is the set of
(x1, x2, . . . , xn) such that xi > 0,

∑
xi = s. This distribution is constant

(as a function of x1, x2, . . . , xn) and does not depend on λ. �

Another important conditional density function arises when the range
of a random variable is restricted in some way. Suppose, for example, that
we wish to find the conditional density function of a continuous random
variable X having density function fX(x), given that the value of X is in
some interval (a, b) contained within the range (L,H) of X. Let (x, x + h)
be a small interval contained in (a, b). Then since the event (x < X <
x+h) and (a < X < b) is identical to the event (x < X < x+h), equation
(1.101) gives

Prob(x < X < x + h | a < X < b) =
Prob(x < X < x + h)

Prob(a < X < b)
.

Dividing both sides by h and letting h → 0, we find (by (1.48)) that the
conditional density function of X, given that (a < X < b), is

fX|a<X<b(x) =
fX(x)∫ b

a
fX(u) du

. (2.48)

A generalization of (2.48) to the case of many random variables X1, . . . ,
Xn is that the conditional joint density function of X1, . . . , Xn, given that
(X1, . . . , Xn) ∈ Q, for some region Q of the joint range of X1, . . . , Xn, is

fX|X∈Q(x) =
fX1,...,Xn(x1, . . . , xn)∫

Q
fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn

. (2.49)

Example 3. The conditional density function of a continuous random vari-
able X having the exponential distribution (1.66), given that 0 ≤ X < 1,
is

λe−λx

1 − e−λ
, 0 ≤ x < 1. (2.50)
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This is the same as the density function of the “fractional part” D of
X, given in (1.72). This is not a coincidence, and the result follows from,
and can be found directly by using, the “memoryless” property of the
exponential distribution (see Problem 2.11).

As a more general example, the conditional distribution of an exponential
random variable X, given that 0 < X < L, is

λe−λx

1 − e−λL
, 0 ≤ x < L. (2.51)

The mean of this distribution is

∫ L

0
x

λ e−λx

1 − e−λL
dx =

1
λ

− L

eλL − 1
. (2.52)

We use this expression in Section 5.1 when considering shotgun sequencing.

Example 3. Suppose that X1, X2, . . . , Xn have the multivariate nor-
mal distribution (2.33). Then the conditional distribution of any sub-
set of X1, X2, . . . , Xn, for example X1, X2, . . . , Xi, given the values
xi+1, xi+2, . . . , xn of Xi+1, Xi+2, . . . , Xn, is a multivariate normal dis-
tribution. However the conditional means, variances and covariances of
X1, X2, . . . , Xi in general depend on xi+1, xi+2, . . . , xn as well as the
elements in the mean vector µ and the variance–covariance matrix Σ.

The case n = 2 provides a simple example. Given that X2 = x2, the
mean of X1 is

µ1 + ρ12(x2 − µ2)
σ1

σ2

and the variance of X1 is σ2
1(1 − ρ2

12). These are respectively equal to the
(marginal) mean and variance of X1 if ρ12 = 0. Unless x2 = µ2 the mean
of the conditional distribution of X1 differs from the mean of the marginal
distribution of X1 if ρ12 �= 0, while the variance of the conditional distri-
bution of X1 always differs from the variance of the marginal distribution
of X1 if ρ12 �= 0.

These results conform to common sense. For example, if X1 and X2 are
positively correlated and if the observed value x2 of X2 exceeds its mean µ2,
the mean of X1 exceeds its unconditional value µ1. Whether the correlation
between X1 and X2 is positive or negative, information about the value of
X2 provides some information about the likely values of X1, thus decreasing
the conditional variance of X1 below its unconditional value.
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2.7 Expected Values of Functions of Many
Random Variables

Suppose that X = (X1, X2, . . . , Xn) is a vector of continuous random
variables, dependent or independent, with joint range R and joint density
function fX(x1, x2, . . . , xn). Let g(X1, X2, . . . , Xn) be some function of X1,
X2, . . . , Xn. Then g(X1, X2, . . . , Xn) is a random variable with range

Q = {g(x1, x2, . . . , xn) such that (x1, x2, . . . , xn) ∈ R},

and density function fg(g) defined for g in Q. The expected (or mean) value
of g(X1, X2, . . . , Xn) is defined as

E(g(X1, X2, . . . , Xn)) =
∫

· · ·
∫

Q

gfg(g)dg, (2.53)

and this equals

=
∫

· · ·
∫

R

g(x1, x2, . . . , xn)fX(x1, x2, . . . , xn)dx1dx2 · · · dxn, (2.54)

by a similar argument to that leading to the analogous result (1.27) for
functions of one discrete random variable. If g(X1, X2, . . . , Xn) is a function
of Xi = (X1, X2, . . . , Xi) only, written for convenience as h(X1, . . . , Xi),
its expected value can be found either from equation (2.54) or from the
equation

E(h(X1, X2, . . . , Xi))

=
∫

· · ·
∫

R′

h(x1, x2, . . . , xi)fXi(x1, x2, . . . , xi)dx1dx2 · · · dxi, (2.55)

where fXi(x1, x2, . . . , xi) is the marginal density function of X1, X2, . . . ,
Xi and R′ is the joint range of (X1, X2, . . . , Xi). On some occasions one of
these equations is easier to use, and on other occasions the other is easier.

The parallel result for discrete random variables is that if Y =
(Y1, Y2, . . . , Yn) is a vector of discrete random variables, dependent
or independent, with joint range R and joint probability distribution
PY (y1, y2, . . . , yn), then

E(g(Y1, Y2, . . . , Yn)) =
∑
R

g(y1, y2, . . . , yn)PY (y1, y2, . . . , yn). (2.56)

If g(Y1, Y2, . . . , Yn) is a function of Y i = (Y1, Y2, . . . , Yi) only, say h(Y1, . . . ,
Yi), its expected value can be found either from equation (2.56) or from
the equation

E(h(Y1, Y2, . . . , Yi)) =
∑
R′

h(y1, y2, . . . , yi)PY i(y1, y2, . . . , yi), (2.57)
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where PY i
(y1, y2, . . . , yi) is the marginal distribution of Y1, Y2, . . . , Yi and

R′ is the joint range of (Y1, Y2, . . . , Yi).
Independence of two or more random variables implies several simplifying

properties. One useful property concerns expected values of products: If X1
and X2 are independent random variables, discrete or continuous, then

E(X1X2) = E(X1)E(X2). (2.58)

The proof of this claim follows from (2.4) and (2.54) in the continuous case
and (2.3) and (2.57) in the discrete case. The converse statement is not
necessarily true: In some cases equation (2.58) holds for dependent random
variables.

In Sections 10.3.3 and 12.2.3 we shall need the idea of a conditional expec-
tation. For discrete random variables Y1 and Y2, the conditional expectation
of Y1 given Y2 is the mean of the conditional distribution of Y1 given Y2.
If the joint distribution of Y1 and Y2 is PY (y1, y2) and the marginal dis-
tribution of Y2 is PY2(y2), this mean is denoted by E(Y1 |Y2 = y2), and is
calculated (see equation (2.38)) from

E(Y1 |Y2 = y2) =

∑
y1

y1PY (y1, y2)
PY2(y2)

. (2.59)

The summation is taken over all possible values that Y1 can take, given
the value y2 of Y2; this might differ from one value of y2 to another. This
definition implies that the conditional expectation of Y1 is in general a
function of the conditioning value y2.

If X1 and X2 are continuous random variables, and the conditional den-
sity function of X1 given X2 is fX1|X2(x1|x2), the conditional mean of X1
given X2 is ∫

R

x1fX1|X2(x1|x2)dx1, (2.60)

the range of integration being the range of possible values of X1 given the
value x2 of X2.

Two calculation of the mean and variance of a linear combination of
random variables is particularly important. Suppose X1, X2, . . . , Xn are
random variables, discrete or continuous, with means µ1, µ2, . . . , µn, vari-
ances σ2

1 , σ2
2 , . . . , σ2

n, and covariances σij . If a1, a2, . . . , an are given
constants, then

E(a1X1 + · · · + anXn) =
n∑

i=1

aiµi (2.61)

and

Var(a1X1 + · · · + anXn) =
n∑

i=1

a2
i σ

2
i +
∑
i�=j

aiajσij . (2.62)
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These results generalize equations (2.21) (2.22) since they allow for depen-
dence between the Xi’s. We outline the proof of (2.61) and (2.62) here.
This outline is given for the continuous case; a parallel proof applies in the
discrete case.

First, by equation (2.54), the mean of a1X1 + · · · + anXn is given by

E(a1X1 + · · · + anXn)

=
∫

· · ·
∫

R

(a1x1 + · · · + anxn)fX(x1, x2, . . . , xn)dx1dx2 · · · dxn, (2.63)

which is equal to

n∑
i=1

ai

∫
R

xifX(x1, . . . , xn)dx1 · · · dxn, (2.64)

from standard integration formulas. From equation (2.54),∫
R

xifX(x1, . . . , xn)dx1 · · · dxn = µi, (2.65)

so that

E(a1X1 + · · · + anXn) = a1µ1 + · · · + anµn. (2.66)

This mean is independent of the correlation between any two of the random
variables.

The variance of (a1X1 + · · · + anXn) is given by

Var(a1X1 + · · · + anXn)

=
∫

· · ·
∫

R

(a1(x1 − µ1) + · · · + an(xn − µn))2 fX(x1, . . . , xn)dx1 · · · dxn.

(2.67)

Equation (2.62) follows by expanding the squared term on the right-hand
side and then using the definition of variance and covariance, found from
(2.54).

As an important special case, if the random variables X1, X2, . . . , Xn are
independent, then

Var(a1X1 + · · · + anXn) =
n∑

i=1

a2
i σ

2
i . (2.68)

Essentially identical calculations, replacing integrations by summations,
and with the same conclusions, apply for discrete random variables.
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2.8 Asymptotic Distributions

Let X1, X2, X3, . . . be an infinite sequence of random variables, dis-
crete or continuous, with respective cumulative distribution functions
F1(x), F2(x), F3(x), . . . . There are various concepts of convergence for such
a sequence. We consider here the concept of convergence in distribution.
Suppose that X is a random variable whose distribution function is FX(x).
Then if

lim
n→∞ Fn(x) = FX(x)

for all points of continuity of FX(x), then we say that the sequence {Xn}
converges in distribution to X. The random variables X,X1, X2, X3, . . . do
not need to have the same range for this definition to make sense, because
the domain of a cumulative distribution function is always (−∞,∞), even
for discrete random variables. In fact the concept of convergence in distri-
bution often arises when the random variables X1, X2, X3, . . . are discrete
and X is continuous.

All of the convergence results in this book, and in particular the central
limit theorem described in Section 2.10.1, refer to convergence in distribu-
tion. If (as with the central limit theorem) the random variable X has
a normal distribution, then we say that the sequence is asymptotically
normal .

2.9 Indicator Random Variables

2.9.1 Definitions
There is a useful discrete random variable associated with an event A called
the indicator function of that event, for which we shall normally use the
special notation I, or, if needed, Ij for the event Aj . We use the notation
IA when it is necessary to indicate the dependence on A. This random
variable is defined by

IA =
{

1 if the event A occurs,
0 if the event A does not occur.

It follows from this definition that IA is a random variable having the
Bernoulli distribution (1.6). The mean of IA is simply the probability P (A)
that the event A occurs.

Let A1, A2, . . . , An be events, I1, I2, . . . , In their respective indicator
random variables, and pi be the probability of the event Ai. Then

n∑
i=1

Ii
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is the total number of the events that occur. The mean of a sum of random
variables is the sum of the means, whether or not the random variables are
independent, as proven in Section 2.7. Therefore, the mean of the number
of the events A1, A2, . . . , An that occur is

E

( n∑
i=1

Ii

)
=

n∑
i=1

E(Ii) = p1 + p2 + · · · + pn. (2.69)

If p1 = p2 = · · · = pn = p, then
∑

Ii can be thought of as a generalization
of a binomial random variable to the case of possibly dependent trials. In
this case

E

( n∑
i=1

Ii

)
= np, (2.70)

the same as the binomial distribution mean found in Problem 1.2. In the
derivation of the binomial distribution we required the trials to be inde-
pendent, but the result just found shows that the mean np applies whether
or not this is the case.

When the events A1, . . . , An are independent, the variance of the number
of the events A1, . . . , An that occur is, from (2.20),

p1(1 − p1) + · · · + pn(1 − pn). (2.71)

If p1 = p2 = · · · = pn = p, then the random variable
∑n

i=1 Ii has a bi-
nomial distribution. From (2.71), the variance is np(1 − p), which agrees
with the binomial distribution variance found in Problem 1.2. Even when
p1 = p2 = · · · = pn = p, the variance in the dependent case need not be,
and usually is not, np(1 − p).

2.9.2 Example: Sequencing EST Libraries
In this example we apply (2.69) to answer a question regarding the
generation of a database of ESTs (expressed sequence tags).

Genes are expressed by a two-step process. First they are transcribed
from the DNA into molecules called messenger RNA (mRNA), and then
the mRNAs are translated into proteins, which are sequences made up of
the 20 amino acids. (For further details, see Appendix A.) Any gene is said
to give rise to one or more1 species of mRNA specific to that gene. An EST
is a sequence on the order of a hundred or more contiguous bases of an
mRNA. A typical cell has hundreds of thousands of mRNAs, representing
thousands of different genes. Some genes are expressed at a high level in
the cell, and thus there are many duplicate copies in the cell of the mRNA

1Some genes give rise to more than one mRNA, due to alternative splicing of introns
and exons.
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corresponding to such genes. Other genes are expressed at a low level and
thus there are relatively few mRNAs from those genes in the cell. Any gene
represented by L mRNAs will be said to be at abundance level L.

A database of ESTs is generated by repeated random sampling from the
collection of mRNAs in the cell. Because of the way in which this is carried
out, the sampling can be taken to be with replacement. The more abundant
mRNA species will be selected more often, and the rarer a transcript is in
the cell the less likely it is to be sampled at all. We would like have an idea
of how the number of samples affects the proportion of the rarer transcripts
that will be found.

To illustrate (2.69), consider the following simplified example. Suppose
there are 10,000 different species of mRNA in the cell, falling into four
abundance classes L = 5, 50, 200, and 1000. Suppose there are 4000 species
at abundance level 5, 3250 species at level 50, 2500 species at level 200,
and 250 at level 1000. This distribution of species into abundance levels
is given in Table 2.1. Suppose a database of S ESTs is to be created, so

copies per cell
(abundance level L)

number of different
mRNA species

number of mRNAs
per abundance level

5 4000 20,000
50 3250 162,500
200 2500 500,000
1000 250 250,000

total 10,000 N=932,500

Table 2.1.

that a random sample of S ESTs is taken from the pool of all mRNAs in
the cell. Define JL(S) to be the number of different species of abundance
level L mRNA in the database. We are interested in the expected value
E(JL(S)), since from this expected value we can assess how large S should
be in order that the mean percentage of any specified abundance class of
mRNAs in the database reaches some specified value. For example, one
might be interested in determining how many ESTs must be generated in
order to expect to have seen at least 50% of the different mRNA species
that are expressed at the abundance level L.

The calculation of E(JL(S)) using (1.24) is not easy, since obtaining
the values PY (y) in this case is difficult. However, the theory of indicator
random variables leads to an immediate calculation for this mean. Let a
be an mRNA species and define

Ia =
{

1, if a has been seen in the S samples,
0, if a has not been seen in the S samples.
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Then the number of different species from abundance class L in the
database of size S is

∑
a Ia, where the sum is taken over all mRNA species

a in abundance class L. The Ia’s are not independent, but they have the
same mean for all a in abundance class L, and thus

∑
a Ia is a general-

ization of a binomial random variable to the case of dependent trials, as
discussed at the end of Section 2.9.1. Let pL be the common mean of the
Ia’s in abundance class L. If there are nL species of mRNA in abundance
class L, then by (2.70), the mean is nLpL. The probability pL is most easily
calculated as 1−rL, where rL is the probability that the specified species is
not in the database. Then rL = (1 − L/N)S , where N is the total number
of mRNAs in the cell. Thus the mean number of species of abundance level
L seen in the sample is

nL

(
1 −
(

1 − L

N

)S
)

.

The total number of mRNAs in the data in the above table is 932,500. Thus,
for example, the mean number of species of abundance level 50 expected
in a sample of 10,000 is

3250

(
1 −
(

1 − 50
932,500

)10,000
)

= 1348.75.

This represents 41.5% of the different species in this abundance class. Table
2.2 gives percentage values for each abundance class for various values of
S. It is interesting to note that even with S =50,000, the mean percentage
of species seen in the lowest abundance class is only 23.52%.

Size of EST database
abundance

level
1,000 5,000 10,000 50,000 250,000 1,000,000

5 0.53 2.65 5.22 23.52 73.83 99.53
50 5.22 23.52 41.5 93.15 100 100
200 19.31 65.78 88.29 100 100 100
1000 65.8 99.53 100 100 100 100

Table 2.2. Expected percent of mRNAs in each abundance class to be seen in an
EST database of size S, given the distribution of Table 2.1.

As this example shows, it is difficult to obtain many of the lower abun-
dance mRNAs by sampling in this way. If the goal is simply to find as many
different species of mRNAs as possible, then one can sequence EST libraries
from many different cell types, since the low-abundance mRNAs in one cell
type might be expressed in moderate or high abundance in another cell
type. However, some genes are always expressed at a low level, regardless
of cell type. And often the goal is to know which genes are expressed in the
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specific cell type in question. In such cases there are wet bench procedures
(called subtraction and normalization) to remove or lower the levels of the
higher abundance classes. However, with these methods, any measure of
relative abundance is lost.

2.10 Derived Random Variables (i): Sums,
Averages, and Minima

We have discussed the joint distribution of n independent discrete ran-
dom variables and the joint density function of n independent continuous
random variables. These random variables can be used to define various
derived random variables, for example their sum, their average, their mini-
mum, and their maximum. The joint distribution of the n random variables
determines, implicitly, the distribution of any such derived random variable.
Many properties of derived random variables can be found easily; for ex-
ample, equations (2.19) and (2.20) show that the mean and the variance of
the sum of n independent random variables can be written down from the
means and variances of the individual random variables.

Many statistical operations are carried out using derived random vari-
ables. To carry out these operations it is often necessary to know the
probability distribution of these random variables. In the discrete case, the
calculations are usually straightforward in principle, although in practice
they sometimes involve complicated summations involving combinatorial
terms. The calculations in the continuous case involve transformation tech-
niques and are less straightforward. Examples of transformation methods
will be given in Section 2.13.

2.10.1 Sums and Averages
Suppose that X1, X2, . . . , Xn are iid random variables, discrete or contin-
uous, each having a probability distribution with mean µ and variance
σ2. Perhaps the two most important random variables derived from X1,
X2, . . . , Xn are their sum Sn, defined by

Sn = X1 + X2 + · · · + Xn, (2.72)

and their average X̄, defined by

X̄ =
X1 + X2 + · · · + Xn

n
. (2.73)

It is important to emphasize that both of these quantities are random
variables. In particular, the average X̄ is a random variable, and must be
distinguished carefully, as noted in Section 1.4, from a mean µ, which is a
parameter.
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The mean and variance of Sn are given in (2.17) and (2.18) as nµ and
nσ2, respectively. The corresponding formulae for the average are

mean of X̄ = µ, variance of X̄ =
σ2

n
. (2.74)

These formulae can be generalized in two ways. First, the same principle
as is indicated in equations (2.74) applies to any well-behaved function
of X. Thus if g(X) is a function of X with finite mean E(g(X)) = µg

and variance σ2
g , then the mean and variance of the average ḡ of g(X1),

g(X2), . . . , g(Xn) are

mean of ḡ = µg, variance of ḡ =
σ2

g

n
. (2.75)

The second generalization is the following. Suppose that X1, X2, . . . , Xn

are n iid vectors each of k random variables. The random variables within
each vector can be discrete or continuous, independent or dependent. Write
Xi = (Xi1, Xi2, . . . , Xik) and suppose that g(Xi) is some function of Xi1,
Xi2, . . . , Xik with mean and variance µg and σ2

g , respectively. We can define
the average ḡ from these vectors by

ḡ =
g(X1) + g(X2) + · · · + g(Xn)

n
. (2.76)

Then the mean and variance of ḡ are as given in (2.75).
It is important to emphasize that equations (2.74) and (2.75) are derived

under the iid assumption. The statements about the mean remain the same
in the case of dependent random variables. Generalizations of the variance
statements to the dependent case can be found from (2.62).

Sums and averages have many important properties, of which we men-
tion several important ones here.

The normal distribution case. When X1, X2, . . . , Xn are NID(µ, σ2), both
X̄ and Sn also have a normal distribution, with respective means and vari-
ances given in (2.74), (2.17), and (2.18). The following remarkable result
which is the simplest and most important version of the central limit theo-
rem, shows that X̄ and Sn are nearly normal for large n, regardless of the
distribution of the iid random variables X1, X2, . . . , Xn as long as they
have finite mean and variance.

The central limit theorem. Assume that X1, X2, . . . , Xn are iid, each with
finite mean µ and finite variance σ2. Then as n → ∞, the standardized
random variable (Sn − nµ)/(

√
nσ), which is identical to the standardized

random variable (X̄ − µ)
√

n/σ, converges in distribution (as defined in
Section 2.8) to a random variable having the standard normal distribution
N(0, 1).
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This result holds regardless of the (common) distribution of X1, X2, . . . .
The breadth of application of the central limit theorem is one reason for
the importance of the normal distribution, since many random variables
of interest to us are either sums or averages. The proof of this theorem is
beyond the scope of this book.

Particularly important cases of Sn and X̄ arise when each Xi is a
Bernoulli random variable with parameter p (see Section 1.3.1), and thus
with mean p and variance p(1−p). Here Sn is the total number of successes,
and X̄ is the proportion of successes, in n trials. Equation (2.74) shows that

mean of X̄ = p, variance of X̄ =
p(1 − p)

n
, (2.77)

and the central limit theorem shows that the distribution of X̄ is approxi-
mately normal, with this mean and variance.

Accumulated support. In equations (1.121) and (1.122) we discussed the
support that the observed value of one single random variable Y gave for
one probability distribution over another. In practice we normally use the
observed values of many iid random variables before assessing which of two
distributions the random variable of interest comes from. Suppose then that
Y1, Y2, . . . , Yn are iid random variables, and denote their observed values
by y1, y2, . . . , yn. Then the total support given by these observations for
distribution P 1 over P 0 is defined as the sum of the supports given by
each individual observation; specifically,

accumulated support for P 1 over P 0 =
n∑

j=1

S1,0(yj). (2.78)

This accumulated support is the sum of the observed values of n iid random
variables, and several of its properties follow from the properties of sums.
In particular, the mean accumulated support given by n iid observations is
n times the mean support given by one observation.

The reason for the additive definition of support will become clearer
when we develop the concepts of support and accumulated support in the
context of likelihood ratio tests (Chapter 3), substitution matrices (Chap-
ter 6), sequential analysis (Chapter 9), and finally BLAST theory (Chapter
10).

Means, averages, and Chebyshev’s inequality. Chebyshev’s inequality is
often not useful in finding information about the probability behavior of
X̄, the central limit theorem being more useful for this purpose. For exam-
ple, if X1, . . . , X100 each have a distribution with mean µ and variance 25,
Chebyshev’s inequality states that Prob(|X̄ − µ)| ≥ 1) ≤ 0.25, while the
central limit theorem gives the sharper statement that Prob(|X̄ − µ)| ≥
1) ∼= 0.0456.
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Random n. It is assumed above that the number n of random variables
making up the sum Sn is fixed. In some cases, however, this number is also a
random variable, which we denote by N . We assume that N is independent
of X1, X2, . . . , Xn. In such cases the derivation of the distribution of the
sum, which we denote by S, is best found through pgfs. For the case of
independent discrete random variables the argument is as follows.

Suppose that Prob(N = n) = Pn, so that the pgf p(t) of N is p(t) =∑
n Pntn. We assume that the iid random variables X1, X2, . . . in the sum

S each have the probability distribution of a random variable X, whose pgf
is q (t). Then from (1.105),

Prob(S = s) =
∑

n

Pn · Prob(S = s |N = n). (2.79)

Equation (2.13) shows the probability that S = s given that N = n is the
coefficient of ts in [q (t)]n. Then from (2.79),

Prob(S = s) = coefficient of ts in
∑

n

Pn · (q (t))n

= coefficient of ts in p(q (t)). (2.80)

Thus the pgf of S is p(q (t)), and from this we can find in principle (and
often easily in practice) the complete probability distribution of S.

The mean and variance of S can be found using (1.40) and (1.41),
together with the chain rule of differentiation. The mean of S is

E(S) = E(N)E(X), (2.81)

as might be expected, and the variance is found by using (1.41), replacing
p(t) by p(q (t)) (see Problem 2.14).

An example of a case for which (2.81) holds even when N is not
independent of X1, X2, . . . is given in equation (7.23).

2.10.2 The Minimum of n Random Variables
Let X be a continuous random variable and suppose that X1, X2, . . . , Xn

are iid random variables each with the same distribution as X. We denote
their minimum by Xmin. The minimum of X1, X2, . . . , Xn does not have
the original distribution of the individual Xi’s, and its density function is
found as follows. To say that Xmin is greater than or equal to some number
x is equivalent to saying that all of the values X1, X2, . . . , Xn are greater
than or equal to x. Using the independence of X1, X2, . . . , Xn we get

Prob(Xmin ≥ x) = (Prob(X ≥ x))n
. (2.82)

If we denote the density function and the cumulative distribution function
of X by fX(x) and FX(x), respectively, and the distribution function of
Xmin by Fmin(x), then equation (2.82) can be written

1 − Fmin(x) = (1 − FX(x))n
. (2.83)
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The density function fmin(x) of Xmin is found by differentiation (see
equation (1.52)) to be

fmin(x) = n fX(x) (1 − FX(x))n−1
. (2.84)

Therefore, in the iid case the situation is straightforward. In Section 5.5
we analyze a case concerning dependent random variables where the cal-
culations are more complicated. We now consider some examples of the
minimum of iid random variables.

Example 1. As an example of an application of (2.82), suppose that
X1, X2, . . . , Xn are independent random variables each having the expo-
nential distribution (1.66). Then (1.113) and (2.82) show that

Prob(Xmin ≥ x) = e−nλx, x ≥ 0, (2.85)

so that

Fmin(x) = 1 − e−nλx, x ≥ 0.

Differentiation of both sides of this equation shows that the density function
of Xmin is

fmin(x) = nλe−nλx, x ≥ 0. (2.86)

Thus Xmin itself has an exponential distribution, but with parameter nλ
rather than λ. The result of Problem 1.21 then shows that

mean of Xmin =
1

nλ
, variance of Xmin =

1
(nλ)2

. (2.87)

The possibility of modeling the lifetime of spontaneously degrading pro-
teins by an exponential distribution was discussed in Section 1.13, page 48.
If there are n such molecules in a cell, equation (2.86) shows that the time
until the first such molecule degrades also has an exponential distribution.

Example 2. The uniform distribution. As a second example of the appli-
cation of (2.82), and with a change in notation to one more convenient in
a later application, suppose that X1, X2, . . . , Xn are independent random
variables each having the uniform distribution with range [0, L]. Then from
(2.84) the density function of Xmin is

fmin(x) =
n(L − x)n−1

Ln
, 0 ≤ x ≤ L. (2.88)

Example 3. The normal distribution. Since the cumulative distribution func-
tion of the normal distribution cannot be written in terms of elementary
functions, a closed form for the density function of Xmin is not available.
However, the mean and standard deviation of Xmin can be approximated
accurately by numerical methods and are available in tables for selected
values of n.
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2.11 Derived Random Variables (ii): The
Maximum of n Random Variables

2.11.1 Distributional Properties: Continuous Random
Variables

Several important tests in bioinformatics are carried out by examining the
observed value of the maximum of several random variables. For this reason
we consider this maximum in far greater detail than the corresponding
minimum.

Suppose that X1, X2, . . . , Xn are iid continuous random variables and
that the maximum of these random variables is denoted by Xmax. The
density function of Xmax is, as with Xmin, different from that of the indi-
vidual Xi’s, and is found by an argument analogous to that used in finding
the density function of Xmin.

To say that Xmax is less than or equal to some number x is equivalent
to saying that all of the values X1, X2, . . . , Xn are less than or equal to x.
This implies that, if X is a random variable having the same distribution
as each Xi, then, by independence,

Prob(Xmax ≤ x) =
(
Prob(X ≤ x)

)n
. (2.89)

In terms of cumulative distribution functions, if X has density function
fX(x) and cumulative distribution function FX(x), then

Fmax(x) =
(
FX(x)

)n
. (2.90)

Equivalently,

Prob(Xmax ≥ x) = 1 − (FX(x)
)n

. (2.91)

The density function fmax(x) of Xmax is, from (2.90),

fmax(x) = nfX(x)
(
FX(x)

)n−1
. (2.92)

Example 1. The uniform distribution. As an example of the application
of (2.92), consider the maximum of n independent random variables, each
having the uniform distribution with range [0, L]. The density function of
Xmax is

fmax(x) =
n xn−1

Ln
, 0 ≤ x ≤ L. (2.93)

Elementary integration shows that the mean and variance of this distribu-
tion are, respectively,

nL

(n + 1)
,

nL2

(n + 1)2(n + 2)
. (2.94)
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Example 2. The exponential distribution. The density function of the max-
imum of n independent random variables, each having the exponential
distribution (1.66), is, from (1.66), (1.67), and (2.92),

fmax(x) = nλe−λx(1 − e−λx)n−1, 0 ≤ x < +∞. (2.95)

The cumulative distribution function Fmax(x) of Xmax is

Fmax(x) = (1 − e−λx)n. (2.96)

It is not easy, for the exponential distribution, to find the mean and vari-
ance of Xmax using (1.53), (1.54), and (2.95).1 However, a simple indirect
way of finding this mean and variance, relying on the memoryless prop-
erty of the exponential distribution and the mean and the variance of the
minimum of n exponential random variables, is illustrated by the following
example.

As in Section 1.13, we assume that the lifetimes of certain cellular pro-
teins until degradation have an exponential distribution. Assuming this,
and starting at time 0, we follow the fate of a cohort of n proteins. The
mean time until at least one protein will degrade is the mean of the min-
imum of n exponential random variables, and from (2.87) this mean is
1/(nλ). By similar arguments the variance of this time is 1/(nλ)2.

The memoryless property of the exponential distribution implies that the
mean value of the further time until the next protein degrades is indepen-
dent of the time taken until the first one degraded. However, there are now
only n − 1 proteins involved, so that the mean of the time until the next
degradation is, by the same argument as that just used, 1/((n − 1)λ), and
the variance of this time is 1/

(
(n − 1)λ

)2. Continuation of this argument
shows that the time until the final protein degrades has mean

1
λ

+
1
2λ

+ · · · +
1

nλ
(2.97)

and, by independence, the variance is

1
λ2 +

1
(2λ)2

+ · · · +
1

(nλ)2
. (2.98)

These are, respectively, the mean and variance of Xmax.
It is curious that as n → ∞ the expression for the mean of Xmax diverges

to +∞, whereas the expression for the variance converges (see equations
(B.7)–(B.9)). For large n, (B.7) and (B.9) show that

mean of Xmax ≈ (γ + log n)/λ, variance of Xmax ≈ π2/6λ2, (2.99)

where γ is Euler’s constant 0.577216 . . . . (The “≈” notation is defined in
Appendix B.8.) Thus the mean of Xmax grows (very slowly) with n at the

1At least compared to the straightforward calculation for Xmin. This shows that the
theory for maximum and minimum must be handled separately.
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approximate rate (log n)/λ. The variance becomes essentially constant, re-
maining within 1% of π2/6λ2 for all n ≥ 100. The fact that the variance of
Xmax does not diverge to +∞ as n → ∞ is important, and we shall return
to this point later.

2.11.2 Distributional Properties: Discrete Random Variables
We now consider properties of maxima of iid discrete integer-valued random
variables. Our approach is based on equation (2.89), which applies also in
the discrete case with the change of notation from X to Y . In other words,
if Ymax is the maximum of n discrete iid random variables Y1, Y2, . . . , Yn

with common cumulative distribution function FY (y), then

Prob(Ymax ≤ y) =
(
FY (y)

)n
, (2.100)

so that

Prob(Ymax ≥ y) = 1 − (FY (y − 1)
)n (2.101)

and

Prob(Ymax = y) =
(
FY (y)

)n − (FY (y − 1)
)n

. (2.102)

The right-hand side in this equation involves two functions, each raised to
the power n. It follows from this that when n is large, sudden changes in
the distribution function of Ymax can occur from one value of y to the next
when FY (y) is close to 1. For example, if FY (20) = 0.99 and FY (19) = 0.98
and n = 100, the right-hand side in (2.102) is about 0.36, so that the
probability that Ymax = 20 is 0.36. Similar substantial probabilities attach
to values of Ymax close to 20 and very small probabilities attach to other
values of Ymax. The mean of Ymax would in this case be close to 20 and this
implies that, when n is large, the probability distribution of Ymax is tightly
concentrated around its mean.

From equation (2.102), the mean µmax and the variance and σ2
max of

Ymax are given, respectively, by

µmax =
∑

y

y
(
(FY (y))n − (FY (y − 1))n

)
(2.103)

and

σ2
max =

∑
y

y2((FY (y))n − (FY (y − 1))n
)− µ2

max. (2.104)

Since several statistical procedures in bioinformatics use the maximum of
n discrete random variables, an evaluation of the probabilities (2.102),
(2.103), and (2.104) is often required. Since n is often large and FY (y − 1)
and FY (y) are raised to the nth power, small errors in estimating FY (y−1)
and FY (y) will compound into large errors in (2.102), (2.103), and (2.104),
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so very precise estimates of FY (y − 1) and FY (y) are needed. We return to
this issue in Section 3.7.

The Geometric Distribution

We now discuss properties of the maximum of n iid geometrically dis-
tributed random variables in some detail. We will use this theory in Section
6.3 when we study the significance of alignments. It also serves as an in-
troduction to the theory of the maximum of iid geometric-like random
variables to be used in BLAST theory. (Geometric-like random variables
are defined on page 15.)

Suppose that Y1, Y2, . . . , Yn are independent random variables each hav-
ing the geometric distribution (1.15). Then equations (1.16) and (2.100)
show that when y is an integer,

Prob(Ymax ≤ y) = (1 − py+1)n, (2.105)

and from this it follows that

Prob(Ymax ≥ y) = 1 − (1 − py)n (2.106)

and

Prob(Ymax = y) = (1 − py+1)n − (1 − py)n. (2.107)

Thus the mean µmax of Ymax is given by

µmax =
∞∑

y=0

y
(
(1 − py+1)n − (1 − py)n

)
, (2.108)

and the variance σ2
max of Ymax is given by

σ2
max =

∞∑
y=0

y2 ((1 − py+1)n − (1 − py)n
)− µ2

max. (2.109)

The relation between the geometric distribution and the exponential dis-
tribution often makes it convenient to write the geometric distribution in
the reparametrized form (1.69), that is, with p replaced by e−λ. In this
notation,

Prob(Ymax ≤ y) = (1 − e−λ(y+1))n, (2.110)

Prob(Ymax ≥ y) = 1 − (1 − e−λy)n, (2.111)

Prob(Ymax = y) = (1 − e−λ(y+1))n − (1 − e−λy)n, (2.112)

µmax =
∞∑

y=0

y
(
(1 − e−λ(y+1))n − (1 − e−λy)n

)
, (2.113)

σ2
max =

∞∑
y=0

y2((1 − e−λ(y+1))n − (1 − e−λy)n
)− µ2

max. (2.114)
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We use the two sets of notation interchangeably, since for some purposes
one notation is preferred and for other purposes the other is preferred.

The calculation of µmax and σ2
max as given in equations (2.108) and

(2.109), and similar calculations for other discrete random variables, of-
ten requires significant computing effort for large values of n, and an
approach using continuous distribution approximations to discrete distri-
butions was typically used to find approximate properties of quantities like
Ymax. Current computing power implies that direct computation, using
only properties of the discrete random variable itself, is now often possible.
Nevertheless, continuous approximations are still useful and are valuable
for theoretical considerations, and we begin our discussion of them by con-
sidering an approximation of the distribution of the maximum of geometric
random variables by using the maximum of exponential random variables.

This approximation is based on the fact (discussed on page 35) that the
integer part of a random variable having the exponential distribution (1.66)
has the geometric distribution (1.69). The corresponding result for maxima
is that the integer part of the maximum of n exponential random variables
has the distribution of the maximum of n random variables having the
geometric distribution. This is seen as follows.

If Xmax is the largest of n random variables having the exponential
distribution, and 	Xmax
 is the integer part of Xmax, then

Prob(	Xmax
 = y) = Prob(y ≤ Xmax < y + 1). (2.115)

From equation (2.96) this is

(1 − e−λ(y+1))n − (1 − e−λy)n, (2.116)

which is identical to the required expression (2.112).
When n > 1 the density function of D, the fractional part Xmax - 	Xmax


of Xmax, is not identical to (1.72) and does not have mean and variance
given by (1.73). Instead, even for comparatively small n, the density func-
tion of D can be shown to be very close to the uniform distribution (1.63),
and this approximation becomes increasingly accurate as n increases. Thus
to a close approximation D has a mean of 1

2 and variance 1
12 when n is

large. Various properties of Ymax = 	Xmax
 can then be obtained by writ-
ing Ymax = Xmax −D. For example, equations (2.66) and (2.97) imply that
to a close approximation,

E(Ymax) = E(Xmax) − E(D) ≈ 1
λ

+
1
2λ

+ · · · +
1

nλ
− 1

2
. (2.117)

Thus from equation (B.7),

E(Ymax) ≈ γ + log n

λ
− 1

2
. (2.118)

Further, it can be shown that the covariance between D and Xmax ap-
proaches zero as n → +∞. Thus equations (2.68) and (2.98), together
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with the variance given immediately below (1.63), imply that to a close
approximation,

Var(Ymax) ≈ Var(Xmax) + Var(D)

≈ 1
λ2 +

1
(2λ)2

+ · · · +
1

(nλ)2
+

1
12

, (2.119)

so that for large n, from equation (B.9),

Var(Ymax) ≈ π2

6λ2 +
1
12

. (2.120)

This expression shows that the variance of Ymax shares the property of the
variance of the maximum Xmax of n exponential random variables in that
it does not diverge to +∞ as n → ∞.

The accuracy of these approximations can be assessed from the values
given in Table 2.3, which displays the respective approximations (2.117)
and (2.118) for the mean and the respective approximations (2.119) and
(2.120) for the variance of Ymax.

These values show the accuracy of these various approximations increas-
ing as n increases. In Section 6.3 we use the approximation (2.118) for the
mean and (2.120) for the variance when n = 75,000, and for this value of n
these approximations are extremely accurate.

2.11.3 An Asymptotic Formula for the Distribution of Xmax

Let X1, X2, . . . , Xn be iid random variables, each having the exponential
distribution (1.66) and define Xmax as the maximum of X1, X2, . . . , Xn.
The approximate mean and variance of Xmax are given in (2.99).

Our first aim is to define a “centered” random variable corresponding to
Xmax. The leading term in the mean of Xmax is (log n)/λ and the standard
deviation of Xmax is proportional to 1/λ. The centered random variable U
that we then construct is of the form

U =
Xmax − log n

λ
1
λ

= λXmax − log n. (2.121)

The random variable U is not standardized in the sense of the standardized
quantity Z described in Section 1.10.2, and its mean is not 0 and its variance
is not 1. In fact, (2.99), shows that the mean of U is approached γ (Euler’s
constant), and the variance of U approaches π2/6, as n → ∞.

From equation (2.96),

Prob(U ≤ u) = Prob(λXmax − lnn ≤ u) (2.122)
= Prob(Xmax ≤ (u + lnn)/λ) (2.123)

=(1 − e−u−ln n)n (2.124)

=
(
1 − e−u/n

)n
, (2.125)



98 2. Probability Theory (ii): Many Random Variables

n = 5
Mean Variance

exact approximations exact approximations
p (2.108) (2.117) (2.118) (2.109) (2.119) (2.120)

1/4 1.140 1.147 1.077 0.867 0.845 0.939
1/3 1.576 1.578 1.490 1.307 1.296 1.446
e−1 1.782 1.783 1.687 1.554 1.547 1.728
1/2 2.794 2.794 2.655 3.133 3.130 3.507

n = 10
Mean Variance

exact approximations exact approximations
p (2.108) (2.117) (2.118) (2.109) (2.119) (2.120)

1/4 1.616 1.612 1.577 0.881 0.890 0.939
1/3 2.167 2.166 2.121 1.363 1.367 1.446
e−1 2.429 2.429 2.380 1.631 1.633 1.728
1/2 3.726 3.726 3.655 3.309 3.309 3.507

n = 20
Mean Variance

exact approximations exact approximations
p (2.108) (2.117) (2.118) (2.109) (2.119) (2.120)

1/4 2.093 2.095 2.077 0.919 0.914 0.939
1/3 2.775 2.775 2.752 1.408 1.406 1.446
e−1 3.098 3.098 3.073 1.680 1.680 1.728
1/2 4.690 4.690 4.655 3.406 3.406 3.507

Table 2.3. Exact values and two approximations for the mean (2.117), (2.118) and
variance (2.119), (2.120) of the maximum (Ymax) of n = 5, 10, and 20 geometric
random variables, for selected values of p = e−λ. Relevant equation numbers are
noted.

and as n → ∞ we obtain the limiting result

Prob (U ≤ u) = e−e−u

(2.126)

or equivalently

Prob (U ≥ u) = 1 − e−e−u

(2.127)

As u → −∞ the right-hand side in (2.126) approaches 0 and as u → +∞
the right-hand side in (2.126) approaches 1. Thus the right-hand side in
(2.126) is a cumulative distribution function of a random variable with
range (−∞, +∞) and we consider now a random variable having this dis-
tribution function. Adopting the notation of the finite n case, we denote
this random variable by U.
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The density function of U, found by differentiating the right-hand side
in (2.126), is

fU (u) = e−u−e−u

, −∞ < u < +∞, (2.128)

A random variable with this density function has mean γ (Euler’s constant)
and variance π2/6 (see Problem 2.17). These values agree with the result
of the discussion below (2.121).

The density function (2.128) is an important one in probability theory
and statistics: When Xmax is the maximum of n iid continuous random
variables having any distribution with finite moments of all orders, support
of the form (A, +∞) for some finite value A, and when the asymptotic
relations

mean of Xmax ∼ a log n, variance of Xmax ∼ b, (2.129)

hold as n → ∞, where a and b are finite constants, the asymptotic (n → ∞)
distribution of a centered random variable U derived from Xmax, having
mean γ and variance π2/6, is the same as (2.128).

This implies that when any such random variable Xmax and any number
x are both close to µmax,

Prob(Xmax ≤ x) ∼ e−e−(π(x−µmax)/(σmax
√

6)+γ)
, (2.130)

or equivalently

Prob(Xmax ≥ x) ∼ 1 − e− e−(π(x−µmax)/(σmax
√

6)+γ)
. (2.131)

These calculations are used in Sections (3.7.2) and (5.5), and they also
form the basis of the hypothesis testing procedure in BLAST, as we will
see in Chapter 10.

2.12 Order Statistics

2.12.1 Definition
The random variables Xmin and Xmax are examples of order statistics of
continuous random variables. In this section we discuss these order statistics
in more detail.

Suppose that X is a continuous random variable and that X1, . . . , Xn

are iid random variables each with the same distribution as X, with density
function fX(x) and cumulative distribution function FX(x). Let X(1) be
the smallest of the Xi’s, X(2) the second smallest, and so on up to X(n),
the largest. We call these the order statistics. The order statistic X(1) is
identical to Xmin, and X(n) is identical to Xmax. Because the probability
that two independent continuous random variables both take the same
value is zero, these order statistics are distinct.
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The density function of X(i) is found as follows. We let h be small and
ignore events whose probability is o(h). Then the event that u < X(i) <
u + h, is the event that i − 1 of the random variables are less than u, that
one of the random variables is between u and u+h, and that the remaining
random variables exceed u + h. This is a multinomial event with n trials
and k = 3 outcomes on each trial. If the approximation

Prob(y < X < y + h) ∼= fX(y)h

is used when h is small (see (1.49)), the expression (2.30) shows that the
probability of the event u < X(i) < u + h is

n!
(i − 1)!(n − i)!

(
FX(u)

)i−1
fX(u) h

(
1 − FX(u + h)

)n−i
. (2.132)

Thus by (1.48)

fX(i)(x(i)) =
n!

(i − 1)!(n − i)!
(
FX(x(i))

)i−1
fX(x(i))

(
1 − FX(x(i))

)n−i
.

(2.133)
Here x(i) denotes an observed value of X(i). The expressions (2.84) and
(2.92) are particular cases of this density function.

Suppose next that i < j and that h1 and h2 are small. Then arguing
as above, and ignoring terms of order o(h1) and o(h2), the probability of
the joint event that u < X(i) < u + h1 and that v < X(j) < v + h2 is the
probability of the event that i − 1 of the random variables are less than
u, that one random variable is between u and u + h1, that j − i − 1 of
the random variables lie between u + h1 and v, that one random variable
is between v and v + h2, and that n − j random variables exceed v + h2.
From this argument the joint density function fX(i),X(j)(x(i), x(j)) of X(i)
and X(j) is

n!
(i − 1)!(j − i − 1)!(n − j)!

(
FX(x(i))

)i−1
fX(x(i))

× (FX(x(j)) − FX(x(i))
)j−i−1

fX(x(j))
(
1 − FX(x(j))

)n−j
. (2.134)

An important particular case is that where i = 1, j = n. Here (2.134)
reduces to the simpler form

fX(1),X(n)(x(1), x(n))

= n(n − 1)fX(x(1))
(
FX(x(n)) − FX(x(1))

)n−2
fX(x(n)). (2.135)

One can continue in this way, finding the joint density function of any
number of order statistics. Eventually, the joint density function

fX(1),X(2),...,X(n)(x(1), x(2), . . . , x(n))
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of all n order statistics is found as

fX(1),X(2),...,X(n)(x(1), x(2), . . . , x(n)) = n!
n∏

i=1

fX(x(i)). (2.136)

(see Problem 2.21.)
The meaning of this equation is seen more clearly when it is used to find

the conditional distribution of the original observations X1, X2, . . . , Xn,
given the observed values x(1), x(2), . . . , x(n) of the order statistics. Using
the conditional probability formula (2.39),

Prob(X1 = x(a1), . . . , Xn = x(an) |X(1) = x(1), . . . , X(n) = x(n),

where a1 �= a2 · · · �= an is some permutation of the numbers 1, 2, . . . , n is,
from (2.136), 1/n!. This simply states that if the order statistics are given,
all of the n! allocations of the actual observations to the order statistics’
values are equally likely, each having probability 1/n!. This observation is
the basis of permutation tests, discussed in more detail in Chapter 3.

Order statistics for discrete random variables have much more compli-
cated distributions than those for continuous random variables because of
the possibility that two or more of the random variables take the same
value. Fortunately we do not need to consider them here.

2.12.2 Example: The Uniform Distribution
As an example of order statistics, suppose that X1, X2, . . . , Xn are iid, each
having the uniform distribution with range (0, L). Then (2.133) shows that
the density function of X(i) is

fX(i)(x(i)) =
n!

(i − 1)! (n − i)!
xi−1

(i) (L − x(i))n−iL−n. (2.137)

In the case L = 1, this is a beta distribution with parameters α = i,
β = n − i + 1. From equation (1.79), the mean and variance of X(i) are

mean of X(i) =
i

n + 1
, variance of X(i) =

i(n − i + 1)
(n + 1)2(n + 2)

. (2.138)

For general L,

mean of X(i) =
Li

n + 1
, variance of X(i) =

L2i(n − i + 1)
(n + 1)2(n + 2)

. (2.139)

The particular case i = 1 is important in various statistical procedures.
Equation (2.137) shows that

fX(1)(x(1)) = n(1 − x(1))n−1. (2.140)

This follows also from equation (2.84). If some probability α is given, the
value K(n, α) such that Prob(X(1) ≤ K(n, α)) = α is found by integration
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as

K(n, α) = 1 − n
√

1 − α. (2.141)

This expression will also appear in Section 3.11, and we return to it in
Section 13.3, where it forms the basis of an approach to hypothesis testing
in microarray analysis.

It is also important to find the joint density function of two order statis-
tics from the uniform distribution. Equation (2.134) shows that the joint
density function of X(i) and X(j) is

fX(i),X(j)(x(i), x(j))

=
n!

(i − 1)! (j − i − 1)!(n − j)!
xi−1

(i) (x(j) − x(i))j−i−1 (L − x(j))n−jL−n.

(2.142)

In the particular case i = 1, j = n, this is

fX(1),X(n)(x(1), x(n)) = n(n − 1)(x(n) − x(1))n−2L−n. (2.143)

Finally, equation (2.136) shows that the joint density function of all n order
statistics is given by

fX(1),X(2),...,X(n)(x(1), x(2), . . . , x(n)) = n!L−n. (2.144)

This density function, which is a particular case of (2.136), is constant over
the joint range of X(1), X(2), . . . , X(n).

2.12.3 The Sample Median
The sample median M̂ is an important random variable, and in this section
we define it and briefly consider some of its properties.

Consider n iid continuous random variables X1, X2, . . . , Xn, or equiva-
lently their order statistics X(1), X(2), . . . , X(n). When n is odd, so that we
can write n = 2m + 1, the sample median M̂ is defined as X(m+1): Half of
the observed sample values are less than m̂ = x(m+1), and half exceed this
value. When n is even, so that we can write n = 2m, the convention is to
define the sample median M̂ as (X(m) + X(m+1))/2, so that the observed
value m̂ of the sample median is the average (x(m) + x(m+1))/2 of the two
central observations.

The sample median M̂ is a random variable, and when n is odd, its
probability distribution is identical to that of X(m+1), found from equation
(2.132) with n = 2m + 1, i = m + 1. From this distribution the mean,
the variance, and other properties of the sample median can in principle be
found. In practice this might involve difficult problems of integration. These
problems can be even greater when n is even. An example of a direct way
of finding the mean and variance of X(m+1) when the iid random variables
X1, X2, . . . , Xn have an exponential distribution is given in Problem 2.23.
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When the random variables are discrete it becomes possible that the
observed values of several random variables are equal. Because of this
the theory for the distribution of the sample median for discrete random
variables is more complex than it is for continuous random variables, and
therefore we do not consider the discrete case here.

2.13 Transformations

Suppose that X1, X2, . . . , Xn are continuous random variables and let
V1 = V1(X1, X2, . . . , Xn), V2 = V2(X1, X2, . . . , Xn), . . . , Vn = Vn(X1,
X2, . . . , Xn) be functions of X1, X2, . . . , Xn. These functions define a
mapping from (x1, x2, . . . , xn) to (V1(x1, x2, . . . , xn),V2(x1, x2, . . . , xn), . . . ,
Vn(x1, x2, . . . , xn)), from a subset of n-dimensional space to some other
subset of n-dimensional space. Suppose the mapping is one-to-one and
differentiable with differentiable inverse. Then the two Jacobians defined
below exist and are always non-zero.

We are interested in finding the joint density function of V1, V2,. . . ,
Vn. If the joint density function of X1, X2, . . . , Xn is fX(x1, x2, . . . , xn),
arguments extending those given in Section 1.15 to the n-dimensional case
show that the joint density function of V1, V2, . . . , Vn is given by

fV (v1, v2, . . . , vn) = fX(x1, x2, . . . , xn)|J−1|, (2.145)

where J is the Jacobian

J =

∣∣∣∣∣∣∣∣∣∣

∂v1
∂x1

∂v1
∂x2

· · · ∂v1
∂xn

∂v2
∂x1

∂v2
∂x2

· · · ∂v2
∂xn

...
...

. . .
...

∂vn

∂x1

∂vn

∂x2
· · · ∂vn

∂xn

∣∣∣∣∣∣∣∣∣∣
and the right-hand side in (2.145) is computed as a function of v1, v2, . . . ,
vn. An equivalent formula is

fV (v1, v2, . . . , vn) = fX(x1, x2, . . . , xn)|J∗|, (2.146)

where J∗ is the Jacobian

J∗ =

∣∣∣∣∣∣∣∣∣∣

∂x1
∂v1

∂x1
∂v2

· · · ∂x1
∂vn

∂x2
∂v1

∂x2
∂v2

· · · ∂x2
∂vn

...
...

. . .
...

∂xn

∂v1

∂xn

∂v2
· · · ∂xn

∂vn

∣∣∣∣∣∣∣∣∣∣
with the right-hand side in (2.146) again being expressed as a function of
v1, v2, . . . , vn. Sometimes (2.145) is the easier formula to use, sometimes
(2.146).
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The transformation from the joint density function of X1,. . . , Xn to that
of V1,. . . , Vn is often used to find the density function of a single random
variable. Suppose that we wish to find the density function of V1 only. We
first choose n−1 “dummy” variables V2,. . . , Vn, of no direct interest to us.
We then use transformation techniques to find the joint density function
of V1,. . . , Vn. Having found this, we integrate out V2,. . . , Vn to find the
desired (marginal) density function of V1, as described in equation (2.36).
With a sufficiently careful choice of the dummy variables, this seemingly
roundabout procedure is often the most efficient way of finding this density
function. As noted in the discussion below equation (2.36), care must be
taken in finding the correct domain of integration for V2,. . . , Vn, since this
can depend on the value of V1.

We give three examples of the use of transformations below. The first
two underlie the much of the theory involved with ANOVA (see Section
9.3.3), while the third is relevant to BLAST.

Example 1. Suppose that X1 has a chi-square distribution with ν1 degrees
of freedom, that X2 has a chi-square distribution with ν2 degrees of freedom
and that X1 and X2 are independent. Our aim is to show that X1 + X2
has a chi-square distribution with ν1 + ν2 degrees of freedom. To do this
we put U = X1 + X2 and V = X2, find the joint density function of U
and V by the transformation approach, then integrate out V to find the
marginal density function of U. (Note: A far simpler approach than using
transformation theory is to use moment-generating functions, as discussed
in Examples 1 and 2 of Section 2.3.2. Here our aim is to illustrate the
transformation technique.)

Since X1 and X2 are independent, their joint density function is, from
(1.77),

CX
1
2 ν1−1
1 e− 1

2 X1X
1
2 ν2−1
2 e− 1

2 X2 , X1, X2 > 0, (2.147)

where

C =
1

2(ν1+ν2)/2 Γ( 1
2ν1)Γ( 1

2ν2)
.

The absolute value of the Jacobian of the transformation from (X1, X2) to
(U, V ) is 1, so that the joint density function of U and V is given by (2.147)
with X1 replaced by u − v and X2 replaced by v, that is by

C(u − v)
1
2 ν1−1v

1
2 ν2−1 e− 1

2 u, 0 < v < u. (2.148)

The domain of U and V ia as indicated in (2.148) because X2 is positive,
so that V cannot exceed U. The (marginal) density function of U is found
by integrating the joint density function (2.148) with respect to v over the
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range 0 < v < u, to obtain

Ce− 1
2 u

∫ u

0
(u − v)

1
2 ν1−1v

1
2 ν2−1 dv. (2.149)

The change of variable v = ut shows that this is equal to

Cu
1
2 (ν1+ν2)−1e− 1

2 u

∫ 1

0
t

1
2 ν2−1(1 − t)

1
2 ν1−1 dt, (2.150)

and the form of the beta distribution (1.78) shows that the value of the
integral in (2.150) is

Γ( 1
2ν1)Γ( 1

2ν2)
Γ( 1

2 (ν1 + ν2))
.

This leads to the density function

1
2(ν1+ν2)Γ( 1

2 (ν1 + ν2))
u

1
2 (ν1+ν2)−1e− 1

2 u (2.151)

for U = X1 + X2, showing (see (1.77)) that X1 + X2 has a chi-square
distribution with ν1 + ν2 degrees of freedom.

This result can be generalized immediately to show that the sum of any
number of independent chi-square random variables is itself a chi-square
random variable, with degrees of freedom equal to the sum of the degrees
of freedom of the constituent chi-square random variables.

Example 2. A second example involving the chi-square distribution is the
following. Suppose as in Example 1 that X1 has a chi-square distribution
with ν1 degrees of freedom, that X2 has a chi-square distribution with ν2
degrees of freedom and that X1 and X2 are independent. Define F by F =
X1
X2

× ν2
ν1

. By introducing the random variable G = X2, and subsequently
integrating with respect to G in the joint density function of F and G, it
can be shown that the density function of F is(ν2

ν1

)ν2/2 Γ((ν1 + ν2)/2)
Γ(ν1/2)Γ(ν2/2)

· F ν1/2−1

(ν2/ν1 + F )(ν1+ν2)/2 . (2.152)

This is the so-called F distribution with ν1, ν2 degrees of freedom. It is cen-
tral to many statistical procedures, in particular the ANOVA procedures
discussed in Section 9.5. Because of this, selected percentage points of this
distribution, for combinations of values of ν1 and ν2 found in practice, are
extensively tabulated. The derivation of (2.152) is left as an exercise in
transformation theory (see Problem 2.28).

Example 3. An example of the use of a dummy variable in evaluating a
density function by transformation methods, of direct relevance to BLAST,
is given in Appendix D.
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Problems

2.1 Let Y = (Y1, Y2, . . . , Yn) be a random vector such that

PY (y) =
n∏

i=1

PYi
(yi) (2.153)

for all possible combinations of values of y = (y1, y2, . . . , yn). If Ai is
the event that Yi = yi, then show (2.153) implies that all the conditions
(1.108)–(1.110) are satisfied.

2.2. Suppose that Y1, Y2, . . . , Yn are independent random variables, each
having a Poisson distribution, the parameter of the distribution of Yj be-
ing λj . Find the pgf of the distribution of their sum Sn, and thus show that
the probability distribution of Sn is Poisson with parameter

∑
λj .

2.3. Use (2.14) and (1.89) to prove (2.19) and (2.20), and use (2.15) and
(1.89) to prove (2.17) and (2.18).

2.4. Suppose we are given a DNA sequence consisting of 10 consecutive nu-
cleotides. Three segments of this sequence are to be chosen at random, one
consisting of 3 consecutive nucleotides, a second consisting of 4 consecutive
nucleotides, and the third consisting of 5 consecutive nucleotides. By “ran-
dom” we mean the segment of 3 nucleotides can be in any of the 8 possible
positions with equal probability, and similarly the segment of 4 nucleotides
can be in any of the 7 possible positions with equal probability, and the
segment of 5 in any of the 6 possible positions with equal probability. Let
Y be the number of positions (out of 10) that are in all three segments.
Then Y has observable values 0, 1, 2, 3. What is the expected value of Y ,
E(Y )? Hint: Use indicator random variables.

2.5. Show that although the random variables in Example 2 in Section 2.5
are dependent, the covariance between them is 0.

2.6. This problem refers to the example of throwing objects into a box as
discussed in Section 1.3.3. The aim is to show that the probability P (y|n, m)
that y objects are thrown into the upper left-hand compartment, given
that n objects in total are thrown into the top two compartments and m
objects in total are thrown into the two left-hand compartments, is the
hypergeometric probability (1.9). To do this, write P (y|n, m) as

P (y|n, m) =
P (y, n, m)
P (n, m)

.

The numerator on the right-hand side is identical to the multinomial
probability that there are y objects in the upper left-hand compartment,
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n − y in the upper right-hand compartment, m − y in the lower left-hand
compartment and N − n − m + y in the lower right-hand compartment,
namely

C(ab)y{a(1 − b)}n−y{(1 − a)b}m−y{(1 − a)(1 − b)}N−n−m+y,

where

C =
N !

y!(n − y)!(m − y)!(N − n − m + y)!
.

Use this distribution, together with the fact that n and m are independent
binomial random variables both with index N and with respective param-
eters a and b, to obtain the desired result.

2.7. Show that, if Y1 is the number of successes in a binomial distribution
with n = 2 trials, so that Y2 = 2 − Y1 is the number of failures, the corre-
lation between Y 2

1 and Y2 is not zero.

2.8. Use (2.48) to generalize the result given in (2.50) by showing that if X
is a random variable having the exponential probability distribution (1.66),
and if it is given that a ≤ X < a+1, then X −a has the distribution (2.50).

2.9. Use (2.15), together with the formula for the mgf of a normal random
variable, mean µ, variance σ2 (found in Problem 1.27) to find the mgf of
the distribution of the sum of n independent random variables, each having
this normal distribution. What conclusion do you draw about the distribu-
tion of this sum?

2.10. Prove equations (2.35) and (2.42).

2.11. Prove (2.50) directly using the memoryless property of the exponen-
tial distribution.

2.12. Use equation (2.51) to derive (2.52).

2.13. Suppose X1 and X2 are possibly dependent random variables, each
with mean 0, variance 1 (so that EX2

i = 1 for i = 1, 2). Since (X1 −X2)2 is
never negative, E

(
(X1 − X2)2

) ≥ 0. By expanding the term (X1 − X2)2,
show that E(X1X2) ≤ 1. Apply a similar argument to (X1 +X2)2 to show
that E(X1X2) ≥ −1. It follows from these two facts that |E(X1X2)| ≤ 1.

Now suppose X1 and X2 are arbitrary random variables with respective
means and standard deviations µi and σi, i = 1, 2. Apply the above con-
clusion to X ′

i = (Xi − µi)/σi (for i = 1, 2) to show that |ρ| ≤ 1, where ρ is
the correlation between X1 and X2.



108 2. An Introduction to Probability Theory (ii): Many Random Variables

2.14. Use equation (2.80) to establish equation (2.81), and carry out one
further differentiation to show that the variance of S is

E(N) Var(X) + E(X)2 Var(N).

2.15. For the random walk taking a step up with probability p and a step
down with probability q = 1 − p, find the possible values of the total
displacement of the random walk after three steps, together with their
probabilities. Thus find the mgf of this displacement, and check that it is
the cube of the expression given in (2.24).

2.16. Prove equation (2.96) by appropriate integration.

2.17. Show that the mgf of the “extreme value” density (2.128) is Γ(1− θ),
and thus find the mean and variance of this distribution. Hint: In finding
the mgf, make the change of variable v = e−u, and be careful about using
the appropriate terminals in the ensuing integration. To find the mean and
variance, use equations (1.82) and (1.89) and the properties of the gamma
function given in Appendix B.17.

2.18. Let X1, X2, . . . , Xn be iid random variables coming from a continuous
probability distribution with median θ. Find the probability distribution
of the number of these random variables that are less than θ.

2.19. Let X1, X2, . . . , Xn be independent random variables, each having the
exponential distribution (1.66). Use (2.133) to find the density function of
X(2). From this, find the mean and variance of X(2) and relate these to the
calculations leading to equations (2.97) and (2.98).

2.20 The following problem is relevant to linkage analysis. Suppose that a
parent of genetic type Mm has three children. Then the parent transmits
the M gene to each child with probability 1

2 , and the genes that are trans-
mitted to each of the three children are independent. Let I1 = 1 if children
1 and 2 had the same gene transmitted (that is, both received M or both
received m), and I1 = 0 otherwise. Similarly, let I2 = 1 if children 1 and 3
had the same gene transmitted, I2 = 0 otherwise, and let I3 = 1 if children
2 and 3 had the same gene transmitted, I3 = 0 otherwise.

(i) Show that while these three random variables are pairwise indepen-
dent, they are not independent.

(ii) Show that despite the conclusion of (i), the variance of I1 + I2 + I3
is the sum of the variances of I1, I2, and I3.

(iii) Explain your result in terms of the various covariances between I1,
I2, and I3 and the pairwise independence of I1, I2, and I3.
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2.21. Prove the results given in (2.136).

2.22. Prove the results given in (2.139).

2.23. Let X1, X2, . . . , Xn be iid random variables, each having the exponen-
tial distribution (1.66). For n = 2m + 1 an odd integer, use the argument
that led to equations (2.97) and (2.98) to show that the mean and variance
of X(m+1) (the so-called sample median) are, respectively,

E(X(m+1)) =
1

(2m + 1)λ
+

1
(2m)λ

+ · · · +
1

(m + 1)λ
,

Var(X(m+1)) =
1

(2m + 1)2λ2 +
1

(2m)2λ2 + · · · +
1

(m + 1)2λ2 .

2.24. Continuation. Use the approximation (B.7) to show that as n → +∞,
the mean of X(m+1) approaches the exponential distribution median log 2

λ
given in equation (1.68).

2.25. Continuation. Use the asymptotic results

1 +
1
2

+ · · · +
1
n

= log n + γ +
1
2n

+ o

(
1
n

)
and

log
(

2m + 1
m

)
= log 2 +

1
2m

+ o

(
1
m

)
to obtain a more precise result than that in Problem 2.24, namely

mean of X(m+1) =
log 2

λ
+

1
(4m + 2)λ

+ o

(
1
m

)
.

2.26. Continuation. When n = 2m is even, the sample median is defined as
(X(m) + X(m+1))/2. Use the asymptotic results given in Problem 2.25 to
show that when n is even,

mean of sample median =
log 2

λ
+

1
2nλ

+ o

(
1
n

)
.

2.27. Continuation. Use the approximation

1
a2 +

1
(a + 1)2

+ · · · +
1
b2

∼= 1
a − 1

2

− 1
b + 1

2

to show that the variance of the sample median X(m+1) is approximately
1

nλ2 when n is large and odd.
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2.28. Carry out the calculations leading to the F distribution given in
(2.152).

Hint: If Xi (i = 1, 2) has a chi-squared distribution with νi degrees of
freedom, and X1 and X2 are independent, then from (1.77) the joint density
function of X1 and X2 is

fX1,X2(x1, x2) = Cx
1
2 ν1−1
1 x

1
2 ν2−1
2 e− 1

2 (x1+x2),

where

C =
(

2(ν1+ν2)/2Γ(
1
2
ν1)Γ(

1
2
ν2)
)−1

.

Now use transformation methods to find the joint density function of
F = X1ν2/X2ν1 and G = X2. The Jacobian J of the transformation is
ν2/(X2ν1). The joint density function of F and G is then found to be

C

(
ν1

ν2

)ν1/2

F ν1/2−1G(ν1+ν2)/2−1exp
(

−1
2
G(1 + F

ν1

ν2
)
)

, F, G > 0.

Then integrate out G to find the density function of F .



3
Statistics (i): An Introduction to
Statistical Inference

3.1 Introduction

Statistics is the method by which we analyze data in whose generation
chance has played some part. In practice, it consists of two main areas,
namely estimation and hypothesis testing; more specifically estimating pa-
rameters and testing hypotheses about parameters. We often associate a
so-called confidence interval with an estimate of a parameter, as discussed
in Section 3.3.1. A confidence interval is a range of values within which
the true value of the parameter lies with some specified probability. For
example, we may wish to estimate, on the basis of a comparatively small
sample, the proportion of purines in the genome of some species, and to
find a confidence interval for that proportion. We might also wish to test
the hypothesis that the proportion of purines in two species is identical,
again using data taken from two comparatively small samples.

Both estimation and hypothesis testing are used extensively in bioin-
formatics. In this chapter we give a brief introduction to estimation and
hypothesis testing ideas: A more complete discussion of the underlying
theory is given in Chapters 8 and 9.

A fundamental requirement in any statistical procedure is that the data
to be analyzed derive from a random sample of the population of interest
and to which the inferences eventually made relate. If this requirement is
not satisfied, no statistical inferences made from the statistical analysis
is justified. Here and throughout we assume that the random sampling
requirement is satisfied.
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3.2 Classical and Bayesian Methods

There are two main approaches to both estimation and hypothesis test-
ing, each deriving from its own broad view of the way in which we should
conduct statistical inference. These are the “classical,” or “frequentist,” ap-
proach on the one hand, and the “Bayesian” approach on the other. There
is controversy among some statisticians as to the theoretical underpinnings
of each of these approaches. Here we give only a brief sketch of their re-
spective approaches and will not attempt to summarize the views of both
camps in detail, especially since there is no unique Bayesian or classical
position.

Two arguments that Bayesians often advance to support the Bayesian
approach to statistical inference are as follows.

(i) The Bayesian approach asks the right question in a hypothesis testing
procedure, namely, “What is the probability that this hypothesis is true,
given the data?” rather than the classical approach, which asks a question
like, “Assuming that this hypothesis is true, what is the probability of the
observed data?”

(ii) Prior knowledge and reasonable prior concepts can be built into a
Bayesian analysis. For example, suppose that a fair-looking coin is tossed
three times and gives three heads. The classical approach estimate of the
probability of a head is 1. A Bayesian might well claim that this estimate
is unreasonable, and does not take into account the information that the
coin seems reasonably symmetric.

Behind the Bayesian approach there is the broad feeling that a proba-
bility is a measure of belief in a proposition, rather than the frequentist
interpretation that a probability of an event is in some sense the long-term
frequency with which it occurs.

The main arguments for using a classical approach to statistical in-
ference can perhaps best be stated by giving the classical approach
counter-argument to the Bayesian positions outlined above.

An outline of these is as follows. Bayesian theory requires that prior as-
sumptions must be made, for example the nature of the distribution of a
parameter, but the form of this distribution is chosen for mathematical
convenience rather than from any objective scientific basis. Further, the
prior distribution that a Bayesian needs for his/her inferences about new
phenomena cannot be known with certainty. These problems are not over-
come by using so-called uninformative priors. Further, the very concept
that a hypothesis can have a prior probability of being true is disputed
by frequentists for some forms of hypotheses. The subjective nature of the
approach, so that two different investigators might come to different con-
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clusions from the same data because of their different prior beliefs, is also
of concern.

Bayesians have replies to these views, and the debate continues. We make
no comment on these positions here, noting that in some cases classical
methods can produce clearly unsatisfactory conclusions and in other cases
Bayesian can also (see Wasserman (2004), in particular pages 185–189).
Thus we favor the pragmatic approach adopted by many workers in bioin-
formatics. The focus in this book is, however, on classical hypothesis testing
methods, since these methods are currently more widely used in bioinfor-
matics than are Bayesian methods. This is true in particular of BLAST and
in microarray analyses, two topics that we discuss at length. On the other
hand we describe in Section 6.6 a procedure that uses Bayesian concepts
and that might well not work if classical methods were employed.

3.3 Classical Estimation Methods

In much of the discussion in Chapters 1 and 2 the values of the various
parameters entering the probability distributions considered were taken as
being known. In practice these parameters are usually unknown, and must
be estimated from data. In this section we consider introductory aspects of
standard estimation procedures, and defer a more theoretical discussion to
Chapter 8. Much of the theory concerning estimation of parameters is the
same for both discrete and continuous random variables, so in this section
we use the notation X for both.

Let X be a random variable having a probability distribution PX(x; θ)
(for discrete random variables) or density function fX(x; θ) (for continuous
random variables), depending (as the notation implies) on some unknown
parameter θ. How may we estimate θ from the observed value x of X?

The observed value x on its own will usually not be sufficient to provide
a good estimate. We must repeat the experiment that generated this value
an (ideally large) number of times to give n observations x1, x2, . . . , xn.
We think of these as the observed values of n iid random variables
X1, X2, . . . , Xn, each Xi having a probability distribution PXi(x; θ) identi-
cal to PX(x; θ) (for discrete random variables) or density function fXi

(x; θ)
identical to fX(x; θ) (for continuous random variables). The iid assumption
is used throughout this section.

An estimator of the parameter θ is some function of the random
variables X1, X2, . . . , Xn, and thus may be written θ̂(X1, X2, . . . , Xn), a
notation that emphasizes that this estimator is itself a random variable.
For convenience we generally use the shorthand notation θ̂. The quan-
tity θ̂(x1, x2, . . . , xn), calculated from the observed values x1, x2, . . . , xn of
X1, X2, . . . , Xn, is called the estimate of θ.
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Various desirable criteria have been proposed for an estimator to satisfy,
and we now discuss some of these.

3.3.1 Unbiased Estimation
One desirable property of an estimator is that it be unbiased. An estimator
θ̂ is said to be unbiased estimator of θ if its mean value E(θ̂) is equal to
θ. In this section we consider unbiased estimation of the mean µ and the
variance σ2 of any probability distribution, estimation of the probability p
of the Bernoulli distribution (1.6), and estimation of the parameters {pi}
in the multinomial distribution (2.30). In doing so we use the generally
accepted parameter notation for these examples, such as µ for a mean,
rather than the generic notation θ.

Unbiasedness is not the only criterion for a “good” estimator. If an esti-
mator θ̂ of θ is unbiased, we would also want the variance of θ̂ to be small,
since if it is, the observed value of θ̂ calculated from from data should be
close to θ. It would also be desirable if θ̂ has, either exactly or approx-
imately, a normal distribution, since then well-known properties of this
distribution can be used to provide properties of θ̂. Fortunately, several of
the estimators we consider are unbiased, have a small variance, and have
an approximately normal distribution.

It is natural to estimate the mean µ of a probability distribution by the
average X̄. Since the mean value of X̄ is µ (from equation (2.74)), X̄ is an
unbiased estimator of µ. Since the variance of X̄ decreases as the sample
size n increases (see (2.74)), this variance is small when n is large, the
observed average x̄ is more and more likely to be close to µ as n increases.
Finally, the central limit theorem of Section 2.10.1, page 88 shows that the
distribution of X̄ is approximately normal when n is large. If the random
variables X1, X2, . . . , Xn have a normal distribution, the distribution of X̄
is normal for any value of n.

The two standard deviation rule of Section 1.10.2, page 32, deriving from
properties of the normal distribution, then shows that for large n,

Prob
(

µ − 2σ√
n

< X̄ < µ +
2σ√

n

)
∼= 0.95. (3.1)

3.3.2 Confidence Intervals
The inequalities (3.1) can be written in the equivalent form

Prob
(

X̄ − 2σ√
n

< µ < X̄ +
2σ√

n

)
∼= 0.95, (3.2)
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which provides an approximate 95% confidence interval for µ, in the sense
that the probability that the random interval(

X̄ − 2σ√
n

, X̄ +
2σ√

n

)
(3.3)

contains µ is approximately 95%. Given the observed values x1, x2, . . . , xn

of X1, X2, . . . , Xn, the observed value of this interval is(
x̄ − 2σ√

n
, x̄ +

2σ√
n

)
. (3.4)

This interval is valuable in providing a measure of accuracy of the esti-
mate x̄ of µ. To be told that the estimate of a mean is 14.7 and that it
is approximately 95% likely that the mean is between 14.3 and 15.1 is far
more useful information than being told only that the estimate of a mean
is 14.7.

Often the variance σ2 is unknown, so that (3.4) is not immediately appli-
cable. However, an unbiased estimator of the variance σ2 of any distribution
is provided by the estimator σ̂2, defined by

σ̂2 =
∑n

i=1(Xi − X̄)2

n − 1
. (3.5)

The appearance of the term n − 1 in the denominator of this estimator is
perhaps initially surprising. To check that σ̂2 is an unbiased estimator of
σ2, we write the numerator of the right-hand side expression in (3.5) as

n∑
i=1

(
(Xi − µ − (X̄ − µ)

)2 =
n∑

i=1

(Xi − µ)2 − n(X̄ − µ)2.

The expected value of each term in the sum on the right-hand side in this
expression is, by definition, σ2, and since the variance of X̄ is σ2/n, the
expected value of the final term on the right-hand side in this expression
is σ2. The expected value of the right-hand side is thus (n − 1)σ2, and this
leads to the desired result.

Corresponding to (3.5), the estimate s2 of σ2 found from observed data
values x1, x2, . . . , xn is

s2 =
∑n

i=1(xi − x̄)2

n − 1
. (3.6)

Although σ̂2 is an unbiased estimator of σ2, its variance depends on the
value of the fourth moment about the mean of the probability distribution
of Xi (see the definition (1.37) in the discrete case and (1.57) in the con-
tinuous case), and can in some cases be large unless the sample size n is
itself very large.

From these results,

σ̂2

n
=
∑n

i=1(Xi − X̄)2

n(n − 1)
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is an unbiased estimator of the variance σ2/n of µ̂ = X̄, and is estimated
from the data by ∑n

i=1(xi − x̄)2

n(n − 1)
. (3.7)

An approximate 95% confidence interval for µ is then(
X̄ − 2S√

n
, X̄ +

2S√
n

)
, (3.8)

and given the data, the observed value of this interval is(
x̄ − 2s√

n
, x̄ +

2s√
n

)
. (3.9)

Such an estimated confidence interval is useful, since it provides a measure
of the accuracy of the estimate x̄. On the other hand, the potentially large
variance of σ̂2 implies that it should be used with caution.

The estimation of a binomial parameter p is usually carried out by using
the theory of the binomial distribution directly and not by using the above
general theory. Use of the theory above will lead to slightly different results,
as we show below. Let Y have the binomial distribution parameter p and
index n. Equation (2.77) shows that the mean value of Y/n is p and the
variance of Y/n is p(1 − p)/n. Thus

p̂ = Y/n (3.10)

is an unbiased estimator of p. If y successes were obtained when the trials
were carried out, the estimate of p is y/n and the generally–used estimate
of the variance of p̂ is

p̂(1 − p̂)
n

=
y(n − y)

n3 . (3.11)

An approximate 95% confidence interval for p is(
y

n
− 2

√
y(n − y)

n3 ,
y

n
+ 2

√
y(n − y)

n3

)
, (3.12)

applicable when the distribution of p̂ is approximately normal.
The estimator (3.11) is a biased estimator of p(1 − p)/n (see Problem

3.2). An unbiased estimate is found by replacing the denominator in (3.11)
by n2(n − 1), following the format of (3.5).

The estimation of the multinomial parameter pi is carried out in a similar
way.

3.3.3 Biased Estimators
The four estimators X̄, S2, p̂, and p̂i discussed above are unbiased estima-
tors of the parameters µ, σ2, p, and pi, respectively. In some cases biased
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estimators of a parameter are of interest: θ̂ is a biased estimator of θ if the
mean value E(θ̂) of θ̂ differs from θ, and its bias is defined as E(θ̂) − θ.

When θ̂ is a biased estimator of θ its accuracy is usually assessed by its
mean square error (MSE) rather than its variance. The MSE is defined by

MSE(θ̂) = E
(
(θ̂ − θ)2

)
. (3.13)

Thus the MSE of an unbiased estimator is its variance, and more generally
it can be shown that

MSE(θ̂) = Var(θ̂) +
(
E(θ̂) − θ

)2
. (3.14)

It often happens, when θ̂ is a function of n random variables, that the bias
of θ̂ is proportional to n−1, that is that

E(θ̂) = θ + O(n−1). (3.15)

(See Appendix B.8 for the O notation.) In this case θ̂ is asymptotically
(n → ∞) unbiased, and it follows from equation (3.14) that the MSE and
the variance of θ̂ differ by a term proportional to n−2, so that when n is
large the two are close.

A biased estimator can be of interest for two reasons. First, a parameter
might not admit an unbiased estimate. For example, although there is an
unbiased estimator of the parameter p in a binomial distribution, there is no
unbiased estimator of p−1 (see Problem 3.3). A further example is discussed
below. Second, a biased estimator of a parameter might be preferred to an
unbiased estimator if its mean square error is smaller than the variance of
the unbiased estimator. An example of this is given in Problem 8.6.

An important example of biased estimation is provided by the estimation
of the correlation ρ12 (defined in (2.26)) between any two random variables
X1 and X2 having a bivariate normal distribution (the case k = 2 of (2.33)).
Given n pairs of random variables (X11, X21), (X12.X22), . . ., (X1n, X2n)
from this distribution, the standard estimator ρ̂12 of ρ12 is defined by

ρ̂12 =
σ̂12

σ̂1σ̂2
, (3.16)

where σ̂2
1 and σ̂2

2 are defined as in (3.5) and σ̂12, the estimate of the
covariance between the random variables X1 and X2, is defined by

σ̂12 =
∑n

i=1(X1i − X̄1)(X2i − X̄2)
n − 1

. (3.17)

The estimator (3.16) is a biased estimator of ρ12, and no unbiased esti-
mate of ρ12 exists. The bias is of order n−1 and is thus significant when n
is small. Nevertheless, correlation estimates of the form (3.16) are used in
bioinformatics in some cases when n is small, as discussed in Section 13.5,
and this bias can then have important consequences.



118 3. Statistics (i): An Introduction to Statistical Inference

3.4 Classical Hypothesis Testing

3.4.1 General Principles
Classical statistical hypothesis testing involves the test of a null hypothesis
against an alternative hypothesis. The procedure consists of five steps, the
first four of which are completed before the data to be used for the test are
gathered, and relate to probabilistic calculations that set up the statistical
inference process.

We illustrate these steps by using the two DNA sequences given in (1.1).
We call this the “sequence-matching” example and will refer to it several
times throughout the book.

Step 1

The first step in a hypothesis testing procedure is to declare the relevant
null hypothesis H0 and the relevant alternative hypothesis H1. The choice
of null and alternative hypotheses should be made before the data are seen.
To decide on a hypothesis as a result of the data is to introduce a bias into
the procedure, invalidating any conclusion that might be drawn from it.
Our aim is eventually to accept or to reject the null hypothesis as the
result of an objective statistical procedure, using data in our decision.

It is important to clarify the meaning of the expression “the null hy-
pothesis is accepted.” In the conservative approach to statistical hypothesis
testing as outlined below, this expression means that there is no statisti-
cally significant evidence for rejecting the null hypothesis in favor of the
alternative hypothesis. For reasons discussed below, the null hypothesis is
often a particular case of the alternative hypothesis, and when it is, the
alternative hypothesis must explain the data at least as well as the null
hypothesis. Despite this, the null hypothesis might well be accepted, in the
above sense, in that the alternative hypothesis might not explain the data
significantly better than does the null hypothesis. A better expression for
“accepting” is thus “not rejecting.”

It is important to note the words “in favor of the alternative hypothe-
sis” in the above. Suppose that the null hypothesis is that the probability
of success p in a binomial distribution is 1/2 and the alternative is that
this parameter exceeds 1/2. Suppose further that in 1,000 trials, only 348
successes are observed. The null hypothesis is accepted in favor of the
alternative since the alternative hypothesis does not explain this result sig-
nificantly better than does the null hypothesis – in fact it explains it less
well than does the null hypothesis. Nevertheless, it would be unreasonable
to believe that the null hypothesis is true: the data clearly suggest that
p < 1/2. Thus accepting a null hypothesis in favor of some alternative does
not necessarily imply in an absolute sense that the null hypothesis provides
a reasonable explanation for the data observed.
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We illustrate a choice of null and alternative hypotheses with a contrived
example. Suppose that, in the sequence-matching case discussed above, the
probability that a given nucleotide arises at a given site is 0.25. The null
hypothesis might specify that the two sequences were generated at random
with respect each other, which implies that the probability of a match
between the two nucleotides at any site is 0.25. The alternative hypothesis
might specify that the probability of a match at any site is some value
larger than 0.25, for example 0.35, as might occur if the two sequences are
related. Thus if the (unknown) probability of a match at any site is p, the
null hypothesis claims that p = 0.25 and the alternative hypothesis claims
that p = 0.35.

A hypothesis can be simple or composite. A simple hypothesis specifies
the numerical values of all unknown parameters in the probability distribu-
tion of interest. In the above example, both null and alternative hypotheses
are simple. A composite alternative does not specify all numerical values
of all the unknown parameters. In the sequence-matching example, the
alternative hypothesis “p exceeds 0.25” is composite. It is also one-sided
(p > 0.25) as opposed to two-sided (p �= 0.25).

In the above example, the alternative hypothesis p > 0.25 is a natural
one. However, for technical reasons associated with the hypothesis testing
theory developed in Chapter 9, it is often advantageous to make the null
hypothesis a particular case of the alternative hypothesis, in which case we
say it is nested within the alternative hypothesis. If this is done, then in
the example of the previous paragraph, the one-sided alternative p > 0.25
would be replaced by p ≥ 0.25 and the two-sided alternative p �= 0.25 would
be replaced by “p unspecified.” In practice there is no change to the testing
procedures if the null hypothesis is nested within the alternative hypothesis
in this way, and we shall freely use both the nested notation such as p ≥ 0.25
and the non-nested notation such as p > 0.25 interchangeably.

The sequence matching case illustrates the fact that tests of hypotheses
usually involve the value of some unknown parameter (or parameters). We
generically denote the parameter of interest by θ, although in some cases
we use a more specific notation (such as µ for a mean). The nature of the
alternative hypothesis is determined by the context of the test, in particular
whether it is one-sided up (that is the unknown parameter θ exceeds some
specified value θ0), one-sided down (θ < θ0), or two-sided (θ �= θ0). In
many cases in bioinformatics the natural alternative is both composite and
one-sided. The sequence-matching case is an example: Unless there is some
reason to choose a specific alternative such as p = 0.35, it seems more
reasonable to choose the composite alternative p ≥ 0.25.

Step 2

Since the decision to accept or reject H0 will be made on the basis of data
derived from some random process, it is possible that an incorrect decision



120 3. Statistics (i): An Introduction to Statistical Inference

will be made, that is, to reject H0 when it is true (a Type I error), or to
accept H0 when it is false (a Type II error). When testing a null hypothesis
against an alternative it is not possible to ensure that the probabilities of
making a Type I error and a Type II error are both arbitrarily small unless
we are able to make the number of observations as large as we please. In
practice we are seldom able to do this. This dilemma is resolved in practice
by observing that there is often an asymmetry in the implications of making
the two types of error. In the sequence-matching case, for example, there
might be more concern about making the false positive claim of a similarity
between the two sequences when there is no such similarity, and less concern
about making the false negative conclusion that there is no similarity when
there is. For this reason, a frequently adopted procedure is to focus on
the Type I error, and to fix the numerical value α of this error at some
acceptably low level (usually 1% or 5%), and not to attempt to control
the numerical value of the Type II error. The choice of the values 1%
and 5% is reasonable, but is also clearly arbitrary. The choice 1% is a
more conservative one than the choice 5%. Step 2 of the hypothesis testing
procedure consists in choosing the numerical value for the Type I error.

Step 3

The third step in the hypothesis testing procedure consists in determining
a test statistic. This is the quantity calculated from the data whose nu-
merical value leads to acceptance or rejection of the null hypothesis. In the
sequence-matching example one possible test statistic is the total number
Y of matches. This is a reasonable choice, but in more complicated cases
the choice of a test statistic is not straightforward. The theory in Chapter
9 focuses on deriving test statistics that, for a given Type I error, mini-
mize the probability of our making a Type II error, given the number of
observations to be made. There is a substantial body of statistical theory
associated with such an optimal choice of a test statistic, discussed in detail
in Chapter 9.

Step 4

The next step in the procedure consists in determining those observed
values of the test statistic that lead to rejection of H0. This choice is made so
as to ensure that the test has the numerical value for the Type I error chosen
in Step 2. We illustrate this step with the sequence-matching example.
Suppose that, in this example, the total number Y of matches is chosen as
the test statistic. In both the case of a simple alternative hypothesis such
as “p = 0.35” and in the case of the composite alternative hypothesis “p ≥
0.25,” the null hypothesis p = 0.25 is rejected in favor of the alternative
when the observed value y of Y is sufficiently large, that is, if y is greater
than or equal to some significance point K. If for example the Type I error
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is chosen as 5%, K is found from the requirement

Prob(null hypothesis is rejected when it is true)
= Prob(Y ≥ K | p = 0.25) = 0.05. (3.18)

In practice, when discrete random variables are involved, it may be impos-
sible to arrive at a procedure having exactly the Type I error chosen. This
difficulty arises here: It is impossible to find a value of K such that (3.18)
is satisfied exactly. In practice, the choice of K is made by a conservative
procedure: When α = .05, p = .25 and n = 100, Prob(Y ≥ 32) = .069 and
Prob(Y ≥ 33) = .044, and we use the conservative value 33 for K. This
difficulty is to be taken as understood in all testing procedures when the
test statistic is a discrete random variable.

For very long sequences, a normal approximation to the binomial might
be employed. For example, if in the above example both sequences have
length 1,000,000, and the Type I error is chosen as 5%, K might be
determined in practice by the requirement

Prob
(

X ≥ K − 1
2

)
= 0.05, (3.19)

where X is a random variable having a normal distribution with mean
1,000,000(0.25) = 250,000 and variance 1,000,000(0.25)(0.75) = 187,500
and the continuity correction 1

2 has been employed. The resulting value of
K is 250,712.81; in practice the conservative value 250,713 would be used.

In the above example the null hypothesis is rejected if Y is sufficiently
large. If the alternative hypothesis had specified a value of p that is less
than 0.25, then the null hypothesis would be rejected for sufficiently small
Y .

In many test procedures the null hypothesis does not specify the numer-
ical values of all the parameters involved in the distribution of the random
variables involved in the test procedure. In such a case problems can arise
in the testing procedure since there might be no unique significance point
(such as K above) having the property that the probability that the test
statistic exceeds k is equal to the Type I error no matter what the values
of the parameters not specified by the null hypothesis. This problem is
illustrated in a practical case in Section 3.5.2.

Step 5

The final step in the testing procedure is to obtain the data, and to deter-
mine whether the observed value of the test statistic is equal to or more
extreme than the significance point calculated in Step 4, and to reject the
null hypothesis if it is. Otherwise the null hypothesis is accepted.
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3.4.2 P -Values
A testing procedure equivalent to that just described involves the calcula-
tion of a so-called P -value, or achieved significance level . Here Step 4, the
calculation of the significance point such as K in the example described,
is not carried out. Instead, once the data are obtained, we calculate the
null hypothesis probability of obtaining the observed value, or one more
extreme, of the test statistic. This probability is called the P -value. If the
P -value is less than or equal to the chosen Type I error, the null hypothesis
is rejected. This procedure always leads to a conclusion identical to that
based on the significance point approach.

For example, the null hypothesis (p = 0.25) probability of observing 11
matches or more in a sequence comparison of length 26 (as in (1.1)) is
found from the binomial distribution to be about 0.04. This is the P -value
associated with the observed number 11. If in the length 1,000 sequence-
matching case there are 278 matches, the P -value might be found, using
the normal approximation to the binomial distribution, as

Prob(X ≥ 277.5),

where X has a normal distribution with mean 250 and variance 187.5. This
gives a P -value of 0.022. If the Type I error had been chosen to be 1%,
the null hypothesis would then not be rejected. This conclusion agrees with
that obtained using the significance point approach, since the significance
point K found above is 283, greater than the observed value 278.

The P -value calculation for a two-sided alternative hypothesis is a little
more complicated. Suppose for example that we wish to test whether a
coin is fair, and obtain 58 heads from 100 tosses. The P -value is then the
probability of obtaining 58 or more, or 42 or fewer, heads, since values 42
or fewer are more extreme, for a two-sided alternative, than the observed
value 58.

Before the experiment is conducted, the eventual P -value is a random
variable. If the test statistic is continuous and the null hypothesis is true,
the probability distribution of this P -value is the continuous uniform dis-
tribution (1.63) on [0, 1]. This follows from the fact that a P -value is the
probability that the test statistic is at least as extreme as its observed value.
In the case where the alternative hypothesis corresponds to small values
of the test statistic, the P -value is FX(x), where x is the observed value
of the test statistic and FX(x) is the cumulative distribution function of
the test statistic when the null hypothesis is true. Theorem 1.2 then shows
that the P -value has the uniform distribution (1.63), as claimed. A similar
argument holds when the alternative hypothesis corresponds to large val-
ues of the test statistic, where the P -value (for a continuous test statistic)
is 1 − FX(x). In both cases the P -value satisfies the equation

Prob(P -value ≤ x|H0 true) = x. (3.20)
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This implies that the P -value has the uniform distribution on [0, 1] when
the null hypothesis is true, as claimed.

The situation for a test statistic having a discrete distribution is not so
straightforward. As a simple example, suppose that a coin is to be tossed
n times in order to test the null hypothesis that it is fair against the al-
ternative hypothesis that it is biased towards tails. The test statistic is the
number of heads observed. There are n + 1 possible P -values, given by

i∑
j=0

(
n

j

)(
1
2

)n

, i = 0, 1, 2, . . . , n, (3.21)

the P -value
∑i

j=0

(
n
j

)
( 1
2 )n arising when the n tosses result in i heads.

This P -value has null hypothesis probability
(
n
i

)
( 1
2 )n, which depends non-

trivially on the value of i. Thus the P -value does not have a (discrete)
uniform distribution. Further, although equation (3.20) holds for values of
x of the form x = i/n, it does not hold for other values of x, for which case

Prob(P -value ≤ x|H0 true) < x. (3.22)

Thus for any value of x in [0,1],

Prob(P -value ≤ x|H0 true) ≤ x. (3.23)

This result can be shown to be true for any test statistic having a discrete
probability distribution. We return to this conclusion in Section 3.12.

One feature of any P -value is that it can never take the value 0. This
point is discussed again in the context of a discrete test statistic in Section
3.8.1.

3.4.3 Power Calculations
For the test of a simple null hypothesis against a simple alternative, with
a fixed number of observations, the choice of the Type I error implicitly
determines the numerical value β of the Type II error, or equivalently of
the power of the test, defined as the probability 1 − β of rejecting the null
hypothesis when the alternative is true.

When the alternative hypothesis is composite, the probability that the
null hypothesis is rejected will normally depend on the actual value of
the parameter (or parameters) concerned in the test. There is therefore
no unique value for the Type II error, and no unique value for the power
of the test, under the alternative hypothesis. In this case the principle
adopted in Step 3, namely that of choosing a test statistic that maximizes
the power of the test, becomes more difficult to apply than in the case when
the alternative hypothesis is simple. This problem is discussed further in
Chapter 9.
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3.5 Hypothesis Testing: Examples

3.5.1 Example 1. Testing for a Mean: the One-Sample Case
A classic test in statistics concerns the unknown mean µ of a normal distri-
bution. Suppose first that the variance σ2 of this distribution is known. One
case of this is the test of the null hypothesis µ = µ0 against the one-sided
alternative hypothesis µ > µ0. If this test is carried out using the observed
values of random variables X1, X2, . . . , Xn having the normal distribution
in question, the statistical theory of Chapter 9 leads to the use of X̄ as
an optimal test statistic and the rejection of the null hypothesis if the ob-
served value x̄ of X̄ is “too much larger” than µ0. The random variable X̄
has known variance σ2/n and mean µ0 if the null hypothesis is true. The
standardization procedure described in Section 1.10.2 then shows that the
random variable Z, defined by

Z =
(X̄ − µ0)

√
n

σ
(3.24)

has the standard normal distribution when the null hypothesis is true. Since
the probability that such a random variable exceeds 1.645 is 0.05, a desired
Type I error 5% is achieved if the null hypothesis is rejected when

(x̄ − µ0)
√

n

σ
≥ 1.645, (3.25)

where x̄ is the observed value of X̄ once the data are obtained. Equivalently,
the null hypothesis is rejected if

x̄ ≥ µ0 + 1.645σ/
√

n. (3.26)

If the alternative hypothesis had been µ ≤ µ0, the null hypothesis would
be rejected if the observed value x̄ ≤ µ0 − 1.645σ/

√
n. If the alternative

hypothesis had been two-sided, so that no specification is made for the
value of µ, the null hypothesis would be rejected if |x̄ − µ0| ≥ 1.96σ/

√
n.

This shows that the nature of the alternative hypothesis determines the
values of the test statistic that lead to rejection of the null hypothesis. It
will be shown in Section 3.7 that in some cases it can also determine the
choice of the test statistic itself.

A more realistic situation arises when σ2 is unknown, in which case a
one-sample t-test is used. Here we estimate the unknown variance σ2 by s2,
defined in (3.6), and use as test statistic the one-sample t statistic, defined
by

t =
(x̄ − µ0)

√
n

s
. (3.27)
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Under the assumption that X1, X2, . . . , Xn are NID(µ, σ2), the null
hypothesis distribution of T, defined by

T =
(X̄ − µ0)

√
n

S
, (3.28)

is well known (as the t distribution with n − 1 degrees of freedom). The
density function of T is independent of µ0 and σ2, being

fT (t) =
Γ
(

n+1
2

)
√

nπΓ
(

n
2

) (
1 + t2

n

)(n+1)/2 , −∞ < t < +∞. (3.29)

An outline of the derivation of this density function is given in Problem
3.7.

It is perhaps remarkable that this density function is independent of the
value of σ2. The value σ2 is not specified under the null hypothesis, and
this implies that significance points of t can be calculated no matter what
the value of σ2 might be. These significance points have been calculated
from (3.29) for a variety of values of n and the chosen Type I error, and
are widely available.

The t distribution (3.29) differs from standard normal distribution ap-
plying for the statistic Z, so that the significance points appropriate for
Z are not appropriate for T . However the t distribution converges to the
standard normal distribution as n → ∞.

Since the null hypothesis distribution of T is independent of the values
of µ0 and σ2, T is said to be a pivotal quantity. It is because of the pivotal
nature of T that explicit significance points of the t distribution can be
found, whatever the values of µ0 and σ2 might be.

3.5.2 Example 2. The Two-Sample t-Test
A protein coding gene is a segment of the DNA that codes for a partic-
ular protein (or proteins). In any given cell type at any given time, this
protein may or may not be needed. Each cell will generate the proteins it
needs, which will usually be some small subset of all possible proteins. If
a protein is generated in a cell, we say that the gene coding for this pro-
tein is expressed in that cell type. Furthermore, any given protein can be
expressed at many different levels. One cell type might need more copies
of a particular protein than another cell type. When this happens we say
that the gene is differentially expressed between the two cell types. There
are several techniques for measuring the level of gene expression in a cell
type. All of these methods are subject to both biological and experimental
variability. Therefore, one cannot simply measure the level of expression
once in each cell type to test for differential expression. Instead, one must
repeat each experiment several times and perform a statistical test of the
hypothesis that they are expressed at the same or different levels.
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Suppose that the mean expression levels of a given gene in two cell types,
for example normal and tumor (cancerous) cells, are to be compared. In
statistical terms, this comparison can be framed as the test of the equality
of two unknown means. For the moment we assume that the (unknown)
variance of expression level in normal cells is identical to that in tumor
cells. To test for equality of the two means, we plan to measure the expres-
sion levels of m cells of one type and compare these with the expression
levels of n cells of another type. Suppose that, before the experiment, the
measurements X11, X12, . . . , X1m from the first cell type are thought of
as m NID(µ1, σ

2) random variables, and the measurements X21, X22, . . . ,
X2n from the second cell type are thought of as n NID(µ2, σ

2) random
variables. The null hypothesis states that µ1 = µ2 (= µ, unspecified). We
assume for the moment that the alternative hypothesis leaves both µ1 and
µ2 unspecified, so that our eventual test is two-sided.

The theory in Chapter 9 shows that, under the assumptions made, the
optimal test statistic is T , defined now by

T =
(X̄1 − X̄2)

√
mn

S
√

m + n
, (3.30)

with S defined by

S2 =

m∑
i=1

(X1i − X̄1)2 +
n∑

i=1
(X2i − X̄2)2

m + n − 2
. (3.31)

The form of this test statistic can been understood by observing that the
variance of X̄1 − X̄2 is σ2/m + σ2/n. If we had known the variance σ2, we
could use as test statistic the quantity Z, defined by

Z =
X̄1 − X̄2√

σ2/m + σ2/n
=

(X̄1 − X̄2)
√

mn

σ
√

m + n
. (3.32)

Since σ2 is unknown, it is estimated by the pooled estimator S2, using
observations from both normal and tumor cells, and in general from the
two groups being compared. This leads to the T statistic in (3.30).

The null hypothesis probability distribution of T is independent of both
the value for the (common) mean unspecified under the null hypothesis and
of the unknown variance σ2. This implies that T (defined by (3.30)) is a
pivotal quantity. The null hypothesis distribution of T is the t distribution
(3.29) with m + n − 2 degrees of freedom, and this enables a convenient
assessment of the significance of the observed value t of T , defined as

t =
(x̄1 − x̄2)

√
mn

s
√

m + n
, (3.33)
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with s defined by

s2 =

m∑
i=1

(x1i − x̄1)2 +
n∑

i=1
(x2i − x̄2)2

m + n − 2
. (3.34)

For the two-sided test discussed above, significantly large positive or
large negative values of t lead to the rejection of the null hypothesis. When
the alternative hypothesis is µ1 ≥ µ2, significantly large positive values
of t lead to the rejection of the null hypothesis, and when the alternative
hypothesis is µ1 ≤ µ2, significantly large negative values of t lead to the
rejection of the null hypothesis.

In reality, expression levels cannot generally be expected to have normal
distributions, nor should the variances of the two types generally be ex-
pected to be equal. These two assumptions were made in the above t-test
procedure, and the significance points of the t distribution are calculated
assuming that both assumptions hold. Thus in practice it might not be
appropriate to use the t-test to test for differential expression. In gen-
eral, if the normal distribution assumption is unjustified we should use the
non-parametric tests: these are discussed in Section 3.8.2 and in Chapter
13.

The optimality property of the two-sample t-test procedure described
above derives from statistical theory – see Chapter 9. The theoretical de-
velopment assumes that the variances of the random variables in the two
groups considered are equal. When, as is often the case in practice, these
two variances cannot reasonably be taken as being equal, the theoretical
approach of Chapter 9 fails to lead to a testing procedure for which the
test statistic has the same distribution for all parameter values not speci-
fied by the null hypothesis. That is, no pivotal quantity analogous to equal
variance case T as defined in (3.30) exists. This implies that there is no well-
defined null hypothesis probability distribution available analogous to that
in (3.29) from which significance points can be obtained, whatever the un-
known variances in the two groups might be. Because of this, approximate
heuristic procedures are required.

One frequently used procedure is as follows. Under the null hypothesis,
X̄1 and X̄2 have normal distributions with the same mean and respective
variances σ2

1/m and σ2
2/n, so that the difference X̄1 − X̄2 has a normal

distribution with mean zero and variance

σ2
1

m
+

σ2
2

n
. (3.35)

The variances σ2
1 and σ2

2 are unknown, but have estimators S2
1 and S2

2 ,
where

S2
1 =
∑m

i=1(Xi1 − X̄1)2

m − 1
, S2

2 =
∑n

i=1(Xi2 − X̄2)2

n − 1
. (3.36)
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One then computes the statistic T ′, defined by

T ′ =
X̄1 − X̄2√

A + B
, (3.37)

where

A =
S2

1

m
, B =

S2
2

n
.

When the null hypothesis of equal means is true, T ′ has an approximate
t distribution with degrees of freedom given by the largest integer less than
or equal to ν (see Lehmann (1986)), where ν defined by

ν =
(A + B)2
A2

m−1 + B2

n−1

.

When m = n, T ′ is identical to the T statistic (3.30). However, in this
case the number of degrees of freedom appropriate for t′ is not equal to
the number 2(n − 1) applying when the two variances are assumed to be
equal: The value of ν lies in the interval [n − 1, 2(n − 1)], the actual value
depending on the ratio of S2

1/S2
2 .

Markowski and Markowski (1990) show for the case m = n that even
when the variances in the two groups differ, use of the “equal variance”
t-test procedure leads to a very small error.

An important case of the two-sample t test arises if n = m and the
random variables X1i and X2i are logically paired, for example being ex-
pression levels of normal and tumor cells taken from the same person. In
this “paired t-test” case the test is carried out by using the differences
Di = X1i − X2i and basing the test entirely on these differences. This
reduces the test to a one-sample t-test with test statistic T as defined in
(3.28) and with Xi replaced by Di and µ0 set equal to 0. The test statistic
is then

T =
D̄

√
n

SD
, (3.38)

where S2
D defined by the right-hand side in (3.5), with Xi replaced by Di

and X̄ by D̄.
The advantage of the pairing procedure is that the variance estimate

S2
D measures only cell type to cell type variation, and eliminates person-

to-person variation. If there is significant person-to-person variation, this
provides a more powerful test of cell type to cell type variation. In this
procedure we see the beginnings of the concept of the Analysis of Vari-
ance (ANOVA). In an ANOVA procedure the variation in a body of data
is broken down into separate components, each measuring one source of
variation, and the significance of one potential source of variation can be
investigated free of any influence of other potential sources of variation.
The ANOVA concept is developed at length in Section 9.5.
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3.5.3 Example 3. Tests on Variances
In Section 3.5.2 we considered two tests, each comparing the means of two
groups of random variables. These tests differ depending on whether or not
one is prepared to assume that the variances of the random variables in
the two groups are equal. This makes it important to describe a test for
equality of variances.

We suppose that X11, X12, . . . , X1m are NID(µ1, σ
2
1) and X21, X22, . . . ,

X2n are NID(µ2, σ
2
2). We wish to test the null hypothesis σ2

1 = σ2
2 . To do

this we consider the ratio S2
1/S2

2 of the two variance estimators S2
1 and S2

2
defined in (3.36). Under the null hypothesis this ratio has the F distribution
with (m−1, n−1) degrees of freedom, developed in Section 2.13, whatever
values the unknown means µ1 and µ2 take. If for example the alternative
hypothesis were σ2

1 > σ2
2 , significantly large values of the observed value

of this ratio would lead to rejection of the null hypothesis. Significance
points of F for Type I errors arising in practice are extensively tabulated,
allowing a ready evaluation of whether the observed value of the ratio is
indeed significantly large.

We will meet the F test in Section 9.5 in the context of ANOVA (the
analysis of variance), where (perhaps unexpectedly) it is used as a test for
the equality of several means, rather than as a test for the equality of two
variances.

3.5.4 Example 4. Testing for the Parameters in a
Multinomial Distribution

In this example we consider a test of the null hypothesis that prescribes
specific values for the probabilities {pi} in the multinomial distribution
(2.30). The alternative hypothesis considered here is composite and leaves
these probabilities unspecified. This can be used, for example, to test for
prescribed probabilities for the four nucleotides in a DNA sequence.

Let Yi be the number of observations in category i. A test statistic often
used for this testing procedure is X2, defined by

X2 =
k∑

i=1

(Yi − npi)2

npi
. (3.39)

Sufficiently large values of the observed value

k∑
i=1

(yi − npi)2

npi
(3.40)

of X2 lead to rejection of the null hypothesis. The quantity (3.40) may be
thought of as a measure of the discrepancy between the observed values
{yi} and the respective null hypothesis expected values {npi}.
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When the null hypothesis is true and n is large, X2 has approximately
the chi-square distribution (1.77) with ν = k − 1 degrees of freedom. The
proof of this claim, and the corresponding claim for the chi-square statistic
associated with Table 3.1, is beyond the level of the material in this book.
The statistic X2 is frequently referred to as the “chi-square statistic,” and
this explains the notation X2. Tables of the significance points of the chi-
square distribution are widely available for all values of ν likely to arise in
practice.

The choice of the test statistic (3.39) is not arrived at from the statistical
theory to be discussed in Chapter 9. Instead, that theory and the discussion
following (9.25) leads to the test statistic

2
∑

i

Yi log
Yi

npi
. (3.41)

Despite the optimality theory associated with the statistic (3.41), common
practice is to use the statistic (3.39) for the testing procedure. This oc-
curs largely for historical reasons. When the null hypothesis is true and the
sample size is large, the numerical values of the statistics (3.39) and (3.41)
are usually quite close (see Problem 3.6), and this can be thought of as a
justification for the use of (3.39).

3.5.5 Example 5. Association tests.
In this section we consider tests of association. Specifically, observations
are categorized into one of an number of “row” categories and also into
one of a number of “column” categories. The tests we consider may be
thought of as tests of association of the the categorization by rows and the
categorization by columns. We start with the case of two rows and two
columns.

Two-by-Two Tables: Fisher’s Exact Test
We illustrate the test of association for a two-by-two table with the “gen-
ders and mutations” example of Section 1.3.3. We wish to test the null
hypothesis that there is no association between gender and propensity to
be a mutant, the alternative hypothesis of interest being that males are
more likely to be mutants than are females. As in Section 1.3.3, we sup-
pose that n male mice and N − n female mice are irradiated, and that
in all a total of m mutant mice is observed and thus a total of N − m
non-mutants. These four totals are taken as given.

To illustrate the calculations, suppose that n = 8, that N = 20 and that
m = 9. Of the males, y = 6 are mutants. (We use very small numbers to
illustrate the computations.) These data may be arranged in the form of a
two-by-two contingency table, as shown below.



3.5. Hypothesis Testing: Examples 131

mutant non-mutant total
male 6 2 8

female 3 9 12
total 9 11 20

The example of throwing objects into a box given at the end of section
1.3.3 provides an appropriate paradigm for this experiment. The require-
ment of the independence of the throws in that example becomes the
requirement that the event that any one mouse is a mutant is independent
of the event that any other mouse is a mutant. The fact that the column
into which an object is thrown is independent of the row into which it is
thrown corresponds to the assumption that the null hypothesis in the ra-
diation experiment is true. The P -value is the probability of observing a
value 6 or larger in the upper left-hand cell in the table, assuming that the
null hypothesis is true and that the four marginal totals 8, 12, 9, and 11
are given. The hypergeometric formula (1.9) shows that this probability is

(8
6

)(12
3

)(20
9

) +

(8
7

)(12
2

)(20
9

) +

(8
8

)(12
1

)(20
9

) ,

or about 0.039890. With a Type I error of 5%, we would reject the null
hypothesis. This is an example of Fisher’s exact test, and the P -value
calculated is exact.

Until computer packages became available, this exact procedure was used
only when the numbers in the two-by-two table such as that shown were
comparatively small, since hand calculation of the hypergeometric prob-
abilities for large numbers is prohibitive. Computer packages now allow
calculations for quite large numbers, and for very large numbers many
packages use the approximate chi-square procedure described in the next
section, which is quite accurate when the numbers in the table are large.

Two-sided tests are carried out by the obvious extension of the procedure
described above.

The hypergeometric distribution from which the P -value is calculated
applies only if various criteria are met. In particular it is required that
the individual readings which add up to the counts in the four cells in the
table be independent. The same comment applies for tables of general size,
considered below: unfortunately, this requirement is often overlooked in the
application of association tests in bioinformatics.

A final observation is that the procedure described can only test for
association, and any subsequent claim of a cause and effect relation must
be made on grounds other than the association test itself.
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column
1 2 3 · · · c Total

1 Y11 Y12 Y13 · · · Y1c y1·
row 2 Y21 Y22 Y23 · · · Y2c y2·

...
...

...
...

. . .
...

...
r Yr1 Yr2 Yr3 · · · Yrc yr·

Total y·1 y·2 y·3 · · · y·c y

Table 3.1. Two-way table data.

Tables of Arbitrary Size: the Chi-Square Test
A situation more general than that described in the previous section arises
when categorization count data arise in the form of a two-way table with
an arbitrary number r of rows and an arbitrary number c or columns, such
as Table 3.1. The row and column totals are not of direct interest and can
often be chosen in advance. They are thus written in lower case in Table
3.1. As with Fisher’s exact test, the testing procedure described below is
valid only if the y observations leading to the counts {Yjk} in the table are
all independent of each other. This important fact is often overlooked in
the application of chi-square procedures in bioinformatics.

Given the row and column totals, it can be shown that when the null
hypothesis is true, Yjk is a random variable with mean value Ejk, where
Ejk = yj·y·k/y. 1 Thus when the null hypothesis is true, the observed value
of Yjk should be close to Ejk. This argument leads to the frequently used
chi-square test statistic ∑

jk

(Yjk − Ejk)2

Ejk
, (3.42)

which can be regarded as a measure of the difference of the Yjk and Ejk

values. When the null hypothesis is true and the independence requirement
discussed above holds, the statistic (3.42) has an asymptotic chi-square
distribution with ν = (r − 1)(c − 1) degrees of freedom.

Some examples of the application of this test in a genetic context are
given in Sections 5.2, 5.3.4, and 6.1, and a theoretical discussion is given
in Example 4 of Section 9.4.

The theory of Section 9.4 leads to the use of the test statistic

2
∑
jk

Yjk log
Yjk

Ejk
(3.43)

1The notation E arises for historical reasons, since the Ejk are usually described as
“expected values,” and should not be confused with the use of the notation E found
elsewhere in this book to describe a random variable.
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as the appropriate test statistic, rather than the statistic (3.42). As with the
statistic (3.40), the statistic (3.42) is generally used for historical reasons
only. The numerical values of the two statistics (3.42) and (3.43) are usually
close when the null hypothesis is true and the sample size is large.

We conclude this section by remarking that the chi-square procedures
described above are two-sided tests: the alternative hypothesis is always
that there is an association of some kind between row and column modes of
classification. When there are only two row and two column classifications
a one-sided alternative can be tested, using Fisher’s exact test.

3.6 Likelihood Ratios, Information, and Support

In this section we briefly discuss aspects of the choice of test statistic in a
hypothesis testing procedure. It will be shown in Chapter 9 that in testing a
simple null hypothesis against a simple alternative hypothesis, a reasonable
optimality argument leads to the use of the ratio of the probability of the
data under the alternative hypothesis to the probability of data under the
null hypothesis as the test statistic. For obvious reasons, this is called the
likelihood ratio.

As a simple example, we consider the sequence-matching example dis-
cussed in Section 3.4.1, and define the indicator variable Yi by Yi = 1 if
the pair in position i match and Yi = 0 if they do not, for i = 1, 2, . . . , n.
If the null hypothesis probability of a match is 0.25 and the alternative
hypothesis probability is 0.35, the likelihood ratio is

(0.35)
∑

Yi(0.65)(n−∑
Yi)

(0.25)
∑

Yi(0.75)(n−∑
Yi)

. (3.44)

This simplifies to (
7
5

)Y (13
15

)n−Y

, (3.45)

where Y =
∑

Yi is the (random) total number of matches. This is a mono-
tonically increasing function of Y, the total number of matches, and thus
use of the likelihood ratio as test statistic is equivalent to the use of Y as
test statistic. This explains the choice of Y as test statistic in step 3 of the
hypothesis testing procedure described in Section 3.4.1. More complicated
examples are discussed in Chapter 9.

The logarithm of the expression in (3.45) is

Y log
(

7
5

)
+ (n − Y ) log

(
13
15

)
. (3.46)

The definition of accumulated support in equation (2.78) shows that this
is the accumulated support, after n pairs have been observed, for the claim
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that the probability of a match is 0.35 against the claim that it is 0.25. If
the true probability of a match is p, the expected value of the expression
in (3.46) is

n

(
p log

(
7
5

)
+ (1 − p) log

(
13
15

))
. (3.47)

This is zero when p = 0.2984, approximately half-way between the val-
ues 0.25 and 0.35. For values of p close to 0.2984, many observations will
be needed before a preference between the values 0.25 and 0.35 can be
established.

We shall return to the concept of accumulated support in Section 9.9,
when considering sequential tests of hypotheses.

3.7 Hypothesis Testing Using a Maximum as Test
Statistic

The use of the maximum of several random variables as a test statistic arises
in several areas in bioinformatics, and in particular in BLAST (Chapter 10),
so in this section we introduce aspects of hypothesis testing theory using a
maximum as a test statistic.

3.7.1 The Normal Distribution
Let X1, X2, . . . , Xn be independent normal random variables, each having
variance 1. Suppose the null hypothesis states that the mean of each of these
random variables is 0, while the alternative hypothesis claims that one of
these random variables has mean µ greater than 0, the remaining variables
having mean 0. It is not, however, stated by the alternative hypothesis
which of the random variables has mean µ. An example where this situation
arises in practice is discussed in Example 2 of Section 9.4.

This is a different alternative hypothesis from the one considered in
Example 1 of Section 3.5. The statistical principles given in Chapter 9
that lead to X̄ as optimal test statistic in that example lead in this case
to Xmax, the maximum of X1, X2, . . . , Xn, as optimal test statistic. If
the desired Type I error is α and K is computed so that Prob(Xmax ≥
K | null hypothesis true) = α, the null hypothesis is rejected if Xmax ≥ K.
Equivalently, if xmax is the observed value of Xmax, the null hypothesis
is rejected if the P -value Prob(Xmax ≥ xmax | null hypothesis true) is less
than α.

The calculation of the value of K is found in principle from the null
hypothesis probability distribution of the maximum Xmax of n NID(0, 1)
random variables. No simple exact form is available for this distribution.
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Various approximations can be found in the literature, usually based ei-
ther on simulation or on the asymptotic density function (2.128) for the
maximum of n iid continuous random variables. However, a direct calcula-
tion of P -values is possible using normal distribution tables and equation
(2.91). For example, suppose that n = 100 and that xmax, the observed
value of Xmax, is 3.6. The probability that an N(0, 1) random variable is
less than 3.6 is approximately 0.9998409, and equation (2.91) then shows
that the P -value associated with the observed value 3.6 of Xmax is ap-
proximately 1 − (0.9998409)100 ∼= 0.0158, which is significant if the Type
I error is 0.05. If n = 500 and xmax = 3.6, the approximate P -value is
1 − (0.9998409)500 ∼= 0.0765, which is not significant if the Type I error is
0.05.

The calculations just described rely on our ability to calculate the cumu-
lative distribution function of the random variable of interest. For random
variables for which this is difficult, another approach might be employed.
For a discrete random variable, an approximation using the total variation
distance (1.23) introduced in Section 1.3.8 might be tried. This procedure,
however, should be used with caution. Two probability distributions might
have a small total variation distance between them and yet the probabil-
ity distribution of the maximum of n independent random variables from
one distribution might have a large total variation distance from the prob-
ability distribution of the maximum of n independent random variables
from the other distribution. As an example, consider the two probability
distributions in Table 3.2. The total variation distance between the two
distributions shown in the table is less than 10−4. Despite this, it is al-
most certain that the maximum of 106 random variables taken from the
first distribution is 1, whereas it is almost certain that the maximum of
106 random variables taken from the second distribution is 2. As a result,
the total variation distance between the probability distributions of the
two maxima is then almost 1, as large as is possible. Thus care must be
taken when using the total variation distance concept of individual random
variables when a procedure is employed using the maximum of n of these
random variables.

Possible values 0 1 2

Probabilities for distribution 1 1 − 10−4 − 10−8 10−4 10−8

Probabilities for distribution 2 1 − 10−4 − 10−8 10−8 10−4

Table 3.2.
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3.7.2 P -values for the Maximum of Geometric Random
Variables

Suppose that Ymax is the maximum of n iid random variables, each having
the geometric distribution (1.69). The probability that Ymax ≥ y, for any
given value of y, is given in (2.111). The exponential limiting process in
equation (B.3) in Appendix B shows that, to a close approximation, the
P -value associated with an observed value ymax of Ymax is

P -value ≈ 1 − e−n e−λymax
(3.48)

as n → ∞. This asymptotic relation can be written in the form

P -value ≈ 1 − e−e−λ(ymax−log n/λ)
(3.49)

as n → ∞. If we denote by µmax and σ2
max the approximate mean and

variance of Ymax, given respectively in (2.118) and (2.120), we get

log n

λ
≈ µ∗ − γ

λ
, λ ≈ π

σ∗√6
as n → ∞, where

µ∗ = µmax +
1
2
, (σ∗)2 = σ2

max − 1
12

. (3.50)

The approximation (3.49) can then be written in the more cumbersome,
but more easily generalized, form

P -value ≈ 1 − e−e−(π(y−µ∗)/(σ∗√
6)+γ)

. (3.51)

The similarity between the approximations (3.51) and (2.131) is clear.
However, (2.131) applies for the maximum of a wide range of continu-
ous random variables, and is not directly applicable for discrete random
variables. This implies that it is important to assess the use of the approx-
imation (3.51) to find the P -value associated with the observed value y of
the maximum Ymax of n iid discrete random variables. This approxima-
tion is made in several areas of bioinformatics; a specific example will be
discussed in Section 6.3 in connection with the comparison of two DNA
sequences.

Suppose that µmax and σ2
max denote the mean and variance of Ymax, and

µ∗ and (σ∗)2 are defined as in equation (3.50). In Table 3.3 we display
the mean µmax and the variance σ2

max of the maximum of 75,000 indepen-
dent random variables, each having the generalized geometric distribution
(1.21). These are calculated from equations (2.103) and (2.104) and the
theory in Appendix C. The calculations assume that p = 1

4 and cover the
cases k = 0, 1, . . . , 5. The means and variances in Table 3.3 can now be used,
in conjunction with (3.50) and (3.51), to obtain approximate P -values for
discrete generalized geometric random variables, which can then be com-
pared with exact P -values calculated from equation (2.101) and the theory
of Appendix C. Both sets of values are displayed in Table 3.4.
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k 0 1 2 3 4 5
µmax 8.013 10.559 12.812 14.919 16.933 18.883
σ2

max 0.939 1.055 1.152 1.244 1.331 1.413

Table 3.3. The mean µmax and the variance σ2
max of the maximum of 75,000 iid

generalized geometric random variables, for various values of k. p = 1
4 .

k = 0 k = 1 k = 2
y Exact Approx Exact Approx Exact Approx
7 0.990 0.990
8 0.682 0.682
9 0.249 0.249 1.000 1.000
10 0.069 0.069 0.891 0.892
11 0.018 0.018 0.456 0.455 1.000 1.000
12 0.004 0.004 0.152 0.152 0.940 0.934
13 0.001 0.001 0.044 0.044 0.563 0.558
14 0.012 0.012 0.214 0.218
15 0.003 0.003 0.067 0.071
16 0.006 0.007

k = 3 k = 4 k = 5
y Exact Approx Exact Approx Exact Approx
14 0.950 0.952
15 0.604 0.603
16 0.247 0.245 0.943 0.937
17 0.082 0.082 0.604 0.597
18 0.025 0.026 0.256 0.258 0.923 0.918
19 0.008 0.008 0.089 0.094 0.597 0.572
20 0.002 0.002 0.029 0.032 0.249 0.251
21 0.009 0.010 0.089 0.093
22 0.003 0.003 0.030 0.033

Table 3.4. Exact and approximate P -values for the maximum of 75,000 iid gen-
eralized geometric random variables, for various values of k and y. Exact values
are from equation (2.101) and the theory of Appendix C. Approximations are
obtained using equations (3.50), (3.51), and the values in Table 3.3 with p = 1

4 .

The case k = 0 corresponds to the geometric distribution, for which the
approximation using (3.51) is very accurate. The values in Table 3.4 show
that the approximation using (3.51) is also good for all values of k up to 5,
at least for the given range of values of y, which covers cases of practical in-
terest. On the other hand, the values in Table 3.4 show that the accuracy of
the approximation near the mean of Ymax decreases slightly as k increases.
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These calculations suggest that, although no theory is available for the dis-
crete random variable case, useful approximations can be obtained, at least
for the generalized geometric distribution, from the approach described.

Apart from assessing the accuracy of the approximation (3.51), the cal-
culations in Table 3.4 illustrate a point made in Section 2.11.2, that very
sharp changes in the cumulative distribution function of the maximum of
n iid random variables occur near the mean when n is large. For example,
in the case k = 5, the probability that Ymax ≥ 18 is 0.923 and the the
probability that Ymax ≥ 21 is 0.093. This implies that unless very accurate
approximations are used for the mean and variance in (3.51), serious errors
in P -value approximations can arise when the approach via (3.51) is used.
We return to this matter in Section 6.3, where we apply the maximum
of generalized geometric distributions to testing the significance of a DNA
sequence alignment.

3.8 Nonparametric Alternatives to the One-Sample
and Two-Sample t-Tests

The two-sample equal variance t-test described in Section 3.5.2 is an ex-
ample of a distribution-dependent test. In the t-test we are concerned with
random variables having the normal distribution. The aim is to test hy-
potheses about the mean of this distribution or the means of several normal
distributions, using the observed value of some test statistic. The test statis-
tic is often determined by theoretical and optimality arguments – in the
case of the t-test, these are described in Chapter 9. The null hypothesis
probability distribution of this test statistic is calculated, based on the
assumed normal distribution of the random variables in the test, and this
allows the calculation of P -value for the observed value of the test statistic.
The null hypothesis is then rejected if this P -value is less than the chosen
Type I error.

Problems do exist with this approach, as exemplified by the unequal
variance case discussed in Section 3.5.2, but these are not the subject of
the present discussion. For the moment we assume a clear-cut procedure
as exemplified by the equal variance t-test.

Any P -value calculation relies on the assumption that the distributions
assumed for the random variables involved in the test are correct. If this
assumption is not justified, the use of the calculated P -value leads to an
invalid testing procedure, in that the actual P -value will almost certainly
not be equal to the one calculated. For example, if the observations come
from an exponential distribution, the probability that the t statistic exceeds
any specific value in t tables is not accurately provided by the values given
in the table.
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This difficulty leads to hypothesis testing methods that do not rely on
any specific assumption about the form of the probability distribution of
the random variables involved in the test. Such methods are called non-
parametric, or (perhaps more accurately) distribution-free. We now describe
two non-parametric procedures that are sometimes used as alternatives to
the two-sample t-test and one non-parametric procedure that is sometimes
used as an alternative to the one-sample t-test.

3.8.1 The Two-Sample Permutation Test
The two-sample permutation test is often preferred to the two-sample t-test
of Section 3.5.2, since use of the t test strictly assumes that the data ana-
lyzed have a normal distribution, whereas use of the permutation test does
not imply this assumption. When the data approximately have a normal
distribution the t test will usually lead only to small errors, but in some
bioinformatics applications one might be unwilling to make the normal dis-
tribution assumption. When the data do have a normal distribution, with
the same variances in the two groups, use of the two-sample permutation
procedure gives results close to those obtained using the equal variance
two-sample t-test when the sample size is sufficiently large.

Second, it is not necessary to find the probability distribution of the test
statistic used in this or any other permutation procedure, a calculation that
can be quite difficult for parametric tests.

We now describe the permutation procedure. We assume two groups of
random variables, X11, X12, . . . , X1m in the first group and X21, X22, . . . ,
X2n in the second. X11, X12, . . . , X1m are assumed to be iid, as are X21,
X22, . . . , X2n, with X1i possibly having a distribution different from that
of X2j . It is assumed that X1i is independent of the X2j for all (i, j). The
null hypothesis tested in the permutation procedure is that the common
probability distribution of X1i is identical to that of common distribution
of the X2j .

There are Q =
(
m+n

m

)
possible ways in which the observed values x11,

x12, . . . , x1m, x21, x22, . . . , x2n these random variables can be placed into
two groups, with m observed values in one group and the remaining n
in the other. Each such rearrangement is called a permutation. When the
null hypothesis is true, all Q of these have the same probability. (This is
intuitively clear, and can be derived rigorously from the comments following
equation (2.136).)

For each such permutation we calculate the value of some test statistic,
the choice of which we discuss further below. For a Type I error α, the null
hypothesis is rejected if the observed value of the statistic is among the
100α% most extreme permutation values of the test statistic.

There is no clear-cut guidance for the choice of test statistic. However,
regardless of which statistic is used, the procedure outlined above will give
the exact Type I error rate α desired, as shown below. The power of the
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test, however, will depend on the choice of statistic. The null hypothesis
in a permutation procedure is that the complete probability distribution
of X1i is the same as that of X2j . If the alternative hypothesis is that the
distributions are identical except for a shift of one with respect to the other,
either the t or the t′ statistic should provide a powerful test procedure. If
the alternative hypothesis had been that the means of the two distributions
are the same but their variances differ, the F -statistic described in Section
3.5.3 should provide a powerful test.

The logic behind the permutation procedure is as follows. When the null
hypothesis is true, all Q permutation values of the test statistic have the
same probability, so that the actual observed value of the test statistic
should rarely be extreme. More precisely, it will be among the 100α% most
extreme values with probability α. When null hypothesis is not true, a
random allocation of the m + n observations into the two groups will tend
to diminish differences between the two sets of “observations” in the two
groups. This will tend to move the permutation values of the test statistic
towards the value to be expected under the null hypothesis, and the un-
permuted actual value of the test statistic now will tend to be an extreme
one.

We now discuss the concept of a “permutation P -value” for the case of
continuous random variables. We write the statistic that is calculated in
each permutation as s, and suppose, to be concrete, that a one-sided test is
carried out, with sufficiently large positive values of s leading to rejection
of the null hypothesis. (The argument for a two-sided test is similar to that
given here.)

One possible definition of the permutation P -value is j/(Q−1), where j is
the number of permutations for which the permutation value of s is greater
than actual observed value of s. This permutation P -value takes one of the
values 0, 1/(Q−1), 2/(Q−1), . . . , 1. Suppose that the order statistics of all
Q values of s, including the value actually observed, are s(1), s(2), . . . , s(Q).
If the null hypothesis is true, the probability that the observed value of s is
equal to s(i) is 1/Q for all i, i = 1, 2, . . . , Q. The event that the permutation
P -value as defined above is equal to j/(Q−1) is identical to the event that
the observed value of s is tQ−s, so that it has probability 1/Q. Thus when
the null hypothesis is true, the permutation P -value as defined above has
the discrete uniform distribution with range {0, 1/(Q−1), 2/(Q−1), . . . , 1}.
The discussion of the null hypothesis properties of P -values in Section 3.4.2
shows that this is one desirable feature of this definition of a P -value. This
argument also verifies the claim made above, that rejection of the null
hypothesis if the observed value of s is among the 100α% most extreme
permutation values of the test statistic leads to a Type I error α, since
when the null hypothesis is true the uniform distribution of the P -value
implies that the probability that the observed value of s is among the
100α% most extreme permutation values is α.
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While the P -value as defined above has a (discrete) uniform distribution
when the null hypothesis is true, it has the undesirable feature that there is
a probability 1/Q that that it takes the value 0, even if the null hypothesis
is true. A conservative procedure avoiding this is to define the permutation
P -value as j/Q, where j is the number of permutations, including the actual
one defined by the data, for which the permutation value of s is greater
than or equal to the actual observed value of s. This conservative procedure
is generally used in practice. A further reason for using this procedure is
that for a test statistic having a discrete distribution, a P -value of 0 is
impossible (see Section 3.4.2).

Other definitions of the permutation P -value appear in the literature. For
example, Wasserman (2004) defines the permutation P -value as (j − 1)/Q.
However, under this definition the permutation P -value does not have a
discrete uniform distribution of the form (1.14), and further, it can take
the value 0.

We turn now to computational matters. If the equal variance t statis-
tic (3.30) had been chosen as the test statistic s, it is not necessary to
compute the value of t for each permutation, and a simpler equivalent pro-
cedure requires only the calculation of the difference d = x̄1 − x̄2 for each
permutation. We now demonstrate this for the two-sided test; the one-sided
case is left as an exercise (see Problem 3.12).

In the two-sided case it is equivalent to use t2 instead of t as the test
statistic, since t2 is a monotonic function of |t|. Standard algebra shows
that the numerator of the joint variance estimator (3.31) can be written as

S2 =
m∑

i=1

X2
1i +

n∑
i=1

X2
2i − (m + n) ¯̄X2 − mn

m + n
D2.

The sum of the first three terms on the right-hand side is invariant under
permutation, and we write it as C. This means that the square of the
observed value of the t-statistic (3.30) can be written as

t2 =
mn(m + n − 2)2

m + n

d2

C − mn
m+nd2 . (3.52)

This is a monotonic increasing function of d2, and the result follows.
A further computational convenience is that it is only necessary to cal-

culate the average of the “observations” in the first group rather than the
difference x̄1 − x̄2. This is because the sum of the observations in the two
groups is invariant under permutation, so that the average of the “observa-
tions” in the second group, and hence x̄1 − x̄2, is determined by the average
of the “observations” in the first group.

The permutation procedure clearly involves substantial computation un-
less both n and m are small, since the number of different permutations
is extremely large even for relatively small values of n and m. Modern
computing power makes this an increasingly unimportant problem. When
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m and n are jointly so large that computation of all Q permutations is
not feasible, close approximations to P -values and other quantities may be
found from a random sample of a large number of permutations.

Difficulties arise with the permutation procedure using the t statistic
when the numbers m and n of observations in the two groups are small, so
that the number of possible permutations of the data is not large. In the
case m = n = 3, for example, there are 20 possible permutation values of
t, and for each positive value there is a corresponding negative value of the
same magnitude. It is therefore impossible to achieve significance with Type
I error of 5% for a two-sided test, since even if the observed value of the test
statistic is the most extreme positive of the 20 possible permutation values,
there will be a corresponding negative value of equal magnitude, and the
P -value estimate is 2/20 = 0.10. When n = m = 4 there are 70 possible
permutations of the data and thus a P -value of 2/70 ∼= 0.03 would arise
it the observed value of t is the most extreme one (positive or negative).
If observed value of t is the next most extreme one (positive or negative),
the P -value estimate is 4/70 ∼= 0.06, which is not significant with a Type I
error of 5%. We call the problem discussed above a “granularity” problem.

We conclude with a brief discussion of the relative merits of using the t
statistic (3.30) or the “unequal variance” statistic t′ defined in (3.37). The
statistic t′ is used in cases where the variances in the two groups are thought
to differ. However, as emphasized above, the permutation procedure null
hypothesis is that the complete distributions of the random variables in the
two groups are identical; in particular, the variances as well as the means
are assumed equal under the null hypothesis. Thus use of t′ as test statistic
in the permutation procedure might seem illogical.

3.8.2 The Mann–Whitney Test
The Mann–Whitney test (sometimes called the “Wilcoxon two-sample
test”) is a frequently used non-parametric alternative to the two-sample
t-test discussed in Section 3.5.2, and we assume here the same random
variables as for that test.

In the Mann–Whitney test the observed values x11, x12, . . . , x1m and
x21, x22, . . . , x2n of the m + n random variables are listed in increasing
order, and each observation is associated with its rank in this list. Thus
each observation is associated with one of the numbers 1, 2, . . . , m + n. (If
ties exist a slightly amended procedure is used.) Various (equivalent) forms
of the test statistic for this test exist: here we take it to be the sum of
the ranks of the observations from the first group. The sum of the ranks
of all m + n observations is (m + n)(m + n + 1)/2 (see Appendix B.18).
The observations in the first group provide a fraction m/(m + n) of all
observations, and when the null hypothesis is true, the expected value of
the sum of the ranks of the observations in the first group is the fraction
m/(m+n) of the sum (m+n)(m+n+1)/2 of all ranks. Thus this expected
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value is m(m + n + 1)/2. A more advanced calculation (see Problem 3.9)
shows that the null hypothesis variance of the sum of the ranks for the first
group in the sample is mn(m+n+1)/12. The central limit theorem shows
that, for large sample sizes, (in practice when m and n both exceed about
20), the distribution of this sum is very close to a normal distribution. From
the null hypothesis mean variance of the sum of ranks, together with its
observed value, a z-score can then be calculated to test the null hypothesis.
For smaller sample sizes an exact P -value can be calculated for any observed
value of the Mann–Whitney test statistic, as described below.

As with the permutation test, the null hypothesis of the Mann–Whitney
test is that the probability distribution of any random variable in the first
group is identical to that of any random variable in the second group.
It is not enough for the validity of the procedure that the means of the
two distributions be the same. Even if the means of the two distributions
are the same, if other characteristics of the two distributions differ, the
distribution of the test statistic does not have the mean and variance given
above. This is shown theoretically by Babu and Padmanabhan (2002). One
consequence of this is that the probability of rejecting the null hypothesis
that the means of the two groups are equal, even when this hypothesis
is true, might exceed the chosen Type I error. We return to this issue in
Section 3.8.4.

The permutation test and the Mann–Whitney test might initially ap-
pear to provide two different non-parametric alternatives to the two-sample
t-test. However the two procedures are more closely related than might
at first appear. The null hypothesis mean m(m + n + 1)/2 and variance
mn(m + n + 1)/12 given above are the mean and variance of the Mann–
Whitney test statistic under all possible permutations of the data. Thus the
Mann–Whitney procedure is simply the permutation procedure applied to
the ranks of the observations rather than to the observations themselves.
From this it follows that a Mann–Whitney P -value can be found as the pro-
portion of times, under permutation, that a value of the Mann–Whitney
test statistic is obtained equal to or more extreme than the observed value.

The fact that the Mann–Whitney test is in effect a permutation test
implies that the theoretical analysis of Babu and Padmanabhan (2002) for
the Mann–Whitney test applies also to permutation tests.

3.8.3 The Wilcoxon Signed-Rank Test
The Wilcoxon signed-rank procedure is a test for the value of the median
M of a continuous random variable, defined in (1.59), with no specific
assumption being made about the form of the probability distribution of
the random variables involved in the test. For a symmetric distribution the
mean and the median coincide, so for a symmetric probability distribution
the test may also be thought of as a test for the value of the mean.
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The null hypothesis tested in the Wilcoxon signed-rank procedure is that
the median of the distribution of the observations is some specified value
M0. Given the observed values x1, x2, . . . , xn of n iid random variables
from the distribution being tested, we first calculate the differences xi −
M0, i = 1, 2, . . . , n. In general, some of these differences will be positive,
some negative. From these differences we calculate the absolute values |xi−
M0|, (x1, x2, . . . , xn). These absolute values are then ranked from smallest
to largest and then given respective ranks 1, 2, . . . , n, with the smallest
absolute difference receiving rank 1 and the largest rank n. (As with the
Mann–Whitney test, an amended procedure is available when ties exist.)
The sum of the ranks of the originally positive differences is then calculated,
and this is the (observed value of) the test statistic in the Wilcoxon signed-
rank procedure. If the null hypothesis is true, the probability that any
difference Xi − M0 is positive is 1/2. This implies that, since the sum of
all the ranks is n(n + 1)/2, (see Section B.18), the null hypothesis mean
value of this test statistic is n(n + 1)/4. A more complex argument (see
Problem 3.8) shows that the null hypothesis variance of this test statistic
is n(n + 1)(2n + 1)/24. Further, the central limit theorem implies that
the test statistic, being a sum, has approximately a normal distribution
when n is large. If the Type I error is 5%, the alternative hypothesis is
that the median exceeds M0 and n is large, the observed value of the
sum of ranks would be judged to be significant if it exceeds n(n + 1)/4 +
1.645

√
n(n + 1)(2n + 1)/24.

The Wilcoxon signed-rank procedure, as with the Mann–Whitney pro-
cedure, is in effect also a permutation test. We can consider all 2n possible
assignments to the sign (+ or −) of each xj − M0, calculate the value of
the test statistic for each of these 2n assignments, and reject the null hy-
pothesis if the observed value is a significantly extreme member of these
2n values. The mean and the variance given above for the test statistic are
simply the mean and variance relative to all these permutation values.

For small n it is desirable to carry out the Wilcoxon signed-rank proce-
dure as a permutation procedure, and this procedure allows the calculation
of an exact P -value.

The Wilcoxon signed-rank procedure can be used to compare two proba-
bility distributions. This is done, for example, in the Affymetrix microarray
procedure, as discussed in Chapter 13. It is therefore important to discuss
this case in some detail. Suppose that paired data (as for the paired t-test)
arise, but because we are unwilling to assume that the observations have
a normal distribution, we do not wish to use the paired t-test procedure
and the statistic (3.38). In this case the difference dj = x1j − x2j is first
calculated for each pair of observations (x1j , x2j), j = 1, 2, . . . , n. Given the
observed values d1, d2, . . . , dn the absolute values |d1|, |d2|, . . . , |dn| are then
calculated. The test then proceeds as in the Wilcoxon procedure described
above, with xi − M0 replaced by |di| and M0 replaced by 0.
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The null hypothesis tested by this procedure is that the median of the
probability distribution of the differences Di is 0. This is in principle dif-
ferent from the null hypothesis that the means, or the medians, in the two
groups being compared are equal. This matter is discussed further in Sec-
tion 3.8.4, where the question of what is assumed in a non-parametric test
is taken up .

3.8.4 What is Assumed in a Non-Parametric Test?
Non-parametric tests are used frequently in bioinformatics, particularly
in the analysis of microarray data (see Chapter 13). However, in the mi-
croarray literature incorrect assertions are sometimes made about what
hypothesis any given non-parametric procedure actually tests. This section
is devoted to a discussion of this issue.

Although non-parametric tests are attractive because they do not rely
on the assumption that the random variables involved have some specified
distribution, for example a normal distribution, they nevertheless do make
distributional assumptions. We now discuss these assumptions for the non-
parametric tests described above.

The null hypothesis in the one-sample Wilcoxon signed-rank test is that
the median of the distribution of the random variables involved is some
specified value M0. When this test is used as a non-parametric alternative
to the two-sample paired t-test, as described in Section 3.8.3, the formal
null hypothesis tested is that the median of the differences Di of the paired
observations in the test is 0. This hypothesis does apply if the null hypoth-
esis of interest is that the complete distribution of any observation in the
first group is equal to that of any observation in the second group. How-
ever it does not necessarily apply if the null hypothesis of interest is that
the mean of any observation in the first group is equal to the mean of any
observation in the second group. Thus this null hypothesis is not validly
tested by the Wilcoxon signed-rank test using differences.

The null hypothesis in the Mann–Whitney test, and also in the permu-
tation test, is that the probability distributions of the observations in the
two groups are identical. Thus these two tests are valid only under this null
hypothesis. In particular they are not valid tests of the null hypothesis that
the means in the two groups are equal. This is despite an assumption to
the contrary sometimes made in the microarray literature.

The reason why a permutation test is not a valid test of the equality of
two means is that, even when the means of two distributions are equal, the
true Type I error of the permutation tests when used as tests for equality of
the means is not necessarily the value chosen. The same remark applies to
the Mann–Whitney test. This matter has been investigated numerically by
Modarres et al. (2004), using simulation. As one example of their results,
if the variance in one group is 10 times larger than that in the other, then
for n = 6, m = 12, the true Type I error for the Mann–Whitney test is
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typically either about half, or about twice, the chosen value, depending on
whether the group with the larger variance has 6 or 12 observations. The
same comment is true for the permutation test when the “equal variance”
t statistic is used in the procedure. Even when the “unequal variance” t′

statistic is used in the permutation test the same problem arises. On the
other hand, this problem is far less severe when the sample sizes in the
two groups are equal. These and other results confirm the theoretical pre-
dictions of Babu and Padmanabhan (2002). Further details, and numerical
examples, are provided by Modarres et al. (2004).

3.9 The Bayesian Approach to Hypothesis Testing

Let H be some hypothesis and let Prob(H) be the probability that H
is true, before any data are seen. This is called the prior probability of
H, and some of the controversies referred to in Section 3.2 refer to the
meaningfulness of such a probability or to its numerical value if meaningful.
We proceed here assuming that this probability is meaningful and that its
numerical value is specified.

We introduce the Bayesian argument with an example. Suppose that a
bag contains ten coins, three of which are fair, the remaining seven having
probability 0.6 of giving heads when flipped. A coin is taken at random
from the bag and flipped five times. All five flips give heads. The prior
probability Prob(H) that the coin is fair is 0.3, and the posterior probability
Prob(H |D) that it is fair, given the data D that all five flips gave heads,
is given by

Prob(H |D) =
0.3(0.5)5

0.3(0.5)5 + 0.7(0.6)5
= 0.147. (3.53)

The prior probability 0.3 has been decreased as a result of the flips of the
coin.

The above calculation is a direct one and is not specifically Bayesian.
The Bayesian approach arises when the prior probabilities are not obvious
from the context, but are arrived at perhaps from experience or simply
from a prior measure of belief. We illustrate the details below, where we
generalize the above argument to the case when the aim is to amend the
prior probability of some one of a finite number of hypotheses in the light
of observed data.

The Case of a Finite Number of Hypotheses
Suppose that we have h + 1 different hypotheses, H0, H1, . . . , Hh, and
allocate respective prior probabilities π0, π1, . . . , πh,

∑
j πj = 1 to these.

These prior probabilities have been chosen perhaps by experience, perhaps
from some prior measure of belief. From these prior probabilities and some
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observed data D, we wish to find the the posterior probabilities of these
hypotheses.

Using the logic leading to the calculation in (3.53), the posterior
probability of Hi is

Prob(Hi |D) =
Prob(Hi) Prob(D |Hi)

Prob(D)
. (3.54)

By (1.105), the denominator can be written as∑
j

πj Prob(D |Hj). (3.55)

Thus the posterior probability that hypothesis Hi is true becomes

Prob(Hi |D) =
πi Prob(D |Hi)∑
j πj Prob(D |Hj)

. (3.56)

The preferred hypothesis might then be taken as the one that maximizes
Prob(Hi |D). Since the denominator in (3.56) does not depend on i, this
is the same hypothesis that maximizes the numerator of (3.56).

The Case of a Continuum of Hypotheses
Suppose now that the hypothesis test of interest refers to a parameter θ
which can take any value in the interval (a, b). Given the value of θ, the
probability of observed data d is f(d|θ). A prior density function g(θ) is
chosen for θ. Given d, the argument of the previous section extended to the
continuous case leads to a posterior density function of θ given by

g(θ)f(d|θ)∫ b

a
g(θ)f(d|θ)dθ

. (3.57)

As an example, suppose that parameter of interest is the parameter p,
the probability of success in a Bernoulli trial, and that the prior density
function of p is the beta distribution (1.78), rewritten (since the random
variable is now the parameter p) as

g(p) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1, 0 < p < 1. (3.58)

The choice of the parameters α and β is influenced by the prior level of
certainty about the value of p. If these two parameters are both large, the
density function (3.58) is tightly concentrated around the mean α/(α+β),
implying a high prior level of certainty that p is close to this value. Values
of α and β close to 1 imply a small prior level of certainty about the
value of p. Extremely small values of these two parameters imply, perhaps
paradoxically, high prior probabilities that p is close either to 0 or to 1.
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Suppose that in n independent Bernoulli trials there are y successes.
The probability of these data is given by the binomial distribution (1.8).
Following the format given in (3.57), the numerator in the posterior density
function of p is the product of the prior density function (3.58) and the
binomial probability (1.8), namely

Γ(α + β)
Γ(α)Γ(β)

(
n

y

)
pα+y−1(1 − p)β+n−y−1. (3.59)

Similarly the denominator in the posterior density function of p is∫ 1

0

Γ(α + β)
Γ(α)Γ(β)

(
n

y

)
xα+y−1(1 − x)β+n−y−1dx (3.60)

=
Γ(α + β)
Γ(α)Γ(β)

(
n

y

)
Γ(α + y) Γ(β + n − y)

Γ(α + β + n)
. (3.61)

Thus the posterior density function of p is also a beta distribution, namely

fpost(p) =
Γ(α + β + n)

Γ(α + y)Γ(β + n − y)
pα+y−1(1 − p)β+n−y−1. (3.62)

By analogy with the discrete case, the hypothesized value of p could be
taken as the value where this posterior density function is maximized,
namely

α + y − 1
α + β + n − 2

. (3.63)

3.10 The Bayesian Approach to Estimation

There are various ways in which Bayesians estimate unknown parameters.
These methods share the common feature that they are all based on the
posterior distribution of that parameter. In this section we describe one
such estimation method, namely that of estimating the parameter by the
mean of the posterior distribution of that parameter.

In the binomial example of the previous section, the mean of the posterior
distribution is given by∫ 1

0
pfpost(p)dp =

α + y

α + β + n
, (3.64)

and this is the Bayesian estimate of p. It is a mixture of the parameters α
and β in the prior distribution and the data values y and n, being heavily
influenced by the latter when α and β are small and y and n are large.

Choosing α and β to be large overcomes the difficulty mentioned at
the beginning of this chapter, that it is unreasonable to use the classical
estimate of 1 for the probability of a head if a fair-looking coin gives three
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heads from three tosses. Thus if α = β, the larger the value of α the closer
the Bayesian estimate found from (3.64) is to 0.5. On the other hand, the
larger that α and β are chosen, the more the information in the data is
ignored.

From the classical perspective, an interpretation for α and β can be found
through the concept of “pseudocounts.” If we imagined that we observed
α successes and β failures apart from the y successes and n − y failures
actually seen in the data, so we replace y by y + α and n − y by n − y + β,
then the classical estimator of p would be given by (3.64). The numbers α
and β are then called “pseudocounts”: There is a direct extension of the
pseudocount concept to the multinomial case, and this extension is used in
Section 6.6 for the purpose of sequence segment alignment.

3.11 Multiple Testing

Up to this point we have only discussed the testing procedure applicable
for a single hypothesis. However, we often wish to test many associated
hypotheses at the same time. This leads to the so-called multiple testing
problem. When testing many hypotheses simultaneously, careful attention
must be paid to what may be concluded from the P -values of the individual
tests. As an example, suppose that a salesman claims that some substance
is beneficial, and to demonstrate this, he tests 100 different null hypotheses,
one for each of 100 different illnesses, each null hypothesis stating that the
substance is not useful in helping to cure one of the illnesses involved and
each alternative hypothesis stating that the substance is useful. Suppose
that the appropriate statistical tests lead to 100 P -values, one for each
disease. If a Type I error of .01 had been used for each individual test, the
probability that at least one of the 100 null hypotheses will be rejected is
about 0.63 if the substance is of no value for any of the illnesses. This might
lead the salesman to claim that the substance is useful for those illnesses
where, by chance, the null hypothesis was rejected. He may provide only
the data relating to those illnesses, which taken out of context may appear
convincing. This indicates the potential error in drawing conclusions from
individual P -values obtained from many associated tests carried out in
parallel.

One possible approach to this problem is to use a so-called “experiment-
wise,” or “family-wise,” P -value, defined as follows. The probability of
rejecting at least one null hypothesis when all null hypotheses are true
is known as the family-wise error rate (FWER). Under this approach, the
aim is to control the FWER at some value acceptable value α. To do this
it is necessary to use a Type I error for each individual test that is smaller
than α. One of the simplest ways of assuring an FWER of α when g tests
are performed, is to use a Type I error of α/g for each individual test. This
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is an example of a Bonferroni correction. This correction applies whether
the tests are independent or not, as is shown from the inequality (1.99): If
the event Aj is the rejection of null hypothesis Hj , and if all null hypothe-
ses are true, the probability of rejecting at least one null hypothesis is less
than or equal to

∑g
j=1 α/g = α, from (1.99).

The Bonferroni procedure is a conservative one. A less conservative pro-
cedure for independent tests, with the same FWER of α, is to use K(n, α),
defined in equation (2.141), as the Type I error for each of the n individual
tests. If this is done the FWER is, from (1.111), exactly

1 −
g∏

j=1

g
√

1 − α = α.

This is the Šidák procedure.
We now consider a more complicated example where the multiple hy-

pothesis testing problem arises. Suppose we measure the expression levels
of a large number g of genes in a normal cell and also in a cancerous version
of the same cell type, using data from cells from different individuals. From
these we find the values of g different t statistics, calculated for each gene
as in (3.33). The g genes are now ranked according to the absolute values
of the t statistics.

Our interest is in knowing if a certain type of genes, for example genes
involved in cell division, is associated with those genes with large |t| val-
ues. We might test this as follows. We choose some number g0 and assess
whether cell-division genes are significantly over-represented in the genes
having the g0 highest |t| values, using Fisher’s exact test, described in Sec-
tion 3.5. However, a non-significant result, if one occurs, might have arisen
because we did not chose a suitable value of g0. We might then decide to
do this test for several choices of g0. If we do this, we would not want to
make a false claim of significance simply because we carried out a number
of tests, so that we would wish to control the FWER of our procedure to
an acceptable level.

There are two comments to make about the above procedure. First,
Fisher’s exact test requires independent counts in Table 3.5.5. To the ex-
tent that some genes act in a correlated way, this requirement might not
be met in the above example. Second, the various tests corresponding to
different choices of g0 are not independent, so that even if the dependence
between genes problem does not arise, a Bonferroni rather than a Šidák
procedure should be used.

Both the Bonferroni and the Šidák procedures make quite stringent re-
quirements for the rejection of any one of the null hypotheses, since when n
is large both α/n and K(n, α) are very small. This implies a loss of power:
For large n it is difficult to reject those null hypotheses that are false. Fur-
thermore, the independence requirement necessary for the Šidák procedure
is rarely satisfied for expression array data, which we consider in Chapter
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13. In that chapter we consider two approaches that have been proposed to
increase power. One of these controls the FWER while the other abandons
this attempt and controls, instead, the so-called “false discovery rate,” or
FDR, discussed in Section 13.3.

The multiple testing problem arises in other contexts discussed in this
book. It arises for example in BLAST calculations: See the concluding
comments in Section 10.2.8. More generally the problem arises in several
applications of statistics and has been discussed extensively in the statisti-
cal literature; for a good survey see Shaffer (1995), in which many further
references to this problem may be found.

3.12 Combining the Results of Several
Experiments

Suppose that three independent investigators, each considering the same
problem and conducting the same statistical test with three independent
data sets, arrive at P -values of 0.08, 0.07, and 0.06 respectively, derived
from some test statistic with a continuous distribution. Although none of
the individual tests is judged significant if a Type I error of 5% is used, one
might feel that the results of the three tests are significant in conjunction.
We now describe perhaps the most popular way in which, under the as-
sumption that the test statistic is continuous, the individual P -values can
be combined to give an overall P -value. This procedure is due to Fisher
(1950).

If the null hypothesis being tested is true, any P -value derived from a test
statistic with a continuous distribution has a uniform distribution in (0, 1),
as discussed in Section 3.4.2. The transformation theory of Section 1.15
shows that if X1 has a uniform distribution in (0, 1) and if X2 = −2 log X1,
then (see Problem 3.14) the density function of X2 is

fX2(x) =
1
2
e−x/2, x > 0. (3.65)

Equation (1.77) shows that X2 has a chi-square distribution with two
degrees of freedom. Example 2 of Section 2.3.2 shows that the sum of in-
dependent chi-square random variables has a chi-square distribution with
degrees of freedom equal to the sum of the degrees of freedom of the indi-
vidual chi-square random variables. It follows that when the null hypothesis
is true in each of k tests, the quantity V , defined by

V = −2
∑

i

log Pi = −2 log(P1P2 · · ·Pk), (3.66)

where P1, P2, . . . , Pk are the P -values of the individual tests, has a chi-
square distribution with 2k degrees of freedom.
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In the example given above, where k = 3 and the individual P -values are
0.08, 0.07, and 0.06, the observed value of V is 16.00. The probability that
a chi-square random variable with six degrees of freedom exceeds 16.00 is
about 0.0138, so this value of V is significant at the 5% level and is almost
significant at the 1% level. Therefore the tests in conjunction do provide a
significant result at the 5% level.

If different sample sizes had been used in the three tests, or more gen-
erally if the results of the various tests had been thought to have different
reliabilities, a generalization of this method is possible using as test statistic
a weighted average of the form

W = −2
∑

i

αi log Pi, (3.67)

where the αi are positive weighting constants such that
∑

αi = k. The
mean and variance of W are 2k and 4

∑
α2

i respectively. It follows that W
itself does not in general have a chi-square distribution, since the variance
of a chi-square random variable is twice the mean. However, the quantity
kW/

∑
α2

i has mean 2k2/
∑

α2
i and variance 4k2/

∑
α2

i , twice the mean.
A heuristic argument then claims that kW/

∑
α2

i has an approximate chi-
square distribution with 2k2/

∑
α2

i degrees of freedom. Even though this
number might well not be an integer, kW/

∑
α2

i can be employed for an
approximate overall test procedure, using interpolation in chi-square tables.

When the test statistic has a discrete distribution, the inequality (3.23)
shows that the assumption that the P -value has a continuous uniform dis-
tribution in [0,1] leads to a conservative testing procedure. This implies
that for a combined test, the assumption that the statistic V defined in
(3.66) has a chi-square distribution with 2k degrees of freedom when the
null hypothesis is true leads to a conservative testing procedure.

The Fisher approach described above for combining the results of inde-
pendent individual tests is a heuristic one, but does have some optimality
properties, as shown by Littell and Folks (1973). Other approaches are dis-
cussed by Berk and Cohen (1979), Mudholkar and George (1979), Rosenthal
(1978) and Scholz (1982).

Problems

3.1 Suppose that each of n iid random variables has a normal distribution
with mean µ, variance 1. Under the null hypothesis µ = 0, while under the
alternative hypothesis µ > 0. Use normal distribution tables to find the
P -value associated with an observed value of 4.20 for the maximum of the
observed values of these random variables when n = (i) 1,000, (ii) 10,000,
(iii) 100,000, (iv) 1,000,000.
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3.2 If p̂ is the proportion of successes in n independent Bernoulli trials each
having probability p of success, show that the mean value of p̂(1 − p̂)/n is
p(1 − p)/n − p(1 − p)/n2. Comment on the form of this expression when
n = 1.

3.3 Suppose that g(Y ) is an unbiased estimator of p−1 in the binomial
distribution (1.8). Then it follows that

n∑
y=0

g(y) p

(
n

y

)
py(1 − p)n−y = 1.

The left-hand side is a Taylor series in p. Use the result of Appendix B.13
to show that this equation cannot be solved for g(y) uniformly for a con-
tinuum of values of p. This conclusion shows that there can be no unbiased
estimator of p−1.

3.4 Continuation. Find an unbiased estimator of p2 and an unbiased esti-
mator of p3. What functions of p do you think admit unbiased estimation?

3.5 Prove equation (3.14).

3.6 Put Yi = npi(1 + δi) in the expression (3.41), where δi can be taken as
being small. Use the expression (B.25) to approximate log(1 + δi), as well
as the fact that

∑
i npiδi = 0, to show that the numerical values of the

expressions (3.40) and and (3.41) will usually be close.

3.7 Derive the density function (3.29) of the T statistic defined in (3.28),
as follows.

T can be written as

T =
√

n − 1
(

(X̄ − µ0)
√

n

σ

)(
(n − 1)S2

σ2

)−1/2

.

When the null hypothesis is true, U = (X̄ − µ0)
√

n/σ has the standard
normal distribution, and you may assume that V = (n − 1)S2/σ2 has a
chi-square distribution with n−1 degrees of freedom and is independent of
(X̄ − µ0)

√
n/σ. (The proof of these facts is beyond the level of this book.)

The joint density function of U and V is therefore the product of their
separate density functions. From this the joint density function of T and
random variable W = V can be found by transformation techniques. The
density function of T is then found by integrating out W .

3.8 (This example illustrates a use of indicator functions in statistics.) The
test statistic in the Wilcoxon signed-rank test of Section 3.8.3 can be writ-
ten as

∑n
j=1 jIj , where under the null hypothesis Ij = 1 with probability
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1/2, Ij = 0 with probability 1/2. Use this fact to show that the null hy-
pothesis variance of this statistic is n(n + 1)(2n + 1)/24.

3.9 (This example also illustrates a use of indicator functions in statistics.)
The sum of the ranks randomly allocated to group 1 in the Mann–Whitney
test of Section 3.8.2 can be written as

∑m+n
j=1 jIj , where Ij = 1 if the jth-

ranked observation is allocated to group 1, and Ij = 0 otherwise. Prove
E(Ij) = m/(m+n) and E(IjIk) = m(m− 1)/(m+n)(m+n− 1), (j �= k),
and use these results to show that the variance of the sum of the ranks
randomly allocated to group 1 is mn(m + n + 1)/12.

3.10 Suppose that X1, X2, . . . , Xn are NID(µ, σ2). Suppose that the prior
distribution of µ is normal with mean µ0 and variance σ2

0 . Show that the
posterior distribution of µ is normal, with mean which is a linear com-
bination of X̄ and µ0. Show that the variance of this distribution is the
reciprocal of the sum of the reciprocals of σ2

0 and the variance of X̄.

3.11 Show that when the Šidák value (2.141) is used the experiment-wise
Type I error is exactly α.

3.12 Show that in the permutation two-sample test using the equal variance
t statistic, use of t as the test statistic is equivalent to use of x̄1 − x̄2 in the
one-sided case.

3.13 Continuation. Find the mean and variance under permutation of the
average x̄1 of the “observations” in the first group. (The answer is a func-
tion of x11, x12, . . . , x1m and x21, x22, . . . , x2n.)

3.14 Prove the conclusion given in (3.65).



4
Stochastic Processes (i): Poisson
Processes and Markov Chains

4.1 The Homogeneous Poisson Process and the
Poisson Distribution

In this section we state the fundamental properties that define a Pois-
son process, and from these properties we derive the Poisson distribution,
introduced in Section 1.3.7.

Suppose that a sequence of events occurs during some time interval.
These events form a homogeneous Poisson process if the following two
conditions are met:

(1) The occurrence of any event in the time interval (a, b) is independent
of the occurrence of any event in the time interval (c, d), where (a, b)
and (c, d) do not overlap.

(2) There is a constant λ > 0 such that for any sufficiently small time
interval (t, t + h), h > 0, the probability that one event occurs in
(t, t + h) is independent of t, and is λh + o(h) (the o(h) notation is
discussed in Appendix B.8), and the probability that more than one
event occurs in the interval (t, t + h) is o(h).

Condition 2 has two implications. The first is time homogeneity : The prob-
ability of an event in the time interval (t, t+h) is independent of t. Second,
this condition means that the probability of an event occurring in a small
time interval is (up to a small-order term) proportional to the length of the
interval (with fixed proportionality constant λ). Thus the probability of no
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events in the interval (t, t + h) is

1 − λh + o(h), (4.1)

and the probability of one or more events in the interval (t, t + h) is

λh + o(h).

The two conditions listed above are often taken as defining “randomness” of
the occurrences of the events in question. Various naturally occurring phe-
nomena follow, or very nearly follow, these two conditions. Continuing the
example in Section 1.13, suppose a cellular protein degrades spontaneously,
and the quantity of this protein in the cell is maintained at a constant
level by the continual generation of new proteins at approximately the
degradation rate. The number of proteins that degrade in any given time
interval approximately satisfies conditions 1 and 2. The justification that
condition 1 can be assumed in the model is that the number of proteins
in the cell is essentially constant and that the spontaneous nature of the
degradation process makes the independence assumption reasonable. The
discussion leading to (1.116) and that following equation (2.87) makes con-
dition 2 reasonable for spontaneously-occurring phenomena. This condition
also follows from the same logic discussed in the example on page 10 that
when np is small, the probability of at least one success in n Bernoulli trials
is approximately np. For a precise treatment of this issue, see Feller (1968).

We now show that under conditions 1 and 2, the number N of events that
occur up to any arbitrary time t has a Poisson distribution with parameter
λt.

At time 0 the value of N is necessarily 0, and at any later time t, the
possible values of N are 0, 1, 2, 3, . . . . We denote the probability that
N = j at any given time t by Pj(t). Note that this is a departure from our
standard notational convention, which would be PN (j) with t an implicit
parameter. This notational change is made because the main interest here
is in assessing how Pj(t) behaves as a function of j and t.

The event that N = 0 at time t + h occurs only if no events occur in
(0, t) and also no events occur in (t, t + h). Thus for small h,

P0(t + h) = P0(t)(1 − λh + o(h)) = P0(t)(1 − λh) + o(h). (4.2)

The first equality follows from conditions 1 and 2.
The event that N = 1 at time t + h can occur in two ways. The first is

that N = 1 at time t and that no event occurs in the time interval (t, t+h),
the second is that N = 0 at time t and that exactly one event occurs in
the time interval (t, t + h). This gives

P1(t + h) = P0(t)(λh) + P1(t)(1 − λh) + o(h), (4.3)

where the term o(h) is the sum of two terms, both of which are o(h).
Finally, for j = 2, 3, . . . , the event that N = j at time t + h can occur in
three different ways. The first is that N = j at time t and that no event
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occurs in the time interval (t, t+h). The second is that N = j −1 at time t
and that exactly one event occurs in (t, t + h). The final possibility is that
N ≤ j − 2 at time t and that two or more events occur in (t, t + h). Thus
for j = 2, 3, . . . ,

Pj(t + h) = Pj−1(t)(λh) + Pj(t)(1 − λh) + o(h). (4.4)

Equations (4.3) and (4.4) look identical, and the difference between them
relates only to terms of order o(h). Therefore, we can take (4.4) to hold for
all j ≥ 1. Subtracting Pj(t) (j ≥ 1) from both sides of equation (4.4) and
P0(t) from both sides of equation (4.2), and then dividing through by h,
we get

P0(t + h) − P0(t)
h

= −P0(t)(λh) + o(h)
h

Pj(t + h) − Pj(t)
h

=
Pj−1(t)(λh) − Pj(t)(λh) + o(h)

h
,

j = 1, 2, 3, . . . . Letting h → 0, we get

d

dt
P0(t) = −λP0(t), (4.5)

and
d

dt
Pj(t) = λPj−1(t) − λPj(t), j = 1, 2, 3, . . . . (4.6)

The Pj(t) are subject to the conditions

P0(0) = 1, Pj(0) = 0, j = 1, 2, 3, . . . . (4.7)

Equation (4.5) is one of the most fundamental of differential equations, and
has the solution

P0(t) = Ce−λt. (4.8)

The condition P0(0) = 1 implies C = 1, leading to

P0(t) = e−λt. (4.9)

Given this, we now show that the set of equations (4.6) has the solution

Pj(t) =
e−λt(λt)j

j!
, j = 1, 2, 3, . . . . (4.10)

The method for solving these equations follows the induction procedure
described in Section B.18. Equation (4.9) shows (4.10) is true for j = 0. It
must next be shown that the assumption that (4.10) holds for j −1 implies
that it holds for j. Assuming that (4.10) is true for j − 1, equation (4.6)
gives

d

dt
Pj(t) =

λe−λt(λt)j−1

(j − 1)!
− λPj(t).
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From this,

eλt

(
d

dt
Pj(t) + λPj(t)

)
=

λ(λt)j−1

(j − 1)!
.

This equation may be rewritten as

d

dt

(
Pj(t)eλt

)
=

λ(λt)j−1

(j − 1)!
,

and integration of both sides of this equation gives

Pj(t)eλt =
(λt)j

j!
+ C,

for some constant C. From (4.7) it follows that C = 0. Thus

Pj(t) =
e−λt(λt)j

j!
, j = 0, 1, 2, . . . . (4.11)

This completes the induction, showing that at time t the random variable
N has a Poisson distribution with parameter λt.

Conditions 1 and 2 are often taken as giving a mathematical definition of
the concept of “randomness,” and since many calculations in bioinformat-
ics, some of which are described later in this book, make the randomness
assumption, the Poisson distribution arises often.

4.2 The Poisson and the Binomial Distributions

An informal statement concerning the way in which the Poisson distribu-
tion arises as a limiting case of the binomial was made in Section 1.3.7.
A more formally correct version of this statement is as follows. If in the
binomial distribution (1.8) we let n → +∞, p → 0, with the product np
held constant at λ, then for any y, the binomial probability in (1.8) ap-
proaches the Poisson probability in (1.22). This may be proved by writing
the binomial probability (1.8) as

1
y!

(np)((n − 1)p) · · · ((n − y + 1)p)
(

1 − λ

n

)n(
1 − λ

n

)−y

. (4.12)

Fix y and λ and write p = λ/n. Then as n → ∞, each term in the above
product has a finite limit as n → +∞: Terms of the form (n − i)λ/n
approach λ for any i, and (

1 − λ

n

)n

→ e−λ,

(see (B.3)), and finally, (
1 − λ

n

)−y

→ 1.
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Therefore, the expression in (4.12) approaches

λye−λ/y! (4.13)

as n → +∞, and this is the Poisson probability (1.22).

4.3 The Poisson and the Gamma Distributions

There is an intimate connection, implied by equation (4.9), between the
Poisson distribution and the exponential distribution. The (random) time
until the first event occurs in a Poisson process with parameter λ is given
by the exponential distribution with parameter λ. To see this, let F (t) be
the probability that the first event occurs before time t. Then the density
function for the time until the first occurrence is the derivative d

dtF (t).
From (4.9), F (t) = 1 − P0(t) = 1 − e−λt. Therefore, d

dtF (t) = λe−λt. This
is the exponential distribution (1.66), with notation changed from x to t.

It can also be shown that the distribution of the time between successive
events is given by the exponential distribution. Thus the (random) time
until the kth event occurs is the sum of k independent exponentially dis-
tributed times. The material surrounding (2.23) shows that this sum has
the gamma distribution (1.75). Let t0 be some fixed value of t. Then if the
time until the kth event occurs exceeds t0, the number of events occurring
before time t0 is less than k, and conversely. This means that the probabil-
ity that k − 1 or fewer events occur before time t0 must be identical to the
probability that the time until the kth event occurs exceeds t0. In other
words it must be true that

e−λt0

(
1 + (λt0) +

(λt0)2

2!
+ · · · +

(λt0)k−1

(k − 1)!

)
=

λk

Γ(k)

∫ +∞

t0

xk−1 e−λxdx.

(4.14)
This equation can also be established by repeated integration by parts of
the right-hand side.

4.4 The Pure-Birth Process

In the derivation of the Poisson distribution (4.10) it was assumed that
the probability of an event in any time interval (t, t + h) is independent of
the number of events that have occurred up to time t. In several cases of
biological interest this is not a reasonable assumption, and the concept of an
event is not quite appropriate. Instead, some random variable is considered
whose initial value is k (usually k ≥ 1). In the pure-birth process it is
assumed that, given that the value of the random variable at time t is j,
the probability that it increases to j + 1 in a short time interval (t, t + h)
is λjh, where (as with the Poisson process) we ignore terms of order o(h).
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(The Poisson case arises when λj = λ, that is λj is independent of j.)
Following the same procedures as those carried out above for the Poisson
process, we arrive at the infinite set of differential equations

d

dt
Pk(t) = −λkPk(t), (4.15)

d

dt
Pj(t) = λj−1Pj−1(t) − λjPj(t), j = k + 1, k + 2, k + 3, . . . . (4.16)

for the probability that the random variable of interest takes the value j
at time t. We now outline two examples of this process, and observe that
in neither case does the value of the random variable at time t follow the
Poisson distribution.

The Yule process. In the Yule process it is assumed that λj = jλ, for some
constant λ. The motivation for this choice is that in some populations it
is reasonable to assume that if the current size of the population is j, the
probability that it increases to size j+1 in a short time interval is essentially
proportional to j. It is easy to see that in this case the solution of equations
(4.15) and (4.16) is

Pj(t) =
(

j − 1
j − k

)
e−kλt

(
1 − eλt

)j−k
, j = k, k + 1, . . . . (4.17)

The polymerase chain reaction (PCR). The polymerase chain reaction is
a very important method used widely to amplify a comparatively short
sequence of DNA. Here we model the length of the product, or “amplicon,”
of this reaction, considering a simplified version of the process described
by Velikanov and Krapal (1999).

A primer, of initial length k (usually about 20−30 base pairs), is used to
initiate the reaction. The product of the reaction is formed by sequential
additions of single base pair units to the primer. This addition forms a
pure-birth process, and the function λj in the pure birth process is assumed
here, for simplicity, to be of the form m − j. (This assumption involves a
re-scaling of the time axis: Velikanov and Krapal (1999) provide a more
general treatment.) The form of this function implies that, once the length
of the product reaches the value m, no further increase in its length is
possible. Equation (4.16) now becomes

d

dt
Pj(t) = (m− j − 1)Pj−1(t)− (m− j)Pj(t), j = k +1, k +2, . . . (4.18)

The joint solution of this equation and equation (4.15), subject to the
condition Pk(0) = 1, is

Pj(t) =
(

m − k

j − k

)(
1 − e−t

)j−k
e−(m−j)t, j = k, k + 1, . . . (4.19)
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The length of the additional material formed from the primer is j − k, and
writing i = j − k, n = m − k, equation (4.19) can be written as

Pi(t) =
(

n

i

)(
1 − e−t

)i
e−(n−i)t, i = 0, 1, 2, . . . , n. (4.20)

It is interesting that this solution for i and the solution to the Yule process
are both in the form of the binomial distribution. Equation (4.20), the
moments of the binomial distribution as given in Table 1.1 and the linearity
properties of means and variances listed in Sections 1.4 and 1.5 show, for
example, that at time t, E(j) = k+(m−k)(1−e−t) and that Var(j) = (m−
k)(e−t − e−2t). This variance assumes its maximum value when t = log 2.

4.5 Introduction to Finite Markov Chains

In this section we give a brief outline of the theory of a simple case of a
discrete-time finite Markov chain. The focus is on material needed to discuss
the construction of PAM matrices as described in Section 6.5.3. Further
developments of Markov chain theory suitable for other applications, in
particular for the evolutionary applications discussed in Chapter 14, are
given in Chapter 11.

We introduce the simple discrete-time finite Markov chain in abstract
terms as follows. Consider some finite discrete set S of possible “states,”
labeled {E1, E2, . . . , Es}. At each of the unit time points t = 1, 2, 3, . . . , a
Markov chain process occupies one of these states. In each time step t to
t+1, the process either stays in the same state or moves to some other state
in S. Further, it does this in a probabilistic, or stochastic, way rather than
in a deterministic way. That is, if at time t the process is in state Ej , then
at time t + 1 it either stays in this state or moves to some other state Ek

according to some well-defined probabilistic rule described in more detail
below. This process follows the requirements of a simple Markov chain if it
has the following properties.

(i) The Markov property. If at some time t the process is in state Ej ,
the probability that one time unit later it is in state Ek depends only
on Ej , and not on the past history of the states it was in before time
t. That is, the current state is all that matters in determining the
probabilities for the states that the process will occupy in the future.

(ii) The temporally homogeneous transition probabilities property. Given
that at time t the process is in state Ej , the probability that one time
unit later it is in state Ek is independent of t.

More general Markov processes relax one or both requirements, but we
assume throughout this chapter that the above properties hold.
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The concept of “time” used above is appropriate if, for example, we
consider the evolution through time of the nucleotide at a given site in
some population. Aspects of this process are discussed later in this book.
However, the concept of time is sometimes replaced by that of “space.” As
an example, we may consider a DNA sequence read from left to right. Here
there would be a Markov dependence between nucleotides if the nucleotide
type at some site depended in some way on the type at the site immediately
to its left. Aspects of the Markov chains describing this process are also
discussed later in this book. Because Markov chains are widely applicable
to many different situations, it is useful to describe the properties of these
chains in abstract terms rather than in the concrete terms appropriate to
one specific application.

In many cases the Markov chain process describes the behavior of the
value of a random variable changing through time. For example, in reading
a DNA sequence from left to right this random variable might be the excess
of purines over pyrimidines so far observed at any point. Because of this
it is often convenient to adopt a different terminology and to say that the
value of the random variable is j rather than saying that the state occupied
by the process is Ej . We use both forms of expression below, and also, when
no confusion should arise, we abuse terminology by using expressions like
“the random variable is in state Ej .”

4.6 Transition Probabilities and the Transition
Probability Matrix

Suppose that at time t a Markovian random variable is in state Ej . We
denote the probability that at time t + 1 it is in state Ek by pjk, called
the transition probability from Ej to Ek. In writing this probability in this
form we are already using the two Markov assumptions described above:
First, no mention is made in the notation pjk of the states that the random
variable was in before time t (the memoryless property), and second, t does
not occur in the notation pjk (the time homogeneity property).

It is convenient to group the transition probabilities pjk into the so-called
transition probability matrix, or more simply the transition matrix, of the
Markov chain. We denote this matrix by P , and write it as

(to E1) (to E2) (to E3) · · · (to Es)

P =

(fromE1)
(fromE2)

...
(fromEs)

⎡⎢⎢⎢⎣
p11 p12 p13 · · · p1s

p21 p22 p23 · · · p2s

...
...

...
. . .

...
ps1 ps2 ps3 · · · pss

⎤⎥⎥⎥⎦ .
(4.21)



4.6 Transition Probabilities 163

The rows and columns of P are in correspondence with the states E1,
E2, . . . , Es, so these states being understood, P is usually written in the
simpler form

P =

⎡⎢⎢⎢⎣
p11 p12 p13 · · · p1s

p21 p22 p23 · · · p2s

...
...

...
. . .

...
ps1 ps2 ps3 · · · pss

⎤⎥⎥⎥⎦ . (4.22)

Any row in the matrix corresponds to the state from which the transition
is made, and any column in the matrix corresponds to the state to which
the transition is made. Thus the probabilities in any particular row in the
transition matrix must sum to 1. However, the probabilities in any given
column do not have to sum to anything in particular.

It is also assumed that there is some initial probability distribution for
the various states in the Markov chain. That is, it is assumed that there is
some probability πi that at the initial time point the Markovian random
variable is in state Ei. A particular case of such an initial distribution arises
when it is known that the random variable starts in state Ei, in which case
πi = 1, πj = 0 for j �= i. In principle the initial probability distribution
and the transition matrix P jointly determine all the properties the entire
process. In practice, many properties are not found easily, or if found are
obtained by special methods.

The probability that the Markov chain process moves from state Ei to
state Ej after two steps can be found by matrix multiplication. It is this fact
that makes much of Markov chain theory an application of linear algebra.
The argument is as follows.

Let p
(2)
ij be the probability that if the Markovian random variable is in

state Ei at time t, then it is in state Ej at time t+2. We call this a two-step
transition probability. Since the random variable must be in some state k
at the intermediate time t + 1, summation over all possible states at time
t + 1 and use of equation (1.94) gives

p
(2)
ij =

∑
k

pikpkj .

The right-hand side in this equation is the (i, j) element in the matrix P 2.
Thus if the matrix P (2) is defined as the matrix whose (i, j) element is p

(2)
ij ,

then the (i, j) element in P (2) is equal to the (i, j) element in P 2. This
leads to the identity

P (2) = P 2.

Extension of this argument to an arbitrary number n of steps gives

P (n) = Pn. (4.23)
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That is, the “n-step” transition probabilities are given by the entries in the
nth power of P .

4.7 Markov Chains with Absorbing States

Some Markov chains have absorbing states. These can be recognized by
the appearance of one or more 1’s on the main diagonal of the transition
matrix. If there are no 1’s on the main diagonal, then there are no absorb-
ing states. For the Markov chains with absorbing states that we consider,
sooner or later some absorbing state will be entered, never thereafter to be
left. The two questions we are most interested in regarding these Markov
chains are:

(i) If there are two or more absorbing states, what is the probability that
a specified absorbing state is the one eventually entered?

(ii) What is the mean time until one or another absorbing state is eventu-
ally entered?

We shall address these questions in detail in Chapter 11. In the remainder of
this chapter we discuss only certain aspects of the theory of Markov chains
with no absorbing states, focusing on the theory needed for the construction
of substitution matrices, to be discussed in more detail in Chapter 6.

4.8 Markov Chains with No Absorbing States

The questions of interest about a Markov chain with no absorbing state
are quite different from those asked when there are absorbing states.

In order to simplify the discussion, we assume in the remainder of
this chapter that all Markov chains discussed are finite, aperiodic, and
irreducible.

Finiteness means that there is a finite number of possible states. The
aperiodicity assumption is that there is no state such that a return to that
state is possible only at t0, 2t0, 3t0, . . . transitions later, where t0 is an
integer exceeding 1. If the transition matrix of a Markov chain with states
E1, E2, E3, E4 is, for example,

P =

⎡⎢⎢⎣
0 0 0.6 0.4
0 0 0.3 0.7

0.5 0.5 0 0
0.2 0.8 0 0

⎤⎥⎥⎦ , (4.24)

then the Markov chain is periodic. If the Markovian random variable starts
(at time 0) in E1, then at time 1 it must be either in E3 or E4, at time 2
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it must be in either E1 or E2, and in general it can visit only E1 at times
2, 4, 6, . . . . It is therefore periodic. The aperiodicity assumption holds for
essentially all applications of Markov chains in bioinformatics, and we often
take aperiodicity for granted without any explicit statement being made.

The irreducibility assumption implies that any state can eventually be
reached from any other state, if not in one step then after several steps. Ex-
cept for the case of Markov chains with absorbing states, the irreducibility
assumption also holds for essentially all applications in bioinformatics.

4.8.1 Stationary Distributions
Suppose that a Markov chain has transition matrix P and that at time t
the probability that the process is in state Ej is ϕj , j = 1, 2, . . . , s. This
implies that the probability that at time t + 1 the process is in state j is∑s

k=1 ϕkpkj . Suppose that for every j these two probabilities are equal, so
that

ϕj =
s∑

k=1

ϕkpkj , j = 1, 2, . . . , s. (4.25)

In this case the probability distribution (ϕ1, ϕ2, . . . , ϕs) is said to be sta-
tionary ; that is, the probability that the process is in state Ej has not
changed between times t and t + 1, and therefore will never change. De-
spite this, the state occupied by the process can of course change from one
time point to the next.

It will be shown in Chapter 11 that for finite aperiodic irreducible Markov
chains there is a unique distribution satisfying (4.25). This is then called the
stationary distribution of the Markov chain. When we discuss stationary
distributions in this book, we assume that they relate to finite aperiodic
irreducible Markov chains, and thus exist and are unique.

If the row vector ϕ′ is defined by

ϕ′ = (ϕ1, ϕ2, . . . , ϕs), (4.26)

then in matrix and vector notation, the set of equations in (4.25) becomes

ϕ′ = ϕ′P. (4.27)

The prime here is used to indicate the transposition of the row vector into
a column vector. The vector (ϕ1, ϕ2, . . . , ϕs) must also satisfy the equation∑

k ϕk = 1. In vector notation, this is the equation

ϕ′1 = 1, (4.28)

where 1 = (1, 1, . . . , 1)′. Equations (4.27) and (4.28) can then be used to
find the stationary distribution when it exists. In this process one of the
equations in (4.27) is redundant and can be omitted. An example is given
in the next section.
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In Chapter 11 we shall show that if the Markov chain is finite, aperiodic,
and irreducible, then as n increases, P (n) approaches the matrix⎡⎢⎢⎢⎢⎢⎣

ϕ1 ϕ2 · · · ϕs

ϕ1 ϕ2 · · · ϕs

ϕ1 ϕ2 · · · ϕs

...
...

. . .
...

ϕ1 ϕ2 · · · ϕs

⎤⎥⎥⎥⎥⎥⎦ , (4.29)

where (ϕ1, ϕ2, . . . , ϕs) is the stationary distribution of the Markov chain.
The form of this matrix shows that no matter what the starting state

was, or what was the initial probability distribution of the starting state,
the probability that n time units later the process is in state j is increasingly
closely approximated, as n → ∞, by the value ϕj .

There is another implication, relating to long-term averages, of the cal-
culations above. That is, if a Markov chain is observed for a very long time,
then the proportion of times that it is observed to be in state Ej should be
approximately ϕj , for all j.

4.8.2 Example
Consider the Markov chain with transition probability matrix given by

P =

⎡⎢⎢⎣
0.6 0.1 0.2 0.1
0.1 0.7 0.1 0.1
0.2 0.2 0.5 0.1
0.1 0.3 0.1 0.5

⎤⎥⎥⎦ . (4.30)

For this example the vector equation (4.27) consists of four separate lin-
ear equations in four unknowns. As noted above, when used jointly with
(4.28) they form a redundant set of equations and any one of them can be
discarded. Omission of the last equation in (4.27) leads to

0.6ϕ1 + 0.1ϕ2 + 0.2ϕ3 + 0.1ϕ4 = ϕ1,

0.1ϕ1 + 0.7ϕ2 + 0.2ϕ3 + 0.3ϕ4 = ϕ2,

0.2ϕ1 + 0.1ϕ2 + 0.5ϕ3 + 0.1ϕ4 = ϕ3,

ϕ1 + ϕ2 + ϕ3 + ϕ4 = 1.

To four decimal place accuracy, these four simultaneous equations have
the solution

ϕ′ = (0.2414, 0.3851, 0.2069, 0.1667). (4.31)

This is the stationary distribution corresponding to the matrix P given in
(4.30). In informal terms, from the point of view of long-term averages,
over a long time period the random variable should spend about 24.14% of
the time in state E1, about 38.51% of the time in state E2, and so on.
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The rate at which the rows in P (n) approach this stationary distribution
can be assessed from the following values:

P (2) =

⎡⎢⎢⎣
0.42 0.20 0.24 0.14
0.16 0.55 0.15 0.14
0.25 0.29 0.32 0.14
0.16 0.39 0.15 0.30

⎤⎥⎥⎦ , (4.32)

P (4) ∼=

⎡⎢⎢⎣
0.2908 0.3182 0.2286 0.1624
0.2151 0.4326 0.1899 0.1624
0.2538 0.3569 0.2269 0.1624
0.2151 0.4070 0.1899 0.1880

⎤⎥⎥⎦ , (4.33)

P (8) ∼=

⎡⎢⎢⎣
0.24596 0.37787 0.20961 0.16656
0.23873 0.38946 0.20525 0.16656
0.24309 0.38223 0.20812 0.16656
0.23873 0.38880 0.20525 0.16721

⎤⎥⎥⎦ , (4.34)

P (16) ∼=

⎡⎢⎢⎣
0.24142 0.38494 0.20692 0.16667
0.24135 0.38510 0.20688 0.16667
0.24140 0.38503 0.20691 0.16667
0.24135 0.38510 0.20688 0.16667

⎤⎥⎥⎦ . (4.35)

After 16 time units, the stationary distribution has, for all practical pur-
poses, been reached. The discussion in Chapter 11 shows how the rate
at which this convergence occurs can be calculated in a more informative
manner.

4.9 The Graphical Representation of a Markov
Chain

It is often convenient to represent a Markov chain by a directed graph. A
directed graph is a set of “nodes” and a set of “edges” connecting these
nodes. The edges are “directed,” that is, they are marked with arrows giving
each edge an orientation from one node to another.

We represent a Markov chain by identifying the states with nodes and
the transition probabilities with edges. Consider, for example, the Markov
chain with states E1, E2, and E3 and with probability transition matrix

⎡⎣.2 .1 .7
.5 .3 .2
.6 0 .4

⎤⎦ .
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This Markov chain is represented by the following graph:
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Notice that we do not draw the edge if its corresponding transition proba-
bility is known to be zero, as is the case in this example with the transition
from E3 to E2.

A graph helps us capture information at a glance that might not be so
apparent from the transition matrix itself. Sometimes it is also convenient
to include a start state; this is a dummy state that is visited only once,
at the beginning. Therefore, all transition probabilities into the start state
are zero. The transition probabilities out of the start state are given by the
initial distribution of the Markov chain. If the Markov chain starts at time
t = 0, we can think of the start state as being visited in time t = −1. We
can further have an end state, which stops the Markov chain when visited.

We refer to the graph structure, without any probabilities, as the topology
of the graph. Sometimes the topology of a model is known, but the various
probabilities are unknown.

We will use these definitions when we discuss hidden Markov models in
Chapter 12.

4.10 Modeling

There are many applications of the homogeneous Poisson process in bioin-
formatics. However, the two key assumptions made in the derivation of
the Poisson distribution formula (4.10), namely homogeneity and indepen-
dence, do not always hold in practice. Similarly, there are many applications
of Markov chains in the literature, in particular in the evolutionary pro-
cesses discussed in Chapter 14. Many of these applications also make
assumptions, specifically the two Markov assumptions stated in Section 4.5.
The modeling assumptions made in the evolutionary context are discussed
further in Section 15.9.
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In the context of DNA or protein sequence analysis, where time is re-
placed by position along the sequence, it is very likely that neither of these
two Markov assumptions is correct. The data from chromosome 22 in hu-
mans (Dunham et al. (1999)) makes it apparent that the probability that
the nucleotide a is next followed by g depends to some extent on the cur-
rent location in the chromosome. Further, it is likely that the Markov chain
memoryless assumption does not hold: The probability that the nucleotide
a is next followed by g might well depend on the nucleotide (or nucleotides)
immediately preceding a. Tests for this possibility are discussed in Section
5.2: Nevertheless these tests are often not applied, and the memoryless
Markov chain theory is often assumed when its applicability is uncertain.

The construction of phylogenetic trees, both by algorithmic methods and
by methods involving Markov chain evolutionary models, involves many
assumptions, both explicit and implicit. An example of quite different phy-
logenetic trees arising from different models is given in Section 15.8. A
discussion of various statistical tests for appropriate evolutionary models
is discussed in Section 15.9.

Given that modeling assumptions made for both Poisson processes and
Markov chains often do not hold exactly, one might ask why they are made
and why there is such an extensive Poisson process and Markov chain liter-
ature. Mathematical models generally make simplifying assumptions about
properties of the phenomena being modelled. This concern opens up the
question of why we model natural phenomena with mathematics if we can-
not do so with complete accuracy. In fact, it is not necessarily desirable
that we attempt to make an extremely accurate model of reality. The more
closely any phenomenon is modelled, the more complicated the model be-
comes. If a mathematical model becomes too complicated, then solving the
equations necessary to find answers to the questions we wish to ask can
become intractable. Therefore, we are almost always faced with the task of
finding a middle ground between tractable simple models and intractable
complex models. The key point is that a model need only capture enough
of the true complexity of a situation to serve our purposes, whatever they
might be.

Finding this middle ground, however, is not an easy task: Being able
to extract the essence of a complex reality in a simplified model that
then allows a successful mathematical analysis requires some skill and
experience.

In biology it is not always possible to evaluate a model’s efficacy directly.
Rather, a model is often tested on how well it performs its job. Sometimes
benchmarks can be well defined, but often efficacy is not easy to verify
empirically, and subjectivity can enter in. This is an unfortunate but usually
unavoidable problem.

To illustrate this we consider the early versions of the widely used BLAST
procedure discussed in more detail in Chapter 10. One of the simplifying
assumptions used is that nucleotides (or amino acids) are identically and
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independently distributed along a DNA (or protein) sequence. Current data
show that this assumption is false. Nevertheless, this simple BLAST pro-
cedure does work, in that the model captures enough of biological reality
to be effective.

A further aspect of the modeling process is that we do not expect any
model to be the final one used. Any given process is often initially modelled
using several simplifying assumptions, and then more refined models are
introduced as time goes on. Indeed, applications of the simple models often
indicate those areas in which more precise modeling is needed. Various up-
dates of the BLAST procedure exemplify this. Recent versions of BLAST
remove some of the simplifying assumptions made in earlier versions and
provide an example of the joint evolution of models and data analysis. Un-
fortunately, the mathematical theory involved in these more sophisticated
versions is far more complicated than that in the simpler BLAST theory,
and we shall only outline it in this book.

Not every problem we might wish to solve with a model has a happy
middle ground where our assumptions find a workable balance between
tractability and reality. Thus while we should be willing to accept simplify-
ing assumptions, we should always be on the lookout for oversimplifications,
especially those that are not sufficiently backed up by testing for the efficacy
of the model used. Model testing is an active area of statistical research in
bioinformatics, and aspects of model testing, especially in the evolutionary
and phylogenetic tree contexts, are discussed further in Section 15.9.

Problems

4.1. Prove (4.14) by repeated integration by parts of the right-hand side.

4.2. Events occur in a Poisson process with parameter λ. Given that 10
events occur in the time period [0, 2], what is the probability that 6 of
these events occur in the time period [0, 1]? Given that 6 of these events
occur in the time period [0, 1], what is the probability that 10 of these
events occur in the time period [0, 2]?

4.3. (“Competing Poissons.”) Suppose that events occur as described in
Section 4.1, but that now each event is of one of k types, labeled types
1, 2, . . . , k. The type of any event is independent of the type of any other
event. The probability that any event is of type i is pi. Equation (4.10)
continues to give the probability that exactly j events occur in the time
period (0, t). Assuming this,

(i) Find the (marginal) probability that ji events of type i occur in the
time period (0, t).
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(ii) Find the probability that ji (i = 1, . . . , k) events of type i occur occur
in the time period (0, t).

(iii) Find the joint conditional probability that ji (i = 1, . . . , k) events
of type i occur in the time period (0, t), given that j events in total
occur in this time period. Relate your answer to expression (2.45).

4.4. The transition matrix of a Markov chain is[
.7 .3
.4 .6

]
.

Find the stationary distribution of this Markov chain.

4.5. Continuation. If the initial probability distribution (at time 0) is
(.8, .2), what is the probability that at time 3 the state occupied is E1?

4.6. The transition matrix of a Markov chain is[
1 − a a

b 1 − b

]
.

Find the stationary distribution of this Markov chain in terms of a and b,
and interpret your result.

4.7. The transition matrix of a Markov chain is⎡⎢⎢⎣
0 1

3
1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0

⎤⎥⎥⎦ .

Use induction on n (see Section B.18) to show that the probability that
the Markov chain revisits the initial state at the nth transition is

p
(n)
ii =

1
4

+
3
4
(−1

3
)n.

(This result is needed for Problem 14.7.)

4.8. Use equations (4.27) and (4.23) to show that the stationary distribution
ϕ′ satisfies the equation

ϕ′ = ϕ′P (n), (4.36)

for any positive integer n. For the numerical example in Section 4.8.2, use
the expression for P (2) given in equation (4.32) and the expression for ϕ′

given in (4.31) to check this claim for the case n = 2.

Why does equation (4.36) “make sense”?
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4.9. Show that if the transition matrix of an irreducible, aperiodic, finite
Markov chain is symmetric, then the stationary distribution is a (discrete)
uniform distribution.

4.10. Show that if the transition matrix P of a Markov chain is of the
circulant form

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 a4 · · · as−3 as−2 as−1 as

as a1 a2 a3 · · · as−4 as−3 as−2 as−1
as−1 as a1 a2 · · · as−5 as−4 as−3 as−2

...
...

...
...

. . .
...

...
...

...
a4 a5 a6 a7 · · · as a1 a2 a3
a3 a4 a5 a6 · · · as−1 as a1 a2
a2 a3 a4 a5 · · · as−2 as−1 as a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.37)

where aj > 0 for all j, then the stationary distribution is a (discrete) uni-
form distribution.

4.11. Suppose that the transition matrix of a Markov chain is

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0 0 0
q 0 p 0 · · · 0 0 0 0
0 q 0 p · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · q 0 p 0
0 0 0 0 · · · 0 q 0 p
0 0 0 0 · · · 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.38)

Show that this Markov chain is periodic. Despite this fact, solve equations
(4.27) and (4.28) for the case p = q.

4.12. Suppose that a transition matrix P is of size 2s × 2s and can be
written in the partitioned form

P =
[

0 A
B 0

]
,

where A and B are both s×s matrices. Use this expression to find formulae
for (i) P (2n), (ii) P (2n+1) in terms of the matrices A and B, and interpret
your results.

4.13. Suppose that a finite Markov chain is irreducible and that there ex-
ists at least one state Ei such that pii > 0. Show that the Markov chain is
aperiodic.

4.14. (More difficult). Any s × s matrix of non-negative numbers for which
all rows sum to 1 can be regarded as the transition matrix of some Markov
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chain. Is it true that any such matrix can be the two-step transition matrix
of some Markov chain? Hint: Consider the case s = 2. Write down the
general form of a 2 × 2 Markov chain matrix and find when the sum of the
diagonal terms is minimized.



5
The Analysis of One DNA Sequence

5.1 Shotgun Sequencing

5.1.1 Introduction
Before any analysis of a DNA sequence can take place it is first necessary
to determine the actual sequence itself, at least as accurately as is reason-
ably possible. Unfortunately, technical considerations make it impossible to
sequence very long pieces of DNA all at once. Instead, many overlapping
small pieces are sequenced, each on the order of 500 bases (nucleotides).
After this is done the problem arises of assembling these fragments into
one long “contig.” One difficulty is that the locations of the fragments
within the genome and with respect to each other are not generally known.
However, if enough fragments are sequenced so that there will be many
overlaps between them, the fragments can be matched up and assembled.
This method is called “shotgun sequencing.”

It is customary to say that n-times coverage (or nX coverage) is obtained
if, when the length of the original (long) sequence is G, the total length of
the fragments sequenced is nG.

Two strategies have been used to sequence the entire human genome
(International Human Genome Sequencing Consortium (2001), Venter et
al. (2001)). Under one strategy the genome is partitioned into pieces whose
lengths are on the order of 100,000 bases and whose locations in the genome
are known. Then shotgun sequencing is performed on each piece, with high
coverage, in the 8X range. The greater coverage also helps eliminate errors
occurring in sequencing the fragments. A competing strategy is to adopt a
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“whole genome shotgun” approach, in which the entire genome is broken
into small fragments, each of length approximately 500 bases. The assembly
problem is much more difficult under this approach, and thus should require
higher coverage. It is a matter of much debate as to which approach is to be
preferred, and the human genome has been sequenced using a combination
of the two methods.

In the following two sections we address several probabilistic issues aris-
ing in the reconstruction of long DNA sequences from comparatively shorter
sequences, or fragments. Before proceeding it is important to note the
remarks about modeling given in Section 4.10. The probabilistic models
described below are simple and do not closely reflect the properties of hu-
man genome as revealed in the two references given above. References to
less simplified models are given at the end of Section 5.1.3, and the calcu-
lations in the following two sections can be regarded as an introduction to
these more realistic models.

5.1.2 Contigs
Figure 5.1 shows a collection of N = 17 fragments with their locations
above the original DNA sequence. It is assumed that overlapping fragments
can be recognized and used to determine a collection of “contigs” (thick
black lines), of which there are 7 in the example shown. These contigs are
then taken as the best possible reconstruction of the original DNA sequence.
Note that Figure 5.1 is potentially misleading in that the locations and the
orientations of the contigs are unknown to us.

Figure 5.1.

We assume initially that there are N fragments, each of length L, and
that the original full-length DNA sequence, which we call here the genome,
is of length G. Therefore, the coverage a is given by

a = NL/G.

The length G is assumed to be much larger than L, so that end effects are
ignored in the calculations below.

The fragments are assumed to be taken at random from the original
full-length sequence, so that if end effects are ignored, the left-hand ends
of the fragments are independently distributed with a common uniform
distribution over [0, G]. This implies that any such left-hand end falls in an
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interval (x, x + h) with probability h/G and that the number of fragments
whose left-hand end falls in this interval has a binomial distribution with
mean Nh/G. If N is large and h is small, the discussion of Section 4.2
shows that this distribution is approximately Poisson with mean Nh/G.
We use this and other Poisson approximations throughout. The number Y
of fragments whose left-hand end is located within an interval of length L
to the left of a randomly-chosen point therefore has a Poisson distribution
with mean a, so that the probability that at least one fragment arises in
this interval is 1 − Prob(Y = 0) = 1 − e−a.

This calculation, together with other properties of homogeneous Poisson
processes, is enough to provide the answer to three basic questions: What is
the mean proportion of the genome covered by contigs? What is the mean
number of contigs? What is the mean contig size?

The mean proportion of the genome covered by one or more fragments
is the probability that a point chosen at random is covered by at least one
fragment. This is the probability that at least one fragment has its left-
hand end in the interval of length L immediately to the left of this point,
which is 1 − e−a as given above. Some representative values are given in
Table 5.1.

a 2 4 6 8 10 12

Mean proportion
of genome covered

.864665 .981684 .997521 .999665 .999955 .999994

Table 5.1. The mean proportion of the genome covered for different values of a.

It is clear from the values in Table 5.1 that, for values of a exceeding
about 8, increasing the value a by increasing the value of N does not
significantly increase the mean proportion of the genome covered, and in
practice other methods are used to increase this proportion. Further, the
simplifying assumptions made in the above calculations do not apply for
several parts of the genome, as discussed below.

We now consider the mean number of contigs. Each contig has a unique
rightmost fragment, so that the formula np for the mean of a binomial
distribution given below (1.25) shows that the mean number of contigs is
the number N of fragments multiplied by the probability that a fragment is
the rightmost member of a contig. This latter probability is the probability
that no other fragment has its left-hand end point on the fragment in
question. From the calculation in the previous paragraph, this probability
is e−a. Thus

mean number of contigs = Ne−a = Ne−NL/G. (5.1)

Table 5.2 gives some values for this mean for different values of a in the
case G = 100,000, L = 500.
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a 0.5 0.75 1 1.5 2 3 4 5 6 7

Mean number
of contigs

60.7 70.8 73.6 66.9 54.1 29.9 14.7 6.7 3.0 1.3

Table 5.2. The mean number of contigs for different levels of coverage, with
G = 100,000 and L = 500.

The mean number of contigs, as a function of a, increases and then
decreases. The reason for this is that if there is a small number of fragments,
there must be a small number of contigs, while a large number of fragments
tend to form a small number of large contigs. The mean number of contigs
is maximized when N = G/L, or equivalently when a = 1, corresponding
to 1X coverage. In the example in Table 5.2, only one contig is expected
to arise for higher than about 8X coverage. However, the expression (5.1)
for the mean number of contigs becomes inaccurate in this range, since
with 8X coverage, end effects (which are ignored in deriving (5.1)) become
important. While the numbers G and L in this example are realistic, the
assumptions of the model are simplified and unrealistic, and in practice
the problem of achieving high coverage is more difficult than is implied by
the above calculations. For example, the existence of repeated sequences
in the junk DNA can cause fragments to appear to overlap when they
do not. Furthermore, some stretches of DNA are technically much more
difficult to clone and sequence than others, so that the uniform distribution
assumption of fragment location is in practice not appropriate.

We next calculate the mean contig size. The mean contig size is found by
considering the left-hand ends of a succession of fragments, starting with
the initial left-hand fragment on a given contig. Under the Poisson approx-
imation made, the distance from the left-hand end of the first fragment
to the left-hand end of the second fragment has a geometric distribution.
As discussed in Section 1.10.4, this distribution is closely approximated by
the exponential distribution (1.66) with parameter λ = N/G, and we make
this approximation here. This second fragment will overlap the first one if
this distance is less than the length L of the first fragment. This occurs
with probability ∫ L

0
λe−λxdx = 1 − e−a.

A further overlap occurs if the next fragment to the right of the second
fragment overlaps that second fragment. The contig is built up in this way
until such an overlap fails to occur.

We think of an overlap as a “success” and a non-overlap as a “failure.”
The number of successively overlapping fragments, before the first non-
overlap, has a geometric distribution whose mean (from Table 1.1 with
p = 1 − e−a) is ea − 1. If n fragments form a contig, the total length of the
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contig is the length L of the final fragment together with the sum of the
n − 1 random distances between the left-hand end of any given fragment
and the left-hand end of the next fragment to the right. Equation (2.52)
shows that the mean of these random distances is

1
λ

− L

ea − 1
.

Equation (2.81), referring to the mean of a sum of a random number of
random variables, shows that the mean total of these distances is

(ea − 1)
(

1
λ

− L

ea − 1

)
=

ea − 1
λ

− L.

Upon adding the length L of the last contig to this, the mean contig size
is found to be

ea − 1
λ

= L
ea − 1

a
. (5.2)

Some examples of mean contig sizes as a function of a are given in Table
5.3 for the case L = 500.

a 2 4 6 8 10

Mean contig
size

1, 600 6, 700 33, 500 186, 000 1, 100, 000

Table 5.3. The mean contig size for different values of a for the case L = 500.

It was assumed in the discussion above that all fragments have the same
fixed length L. In reality, fragments are obtained in lengths roughly between
400 and 600 bases. Many of the above results can be generalized to the
case where the length of any fragment is a random variable L with density
function fL(�). We only consider this generalization for the problem of
finding the mean proportion of the genome covered by a contig.

Let P be a given point in the genome. Ignoring end effects and terms of
order o(h), we find that the probability that some fragment has its left-hand
end in the interval (P − x, P − x + h) and overlaps P is the mean number
of fragments having left-hand end point in this interval (λh) multiplied by
the probability that the length of a fragment exceeds x (and thus covers
the point P ). Thus ignoring terms of order o(h), this probability is

λh

∫ +∞

x

fL(�) d� = λh (1 − FL(x)) .

From this, the mean number of fragments covering the point P is

λ

∫ +∞

0
(1 − FL(x)) dx,
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and from equation (1.58) this is

λE(L) =
NE(L)

G
. (5.3)

It follows that the probability that a random point is covered by a contig
is 1 − e−NE(L)/G, and this is then also the mean proportion of the genome
covered by a contig.

Further aspects of this generalization have been discussed by Lander
and Waterman (1988), who, among a variety of other interesting results,
show that the mean number of contigs is somewhat larger than the value
Ne−NE(L)/G, the value that might be obtained intuitively by replacing L
by E(L) in equation (5.1).

5.1.3 Anchored Contigs
As stated above, the locations and orientations of the contigs described in
Section 5.1.2 are unknown. Short sequences in the DNA that are unique in
the genome, and whose locations are known, provide markers, or “anchors,”
that allow us to locate and orient the fragments in the genome that happen
to contain these markers. In such a case we say that the fragments are “an-
chored.” Other concepts of an anchor are possible, but this is the simplest.
For mathematical purposes an anchor can be considered as a point.

An anchored fragment is a fragment with at least one anchor on it, and an
anchored contig is a collection of fragments “stapled together” by anchors.
Figure 5.2 provides an example where there are 16 fragments, 9 anchors,
and 6 anchored contigs, shown as thick black lines. Contigs can overlap, as

×× × × × × ×× ×

Figure 5.2.

shown in this figure, but the overlap is not recognized if there is no anchor
on the overlapping section. The genome reconstruction is then carried out
using anchored contigs.

We first calculate the expected proportion of the genome covered by
anchored contigs in the case where all fragments are of fixed length L. The
number of anchors is denoted by M , and it is assumed the location of each
anchor has a uniform distribution over the genome (or part of the genome)
considered, and that the locations of different anchors are independent.
Essentially equivalently, we assume that the anchors are placed according



180 5. The Analysis of One DNA Sequence

to a homogeneous Poisson process with parameter M/G. Then the number
of anchors in any length L of the DNA sequence has a Poisson distribution
with mean b = ML/G. The process determining the location of the anchors
is assumed to be independent of the process locating the fragments.

The mean proportion of the DNA segment covered by anchored contigs is
the probability that a point P chosen at random is covered by an anchored
contig. It is convenient to consider the complementary probability that P
is not covered by an anchored contig. This latter probability id found in
the following way.

A point can fail to be covered by an anchored contig for one of three
mutually exclusive reasons. First, there might be no fragment covering this
point. This event has probability e−a (recall that a = NL/G). Second,
there might be exactly one fragment covering this point (probability ae−a)
but no anchor on this fragment (probability e−b), leading to a probability
ae−(a+b) for this event. Finally, there might be k ≥ 2 fragments covering
this point, with no anchor on the span of these fragments. The calculations
relating to this third possibility are more complicated and are carried out
as follows.

�� ��

��

P

Y = L − W W

X

Figure 5.3.

Consider the case typified by that shown in Figure 5.3, where P is the
point in question. The k (k ≥ 2) fragments covering P have total span
X + Y . Each of these k fragments has a “right-projection,” namely the
length of that part of the fragment to the right of P . Since the fragments
are assumed to be placed at random, this length is uniformly distributed in
(0, L). The projection X is the maximum of these lengths. Similarly, each
of the k fragments covering P has a “left-projection,” namely the length
of that part of the fragment to the left of P , also uniformly distributed in
(0, L). The projection Y is the maximum of these lengths. Further, Y =
L − W , where W is the length of the smallest right-projection length.
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For any fixed k ≥ 2, the joint density function of W and X is given in
(2.143) (with x(1) = W and x(n) = X). With this joint density function in
hand, transformation methods can be used to find the density function of
the span Z = X + Y , given that the number of fragments crossing P is k.
It can be shown (see Problem 5.1) that the density function of Z is

fZ(z; k) = k(k − 1)(2L − z)(z − L)k−2/Lk, L < z < 2L, (5.4)

where we use the notation fZ(z; k) to indicate the dependence of this distri-
bution on k. The (Poisson distribution) probability that exactly k fragments
cover P is e−aak/k!, so that for small h, the probability of the event “k ≥ 2
and the span is of length between z and z+h” is, ignoring small-order terms,

h

∞∑
k=2

e−aak

k!
fZ(z; k) = ha2e−2aL−2(2L − z)eaz/L.

We write the right-hand side in this expression as h j(z). The probability
that no anchor lies on a span of length z is e−zb/L. The probability that
k ≥ 2 and that the point P is not covered by an anchored contig is then∫ 2L

L

j(z)e−zb/Ldz =
a2

(a − b)2
e−2b +

a2(b − a − 1)
(a − b)2

e−a−b. (5.5)

The total probability that the point P is not covered by an anchored con-
tig, that is, the mean proportion of the DNA not covered by an anchored
contig, is found by adding the probabilities e−a (for the case k = 0) and
ae−(a+b) (for the case k = 1) calculated above to the right-hand side in
(5.5). Subtraction of the quantity so found from 1 yields

1 − e−a − a(b2 − ab − a)e−(a+b)

(b − a)2
− a2

(b − a)2
e−2b. (5.6)

This is the total probability that the point P is covered by an anchored
contig, or equivalently the mean proportion of the genome covered by an
anchored contig, as desired.

This calculation can be checked by considering two limiting cases. First,
as b → ∞ the number of anchors increases indefinitely, and the probability
in (5.6) approaches the value 1 − e−a as found in Section 5.1.2, as ex-
pected. Second, as a → ∞ the number of fragments increases indefinitely.
In this case the probability that a point P is in an anchored contig is the
probability that at least one anchor lies in the interval of length 2L placed
symmetrically around P. This probability is 1−e−2b, and this is the limiting
value of (5.6) as a → ∞.

We next calculate the mean number of anchored contigs. Each anchored
contig has a unique rightmost fragment, so this mean is the mean number
of rightmost fragments on an anchored contig. The key calculation needed
to find this mean number of fragments is to find the probability that a
given fragment C is the rightmost fragment on an anchored contig, and we
now carry out this calculation.
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One way in which fragment C can be such a rightmost fragment is if it is
anchored, with probability (1 − e−b), and also no other fragment overlaps
it on the right, with probability e−a. This event has total probability

(1 − e−b)e−a. (5.7)

The only other way in which fragment C can be the rightmost fragment
on an anchored contig arises when there is at least one fragment overlapping
C to the right, and that there is at least one anchor in C in the non-
overlapped part of C and no anchor in C in the overlapped part of C. The
probability of this event is found as follows.

If fragment C has k (k ≥ 1) fragments overlapping it to the right, there
will be some leftmost member of these fragments whose left-hand end is a
distance W to the right of the left-hand end of fragment C. For the moment
we take k and the length W as given. The probability of the event that
there is at least one anchor on the leftmost length W of fragment C is
1 − e−bW/L and the probability of the event that there is no anchor on the
remaining rightmost length L − W of fragment C is e−(L−W )b/L. These
two events are independent, so that the probability that they both occur
is
(
1 − e−bW/L

)
e−(L−W )b/L.

We now continue to take k as given and find the probability density
of the (random) length W. This length is the minimum of k iid uniform
random variables with range [0, L], each having density function fX(x) =
1
L , 0 ≤ x ≤ L. The probability distribution of this minimum is given in
equation (2.88) as k(L − x)k−1/Lk, and this is the density function of W,
with range [0, L].

We finally observe that k is a random variable having a Poisson distribu-
tion with parameter a. The probability that fragment C is overlapped on
the right by at least one other fragment, but is nevertheless the rightmost
fragment on an anchored contig, is then found from the above calculations
to be

+∞∑
k=1

(
e−aak/k!

) ∫ L

0
k(L − w)k−1

(
1 − e−wb/L)(e−(L−w)b/L

)
/Lk dw. (5.8)

Now the expression
∑+∞

k=1

(
e−aak/k!

)
k(L − w)k−1/Lk appearing in (5.8)

can be simplified to

ae−a

L

+∞∑
k=1

(a(L − w)/L)k−1
/(k − 1)! =

a

L
e−aea(L−w)/L =

a

L
e−aw/L. (5.9)

Further, the expression
(
1 − e−wb/L)(e−(L−w)b/L

)
appearing in (5.8)

simplifies to e−b(ewb/L − 1). Thus (5.8) may be written as

aL−1e−b

∫ L

0
e−aw/L(ewb/L − 1) dw = ae−b

∫ 1

0
e−ax(ebx − 1) dx. (5.10)
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Evaluating this integral and adding the probability (1 − e−b)e−a given in
(5.7), we arrive at the probability

b
(e−a − e−b)

(b − a)

that fragment C is the rightmost fragment of an anchored contig. Since
there are N fragments, the mean number of anchored contigs is

Nb
(e−a − e−b)

(b − a)
. (5.11)

As a check on this calculation, the limiting case b → ∞ yields the mean
number Ne−a found in (5.1). The limiting case a → ∞ yields a mean of
Me−b. This is as expected when there are infinitely many fragments, since
it is the number of anchors, M , multiplied by the probability e−b that no
anchor arises a distance L or less to the right of any given anchor, thus
preventing that anchor from being the rightmost in a contig.

The calculations for the mean contig size are more complicated and are
not given here.

The calculations described above rely on several simplifying assump-
tions, for example that both the fragment and the anchor Poisson processes
are homogeneous and that all fragments are of the same length. Calcula-
tions applying in more realistic cases, removing these and other restrictions,
is discussed by Arratia et al. (1991), Schbath (1997), and Schbath et al.
(2000).

5.2 Modeling DNA

On its most elementary level, the structure of DNA can be thought of as
long sequences of nucleotides. These sequences are organized into coding
sequences, or genes, that are separated by long intergenic regions of noncod-
ing sequence. Most eukaryotic genes have one further level of organization:
Within each gene, the coding sequences (exons) are usually interrupted by
stretches of noncoding sequences (introns). During processing of DNA into
messenger RNA (mRNA), these intron sequences are spliced out and thus
do not appear in the final mature mRNA which is translated into protein
sequence.

Intergenic regions and introns have different statistical properties from
those of exons. By capturing these properties in a model we can construct
statistical procedures for testing whether or not an uncharacterized piece of
DNA is part of the coding region of a gene. The model is based on a set of
“training” data taken from already characterized sequences. In the simplest
model it is assumed that the nucleotides at the various sites are independent
and identically distributed (iid). If this is the case, the difference between
coding and noncoding DNA could be captured in the difference between
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the frequencies of the four nucleotides in the two different cases (intron vs.
exon). These distributions can then be estimated from the training data.

The accuracy of this procedure depends on the accuracy of the assump-
tions made. Thus it is important, for example, to develop tests of the (null)
hypothesis of independence. One such test is based on a Markov chain
analysis. In the use of Markov chains in sequence analysis, the concept of
“time” is naturally replaced with “position along the sequence.” Under a
Markov chain alternative hypothesis the probability that a given nucleotide
is present at any site depends on the nucleotide at the preceding site. The
null hypothesis of independence corresponds to a Markov chain in which all
rows in the transition probability matrix are identical, so that the probabil-
ities for the various nucleotides at any site are independent of the nucleotide
at the preceding site. It is possible that neither hypothesis is correct, but
it is of interest to assess whether the Markov-dependence model describes
reality significantly better than the independence model and thus might
raise the accuracy of our predictive procedures. Furthermore, if it does,
then models with even more complex dependence may be considered.

The statistical test for Markov independence is an association test in a
4 × 4 table such as in Example 4 of Section 3.5. In this case r = c = 4,
and Yjk is the number of times that a nucleotide of type “j” is followed
by a nucleotide of type “k” in the DNA sequence of interest. The data
would then appear as shown in Table 5.4. In this case the null hypothesis
of independence becomes the null hypothesis of no association in the table.

nucleotide
at site i + 1

a g c t Total
a Y11 Y12 Y13 Y14 y1·

nucleotide g Y21 Y22 Y23 Y24 y2·
at site i c Y31 Y32 Y33 Y34 y3·

t Y41 Y42 Y43 Y44 y4·
Total y·1 y·2 y·3 y·4 y

Table 5.4. Table of numbers of times a nucleotide of one specified type follows
one of another specified type.

Tests of this type show that the nucleotides at adjoining DNA sites
are often dependent, and a first-order Markov model fits real data signifi-
cantly better than the independence model both in introns and in exons.
Higher-order homogeneous Markov models and nonhomogeneous models
often provide even better fits. We discuss tests of higher-order Markov
dependence in Section 11.3.
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5.3 Modeling Signals in DNA

5.3.1 Introduction
Genes contain “signals” in the DNA to indicate the start and end of the
transcribed region, the exon/intron boundaries, as well as other features.
The cell machinery uses these signals to recognize the gene, to edit it
correctly, and to translate it appropriately into protein.

A signal is a short sequence of DNA having a specific purpose, for ex-
ample indicating an exon/intron boundary. If nature were kind, each such
signal would consist of a unique DNA sequence that did not appear any-
where in the DNA except where it serves its specific purpose. In reality,
there may be many DNA sequences that perform the same signal function;
we call these “members” of that signal. Furthermore, members of signals
also appear randomly in the nonfunctional DNA, making it hard to sort
out the functional from nonfunctional signals.

In practice, some but not all members of a signal are known. Our aim is
to use known members to assess the probability that a new uncharacterized
DNA sequence is also a member of the signal. Our assumption is that the
different members arose from common ancestors via stochastic processes.
Therefore, it is reasonable to construct a statistical model of the data. Some
signals require only simple models; others require complex ones. When the
model required is complex and the data are limited, we must make carefully
chosen simplifying assumptions in the model in order to utilize the data in
the most efficient manner. In Chapter 12 we describe a complex model for
modeling an entire gene. That application will use all of the different signal
models described below.

We assume that all members of the signal of interest have the same
length, which we denote by n. This assumption is not too restrictive, since
the members of many signals do have the same lengths, and for those that
do not we can capture portions of them with this model, which is often
sufficient. To model the properties of any signal we must have a set of
“training data”: These are extensive data in which members of the signal
are known and recognized. For example, in investigating signals in human
DNA we might use a set of known members of signals taken from known
human genes in public databases.

We now consider some of the basic signal models that are used in bioin-
formatics. For a more exhaustive discussion of this subject, see Burge
(1998).

5.3.2 Weight Matrices: Independence
The test of whether a given uncharacterized DNA sequence is a member
of a given signal is most easily carried out in the case where the nucleotide
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in any position in the signal is independent of the nucleotides in any other
position in the signal.

It is therefore necessary to form a test of independence, and we consider
here a test of whether the nucleotide at position a in a signal is independent
of the nucleotide at position b. This can be done in various ways. It is
natural to generalize the test described in connection with the data in Table
5.4, which tests for independence at adjacent sites. In this generalization
“site i” is replaced by “position a in the signal” and “site i+1” is replaced
by “position b in the signal,” and Yjk is interpreted as the number of
times in the training data that nucleotide j occurs at position a in the
signal and nucleotide k occurs at position b in the signal. This test is then
performed for all pairs a and b. The individual tests are then corrected for
multiple testing, either using a Bonferroni or Šidák correction, as discussed
in Section 3.11.

Suppose that as a result of this or some other testing procedure indepen-
dence can be assumed. A 4×n matrix is then constructed whose (i, j) entry
is the proportion of cases in the training data for which the ith nucleotide
occurs at the jth position of a signal. This is referred to as a weight matrix
and is denoted by M . The set of training data is assumed to be sufficiently
large that the proportions in this matrix can be taken as probabilities. An
example for the case n = 5 is given in Table 5.5. The entries in column

position
1 2 3 4 5

a 0.33 0.34 0.19 0.20 0.21
nucleotide g 0.22 0.27 0.23 0.24 0.21

c 0.31 0.18 0.34 0.30 0.25
t 0.14 0.21 0.24 0.26 0.33

Total 1 1 1 1 1

Table 5.5. Signal probabilities.

j in this matrix give (estimated) probabilities for the four nucleotides at
position j in the signal.

The matrix M defines a probability Prob(s |M) for any sequence s of
length n. Weight matrices are used in many contexts. We shall use them
as a component of a gene-finding algorithm given in Chapter 12.

5.3.3 Markov Dependencies
If the nucleotides at the sites in a signal are not independent, a possibility
is that there are dependencies of the first order Markov type. Under this
hypothesis the first position of the signal has a probability distribution de-
termined by overall nucleotide frequencies. Nucleotides at each subsequent
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position have a probability distribution depending on the nucleotide at the
previous position as determined by a 4 × 4 Markov chain transition prob-
ability matrix whose (i, j) element is the probability of the jth nucleotide
in position k, given the ith nucleotide in position k − 1. The elements in
this matrix are estimated from the training data.

More generally, higher-order Markov dependencies such as those de-
scribed in Section 11.3 may be modeled. However, as discussed in Section
11.3, these transition matrices become large as the order of the Markov
dependency increases, so that for a high-order dependence the amount of
data needed for satisfactory estimation might be excessive. When the set of
training data is limited we must economize and capture only the most in-
formative dependencies in our model. A method for doing this is discussed
in the next section.

5.3.4 Maximal Dependence Decomposition
As discussed in Section 5.3.3, it may be impossible, due to limited data,
to obtain satisfactory estimates of all dependencies in the sequences in a
given signal. This motivates us to search for a method that captures those
dependencies that are most informative. We now describe the approach to
this problem known as maximal dependence decomposition (MDD) (Burge
(1997)).

Suppose we wish to model a signal of length n. The first step is to find
one position which has the greatest influence on the others. To do this we
construct an n × n table whose (i, j) entry is the observed value of the
chi-square statistic obtained from a 4 × 4 table such as Table 5.4 but that
compares the nucleotides at a fixed position i with those at a fixed position
j (instead of specifically position i+1). If the hypothesis of independence is
true, we expect to find about one significant value out of 20 just by chance
if the Type I error is 5%. Thus if only a few of the observed chi-square
values are significant but not highly significant, we might conclude that
the positions in the signal can be taken as independent. If more than a few
are significant, or if there are values with high levels of significance, then
we would conclude that the nucleotides at the various positions are not
independent.

1 2 3 4 5 total
1 34.2∗ 7.1 37.2∗ 2.8 81.3
2 34.2∗ .4 72.4∗ 4.5 111.5
3 7.1 .4 15.3 98.3∗ 121.1
4 37.2∗ 72.4∗ 15.3 14.2 139.1
5 2.8 4.5 98.3∗ 14.2 119.8

Table 5.6.
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Table 5.6 provides an example with n = 5 in which many of the chi-square
values are significant at the 5% level (indicated by asterisks). The row with
the greatest sum gives an indication of which position has the greatest
influence on the other n− 1 positions. In the above example position 4 has
the greatest row total, so we take it as the position with greatest influence
and try to assess this influence further. In this case we say that we split on
position 4.

We illustrate first by constructing a model that determines distributions
for positions 1, 2, 3, and 5 conditional on position 4. This is done as follows.
We divide the set of test sequences into four sets, each set being determined
by the nucleotide in position 4, so that for each nucleotide x we have a set
Tx consisting of those sequences where there is an x in position 4. We
then calculate px = nx/d, for each x = a, g, c, t, where nx is the number
of members of the training data having nucleotide x in position 4, and
d =
∑

nx. Next, for each x = a, g, c, t, we calculate a 4 × 4 weight matrix
Mx from the sequences in Tx, for positions 1, 2, 3, and 5.

The model M then consists of the distribution {pa, pg, pc, pt} together
with the four weight matrices {Ma, Mg, Mc, Mt}. For any sequence s of
length 5 we calculate Prob(s |M) as follows.

If nucleotide x occurs in position 4 of s, the weight matrix Mx is used
to assign a probability pk to positions k = 1, 2, 3, and 5 of s. Prob(s |M)
then equals px · p1 · p2 · p3 · p5.

In general, some or all of the sets Tx might be large enough that we
can repeat the entire process recursively, splitting Tx further on one of the
positions 1, 2, 3, 5. In this case, for each sufficiently large Tx we make a new
table similar to Table 5.6, this time 4× 4, to find the position of these four
that has the greatest influence on the other three. We then decompose Tx

into Txy for y = a, g, c, and t, and continue to Txyz, and so on, as long as
there are enough data. A rule of thumb is to stop whenever the set Txyz···
has fewer than 100 sequences. When such a limit is reached, the remaining
positions are modeled with a weight matrix.

5.4 Long Repeats

Suppose that we are interested in one specific nucleotide, say a, and ask
whether there is significant evidence of long repeated sequences of this
nucleotide. More specifically, we wish to test the null hypothesis that nu-
cleotides occur at random against the alternative that there is a tendency
for long repeats of a. We have discussed one test for Markov dependence
of nucleotides in Section 5.2 and will discuss more detailed tests in Sec-
tion 11.3. In this section we discuss a test of randomness tailored to the
“repeats” alternative hypothesis.
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Consider a long DNA sequence of length N , where N is assumed to be
so large that end effects can be ignored in our calculations. Suppose that
the null hypothesis probability that the nucleotide a occurs at any site in
this sequence is some known value p. We call the occurrence of a at any
site a “success” and the occurrence of any other nucleotide at any site a
“failure.”

Suppose that the DNA sequence is scanned from left to right, and con-
sider the situation immediately following a failure. There will then be a
sequence of successes, possibly of length 0 (if the next nucleotide is c, g,
or t). Assuming that the null hypothesis is true, equation (1.15) shows
that the length Y of this sequence has the geometric distribution, which is
reproduced here for convenience:

PY (y) = Prob(Y = y) = (1 − p)py, y = 0, 1, 2, . . . . (5.12)

Equation (2.106) shows that if n independent such sequences are given,
and Ymax is the length of the longest of these, then

Prob(Ymax ≥ y) = 1 − (1 − py)n. (5.13)

If Ymax is used as test statistic, the P -value for any observed value ymax of
Ymax can be calculated directly from equation (5.13) once an appropriate
value of n is chosen. Any sequence of successes (of length 0 or more) must be
preceded by a failure. Under the null hypothesis there will be approximately
(1 − p)N such failures, so that there will also be approximately (1 − p)N
sequences of successes of length 0 or more. This is the value we use for n.
This implies that

P -value ∼= 1 − (1 − pymax)(1−p)N
. (5.14)

If N = 100,000 and p = 1
4 and the observed length ymax of the longest

repeated sequence of a is 10, the approximate P -value calculated from
(5.14) is 0.0690272. Thus, given an observed value of 10 for Ymax, the
null hypothesis would not be rejected with any conventionally used Type
I error. On the other hand, if the observed longest length were 12, the
P -value would be approximately 0.45%, and this would often be taken as
being sufficiently small for rejection of the null hypothesis.

The discussion following the exponential approximation in (B.3) shows
that the expression (5.14) is well approximated, when N is large and (1 −
p)Npymax ≤ 1, by

P -value ∼= 1 − e−(1−p)Npymax
. (5.15)

In the case N = 100,000, p = 1
4 , the approximation (5.15) gives 0.0690275,

essentially identical to the value found from (5.14). Expressions of the form
(5.15) arise later in connection with BLAST.

There is one approximation used in these calculations that should be
checked. It was assumed in the calculations that the number of failures is
(1−p)N . More exactly, this number is a random variable having a binomial
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distribution with parameters N and 1 − p. Thus when N = 100,000 and
1 − p = 3

4 , a precise calculation for the null hypothesis probability that
Ymax ≥ 10 is, from equations (1.53) and (1.105),

100,000∑
j=0

(
100,000

j

)(
3
4

)j (1
4

)100,000−j
⎛⎝1 −

(
1 −
(

1
4

)10
)j
⎞⎠ . (5.16)

Equation (B.1) shows that this expression reduces to

1 −
(

1 − 3
4

(
1
4

)10
)100,000

∼= 0.0690276.

This agrees to seven decimal place accuracy with the approximate value
found from (5.15). This close agreement is typical of the values for other
cases, and we conclude that the approximation of regarding the number of
sequences as fixed at its mean value is sufficiently accurate for all practical
purposes.

It was shown in Table 3.4 that for the geometric distribution (the k = 0
case in Table 3.4), the expression in (3.51) gives a very accurate approx-
imation for P -values, essentially identical to the exact calculation given
in (2.106), provided that one uses the expressions µmax and σ2

max for the
mean and variance approximations for Ymax given in equations (2.118) and
(2.120). These expressions are repeated here for convenience, with a slightly
altered notation:

µmax ≈ γ + log n

− log p
− 1

2
, σ2

max ≈ π2

6(log p)2
+

1
12

. (5.17)

Next we consider runs of any nucleotide, not only a. This case has been
discussed in the disease context with repeats of triplets of nucleotides rather
than single nucleotides being of interest: see for example the edition of
Brain Research Bulletin, (Servadio et al. (2001)) devoted to this topic. The
calculations for triplet repeats are a natural extension of those considered
here, where we consider a collection of single nucleotide repeated sequences,
some of which might be of a, some of g, some of c, and some of t.

We consider first the case when the probability that any specified nu-
cleotide arises at any site is 1/4. This corresponds to the case p = 1/4 in
the expressions in (5.17). In this case Smythe (2004) has shown that, when
end effects are ignored, the mean and variance of the length of the longest
repeated sequence, where this sequence can be either of a, g, c or t, are
given by

µmax ≈ γ + log n

log 4
+

1
2
, σ2

max ≈ π2

6(log 4)2
+

1
12

. (5.18)

Thus the mean exceeds the value given in (5.17) for the case p = 1/4 by 1
while the variance is as given in (5.17). We discuss below why this should
be so.
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A more complicated result arises when the probabilities of the various
nucleotide differ. Suppose that there is one nucleotide whose probability p∗

of occurrence at any site exceeds that of all other nucleotides. Then when
n is very large, it becomes increasingly likely that the longest repeated
sequence is of this nucleotide. Smythe uses this intuition to show that the
mean and variance of the longest repeat are essentially as approximated in
(5.17), with now p = p∗.

When each nucleotide in some subset of r of the four nucleotides arises
with probability p∗, and this probability exceeds the probability of any
one of the 4 − r nucleotides not in this subset, Smythe uses a heuristic
argument to claim that the mean length of the longest repeated sequence
of any nucleotide is given by

µmax ∼= γ + log n + log r

− log p∗ − 1
2
. (5.19)

In the case r = 1 this reduces to the value given in the previous paragraph,
as expected, and in the case r = 4 it reduces to the value given in (5.18).

A rather different question is taken up by Karlin et al. (1983), who
consider the mean and the variance of the length of the longest word, of
whatever composition, that is duplicated at two (or more) positions in the
sequence. Perhaps surprisingly, since this is a quite different problem from
that considered above, this mean and variance are of a similar form to those
given in the approximation (5.17), being

µmax ∼= 0.6359 + 2 log n + log(1 − P )
− log P

− 1, σ2
max

∼= π2

6(log P )2
, (5.20)

where P is the sum of the squares of the four nucleotide frequencies. If
all nucleotides are equally frequent this mean is approximately twice that
given in (5.17) when n is large, whereas the variance is close to that in
(5.17).

The similarities of the various results just discussed is no coincidence.
To illustrate this we show why the mean values in (5.17) and (5.18) differ
by 1 and the variances are equal. In the case where a specific nucleotide
is of interest, say a, we may regard the occurrence of a at any site as a
success, and thus are interested in runs of successes. Suppose that there
are Y1 successes in any such run. In the case where runs of any nucleotide
are of interest, we may regard a success as arising when the nucleotide at
any site is the same as that at the previous site. The length of any such
run may be expressed as 1 + Y2, the 1 arising from the initial nucleotide in
the run and with Y2 being the number of times this nucleotide then follows
in succession. When all nucleotides have the same probability of arising at
any site, Y1 and Y2 have the same probability distribution. Thus the mean
of the length 1+Y2 is exactly 1 more than the mean of the length Y1, while
the variances of the two lengths are identical.
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The mean in (5.20) can be found by imagining the DNA sequence of
length n to be copied, and then one copy compared with the other using
all possible relative alignments of the two copies. A run of successes arises
when exact matches of the nucleotides in the two copies occurs. There are
approximately n2 positions where such a run of successes can occur, and
the fact that log n2 = 2 log n then explains the factor of 2 multiplying log n
in (5.20).

Thus all the above results are variants of each other, and the appropriate
mean and variance for any case of interest can be used, in conjunction with
(3.51), to find approximate P -values for the length any observed run of
“successes.”

5.5 r-Scans

In this section we discuss a procedure for testing whether certain genomic
features, for example genes, occur at locations that are uniformly and in-
dependently distributed in some connected segment of the genome, for
example part of a chromosome arm. The tests we consider were put for-
ward by Karlin and Macken (1991a,b), who derived a variety of so-called
r-scan tests to assess heterogeneity of the location of various restriction
sites and other markers in genetic sequence data. We outline their analysis
in this section. An example of their tests, concerning the location of mo-
tifs, is described in Section 5.6. Various asymptotic results for r-scans not
discussed here are given by Reinert et al. (2000).

The null hypothesis considered is that the genomic features of interest
occur at locations that are uniformly and independently distributed in the
segment of interest. We assume that the length of a gene is so short relative
to this segment that we may regard the positions of the genes as points. It
is also convenient to normalize lengths so that the segment is taken to be
of length 1. The null hypothesis then is that the locations of a collection
of n points on the unit interval [0, 1] are iid uniformly distributed random
on this interval. The alternative hypotheses of interest are, first, that the
points tend to occur in a clumped fashion, or second, that they tend to
occur in a regularly spaced fashion. The r-scan statistics of Karlin and
Macken (1991a,b) described here were introduced to test these hypotheses.

We denote the locations of the n points by X1, X2, . . . , Xn and the cor-
responding order statistics by X(1), X(2), . . . , X(n). These order statistics
divide the interval (0, 1) into n+1 subintervals of lengths U1, U2, . . . , Un+1,
where

U1 = X(1), U2 = X(2) − X(1), . . . , Un+1 = 1 − X(n). (5.21)

The Karlin and Macken tests are based on the lengths of these subintervals.
To derive the properties of these tests, it is first necessary to find the joint
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distribution of the Ui’s when the null hypothesis is true. This is done as
follows.

From (2.144), the joint density function of X(1), X(2), . . . , X(n) is n!. The
joint density function of U1, U2, . . . , Un may be found from this joint density
function by the transformation techniques of Section 2.13. The Jacobian
matrix of the transformation from X(1), X(2), . . . , X(n) to U1, U2, . . . , Un is
triangular, with entries 1 along the main diagonal, so that the determinant
of this matrix is 1. This implies from equation (2.145) that the joint density
function of U1, U2, . . . , Un is

fUn
(u1, u2, . . . , un) = n!, uj > 0,

n∑
j=1

uj ≤ 1. (5.22)

In this equation, and below, we use the notation U i for the vector
(U1, U2, . . . , Ui), i = 1, 2, . . . , n + 1. The joint range of U1, U2, . . . , Un in
(5.22) is determined by the fact that Uj > 0 and

∑n
j=1 Uj ≤ 1. Since

Un+1 = 1 − (U1 + U2 + · · · + Un), the value of Un+1 is determined by the
values of U1, U2, . . . , Un.

Our first aim is to test the null hypothesis against the alternative hy-
pothesis that the points arise in a clumped fashion. The test statistic that
we will initially use for this test is the length Umax of the maximum of
U1, U2, . . . , Un+1, and we now find the null hypothesis distribution of this
length.

Suppose that g of the n + 1 lengths U1, U2, . . . , Un+1 are chosen at ran-
dom, and let u be any number in (0, 1). We first find the probability that
all of the g lengths chosen exceed u. This probability is clearly 0 if ug > 1,
so from now on we assume that ug < 1.

The symmetric form of the density function (5.22) implies that the joint
density function of any subset of g of the lengths U1, U2, . . . , Un+1 is inde-
pendent of the subset chosen. The joint density function fUg (u1, u2, . . . , ug)
of U1, U2, . . . , Ug is the marginal density function

fUg (u1, . . . , ug) =
∫ wg+1

0

∫ wg+2

0
· · ·
∫ wn

0
n!dun · · · dug+1, (5.23)

where wj = 1 − u1 − u2 − · · · − uj−1. (These terminals arise because
U1 + U2 + · · · + Uj ≤ 1 for every j.) This integration yields

fUg (u1, . . . , ug) =
n!

(n − g)!
(1 − u1 − · · · − ug)

n−g
. (5.24)

The probability that each Uj , j = 1, 2, . . . , g, exceeds u is then found by
integration as∫ 1

u

∫ w2

u

· · ·
∫ wg

u

n!
(n − g)!

(1 − u1 − · · · − ug)
n−g

dug · · · du1. (5.25)
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The value of this integral is (1 − gu)n (see Problem 5.8), so that

Prob(U1 > u, U2 > u, . . . , Ug > u) = (1 − gu)n. (5.26)

We define hu as the largest integer for which huu < 1. If Ai is the event
{Ui ≥ u}, i = 1, 2, . . . , n + 1, and if i1, . . . , ig are g distinct indices, then
from (5.26),

P (Ai1Ai2 · · ·Aig ) =
{

(1 − gu)n, g ≤ hu

0, g > hu
. (5.27)

Equation (1.97) then implies that the probability that at least one of the
events A1, A2, . . . , An+1 occurs is

hu∑
g=1

(−1)g+1
(

n + 1
g

)
(1 − gu)n. (5.28)

This sum takes different forms for different values of u. When 1
2 < u < 1

only the first term appears in the sum; when 1
3 < u < 1

2 only the first two
terms appear, and so on.

The expression in (5.28) gives the probability that the maximum length
exceeds u, so that it gives the P -value associated with an observed value u
of Umax.

The density function fUmax(u) of Umax is found by writing (5.28) as
1 − FUmax(u), where FUmax(u) is the cumulative distribution function of
Umax. Differentiation of this cumulative distribution function with respect
to u yields

fUmax(u) = n

hu∑
g=1

(−1)g+1 g

(
n + 1

g

)
(1 − gu)n−1. (5.29)

As with the sum in (5.28), this density function takes different forms for
different values of u.

Since this density function does not take a simple form, it would be
useful to be able to approximate it using the asymptotic formula (2.131)
for the density function of a maximum. Strictly speaking this should not
be done, since the theory of Section 2.11.3 shows that (2.131) applies for
the maximum of independent random variables whose support is of of the
form (A, +∞). Neither of these requirements hold here, since Umax is not
the maximum of independent random variables, none of which can take
a value exceeding 1. Despite this, we now discuss how well use of (2.131)
provides close approximations to the P -value associated with any observed
value of Umax.

To do this it is necessary first to find the mean and variance of Umax. A
long calculation which we do not give here shows that the mean of Umax is

1
n + 1

(
1

n + 1
+

1
n

+ · · · +
1
2

+
1
1

)
(5.30)
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and that the variance of Umax is approximately

π2

6(n + 1)2
. (5.31)

Using these values in the approximation (2.131), we obtain, for large n,

Prob(Umax ≥ u) ∼ 1 − e−(n+1)e−(n+1)u

. (5.32)

If (n + 1)e−(n+1)u is small, the approximation (B.21) of Appendix B.12
shows that

Prob(Umax ≥ u) ∼ (n + 1)e−(n+1)u. (5.33)

In view of the various approximations involved in reaching (5.32) and
(5.33), it is useful to calculate a selection of P -values exactly, using (5.28),
and to compare these with the values found from (5.32) and (5.33). If
u = 0.01 and n+1 = 1, 000, the exact P -value found from (5.28) is 0.0482.
The value found from the approximation (5.32) is 0.0444 and that found
from (5.33) is 0.0454. When u = 0.000017 and n +1 = 1,000,000, the exact
P -value is 0.0406. The value found from the approximation (5.32) is also
0.0406, while that found from (5.33) is 0.0414. This indicates the accuracy
of (5.32), at least for large n.

The approximation (5.32) may be written in the equivalent form

Prob
(

Umax ≥ log(n + 1) + u

n + 1

)
∼ 1 − e−e−u

. (5.34)

The advantage of this formulation is that it can be generalized to apply
to a wide variety of “r-scan” test statistics. For example, instead of using
Umax as test statistic, it might be thought to be more reasonable to use the
maximum Rmax(r) of the “r-fragment lengths” Ri(r) (i = 1, 2, . . . , n−r+1)
where

Ri(r) =
i+r−1∑

j=i

Uj . (5.35)

Karlin and Macken (1991a,b) show that

Prob
(

Rmax(r) ≥ log(n + 1) + (r − 1) log(log(n + 1)) + u

n + 1

)
∼ 1 − e−e−u/(r−1)!. (5.36)

This is a direct generalization of (5.34), to which it reduces when r = 1. A
further generalization allows the use of the kth largest of the Ri(r) values
as test statistic.

Suppose next that the alternative hypothesis is that the points tend to
occur in a regularly spaced fashion. An initial approach might be to use
Umin as test statistic, and to reject the null hypothesis if the observed value
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u of Umin is too large. The case g = n+1 of equation (5.27) shows that for
any u in (0, (n+1)−1), the probability that the lengths of all n+1 intervals
exceed u is (1 − (n + 1)u)n

. This implies that

Prob(Umin ≥ u) = (1 − (n + 1)u)n
, (5.37)

so that (5.37) gives the P -value associated with an observed value u of
Umin.

The expression (5.37) can be written as 1 − FUmin(u), where FUmin(u)
is the cumulative distribution function of Umin. Differentiation of this
expression shows that the density function of Umin is

fUmin(u) = n(n + 1) (1 − (n + 1)u)n−1
, 0 < u < (n + 1)−1, (5.38)

which is far simpler than the expression (5.29) for Umax.
It is possible that the points are regularly spaced except for two that

are close to each other, in which case use of Umin will not pick up the
regular spacing. Just as the procedure using Umax as test statistic points
can be generalized to the use of the maximum of Ri(r) for some predeter-
mined value of r exceeding 1, so also generalizations using the minimum of
Ri(r) for some predetermined value of r exceeding 1 are available to assess
whether the points tends to occur in a regularly spaced fashion. We do not
however discuss the details of this here.

5.6 The Analysis of Patterns

5.6.1 Introduction
The discussion in this section and in Sections 5.7, 5.8, and 5.9 is self-
contained and is not needed for the material that follows. It serves to
illustrate some non-intuitive results about patterns in sequences that arise
even in simple cases involving independence. It also introduces some of the
statistical properties of motifs.

The concept of a word was introduced in Section 5.5. Suppose we are
interested in some word and ask the following two questions of an iid DNA
sequence of length N : “What is the probability distribution of the number
of times that this word arises in a segment of length N?” and “What is the
probability distribution of the length between one occurrence of this word
and the next?” We call these two questions “number of occurrences” and
“distance between occurrences” questions respectively.

There are various reasons why these questions might be asked. One is
that there might be some a priori reason to suspect that the word oc-
curs significantly more often in some DNA sequence data than would be
expected if the nucleotides in the sequence were generated in an iid fash-
ion. To test for this it is necessary to discuss probabilistic aspects of the
frequency of this word under the iid assumption.
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A second reason has been discussed by Bussemaker et al. (2000). Here the
aim is to discover promoter signals by looking for DNA patterns common to
upstream regions of genes. This is done by creating a dictionary of words of
different lengths, each with an assigned probability. Any word that occurs
more frequently than expected in these regions is a candidate for such a
sequence. Here the analysis becomes more complicated, since there is no
word that is of a priori interest, and indeed no word length that can be
defined in advance as being specifically sought. Difficult statistical problems
of multiple testing then arise: These are beyond the level of this book.

Examples of words that appear with unusually large frequencies at vari-
ous types of sites have been investigated by Biaudet et al. (1998), Chedin et
al. (1998), and Karlin et al. (1992). Leung et al. (1996) investigate under-
and over-represented words in specific genomes. A general review of the
theory of word occurrences is given by Reinert et al. (2000).

In some cases a specified collection of words, that is a motif, is of interest;
these are discussed in Section 5.9.

The analysis of the frequency of a word is sometimes carried out together
with an analysis of the locations of that word, as assessed by the r-scan
method of Section 5.5.

The analysis of nucleotide sequences leads to a focus on an “alpha-
bet” of size 4. We use this example throughout, although generalizations
to arbitrary alphabet sizes, and thus to amino acid sequences, are
straightforward.

The analysis in this chapter assumes that the nucleotide types at differ-
ent sites are independent. This assumption is made to introduce some of
the unexpected features of word pattern properties in a simple setting. In
view of the fact that dependencies appear to exist between nucleotides at
adjoining sites, the analysis is extended to the Markov-dependent case in
Section 11.4.

5.6.2 Counting conventions
It is necessary to address the question of how to count the number of times
that any word occurs in a DNA sequence. Suppose for example that the
word of interest is gaga. If overlapping occurrences of gaga are all relevant
and counted, then in the sequence

t a t g a g a g a t c c g a g a (5.39)

this word is counted as occurring in positions 4–7, 6–9, and 13–16, a total
of three times. Thus even though two of these words overlap in positions
6 and 7, both are counted. If second and higher overlapping words are not
counted, the word is counted as occurring only twice, namely in positions
4–7 and 13–16. A more precise definition of the non-overlap accounting is
given later, but it is already clear that the number of times that any given
word is counted depends on which of the two possible overlap counting
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conventions is adopted. The case where overlaps are counted is discussed
in Section 5.7 and the case where they are not counted is discussed in
Section 5.8. Both cases are discussed in the extension of the theory to
motifs, discussed in Section 5.9.

5.6.3 Notation and assumptions
In Sections 5.7 and 5.8 we consider some specified word w = w1w2 . . . wk

of arbitrary length k. Here each wj is one of the four nucleotides a, g, c and
t, so that for example in the word gaga, w1 is g, w2 is a, and so on. We call
wj the jth letter of w.

Several results depend on the “self-overlapping” properties of w. We
define an indicator function εj to be equal to 1 if the first j letters of w are
the same, and in the same order as, the last j letters of w, and 0 otherwise.
(With this definition, εk is identically 1 for a word of length k.)

We consider throughout a DNA sequence of length N, and say that w
occurs at site n in this sequence if it occupies sites n − k + 1, n − k +
2, . . . , n. The possible values of n are k, k + 1, . . . , N. We assume that the
nucleotide types at the various sites in the sequence are independent, with
the nucleotides a, g, c, and t having respective probabilities pa, pg, pc, and
pg at any site. We define π(w) as the probability that w occupies any k
consecutive sites; under the independence assumption this is simply the
product of the probabilities of the various letters comprising w. In some
of the theory we also calculate the probability of some other sequence of
letters: the probability of the sequence defined by the first j letters of w,
for example, that is of the sequence w1w2 . . . wj , is denoted π(w1w2 . . . wj),
with a similar definition for other sequences of letters.

When the theory is relatively complex we develop it in detail in some
special case (for example k = 4, all nucleotides having probability 1/4), and
state without proof various general results that the special case discussed
exemplifies.

The extension of the theory to consider collections of words, or motifs,
requires further notation: this is introduced in Section 5.9.

5.7 Overlaps Counted

5.7.1 Number of Occurrences
We define Y1(N) as the (random) number of times that the word w occurs
in a nucleotide sequence of length N, recalling that in this section overlaps
of the word are counted. Our first aim is to find the mean and variance of
Y1(N).

Define the indicator variable Ij by Ij = 1 if w occurs in position j, Ij = 0
if it does not. Then the total number of times Y1(N) that the w occurs in a
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sequence of length N can be represented as Ik + Ik+1 + · · ·+ IN . The mean
of Y1(N) can then be found by applying equation (2.69). The mean of Ij is
the probability that w finishes in position j, namely π(w). Equation (2.69)
then shows that the mean number of times that w arises in a sequence of
length N is 0 if N < k, while for N ≥ k, the mean of Y1(N) is

E(Y1(N)) = (N − k + 1)π(w). (5.40)

The variance of Y1(N) is the variance of Ik + Ik+1 + · · · + IN , namely

E(Ik + Ik+1 + · · · + IN )2 − ((N − k + 1)π(w)
)2

.

Now

E(Ik+Ik+1 + · · · + IN )2

=E(I2
k + I2

k+1 + · · · + I2
N )

+ 2(N − k) terms of the form E(IjIj+1)
+ 2(N − k − 1) terms of the form E(IjIj+2)
+ · · ·
+ 2(N − 2k + 2) terms of the form E(IjIj+k−1)
+ (N − 2k + 2)(N − 2k + 1) terms of the form

E(IjIm), |m − j| > k − 1.

(5.41)

This calculation assumes that N ≥ 2k − 2, the case of interest in practice,
and we make this assumption from now on. The case N < 2k − 2 is easily
handled separately.

Since the only possible values of Ij are 0 and 1, Ij
2 = Ij . Thus the first

term on the right-hand side of (5.41) is E(Ik + Ik+1 + · · · + IN ). This is
the mean number of times that w occurs, namely (N − k + 1)π(w) (from
equation (5.40)).

The remaining calculations in (5.41) concern expectations of the form
E(IjIj+k−i) for i = 1, 2, . . . , k − 1. If the structure of w is such that this
word cannot finish at both sites j and j +k − i, then IjIj+k−i is identically
zero, and hence its expected value is also identically zero. Thus to calculate
the variance (5.41) it is necessary to consider, for all values of i, only those
cases where w can finish at both positions j and j + k − i. These cases can
arise only if the first i letters of w are the same, and in the same order,
as the last i letters of w. Given that w can finish at both positions j and
j + k − i, the probability that it does so is the product of the probabilities
of the letters in the word w1 . . . wkwi+1 . . . wk.

Finally, when |m − j| > k − 1, IjIm is zero unless w finishes both in
position j and also in position m. These refer to non-overlapping positions,
so for any such (j, m) pair the probability of this event is (π(w))2. The final
term on the right-hand side of (5.41) thus contributes (N − 2k + 2)(N −
2k + 1)(π(w))2 to the variance calculation.
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Addition of the various terms involved shows that, in the notation of
Section 5.6.3, the variance of Y1(N) is

Var(Y1(N)) = (N − k + 1)π(w) − ((2k − 1)N − 3k2 + 4k − 1
)
(π(w))2

+ 2
k−1∑
j=1

(N − 2k + j + 1)εjπ(w1 . . . wkwj+1 . . . wk).

(5.42)

It is interesting to consider some implications of this variance formula.
First, εj = 0 for j = 1, 2, . . . , k − 1 when w is not self-overlapping. In this
case the variance of Y1(N) is

(N − k + 1)π(w) − ((2k − 1)N − 3k2 + 4k − 1
)
(π(w))2. (5.43)

If π(w) is very small, this is approximately the same as the mean (5.40),
suggesting that Y1(N) has an approximate Poisson distribution (see note
(viii) of Section 1.5).

Next, it is of interest to compare the variances of Y1(N) for different
words. To do this we consider the variances of the words gaga, gggg, gaag,
and gagc for the case when all nucleotides have probability 1/4. Under this
assumption the mean of Y1(N) is (N − 3)/256 for all four words. However
the variances of Y1(N) depend on the self-overlapping properties of the
word of interest. Equation (5.42) shows that the respective variances of
Y1(N) for the words gaga, gggg, gaag, and gagc are

281N − 895
65536

,
417N − 1455

65536
,

257N − 783
65536

,
249N − 735

65536
. (5.44)

When N = 1,000,000 the variances in (5.44) are, respectively,

4, 288, 6, 363, 3, 922, and 3, 799. (5.45)

These calculations show that Y1(N) does not have a binomial distribution.
If Y1(N) had (incorrectly) been taken to have a binomial distribution with
index N − 3 and parameter 1/256, the mean value given in equation (5.40)
would continue to hold, but the variance of Y1(N) would be calculated as
(255N −765)/65536. This differs from the correct variances given in (5.44).
More generally, the binomial variance cannot apply for any word.

The main reason why the binomial distribution is incorrect is that the
number of occurrences of any self-overlapping word is more variable than
the incorrect binomial variance formula suggests. For the word gaga, for
example, this added variability arises because the occurrence of the word
gaga at position i increases the probability of the occurrence of the word
at position i + 2, whereas the non-occurrence of this word at position i
decreases the probability of the occurrence of the word at position i+2. This
“clumping” behavior explains the increased variance. Similar comments
apply for other self-overlapping words.



5.7. Overlaps Counted 201

5.7.2 Approximations to the Distribution of Y1(N)
The calculations given above provide the mean and variance of Y1(N) for
any general word w, and it is natural to extend these to find the complete
distribution of Y1(N). However, this distribution is complicated. Exact cal-
culations for the probability that Y1(N) = y can be found for any y using
a recurrence relation (Robin and Schbath (2001)), but the calculations be-
come very time consuming when E(Y1(N)) is large (of the order 500 or
more). In this case Robin and Schbath show that Y1(N) has an approx-
imate normal distribution, with mean and variance given respectively in
(5.40) and (5.42) above.

When N is large, the length k of the word w is 10 or more and E(Y1(N))
is small to moderate, the normal distribution approximation is not accurate.
For this case the occurrence of w might be considered as a rare event,
and it might then initially be thought that Y1(N) has an approximate
Poisson distribution. However, a Poisson approximation does not allow for
the fact that self-overlapping words tend to occur in clumps, with the word
overlapping itself one or more times in the clump.

To obtain a better approximation it is appropriate to introduce the con-
cept of the compound Poisson distribution. The random variable Y has
the compound Poisson distribution if Y is the sum of N iid non-negative
integer-valued discrete random variables, where N itself is a random vari-
able having the Poisson distribution (1.22). If N = 0 then Y = 0 (since the
“empty” sum is defined to be zero). The case where N = 0 contributes a
term e−λ to the probability that Y = 0, so that

Prob (Y = 0) = e−λ +
∑
n≥1

e−λ λn

n!
Prob(Y = 0|N = n), (5.46)

Prob (Y = y) =
∑
n≥1

e−λ λn

n!
Prob (Y = y|N = n), y = 1, 2, . . . (5.47)

An important compound Poisson distribution arises when each Yj has the
“shifted geometric” distribution (1.18). In this case Y has the Pólya–Aeppli
distribution. To find Prob (Y = y|N = n) for this case we use the relation
between the geometric distribution and the negative binomial distribution
and replace k + 1 by n and y by y − 1 in (1.21) to obtain

Prob (Y = y|N = n) =
(

y − 1
n − 1

)
py−n(1 − p)n. (5.48)

From the comment below (2.80) and the pgf’s of the Poisson and the
shifted geometric distributions (see Problem 1.17), the pgf of the Pólya–
Aeppli distribution is

eλ(t−1)/(1−pt). (5.49)



202 5. The Analysis of One DNA Sequence

From this, the mean of this distribution is found to be λ/(1 − p) and the
variance is found to be λ(1 + p)/(1 − p)2.

Both values can also be derived from the theory of Section 2.10.1. A ran-
dom variable Y1 having the shifted geometric distribution can be thought
of as 1 + Y2, where Y2 has the geometric distribution. Thus from note (vi)
of Section 1.4, and note (vi) of Section 1.5,

Mean of Y1 = 1 +
p

1 − p
=

1
1 − p

, Variance of Y1 =
p

(1 − p)2
. (5.50)

The mean of the Pólya–Aeppli distribution follows from (2.81), using the
mean λ for a Poisson distribution given in Table 1.1 and the mean for
the shifted geometric distribution given in equation (5.50). The value so
found agrees with the value found from the pgf (5.49) of the Pólya–Aeppli
distribution. The variance λ(1 + p)/(1 − p)2 deriving from (5.49) agrees
with the value found by applying the result of Problem 2.14.

The complete Pólya–Aeppli distribution probability distribution can be
found by expanding (5.49) as a power series in t, but it is perhaps easiest
to find it, for any value y of Y, directly from equations (5.46), (5.47) and
(5.48). The distribution is

Prob (Y = 0) = e−λ, (5.51)

Prob (Y = y) = e−λ

y∑
n=1

λn

n!

(
y − 1
n − 1

)
py−n(1 − p)n, y = 1, 2, . . . (5.52)

The relevance of the Pólya–Aeppli distribution in the analysis of DNA
sequences arises from the fact that, in these sequences, words tend to occur
in clumps, as noted above. The number of clumps is modelled as having
a Poisson distribution. Given that a clump occurs, the number of occur-
rences of the word in the clump is modelled as having the shifted geometric
distribution with parameter p, and thus mean 1/(1−p), where p is the prob-
ability that the word self-overlaps. The mean number of words in the entire
sequence is then given, as calculated above, by λ/(1−p), and assuming that
p is known, equating this to the value of E(Y1(N)) given in (5.40) we get
λ = (N − k + 1)(1 − p)π(w). This value is then taken as the mean number
of clumps.

A data-oriented approach, where parameter values are not known, is to
use maximum likelihood estimation: the maximum likelihood estimates of
λ and p are discussed in Example 1 of Section 8.3.

As an example of the use of the Pólya–Aeppli distribution, Robin and
Schbath (2001) show that when N = 316, 000, k = 9, the total variation
distance dTV(P1, P2) (given in (1.23)) between the true distribution P1 of
Y1(N) and the appropriate Pólya–Aeppli distribution approximation does
not exceed 0.002. For other combinations of N and k, however, the Pólya–
Aeppli approximation is less satisfactory: details of the combinations of N



5.7. Overlaps Counted 203

and k for which the approximation is satisfactory are given by Robin and
Schbath (2001).

In the above calculations the nucleotide probabilities pa, pg, pc and pt

have been taken as known. Robin and Schbath take up the important
question of the accuracy of the calculations when these frequencies are
estimated from the DNA sequence (of length N) at hand. They show that
in the case where these probabilities are estimated, quite serious errors can
be made by applying the above calculations.

5.7.3 Distance Between Occurrences
Properties of the distance between successive occurrences of w have been
discussed by Robin and Daudin (1999), following the work of Blom (1982),
Blom and Thorburn (1982), and Cowan (1991). We develop the analysis in
detail only for the case k = 4, with all nucleotides having probability 1/4.
Formulae for the mean and variance for the distance between successive oc-
currences of when w is of arbitrary length k, and with arbitrary nucleotide
probabilities, are given below in equations (5.59) and (5.60).

Given that the word w is of length 4, and occurred at some site i, it can
next occur at site i + y, (y = 1, 2, 3), only if ε4−y = 1. Define Y2 to be
the distance until the next occurrence of w after site i, and for notational
convenience, let p(y) = pY2(y) be the probability that Y2 = y. Then, as
explained below,

p(y) = ε4−y4−y −
y−1∑
j=1

p(j)ε4+j−y4j−y (5.53)

for y = 1, 2, 3, while if y ≥ 4,

p(y) = 4−4 − 4−4
y−4∑
j=1

p(j) −
y−1∑

j=y−3

p(j)ε4+j−y4j−y. (5.54)

The reasoning behind equation (5.54) is as follows. Let E be the event that
w arises at site i + y and F be the event that w arises at site i + y but
not at any site between sites i and i + y. For each j = 1, 2,. . . , y − 1, let
Aj be the event that w arises at sites i + j and i + y, and does not occur
anywhere between i and i + j. Then

E = F ∪ A1 ∪ · · · ∪ Ay−1,

and the events on the right are all disjoint. Therefore,

p(y) = Prob(F ) = Prob(E) −
y−1∑
j=1

Prob(Aj).

The event E has probability 4−4. The probability of (Aj), for j ≤ y − 4,
is p(j)4−4, since the events that w occurs at sites i + j and i + y are
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independent. Similar arguments show that the final term on the right-hand
side of (5.54) gives the probabilities of (Aj) for j = y − 3, y − 2, and y − 1.
These calculations lead to (5.54), and equation (5.53) is found by similar
arguments.

We now find the pgf p(t) of the distance between successive occurrences
of w. Multiplying throughout in equations (5.53) and (5.54) by ty, we get,
for example,

p(1)t = ε3
4 t

p(2)t2= ε2
16 t2 − ε3

4 p(1)t2

p(3)t3= ε1
64 t3 − ε3

4 p(2)t3 − ε2
16p(1)t3

p(4)t4= 1
256 t4 − ε3

4 p(3)t4 − ε2
16p(2)t4 − ε1

64p(1)t4

p(5)t5= 1
256 t5 − 1

256p(1)t5 − ε3
4 p(4)t5 − ε2

16p(3)t5 − ε1
64p(2)t5

p(6)t6= 1
256 t6 − 1

256 (p(1) + p(2)) t6− ε3
4 p(5)t6 − ε2

16p(4)t6 − ε1
64p(3)t6

We now sum these equations over all possible values of y. The sum of the
terms on the left-hand sides is, by definition, p(t). The sum of the terms
on the right-hand side is

ε3

4
t +

ε2

16
t2 +

ε1

64
t3 +

t4

256(1 − t)
− t4p(t)

256(1 − t)
−
(ε3

4
t +

ε2

16
t2 +

ε1

64
t3
)

p(t).

Equating these two sums and solving for p(t), we find that

p(t) =
t4 + (1 − t)(64ε3t + 16ε2t

2 + 4ε1t
3)

t4 + (1 − t)(256 + 64ε3t + 16ε2t2 + 4ε1t3)
. (5.55)

Differentiation of the generating function (5.55) with respect to t, together
with use of equation (1.40), shows that the mean of Y2 is

E(Y2) = 256. (5.56)

A second differentiation with respect to t, together with equation (1.41),
shows that the variance of Y2 is

Var(Y2) = 512
4∑

j=1

εj4j − 67,328. (5.57)

While the mean of Y2 is independent of w, the variance depends on the
self-overlapping structure of w. For the words gaga, gggg, gaag, and gagc,
for example, the variances given by formula (5.57) are, respectively,

71,936, 106,752, 65,792, and 63,744. (5.58)

The formulae (5.56) and (5.57) are readily generalized to the case where
w is of arbitrary length k and where nucleotide probabilities are arbitrary.
In this general case we find

E(Y2) = (π(w))−1, (5.59)
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Var(Y2) = 2(π(w))−1
k∑

j=1

εj(π(w1w2 . . . wj))−1−(2k−1)(π(w))−1−(π(w))−2.

(5.60)
When w cannot self-overlap, this variance simplifies to

Var(Y2) = (π(w))−2 − (2k − 1)(π(w))−1. (5.61)

When π(w) is small the variance of Y2 is approximately the square of
the mean, suggesting an approximation of the distribution of Y2 by the
exponential distribution (see Problem 1.21).

It is not a coincidence that

E(Y1)E(Y2) = N − k + 1, (5.62)

since we expect that the mean number of occurrences of any word, mul-
tiplied by the mean distance between words, will be equal to the length
N − k + 1 within which w can occur.

It is natural to assume that the distance between consecutive occurrences
of w has the geometric distribution, at least to a close approximation.
This assumption has been made on occasion in the biological literature.
The assumption is, however, incorrect, as a comparison of the pgf of the
geometric distribution (given in Problem 1.17) and the pgf (5.55) shows.
In some cases the error can be substantial, as we now show.

For any word of length 4, and when all nucleotides have probability 1/4
and independence holds, the mean distance between consecutive occur-
rences is 256. If we choose the parameters of the geometric distribution so
that the mean of that distribution takes this value, then from the results
of Problems 1.3 and 1.16, the variance of this geometric distribution is
65,792. This differs from three of the variances listed in (5.58), and differs
substantially from the variance 106,752 for the case of the word gggg.

5.7.4 Beginning at the Origin
In this section we consider the number Y3 of sites until the first occurrence
of w, starting at the origin. We develop the analysis in detail only for the
case k = 4, with all nucleotides having probability 1/4. The the mean and
variance of Y3 for general k, and with arbitrary nucleotide probabilities,
are given below in (5.69) and (5.72).

The generating function (5.55) is not appropriate for the case of the first
occurrence of w since it was calculated allowing for overlaps of w with itself,
whereas overlaps at the origin into “negative positions” cannot occur. This
observation is confirmed by noting that if P (y) is the probability that w
first occurs at distance y from the origin, then in contrast to the values
found from (5.53), P (1) = P (2) = P (3) = 0 and P (4) = 1/256.

The recurrence relation (5.54), however, continues to hold when y ≥ 5.
From these observations the generating function for the distribution of the
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distance until the first occurrence of w can be found. This is

p(t) =
t4

t4 + (1 − t)(256 + 64ε3t + 16ε2t2 + 4ε1t3)
. (5.63)

This differs from the generating function (5.55). The mean and variance of
the random variable Y3, found by differentiating p(t), are, respectively,

E(Y3) = µ3 =
4∑

j=1

εj4j , (5.64)

Var(Y3) = µ2
3 + µ3 − 2

4∑
j=1

jεj4j . (5.65)

For the words gaga, gggg, gaag, and gagc, the respective means of Y3 are

272, 340, 260, and 256, (5.66)

and the respective variances of Y3 are

72,144, 113,436, 65,804, and 63,744. (5.67)

It might be surprising that both the mean and variance depend on the
self-overlapping structure of w, even though the four words considered
above are equally likely to occur in any given four consecutive sites. The
values for the various means are generally close to those in (5.58), and are
identical for the word gagc. The differences between the two sets of values
emphasizes the way in which the self-overlapping property of a word affects
the properties of “between word” distances and “beginning at the origin”
distances. The latter distances will arise again in a different context in
Section 5.8.2.

The generalizations of (5.63), (5.64), and (5.65) when w is of arbitrary
length k and when nucleotide probabilities are arbitrary can be found by a
direct generalization of the analysis leading to (5.63). This generalization
can also be found by the methods of Section 5.8.2, and we show in that
section that in general,

p(t) =
tk

tk + (1 − t)(π(w))−1
(
1 +
∑k−1

j=1 εjπ(wj+1wj+2 . . . wk)tk−j
) .
(5.68)

From this,

E(Y3) = (π(w))−1 + (π(w))−1
k−1∑
j=1

εjπ(wj+1wj+2 . . . wk). (5.69)

Equivalently,

E(Y3) = (π(w))−1 +
k−1∑
j=1

εj(π(w1w2 . . . wj))−1, (5.70)
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which, since εk = 1, can be written as

E(Y3) =
k∑

j=1

εj(π(w1w2 . . . wj))−1, (5.71)

The variance of Y3 is given by

Var(Y3) = (E(Y3))2 + E(Y3) − 2
k∑

j=1

jεj(π(w1w2 . . . wj))−1. (5.72)

For the words w = atg and w = ata, for example, equation (5.70) gives,
respectively,

E(Y3) = (paptpg)−1 and E(Y3) = (p2
apt)−1 + p−1

a . (5.73)

We will re-derive these results in Sections 5.8 and 11.6.2, using two further
approaches.

If w cannot self-overlap, all values of εj take the value 0 except for εk,
whose value is 1. Thus for these words, (5.70) and (5.72) give

E(Y3) = (π(w))−1, Var (Y3) = (π(w))−2 − (2k − 1)(π(w))−1. (5.74)

These values agree with those in (5.59) and (5.61), as they must for a word
that cannot self-overlap.

5.8 Overlaps Not Counted

5.8.1 General Comments
Let R1 be the first occurrence of w in a sequence, R2 the next occurrence
that does not overlap with the first, R3 the next that does not overlap
with R2, and so on. This gives a sequence of occurrences R1, R2, R3, . . . ,
which we refer to as the recurrences, rather than as the occurrences, of
w. R1 called the first recurrence. Such recurrences form a special case of
recurrent events, the investigation of the properties of which is a major
area of probability theory. The definitive account is in Feller (1968), and
we use some of this theory below.

There are practical reasons why overlapping words should not be
counted. For example, restriction endonucleases are enzymes that cut DNA
whenever a “recognition” sequence (such as gaga) specific to that enzyme is
encountered in a DNA sequence chromosome. A property of these enzymes
is that they do not cut the DNA twice in immediate succession in the sense
that if a DNA sub-sequence is . . . attgagagaacc . . . , and the recognition
sequence of a restriction endonuclease is gaga, then the DNA sequence will
be cut at position 7 in the sub-sequence above but not also at position 9.
This implies that cuts in the DNA occur as recurrent events.
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5.8.2 Distance Between Recurrences
Let Y4 be the random number of sites between successive recurrences of w.
The mean µ = E(Y4) of Y4 is µ =

∑∞
i=1 ifi, where fn is the probability

that the first recurrence of w occurs at site n. We find µ by considering the
probability un that any recurrence of w occurs at at site n. A fundamental
result of recurrent event theory concerns the limiting behavior of un as
n → +∞. This result is stated as a theorem (without proof).

Theorem 5.1. un → µ−1 as n → +∞.

This theorem allows direct calculation of µ. Suppose that w occurs at
site n. Then w either occurs at site n as a recurrence (probability un) or
at some site n − k + j (j = 1, 2, . . . , k − 1) as a recurrence. Given that w
occurs at site n − k + j as a recurrence, it can also occur at site n only if
the first j letters of w are the same as the last j letters (so that εj = 1)
and the last k − j letters occur at sites n − k + j + 1, n − k + j + 2, . . . , n.
Thus since the probability that w occurs at site n is π(w),

π(w) = un +
k−1∑
j=1

εjπ(wj+1wj+2 . . . wk)un−k+j . (5.75)

Letting n → ∞ and using the result of Theorem 5.1, we get

µ = E(Y4) = (π(w))−1 +
k−1∑
j=1

εj

(
π(w1w2 . . . wj)

)−1
. (5.76)

This equation can also be written in the form

µ = E(Y4) = (π(w))−1 + (π(w))−1
k−1∑
j=1

εjπ(wj+1wj+2 . . . wk). (5.77)

This form of the equation is convenient for the extension of the theory to
motifs, considered in Section 5.9.

Our main observation is that the right-hand side in equation (5.76) is
the same as that in equation (5.69), so that E(Y4) = E(Y3). The reason
for this identity is that the theory of the distance in counting from the
origin to the first occurrence of w is identical to the theory of the distance
between consecutive recurrences of w, since in the former overlaps of w
over the origin cannot occur. This implies that that not only the mean, but
indeed the entire distribution (including the variance (5.72)) of Y4 follows
immediately from the results of Section 5.7.4.

We illustrate the argument leading to (5.75) with the words ata and atg.
If the word ata finishes at site n, either it does so as a recurrent event or it
finishes at site n−2 as a recurrent event, with the letters ta then occupying
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sites n − 1 and n. This gives

p2
apt = un + ptpaun−2. (5.78)

Letting n → ∞ and using Theorem 5.1, we get

µ = (p2
apt)−1 + p−1

a . (5.79)

For the word atg, a corresponding argument gives paptpg = un and hence
µ = (paptpg)−1. These results agree with those given in (5.73).

We now show how the results of this section can be used to derive
the expression (5.68). Define u0 = 1 and u(t) =

∑+∞
j=0 ujt

j . Multiply-
ing throughout in equation (5.75) by tn and summing both sides over
n = k, k + 1, . . . , we get

tkπ(w)
1 − t

=
(
u(t) − 1

)
h(t), (5.80)

where

h(t) = 1 +
k−1∑
j=1

εjπ(wj+1wj+2 . . . wk)tk−j . (5.81)

This leads to

u(t) =
tk(π(w)) + (1 − t)h(t)

(1 − t)h(t)
. (5.82)

Now recall that fj is the probability that the word of interest occurs for
the first time at site j. Then by definition, p(t) =

∑+∞
j=1 fjt

j . Also, if the
word of interest occurs at site n, it must do so either for the first time at
site 1 and then recur n − 1 sites later, for the first time at site 2 and then
recur n − 2 sites later, and so on, or occur for the first time at site n. This
implies that

un = f1un−1 + f2un−2 + · · · fn.

But the left-hand side in this equation is the coefficient of tn in u(t) − 1,
while the right-hand side is the coefficient of tn in u(t)p(t). Thus from
Appendix B.13, u(t) − 1 = u(t)p(t). From this, p(t) = 1 − (u(t)

)−1
. This

equation, together with the expression (5.82) for u(t), leads immediately
to the expression (5.68) for p(t).

5.8.3 Number of Recurrences
Define Y5(N) as the number of recurrences of w in a DNA sequence of
length N. Then recurrent event theory shows that the mean E(Y5(N)) of
Y5(N) satisfies the asymptotic relationship

E(Y5(N)) ∼ N

µ
, (5.83)
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where µ is the mean number of sites between successive recurrences of w.
This equation implies that E(Y5(N)µ ∼ N, which resembles (5.62).

The asymptotic relation (5.83) is a general one which applies for any
recurrent event, and is often sufficiently accurate for our purposes. However,
it is possible to find an exact expression for E(Y5(N)) when considering
recurrences of words. We illustrate this with the word gaga, for which (5.75)
becomes

p2
ap2

g = un + papgun−2 (5.84)

and for which µ = (1+papg)/p2
ap2

g. Equation (5.84) is a difference equation
of the form considered (in a different context) in Section 7.3, and may be
solved for un by the methods of that section. If an indicator function In

is defined as 1 if the word gaga arises at site n as a recurrent event and
0 otherwise, then E(In) = un and and the mean number of recurrences of
gaga, namely E(

∑N
n=4 In), is

∑N
n=4 un. If terms of order (papg)N/2 (which

are extremely small) are ignored, difference equation methods (see Problem
5.13) give

E(Y5(N)) =
p2

ap2
g

1 + papg

(
N − 3 +

2papg

1 + papg

)
. (5.85)

In general, if small terms of order cN are ignored, (where 0 < c < 1 and the
value of c depends on the word of interest), the expression for E(Y5(N))
for any word is

E(Y5(N)) =
1
µ

(
N − k + 1 +

∑k−1
j=1 (k − j)εjπ(wj+1wj+2 . . . wk)

1 +
∑k−1

j=1 εjπ(wj+1wj+2 . . . wk)

)
, (5.86)

where µ is the mean number of sites between successive recurrences of the
word of interest. This is identical to the expression given by Régnier (2000).
The expression given in (5.83) is simpler than this, so that we often use
(5.83) as a approximation to (5.86).

Equations (5.83) and (5.66) show that if all nucleotides have probability
1/4, the respective mean number of recurrences of the words gaga, gggg,
gaag, and gagc in a DNA sequence of length 1,000,000 are, approximately,

3676, 2941, 3846, and 3906. (5.87)

These should be compared to the value 3906 arising for all four words when
overlapping words are counted, as calculated in Section 5.7. The two means
are identical for the word gagc, since for this word overlaps of successive
occurrences are not possible. For the other three words the mean number of
recurrences is less than the mean total number of occurrences, as expected.

Indicator functions can be used in a similar way to that used in arriving
at the approximation (5.85) and more generally (5.86) in order to find the
variance of Y5(N), using equation (5.41). If this equation is used, terms of
the form EIjIj+h are zero when h < k, since a word of length k cannot
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recur in both positions j and j + h for these values of h. Further, since
properties of further recurrences of a word after a recurrence at position j
are the same as those starting at the origin, terms of the form EIjIj+h for
h ≥ k take the value ujuh, where uj is the probability of a recurrence of
the word in position j.

The complete distribution of Y5(N) is complicated. When N is large,
recurrent event theory shows that the number of recurrences of w in a
sequence of length N has an asymptotic normal distribution with mean
(5.83) and variance

VarY5(N) ∼ Nσ2

µ3 , (5.88)

where µ is the mean, and σ2 is the variance, of the number of sites between
successive recurrences of the word, given in equations (5.64) and (5.65)
respectively.

With N = 1,000,000 and when all nucleotides have probability 1/4,
(5.88) and (5.67) jointly give approximate values 3585, 2886, 3744, and
3799 for the respective variances of the number of recurrences of the words
gaga, gggg, gaag, and gagc. There are two points to be made about these
variance calculations. First, it is interesting to compare them with those
given in (5.45) for the case where overlapping words are counted. Perhaps
the most surprising comparison is that whereas the total number of occur-
rences of the word gggg has the largest of the four variances given in (5.45),
the number of recurrences of this word has the smallest variance. This fact
is largely due to the high mean distance between successive recurrences.
The variances for the word gagc are the same in both cases, since overlaps
are impossible for this word. The fact that the approximate calculation
using (5.88) yields the correct value for this latter variance shows that this
formula provides an excellent approximation.

Second, the Pólya–Aeppli distribution approach discussed in Section
5.7.1 assumes that the number of clumps of any word of interest, which
is close to the number of recurrences of this word, has an approximate
Poisson distribution. The fact that the variances calculated from (5.88) are
generally close to, but nevertheless differ by about 3% from, the means
listed in (5.87) shows that the Poisson approximation is fairly accurate for
words of length 4.

5.9 Motifs

Many short sequences throughout DNA, for example transcription factor
binding sites or splice junctions signals, serve specific functions and do not
tolerate many mutations. Some mutation is generally tolerated, however,
and within a species or between species there will often be several variant
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sequences. We try to capture this collection of variants mathematically in
the concept of a motif.

For our purposes, we define a motif as a collection of m different words,
no word contained within any other, in practice being rather similar to
each other and often having the same length. We consider in detail here
only the case where all m words in the motif have the same length k, so
that with m = 4, k = 6 a motif might, for example, be the collection of
words tatgaa, tatgga, tatgca, and tatgta. We denote the motif of interest
by M, and say that M occurs at any site if any one of the words in the
motif occurs at that site.

The probability that the uth word in M (which we also call word u)
occurs at any site is denoted πu. Thus the probability π(M) that the motif
M occurs at any site, that is that one of the words in the motif arises at
that site, is

π(M) =
m∑

u=1

πu. (5.89)

An immediate generalization of the argument that led to equation (5.40)
shows that if all occurrences of all words in M are counted, overlapping
or not, the mean of Y6(N), the number of occurrences of M in the DNA
sequence of length N, is given by

E(Y6(N)) = (N − k + 1)π(M). (5.90)

The derivation of the formula for the variance of Y6(N) follows the ar-
gument of the derivation of (5.42), which shows that this variance depends
on the overlap properties of the various words in M. These can be charac-
terized by introducing the indicator function εj(u, v), taking the value 1 if
the first j letters in word u in M are the same, and in the same order, as
the last j letters of word v in M. When εj(u, v) = 1 we write πj(u, v) as the
probability of the word (of length 2k − j) formed by concatenating words
v and u, with the last j letters of the word v being overlapped by the first
j letters of the word u. The case u = v is included in these definitions, and
εj(u, u) is identical to the indicator function εj of Section 5.6.3. Then the
generalization of the variance formula (5.42) is that the variance of Y6(N)
is

Var (Y6(N)) = (N − k + 1)π(M) − ((2k − 1)N − 3k2 + 4k − 1
)(

π(M)
)2

+ 2
k−1∑
j=1

(N − 2k + j + 1)
m∑

u=1

m∑
v=1

εj(u, v)πj(u, v).

(5.91)

When none of the words in M are self-overlapping, and none can overlap
any other word in M, this variance simplifies to

Var (Y6(N)) = (N−k+1)π(M)−((2k−1)N−3k2+4k−1
)(

π(M)
)2

. (5.92)
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This is a generalization of equation (5.43).
Using an argument similar to that surrounding (5.62), equation (5.90)

shows that the mean of the number Y7 of sites between successive
occurrences of M is given by

E(Y7) =
(
π(M)

)−1
. (5.93)

This equation, together with (5.59) and (5.89), shows that(
E(Y7)

)−1 =
m∑

u=1

(
E(Y2(u))

)−1
, (5.94)

where E(Y2(u)) is the mean number of sites between successive occurrences
of word u.

It was noted in Section 5.7.1 that occurrences of any self-overlapping
word tend to occur in clumps. The same is true of occurrences of motifs if
overlapping words in the motif are all counted. We consider the clumping
behavior of motifs in Example 3 of Section 11.6.2.

We now consider the case where overlaps of words in M are not counted;
that is, we consider recurrences of M . The first time that any word in M
occurs is called the first recurrence of M. The next time that a word in M
occurs that does not overlap with recurrence i of M is called recurrence
i + 1 of M. If there is a recurrence of M at any site, with word u of M
occurring at that site, we say that the recurrence is determined by word u.
Our first aim is to find a formula for µ = E(Y8), the mean number Y8 of
sites between successive recurrences of the motif.

Suppose that there has been a recurrence of the motif at a given site.
We define µu (u = 1, 2, . . . , m) as the mean number of sites until the next
recurrence of the motif that is determined by word u of the motif. The
formula for µ is found by first calculating the various µu values. Breen et
al. (1985) show that (µu)−1 is the uth element in the vector

W−11, (5.95)

where 1 is a (column) vector all of whose elements are 1 and the matrix W
is defined in terms of the overlapping properties of the words in the motif
as follows. Specifically, the uth diagonal element wuu of W is given by

wuu = π−1
u + π−1

u

k−1∑
j=1

εj(u, u)π(u)
k−j , (5.96)

where π
(u)
k−j is the probability of the word consisting of the last k− j letters

of word u. (Note the similarity of this equation with equation (5.77).) The
(u, v) element wuv of W, (u �= v), is given by

wuv = π−1
u

k−1∑
j=1

εj(u, v)π(u)
k−j . (5.97)
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Having found the various values of µ−1
u by calculating (5.95), the mean

number µ of sites between successive recurrences of M is found from

µ−1 =
m∑

u=1

(
µu

)−1
. (5.98)

This equation, together with the expression (5.95), shows that µ−1 is the
sum of all the terms in the matrix W−1.

As a simple example, suppose that M consists of two words, aaa (word
1) and ata (word 2). Then from (5.96),

w11 = p−3
a + p−2

a + p−1
a , w22 = (p2

apt)−1 + p−1
a , w12 = w21 = p−1

a . (5.99)

In the case pa = pt = 1/4, the sum of the elements in W−1 is 9/356
so that the mean number of sites between successive recurrences of M is
356/9 ∼= 39.56.

If there has been a recurrence of M at a given site, the expression (5.95)
also shows that the mean number of sites until the next recurrence of M
determined by aaa is 89 and until the next recurrence determined by ata
is 71.2. For a motif consisting only of the word aaa, the mean number of
sites between successive recurrences, from the theory of Section 5.8.2, is 84.
The excess of 89 over 84 is accounted for by cases where the sub-sequence
. . . ataaa . . . arises, with a recurrence of the motif occurring after the letters
ata in this sub-sequence. The word aaa in this sub-sequence does not then
lead to a recurrence of the motif M , whereas for a motif consisting only of
the word aaa it does. Thus cases of the recurrence of M determined by the
word aaa arises slightly less often, or equivalently with slightly more sites
between such recurrences, than recurrences of the motif consisting only of
aaa. Similarly, the mean number of sites between successive recurrences of
a motif consisting only of the word ata is 68, and the comparison of 71.2
and 68 is explained similarly.

These calculations are readily generalized for arbitrary values of pa and
pt (see Problem 5.17).

Robin (2002) discusses two practical examples concerning motifs, which
we now describe.

Example 1. The first example concerns the CHI (crossover hotspot initiator)
motif in Hemophilus influenzae, which consists of the four words {gatggtgg,
gctggtgg, ggtggtgg, gttggtgg}, and which protects this genome against cer-
tain forms of degradation. It is therefore expected to recur significantly
often in this genome and also to be well spaced in the genome. In the H.
influenzae genome (of size 1,903,356 bases), this motif occurs 223 times,
with 215 occurrences being recurrences. We define a simple model as one
where the nucleotides at different sites are independent, with all nucleotides
having probability 1/4 at each site. Under this simple model, the sum of
the elements in the matrix W−1 for this motif, where the matrix W is
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defined through (5.96) and (5.97), is 1/16,648. From the above theory, the
mean number of sites between successive recurrences of the motif is thus
16,648, so that from (5.83), the mean number of recurrences of this motif is
approximately 1,903,356/16648 ∼= 114.32. The observed number 215 is con-
siderably in excess of this and leads to a highly significant z-score of about
9.5. Thus in statistical terms we reject the null hypothesis of the simple
model for this motif, as would be expected given its protective function.
Robin (2002) also showed by using r-scans that the motif does not arise
significantly more frequently in any particular part of the genome, again
as expected from its protective function.

Under the simple model assumptions made in the previous paragraph,
the probability that the motif occurs at any particular site is 1/47, and
equation (5.90) then shows that the mean number of occurrences of the
motif is 1,903,349/47 ∼= 116.17. This exceeds the mean number of recur-
rences, calculated above as 114.32, by about 1.62%. It is easy to see why
this is so. By far the most likely way in which two words in the motif will
overlap arises when the first word is followed by the sequence tgg, thus
creating an overlap with the third word (ggtggtgg) of the motif. Such an
overlap creates a further occurrence of the motif but not a further recur-
rence. The probability of the sequence tgg is 1/64 or about 1.56%, thus
accounting for almost all the difference between the mean number of oc-
currences of the motif and the mean number of recurrences.

Example 2. The second motif considered by Robin consists of the set of all
64 six-letter self-complementary palindromes, that is of all six-letter words
which are unchanged if read backwards with a replaced by g, g by a, c
by t, and t by c, for example the word acgatg. In Escherichia coli various
words in this motif cause breakages in the genome and thus the motif is
expected to occur less often than by chance. In this case the matrix W ,
defined by (5.96) and (5.97), is of size 64 × 64. Under the simple model,
the approximation (5.83) shows that the mean number of recurrences of
the motif (in the E. coli genome of size 4,638,868) is about 68,000. The
observed number, about 52,000, leads to a z-score of about −75, clearly
highly significant. Therefore we would reject the simple model so far as
this motif is concerned.

We conclude with some general comments. First, in the (unusual) case
where no word in a motif is self-overlapping and no two words in the motif
overlap with each other, wuv = 0, wuu = π−1

u and equations (5.94) and
(5.98) reduce to the same equation. Second, recurrences of a motif form
recurrent events, so that the approximation (5.83) applies for finding the
mean number of recurrences in a sequence of length N, with µ found from
(5.98). (This approximation was used in the CHI and palindrome motif cal-
culations above.) Finally, more complex calculations concerning recurrences
of a motif, including those for the case of Markov dependence between sites
and for cases of motifs having complicated structures, are available. Aspects
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of the relevant theory are given by Tanushev and Arratia (1997), Régnier
(2000), and Reinert et al. (2000). Because of the complexity of the various
formulae, several computer programs are available for numerical calcula-
tions; see for example Nicodème (2001). It may well be that many further
properties are best estimated by simulation rather than by using formulae
requiring excessive computation.

Finally, we have discussed above the case where the motif of interest is
known. Harder problems can arise when a motif has to be discovered. This
problem is discussed, for example, by Bailey and Elkan (1994), Liu et al.
(2001, 2002)), Hertz and Stormo (1999), Liu et al. (1995), Jensen and Liu
(2004), and Jensen et al. (2004), using various statistical methods. This
topic is beyond the scope of this book.

Problems

5.1. Use the joint density function (2.143), together with transformation
techniques, to prove equation (5.4).

5.2. Show that if L and G are fixed, the mean number of contigs given in
(5.1) is maximized (as a function of N) when N = G/L.

5.3. Use the approximation (B.21) to approximate the mean contig size
(5.2) when a is small, and interpret your result.

5.4. Write the mean number of anchored contigs (5.11) as

abG

L

(e−a − e−b)
(b − a)

.

(i) Assume that G, L, and b are fixed, so that this mean number is a
function of a only. Suppose that G/L = 100,000 and b = 5. Evaluate
this mean for a = 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2.0.

(ii) Now do the same calculation when b = 10.

(iii) For the cases b = 5, b = 10, estimate the value of a for which the
mean number of contigs is maximized. How do these values compare
with the case b = +∞?

5.5. There are four models described below for a signal of length five:
iid, weight matrix, first-order Markov, and MDD. For each of the se-
quences CCGAT and CATAT find the probability of the sequence given
the model, for each of the four models (so your answer should consist of
eight probabilities).

(i) iid. The probabilities of the four nucleotides are {pa = .2, pc =
.1, pg = .1, pt = .6}.
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(ii) Weight Matrix. The weight matrix (for the nucleotide ordering: a, c,
g, t) is ⎡⎢⎢⎣

.2 .3 .2 .1 .1

.1 .2 .15 .6 .6

.3 .4 .6 .1 .15

.4 .1 .05 .2 .15

⎤⎥⎥⎦ .

(iii) First-Order Markov. The initial distribution is {pa = .2, pc = .1, pg =
.1, pt = .6}, and the transition matrix (for the nucleotide ordering a,
c, g, t) is ⎡⎢⎢⎣

.1 .8 .05 .05
.35 .1 .1 .45
.3 .2 .2 .3
.6 .1 .25 .05

⎤⎥⎥⎦ .

(iv) MDD. The first split is on position 2, with probabilities for this po-
sition {pa = .2, pc = .3, pg = .1, pt = .4}. For position 2 equal to c, g,
or t we model the remaining positions with weight matrices

Wc =

⎡⎢⎢⎣
.2 .1 .2 .8
.5 .1 .2 .1
.2 .1 .3 .05
.1 .7 .3 .05

⎤⎥⎥⎦ , Wg =

⎡⎢⎢⎣
.4 .1 .2 .2
.3 .4 .1 .3
.2 .1 .3 .2
.1 .4 .4 .3

⎤⎥⎥⎦ , Wt =

⎡⎢⎢⎣
.1 .1 .2 .2
.6 .6 .4 .35
.2 .1 .3 .15
.1 .2 .1 .3

⎤⎥⎥⎦ .

If position 2 equals a, we split further the other four positions on
position 1, with probabilities for this position {pa = .5, pc = .1, pg =
.1, pt = .3}. The remaining three positions are modelled with weight
matrices

Wa =

⎡⎢⎢⎣
.3 .4 .2
.4 .3 .1
.2 .2 .6
.1 .1 .1

⎤⎥⎥⎦ , Wc =

⎡⎢⎢⎣
.1 .5 .3
.1 .2 .1
.05 .2 .55
.75 .1 .05

⎤⎥⎥⎦ ,

Wg =

⎡⎢⎢⎣
.1 .2 .2
.5 .1 .1
.1 .1 .5
.3 .6 .2

⎤⎥⎥⎦ , Wt =

⎡⎢⎢⎣
.1 .6 .05
.5 .2 .05
.2 .1 .4
.2 .1 .5

⎤⎥⎥⎦ .

5.6. The expression (5.28) has an interesting consequence concerning the
random breaking of a stick problem. Suppose that a straight stick of length
1 is randomly broken twice. Use the expression (5.28) with u = 1/2 to show
that the probability that the three pieces formed cannot form a triangle is
3/4.

Note: It is important to be precise about the procedure forming the
breaks of the stick. The procedure assumed here is that two points where
the stick is broken are chosen independently and at random, the position of
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each having a uniform distribution in (0, 1). The breaks are then made at
the two points so chosen. Other concepts of random breaking, for example
that the stick is first broken at a randomly chosen point, and then one of
the two pieces formed is randomly chosen and then broken at a randomly
chosen point, lead to an answer different from that given above.

5.7. Derive the expression (5.26) from the integration in (5.26).

5.8. Derive the expression (1 − gu)n from the integration in (5.25).

5.9. For a sequence of DNA of length N = 6, find the probability that the
word gaga occurs 0, 1, and 2 times, and hence verify the variance formula
in (5.44) for this case.

5.10. What changes are needed in the variance formula (5.44) for the cases
N = 4, N = 5? Find the appropriate variance formulae in these two cases.

5.11. For the case where the probability of each nucleotide at any site is
1
4 , find the mean number of sites until the first recurrence of the word gagg.

5.12. The four sets of εj values for the words gaga, gggg, gaag and gagc can
be regarded as four vectors, namely (0, 1, 0, 1), (1, 1, 1, 1), (1, 0, 0, 1), and
(0, 0, 0, 1). Is there any four-letter word having a vector of εj values different
from any of these four? Prove your statement either by exhibiting a word
with a different vector of εj values, or prove that there can be no such word.

5.13. Show that the solution

u2j =
p2

ap2
g

1 + papg
+

papg

1 + papg
(−papg)j , j = 1, 2, . . .

satisfies equation (5.85), together with the boundary conditions u2 =
0, u4 = p2

ap2
g. Show also that u3 = 0, u5 = p2

ap2
g, so that u2j+1 = u2j .

By calculating
∑N

i=4 ui, derive equation (5.85), indicating the size of the
small-order terms ignored.

5.14. Prove equation (5.93).

5.15. Consider a motif made up of the words aa, at, ta, and tt, which we
call words 1, 2, 3, and 4 respectively. Find the matrix M (defined by equa-
tions (5.96) and (5.97)), and thus show that µ−1

1 = p2
a/2, µ−1

2 = µ3 =
papt/2, µ−1

4 = p2
t /2. Use equation (5.98) to find the mean number of sites

between successive recurrence of the motif, and comment on this result in
the case pa + pt = 1.
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5.16. Consider a motif made up of all possible words of length k. Use
equation (5.94) to show that the mean number of sites between successive
occurrences of this motif is 1, whatever the probabilities of the four nu-
cleotides. Does this result make sense? What is the mean number of sites
between successive recurrences of this motif?

5.17. Use the values in (5.99) to find the mean number of sites between
successive recurrences of the motif {aaa, ata} for general values of pa and
pt.



6
The Analysis of Multiple DNA or
Protein Sequences

6.1 Two Sequences: Frequency Comparisons

In Example 3 of Section 3.5 we considered the test of the hypothesis that
the probabilities for the four nucleotides in a DNA sequence are equal
to a set of prescribed values. In this section we consider the test of the
hypothesis that the two sets of probabilities for the four nucleotides in two
DNA sequences are equal, no specific claim being made as to what the
probabilities are. The data used for this test are as given in Table 6.1.

nucleotide
a g c t Total

sequence 1 Y11 Y12 Y13 Y14 Y1·
sequence 2 Y21 Y22 Y23 Y24 Y2·

Total Y·1 Y·2 Y·3 Y·4 Y

Table 6.1. Nucleotide counts.

The test is a particular case of the two-way table test discussed in Section
3.5, and the test statistic is either (3.42) or (3.43), applied to the data of
Table 6.1. When the null hypothesis that the two sequences are drawn from
populations with identical nucleotide frequencies is true, both statistics
have an approximate chi-square distribution with three degrees of freedom.
Further, the numerical values of the two statistics are usually close. For
example, with the numerical values given in Table 6.2, the statistic (3.42)
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and the statistic (3.43) respectively take the values 0.96416 and 0.96426.
The 5% Type I error significance point for chi-square with three degrees
of freedom is 7.81, so that the null hypothesis is not rejected using either
statistic.

nucleotide
a g c t Total

sequence 1 273 258 233 236 1000
sequence 2 281 244 246 229 1000

Total 554 502 479 465 2000

Table 6.2. Nucleotide counts: numerical example.

The statistic (3.43) when applied to the data of Table 6.1 can be written
in a different form. If

p1j = Y1j/Y1·, p2j = Y2j/Y2·, pj = Y·j/Y,

the statistic (3.43) becomes

2Y

(
Y1·
Y

∑
p1j log p1j +

Y2·
Y

∑
p2j log p2j −

∑
pj log pj

)
. (6.1)

The entropy-like statistic

Y1·
Y

∑
p1j log2 p1j +

Y2·
Y

∑
p2j log2 p2j −

∑
pj log2 pj (6.2)

has been used as a chi-square in the literature. This is not appropriate,
since the statistic (6.2) uses logarithms to the base 2 and omits the factor
2Y in (6.1).

Bernaola-Galván et al. (2000) take up the much more difficult statisti-
cal question of testing whether the nucleotide frequencies change at some
undetermined point along a DNA sequence. A DNA sequence of length N
may be divided into two sub-sequences of respective lengths n and N − n,
and the DNA frequencies in these two sub-sequences may be compared us-
ing the statistic (6.1). For any given value of n, denote this statistic by Cn.
If n is varied from a small number a to a number b close to N , a collection
of values Ca, Ca+1, . . . , Cb will be obtained. A reasonable test statistic to
use for this purpose is Cmax, the maximum of Ca, Ca+1, . . . , Cb. To assess
whether the observed value of Cmax is significant, it is necessary to find its
null hypothesis distribution. This is not easy, since the values of (6.1) are
highly correlated and equations such as (2.101) may not be used for this
purpose. It appears that the empirical methods discussed in Section 1.16
are necessary to find approximations for this distribution. Bernaola-Galván
et al. (2000) conduct simulations to find an approximation to this distribu-
tion, and claim from these that a good approximation is found by replacing
N by an effective length Neff (approximately 2.45 log N), and then using
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equation (2.101) with N replaced by Neff and y replaced by .84y. However,
it remains an open matter to find theoretical properties of the probability
distribution of Cmax.

6.2 Alignments

As a segment of genetic material is passed on through the generations in
some line of descent in a population, the sequence constituting this material
will change through the process of mutation. The simplest mutations are
of the form of a switch from one nucleotide to another, or in the form of
an insertion or a deletion. Mutations can spread to an entire species, or
nearly so, through the process of natural selection or random drift. When
a switch in nucleotides spreads throughout most of a species we call it a
substitution. (When in a population at a given site there does not exist
a single nucleotide type, we say that a polymorphism exists at that site.)
As substitutions, insertions, and deletions get passed along through two
independent lines of descent, the two sequences will slowly diverge from
each other. For example, the original sequence may have been

cggtatgcca,

whereas the two descendants might be

cgggtatccaa

and

ccctaggtccca.

This divergence will happen at varying rates, depending on the function
of the piece of DNA in question and how well that function tolerates sub-
stitutions and other changes. For protein coding DNA, the corresponding
protein sequences also evolve through time as a result of DNA sequence
evolution. Individual genes typically contain stretches that change rapidly
and other stretches that remain relatively constant. The latter regions are
called “functional domains” since their low tolerance to change suggests
that they have a critical functional role in the viability of the organism.

Many problems in bioinformatics relate to the comparison of two (or
more) DNA or protein sequences. In order to compare sequences of nu-
cleotides or amino acids, we use alignments. The following is an example
of an alignment of the above two descendent sequences:

c g g g t a − − t c c a a
c c c − t a g g t c c c a

The symbol “−” is called an indel: it represents an assumed insertion or
deletion at some point in the evolutionary history leading to the two se-
quences. A sequence of � consecutive indels is called a gap of length �. In
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the above alignment there are two gaps, one of length 1 and one of length
2.

There are many types of alignments. There are global alignments, in
which the entire lengths of the sequences are aligned, and there are local
alignments, which align only sub-sequences of each sequence. There are
gapped alignments, in which indels are allowed, and there are ungapped
alignments, in which indels are not allowed. There are pairwise alignments,
which are alignments of two sequences, and there are multiple alignments,
which align more than two sequences. Of course, these can be combined
into, for example, “gapped global pairwise” alignments. There is a large
literature on alignments, of which we shall examine a few of the basic
points.

For a particular type of pairwise alignment (for instance ungapped
global), there are many possible such alignments between any two se-
quences. Good alignments of related sequences are ones that better reflect
the evolutionary relationship between them. There are several ways to dis-
criminate between good and bad alignments. In the sections that follow we
consider this problem in some detail.

6.3 Simple Tests for Significant Similarity in an
Alignment

In this section we consider tests of the (null) hypothesis that the two
sequences in an ungapped alignment such as those in (1.1) have been gener-
ated at random with respect to each other. We shall assess the significance
of the observed similarity between the two sequences by using two “local”
criteria, one requiring a quite stringent similarity criterion, the other a
less stringent requirement. In Chapter 10 we consider a “local” criterion
different from both of those considered here.

Exactly-Matching Sub-sequences
As the most stringent similarity criterion, we consider as similar only those
sub-sequences where the elements match exactly. In the array (1.1) there
are five of these: the sub-sequences ‘a’ in position 3, ‘c’ in position 6, ‘t a g’
in positions 9–11, ‘c a’ in positions 13–14, and ‘t a t’ in positions 23–25.
We will generically denote the length of any such sub-sequence by Y . We
denote the length of the longest such sub-sequence by Ymax, and this is the
statistic we use to test for significant similarity between the two sequences.
In the array (1.1) the observed value ymax of Ymax is 3. To assess in general
whether the observed value ymax of Ymax is significant, we have to find out
the probability distribution of Ymax when the null hypothesis that there
is no significant similarity between the two sequences, (that is, that one is
generated independently of the other), is true.
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If a match is thought of as a success, the theory of Section 5.4 can be used
for this problem if p is defined as the match probability p2

a + p2
g + p2

c + p2
t ,

where pa, pg, pc, and pt are the respective frequencies of a, g, c, and t.
With this interpretation of p, any sub-sequence of successes (of length 0
or more) must be preceded by a pair of non-matching nucleotides, (that
is a failure). Under the null hypothesis there will be approximately (1 −
p)N such failures, so that there will also be approximately (1 − p)N sub-
sequences of successes in two long matched sequences each of length N . As
in Section 5.4, the approximation that takes the number of sub-sequences
as fixed at this value is sufficiently accurate for all practical purposes. We
can now use (5.15) to provide an approximation for the P -value associated
with the observed value ymax of the length of the longest exactly matching
sub-sequence.

Well-Matching Sub-sequences
The use of the length of the longest exactly matching sub-sequence as a test
statistic is probably unwise. Even if two DNA sequences have a reasonably
recent common ancestor, evolutionary changes will usually cause at least
a small number of differences between them. Thus it is more appropriate
to use a test procedure that focuses on well-matching, rather than exactly
matching, sub-sequences.

One such approach is to consider sub-sequences where k mismatches
(more strictly, because of end-effects, up to k mismatches) are allowed. The
length Y of any such sub-sequence is the number of trials up to but not
including the (k + 1)th failure, so that the probability distribution of Y is
the generalized geometric distribution given in equation (1.21). Because this
distribution enters naturally into calculations involving well-matching sub-
sequences, we now consider its cumulative distribution function at greater
length than was done in Section 1.3.6.

The probability that y trials or fewer are required before failure k + 1 is

FY (y) =
y∑

j=k

(
j

k

)
pj−k(1 − p)k+1, y = k, k + 1, k + 2, . . . . (6.3)

We will later wish to calculate Prob(Y ≤ y − 1). Replacing y by y − 1 in
equation (6.3), we immediately obtain

Prob(Y ≤ y − 1)

=
y−1∑
j=k

(
j

k

)
pj−k(1 − p)k+1, y = k + 1, k + 2, k + 3, . . . . (6.4)

The expression on the right-hand side of equation (6.4) can be calculated in
various ways. One of these is straightforward numerical computation, which
is now possible and available in most mathematical computer packages. A
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perhaps unexpected way of calculating this sum numerically is given in
Appendix C.

We now turn to the statistical hypothesis-testing process using Ymax as
test statistic. To use Ymax as test statistic we must be able to compute the
P -value associated with any observed value ymax of Ymax. As an example
we consider the case N = 100,000, p = 1

4 ; in view of a calculation in Section
5.4, we assume that the number of matching sub-sequences, some of length
0, is fixed at the value n = N(1 − p) = 75,000.

The main difficulty in calculating P -values exactly is that the lengths of
the sub-sequences are not independent when k > 1. For example, a single
long run of exact matches will lead to long lengths of two or more well-
matching sub-sequences overlapping this run. Unfortunately, the theory for
the probability distribution of the maximum of dependent sub-sequence
lengths is difficult, and we are forced to consider alternative approaches.

One possible approach is to ignore this dependence and to use values
such as those given in Table 3.4, calculated assuming independence of sub-
sequence lengths. This is potentially dangerous, since as we have seen,
P -values change very rapidly as a function of ymax, and thus the approxima-
tion implied by assuming independence is not guaranteed to give accurate
P -values.

Fortunately, given current computing power, the dependent case is one
where a computational approach using simulations is now possible. This ap-
proach is based on the discussion in Section 1.16, and allows us to assess the
magnitude of any error incurred by making the independence assumption.
We now discuss this approach.

A long random DNA sequence can be generated repeatedly by a simple
program, and from this an empirical probability distribution for Ymax can
be obtained. From this, quite precise estimates of P -values for Ymax can be
found. Some representative estimates found in this way are given in Table
6.3. A comparison of the “independence” P -values in Table 3.4 and the
simulation values in Table 6.3 shows that the independence assumption
does cause somewhat inaccurate P -value approximations, the inaccuracy
increasing, as might be expected, as k increases.

A second approach to the approximation of P -values is based on (3.51),
which requires knowledge of, or approximations for, the mean µmax and
the variance σ2

max of Ymax. To assess the accuracy of this approach it is
first necessary to compare the simulation values for the mean and variance
of Ymax with the “independence” values given in Table 3.4. The simulation
values are given in Table 6.4, together with their standard deviations. A
comparison of the values in the two tables shows that as k increases, the
“independence” mean and variance in Table 3.4 become somewhat inaccu-
rate. Even though this inaccuracy is small, the sharp changes in P -values
near the mean imply that the “independence” values for the mean and vari-
ance are possibly not sufficiently accurate for P -value approximations using
(3.51) when k is large. This view is supported by the somewhat inaccurate
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y k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
7 0.990
8 0.683
9 0.247 0.998
10 0.068 0.845
11 0.018 0.405 0.999
12 0.005 0.133 0.875
13 0.001 0.038 0.464
14 0.010 0.169 0.860
15 0.003 0.052 0.469
16 0.005 0.179 0.823
17 0.001 0.059 0.441
18 0.018 0.172 0.763
19 0.006 0.058 0.395
20 0.002 0.019 0.158
21 0.056
22 0.019

Table 6.3. Approximate P -values for the length of the largest sub-sequence al-
lowing k mismatches, in a DNA segment of length 100,000, found by simulation.
Estimates have approximate standard deviation 0.001. p = 1

4 .

k 0 1 2 3 4 5
Mean 8.013 10.426 12.582 14.592 16.518 18.383

Variance 0.937 1.081 1.201 1.313 1.417 1.520

Table 6.4. Simulation estimates of the mean and variance of the length of the
largest sub-sequence allowing k mismatches, in a DNA segment of length 100,000.
Estimates of the mean have approximate standard error 0.002. Estimates of the
variance have approximate standard deviation 0.01. p = 1

4 .

P -values, as noted above, found by assuming independence of sub-sequence
lengths.

Are there approximations for the mean and variance of Ymax more accu-
rate than those given in Table 3.3? Waterman (1995, page 277) claims that
for large n, good approximations for the mean and variance are

µmax =
log n + γ + k log

(
log n

λ

)
+ k log

(
1−p

p

)
− log(k!)

λ
− 1

2
+ r1, (6.5)

σ2
max =

π2

6λ2 +
1
12

+ r2, (6.6)

where λ = (− log p), n = N(1 − p), and, for p = 1
4 , |r1| ≤ 3.45 × 10−4 and

|r2| ≤ 2.64 × 10−2. These approximations were first calculated assuming
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independence of sub-sequence lengths, and later shown not to change signif-
icantly in the dependent case. The approximations (6.5) and (6.6) are direct
generalizations of the approximations (2.118) and (2.120), respectively, to
the case where k is a positive integer.

If these values are to be used in conjunction with the approximation
(3.51), it is important to assess their accuracy, especially if we recall the
great precision necessary for calculations involving the maximum of gener-
alized geometric random variables, as discussed in Section 3.7.2. To make
this assessment, Table 6.5 shows the approximate values of the mean µmax
as calculated by equation (6.5). The calculations in this table are for the
values n = 75,000, p = 1

4 , k = 0, 1, 2, 3, 4, 5. The values in this table differ
from those in Table 6.4, when k > 0, by more than the maximal error
3.45 × 10−4 claimed for the approximation (6.5). Presumably this arises
because the asymptotic theory does not yet apply when n = 75,000. Thus
when n is not extremely large the use of the means in Table 6.5 in conjunc-
tion with the approximation (3.51) could lead to some inaccuracies when
we recall how quickly the P -values change in the neighborhood of the mean.

k 0 1 2 3 4 5
Mean 8.013 10.315 12.116 13.625 14.926 16.066

Table 6.5. Approximation for the mean of the maximum of 75,000 iid generalized
geometric random variables, for various values of k, calculated from equation
(6.5), p = 1

4 .

The corresponding approximate value for the variance σ2
max, given by

equation (6.6), is 0.939. When k > 0, this also differs from the values in
Table 6.4 by more than the maximal error 2.64 × 10−2 claimed for the
approximation (6.6). This is also of concern with regard to P -value ap-
proximations using (3.51). It is thus necessary to calculate the P -value
approximation given by (3.50) and (3.51), using the mean (6.5) and the
variance (6.6) in the approximation, to assess the accuracy both of the ap-
proximation and of (6.5) and (6.6). Calculations corresponding to those in
Table 3.4 are given in Table 6.6. It is clear that the P -value approximations
based on equations (6.5) and (6.6) are somewhat in error, at least when k
is 2 or more.

BLAST provides a second (and more frequently used) approach to sig-
nificance testing based on “well-matching” rather than exactly matching
sub-sequences. Since BLAST calculations depend on an analysis of random
walks, we defer considering it until the relevant random walk theory has
been described.

The analysis of patterns in DNA and protein sequences is a large and
growing area of bioinformatics. The theory, however, rapidly becomes diffi-
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y k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
7 0.990
8 0.682
9 0.249 0.999
10 0.069 0.824
11 0.018 0.353 0.995
12 0.004 0.102 0.733
13 0.001 0.028 0.281
14 0.007 0.079 0.487
15 0.002 0.020 0.154
16 0.005 0.041 0.224
17 0.002 0.010 0.061
18 0.003 0.016 0.074
19 0.001 0.004 0.019
20 0.000 0.001 0.005
21 0.001
22 0.000

Table 6.6. Approximate P -values for the maximum of 75,000 iid generalized geo-
metric random variables, for various values of k and y, calculated using equations
(3.51), (6.5) and (6.6). p = 1

4 .

cult, and we do not pursue further topics here. Recent research results may
be found, for example, in Bailey and Gribskov (1998), Jonassen, Collins,
and Higgins (1995), Karlin and Brendel (1992), Neuwald and Green (1994),
and Rigoutsos and Floratos (1998).

6.4 Alignment Algorithms for Two Sequences

6.4.1 Introduction
One way to discriminate between good and bad alignments is to use a
scoring scheme. A simple example of a scoring scheme is

(the number of matches) − (the number of mismatches and indels). (6.7)

Scoring schemes used for aligning DNA are often not much different from
this simple scheme. For protein sequences, however, a more complex scoring
scheme is appropriate. Commonly used scoring schemes are developed using
statistical analysis of existing data, and we discuss the statistical theory
behind these scoring schemes in Section 6.5. For now, we assume that we
have assigned a score to each alignment in a meaningful way that reflects the
likelihood that this alignment was produced as a consequence of divergence
from a common ancestor. Then we can consider the alignments with the
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“best” score, and we can define the score of the sequence pair to be this
best score. What “best” means here depends on whether high scores in the
scoring scheme are more indicative of relatedness (so the “best” score is the
maximum over all alignments), or whether low scores are more indicative
(so “best” is the minimum).

This mathematical framework allows a statistical analysis where we make
inferences about the relatedness of the sequences. We can investigate the
hypothesis that they did indeed diverge from a common ancestor by con-
sidering the probability of the observed score (or one more extreme) arising
by chance, under some appropriate model of evolution. If the two sequences
are judged to be related, we can use their alignment to discover common
patterns in the sequences. This is useful in particular for finding functional
domains. Finally, by comparing scores among several different species we
can get information to help reconstruct the phylogenetic tree that relates
them all.

Scores of alignments consist of two main types: similarity scores and dis-
tance scores (also commonly called distance measures). In similarity scores
the higher the score, the more closely related are the two aligned sequences;
in the distance measures the opposite is the case. In the remainder of this
section we use similarity scores. These are usually computed as the sum
of individual scores, one for each aligned pair of residues, together with a
score for each gap. We will denote by s(X,Y ) the score assigned to the
aligned pair consisting of the residues X and Y . This score reflects how
conservative the substitution represented by the alignment of X with Y is.
For example, it is much less likely that the amino acid W (tryptophan) will
be substituted for V (valine) in a functional domain than it is that W will
be substituted for R (arginine). (This is not only an empirically observed
fact, but also makes sense in terms of the chemical properties involved.)
Thus the score s(W, V ) assigned to an alignment of the two symbols W
and V is lower than s(W, R), the score assigned to an alignment of the two
symbols W and R. The score assigned to a gap of length � is usually a func-
tion of �, which we denote by δ(�). It represents the cost of having a gap of
length � and is therefore zero or negative. The simplest gap penalty model
is a linear gap model, where δ(�) = −�d for some non-negative constant d,
called the linear gap penalty. Therefore, in the linear gap model, each indel
in a gap is weighted in the same way, namely by a penalty of d.

Thus if the alphabet has size N (N = 4 for nucleotides and N = 20 for
amino acids), a scoring scheme consists of an N × N matrix S and a gap
cost function δ. The matrix S is called a substitution matrix and the entry
in its ith row and jth column is the score of the alignment of the ith and
jth symbols in the alphabet.

Example. Consider the comparison of two nucleotide sequences with a sim-
ple scoring scheme that assigns +1 to each match, −1 to each mismatch, and
a linear gap score with d = 2. Then the score for the following alignment of
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the two sequences cttagg and catgagaa is 1−1+1−2+1−2+1−4 = −5:

c t t a g − g − −
c a t − g a g a a

One of the main aims of the statistical theory is to find for nucleotides,
and more importantly for amino acids, what an optimal scoring scheme
should be. This matter is taken up in detail in Section 6.5 and Chapter 10.

6.4.2 Gapped Global Comparisons and Dynamic
Programming Algorithms

Suppose that we are given a scoring scheme made up of a substitution
matrix and a linear gap penalty. Our aim is to find, of the possible global
alignments of two sequences (with gaps allowed), the one (or those ones)
with the highest score. One method in principle for doing this is to list
exhaustively all possible alignments and their scores, and then note the
highest-scoring alignment(s). However, when the sequences are long, this is
not computationally feasible, and more efficient algorithms are needed. We
describe one such algorithm below, but first we justify our assertion that
the exhaustive search illustrated above is indeed not efficient, by getting
a sense of how large the number of global alignments between a sequence
x = X1X2 . . . Xm of length m and a sequence y = Y1Y2 . . . Yn of length n is.
We will denote this number by c(m, n). Since there is no point in matching
two deletions, no alignments of one indel with another are allowed.

Let g(m, n) be the number of groups obtained by grouping together those
alignments that have the same combination of aligned residue pairs ignoring
the indels. Then g(m, n) < c(m, n), and this provides a lower bound for
c(m, n). We can compute g(m, n) as follows.

The number k of aligned residues for two sequences of lengths m and n
is between 0 and min{m, n}. Moreover, for each such k there are

(
m
k

)
ways

of choosing the residues of x that align with residues of y, and
(
n
k

)
ways

of choosing the residues of y that align with residues of x. So there are(
m
k

)(
n
k

)
alignments with k aligned residues. Therefore,

g(m, n) =
min{m,n}∑

k=0

(
m

k

)(
n

k

)
. (6.8)

From the result of Problem 6.1 below, it follows that

g(m, n) =
(

m + n

n

)
. (6.9)

In particular, when m = n,

g(n, n) =
(

2n

n

)
.
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This number grows quite fast with n. Stirling’s approximation (B.4), and
even more directly (B.5), shows that(

2n

n

)
∼ 22n

√
πn

. (6.10)

Thus the number c(1, 000, 1, 000) of global alignments between two
sequences each of length 1,000 satisfies

c(1, 000, 1, 000) ≥ g(1, 000, 1, 000) ∼= 22,000
√

1, 000π
∼= 10600.

This shows why it is not feasible to examine all possible alignments. This
motivates the search for algorithms that can compute the best score ef-
ficiently and an alignment with this score, without having to examine
all possibilities. One such algorithm is the Needleman–Wunsch algorithm
(1970), and we discuss a version of this procedure introduced by Gotoh
(1982). These are examples of dynamic programming algorithms, and we
use them to illustrate the general concept of dynamic programming.

The input consists of two sequences,

x = X1X2 . . . Xm and y = Y1Y2 . . . Yn,

of lengths m and n, respectively, whose elements belong to some alphabet
of N symbols (for DNA or RNA sequences N = 4, for proteins N = 20). We
assume that we are given a substitution matrix S and a linear gap penalty
d. The output consists of the highest score over all alignments between x
and y and a highest-scoring global alignment between x and y.

The broad approach is to break the problem into sub-problems of
the same kind and build the final solution using the solutions for the
sub-problems: This is the basic idea behind any dynamic programming
algorithm. In this problem we find a highest-scoring alignment using previ-
ous solutions for highest-scoring alignments of smaller sub-sequences of x
and y. We denote by x1,i the initial segment of x given by X1X2 · · ·Xi and
similarly we denote by y1,j the initial segment of y given by Y1Y2 · · ·Yj .
For i = 1, 2, . . . , m and j = 1, 2, . . . , n, we denote by B(i, j) the score of
a highest-scoring alignment between x1,i and y1,j . For i = 1, 2, . . . , m, we
denote by B(i, 0) the score of an alignment where x1,i is aligned to a gap
of length i, so B(i, 0) = −id. Similarly, for j = 1, 2, . . . , n, we denote by
B(0, j) the score of an alignment where y1,j is aligned to a gap of length j,
so B(0, j) = −jd. Finally, we initialize B(0, 0) = 0. These calculations lead
to an (m + 1) × (n + 1) matrix B. The entry in the last row and in the last
column of B, namely B(m, n), is the score of a highest-scoring alignment
between our two sequences x and y, and it is one of the things we want
our algorithm to output.

The essence of the procedure is to fill in the elements of the matrix B
recursively. We already have the values of B at (0, 0), (i, 0), and (0, j),
for i = 1, 2, . . . , m and j = 1, 2, . . . , n. Now we proceed from top left to
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bottom right by noting that a highest-scoring alignment between x1,i and
y1,j could terminate in one of three possible ways, namely, with

Xi
Yj

, Xi− , or −
Yj

.

In the first case, B(i, j) is equal to the sum of the score for a highest-
scoring alignment between x1,i−1 and y1,j−1 together with the extra term
s(i, j) to account for the match between Xi and Yj ; that is, B(i, j) =
B(i − 1, j − 1) + s(i, j). In the second case, B(i, j) is equal to the sum of
the score for a highest-scoring alignment between x1,i−1 and y1,j together
with an extra term −d to account for the indel to which Xi is aligned, (i.e.,
B(i, j) = B(i−1, j)−d). Similarly, in the third case, B(i, j) = B(i, j−1)−d.
These are all the possible options, and hence B(i, j) is the highest of the
three. In other words,

B(i, j) = max{B(i−1, j−1)+s(i, j), B(i−1, j)−d,B(i, j−1)−d}. (6.11)

In this way we recursively fill in every cell in the matrix B and determine
the value of B(m, n), which is the desired maximum score. The running
time of this algorithm is clearly O(mn). To find an alignment that has
this score we must keep track, at each step of the recursion, of one of the
three choices giving the value of the maximum. Although there could be
more than one choice giving the maximum, if we are interested in finding
only one alignment, we choose one and keep a pointer to it. Once B(m, n)
is obtained, by tracing back through the pointers, we can reconstruct an
alignment with the highest score. We now illustrate this procedure with an
example.

Example. Let x = gaatct and y = catt, so that m = 6 and n = 4. Using
the same scoring scheme as in the example in Section 6.4.1, B is given
in Figure 6.1, where we have used arrows to denote where each cell came
from. The best score for an alignment is given by the element in the bottom
rightmost cell, which is −2. Tracing back along the bold arrows, we get the
highest-scoring alignment

g a a t c t
c − a t − t

.

By making different choices of arrows in the traceback procedure we can get
the following other alignments, which are also highest-scoring, (i.e., which
also have a score of −2):

g a a t c t
c a − t − t

and
g a a t c t
− c a t − t

.

We next consider modifications of the Needleman–Wunsch algorithm,
which can be used to address other kinds of pairwise alignment problems.
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− c a t t

− 0 −2 −4 −6 −8
↖↖ ↖ ↖ ↖

g −2 −1 ← −3 ← −5 ← −7
↖ ↑↑ ↖

a −4 −3 0 ← −2 ← −4
↖ ↑ ↖↖ ↑ ↖ ↖

a −6 −5 −2 −1 ← −3
↖ ↑ ↑ ↖↖ ↖

t −8 −7 −4 −1 0
↖ ↑ ↑↑ ↖ ↑

c −10 −7 −6 −3 −2
↑ ↖ ↑ ↖ ↑ ↖↖

t −12 −9 −8 −5 −2

Figure 6.1.

6.4.3 Fitting One Sequence into Another Using a Linear Gap
Model

In this section we address the following problem: Given two sequences, a
longer and a shorter one, find the sub-sequence(s) of the longer one that
can be best aligned with the shorter sequence, where gaps are allowed. This
procedure is relevant when one is interested in locating a specified pattern
within a sequence.

Let x = X1X2 . . . Xm and y = Y1Y2 . . . Yn be two sequences with n ≥
m. For 1 ≤ k ≤ j ≤ n, denote by yk,j the sub-sequence of y given by
YkYk+1 . . . Yj . For two sequences u and v, denote by B(u,v) the score of
a highest-scoring (global) alignment between u and v. Our aim is to find

max{B(x,yk,j) : 1 ≤ k ≤ j ≤ n}. (6.12)

For each choice of k and j the running time of the Needleman–Wunsch al-
gorithm, giving the value of B(x,yk,j), is O(m(j−k)). Thus if we used this
algorithm for all possible choices of k and j, and then took the maximum
over all such choices, the total running time would be O(mn3), since there
are
(
n
2

)
possible choices for j and k. We now illustrate another approach

with a better running time, namely an O(mn) running time.
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let F (i, j) be the maximum of the

scores B(x1,i,yk,j) over the values of k between 1 and j. That is, of all the
possible scores for highest-scoring alignments between the initial segment
of x up to xi and the segments of y ending at yj and beginning at some
k we take F (i, j) to be the greatest of such scores. The value of (6.12) is
the maximum of F (m, j) over all values of j between 1 and n. To find this,
we initialize F (i, 0) = −id for 1 ≤ i ≤ m and initialize F (0, j) = 0 for
0 ≤ j ≤ n, since deletions of the beginning of y should clearly be without
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penalty. Then we fill in the matrix F recursively by

F (i, j) = max{F (i − 1, j − 1) + s(i, j), F (i, j − 1) − d, F (i − 1, j) − d},

where the reasoning behind this formula is analogous to that behind (6.11).
Note that there might be more than one value of j giving the maxi-
mum score. In order to recover the highest-scoring alignments of x to
sub-sequences of y we can keep pointers, as in the Needleman–Wunsch
algorithm.

6.4.4 Local Alignments with a Linear Gap Model
Another interesting alignment problem is to find, given two sequences,
which respective sub-sequences have the highest-scoring alignment(s) (with
gaps allowed). This is called a local alignment problem, and it is appropriate
when one is seeking common patterns/domains in two sequences.

In the following we make the assumption that the scoring scheme we
use is such that the expected (or mean) score for a random alignment is
negative. If this assumption did not hold, then long matches between sub-
sequences could score highly just because of their lengths, so that two long
unrelated sub-sequences could give a highest-scoring alignment. Clearly, we
do not want this to occur.

For 1 ≤ h ≤ i ≤ m we denote by xh,i the sub-sequence of x given by
XhXh+1 . . . Xi. With the notation as in the previous section, we want to
find

max{B(xh,i,yk,j) : 1 ≤ h ≤ i ≤ m, 1 ≤ k ≤ j ≤ n}, (6.13)

when this is non-negative. There are
(
m
2

)(
n
2

)
pairs of sub-sequences of x

and y, one for each choice of h and i among m possible values and of k and
j among n possible values. Thus computing a highest-scoring alignment for
each pair, using the Needleman–Wunsch algorithm, requires a total running
time of O(m3n3). Clearly, we want to give a more efficient approach to this
problem. Such an approach is provided by the Smith–Waterman algorithm
(Smith and Waterman (1981)) which computes (6.13) in O(mn) time. The
procedure is as follows.

For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define L(i, j) to be the maximum
of 0 and the maximum of all possible scores for alignments between a
sub-sequence of x ending at Xi and one of y ending at Yj . That is,

L(i, j) = max{0, B(xh,i,yk,j) : 1 ≤ h ≤ i, 1 ≤ k ≤ j}.

The reason we want L(i, j) = 0 when the max of the B(xh,i,yk,j)’s is nega-
tive is because it is sensible to always remove the first part of an alignment
if this part has a negative score, as it will just decrease the overall score
of the alignment. Then the maximum of 0 and (6.13) is the maximum of
L(i, j) over all values of i between 1 and m and of j between 1 and n. To
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determine this maximum we again use dynamic programming, by initializ-
ing L(i, 0) = 0 = L(0, j) for 0 ≤ i ≤ m and 0 ≤ j ≤ n (since deletions at
the beginning or end of our two sequences should not be penalized), and
by computing

L(i, j) = max{0, L(i − 1, j − 1) + s(i, j), L(i − 1, j) − d, L(i, j − 1) − d}.

We then calculate the maximum of L(i, j) over all values of i and j. As in
the previous maximizing procedures there might be more than one highest-
scoring local alignment. To find a highest-scoring alignment, we follow the
traceback procedure previously described. However, for this algorithm, we
stop this process when we encounter a 0.

Figure 6.2 shows an example of an L(i, j) matrix arising in locally align-
ing two sequences of lengths 7 and 10. In this example, the score of an

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

0 0 0 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 0 0 0 0
↖ ↖↖

X2 0 0 0 5 0 5 0 0 0 0 0
↖ ↖↖

X3 0 0 0 0 2 0 20 ←← 12 ← 4 0 0
↖ ↑ ↖ ↖↖

X4 0 10 ← 2 0 0 0 12 18 22 ← 14 ← 6
↑ ↖ ↑ ↑ ↖ ↖↖ ↖

X5 0 2 16 ← 8 0 0 4 10 18 28 20
↑ ↖ ↖ ↖ ↑ ↑ ↖

X6 0 0 8 21 ← 13 5 0 4 10 20 27
↖ ↑ ↖ ↖ ↖ ↖ ↖

X7 0 0 6 13 18 12 ← 4 0 4 16 26

Figure 6.2.

optimal local alignment of the two sequences is 28, and there is only one
alignment of sub-sequences giving this score, the one indicated by the bold
arrows, which is

X2 X3 − X4 X5
Y5 Y6 Y7 Y8 Y9

.

6.4.5 Other Gap Models
There are many variants and extensions of the algorithms discussed above.
For example, while the linear gap model used above is appealing in its
simplicity, it is often not appropriate for biological sequences, since often
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it is harder for a gap to open (i.e., start) than it is for it to extend. Thus
it is often more appropriate not to penalize additional gap steps as much
as the first one, and to use a more complicated gap cost δ(�). This implies
that the recurrence relations need to be adjusted. For instance, in (6.11),
we now have to distinguish among the alignments of x1,i with y1,j that
end with Xi aligned to an indel. The score of such an alignment will also
depend on how many symbols in x immediately preceding Xi are aligned
to indels. Suppose that in such an alignment the last symbol preceding Xi

that is not aligned to an indel (hence is aligned to Yj) is Xk. Then the
i − k symbols from Xk+1 to Xi are aligned to indels, and the score of a
highest-scoring alignment is B(k, j) + δ(i − k). Similar reasoning must be
applied to those alignments between x1,i and y1,j that end with Yj aligned
to an indel. Hence (6.11) must be replaced with

B(i, j) = max{B(i − 1, j − 1) + s(i, j),
B(k, j) + δ(i − k) : k = 0, 1, . . . , i − 1,

B(i, k) + δ(j − k) : k = 0, 1, . . . , j − 1},

and the initialization is given by B(0, 0) = 0, B(i, 0) = δ(i) for i =
1, 2, . . . , m, and B(0, j) = δ(j) for j = 1, 2, . . . , n.

Therefore, in general, finding a highest-scoring alignment between two
sequences of lengths m and n takes O(m2n + mn2) operations, as opposed
to O(mn) operations needed if the gap penalty model is linear. This is
because for each cell of B we now need to consider i + j + 1 previous cells,
instead of just three.

If, however, δ(�) satisfies certain conditions, there are algorithms that
take O(mn) operations. One simple example of this is that of an affine gap
model, in which δ(�) = −d − (� − 1)e, for some (non-negative) d and e. d
is called the gap-open penalty, and e is called the gap-extension penalty.
Usually, e is set smaller than d. Thus all gap steps other than the first have
the same cost, but each of them is penalized less than the first. We now
describe a dynamic programming implementation of a global alignment
algorithm for this case whose running time is also O(mn).

Instead of using just one matrix B, the algorithm uses three matrices.
Let x and y be the sequences we want to align. We use the same notation
as above for x1,i and y1,j . For i = 1, 2, . . . , m and j = 1, 2, . . . , n, we
denote by S(i, j) the score of a highest-scoring alignment between x1,i and
y1,j , given that the alignment ends with Xi aligned to Yj . We denote by
Ix(i, j) the score of a highest-scoring alignment between x1,i and y1,j , given
that the alignment ends with Xi aligned to an indel. Finally, we denote by
Iy(i, j) the score of a highest-scoring alignment between x1,i and y1,j , given
that the alignment ends with an indel aligned to Yj . Then if we assume
that a deletion will not be followed directly by an insertion, we have, for
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i = 1, 2, . . . , m and j = 1, 2, . . . , n,

S(i, j)
= max{S(i−1, j−1)+s(i, j), Ix(i−1, j−1)+s(i, j), Iy(i−1, j−1)+s(i, j)},

where

Ix(i, j) = max{S(i − 1, j) − d, Ix(i − 1, j) − e},

and

Iy(i, j) = max{S(i, j − 1) − d, Iy(i, j − 1) − e}.

These recurrence relations allow us to fill in the matrices S, Ix, and Iy,
once we initialize S(0, 0) = Ix(0, 0) = Iy(0, 0) = 0, S(0, j) = Ix(0, j) =
−d− (j − 1)e, and S(i, 0) = Iy(i, 0) = −d− (i− 1)e, for i = 1, 2, . . . , m and
j = 1, 2, . . . , n. The score of a highest-scoring alignment is then given by
max{S(m, n), Ix(m, n), Iy(m, n)}.

6.4.6 Limitations of the Dynamic Programming Alignment
Algorithms

All the algorithms discussed above yield the exact highest score according
to the given scoring scheme. However, when one has to deal with very long
sequences, as would occur if one wished to align a given sequence with
each of several sequences in a big database, a time complexity of O(mn)
might not be good enough for performing the required search in an ac-
ceptable amount of time. So various other algorithms have been developed
to overcome this difficulty, BLAST being one of them. These algorithms
use heuristic techniques to limit the search to a fraction of the possible
alignments between two sequences in a way that attempts not to miss the
high-scoring alignments. The trade-off is that one might not necessarily
find the best possible score. Various aspects of BLAST will be discussed
extensively in Chapter 10.

Another consideration is that of space, since memory usage can also be
a limiting factor in dynamic programming. In the Needleman–Wunsch al-
gorithm, for instance, one needs to store the (m+1)× (n+1) matrix B. If
one cares only about the value of the best score, without wanting to find a
highest-scoring alignment, then there is no need to store all cells of B, since
the value of B(i, j) depends only on entries up to one row back. Thus one
can throw away rows of the matrix that are further back. However, usu-
ally one wants to find also a highest-scoring alignment, not only its score.
There are methods that allow one to do this in O(m + n) space, rather
then O(mn), and this with no more than doubling in time, so the time
complexity remains at O(mn). For more details see Section 2.6 in Durbin
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A R N D C Q E G H I L K M F P S T W Y V

A 4 −1 −2 −2 0 −1 −1 0 −2 −1 −1 −1 −1 −2 −1 1 0 −3 −2 0

R −1 5 0 −2 −3 1 0 −2 0 −3 −2 2 −1 −3 −2 −1 −1 −3 −2 −3

N −2 0 6 1 −3 0 0 0 1 −3 −3 0 −2 −3 −2 1 0 −4 −2 −3

D −2 −2 1 6 −3 0 2 −1 −1 −3 −4 −1 −3 −3 −1 0 −1 −4 −3 −3

C 0 −3 −3 −3 9 −3 −4 −3 −3 −1 −1 −3 −1 −2 −3 −1 −1 −2 −2 −1

Q −1 1 0 0 −3 5 2 −2 0 −3 −2 1 0 −3 −1 0 −1 −2 −1 −2

E −1 0 0 2 −4 2 5 −2 0 −3 −3 1 −2 −3 −1 0 −1 −3 −2 −2

G 0 −2 0 −1 −3 −2 −2 6 −2 −4 −4 −2 −3 −3 −2 0 −2 −2 −3 −3

H −2 0 1 −1 −3 0 0 −2 8 −3 −3 1 −2 −1 −2 −1 −2 −2 2 −3

I −1 −3 −3 −3 −1 −3 −3 −4 −3 4 2 −3 1 0 −3 −2 −1 −3 −1 3

L −1 −2 −3 −4 −1 −2 −3 −4 −3 2 4 −2 2 0 −3 −2 −1 −2 −1 1

K −1 2 0 −1 −3 1 1 −2 −1 −3 −2 5 −1 −3 −1 0 −1 −3 −2 −2

M −1 −1 −2 −3 −1 0 −2 −3 −2 1 2 −1 5 0 −2 −1 −1 −1 −1 1

F −2 −3 −3 −3 −2 −3 −3 −3 −1 0 0 −3 0 6 −4 −2 −2 1 3 −1

P −1 −2 −2 −1 −3 −1 −1 −2 −2 −3 −3 −1 −2 −4 7 −1 −1 −4 −3 −2

S 1 −1 1 0 −1 0 0 0 −1 −2 −2 0 −1 −2 −1 4 1 −3 −2 −2

T 0 −1 0 −1 −1 −1 −1 −2 −2 −1 −1 −1 −1 −2 −1 1 5 −2 −2 0

W −3 −3 −4 −4 −2 −2 −3 −2 −2 −3 −2 −3 −1 1 −4 −3 −2 11 2 −3

Y −2 −2 −2 −3 −2 −1 −2 −3 2 −1 −1 −2 −1 3 −3 −3 −2 2 7 −1

V 0 −3 −3 −3 −1 −2 −2 −3 −3 3 1 −2 1 −1 −2 −2 0 −3 −1 4

Table 6.7. The BLOSUM62 substitution matrix

et al. (1998) or Section 9.7 in Waterman (1995).

6.5 Protein Sequences and Substitution Matrices

6.5.1 Introduction
In the study of DNA sequences, simple scoring schemes are usually effective.
For protein sequences, however, some substitutions are much more likely
than others. The performance of any alignment algorithm is improved when
it accounts for this difference. In all cases we consider, higher scores will
represent more likely substitutions.

There are two frequently used approaches to finding substitution matri-
ces. One leads to the PAM (Accepted Point Mutation) family of matrices,
and the other to the BLOSUM (BLOcks SUbstitution Matrices) family. Ta-
ble 6.7 gives an example of a typical BLOSUM substitution matrix (called
the BLOSUM62 matrix). In this section we discuss how these substitution
matrices are derived.
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WWYIR CASILRKIYIYGPV GVSRLRTAYGGRK NRG
WFYVR CASILRHLYHRSPA GVGSITKIYGGRK RNG
WYYVR AAAVARHIYLRKTV GVGRLRKVHGSTK NRG
WYFIR AASICRHLYIRSPA GIGSFEKIYGGRR RRG
WYYTR AASIARKIYLRQGI GVGGFQKIYGGRQ RNG
WFYKR AASVARHIYMRKQV GVGKLNKLYGGAK SRG
WFYKR AASVARHIYMRKQV GVGKLNKLYGGAK SRG
WYYVR TASIARRLYVRSPT GVDALRLVYGGSK RRG
WYYVR TASVARRLYIRSPT GVGALRRVYGGNK RRG
WFYTR AASTARHLYLRGGA GVGSMTKIYGGRQ RNG
WFYTR AASTARHLYLRGGA GVGSMTKIYGGRQ RNG
WWYVR AAALLRRVYIDGPV GVNSLRTHYGGKK DRG

Table 6.8. A set of four blocks from the Blocks database

Any attempt to create a scoring matrix for amino acid substitutions must
start from a set of data that can be trusted. The “trusted” data are then
used to determine which substitutions are more or less likely. The matrix is
then derived from these data, using (as we shall see) aspects of statistical
hypothesis-testing theory.

Historically, the PAM matrices were developed first (in 1978), but since
the derivation of BLOSUM matrices is somewhat simpler than that for
PAM matrices, we start by considering BLOSUM matrices.

6.5.2 BLOSUM Substitution Matrices
The BLOSUM approach was introduced by Henikoff and Henikoff (1992).
Henikoff and Henikoff started with a set of protein sequences from pub-
lic databases that had been grouped into related families. From these
sequences they obtained “blocks” of aligned sequences. A block is the un-
gapped alignment of a relatively highly conserved region of a family of
proteins. Methods for producing such alignments are given in Section 6.6.
These alignments provide the basic data for the BLOSUM approach to con-
structing substitution matrices. An example of such an alignment leading
to four blocks is given in Table 6.8.

Since the algorithms used to construct the aligned blocks employ sub-
stitution matrices, there is a circularity involved in the procedure if the
aligned blocks are subsequently used to find substitution matrices. Henikoff
and Henikoff broke this circularity as follows. They started by using a sim-
ple “unitary” substitution matrix where the score is 1 for a match, 0 for
a mismatch. Then, using data from suitable groups of proteins, they con-
structed only those blocks that they could obtain with this simple matrix.
This procedure has the effect of generating a conservative set of blocks; that
is, it tends to omit blocks with low sequence identity. While this restricted
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the number of blocks derived, the blocks obtained were trustworthy and
were not biased toward any specific scoring scheme.

Using the blocks so constructed, Henikoff and Henikoff then counted the
number of occurrences of each amino acid and the number of occurrences
of each pair of amino acids aligned in the same column. Consider a very
simplified example, with only three amino acids, A, B, and C, and only
one block:

B A B A
A A A C
A A C C
A A B A
A A C C
A A B C

.

In this block there are 24 amino acids observed, of which 14 are A, 4 are
B, and 6 are C. Thus the observed proportions are

amino acid proportion of times observed
A 14/24
B 4/24
C 6/24

(6.14)

There are 4 · (62) = 60 aligned pairs of amino acids in the block. These 60
pairs occur with proportions as given in the following table:

aligned pair proportion of times observed
A to A 26/60
A to B 8/60
A to C 10/60
B to B 3/60
B to C 6/60
C to C 7/60

(6.15)

We now compare these observed proportions to the expected proportion
of times that each amino acid pair is aligned under a random assortment
of the amino acids observed, given the observed amino acid frequencies
(6.14). In other words, if we choose two sequences of the same length at
random with these frequencies (6.14), and put them into alignment, then
the expected proportion of pairs in which A is aligned with A is 14

24 · 14
24 , the

expected proportion of pairs in which A is aligned with B is 2 · 14
24 · 4

24 , and
so on. (The factor of 2 in the second calculation allows for the two cases
where A is in the first sequence and B in the second, and that where B is
in the first sequence and A in the second.)



6.5. Protein Sequences and Substitution Matrices 241

These fractions are now used to calculate “estimated likelihood ratios”
(see Section 3.6) as shown in the following table:

aligned pair
proportion
observed

proportion
expected 2 log2

(
proportion observed
proportion expected

)
A to A 26/60 196/576 0.70
A to B 8/60 112/576 −1.09
A to C 10/60 168/576 −1.61
B to B 3/60 16/576 1.70
B to C 6/60 48/576 0.53
C to C 7/60 36/576 1.80

(6.16)
For each row in this table the ratio of the entries in the second and third
columns is an estimate, from the data, of the ratio of the proportion of times
that each amino acid combination occurs in any column to the proportion
expected under random allocation of amino acids into columns. With one
important qualification, which we describe later, the respective elements in
the BLOSUM substitution matrix are now found by calculating twice the
logarithm (to the base 2) of this ratio (as shown in the final column of the
above table), and then rounding the result to the nearest integer. In this
simplified example, the substitution matrix would thus be

A B C
A 1 −1 −2
B −1 2 1
C −2 1 2

.

In general, the procedure is as follows. For each pair of amino acids x
and y, first count the number of times we see x and y in the same column
of an aligned block. We denote this number by nxy. We then put

pxy =
nxy∑

u≤v nuv
,

where we take u ≤ v to mean that the letter denoting u precedes the letter
denoting v in the alphabet. This number pxy is the estimate of the prob-
ability of a randomly chosen pair of amino acids chosen from one column
of a block to be the pair x and y. Now, for each amino acid x, let px be
the proportion of times x occurs somewhere in any block. Consider the
quantity

exy =

{ 2pxpy

pxy
if x �= y,

pxpy

pxy
if x = y.

This quantity is the ratio of the likelihood that x and y are aligned by
chance, given their frequencies of occurrence in the blocks, to the proportion
of times we actually observe x and y aligned in the same column in the
blocks. We convert this into a score by taking −2 times its logarithm to
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the base 2, and rounding to the nearest integer. In this way pairs that are
more likely than chance will have positive scores, and those less likely will
have negative scores.

While this approach is still rudimentary, it does yield a more useful
scoring scheme than the original one that merely scores 1 for a match and
0 for a mismatch. Its main shortcoming is that it overlooks an important
factor that can bias the results. The substitution matrix derived will depend
significantly on which sequences of each family happen to be in the database
used to create the blocks. In particular, if there are many very closely
related proteins in one block, and only a few others that are less closely
related, then the contribution of that block will be biased toward closely
related proteins. For example, suppose the data in one block are as follows:

A B A A
A B A A
A B A A
A B A A
A A B D
A C B A
D A B A

The first four sequences possibly derive from closely related species and
the last three from three more distant species. Since A occurs with high
frequency in the first four sequences, the observed number of pairings of A
with A will be higher than is appropriate if we are comparing more distantly
related sequences. Ultimately, we would prefer to have sequences in each
block such that any pair have roughly the same amount of “evolutionary
distance” between them. The solution to this problem used by Henikoff
and Henikoff is to group, or cluster, those sequences in each block that are
“sufficiently close” to each other and, in effect, use the resulting cluster as
a single sequence. This step requires a definition of “sufficiently close,” and
this is done by specifying a cut-off proportion, say 85%, and then grouping
the sequences in each block into clusters in such a way that each sequence
in any cluster has 85% or higher sequence identity to at least one other
sequence in the cluster in that block.

We now describe how the counting is done in this case, and after the
general method is described, we illustrate it with an example. The count
of each amino acid is found by dividing each occurrence by the number of
sequences in the cluster containing that occurrence, and summing over all
occurrences. After this is done, we count aligned amino acid pairs. Here the
rule we follow is that if in any block two sequences are in the same cluster,
then in that block no counts are taken between amino acids in those two
sequences. For any aligned amino acids in sequences in two different clusters
in the same block, the count for any amino acid pair is divided by nm, where
n and m are the sizes of the two clusters from which the amino acids are
taken.
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These weighted counts are then used in the same way as before. Consider
a simple example with two blocks

B A B A
B A B C
A A C C

and
C B B
C B B
A B C
A A C

.

Suppose the identity for clustering is taken to be .75. Thus we cluster the
first two sequences in each block together. The A’s are counted as follows.
The first column of the first block has one A, the second column contributes
two A’s, since the first two sequences are clustered it has 1+ 1

2 + 1
2 = 2 A’s.

The fourth column contributes 1
2 A. In the second block there are three

A’s, since each occurrence occurs in a cluster of size one. So in total there
are 13/2 A’s. Now to get the proportion of A’s we must divide by 17, since
each column of the first block contributes 2 to the counts of the symbols,
and each column of the second block contributes 3 to the counts. So the
proportion of A’s is (13/2)/17 = 13/34. We record the proportions for all
symbols in the following table:

amino acid proportion of times observed
A 13/34
B 5/17
C 11/34

(6.17)

To count the A–B pairs, each occurrence in the first column of the first
block contributes 1

2 , and in the second column of the second block the
contribution is 1

2 + 1
2 + 1. So the total A–B count is 3. There are a total

of 13 pairs in the blocks, four in the first block (each column contributes
one pair, or more precisely, two half pairs) and nine in the second block.
Thus the proportion of A–B pairs is 3/13. We record the proportions for
all pairs of symbols in the following table:

aligned pair proportion of times observed
A to A 2/13
A to B 3/13
A to C 5/26
B to B 1/13
B to C 3/13
C to C 3/26

(6.18)

The procedure is then carried out as before.
A further refinement was made by Henikoff and Henikoff (1992). After

obtaining a BLOSUM substitution matrix as just described, the matrix
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obtained is then used instead of the conservative “unitary” matrix to con-
struct a second, less conservative, set of blocks. A new substitution matrix
is then obtained from these blocks. Then the process is repeated a third
time. Henikoff and Henikoff derive the final family of BLOSUM matrices
from this third set of blocks, and it is these whose use is suggested.

If the .85 similarity score criterion is adopted, the final matrix is
called a BLOSUM85 matrix. In general if clusters with X% iden-
tity are used, then the resulting matrix is called BLOSUMX. The
BLOSUM matrices currently available on the BLAST web page at
NCBI (www.ncbi.nlm.nih.gov/BLAST/) are BLOSUM45, BLOSUM62,
and BLOSUM80. Note that the larger-numbered matrices correspond to
more recent divergence, and the smaller-numbered matrices correspond to
more distantly related sequences.

One often has prior knowledge about the evolutionary distance between
the sequences of interest that helps one choose which BLOSUM matrix
to use. With no information, BLOSUM62 is often used. We explore the
implications of the choice of various matrices in Section 10.2.4.

A central feature of the BLOSUM substitution matrix calculation is the
use of (estimated) likelihood ratios. We see in the next section that the
same is true of PAM matrices. In Section 9.2.1 it is shown that use of
likelihood ratios has a statistical optimality property, and this optimality
property explains in part their use in the construction of both BLOSUM
and PAM matrices.

6.5.3 PAM Substitution Matrices
In this section we outline the Dayhoff et al. (1978) approach to deriving
the so-called PAM substitution matrices. Two essential ingredients in the
construction of these matrices, as with construction of BLOSUM matrices,
are the calculation of an (estimated) likelihood ratio and the use of Markov
chain theory as introduced in Section 4.8. We now describe this construction
in more detail.

An “accepted point mutation” is a substitution of one amino acid of a
protein by another that is “accepted” by evolution, in the sense that within
some given species, the mutation has not only arisen but has, over time,
spread to essentially the entire species. A PAM1 transition matrix is the
Markov chain matrix applying for a time period over which we expect 1%
of the amino acids to undergo accepted point mutations within the species
of interest.

The construction of PAM matrices starts with ungapped multiple align-
ments of proteins into blocks for which all pairs of sequences in any block
are, as in the BLOSUM procedure, “sufficiently close” to each other. In
the original construction of Dayhoff et al. (1978), the requirement was that
each sequence in any block be no more than 15% different from any other
sequence. This requirement resulted, for their data, in 71 blocks of aligned
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proteins. Imposing the requirement of close within-block similarity is aimed
at minimizing the number of substitutions in the data that may have re-
sulted from two or more consecutive substitutions at the same site. This is
important because the initial goal is to create a Markov transition matrix
for a short enough time period so that multiple substitutions are very un-
likely to happen during this time period. We discuss later how to handle the
multiple substitutions that are expected to arise over longer time periods.

The BLOSUM approach uses clustering to achieve two aims. One is to
minimize biases in the databases that the sequences were taken from, since
without clustering some closely related sequences may be overrepresented.
The second is to account for evolutionary deviation of varying time periods.
In the PAM approach, the first aim is approached by inferring a separate
phylogenetic tree for the data in each aligned block of sequences, eventually
using all the inferred trees in an aggregated manner to estimate a Markov
chain transition matrix. The second aim is achieved by using Markov chain
theory applied to this matrix.

The phylogenetic reconstruction method adopted for the data within
any block in the database is the method of maximum parsimony, described
in Chapter 14. This algorithm constructs trees with our sequences at the
leaves, and with inferred sequences at the internal nodes, such that the total
number of substitutions across the tree is minimal. Such a tree is called a
most parsimonious tree. There are often several most parsimonious trees for
any block, in which case all such trees are used and an averaging procedure
is employed from the data in each tree, as described below. From now on,
“tree” means one or other of the set of most parsimonious trees for one of
the blocks.

For any column in any block, the data in each tree are used to obtain
counts in the following manner. Suppose that two different but aligned
amino acids A and B occur (in any order) in two nodes of a tree joined
by a single edge. Then this edge contributes 1 to the “A–B” count. If the
same amino acid A occurs aligned in two nodes of the tree joined by a single
edge, then this edge contributes 2 to the “A–A” count. The counts for all
“A–A” and all “A–B” amino acid pairs are then totaled over all edges of
all trees in each block. If the block has n most parsimonious trees, these
total counts are then divided by n. The sum of the resultant counts over
all blocks is then calculated.

The following simple example demonstrates the calculations within any
one block. Suppose that a given block of three sequences is

AA
AB
BB

.

There are n = 5 most parsimonious trees leading to these three sequences
at the leaves of the trees, as shown in Figure 6.3. Among these trees A
is aligned with, and substituted for, B (or conversely) twice in each tree,
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Figure 6.3.

leading to a total “A–B” count of 10. Division by the number of trees (5)
in the block leads to a final contribution of 2 from this block to the A–B
count.

Next, A is aligned with A two times in tree 1, three times in tree 2, three
times in tree 3, four times in tree 4, and three times in tree 5, leading to
a total of 15 A–A alignments. Each A–A alignment leads to a count of 2,
so that the total A–A count is 30. Division by the number of trees for this
block leads to a final block contribution of 6 to the overall A–A. Similar
calculations show that that the contribution to the B–B count from this
block is also 6.

If this were the only block in the data set, the final matrix of counts
would then be

A B

A 6
B 2 6

In general, there will be more than one block in the data set, and if so,
as indicated above, we simply add the counts from the different blocks to
obtain an overall count matrix.

Suppose that the amino acids are numbered from 1 to 20 and denote
the (j, k)th entry in the overall count matrix by Ajk. The next task is to
use this count matrix to construct an estimated Markov chain transition
matrix. For any j and k (not necessarily distinct), define ajk by

ajk =
Ajk∑
m Ajm

. (6.19)

For j �= k, let

pjk = cajk, (6.20)
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where c is a positive scaling constant (to be determined later), and let

pjj = 1 −
∑
k �=j

cajk. (6.21)

It follows from these definitions that
∑

k pjk = 1. If c is chosen to be
sufficiently small so that each pjj is non-negative, the matrix P = {pjk}
then has the properties of a Markov chain transition matrix. In this matrix
smaller values of c imply larger diagonal entries relative to the nondiagonal
entries; however, the relative sizes of the nondiagonal entries are indepen-
dent of the choice of c. In practice it will always be the case that this
matrix is irreducible and aperiodic, so that it has a well-defined stationary
distribution.

Although the matrix P is derived from data, and thus any probability
derived from it is an estimate, we assume that the data leading to P are
sufficiently extensive so that no serious error is made by thinking of P
not as an estimated transition matrix but as an actual transition matrix.
We thus drop the word “estimated” below in discussing the probabilities
deriving from this matrix.

The value of c is now chosen so that, after one step of the Markov chain
defined by the transition matrix P , the weighted expected proportion of
amino acid changes is 0.01, the weights being the various amino acid fre-
quencies. A reasonable estimate for this set of frequencies is the observed
distribution found from the data in the original blocks of aligned proteins.
Let pj be the observed such frequency for the jth amino acid. Then the ex-
pected proportion of amino acids that change after one step of the Markov
chain defined by the transition matrix P is∑

j

pj

∑
k �=j

pjk = c
∑

j

∑
k �=j

pjajk. (6.22)

This implies that if c is defined by the equation

c =
.01∑

j

∑
k �=j pjajk

, (6.23)

the “expected proportion” requirement is satisfied, and the resulting tran-
sition matrix then corresponds to an evolutionary distance of 1 PAM. This
matrix is often denoted by M1, with typical element mjk, and we follow
this notation here. The matrix corresponding to an evolutionary distance of
n PAMs is obtained by raising M1 to the nth power, in line with the n-step
transition probability formula in equation (4.23). This matrix is denoted
here by Mn and is called the PAMn matrix. As n gets larger, the matrix
Mn gets closer and closer to a matrix all of whose rows are identical to
the stationary distribution corresponding to the matrix M1 (see equation
(4.29)). In practice, the element common to all positions in the jth column
of this matrix is often close to the background frequency pj .
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The stationary distribution of the matrix M is independent of the choice
of the scaling constant c (see Problem 6.7).

The next task is to construct a substitution matrix derived from the
probability transition matrix Mn. Let m

(n)
jk be the (j, k) entry in the matrix

Mn, for some extrinsically chosen value of n. Then m
(n)
jk is the probability,

after n steps of the chain defined by the matrix M1, that the kth amino
acid occurs in some specified position, given that initially the jth amino
acid occurred in that position. For reasons that will be developed in Section
10.2.4, the typical entry in a PAM substitution matrix is of the form

C · log

(
m

(n)
jk

pk

)
, (6.24)

where C is a positive constant. The choice of C is not crucial; nevertheless,
this also is discussed in Section 10.2.4.

A variant of the expression (6.24) is the following. Denote the joint prob-
ability that amino acid j occurs at some nominated position at time 0 and
that amino acid k occurs at this position after n steps of the Markov chain
whose one-step transition matrix is M1 by q(j, k). (Note that q(j, k) is a
function of n, but in accordance with common practice we suppress this
dependence in the notation.) Then

q(j, k) = pjm
(n)
jk , (6.25)

and (6.24) can be written as

C · log
(

q(j, k)
pjpk

)
. (6.26)

The choice of the value n has so far not been discussed. This matter will
be taken up in Section 10.6, where the effects of an incorrect choice will be
evaluated.

The BLOSUM and PAM procedures differ in one interesting respect:
the larger n is for a PAM matrix, the longer is the evolutionary distance,
whereas for BLOSUM matrices smaller values of n correspond to longer
evolutionary distance.

6.5.4 A Simple Symmetric Evolutionary Matrix
In order to elucidate some properties of PAM matrices and to assess the
implications of the choice of n in these matrices, it is useful to discuss
a simple symmetric example, which, while it does not correspond to any
PAM matrix used in practice, has properties that are found easily and
that illuminate properties of PAM matrices. The model we discuss is the
discrete-time analogue of the simple (and unrealistic) model considered by
Bishop and Friday (1985).
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Suppose that all amino acids are equally frequent (so that pj = 0.05),
that all are equally likely to be substituted by some other amino acid in any
given time, and that all substitutions are equally likely. Then the matrix
M1 is such that its elements {mjk} are given by

mjj = 0.99, mjk = 0.01/19, j �= k. (6.27)

The value 0.99 for mjj derives from the fact that we wish to mimic a PAM1
matrix, that is, a matrix for which the probability of an amino acid change
in unit time is 0.01. For this simple symmetric matrix it can be shown from
the spectral theory of Appendix B.19 that

m
(n)
jj = 0.05 + 0.95(94/95)n, (6.28)

m
(n)
jk = 0.05 − 0.05(94/95)n, j �= k. (6.29)

These calculations, together with equation (6.24), imply that the typical
diagonal entry and the typical off-diagonal entry in the substitution matrix
are, respectively,

C · log(1 + 19(94/95)n), C · log(1 − (94/95)n), (6.30)

for some positive value of C. The ratio of these is independent of C, being

log(1 + 19(94/95)n)
log(1 − (94/95)n)

. (6.31)

This leads to a substitution matrix whose diagonal elements are all

− log(1 + 19(94/95)n)
log(1 − (94/95)n)

(6.32)

and whose off-diagonal elements are all −1. When n = 259 (more precisely,
n = 259.0675), the expression in (6.32) is very close to 12, corresponding
to a substitution matrix whose entries are

S(j, j) = 12, S(j, k) = −1, (j �= k). (6.33)

For the case n = 259,

m
(259)
jj = 0.111251, m

(259)
jk = 0.046776 j �= k. (6.34)

The definition (6.25) of q(j, k) implies that for this case

q(j, j) = 0.0055625, q(j, k) = 0.0023388, j �= k. (6.35)

With these values the probability 20q(j, j) of a match at any position is
0.111251, and the probability of a mismatch is 0.888749. The mean score
in the substitution matrix is then

12(0.111251) − 0.888749 = 0.446. (6.36)

We discuss this calculation further in Section 10.2.4, deriving the value
0.446 there by what appears initially to be a method different from that
used here.
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6.6 Multiple Sequences

We may have a set of more than two related sequences, all descended
from a common ancestor, and in such a case it is often desirable to put
them into a multiple alignment. The definition of a multiple alignment
is a straightforward generalization of a pairwise alignment. Similarly, the
dynamic programming algorithms for constructing the alignments general-
ize in a straightforward manner. For a small number of sequences, usually
fewer than 20, this works well. Problems arise, however, in applying these
algorithms to many sequences. The running time for using dynamic pro-
gramming to do a global multiple alignment of n sequences each of length
approximately L is O((2L)n). For local alignments the situation becomes
even worse.

Some algorithms have been developed to find high-scoring alignments
quickly, without, however, guaranteeing to find one with the highest score.
Perhaps one of the algorithms most commonly used for multiple global
alignments is called CLUSTAL W (Thompson et al. (1994)).

In this section we describe a statistical method for finding ungapped local
alignments, introduced by Lawrence et al. (1993). A more general algorithm
allowing gapped alignments is given by Zhu et al. (1998). In Section 12.3.2
we give a different method, which constructs gapped multiple alignments.

We describe the process in terms of protein sequences. Label the amino
acids in some agreed order as amino acids 1, 2, . . . , 20, and suppose that
these have respective “background” frequencies p1, p2, . . . , p20. Given N
protein sequences, of respective lengths L1, L2, . . . , LN , the aim is to find
N segments of length W , one in each sequence, that in some sense are most
similar to each other. Here the value of W is some chosen fixed number; the
choice of W is discussed below. There are S =

∏N
j=1(Lj − W + 1) possible

choices for the respective locations of these N segments in the N respective
sequences, and it is assumed that N and the Lj are so large that a purely
algorithmic approach to finding the most similar segments by an extension
of the methods discussed in Section 6.4.2 is not computationally feasible.

We describe the Lawrence et al. approach in Markov chain terms. Con-
sider a Markov chain with S “states,” each state corresponding to a choice
of the locations of the N segments in the N sequences. Each state of the
Markov chain is an aligned array of amino acids. This array has N rows
and W columns. The aim is to find that array in which the various rows in
some sense best align with each other.

The procedure consists of repeated iteration of a basic step, each step
consisting of a move from one state of the Markov chain to another, that
is, from one array to another. The initial array can be chosen arbitrarily
or on the basis of some biological knowledge as an initial guess of the best
alignment. In each step one of the various protein sequences is chosen, and
the row in the array corresponding to that sequence is allowed to change
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in a way described below. It is convenient here to assume that the choice
of this sequence is made randomly.

Before describing the way in which changes in the array are made, we
illustrate in Figure 6.4 the result of the changes made in two consecutive
steps of the procedure. In step 1 the third sequence happened to be chosen,
so that the third row in the array was allowed to change, and in step 2 the
first sequence happened to be chosen, so that the first row was allowed to
change.

position position position
1 2 3 4 · · · W 1 2 3 4 · · · W 1 2 3 4 · · · W
V Q A L · · · N V Q A L · · · N C A A N · · · R
A Q B N · · · R A Q B N · · · R A Q B N · · · R
L L C R · · · N step 1 C Q T N · · · N step 2 C Q T N · · · N
W R A A · · · C −→ W R A A · · · C −→ W R A A · · · C
S Q C C · · · T S Q C C · · · T A Q C C · · · T
S Q T R · · · C S Q T R · · · C S Q T R · · · C

...
...

...
G M C R · · · T G M C R · · · T G M C R · · · T

Figure 6.4. Full arrays of aligned segments before steps 1, 2, and 3.

We call the array just before any step is taken the “original” array and
the array following this step the “new” array. This new array is also the
original array for the next step. We now consider the first step in detail.

The segments in all sequences other than randomly chosen sequence 3
define a reduced array of N − 1 segments consisting of the original array
without row 3. This reduced array is the leftmost array in Figure 6.5. The

position position position
1 2 3 4 · · · W 1 2 3 4 · · · W 1 2 3 4 · · · W
V Q A L · · · N C A A N · · · R
A Q B N · · · R A Q B N · · · R A Q B N · · · R

step 1 C Q T N · · · N step 2 C Q T N · · · N
W R A A · · · C −→ W R A A · · · C −→ C A A N · · · R
S Q C C · · · T S Q C C · · · T
S Q T R · · · C S Q T R · · · C S Q T R · · · C

...
...

...
G M C R · · · T G M C R · · · T G M C R · · · T

Figure 6.5. Partial arrays of aligned segments before steps 1, 2, and 3.

reduced arrays in this figure show that sequence 3 was chosen to change in
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step 1 and that sequence 1 was chosen to change in step 2, and also shows
that sequence 5 was chosen to change in step 3.

Suppose that in the first reduced array, amino acid j (j = 1, 2, . . . , 20)
occurs ci,j times in the ith column. From the ci,j values a probability
estimate qij is calculated, defined by

qij =
cij + bj

N − 1 + B
. (6.37)

Here the bj are pseudocounts, as defined in Section 3.10, and B =
∑

j bj .
The reason for the introduction of pseudocounts, and the actual choices of
the bj , will be discussed below. For the moment we take the bj as given.

The aim of the first step is to replace the original segment in the third
row by a new segment in a way that tends to increase the overall alignment
of the N resulting segments in the new array. There are L3 − W segments
of length W in sequence 3. We call that segment starting in position x
in sequence 3 “segment x.” Suppose that the amino acids in this segment
are x1, x2, . . . , xW . The probability Px of this ordered set of amino acids
under the population amino acid frequencies is Px = px1px2 · · · pxW

. The
estimated probability Qx of this ordered set of amino acids using the N −1
segments in the first reduced array in Figure 6.5 is taken as

Qx = q1,x1q2,x2 · · · qW,xW
.

The likelihood ratio LR(x) is defined as Qx/Px. The numerator may be
thought of as the probability of the sequence under the model reflecting
only the sequences in the current alignment, while the denominator is the
probability of the sequence under background frequencies. The final oper-
ation in step 1 is to replace the segment in row 3 of the original array by
segment x with probability

LR(x)∑L3−W
m=1 LR(m)

. (6.38)

The reason for this choice will be discussed in Section 11.5.2. The result
of this step is to produce a new array (as illustrated in the second array
in Figure 6.4). The replacement procedure tends to replace the original
segment in row 3 by a new segment more closely aligned with the remaining
segments.

In the following step this procedure is repeated, with (in Figure 6.4) the
segment from sequence 1 being randomly chosen to change. In the next step
the segment from sequence 5 was randomly chosen to change, and so on.
As one step follows another the N segments in the array tend to become
more similar to each other, or in other words, to align better. This iterative
procedure visits various possible alignments according to a random process,
and thus does not systematically approach the “best” alignment. However,
after many steps the best alignment should tend to arise more and more
frequently and hence be recognized.
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This procedure is essentially one of Gibbs sampling, and we further con-
sider its properties in the discussion of the Gibbs sampling procedure in
Section 11.5.2. In order to introduce the analysis of Section 11.5.2, we adopt
here a general notation suitable for the discussion of that section. Suppose
that before some specific step is taken, the current array is array s in the
collection of S possible arrays, and that after this step is taken the new
array is array u. Arrays s and u are identical in all rows other than the
one that is changed during this step. Thus the reduced arrays obtained by
eliminating the row in which arrays s and u differ lead to identical values
of the qij .

Now consider the amino acids in arrays s and u in the row in which
they differ. Suppose that in array s these are denoted by s(1), s(2), . . . ,
s(W ) and in array u are denoted by u(1), u(2), . . . , u(W ). If the transition
probability from array s to array u is denoted by psu, then expression (6.38)
shows that

psu

pus
=

q1,u(1)q2,u(2) . . . qW,u(W )

q1,s(1)q2,s(2) . . . qW,s(W )
· ps(1)ps(2) . . . ps(W )

pu(1)pu(2) . . . pu(W )
. (6.39)

We return to this ratio in Section 11.5.2.
The reason for using pseudocounts in the probability estimate (6.37) is

the following. In step 1 above, there might be an excellent alignment of
segment x of protein sequence 3 with the N − 1 segments in the reduced
array, except that the amino acid at position i in sequence x is not rep-
resented at position i in the reduced array. If pseudocounts were not used
and the probability estimate qij replaced by cij/(N − 1), segment x could
not be chosen at this step, since in this case the probability cij/(N − 1)
would be 0 for this segment. We therefore assume that each bj is greater
than 0, and then introduction of pseudocounts allows the choice of segment
x in the above case.

The choice of the pseudocounts bj must be made subjectively. Lawrence
et al. (1993) make the reasonable suggestion of choosing bj proportional to
the background frequency pj of amino acid j. The choice of the proportion-
ality constant is less obvious, and Lawrence et al. claim that in practice
the constant

√
N works well.

So far the length W of the segments considered has been assumed to be
given. The choice of this length is discussed in detail by Lawrence et al.
together with further tactical questions.

It might be asked why the choice of each new segment is random. An
alternative procedure in the step described above would be to replace the
current segment in sequence one by that segment maximizing the ratio
in (6.38). The entire operation is then fully deterministic, and runs the
risk of settling on a locally- rather than a globally-best alignment. The
stochastic procedure allows movement from a locally-best alignment to a
globally-best alignment. However, it is not guaranteed that the procedure
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will escape from the neighborhood of a locally-best alignment in reasonable
time, and thus may be sensitive to the choice of the initial alignment.

Problems

6.1. Prove that
min{m,n}∑

k=0

(
m

k

)(
n

k

)
=
(

m + n

n

)
=
(

m + n

m

)
.

Hint: Think of having to select n objects from a set with s = m+n objects,
of which m are of one kind and n are of another kind.

6.2. The BLOSUM62 substitution matrix given in Table 6.7 is often used
to assign a score to each pair of aligned amino acids. Use this matrix and a
linear gap penalty of d = 5 to find all highest-scoring alignments between
x = EATGHAG and y = EEAWHEAE.

6.3. Suppose there are three symbols A, B, and C, and two blocks of data
as given below. You are to construct the BLOSUM68 substitution matrix
derived from these data, however in the step involving taking the log-ratios,
multiply the logarithms by 8 instead of by 2 (before rounding). Hint: Of
the six scores, one should be zero, two negative, and three positive.

The blocks are
A B A C C A
A B B C C A
A A B C A A
A A A C A A

and
A B A C
A B B C
A C C C
C A B A

6.4. Fit x = cttgac into y = cagtatcgtac with the scoring scheme of the
example in Section 6.4.1.

6.5. Find the best local alignment(s) of x = aagtatcgca and y =
aagttagttgg with the same scoring scheme as in the example in Section
6.4.1.

6.6. The matrix below has been obtained using a dynamic programming
algorithm (with a linear gap model) to solve one of the following three
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problems relative to the two sequences

x = X1X2X3X4

and

y = Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10Y11,

(i) global alignment, (ii) fitting x into y, (iii) local alignment.

(1) By considering the matrix it is clear which of the three problems
above was the one being tackled. Which was it?

(2) What is the optimal score for the alignment sought?

(3) List all the optimal alignments (in terms of the Xi’s and Yj ’s) relative
to the problem being tackled.

− Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

− 0 0 0 0 0 0 0 0 0 0 0 0
↖ ↑↖ ↑↖ ↖ ↖ ↖ ↖ ↖

X1 −5 −5 −5 5← 0 5 5 5← 0 5 5 ← 0
↖ ↑↖ ↖ ↑↖ ↑↖ ↖ ↑ ↖

X2 −10 0← −5 0 10← 5← 0 0 10← 5 ← 0 0
↑↖ ↑ ↑↖ ↖ ↖ ↑ ↑↖ ↖ ↖ ↑

X3 −15 −5 −5 −5 5 5← 0←−5 5 5← 0 ←−5
↑↖ ↑↖ ↑↖ ↖ ↑↖ ↖

X4 −20 −10 −10 0 0 10 10← 5← 0 10 10 ← 5

6.7. Prove that the stationary distribution of the matrix M , defined by
equations (6.20) and (6.21), is independent of the choice of the scaling con-
stant c.

6.8. Equations (6.28) and (6.29) can be derived in various ways. One of
these is by mathematical induction (see Section B.18). It is easy to see
that the equations are true for n = 1. Suppose that they are true for some
given value n∗ of n. Show that they are then true for n = n∗ + 1, and thus
complete a proof by induction that they are true for all positive integers n.
Hint: Use the facts that

m
(n+1)
jj = 0.99 m

(n)
jj + 0.01 m

(n)
jk , j �= k,

m
(n+1)
jk = (0.01/19) m

(n)
jj + 0.99 m

(n)
jk + (.18/19)m(n)

jr , j �= k �= r,

and that the latter equation can be rewritten as

m
(n+1)
jk =

1
19

(
0.01 m

(n)
jj + 18.99 m

(n)
jk

)
.
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6.9. Use the relation (B.24) to find the limit of the ratio (6.31) as n → ∞.

6.10. Show that the n-step transition probabilities m
(n)
jk given in equations

(6.28) and (6.29) can be found by calculating the spectral expansion of the
associated matrix M .

6.11. In the Gibbs sampling method of section 6.6, devise a meaningful way
to incorporate the scores from a substitution matrix into the definition of
Qx (given on page 252).



7
Stochastic Processes (ii): Random
Walks

7.1 Introduction

Random walks are special cases of Markov chains, and thus can be analyzed
by Markov chain methods. However, the special features of random walks
allow specific methods of analysis. Some of these methods are introduced
in this chapter.

Our main interest in random walk theory is that it supplies the basic
probability theory behind BLAST. BLAST is a procedure that searches
for high-scoring local alignments between two sequences and then tests for
significance of the scores found via P -values. The P -value calculation takes
into consideration, as it must, the lengths of the two sequences, since the
longer the sequences, the more likely there is to be local homology simply
by chance. In practice, BLAST is used to search a database consisting of a
number of sequences for similarity to a single “query” sequence. P -values
are calculated allowing for the size of the entire database. However, we defer
consideration of this matter until Section 10.5, and consider here only the
random walk theory underlying the eventual P -value calculations.

The utility of BLAST is that it is able to complete its task very quickly,
even when there are many sequences in the database. The efficiency arises
for two reasons. First, on the algorithmic side it uses heuristics to avoid
searching through all possible ungapped local alignments, of which there
is an astronomically large number. Therefore, it can fail to produce ex-
actly the highest-scoring alignments. Its performance, however, is extremely
good. Second, the calculation of the P -value uses sophisticated approxi-
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mations to achieve extremely fast calculations. The calculation of these
P -values is discussed in Chapter 10.

Consider the simple case of the two aligned DNA sequences given in (1.1)
and repeated here for convenience:

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
g g a g a c t g t a g a c a g c t a a t g c t a t a
g a a c g c c c t a g c c a c g a g c c c t t a t c

(7.1)

Suppose we give a score of +1 if the two nucleotides in corresponding
positions are the same and a score of −1 if they are different. As we compare
the two sequences, starting from the left, the accumulated score performs a
random walk. In the above example, the walk can be depicted graphically
as in Figure 7.1. The filled circles in this figure relate to ladder points, that
is to points in the walk lower than any previously reached point.
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Figure 7.1.

The part of the walk from a ladder point until the highest point attained
before the next ladder point is called an excursion. BLAST theory focuses
on the maximum heights achieved by these excursions. In Figure 7.1 these
maximum heights are, respectively, 1, 1, 4, 0, 0, 0, 3. (If the walk moves
from one ladder point immediately to the next, the corresponding height
is taken as 0.)

In practice, BLAST theory relates to cases that are much more compli-
cated than this simple example. It is often applied to the comparison of
two protein sequences and uses scores other than the simple scores +1 and
−1 for matches and mismatches. These scores are described by the entries
in a substitution matrix such as those given in the BLOSUM62 substi-
tution matrix shown in Table 6.7. These scores determine the upward or
downward movement of the random walk describing the score for that pro-
tein comparison. For example, if the score for any amino acid comparison
is given by the appropriate entry in the BLOSUM62 substitution matrix,
then for the alignment

T Q L A A W C R M T C F E I E C K V
R H L D S W R R A S D D A R I E E G

(7.2)
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the scores are −1, 1, 5, −2, 1, 15, −4, 7, −1, 2, −4, etc. . . , and therefore
the graph of the accumulated score goes through the points

(1,−1), (2, 0), (3, 5), (4, 3), (5, 4), (6, 19), (7, 15), (8, 22), etc. (7.3)

The graph of the accumulated score for this walk is depicted in Figure 7.2.
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Figure 7.2.

To discuss BLAST it is necessary to consider arbitrary scoring schemes
and thus aspects of the general theory of random walks. We do that in this
chapter. However, we start by analyzing the simple random walk where the
only possible step sizes are +1 and −1.

For the remainder of this chapter we consider random walks in the ab-
stract, without reference to sequence comparisons, which we return to in
Chapter 10.

7.2 The Simple Random Walk

7.2.1 Introduction
We first consider a process that starts at some arbitrary point h and moves,
independently of the previous history of the process, a step down every unit
time with probability q or a step up with probability p. (We use the notation
“h” throughout to denote the initial position of the walk.) This process will
be called a simple random walk. The walk is assumed to be restricted to the
interval [a, b], where a and b are integers with a < h < b, and stops when
it reaches either a or b. We ask, “What is the probability that eventually
the walk finishes at b rather than a?” and “What is the mean number of
steps taken until the walk stops?”
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7.3 The Difference Equation Approach

We begin by discussing the derivation of properties of the simple random
walk by using the classical difference equation method, described in detail
in Feller (1968). We shall find that the difference equation method does
not allow ready generalizations to more complicated walks, and in the next
section we shall develop the moment-generating function approach, which
does allow these generalizations.

7.3.1 Absorption Probabilities
Let wh be the probability that the simple random walk eventually finishes
at, or is “absorbed” at, the point b rather than at the point a, given that
the initial point is h. Then by comparing the situation just before and just
after the first step of the walk, we get

wh = pwh+1 + qwh−1. (7.4)

Furthermore,

wa = 0, wb = 1. (7.5)

Equation (7.4) is a homogeneous difference equation, with boundary con-
ditions (7.5). A solution of (7.4) is a set of values wh that satisfy it for
all integers h. Difference equations are discussed in detail in Feller (1968),
and we draw on his results here without extensive discussion because these
results will be re-derived in Section 7.4. The difference equation methods
are given here largely for comparison with the more powerful mgf methods.

One solution to equation (7.4) is of the form

wh = eθh

for some fixed constant θ. To solve for θ we substitute into (7.4) to get

eθh = peθ(h+1) + qeθ(h−1).

Multiplying throughout by eθ−θh, this becomes

pe2θ − eθ + q = 0,

a quadratic equation in eθ. For the case p �= q, there are two distinct
solutions of this equation, namely

eθ = 1, eθ =
q

p
, (7.6)

or equivalently

θ = 0, θ = log
(

q

p

)
.



7.3. The Difference Equation Approach 261

Thus when p �= q, we have found two specific solutions of (7.4), namely

wh = 1 and wh = eθ∗h,

where

θ∗ = log
(

q

p

)
. (7.7)

The theory of homogeneous difference equations states that the general
solution of (7.4) is any linear combination of these two solutions. That is,
the general solution of (7.4) is

wh = C1 + C2e
θ∗h, (7.8)

for any arbitrary constants C1 and C2. We determine C1 and C2 by the
boundary conditions (7.5), and this leads to

wh =
eθ∗h − eθ∗a

eθ∗b − eθ∗a
. (7.9)

This is the solution for the case p �= q only. When p = q (= 1
2 ), the two

solutions in (7.6) are the same, and the above argument does not hold. In
the applications of random walk theory to BLAST we never encounter the
symmetric case p = q or its various generalizations (which we call “zero
mean” cases). Since consideration of this case usually involves extra work,
we do not consider it further.

In some applications interest focuses on the probability uh that the walk
finishes at a rather than at b. The probabilities uh satisfy the same dif-
ference equation (7.4) as wh, but with the boundary conditions ua = 1,
ub = 0. This leads to

uh =
eθ∗b − eθ∗h

eθ∗b − eθ∗a
. (7.10)

As we expect, wh + uh = 1.

7.3.2 Mean Number of Steps Taken Until the Walk Stops
We continue to assume that the walk starts at h and ends when one of
a or b is reached, a < h < b. We define N as the (random) number of
steps taken until the walk stops. The probability distribution of N depends
on h, a, and b, and in this section we find the mean value mh of this
probability distribution, that is, the mean of N . We do not use the formula
(1.24) to find this mean value; in fact, we never compute the complete
probability distribution of N . Instead, we use difference equation methods
similar to those in the previous section, which lead directly to the value
of the mean. These calculations, too, will be repeated in the next section
using moment-generating functions.
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Considering the situation after one step of the walk in two different ways,
we get

mh − 1 = pmh+1 + qmh−1. (7.11)

This is an inhomogeneous difference equation. Difference equation theory
shows that the general solution of (7.11) consists of any particular solution
added to arbitrary multiples of solutions of the homogeneous equation

mh = pmh+1 + qmh−1. (7.12)

A particular solution of (7.11) is mh = h/(q−p). The homogeneous equation
(7.12) is the same as (7.4), and hence has the same general solution (7.8).
Therefore, the general solution of (7.11) is

mh =
h

q − p
+ C1 + C2e

θ∗h. (7.13)

The constants C1 and C2 are determined by boundary conditions. The
particular boundary conditions ma = mb = 0 lead to

mh =
h − a

q − p
− b − a

q − p
· eθ∗h − eθ∗a

eθ∗b − eθ∗a
. (7.14)

Using equations (7.9) and (7.10) we can rewrite this as

mh =
wh(b − h) + uh(a − h)

p − q
. (7.15)

We shall see later that equation (7.15) has a simple intuitive interpretation.

7.4 The Moment-Generating Function Approach

7.4.1 Introduction and Wald’s identity
In this section the absorption probabilities wh and uh and the value of mh

are re-derived using mgf techniques. Various asymptotic results are then
derived. Finally, the generalization to an arbitrary random walk will be
discussed.

We start with classical result of probability theory, specialized to the case
of the random walk discussed above. Suppose that the walk starts at h and
continues until reaching a or b. We denote the value of the ith step by Si

(Si = ±1). The Si are iid random variables; let S be a random variable
with their common distribution. The mgf m(θ) of S is given by (7.17).

As above, we denote the (random) number of steps taken until the walk
finishes by N , and let TN =

∑N
j=1 Sj . TN is either a − h, with probability

1 − wh, or b − h, with probability wh. With these definitions we have the
following:
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Theorem 7.1 (Wald’s identity).

E
(
m(θ)−NeθTN

)
= 1 (7.16)

for all θ for which the mgf is defined. (The expected value is taken with
respect to the joint distribution of N and TN .)

We do not prove this identity here, and limit the discussion to conclusions
that follow from it. A derivation may be found in Karlin and Taylor (1975),
page 264.

7.4.2 Absorption Probabilities
The mgf of the (random) value, either −1 or +1, of any single step taken
in the random walk is

m(θ) = qe−θ + peθ. (7.17)

Theorem 1.1 (page 40) shows that for any random walk with non-zero mean
step size and for which both positive and negative steps are possible, there
exists a unique non-zero value θ∗ of θ for which

m(θ∗) = 1. (7.18)

The value θ∗ is the same as given in equation (7.7). Using this value for θ
in Wald’s identity (7.16) we get

E
(
eθ∗TN

)
= 1. (7.19)

Since the only two possible values of TN are a−h (with probability 1−wh)
and b − h (with probability wh), equations (1.27) and (7.19) give

(1 − wh)eθ∗(a−h) + wheθ∗(b−h) = 1. (7.20)

From this,

wh =
ehθ∗ − eaθ∗

ebθ∗ − eaθ∗ . (7.21)

This is identical to the solution (7.9), found by using difference equations.
The value of uh given in (7.10) can be found similarly.

Thus use of the mgf gives us a second approach to finding absorption
probabilities of the random walk. For the simple random walk considered
in this section the mgf approach does not differ markedly from the approach
using difference equations. However, the mgf is more readily adapted than
the difference equation method for the calculations needed in the general
theory for random walks (and eventually used in BLAST) discussed in
Section 7.5.
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7.4.3 Mean Number of Steps Until the Walk Stops
We now find mh, the mean number of steps until the walk finishes at a or
b by using Wald’s equation and mgf methods. The derivative (with respect
to θ) of the right-hand side of (7.16) is 0. Since there are infinitely many
possible values of N , the left-hand side is an infinite sum of functions of θ.
A basic theorem of calculus gives a criterion indicating when the derivative
of a sum of functions can be calculated as the sum of the derivatives of the
individual functions. This criterion holds in this case, so that

d

dθ
E
(
m(θ)−NeθTN

)
= E

(
d

dθ

(
m(θ)−NeθTN

))
= E

(
−N m(θ)−N−1 d

dθ
m(θ)eθTN + m(θ)−NTNeθTN

)
.

It follows that

E

(
−N m(θ)−N−1 d

dθ
m(θ)eθTN + m(θ)−NTNeθTN

)
= 0.

Inserting the specific value θ = 0 into this equation, we get

E(−NE(S) + TN ) = −E(N)E(S) + E(TN ) = 0. (7.22)

Thus

E(TN ) = E(S)mh, (7.23)

where E(S) is the mean of the step size. The content of equation (7.23)
is intuitively acceptable, namely that the mean value of the final total
displacement of the walk, when it stops, is the mean size of each step
multiplied by the mean number of steps mh taken until the walk finishes.
Equation (7.23) is a generalization of equation (2.81).

Since the eventual total displacement TN in the walk is either b−h (with
probability wh given in (7.9)) or a−h (with probability uh given in (7.10)),
the mean value E(TN ) of TN is given by

E(TN ) = uh(a − h) + wh(b − h). (7.24)

Since E(S) = p − q, equation (7.23) shows that

mh =
uh(a − h) + wh(b − h)

p − q
. (7.25)

This is the same as the expression (7.15), found by using difference equa-
tions. The present derivation is more flexible than the difference equation
approach, and further, it demonstrates where the various terms in equation
(7.25) come from.
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7.4.4 An Asymptotic Case
The theory of BLAST concerns those walks that start at h = 0, where
there is a lower boundary at a = −1 but no upper boundary, and where
E(S), the mean step size, is negative. Such a walk is destined eventually
to reach −1. BLAST theory requires the calculation of two quantities:

(i) the probability distribution of the maximum value that the walk ever
achieves before reaching −1, and

(ii) the mean number of steps until the walk eventually reaches −1.

BLAST theory generally uses the notation A to denote (ii), so for this
particular walk we use this notation rather than m0.

To discuss the maximum value that the walk ever achieves before even-
tually reaching −1 we install an artificial stopping boundary at the value
y, where y ≥ 1. Then if h = 0 and a = −1, equation (7.9) shows that the
probability that the unrestricted walk finishes at the artificial boundary y
rather than at the value a is

1 − e−θ∗

eθ∗y − e−θ∗ , (7.26)

where θ∗ is defined in equation (7.7). Since θ∗ is positive, the term eθ∗y

dominates the denominator in (7.26) when y is large, so that the probability
(7.26) is asymptotic to

(1 − e−θ∗
)e−θ∗y. (7.27)

Thus if Y is the maximum height achieved by the walk,

Prob(Y ≥ y) ∼ Ce−θ∗y (7.28)

as y → ∞, where

C = 1 − e−θ∗
. (7.29)

This asymptotic relation is in the form of the geometric-like probability
displayed in equation (1.74), with the identification λ = θ∗.

Turning to (ii), the expression for the mean number A of steps before
that walk finishes at −1 or y is found by first making the substitutions
h = 0, a = −1 in equation (7.25), to obtain

A =
u0 − yw0

q − p
. (7.30)

Equation (7.21) shows that yw0 → 0 as y → ∞. Since w0 → 0, u0 → 1.
Taking the limit y → ∞ in equation (7.30) shows that

A =
1

q − p
. (7.31)
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7.5 General Walks

Suppose generally that the possible step sizes in a random walk are

−c,−c + 1, . . . , 0, . . . , d − 1, d, (7.32)

and that these steps have respective probabilities

p−c, p−c+1, . . . , pd, (7.33)

some of which might be zero. We assume three conditions throughout:

(i) Both p−c > 0 and pd > 0.

(ii) This step size is of the “negative mean” type, so that

E(S) =
d∑

j=−c

jpj < 0.

(iii) The greatest common divisor of the step sizes that have non-zero
probability is 1.

The mgf of S is

m(θ) =
d∑

j=−c

pje
jθ,

and Theorem 1.1 (page 40) states that there exists a unique positive value
θ∗ of θ for which

d∑
j=−c

pje
jθ∗

= 1. (7.34)

Our aim is to obtain asymptotic results generalizing those in Section 7.4.4
applying for walks that start at 0 and have a stopping boundary at −1 and
no upper boundary. To do this we impose an artificial barrier at y, where
y > 0. The walk finishes either when it reaches the point −1 or a point
less than −1, or when it reaches the point y or a point exceeding y. The
possible points where the walk can finish are now

−c,−c + 1, . . . ,−1, y, . . . , y + d − 1.

Let Pk be the probability that the walk finishes at the point k. From
equation (7.16) (which holds also for the case of general step sizes),

E
(
eθ∗TN

)
= 1,

where TN is the total displacement from 0 when the walk stops. Thus

−1∑
k=−c

Pkekθ∗
+

y+d−1∑
k=y

Pkekθ∗
= 1. (7.35)
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We consider some implications of this equation in the next two examples.

Example 1. In the simple random walk, equation (7.35) becomes

P−1e
−θ∗

+ Pyeyθ∗
= 1.

For this walk P−1 = 1 − Py, and by inserting this into the above equation
the value of Py in (7.26) is obtained. Note that in this case, P−1 = u0 and
Py = w0.

Example 2. In this example we consider a walk that at each move takes two
steps down (with probability q) or one step up (with probability p). We
assume that the mean step size p − 2q is negative. The mgf of the step size
is qe−2θ + peθ, and the unique positive value θ∗ of θ for which this takes
the value 1 is

θ∗ = log

(
q +
√

4pq + q2

2p

)
. (7.36)

With θ∗ defined in equation (7.36), equation (7.35) yields

P−2e
−2θ∗

+ P−1e
−θ∗

+ Pyeyθ∗
= 1. (7.37)

Let R−1 = limy→+∞ P−1 and R−2 = limy→+∞ P−2. Then

Py ∼ (1 − +R−1e
−θ∗

+ R−2e
−2θ∗

)e−yθ∗
. (7.38)

This implies that if there is no upper barrier to the walk and Y is the
maximum height achieved by the walk,

Py = Prob(Y ≥ y) ∼ Ce−yθ∗
, (7.39)

where

C = 1 + R−1e
−θ∗

+ R−2e
−2θ∗

. (7.40)

Thus Y has a geometric-like distribution. We show in the next section that
this conclusion is true for the general walk described above, and we shall
also find expressions for the values of C and θ∗ applying for any walk.

Returning to the general case, we next find a general expression for A,
the mean number of steps that the walk takes before stopping at one of
the points −c,−c + 1, . . . ,−1 when no stopping boundary at y is imposed.
Wald’s identity (7.16) and the calculation (7.23) that follows from it make
no assumption about the possible step sizes, so that (7.23) may be used in
the case of a general random walk. The mean net displacement when the
walk stops at one of these points is

∑c
j=1 −jR−j , where R−j is the proba-

bility that the walk finishes at −j. The mean step size E(S) is
∑d

j=−c jpj ,
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assumed to be negative. Thus from equation (7.23),

A =

∑c
j=1 jR−j

−∑d
j=−c jpj

. (7.41)

For BLAST calculations it is necessary to calculate the values of θ∗, C,
and A for any random walk. The calculation of θ∗ from equation (7.34) for
any random walk is straightforward, using numerical methods if necessary.
The calculation of C is far less straightforward and is considered in the fol-
lowing section. The calculation of A from (7.41) depends on the calculation
of the R−j values, a matter discussed in Section 10.2.3.

7.6 General Walks: Asymptotic Theory

7.6.1 Introduction
In this section we further develop the theory for the general random walk,
focusing on the asymptotic y → +∞ case discussed in the previous section.
The analysis is based on that of Karlin and Dembo (1992). Our aim is to
show, for any general walk of the form described in (7.32) and (7.33) and
which satisfies the three conditions following (7.33), starting at h = 0 and
with lower boundary a = −1, that

Prob(Y ≥ y) ∼ Ce−θ∗y, (7.42)

where θ∗ is found from equation (7.34) and C is a constant specific to the
walk in question. This implies that the maximum height achieved by the
walk has a geometric-like distribution whose parameter λ is found from the
mgf equation (7.34), replacing θ∗ in this equation by λ. We will also find
an explicit formula for the constant C in this distribution.

The value of this result lies in its generality. So long as the conditions
specified above hold the geometric-like distribution (7.42) applies, whatever
the specifics of the walk might be. This allows the application of the conclu-
sion of the result to BLAST analyses with a very wide range of substitution
matrices.

7.6.2 The Renewal Theorem
We start with a technical result.

Theorem 7.2 (The Renewal Theorem).

Suppose three sequences (b0, b1, . . . ), (f0, f1, . . . ), and (u0, u1, . . . ) of non-
negative constants satisfy the equation

uy = by + (uyf0 + uy−1f1 + uy−2f2 + · · · + u1fy−1 + u0fy), (7.43)
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for all y. Suppose further that B =
∑

i bi < +∞,
∑

i fi = 1, µ =
∑

i ifi <
+∞, and that the greatest common divisor of f0, f1, f2, . . . is 1. Then

uy → Bµ−1 as y → +∞. (7.44)

The proof of this theorem is beyond the scope of this book. The interested
reader is referred to Karlin and Taylor (1981).

7.6.3 Unrestricted Walks
We assume that the walk starts at 0. Suppose as in Section 7.5 that the
possible step sizes in a random walk are

−c,−c + 1, . . . , 0, . . . , d − 1, d,

that these steps have respective probabilities p−c, p−c+1, . . . , pd, and that
the three assumptions given on page 266 all hold.

In this section we consider the case where no boundaries are placed on
the walk, so that the concept of stopping at a boundary point no longer
applies. Because the mean step size is negative, the walk eventually drifts
down to −∞. Before doing so, however, the walk might visit various positive
values. The first aim is to find an equation satisfied by the probabilities Qk,
where Qk is the probability that the walk visits the positive value k before
reaching any other positive value. The largest positive step size is d, so
that Qk = 0 for all k > d. It will be convenient to also define Q0 = 0.
Since it is possible that the walk never visits any positive value, we have∑d

k=1 Qk < 1.
Although the focus in this section is on unrestricted walks, for the mo-

ment we impose an artificial boundary at +1 and another at −L, where L
is large and positive. Then equation (7.35) becomes

−L∑
k=−L−c+1

Qk(L)ekθ∗
+

d∑
k=1

Qk(L)ekθ∗
= 1, (7.45)

where Qk(L) is the probability that the walk stops at the value k and the
notation recognizes the dependence of the probabilities Qk(L) on L. Since
+1 is a boundary, if the walk stops at k > 0, then this k is the first positive
value reached. Further,

lim
L→∞

Qk(L) = Qk, (1 ≤ k ≤ d).

Since θ∗ is positive and Qk(L) ≤ 1 for all k and L, the terms in the first
sum in (7.45) all approach zero as L → ∞. Thus letting L → ∞ in (7.45)
we have

d∑
k=1

Qkekθ∗
= 1. (7.46)



270 7. Stochastic Processes (ii): Random Walks

The next aim is to find an expression for FYunr(y), the probability that
in the unrestricted walk the maximum upward excursion is y or less, for
any positive value of y. This is done as follows.

The event that in the unrestricted walk the maximum upward excursion
is y or less is the union of several non-overlapping events. The first of these
is the event that the maximum excursion never reaches positive values
(probability Q̄ = 1 − Q1 − Q2 − Q3 − · · · − Qd). The remaining events are
that the first positive value achieved by the excursion is k, k = 1, 2, . . . , y
(with probability Qk), and then, starting from this first positive value,
that the walk never achieves a further height exceeding y − k (probability
FYunr(y − k)). These various possible events imply that

FYunr(y) = Q̄ +
y∑

k=0

QkFYunr(y − k) (7.47)

(recall that Q0 = 0).
This is in the form of the renewal equation (7.43), with uk replaced

by FYunr(y − k), by replaced by Q̄, and fk replaced by Qk. However, we
cannot immediately use the result of Theorem 7.2 to develop properties of
FYunr(y). This is for two reasons. First, Theorem 7.2 requires that

∑
k fk =

1, whereas here
∑

Qk < 1. Second, Theorem 7.2 requires
∑

by < ∞, and
this requirement does not hold when by = Q̄. However, we can use Theorem
7.2 by introducing the quantity V (y), defined by

V (y) =
(
1 − FYunr(y)

)
eyθ∗

, (7.48)

where θ∗ is defined by equation (7.34). From (7.48) it follows that

FYunr(y) = 1 − V (y)e−yθ∗
,

and equation (7.47) can then be written as

1 − V (y)e−yθ∗
= Q̄ +

y∑
k=0

Qk

(
1 − V (y − k)e−(y−k)θ∗)

.

Elementary reorganization of this equation leads to

V (y) = eyθ∗
(Qy+1 + Qy+2 + · · · + Qd) +

y∑
k=0

(Qkekθ∗
)V (y − k) (7.49)

when y < d, and

V (y) =
d∑

k=0

(Qkekθ∗
)V (y − k) (7.50)

when y ≥ d. This is again in the form of the renewal equation, this time
with fk = Qkekθ∗

, and with by replaced by eyθ∗
(Qy+1 + Qy+2 + · · · + Qd)

if y < d and by = 0 if y ≥ d. To use Theorem 7.2 we must show that
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by < ∞ and that

∞∑
k=0

Qkekθ∗
= 1.

The first requirement follows since by = 0 for y ≥ d, and the second follows
from equation (7.46), recalling that Qk is zero when k = 0 or when k > d.

We must find

B =
∑

bk =
d∑

k=0

ekθ∗
(Qk+1 + Qk+2 + · · · + Qd) .

If the right-hand side of this equation is multiplied by eθ∗ −1, the resulting
expression is

∑d
k=1 Qkekθ∗ − (Q1 + Q2 + · · · + Qd), which from equation

(7.34) is 1 − (Q1 + Q2 + · · · + Qd) = Q̄. Thus

B =
Q̄

eθ∗ − 1
.

The statement of Theorem 7.2 then implies that if

V = lim
y→+∞ V (y), (7.51)

then

V =
Q̄

(eθ∗ − 1)(
∑d

k=1 kQkekθ∗)
. (7.52)

7.6.4 Restricted Walks
We now consider what the unrestricted walk calculations of the previous
section imply for a restricted random walk having a stopping boundary at
the value −1. We again assume that the walk starts at 0. The calculations
are best carried out using the complementary probabilities F ∗

Yunr
(y) = 1 −

FYunr(y) and F ∗
Y (y) = 1 − FY (y), the respective probabilities that the size

of an excursion in the unrestricted and the restricted walks exceeds the
value y. With these definitions, equation (7.48) implies that

F ∗
Yunr

(y) = V (y)e−yθ∗
. (7.53)

The definition of V in (7.51) then implies that, for large y,

FYunr(y) ∼ V e−yθ∗
. (7.54)

It follows that

lim
y→+∞

(
F ∗

Yunr
(y)
)
eyθ∗

= V. (7.55)
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The size of an excursion of the unrestricted walk can exceed the value
y either before or after reaching negative values. In the latter case, the
first negative value reached by the walk is one of −1, −2, . . . , −c. If the
probability that it is −j is R−j , then

F ∗
Yunr

(y) = F ∗
Y (y) +

c∑
j=1

R−jF
∗
Yunr

(y + j). (7.56)

Multiplying by eyθ∗
throughout in this equation and then letting y → +∞,

we get from (7.55)

V = lim
y→+∞ (F ∗

Y (y)) eyθ∗
+ V

c∑
j=1

R−je
−jθ∗

. (7.57)

From this,

lim
y→+∞ F ∗

Y (y)eyθ∗
= V

⎛⎝1 −
c∑

j=1

R−je
−jθ∗

⎞⎠ . (7.58)

The calculation (7.52) for V then shows that

lim
y→+∞ F ∗

Y (y)eyθ∗
=

Q̄(1 −∑c
j=1 R−je

−jθ∗
)

(eθ∗ − 1)(
∑d

k=1 kQkekθ∗)
. (7.59)

This implies

lim
y→+∞ F ∗

Y (y)eyθ∗
= e−θ∗

C, (7.60)

where

C =
Q̄
(
1 −∑c

j=1 R−je
−jθ∗
)

(1 − e−θ∗)(
∑d

k=1 kQkekθ∗)
. (7.61)

Recalling that F ∗
Y (y) = Prob(Y ≥ y + 1), this equation implies that

Prob(Y ≥ y) ∼ Ce−yθ∗
, (7.62)

as was to be shown. �

This remarkable result implies that, subject to the conditions assumed,
whatever the step sizes and probabilities are for the random walk, the prob-
ability distribution of Y is asymptotically the geometric-like distribution.
All that is necessary to specify the distribution completely is to find the
appropriate value of C, since the value of θ∗ can be found from equation
(7.34)).

In BLAST theory the parameter θ∗, defined in (7.34) and appearing in
(7.62), is denoted by λ, so with this notation replace (7.62) by

Prob(Y ≥ y) ∼ Ce−yλ. (7.63)
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Three special cases of the calculation of C as given in (7.61) deserve
attention. First, if the only possible upward step in the walk is +1, then
Qk = 0 when k ≥ 2. Equation (7.46) then shows that Q1 = e−θ∗

, so that∑d
k=1 kQkekθ∗

= 1, and Q̄ = 1 − e−θ∗
. In this case (7.61) shows that

C = 1 −
c∑

j=1

R−je
−jθ∗

. (7.64)

This is a generalization of equation (7.40). Second, if the only possible
downward step in the walk is −1, then R−1 = 1 and R−j = 0 when j ≥ 2.
In this case (7.61) shows that

C =
Q̄∑d

k=1 kQkekθ∗ . (7.65)

Finally, exactly matching sub-sequences were considered in Section 5.4, and
for these the geometric, rather than the geometric-like, distribution applies.
Comparison of equations (1.70) and (1.74) shows that for this distribution,
C = 1. Any exactly matching sub-sequence terminates at the first mis-
match. In random walk terms, the possible steps sizes can be thought of
as +1 and −∞. (We could make a more precise analysis by using a step of
−L, for L large, and then letting L → ∞, but we prefer a more casual ap-
proach.) Thus we can put R−∞ = 1 and R−j = 0 for all finite j. Inserting
these values into equation (7.64) we get C = 1, as required.

Karlin and Dembo (1992) give several alternative expressions for C. Of
the various expressions they give, perhaps the most useful is, in our notation
(which differs from theirs),

C =
(1 −∑j R−je

−jθ∗
)2

(1 − e−θ∗)AE(Seθ∗S)
, (7.66)

where A is given in equation (7.41) and S is the (random) size of any step
in the walk. For the simple random walk of Section 7.2, E(Seθ∗S) = q − p,
A = 1/(q − p), and R−1 = 1. Inserting these values in (7.66) we obtain the
value 1 − e−θ∗

for C, which is identical to expression in (7.29).
While the formulae for C and A given above are in closed form, they

still might not be useful for rapid calculation. Karlin and Dembo (1992)
also give some rapidly converging series approximations for both these key
parameters. Further simplifying calculations are discussed in Chapter 10.

Problems

7.1. Derive the result (7.36) by solving a cubic equation in eθ∗
. (Hint: It is

known that one solution of the equation is eθ∗
= 1, so that further solutions
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may be found by solving a quadratic equation.)

7.2. Consider the simple random walk with h = 0, b = 1 and a = −L,
where L is positive. Use equation (7.9) to write down the probability that
the walk eventually reaches 1 rather than −L. For the case p < q, show
that the limiting value of this probability as L → ∞ is p

q .

7.3. Continuation. The limiting (L → ∞) probability found in Problem 7.2
is the probability in an unrestricted random walk which starts at 0 and
has p < q, that the walk ever reaches +1. Show this implies that in the
unrestricted case, the probability that the walk ever reaches the value y is
(p

q )y, for any positive integer y.

7.4. Continuation. For the case of the simple random walk with p < q,
calculate the value of V (defined in equation (7.52)). From this, calculate
the right-hand side in the asymptotic expression (7.54). Compare the value
found with the value given in Problem 7.3. (Recall that F ∗

Yunr
(y) is the

probability that the unrestricted walk ever reaches a height y +1 or more.)

7.5. Show that, for the simple random walk with p < q, the two expressions
(7.64) and (7.65) are identical.



8
Statistics (ii): Classical Estimation
Theory

8.1 Introduction

An introduction to classical estimation and hypothesis testing procedures
was given in Chapter 3. However, optimality aspects of the two procedures
were not addressed. In this chapter we give a brief introduction to classical
estimation theory, and in Chapter 9 we give an introduction to classical
hypothesis testing theory. In both chapters we focus on optimality aspects
of these theories. Extensive treatments of the two theories are given in
Lehmann (1991) and Lehmann (1986) respectively.

8.2 Criteria for “Good” Estimators

In this section we discuss reasonable criteria for an estimator of a parameter
to be “good”. It is not always clear what makes one estimator preferable to
another, but there are certain properties of them that can be used to help
decide if one estimator is better than another. It was stated in Section 3.3.1
that one property of an estimator usually taken as desirable is that it be
unbiased, that is, that its mean value be the value of the parameter to be
estimated. For example, as shown in equation (2.74), if X1, X2, . . . , Xn are
iid, each having a probability distribution with mean µ, then the estimator
X̄ is a random variable also having mean µ, so that X̄ is an unbiased
estimator of µ.
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It is not always possible to find unbiased estimators for a parameter, and
even if it is possible, unbiased estimators are not always preferred to biased
estimators. This is discussed further below.

A second desirable property is that of consistency. If ξ̂n an estimator of a
parameter ξ derived from n observations, then a consistent estimator is one
for which, for any small ε, Prob(|ξ̂n − ξ| > ε) → 0 as n → +∞. Application
of Chebyshev’s inequality and the variance formula (2.74) shows that the
sample average (̄X) of iid random variables is a consistent estimator of the
mean of the probability distribution of these random variables (assuming,
as we do throughout, that the variance of this distribution is finite). As the
sample size increases, the estimate derived from a consistent estimator is
more and more likely to be close to the parameter being estimated.

An estimator can be both unbiased and consistent, one and not the
other, or neither (see Problem 8.1), so the concepts of unbiasedness and
consistency concern different aspects of the properties of estimators.

A further desirable property of an unbiased estimator is that it have a
low variance. One unbiased estimator of a parameter is said to be more
efficient than another unbiased estimator of a parameter if it has a lower
variance than the other estimator. Ideally we would like to have an un-
biased estimator whose variance is lower than that of any other unbiased
estimator of that parameter. In some cases such an estimator exists and
can be identified, and if so, it might reasonably be thought to be the “best”
estimator of that parameter.

For biased estimators a natural desirable property is that it have low
mean square error (see (3.13)). In some cases the mean square error of a
biased estimator is less than the mean square error (i.e., the variance) of
an unbiased estimator; an example is given in Problem 8.6. In such cases
the biased estimator might be preferred to the unbiased estimator.

Finally, it would also be desirable if an estimator had, at least approx-
imately, a well-known distribution, for example a normal distribution. In
this case known theory and results for this distribution can be applied when
using this estimator.

Perhaps unexpectedly, there is one estimation procedure that in many
practical cases achieves most, and in some cases all, of these aims, at least
asymptotically as the sample size increases. This is the procedure known
as maximum likelihood estimation.
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8.3 Maximum Likelihood Estimation

8.3.1 The Discrete Case
Suppose that Y1, Y2, . . . , Yn are iid discrete random variables1 with joint
probability distribution P (Y1; ξ) × P (Y2; ξ) × · · · × P (Yn; ξ). Here ξ is
an unknown parameter that is to be estimated, and the notation indi-
cates the dependence of the probability distribution of Yi on ξ. We denote
(Y1, Y2, . . . , Yn) by Y and define the likelihood L(ξ,Y ) by

L(ξ,Y ) = P (Y1; ξ) × P (Y2; ξ) × · · · × P (Yn; ξ). (8.1)

While this is identical to the joint probability distribution of Y , we now re-
gard it, for a given Y , as a function of ξ. The value ξ̂ = ξ̂(Y1, Y2, . . . , Yn) of ξ
at which L(ξ,Y ) reaches a maximum (as a function of ξ) is called the max-
imum likelihood estimator of ξ. This value is a function of Y1, Y2, . . . , Yn,
as our notation ξ̂(Y1, Y2, . . . , Yn) implies.

This estimator is often found by differentiating L(ξ,Y ) with respect to
ξ and using standard derivative tests for maxima. Care must be used with
this procedure, since local maxima may arise, and, as Example 5 below
shows, the maximum might be reached at a boundary point.

In those cases where the maximum of L(ξ,Y ) is found through the
differentiation procedure, it is necessary to solve the equation (in ξ)

d

dξ
L(ξ,Y ) = 0.

Since the logarithm is a monotonic increasing function, in practice it is
equivalent to solve the equation

d

dξ
log L(ξ,Y ) = 0. (8.2)

Since the logarithm of L(ξ,Y ) is a sum rather than a product, the differ-
entiation procedure is almost always easier when carried out in terms of
the logarithm. The maximum likelihood estimate of ξ is the observed value
of the maximum likelihood estimator, once the data have been obtained.
That is, this estimate is found by replacing Y = (Y1, Y2, . . . , Yn) in the
above by y = (y1, y2, . . . , yn) and L(ξ,Y ) by L(ξ,y).

1Maximum likelihood estimators can be defined also for dependent random variables,
but we assume the iid case throughout.
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Example 1. Suppose that Y1, Y2, . . . , Yn are iid random variables, each
having a Poisson distribution with parameter λ. Then from (2.6),

L(λ, Y ) =
e−λλY1

Y1!
× e−λλY2

Y2!
× · · · × e−λλYn

Yn!

=
e−nλλ

∑
Yi∏

(Yi!)
,

all sums and products in this example being over i = 1, 2, . . . , n. Thus

log L(λ, Y ) = −nλ +
(∑

Yi

)
log λ − log

(∏
(Yi!)
)

and
d

dλ
log L(λ, Y ) = −n +

∑
Yi

λ
. (8.3)

This derivative is zero only when λ̂ = Ȳ , and since the derivative of the
right-hand side expression in (8.3) with respect to λ is negative, this value
corresponds to a maximum of L(λ, Y ). Thus

maximum likelihood estimator of λ = Ȳ . (8.4)

From this, the maximum likelihood estimate of λ is ȳ, the observed average
once the data are obtained. The mean and variance of the Poisson distri-
bution as given in Table 1.1 together with the formulae in (2.74) show that
Ȳ is an unbiased consistent estimator of λ and has variance λ/n.

These properties of the Poisson distribution can be used in the estima-
tion of the parameters of the Pólya–Aeppli distribution given in (5.51) and
(5.52). The Pólya–Aeppli distribution is used to approximate the distri-
bution of the number Y1(N) of times that a given word occurs in a DNA
sequence of length N. It was noted in Section 5.7.1 that self-overlapping
words tend to occur in clumps, with the number of clumps approximated
as having a Poisson distribution with parameter λ. Estimation of λ using
(8.4) is a key step in estimating various properties of the clumping behavior.

Example 2. Consider n independent Bernoulli trials, each of which results
in either success (with probability p) or failure (with probability 1 − p). If
Yi = 1 if trial i results in success and Yi = 0 if trial i results in failure, the
likelihood (8.1) is, from (1.6),

L(p,Y ) =
n∏

i=1

pYi(1 − p)1−Yi = pY (1 − p)n−Y , (8.5)

where Y =
∑n

i=1 Yi is the total number of successes. Finding the maximum
likelihood estimator even in this comparatively simple case is not perhaps
as straightforward as might be expected. When 1 ≤ Y ≤ n−1 the solution
of equation (8.2), with p replacing ξ, is p̂ = Y/n = Ȳ , and this may
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be shown to be the maximum likelihood estimator of p for these cases.
However, the cases Y = 0, Y = n must be handled differently, and we
illustrate this in the case Y = n. Here the likelihood is pn, and equation
(8.2) gives n/p̂ = 0. There is no real solution of this equation, and this
indicates that the maximum is found at a boundary point. Subject to the
natural constraint 0 ≤ p ≤ 1, the likelihood pn is maximized, as a function
of p, at p = 1, and this shows that the maximum likelihood estimator of
p when Y = n is p̂ = 1. This is, however, identical to Ȳ when Y = n. An
analogous remark applies when Y = 0; here again the maximum likelihood
estimator may be identified with Ȳ . The estimator Ȳ thus applies in all
cases.

The fact that Ȳ has mean p and variance p(1−p)/n can be used, together
with Chebyshev’s inequality, to show that Ȳ is a consistent estimator of p.

These results generalize naturally to the estimation of the parameters in
the multinomial distribution.

8.3.2 The Continuous Case
We consider first the case where the random variable of interest has a
density function depending on a single parameter ξ. If (X1, X2, . . . , Xn) is
denoted by X, the likelihood L(ξ,X) is defined by

L(ξ,X) = fX(x1; ξ)fX(x2; ξ) · · · fX(xn; ξ), (8.6)

where fX(x; ξ) is the common density function of the iid continuous ran-
dom variables X1, X2, . . . , Xn, again assumed to depend on some unknown
parameter ξ. Maximum likelihood estimators and estimates are found by
following a procedure essentially identical to that in the discrete case.

Example 3. Suppose that X1, X2, . . . , Xn are NID(µ, σ2) random variables
and that σ2 is known. The aim is to find the maximum likelihood estima-
tor of µ, so we replace the generic symbol ξ by µ for this example. The
likelihood L(µ,X) is, from (8.6),

L(µ,X) =
n∏

i=1

1√
2πσ

e− (Xi−µ)2

2σ2 , (8.7)

so that the logarithm of L(µ,X) is

constant −
n∑

i=1

(Xi − µ)2

2σ2 , (8.8)

where the constant is independent of µ. Differentiation with respect to µ
leads to

maximum likelihood estimator of µ = X̄. (8.9)
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This estimator has mean µ, and is thus unbiased, and variance σ2/n, and
these results in conjunction with Chebyshev’s inequality show that it is
a consistent estimator of µ. Further, X̄ has a normal distribution for all
values of n.

Example 4. A more realistic case arises when both the mean and the
variance of a normal distribution are to be estimated. There are now
two unknown parameters, µ and σ2, and the estimation procedure fol-
lows lines generalizing those described above. This procedure leads to
a two-dimensional maximization problem resulting to the simultaneous
equations

∂ log L(µ, σ2,X)
∂µ

= 0,
∂ log L(µ, σ2,X)

∂(σ2)
= 0. (8.10)

If the solutions of 8.10) are written µ̂ and σ̂2, we obtain

−
n∑

i=1

(Xi − µ̂)
σ̂2 = 0, (8.11)

− n

2σ̂2 +
n∑

i=1

(Xi − µ̂)2

2σ̂4 = 0, (8.12)

from which

µ̂ = X̄, σ̂2 =
n∑

i=1

(Xi − X̄)2

n
. (8.13)

The former estimator agrees with that in (8.9) and has the same properties
as that estimator. The estimator of σ2 has bias (defined in Section 3.3.3)
of order n−1, and is usually replaced in practice by the unbiased estimator
(3.5).

Example 5. Suppose that X1, X2, . . . , Xn are independent random vari-
ables, each coming from the uniform distribution

fX(x) =
1
M

, 0 ≤ x ≤ M. (8.14)

The aim is to find the maximum likelihood estimator of M . In this case the
likelihood is M−n. The differentiation process associated with the maxi-
mization procedure shows that the maximum of the likelihood occurs at a
boundary point. Inspection of the likelihood function M−n shows that it
is maximized when M is as small as possible, subject to the requirement
M ≥ Xi, (i = 1, 2, . . . , n. This leads to the estimator

M̂ = Xmax. (8.15)

M̂ is not an unbiased estimator of M , as is shown (with an appropriate
change of notation) by equation (2.94). An unbiased estimator of M is U =
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(n+1)Xmax/n, and often such a simple adjustment is all that is needed to
find an unbiased estimator from a maximum likelihood estimator. Equation
(1.126) and the density function for Xmax given in equation (2.137) with
i = n, yields the density function of U as

fU (u) =
nn+1un−1

(n + 1)nMn
, 0 ≤ u ≤ (n + 1)M

n
. (8.16)

8.3.3 Invariance Property
An important property of maximum likelihood estimators is that of in-
variance: If ξ̂ is the maximum likelihood estimator of ξ, and if g(ξ) is a
monotonic function of ξ, then the maximum likelihood estimator of g(ξ) is
g(ξ̂). This conclusion follows from the chain rule result

∂L

∂ξ
=

∂L

∂g(ξ)
∂g(ξ)
∂ξ

and the fact, deriving from the monotonicity assumption, that ∂g(ξ)/∂ξ
is never zero. When g(ξ) is a nonlinear function of ξ, then the maximum
likelihood estimator g(ξ̂) of g(ξ) is usually biased even if ξ̂ is an unbiased
estimator of ξ. However, this bias is often in practice of order of n−1, where
n is the sample size, and as above a simple correction often allows an un-
biased estimator of g(ξ) to be found.

8.3.4 Asymptotic Properties
Suppose we have an infinite sequence X1, X2, . . . of iid random variables
whose distribution depends on a parameter ξ. We consider asymptotic prop-
erties, as n increases, of the maximum likelihood estimator ξ̂n of ξ obtained
from X1, X2, . . . , Xn. It can be shown under various regularity conditions
discussed below that for large n, the maximum likelihood estimator of a
parameter is approximately normally distributed, that

E(ξ̂n) ∼ ξ, (8.17)

and that

Var(ξ̂n) ∼ −1

E
(

d2

dξ2 log L
) . (8.18)

Here L is given by (8.1) for discrete random variables and by (8.6) for
continuous random variables.

One reason for the importance of (8.18) is that the right-hand side in
this equation is the well-known “Cramér–Rao bound”: Under regularity
conditions similar to those discussed below, no unbiased estimator of the
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parameter ξ based on an iid sample of size n can have a variance smaller
than this. This indicates an asymptotic optimality property of maximum
likelihood estimators. For this and other reasons maximum likelihood esti-
mators are used frequently, especially with large samples, and is the method
of parameter estimation employed often in bioinformatics.

The denominator of the right-hand expression in (8.18) is always neg-
ative, so the expression itself is always positive, as is appropriate for a
variance. This is seen in the following example of an application of the
Cramér–Rao bound.

In Example 1 above, it was shown that, given iid random variables from a
Poisson distribution with parameter λ, the maximum likelihood estimator
of λ is Ȳ , and that this estimator is unbiased and has variance λ

n . From
equation (8.3),

d2

dλ2 log L(λ, Y ) = −
∑

Yi

λ2 ,

and thus, since E(
∑

Yi) = nλ,

E

(
d2

dλ2 log L(λ, Y )
)

= −n

λ
.

Using this value as the denominator of the right-hand side in (8.18), we
find that no unbiased estimator of λ can have a variance less than λ/n. But
Example 1 of Section 8.3.1 shows that this is the variance of the unbiased
estimator Ȳ , so that Ȳ is the minimum variance unbiased estimator of λ.
The comments in Section 8.2 concerning criteria for “good” estimators then
suggest that Ȳ is the most desirable estimator of λ.

The regularity conditions needed for (8.17) and (8.18) to hold include
the requirements that the maximum of the likelihood occurs at a point
where the derivative of the likelihood is zero rather than a boundary point,
that the range of the random variables not depend on the parameter be-
ing estimated, and that the parameter being estimated take values in a
continuous interval of real numbers, rather than, for example, only taking
integer values. The first two requirements do not hold in Example 5 above.
Other examples of this are discussed in Chapter 15. To show why these
regularity conditions are needed we provide a sketch of the derivation of
(8.18). The proof is given for continuous random variables; the proof for
discrete random variables is essentially identical.

Let X be a continuous random variable having density function fX(x; ξ)
and let X1, X2, . . . , Xn be n iid continuous random variables each having
the same density function as X. The density function fX(x; ξ) satisfies∫

R

fX(x; ξ)dx = 1, (8.19)
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where R is the range of X. Differentiation throughout in equation (8.19)
with respect to ξ leads to ∫

R

dfX(x; ξ)
dξ

dx = 0, (8.20)

where the comparatively weak assumption is made that differentiation of
the left-hand side in (8.19) can be performed by differentiation under the
integral sign. If the range R depends on ξ, this condition usually does not
hold. If �(x; ξ) is defined by

�(x; ξ) =
dfX(x; ξ)

dξ
· 1
fX(x; ξ)

, (8.21)

equation (8.20) can be written∫
R

�(x; ξ)fX(x; ξ)dx = E (�(x; ξ)) = 0. (8.22)

Under the same assumptions as above, a further differentiation with respect
to ξ yields ∫

R

d�(x; ξ)
dξ

fX(x; ξ)dx +
∫

R

�(x; ξ)
dfX(x; ξ)

dξ
dx = 0,

or, from (8.21),∫
R

d�(x; ξ)
dξ

fX(x; ξ)dx +
∫

R

(�(x; ξ))2 fX(x; ξ)dx = 0.

This implies that

E

(
d�(X; ξ)

dξ

)
= −E

(
(�(X; ξ))2

)
. (8.23)

The left-hand side, namely the mean value of d�(X; ξ)/dξ, will be denoted
by µ(ξ). An extension of the argument leading to (8.23) shows that

E(U) = −E(V ), (8.24)

where

U =
d2 log L(ξ,X)

dξ2 , V =
(

d log L(ξ,X)
dξ

)2

, (8.25)

where L(ξ,X) is defined in (8.6). Consider now the random variable

n−1 d

dξ

(
n∑

i=1

�(Xi; ξ)

)
,

which from (8.6) and the definition of �(Xi; ξ) is identical to n−1U . This
average has mean value µ(ξ), and from Chebyshev’s inequality and equation
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(2.74) has a probability distribution closely concentrated around µ(ξ) when
n is large. We therefore use the approximations

U/n ∼= µ(ξ), V/n ∼= −µ(ξ), (8.26)

the latter approximation following from (8.24).
Denote the maximum likelihood estimator of ξ by ξ̂. Then the Taylor

series approximation (B.29) gives(
d log L(ξ,X)

d ξ

)
ξ=ξ̂

∼= d log L(ξ,X)
d ξ

+ (ξ̂ − ξ)U. (8.27)

We assume that the maximum likelihood estimator occurs at a point where
the derivative of the likelihood is zero, so that the left-hand side in this
equation is 0. Thus to a first order of approximation,

ξ̂ − ξ ∼= −d log L(ξ,X)/d ξ

U
. (8.28)

Squaring both sides, and using the definition of V in (8.25),

(ξ̂ − ξ)2 ∼= V

U2 . (8.29)

The expected value of the left-hand side is approximately the variance of ξ̂
(and is equal to it if E(ξ̂) = ξ). The approximations (8.26) show that the
right-hand side is approximately − 1

nµ(ξ) . Thus

variance of ξ̂ ∼= −1
nµ(ξ)

. (8.30)

This is the desired approximation (8.18).
The above derivation of the variance of the asymptotic maximum likeli-

hood estimate is a sketch only and can be made more rigorous by paying
careful attention to the approximations made. It is given here because it
emphasizes the main assumptions made in claiming that equation (8.18)
applies. These are (i) that the maximum of the likelihood occurs at a point
where the derivative of the likelihood is zero, (ii) that the range of the
observations is independent of the parameter being estimated, (iii) that
the observations are iid, (iv) that the sample size is large, and (v) since
the Taylor series approximation (8.27) is used, that the parameter and its
maximum likelihood estimate are both real numbers taking possible val-
ues in a continuous interval. In Section 15.7 we discuss the estimation of
the topology of a phylogenetic tree by maximum likelihood methods. The
theory discussed above shows that one may not automatically assume op-
timality properties for the maximum likelihood estimator of this topology,
since this topology is not a real number taking values in some interval.



8.4. Other Methods of Estimation 285

8.3.5 Many Parameters
The theory above can be generalized to cover the case of several parameters.
If the (i, j) element in the information matrix I is defined by

Iij = − E

(
d2

dξidξj
log L

)
, (8.31)

then the asymptotic variance of the maximum likelihood estimator of the
parameter ξi is the (i, i) term in I−1, and the asymptotic covariance of
the maximum likelihood estimators of the parameters ξi and ξj is the (i, j)
term in I−1.

8.4 Other Methods of Estimation

8.4.1 Introduction
Since maximum likelihood estimators have optimality properties, at least
in large samples, they are usually the estimators of choice in bioinformatics.
Other methods of estimation, however, also have desirable properties, and
in this section we describe two of these methods.

8.4.2 The Method of Moments
The “method of moments” is sometimes used as a convenient, albeit often
asymptotically inefficient, way to estimate unknown parameters. It is used,
for example, in the context of BLAST as described in Section 10.8. The
method requires the estimation of as many moments of the distribution
from which the observations come as there are unknown parameters in that
distribution, and can be used for both discrete and continuous probability
distributions.

Since we contrast this estimation procedure with the maximum likelihood
method, we use the suffix “MM” to denote a method of moments estimator
and the suffix “MLE” to denote a maximum likelihood estimator.

Suppose that X1, X2, . . . Xn are iid random variables, each having a prob-
ability distribution depending on one parameter ξ only. The mean µ of Xi

is assumed to depend on ξ, and we denote it by g(ξ), so that

µ = g(ξ). (8.32)

The estimator ξ̂MM of ξ is given by mimicking equation (8.32) by equating
the average n−1∑Xi to g(ξ̂MM), so that

n−1
∑

Xi = g(ξ̂MM). (8.33)
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If possible, this equation is then solved explicitly for ξ̂MM. Here only the
first moment of X, namely g(ξ), is used in the procedure.

Example 1. We illustrate several of the points made above for the case of
one unknown parameter by considering the estimation of the parameter k
in the gamma distribution (1.75) for the case where λ is known to be 1.
Equation (1.76) shows that the mean of this gamma distribution is k, and
equation (8.33) immediately shows that the method of moments estimator
k̂MM of k is n−1∑Xi. This is an unbiased estimator of k, and equations
(1.76) and (2.74) show that the variance of this estimator is k/n.

The maximum likelihood estimator is not so easily calculated. The
likelihood L(k,X) is

L =
(
∏

Xi)k−1e− ∑
Xi

(Γ(k))n
,

and the equation d log L/dk = 0 reduces to

n−1
∑

log Xi =
dΓ(k)/dk

Γ(k)
. (8.34)

The estimator k̂MLE given implicitly as the solution of this equation in k
is biased. (No explicit expression for k̂MLE is available.) While this estima-
tor appears initially to differ substantially from the method of moments
estimator k̂MM, the two will tend to be close for large n and k. This
arises because for large n, n−1∑ log Xi

∼= log X̄ while for large k, the
right-hand side in (8.34) is approximately log k (Abramowitz and Stegun
(1972)). Thus equation (8.34) becomes, approximately, log X̄ ∼= log k̂MLE

or k̂MLE ∼= X̄ = k̂MM. This argument also implies that the bias of the
maximum likelihood estimator decreases as n and k increase.

The asymptotic variance of k̂MLE, found from (8.18), is 1/nψ′(k), where
ψ′(k) is the so-called trigamma function. Properties and numerical values
for this function are given by Abramowitz and Stegun (1972). In the case
where k = 1, this variance is 6/(nπ2) ∼= 0.607/n. This is about 60% of the
variance 1/n found above for the methods of moments estimator.

For large values of k, ψ′(k) ∼= k, so the variances of the maximum like-
lihood estimator and the method of moments estimator are close, as is
evident from the fact that the two estimators tend to be close for large k
and n. In view of the bias of the maximum likelihood estimator, one might
prefer method of moments estimation in this case.

In the case of two unknown parameters, called here ξ and φ, the first two
moments of X are used. If the mean of X is g1(ξ, φ) and the mean of X2

is g2(ξ, φ), the estimators ξ̂MM and φ̂MM of ξ and φ are given implicitly by
the simultaneous equations generalizing (8.33), namely

n−1
∑

Xi = g1(ξ̂MM, φ̂MM), n−1
∑

X2
i = g2(ξ̂MM, φ̂MM). (8.35)
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If possible, these equations are then solved explicitly for ξ̂MM and φ̂MM.

Example 2. If in the gamma distribution (1.75) both λ and k are unknown
and are to be estimated, equations (1.76), (1.31) and (8.35) show that the
method of moments estimators α̂ and k̂ are found from the equations

λ̂MM =
nk̂MM∑

Xi
, n−1

∑
X2

i =
( k̂MM

λ̂MM

)2
+

k̂MM

λ̂2
MM

. (8.36)

The values of λ̂MM and k̂MM are readily found from these equations (see
Problem 8.9).

We now compare these estimators with the corresponding maximum like-
lihood estimators. The maximum likelihood estimator of k, namely k̂MLE,
is independent of λ and is thus given by (8.34). The maximum likelihood
estimator of λ, namely λ̂MLE, is nk̂MLE/

∑
Xi. This equation is of the same

form as the first equation in (8.36), implying that when k̂MLE and k̂MM are
close, then λ̂MLE and λ̂MM are also close.

8.4.3 Least Squares and Multiple Regression
Another estimation procedure, which in some cases is equivalent to the
maximum likelihood method, is that of least squares. We illustrate it in the
context of the general linear model, with which it is most closely associated.

In describing the least squares approach it is convenient to depart from
our standard convention and to use the notation Y for a random variable,
whether it be discrete or continuous. Suppose first that Y1, Y2, . . . , Yn are
independently but not identically distributed random variables, Yj having
a probability distribution with mean of the form µj = α+βxj and variance
σ2. This model is most conveniently written in the form

Yj = α + βxj + Ej , (8.37)

where E1, E2, . . . , En are iid random variables with mean 0 and variance
σ2. The model is most frequently used when one wishes to estimate the way
in which some random variable Yj depends on some fixed quantity xj . This
is the simple regression model, and is used very widely in applied statistics.

The form of equation (8.37) explains the choice of the notation Y for the
random variable involved in least squares calculations, since if the term Ej

is ignored, this is the equation of a straight line in the standard cartesian
form y = mx + b.

In the model (8.37), α and β are unknown parameters that we might
wish to estimate. The least squares estimators of α and β are found as the
values that minimize the sum of squares

n∑
j=1

E2
j =

n∑
j=1

(
Yj − α − βxj

)2
. (8.38)
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The resulting least squares estimators α̂ and β̂ are given explicitly by

β̂ =

∑n
j=1 Yj(xj − x̄)∑n
j=1(xj − x̄)2

, α̂ = Ȳ − β̂x̄, (8.39)

where x̄ = (x1+x2+· · ·+xn)/n, Ȳ = (Y1+Y2+· · ·+Yn)/n. The estimators
β̂ and α̂ are unbiased (see Problem 8.10).

The fact that an explicit expression is available for both α̂ and β̂ should
not pass without comment. If the mean of Yj were not a linear function
of α and β it might not be possible to find explicit expressions for α̂ and
β̂, and the best that can be done might be to find α̂ and β̂ by a purely
numerical procedure. We take up this comment again below.

Given observed values y1, y2, . . . , yn of Y1, Y2, . . . , Yn, the estimates of β
and α are, respectively,

β̂ =

∑n
j=1 yj(xj − x̄)∑n
j=1(xj − x̄)2

, α̂ = ȳ − β̂x̄, (8.40)

Here we have abused notation and, for purposes of typographical clarity,
have used the same symbol for the estimators and the estimates of α and
β.

If Y1, Y2, . . . , Yn are independent normal random variables, each having
variance σ2 and with Yj having mean α + βxj , the maximum likelihood
estimators of α and β are the least squares estimators (8.39) of these
parameters (see Problem 8.11).

The model described above assumes that the various Yj random variables
all have the same variance. If some of the random variables have variances
greatly exceeding that of the remaining random variables, the estimates of
the parameters might be unduly influenced by those random variables with
a large variance. In this case it might be thought desirable to minimize the
weighted sum of squares

∑n
j=1 wj(Yj−α−βxj)2 rather than the unweighted

sum in (8.38), where wj is a weighting factor associated with Yj and is small
for those random variables with a large variance. If we use the suffix “w”
for the weighted least squares estimates of α and β, these estimates are
given by

β̂w =
(
∑

wj)(
∑

wjxjyj) − (
∑

wjyj)(
∑

wjxj)
(
∑

wj)(
∑

wjx2
j ) − (

∑
wjxj)2

,

α̂w =
∑

wjyj − β̂w
∑

wjxj∑
wj

,

(8.41)

all sums being over j = 1, 2, . . . , n.
A further application of weighted least squares estimation is in the con-

struction of loess curves, discussed in detail by Cleveland and Devlin (1988),
following the earlier work of Cleveland (1979). (The word “loess” is an
acronym (LOcally weighted regrESSion), and was chosen by Cleveland and
Devlin (1988), because of its use in describing geological strata. The spelling
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“lowess” occurs often in the literature. Since here we describe the work of
Cleveland and Devlin (1988), we adopt their spelling convention.)

Suppose that the relation between Y and x is nonlinear. Clearly any
linear estimation procedure, weighted or unweighted, is inappropriate. On
the other hand, a collection of linear estimation procedures, each one carried
out over a short range of x values, might be reasonable. Further, it might
be desirable that in any such local regression centered around the value x,
higher weights are given to values of xi close to x than to values further
from x. With these aims in mind, Cleveland and Devlin (1988), suggest the
following procedure.

We first consider some particular value of x, say xj . We choose some
number d and weighting factors wj−d, wj−d+1, . . . , wj+d and carry out a
weighted regression of Yj−d, Yj−d+1, . . . , Yj+d on xj−d, xj−d+1, . . . , xj+d,
using these weights. Cleveland and Devlin (1988) suggest values of d and
forms of the weights that lead to suitable loess curves.

This procedure will lead to regression estimates β̂w,j and α̂w,j , for the
weighted regression centered on xj . The observed value yj is then replaced
by y∗

j = α̂w,j + β̂w,jxj , the value of Y corresponding to xj predicted by this
(short) weighted least-squares line. This entire procedure is then carried
out for each value of j, with special calculations at boundary values where
j < d and j > n − d. The various values of the y∗

j so found are now joined
to form a loess curve, which will generally be far smoother than the curve
joining the original yj values and provide a better fit to the data than an
ordinary linear regression.

We return to loess curves in Section 13.1.3, where their use in connection
with microarray analysis is discussed.

A second generalization of (8.37) arises when the mean µj of Yj is of the
form α+β1xj1+β2xj2+ · · ·+βkxjk, for some collection of known constants
xj1, xj2, . . . , xjk, so that we write

Yj = α + β1xj1 + β2xj2 + · · · + βkxjk + Ej , j = 1, 2, . . . , n. (8.42)

Here α, β1, β2 , . . ., βk are unknown parameters that we wish to estimate,
and in the unweighted case the Ej , j = 1, 2, . . . , n are assumed to be iid ran-
dom variables with mean 0 and variance σ2. This is the multiple regression,
or general linear, model, and is important in many statistical procedures. A
particular case of this model is the polynomial regression model, for which
xji is of the form (xj)i.

The least squares estimators of α, β1, β2, . . . , βk are those which minimize
the (unweighted) sum of squares

∑n
j=1 E2

j . To find these estimators it is
convenient to write the multiple regression model (8.42) in the matrix and
vector form

Y = Cβ + E, (8.43)

Here Y = (Y1, Y2, . . . , Yn)′, E = (E1, E2, . . . , En)′, β = (α, β1, β2, . . . , βk)′

and C is an n × (k + 1) matrix whose first column consists of 1’s and
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whose entry in row j, column k +1 is xjk. It is necessary for the procedure
described below to assume that n < k + 1 and that the matrix C be of full
rank. In this case least squares estimation of β, that is by minimization of
E′E, can be carried out efficiently by matrix methods and straightforward
vector calculus. The conclusion is that the least squares estimator β̂ of β
is given by

β̂ = (C ′C)−1C ′Y. (8.44)

We make several remarks about this estimation procedure. The first is
that, as noted above, the procedure assumes that the matrix C is of full
rank, since the matrix (C ′C)−1 is not defined if this is not the case. In the
one-way ANOVA model, for example, the full rank assumption is not justi-
fied, and special procedures are necessary. This ANOVA model is discussed
in Section 9.5.3.

Second, assuming that the mean of each Ej is 0, so that (from (8.43))
the mean of Y is Cβ, the estimator (8.44) is unbiased. This can be seen
from the sequence of matrix equations

E(β̂) = E
(
(C ′C)−1C ′Y

)
= (C ′C)−1C ′E(Y) = (C ′C)−1C ′Cβ = β.

(8.45)
Third, in the estimation procedure, no assumption is needed in estab-

lishing the conclusion in (8.45) about the properties of the vector E, other
than that each Ej has mean 0. By contrast, tests of hypotheses about vari-
ous parameters in the model require further assumptions for their validity.
Perhaps the most important of these is the test of the null hypothesis that
some of the parameters β1, β2, . . . = βk are zero. ANOVA is in effect an
example of such a test. Standard statistical procedures for this and other
tests of hypothesis require the further assumptions that each Yj has a nor-
mal distribution, that the various Yj are independent and that they all
have the same variance.

Fourth, the fact that an explicit expression (8.44) exists for the esti-
mator β̂ implies that the properties of this estimator (for example the
unbiasedness property shown in (8.45)) are comparatively easy to obtain.
We return to this point below when considering properties of estimators of
the parameters in the more general model (8.46).

Fifth, the linear model (8.42) is used in many applications in bioinfor-
matics. The microarray ANOVA model of Section 13.3.7, for example, is
a linear model (see (13.12)). However, there are also examples in bioinfor-
matics where a linear model is not appropriate. Thus it might be the case
that that the linear model (8.42) is replaced by a model of the form

Yj = f(α, β1, . . . , βm; xj1, xj2, . . . , xjm) + Ej , j = 1, 2, . . . , n. (8.46)

for some nonlinear function f(·). For such a model it might not be possible
to find explicit estimators of α, β1, . . . , βm parallel to those given in explic-
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itly in (8.44) for the linear case. In the nonlinear case numerical methods
are often needed.

The least-squares method requires minimizing the expression
n∑

j=1

(
yj − f(α, β1, . . . , βm; xj1, xj2, . . . , xjm)

)2
,

where yj is the observed value of Yj , with respect to the unknown pa-
rameters. There are several potential problems with this procedure. First,
for sufficiently complicated functions f(·), the minimization process might
present computational difficulties. Second, because explicit estimators of
α, β1, . . . , βm might not be available, the properties of the estimators are
often not easy to find. This is unfortunate since several models in bioinfor-
matics are nonlinear. Finally, any least squares procedure is susceptible to
outliers, since the squaring operation exaggerates the effect of these. This
is noted for example by Li and Wong (2001), who consider a model of the
form

Yij = αiβj + Eij , (8.47)

arising in some microarray models (see Section 13.1.2). Li and Wong sug-
gest various alternatives to the standard least squares procedure that help
overcome the problems arising with the standard approach.

The linear model (8.44) is frequently used in the literature, perhaps
because of the computational and statistical problems arising with non-
linear models. Further, a linear model might serve as a first step, providing
information for the analysis of a more complicated model.

8.5 Multivariate Methods

8.5.1 Introduction
All of the estimation processes considered so far generalize easily to the mul-
tivariate case, where we estimate parameters by using the observed values
of random vectors of the form (X1, X2, . . . , Xk)′, rather than the observed
values of (scalar) random variables. Such a vector might arise, for exam-
ple, if we measure k characteristics on each individual, for example height,
weight, arm length . . .. The interesting case arises when the components of
this vector are correlated, as would be the case for these measurements. In
this brief section we consider aspects of maximum likelihood estimation in
the multivariate normal case.

8.5.2 Parameter Estimation
As for the case of a scalar random variable, maximum likelihood estimation
starts with the calculation of a likelihood. Given n iid random vectors



292 8. Statistics (ii): Classical Estimation Theory

Xj = (Xj1, Xj2, . . . , X
′
jk, (j = 1, 2, . . . , n), all having multivariate normal

distribution (2.33) with mean vector µ and variance–covariance matrix Σ,
described in (2.33), this likelihood is

L(µ,Σ) =
n∏

j=1

1
(2π)k/2|Σ|1/2 e− 1

2 (xj−µ)′Σ−1(xj−µ), −∞ < xjp < +∞.

(8.48)
From this it is found, as expected, that the maximum likelihood estimator
of µ is the vector of averages (X̄1, X̄2, . . . , X̄k)′. This estimator is unbiased.
The maximum likelihood estimator of Σ, denoted by Σ̂, is a matrix whose
pth diagonal element is σ̂2

p, defined by

σ̂2
p =

∑n
j=1(Xjp − X̄p)2

n
, (8.49)

while the (p, q) element σ̂pq of Σ̂ is defined, following the format of (3.17),
by

σ̂pq =

∑n
j=1(Xjp − X̄p)(Xjq − X̄q)

n
. (8.50)

These estimators are biased, and as in the scalar case are usually replaced
by the unbiased estimators

σ̂2
p =

∑n
j=1(Xjp − X̄p)2

n − 1
, (8.51)

and

σ̂pq =

∑n
j=1(Xjp − X̄p)(Xjq − X̄q)

n − 1
. (8.52)

With this convention, and given the observed values (xj1, xj2, . . . , xjk)′,
(j = 1, 2, . . . , n) of these random vectors, the estimate of µ is, as expected,
the vector of averages (x̄1, x̄2, . . . , x̄k)′, and the estimate of Σ is a matrix
S whose pth diagonal element is s2

p, defined by

s2
p =

∑n
j=1(xjp − x̄p)2

n − 1
, (8.53)

while the (p, q) element spq of this matrix is defined by

spq =

∑n
j=1(xjp − x̄p)(xjq − x̄q)

n − 1
. (8.54)

8.5.3 Principal Components
The visualization of the information supplied by a set of k-dimensional vec-
tors is often difficult, and the main aim of a principal components analysis
is to replace k-dimensional random vectors by vectors of a small number
(usually two or three) quantities with as little information loss as possible.
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The concepts behind this procedure are best seen visually. Suppose that
k = 2 and that the variance–covariance matrix Σ of X1 and X2 is[

9.1 3.0
3.0 1.1

]
. (8.55)

With this variance–covariance matrix, X1 and X2 are highly positively
correlated, and a sample of date points might look as shown in Figure 8.1.
If these points are projected onto the line shown in Figure 8.1, and the data
are replaced by the various points of projection, little information is lost.
The calculation of the line minimizing the information loss is equivalent to
finding the first principal component.
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Figure 8.1.

The definition of principal components is as follows. Suppose that the
elements in the random vector X = (X1, X2, . . ., Xk) have covariance ma-
trix Σ. We first find that linear combination α′X = α1X1 + α2X2 + · · · +
αkXk of the elements in X that has maximum variance. Since the variance
of α′X can be made as large as one wishes by increasing the values of the αj ,
this must be done by imposing some constraint on the values of the αj , and
the constraint chosen is the normalization requirement α′α =

∑
j α2

j = 1.
Standard calculus procedures show that the required vector α is the eigen-
vector of Σ corresponding to the largest eigenvalue λ1 of Σ. This vector is
called the first principal component. For the variance–covariance matrix Σ
in (8.55), the largest eigenvalue is 10.1 and the eigenvector corresponding
to this is [

3.0
1.0

]
. (8.56)
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Given this result, we then then find that linear combination β′X which
has maximum variance, subject to the normalization requirement β′β =∑

j β2
j = 1 and the orthogonality requirement α′β =

∑
j αjβj = 0. Stan-

dard calculus procedures show that the required vector β is the eigenvector
of Σ corresponding to the second largest eigenvalue λ2 of Σ, and this vector
is called the second principal component. This procedure can be carried on
in a natural way to define k principal components. In the above example
k = 2 and there are only two principal components.

In practice Σ is almost always unknown, and must be estimated from n
data xj = (xj1, xj2, . . ., xjk)′, j = 1, 2, . . . , n, as defined above, and α is
estimated by a, the eigenvector of the matrix defined by (8.53) and (8.54).
A parallel estimate b is made of β and of any further principal components.

We define the “total variation” in the data as

n∑
j=1

k∑
p=1

(xjp − x̄p)2.

The proportion of this total variation in the k random variables that is
captured by the first estimated principal component is

�1∑k
p=1 �p

, (8.57)

where �1, �2, . . . , �k are the eigenvalues of the estimated variance–covariance
matrix. The eigenvalues of the true variance-covariance matrix (8.55) are
10.1 and 0.1, so the estimated proportion of the total variation explained by
the first estimated principal component should be about 10.1/10.2 ≈ 0.99.

The proportion of the “total variation” explained by the second
estimated principal component is

�2∑
p �p

, (8.58)

and so on. In practice, calculation of principal components is often carried
out until, say, 90% of the total variation has been explained. If two principal
components achieve this aim, we may calculate

c1j = a′xj and c2j = b′xj (8.59)

for j = 1, 2, . . . , n, plot the resulting values on a two-dimensional plane and,
together with the vectors a and b, hope to obtain revealing information
about the random vector (X1, X2, . . ., Xk). We discuss this use of principal
components further in Section 13.4.
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8.6 Bootstrap Methods: Estimation and
Confidence Intervals

8.6.1 Introduction
An important trend in statistical inference over the last twenty years
has been the introduction of computationally intensive methods. These
have been made possible by the availability of convenient and greatly
increased computing power, and these methods are useful in bioinfor-
matics and computational biology. The permutation test of Section 3.8.1
provides one example of a computationally intensive procedure. Aspects
of some computationally intensive “bootstrap” methods used for estima-
tion and are outlined in this section, and a computationally intensive
hypothesis bootstrap testing procedure is discussed in Section 9.8. Compu-
tationally intensive methods arise in both classical and Bayesian inference:
We concentrate here on computationally intensive methods in classical
inference.

8.6.2 The “Plug-in” Concept
It is convenient to start by defining “plug-in” probability distributions and
statistics. Suppose that X is a random variable having an unknown prob-
ability distribution and that x1, x2, . . . , xn are the observed values of n
iid random variables X1, X2, . . . , Xn having the same probability distri-
bution as X. These data encompass all the information that is available
about this unknown distribution, and provide an empirical estimation of
the probability distribution for X. This is

ProbC(X = x) =
mx

n
, (8.60)

where mx is the number of values in the collection x1, x2, . . . , xn equal to
x and the suffix “C” indicates that this probability is conditional on the
observed values in the data.

Suppose now that the distribution given in (8.60) is the actual probability
distribution of X. Then from equation (1.24) the mean of X would be∑n

i=1 xi/n = x̄, and from equation (1.29) the variance of X would be∑n
i=1(xi − x̄)2/n. The two respective estimates,

x̄ and
∑n

i=1(xi − x̄)2

n
, (8.61)

are then called the plug-in estimates of the mean and variance, respectively,
of the actual distribution of X. The former is an unbiased estimate of the
actual mean of X, but the latter is a biased estimate of the actual variance,
having expected value σ2(1 − n−1) with respect to the distribution of X.

In general, a “plug-in” estimate of a parameter is calculated from the em-
pirical distribution in the same way as the parameter itself is defined from
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the true, but unknown, distribution of the random variable X. Thus the
observed proportion of successes in a binomial distribution is the plug-in
estimate of the probability p of success, and for any probability distribution
the sample median is the plug-in estimate of the median of that distribu-
tion. Plug-in estimates are clearly reasonable, but they are not necessarily
unbiased, as the above example of the variance estimate, and the result of
Problem 8.13, show. In both of these cases, however, the bias approaches
0 as n → ∞.

8.6.3 Classical Estimation Methods
In this and the following section we describe a problem that can arise with
classical estimation methods and the way in this problem is overcome by
the bootstrap approach.

Suppose that X1, X2, . . . , Xn are iid continuous random variables, with
unknown density function fX(x). We wish to estimate, for given some given
probability p, value Ap such that Prob (Xj ≤ Ap = p) and to to estimate
the accuracy of this estimate. In practice, p is usually some frequently used
probability such as 0.05, and it is convenient to assume that there is some
integer i0 such that p = i0/(n + 1).

The estimation of Ap is based on the observed values x(1), x(2), . . . , x(n)
of the order statistics X(1), X(2), . . . , X(n) of X1, X2, . . . , Xn. If the cumu-
lative distribution function corresponding to fX(x) is FX(x), then from
Theorem 1.2 on page 52, the random variables Uj , defined by Uj =
FX(Xj), j = 1, 2, . . . , n, have uniform distributions in (0, 1). Further,
since X1, X2, . . . , Xn are iid, so are U1, U2, . . . , Un. Equation (2.137), ap-
plied to U1, U2, . . . , Un, with L = 1, then shows that the random variable
U(i0) = FX(X(i0)) has a beta distribution with parameters i0 and n−i0+1,
and thus from equation (1.79) has mean i0/(n + 1) = p. That is to say,
E(FX(X(i0))) = p.

Equation (B.32) then shows that to a first order of approximation,
E(X(i0)) = F−1

X (p). Since F−1
X (p) = Ap, this implies to a first order of

approximation that X(i0) is an unbiased estimator of Ap. We denote this
estimator Âp. This addresses the first problem raised above.

The accuracy of this estimator depends on its standard deviation of
Âp. Since X(i0) = F−1

X (U(i0)) and the variance of U(i0) is approximately
p(1 − p)/n, equation (B.33) shows that

standard deviation of Âp
∼=
√

p(1 − p)
n(fX(Ap))2

. (8.62)

In the particular case p = 1
2 , Ap is the median M of the probability distri-

bution of the random variable X, so that if M̂ is the sample median, then
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to a close approximation,

standard deviation of M̂ ∼=
√

1
4n(fX(M))2

. (8.63)

However, neither this formula nor the more general formula (8.62) is of
immediate value, since they both rely on knowledge of the unknown density
function fX(x). Further, no other classical approach resolves this problem
when estimating Ap, as well as other parameters, when the density function
fX(x) is unknown. A bootstrap approach to this problem is discussed in
Example 1 of Section 8.6.6.

8.6.4 Bootstrap Estimation Methods
There is a voluminous literature on bootstrap estimation procedures, and
we consider only some aspects of the procedure here. For detailed accounts
see Efron and Tibshirani (1993), and for further material see Davison and
Hinkley (1997), Efron (1982), Hall (1992), Manly (1997), Sprent (1998),
and Chernick (1999).

Suppose we wish to estimate the mean µ of the probability distribution of
some random variable X, and wish also to find a confidence interval for the
mean, using the observed values x1, x2, . . . , xn of n iid random variables
X1, X2, . . . , Xn each having this probability distribution. The theory in
Section 3.3.1 shows that X̄ is an unbiased estimator of µ, and equation (3.8)
shows how an approximate confidence interval for µ can be calculated. The
form of this confidence interval is based on the assumption that X̄ has an
approximately normal distribution. These calculations are not applicable
if one wishes to find a confidence interval for some parameter θ using an
estimator that does not have an approximately normal distribution.

Suppose that θ̂ = t(X1, X2, . . . , Xn) is an estimator of θ, based on n iid
random variables X1, X2, . . . , Xn having a distribution depending on θ; this
might or might not be the plug-in estimator. The estimate θ̂ corresponding
to this estimator is

θ̂ = t(x1, x2, . . . , xn), (8.64)

where x1, x2, . . . , xn are the observed values of X1, X2, . . . , Xn. We abuse
notation here and use the same symbol for the estimator and the estimate.

In the bootstrap procedure we regard the observations x1, x2, . . . , xn as
being given. These give the “plug-in” empirical distribution of X. In the
case of discrete random variables, when the sample size n is large, each pos-
sible value of the random variable can be expected to occur in the sample
with frequency close to its probability, while for continuous random vari-
ables the proportion of observations in any interval should be close to the
probability that the random variable X lies in that interval. This obser-
vation forms the basis of the bootstrap procedure described below. When
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the sample size is small, greater caution is needed in applying bootstrap
methods.

In the first step of the so-called non-parametric bootstrap estimation pro-
cedure we sample from the n observations n times with replacement . This
is called a bootstrap sample. From the comments in the previous paragraph,
this may be taken, when n is large, as an approximation to iid sampling
from the actual distribution of X. Some of the observations in the original
data might not appear in this bootstrap sample, some might appear once,
some twice, and so on. From this bootstrap sample we calculate an estimate
θ̂B of the parameter θ of interest, replacing x1, x2, . . . , xn in (8.64) by the
n bootstrap sample values. Here the suffix “B” signifies “bootstrap.”

This procedure is repeated a large number R of times, leading to R “boot-
strap” estimates θ̂B1 , θ̂B2 , . . . , θ̂BR

. These can be regarded as describing an
empirical distribution of θ̂. The bootstrap estimate θ̂B(·) of θ, defined by

θ̂B(·) =
θ̂B1 + θ̂B2 + · · · + θ̂BR

R
(8.65)

is simply the average of the R bootstrap estimates.
This estimate on its own conveys no information about its precision, and

to obtain this information we use the bootstrap estimate of the variance of
the estimator θ̂, namely

σ̂2
θ,B = estimated variance of θ̂ =

(
∑R

j=1 θ̂ 2
Bj

) − Rθ̂ 2
B(·)

R − 1
, (8.66)

where R is as defined in Section 8.6.4.
Any given bootstrap sample from the original data are x1, x2, . . . , xn

can be written as (Y1)x1, (Y2)x2, . . . , (Yn)xn, where by this we mean that
xj appears Yj times in the bootstrap sample. The vector (Y1, Y2, . . . , Yn)
has the multinomial distribution (2.30) with pi = 1/n, so that E(Yi) =
1, Var (Yi) = (n − 1)/n, and from (2.31), the covariance between Yi and Yj

is −1/n.
This representation allows various properties of bootstrap samples to be

found quickly, and here we consider properties of the average of a bootstrap
sample. This average can be written as

∑
i Yixi/n. Given x1, x2, . . . , xn, this

has (conditional) mean x̄ and (conditional) variance∑n
i=1(xi − x̄)2

n2 . (8.67)

The unconditional mean of X̄ is the true mean, so that the mean of any
bootstrap sample is the true mean. The conditional variance (8.67) has
unconditional mean (n − 1)σ2/n2, where σ2 is the variance of the original
random variables. When n is large, this is close to the variance σ2/n of the
classical estimator X̄.
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8.6.5 Bootstrap Confidence Intervals
One major aim of bootstrap methods is to find confidence intervals when
we have insufficient information about the distribution of the observations
to employ classical methods, thus overcoming the problems outlined at the
end of Section 8.6.3. We describe two bootstrap approaches to this problem.
In general the question of the best choice of bootstrap confidence intervals
is a complex one and is taken up in detail by Efron and Tibshirani (1993);
see also Schenker (1985).

The first approach is based on quantile methods. If 2.5% of the R repli-
cated bootstrap values θ̂Bj lie below the value A and 2.5% lie above the
value B, then (A, B) can be taken as an approximate 95% confidence in-
terval for θ. We call this a 95% quantile bootstrap confidence interval. The
generalization of this to finding an 100α% confidence interval, for any value
of α, is immediate.

The second, and more approximate, approach is based on the two stan-
dard deviation rule of Section 1.10.2, page 32, and should be used only
if one is confident that θ̂ has an approximately normal distribution. This
leads to an approximate 95% confidence interval for θ of the form

(θ̂B(·) − 2σ̂θ,B , θ̂B(·) + 2σ̂θ,B), (8.68)

where (θ̂B(·) is defined in (8.65) and σ̂θ,B is defined implicitly in (8.66).

8.6.6 Examples
Example 1. The problem of finding a confidence interval for the estimate of
Ap was left unresolved in Section 8.6.3. The natural estimate xi0 of Ap was
introduced in Section 8.6.3. One can now draw R bootstrap samples and,
for bootstrap replication j, compute the estimate (Âp)Bj as the i0th order
statistic in that bootstrap replication. The first, or quantile, approach for a
95% bootstrap confidence interval leads to the interval (A, B), where 2.5%
of the R replicated bootstrap values (Âp)Bj lie below the value A and 2.5%
lie above the value B

The second approach uses (8.68). The variance of the estimator Xi0 is
calculated following the prescription in (8.66), with θ̂ replaced by Âp and
θ̂Bj

replaced by (Âp)Bj
. From this an approximate 95% confidence interval

is found as in (8.68).

Example 2. Methods to measure gene expression intensities in a given cell
type were discussed in Section 3.5.2. Golub et al. (1999) present a data set
with gene intensities measured by Affymetrix microarrays. In this data set
the intensities of approximately 7000 genes are measured in 72 different
experiments. As an example of the data from one such gene, Figure 8.2
shows the intensity of the gene with Genbank accession number X03934, a
T-cell antigen receptor gene T3-delta, in 46 acute lymphoblastic leukemia
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3 5.41 9.33

Figure 8.2. Intensities (in ln scale) of the gene with GenBank accession X03934
(T-cell antigen receptor gene T3-delta), measured in 46 acute lymphoblastic
leukemia cells by Golub et al. (1999). There are 19 with intensity equal to 3.
The sample mean is 5.41.

(ALL) cells. Suppose we want to estimate a 95% confidence interval for the
mean of the distribution of intensities for this gene in this type of cell. By
performing 5000 bootstrap estimates, we obtained a bootstrap estimate of
the mean equal to 5.408, very close to the sample average of 5.407. The full
range of the 5000 bootstrap estimates of the mean was (4.30, 6.86), with
95% of the samples lying between (4.77, 6.09). Using the quantile approach,
we estimate the 95% confidence interval for the mean to be (4.77, 6.09). For
comparison, the 95% confidence interval found using (3.9) gives (4.73, 6.09),
which is virtually identical to the bootstrap interval. Therefore even for a
highly irregular distribution that is very far from normal, such as that
shown in Figure 8.2, the approximation (3.9) is apparently very accurate
even with as few as 46 observations.

There is no simple analogue to (3.9) for estimating a confidence inter-
val for the standard deviation of the expression intensity of this gene. The
distribution in Figure 8.2 is apparently trimodal, and not of any standard
type. Therefore it is not clear how to derive a theoretical confidence interval.
We can however easily compute a bootstrap estimate. Using 5000 bootstrap
replicates, we obtained a bootstrap estimate of the standard deviation equal
to 2.28. The full range of the 5000 bootstrap estimates was (1.63, 2.69), with
a 95% quantile bootstrap confidence interval of (1.97, 2.55).

More examples of applications of bootstrap methods are discussed in
Chapters 13 and 15.

Problems

8.1. Show that the estimator of µ given in (8.13) is both unbiased and con-
sistent and that the estimator of σ2 is biased but consistent. Write down
a biased estimator of µ that is not consistent and, by considering X1 only,
find an unbiased estimator of µ that is not consistent.

8.2. Show that the maximum likelihood estimators of the probabilities for
the various outcomes in a multinomial distribution are the observed pro-
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portions of observations in the respective outcomes.

8.3. Replacing ξ by p in the Cramér–Rao bound (8.18), find a lower bound
for the variance of any unbiased estimator of the Bernoulli parameter p,
using the likelihood L defined in (8.5). Find an unbiased estimator of p
whose variance reaches this lower bound.

8.4. Write down the likelihood L defined by n iid random variables X1,
X2, . . . , Xn from the exponential distribution (1.66). By putting 1/λ = ξ
in this likelihood, find the Cramér–Rao bound (8.18) for the variance of
any unbiased estimator of 1/λ. Find an unbiased estimator of 1/λ whose
variance reaches this lower bound.

8.5. Use the Cramér–Rao bound (8.18) to find a lower bound for the
variance of any unbiased estimator of the parameter λ in the Poisson dis-
tribution (1.22). Find an unbiased estimator of λ whose variance achieves
this bound.

8.6. Suppose that X1 and X2 are independent random variables, each hav-
ing the exponential distribution (1.66). An unbiased estimator of the mean
1/λ of this distribution is X̄ = (X1 + X2)/2, and the variance (which is
also the mean square error) of this estimator is 1/(2λ2). The aim of this
and the next two questions is to investigate estimators with a smaller mean
square error than that of X̄.

(i) Use equations (2.58) and (B.44) to show that E(
√

XiXj) = π/4λ.

(ii) Show from (i) that the bias of
√

XiXj as an estimator of 1/λ is
(π − 4)/4λ.

(iii) The variance of
√

XiXj is, from equation (1.30), E(XiXj) −(
π2/16λ2

)
. Use a result of Problem 1.21 together with equation (2.58)

to show that this variance is (16 − π2)/16π2.

(iv) Use the results of (ii) and (iii) together with equation (3.14) to show
that the mean square error of

√
XiXj as an estimator of 1/λ is (4 −

π)/2λ2. Show from this that the mean square error of
√

XiXj is less
than that of X̄.

8.7. Continuation. A second estimator of 1/λ is kX̄, for some constant k.
Find the range of values of k for which the mean square error of this esti-
mator is less than that of X̄.

8.8. Continuation. Suppose that X1, . . . , Xn are independent random vari-
ables, each having the exponential distribution (1.66). The variance (and
mean square error) of X̄ as an estimator of 1/λ is now 1/nλ2. Compare
this mean square error with that of the estimator

√
X1 · · ·Xn for the cases
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n = 3, n = 4, using the fact that Γ(1.25) = 0.9064025, Γ(4
3 ) = 0.8929795,

Γ( 5
3 ) = 0.9027453.

8.9. Solve the equations in (8.36) for λ̂ and k̂. Are the estimators unbiased?

8.10. Use the fact that the mean of Yi is α + βxi, together with the fact
that

E(
∑

i

aiYi) =
∑

i

aiE(Yi)

for any set of constants {ai}, to show that β̂ and α̂, defined in (8.39), are
unbiased estimators of β and α respectively.

8.11. Show that if Y1, Y2, . . . , Yn are independent normal random variables,
each having variance σ2 and with Yj having mean α + βxj , the maximum
likelihood estimators of α and β are the least squares estimators (8.39).

8.12. Let X1, X2, . . . , Xn be independent continuous random variables, each
having density function f(x) = e−(x−θ), θ ≤ x < +∞. Let X(1), X(2), . . . ,
X(n) be the corresponding order statistics. Use (2.132) to find the respective
density functions of X(1) and X(2), and from this show that

E
(
X(1)
)

= θ +
1
n

, E
(
X(2)
)

= θ +
2n − 1

n(n − 1)
.

Thus show that X(1) − (n − 1)(X(2) − X(1))/n is an unbiased estimator of
θ.

8.13. Use the result of Problem 2.25 to discuss the bias of the plug-in es-
timator of the median of the exponential distribution when n, the number
of observations, is odd (so that n = 2k + 1 for some integer k).

8.14. Suppose that X1, X2, . . . , Xn are n iid random variables each having
a normal distribution with mean µ, variance σ2. In this case the median
of the distribution is the same as the mean. Compare the asymptotic stan-
dard deviation calculated from (8.63) arising if the sample median is used
to estimate the mean with that for estimator X̄.

8.15. Derive the expression (8.67).

8.16. Suppose that the observed values of n continuous iid random vari-
ables are x1, x2, . . . , xn, where the xj are all distinct. A bootstrap sample
(with replacement) is taken from these. Show that there are

(2n−1
n

)
different

possible bootstrap samples. Hint: A classical result of probability theory
(see Feller (1968)) is that if r indistinguishable objects are placed into n
distinguishable cells, the number of different occupancy arrangements is
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n+r−1

r

)
. Now put r = n and make the analogy that if nj objects are put

in cell j, the value xj arises nj times in the bootstrap sample.

8.17. Continuation. Calculate the number of distinct bootstrap samples for
the cases n = 3, n = 4, and n = 5, and display all possible samples for the
case n = 3.

8.18. Continuation. Find the probability of each bootstrap sample listed in
Problem 8.17 for the case n = 3. Use your result to find the mean number
of times that x1 appears in a bootstrap sample, and confirm your result
by showing that the complete distribution of the number of times that x1
appears in a bootstrap sample has a binomial distribution with parameter
1/3 and index 3. Generalize your result to the case of an arbitrary value of n.

8.19. Continuation. Rewrite the possible samples for the case n = 3 in
Problem 8.17 using the observed values x(1), x(2), and x(3) of the order
statistics. From this, find the sample average and the sample median of
each of the possible samples. Note: If a bootstrap sample is of the form
(x(i), x(i), x(j)) for i �= j, the sample median is defined to be x(i).

8.20. Continuation. Use the result of Problem 8.18 to find the conditional
mean of the bootstrap sample average and of the bootstrap sample median.
(The word “conditional” emphasizes that these are functions of x(1), x(2),
and x(3).)

8.21. Continuation. In the case where the three random variables have the
exponential distribution (1.66), find the unconditional mean of the boot-
strap sample average and of the bootstrap sample median. (For the latter,
use the result of Problem 2.23.) Compare these with the corresponding
means of the classical plug-in estimators.



9
Statistics (iii): Classical Hypothesis
Testing Theory

9.1 Introduction

In this chapter we introduce aspects of classical hypothesis testing theory
that will be useful in later chapters of this book. We consider initially the
case where the sample size is fixed in advance of the experiment generating
the data, and in particular does not depend on the values of the observations
as they arise. We conclude with sequential tests of hypotheses, where the
sample size is not fixed in advance. Sequential analysis theory forms a
natural introduction to the theory of BLAST, which is discussed in Chapter
10.

9.2 Simple Fixed-Sample-Size Tests

9.2.1 The Likelihood Ratio
The five steps of classical hypothesis-testing procedures were outlined in
Chapter 3. In this chapter we expand on the procedure of Step 3, leading
to the choice of test statistic, and Step 4, deciding when the observed value
of the test statistic should lead to rejection of the null hypothesis.

We consider first the case where both null and alternative hypotheses are
simple, that is, where both hypotheses completely specify the probability
distribution of the random variables of interest, including the numerical
values of all parameters. Although the numerical value α of the Type I
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error is chosen by the experimenter (in Step 2 of the hypothesis-testing
procedure), no specific choice is made of the numerical value β of the Type
II error. However, it is desirable to have a procedure that, with the Type
I error fixed, minimizes the numerical value β of the Type II error. Such
a procedure would maximize the power of the test, that is, the probability
1 − β of rejecting the null hypothesis when the alternative hypothesis is
true. We call such a procedure a most powerful test of this null hypothesis
against this alternative. The methods used to find such a test are identical
for both discrete and continuous random variables, so we describe in detail
only the continuous random variable case.

9.2.2 The Neyman–Pearson Lemma
We consider first the simplest case, that of iid random variables X1, X2,. . . ,
Xn each having completely specified density function f0(x) under the null
hypothesis H0 and completely specified density function f1(x) under the
alternative hypothesis H1. The decision about accepting H0 or H1 will be
based on the observed values x1, x2, . . . , xn of X1, X2, . . . , Xn.

The Neyman–Pearson lemma states that the most powerful test of H0
against H1 is obtained by using as test statistic the likelihood ratio, defined
as

LR =
f1(X1)f1(X2) · · · f1(Xn)
f0(X1)f0(X2) · · · f0(Xn)

. (9.1)

The null hypothesis is rejected when the observed value of LR is greater
than or equal to some constant K, where K is chosen such that

Prob(LR ≥ K when H0 is true) = α. (9.2)

The proof that use of LR as test statistic leads to the most powerful test
is instructive, so we give it here.

Let A be the region in the joint range of X1, X2, . . . , Xn such that LR ≥
K, where K is defined by (9.2). Then∫

· · ·
∫

A

f0(u1)f0(u2) · · · f0(un)du1du2 · · · dun = α. (9.3)

Let B be any other region in the joint range of X1, X2, . . . , Xn such that∫
· · ·
∫

B

f0(u1)f0(u2) · · · f0(un)du1du2 · · · dun = α. (9.4)

Rejection of H0 when the observed vector (x1, x2, . . . , xn) is in B thus also
leads to a test of the required Type I error. Let A and B overlap in the
region C.

The power of the test is the probability that the null hypothesis is rejected
when the alternative hypothesis is true. Thus the power of the test using
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A is ∫
· · ·
∫

A

f1(u1) · · · f1(un)du1 · · · dun,

and if we define ∆ by

∆ = power of the test using A − power of the test using B,

we obtain

∆ =
∫

· · ·
∫

A

f1(u1) · · · f1(un)du1 · · · dun

−
∫

· · ·
∫

B

f1(u1) · · · f1(un)du1 · · · dun (9.5)

=
∫

· · ·
∫

A\C

f1(u1) · · · f1(un)du1 · · · dun

−
∫

· · ·
∫

B\C

f1(u1) · · · f1(un)du1 · · · dun, (9.6)

where A \ C denotes the set of points in A but not in C. Now, in A \ C,

f1(u1) · · · f1(un) ≥ Kf0(u1) · · · f0(un),

while in B \ C,

f1(u1) · · · f1(un) ≤ Kf0(u1) · · · f0(un).

Thus

∆ ≥
∫

· · ·
∫

A\C

Kf0(u1) · · · f0(un)du1 · · · dun

−
∫

· · ·
∫

B\C

Kf0(u1) · · · f0(un)du1 · · · dun (9.7)

=
∫

· · ·
∫

A

Kf0(u1) · · · f0(un)du1 · · · dun

−
∫

· · ·
∫

B

Kf0(u1) · · · f0(un)du1 · · · dun (9.8)

= Kα − Kα = 0. (9.9)

This result implies that that the power of the test using A is greater than
or equal to the power using B, and completes the proof of the lemma.

The lemma not only shows that LR is the appropriate test statistic (Step
3 of the hypothesis testing procedure), but also indicates which observed
values of LR lead to rejection of the null hypothesis (Step 4).
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It is equivalent to use any monotonic function of LR as the test statistic
instead of LR itself, with a value of K appropriate to the new test statis-
tic, and this often leads to a standard testing procedure, as the following
example shows.

9.2.3 Example. Sequence matching.
In the sequence-matching example discussed in Section 3.4.1, the simple
null hypothesis that the probability of a match is 0.25 was tested against
the simple alternative hypothesis that this probability is 0.35. Suppose
more generally that under the null hypothesis the probability of a match is
p0 and under the alternative hypothesis this probability is p1, with p1 > p0.
Then from (8.5) and (9.1) the likelihood ratio LR is

(p1)
∑n

i=1 Yi(1 − p1)(n−∑n
i=1 Yi)

(p0)
∑n

i=1 Yi(1 − p0)(n−∑n
i=1 Yi)

(9.10)

=
(

p1(1 − p0)
p0(1 − p1)

)∑n
i=1 Yi

(
1 − p1

1 − p0

)n

. (9.11)

The null hypothesis is rejected when the likelihood ratio is sufficiently large.
However, the null hypothesis probability distribution of this ratio is not
straightforward, so that the evaluation of the constant K in (9.2) is not
immediate. On the other hand, the likelihood ratio is a monotonic increas-
ing function of the number of matches Y =

∑n
i=1 Yi, so that it is equivalent

to use Y as test statistic and to reject the null hypothesis when the observed
value y of Y is sufficiently large. Under the null hypothesis Y has a bino-
mial distribution with parameter p0 and index n, and it is straightforward
to use Y as the test statistic, as described in Section 3.4.1.

The null hypothesis is rejected if y ≥ K∗, where y is the observed value
of Y and K∗ is determined by the requirement

Prob(Y ≥ K∗ | p = p0) = α, (9.12)

where α is the Type I error chosen. Provided only that p1 > p0, the calcu-
lation of the significance point K∗ is not influenced by the numerical value
of p1. Thus the testing procedure in this example is the most powerful one
whatever the alternative hypothesis might be, provided only that it de-
fines a value of p exceeding p0. Thus this testing procedure is uniformly
most powerful for the (more realistic) composite alternative hypothesis
p = Prob(match) > p0. Despite this, if the true value of the parameter
is close to p, the power even of the likelihood ratio test might be small.
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9.3 Classical Hypothesis Testing: Composite
Fixed-Sample-Size Tests

9.3.1 Introduction
The Neyman-Pearson testing theory described in Section 9.2.2 concerns
the case of of testing whether a set of iid random variables come from one
of two completely specified distributions. In most cases arising in prac-
tice, however, the random variables of interest are usually not identically
distributed, at least under the alternative hypothesis. An example is the
two-sample t-test, where under the alternative hypothesis an observation
in the first group has a different mean from that of an observation in the
second group. In this case the likelihood of the observations is not of the
simple iid form such as those discussed above. For example, under the al-
ternative hypothesis in the two sample t-test of Section 3.5 the likelihood
L of the random variables (X11, X12, . . . , X1m, X21, X22, . . . , X2n) is, from
(2.8),

L =
m∏

i=1

1√
2πσ

e−(x1i−µ1)2/(2σ2)
n∏

i=1

1√
2πσ

e−(x2i−µ2)2/(2σ2), (9.13)

where µ1 and µ2 are different from each other.
A further generalization is that the hypotheses being tested usually do

not specify completely all values of the parameters of the distribution of
the observations; that is, they are usually composite. The two-sample t-
test is a case in point. The null hypothesis states that the means µ1 and
µ2 in (9.13) are equal, without specifying their common numerical value,
and makes no specification about the variance σ2, and the alternative hy-
pothesis makes no specification about any of the parameters. The theory
of tests involving composite hypotheses is not straightforward, especially
the optimality aspects of the procedures adopted, and here we only outline
those aspects of the theory relevant to the material of this book and do not
address optimality issues.

9.3.2 Parameter Spaces and the Likelihood Ratio λ

The tests that we consider are tests about the numerical values of param-
eters. The set of values that the parameters of interest can take is called
the parameter space. For example, in the normal distribution there are two
parameters, the mean µ and the variance σ2, and the parameter space is
{−∞ < µ < +∞, 0 < σ2 < +∞}. The null hypothesis states that the
parameters in the distribution of interest take values in some region ω of
the parameter space, while the alternative hypothesis states that they take
values in some region Ω of the parameter space.
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In practice, ω is usually a subspace of Ω, as in the example above, and we
restrict attention to this, the nested hypotheses, case. When the null hypoth-
esis is nested within the alternative hypothesis, the aim of the hypothesis
testing procedure is somewhat different from the aim in the unnested case.
The more general alternative hypothesis can always explain the data at
least as well as the narrower null hypothesis, and we are interested in
whether it explains the data significantly better than the null hypothesis.
If it does, the null hypothesis is rejected.

As stated above, there is substantial optimality theory for composite hy-
potheses. This theory suggests that in many cases a desirable test statistic
is the ratio λ, defined by

λ =
Lmax(ω)
Lmax(Ω)

. (9.14)

Here Lmax(ω) is the maximum of the likelihood of the observations when
the parameters are confined to the region ω of the parameter space defined
by the null hypothesis and Lmax(Ω) is the maximum of the likelihood of the
observations when the parameters are confined to the region Ω defined by
the alternative hypothesis. In the following section we calculate this ratio
for the two-sample t-test, where the likelihood L is defined in (9.13).

The null hypothesis is rejected when λ is sufficiently small to guarantee
that the test has the Type I error desired. In the equal variance two-sample
t-test the choice of a Type I error leads to an explicit determination of how
small λ must be for the null hypothesis to be rejected. In more complicated
cases approximations are needed, as discussed in Section 9.4.

We note in passing that the numerator in the λ ratio in (9.14) refers to the
null hypothesis and the denominator to the alternative hypothesis, whereas
the converse is true for the likelihood ratio (9.1) for simple hypotheses. This
is in the nature of a historical accident and has no significance.

As is the case for the simple hypothesis likelihood ratio LR, the composite
hypothesis analogue λ is often a monotonic function of some standard test
statistic whose properties are known, and when this is so it is convenient
to carry out the test using that statistic.

9.3.3 Example: t-tests
The theory of the previous section leads directly to various standard sta-
tistical testing procedures. Of these perhaps the most frequently used are
t-tests, and we now describe the theoretical derivation of the two-sided and
the one-sided equal variance t-tests where the likelihood L is defined in
(9.13). These tests generalize to the ANOVA and T 2 testing procedures,
discussed in Section 9.5 and Section 9.6 respectively.



310 9. Statistics (iii): Classical Hypothesis Testing Theory

The Equal Variance Two-Sided t-test
Suppose that the random variables X11, X12, . . . , X1m in group 1 are
NID(µ1, σ

2) and the random variables X21, X22, . . . , X2n in group 2 are
NID(µ2, σ

2), and that X1i is independent of X2j for all i and j. We wish
to test the null hypothesis µ1 = µ2 (= µ, unspecified) against the alterna-
tive hypothesis that leaves the values of both µ1 and µ2 unspecified. The
value of σ2 is unknown and is unspecified under both hypotheses, but is
assumed to be the same in the two groups considered. (This assumption
might be unreasonable in many cases in practice, and the case where the
variances in the two groups are different is discussed below.) The region ω
is {µ1 = µ2, 0 < σ2 < +∞}, the region Ω is

{−∞ < µ1 < +∞,−∞ < µ2 < +∞, 0 < σ2 < +∞},

and the likelihood of these random variables is as given in (9.13). Under the
null hypothesis the two sets of random variables have the same distribution.
Writing µ for the mean of this (common) distribution, the maximum of
(9.13) over ω occurs when

µ̂ = ¯̄X =
X11 + X12 + · · · + X1m + X21 + X22 + · · · + X2n

m + n
,

and the (common) variance σ2 is

σ̂2
0 =
∑m

i=1(X1i − ¯̄X)2 +
∑n

i=1(X2i − ¯̄X)2

m + n
.

Inserting µ̂ for both µ1 and µ2, and σ̂2
0 for σ2 in (9.13), we get

Lmax(ω) =
1

(2πσ̂2
0)(m+n)/2 e−(m+n)/2. (9.15)

Under the alternative hypothesis the maximum of (9.13) over Ω occurs
when µ̂1 is X̄1 = (X11 + X12 + · · · + X1m)/m, µ̂2 is X̄2 = (X21 + X22 +
· · · + X2n)/n, and σ2 is

σ̂2
1 =
∑m

i=1(X1i − X̄1)2 +
∑n

i=1(X2i − X̄2)2

m + n
.

Inserting µ̂1 for µ1, µ̂2 for µ2 and σ̂2
1 for σ2 in (9.13), we get

Lmax(Ω) =
1

(2πσ̂2
1)(m+n)/2 e−(m+n)/2. (9.16)

Thus the test statistic λ reduces to

λ =
Lmax(ω)
Lmax(Ω)

=
(

σ̂2
1

σ̂2
0

)(n+m)/2

. (9.17)
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The algebraic identity
m∑

i=1

(X1i − ¯̄X)2 +
n∑

i=1

(X2i − ¯̄X)2

=
m∑

i=1

(X1i − X̄1)2 +
n∑

i=1

(X2i − X̄2)2 +
mn

m + n
(X̄1 − X̄2)2

may be used to show that

λ =
(

1
1 + t2/(m + n − 2)

)(m+n)/2

, (9.18)

where t is defined in (3.30). It is thus equivalent by the monotonicity ar-
gument to use t2, or alternatively |t|, instead of λ, as test statistic. Small
values of λ correspond to large values of |t|, so that sufficiently large values
of |t| lead to rejection of the null hypothesis. The null hypothesis distri-
bution of the statistic t is known (as the t distribution with m + n − 2
degrees of freedom) and significance points are widely available. Thus once
a Type I error has been chosen, values of |t| that are sufficiently large to
lead to rejection of the null hypothesis can be determined. Thus the two-
sample equal variance t-test derives from the theory of tests of composite
hypotheses outlined in Section 9.3.2.

The Equal Variance One-Sided t-test
The theory for one-sided equal variance t-tests is slightly different from
the theory developed for the corresponding two-sided test described above.
Instead of an alternative hypothesis that leaves the values of both µ1 and
µ2 unspecified, the alternative hypothesis in the one-sided test claims that
one mean is greater than or equal to the other, for example that µ1 ≥ µ2.
In this case the region Ω is {µ1 ≥ µ2, 0 < σ2 < +∞}.

If x̄1 ≥ x̄2, all maximum likelihood estimates are as for the two-sided
case and the t statistic for the two-sided case is recovered. If x̄1 < x̄2, the
unconstrained maximum of the likelihood arises outside the region specified
by the null hypothesis. There is a unique maximum of the likelihood (at
(x̄1, x̄2)), and this implies that the maximum in the region defined by the
null hypothesis arises at a boundary point of Ω. At this point the maximum
likelihood estimates of both µ1 and µ2 are equal, both being equal to the
overall average ¯̄x. In this case the alternative hypothesis does not explain
the observations any better than does the null hypothesis, the likelihood
ratio is 1, and the null hypothesis is not rejected.

The outcome of these observations is that the null hypothesis is rejected
in favor of the alternative hypothesis µ1 ≥ µ2 only for sufficiently large
positive values of t.
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The simplicity of the two t-tests described above hides several important
problems that can arise in the application of the theory in other cases.
First, the ratio λ might not reduce to a function of a well-known test
statistic such as t. More important, there might not even be a unique null
hypothesis distribution of the statistic found by the λ ratio procedure.
In the case of the above t-test, the null hypothesis distribution of the t
statistic is independent of the unknown variance and also of the mean value
unspecified by the null hypothesis. That is, this distribution is independent
of the parameters whose values are not prescribed by the null hypothesis,
so that the t statistic is a pivotal quantity. It is fortunate that this is the
case, and unfortunately there are many testing procedures for which the
pivotality property does not hold. If the null hypothesis defines a region in
parameter space, there can be no guarantee in general that the distribution
of the test statistic is the same for all points in this region, as the following
example, very similar to those discussed above, shows.

The Unequal Variance Two-Sided t-test
In this example we consider the case identical to that of the two-sided t-
test discussed above, except that now the observations in the first group
are assumed to be NID(µ1, σ

2
1) and the observations in the second group

are assumed to be NID(µ2, σ
2
2). Again we wish to test the null hypothesis

µ1 = µ2 (= µ, unspecified) against the alternative hypothesis that leaves
the values of both µ1 and µ2 unspecified. The values of σ2

1 and σ2
2 are

unknown, are not assumed to be identical, and are unspecified under both
hypotheses. The region ω is {µ1 = µ2, 0 < σ2

1 , σ2
2 < +∞}, and the region

Ω makes no constraint on the values of the parameters µ1, µ2, σ2
1 and σ2

2 .
The likelihood of (X11, X12, . . . , X1m, X21, X22, . . . , X2n) is, from (2.8),

m∏
i=1

1√
2πσ1

e−(x1i−µ1)2/(2σ2
1)

n∏
i=1

1√
2πσ2

e−(x2i−µ2)2/(2σ2
2). (9.19)

Under the null hypothesis the two sets of random variables have the same
mean, which we write µ. The likelihood then becomes

m∏
i=1

1√
2πσ1

e−(x1i−µ)2/(2σ2
1)

n∏
i=1

1√
2πσ2

e−(x2i−µ)2/(2σ2
2). (9.20)

The maximum likelihood estimates µ̂, σ̂2
1 and σ̂2

2 satisfy the simultaneous
equations∑

(x1i − µ̂)
σ̂2

1
+
∑

(x2i − µ̂)
σ̂2

2
= 0, σ̂2

1 =
∑

(x1i − µ̂)2

m
, σ̂2

2 =
∑

(x2i − µ̂)2

n
.

These lead to a cubic equation in µ̂. The upshot of this is that neither the λ
ratio, nor any monotonic function of it, has known probability distribution
when the null hypothesis is true, and also that no pivotal statistic exists.
Thus the λ ratio approach does not lead to any useful testing procedure.
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One might then decide to use the t statistic defined in (3.30) as a reason-
able test statistic. However, as discussed in Section 3.5, the null hypothesis
distribution of this statistic is unknown, since it depends on the unknown
ratio σ2

1/σ2
2 , so that the pivotality property does not hold. In practice,

the heuristic procedure described in Section 3.5, employing the statistic t′

defined in (3.37), is often used.

9.4 The −2 log λ Approximation

9.4.1 Theory
In this section we address the problems, exemplified by the final example
in Section 9.3.3, that the λ ratio procedure does not lead to a test statistic
whose null hypothesis is known, and that even for a statistic such as t
chosen not through the λ ratio theory but as a reasonable statistic to use,
the non-pivotality problem can arise.

Various approximation procedures have been proposed to address these
problems in general. Perhaps the best known is based on the fact that if
various regularity assumptions discussed below hold, and if the null hy-
pothesis is true, −2 log λ (with λ as defined in (9.14)) has an asymptotic
chi-square distribution, with degrees of freedom equal to the difference in
the numbers of parameters unspecified by null and alternative hypotheses
respectively. In this statement the word “asymptotic” means “as the sam-
ple size increases to infinity.” This fact gives us a testing procedure that
is asymptotically valid and, as such, overcomes the problem raised in the
previous paragraph.

It is important to note that this statement holds only under certain
restrictions. Two important requirements are, first, that the parameters
involved in the test be real numbers that can take values in some interval,
and second, that the maximum likelihood estimator be found from a point
where the likelihood function has a turning point (and not, for example,
a boundary point such as that in Example 5 of Section 8.3). A further re-
quirement is that null and alternative hypotheses be nested, as described
in Section 9.3.1. The proof of the asymptotic distribution of −2 log λ given,
for example, in Wilks (1962, pp. 419–421) makes clear the importance of
these restrictions. The approximate chi-square null hypothesis distribution
of −2 log λ has been applied in the literature in several cases of phyloge-
netic tree construction where these requirements do not hold (see Section
15.9), so we outline the derivation of the result here, indicating where the
requirements listed above are used.

We now outline the proof of this claim, leaving many details to be tidied
up, considering for simplicity the case of a single unknown parameter θ
that takes some given value θ0 under the null hypothesis and is left un-
specified under the alternative hypothesis. We assume throughout that the
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null hypothesis is true, that is, that θ = θ0, and that the sample size n
is sufficiently large so that we can assume that the maximum likelihood
estimate θ̂ is close to θ0.

The first step is to write

−2 log λ = 2
(
log L(θ̂; X) − log L(θ0; X)

)
. (9.21)

We use the second-order Taylor series approximation

f(x) ∼= f(a) + (x − a)f ′(a) +
(x − a)2

2
f ′′(a)

derived from (B.30) to write

log L(θ; X) ∼= log L(θ̂; X) + (θ̂ − θ0)
d

dθ
log L(θ̂; X)

+
(θ̂ − θ0)2

2
d2

dθ2 log L(θ̂; X). (9.22)

Since the maximum likelihood estimator θ̂ of θ is assumed to be found
from a non-boundary point, the first derivative term on the right-hand side
in (9.22) is zero. Then from (9.22), the right-hand side in (9.21) becomes,
approximately,

−(θ̂ − θ0)2
d2

dθ2 log L(θ̂; X). (9.23)

We make the further approximation of replacing the second derivative term
by its mean value, under the assumption that θ̂ is sufficiently close to θ0.
Then equation (8.18) shows that expression (9.23) is, approximately,

(θ̂ − θ0)2

variance of θ̂
, (9.24)

and the asymptotic normality of θ̂ and the discussion below equation (1.77)
show that this is asymptotically a chi-square random variable with 1 degree
of freedom. As stated above, this sketch leaves many loose ends to be cleared
up, but it is enough to demonstrate the various regularity restrictions that
are assumed.

We illustrate the importance of these regularity restrictions by consid-
ering four examples, the first two of which are taken from the context of
the multinomial distribution (2.30). In the second and third examples the
regularity conditions do not hold (for two different reasons in the two ex-
amples), and the approximate chi-square distribution of −2 log λ does not
apply.
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9.4.2 Examples
In this section we discuss four examples of the use and potential misuse of
the −2 log λ theory.

Example 1. A frequently occurring procedure is that of testing a null hy-
pothesis that specifies the values of the set of parameters {pi} in the
multinomial distribution (2.30) as the set of values {pi0}. The alternative
hypothesis makes no restriction on the probabilities {pi}, other than the
obvious ones that they be non-negative and sum to 1. This implies that
there are k−1 free parameters under the alternative hypothesis. In this test
the null hypothesis is simple and no parameter estimation is required, and
the likelihood is as given in (2.30), with pi replaced by pi0. The alternative
hypothesis is composite, and under this hypothesis the maximum likelihood
estimate of pi is p̂i = Yi/n, and the likelihood is as given in (2.30) with pi

replaced by p̂i. From this the likelihood ratio λ is given by

λ =
∏

i

(
npi0

Yi

)Yi

. (9.25)

Thus −2 log λ is identical to the statistic defined in (3.41). It can be shown
(see Problem 9.1) that this statistic and the statistic defined in (3.39) are
approximately equal when n is large and Yi/n ∼= pi0. The asymptotic
−2 log λ theory described above then justifies the claim that the statis-
tic (3.39) has an approximate chi-square distribution with k − 1 degrees
of freedom under the null hypothesis. Tables of significance points of this
distribution can then be used to assess whether the null hypothesis should
be rejected, given an observed value of −2 log λ.

Example 2. A more subtle testing procedure associated with the multino-
mial distribution (2.30) arises in the context of in situ hybridization. We
describe it here to illustrate a case where the −2 log λ theory does not
apply, rather than because of its genetical relevance.

In an experimental procedure that is simplified considerably here, clones
(that is, short DNA sequences) from one species tend to hybridize to suf-
ficiently similar, or homologous, clones in another species. The random
factors involved in the experiment, described below, imply that a statistical
analysis in needed.

As a simple example, suppose that chromosome i of species A contains
a proportion pi of the DNA in the genome. If the clone from species B
has no homologue in the DNA of species A and hybridization occurs, the
probability that the clone hybridizes to chromosome i is taken to be pi. If
some unknown chromosome j in species A contains a single homologue of
the clone from species B, and no other chromosome contains a homologue,
then given that hybridization occurs, the probability of hybridization to
this chromosome is assumed to be of the form 1 − θ + pjθ. The probability
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that hybridization, if it occurs, is to chromosome i (i �= j) is taken to be
piθ. The rationale behind these formulae is that θ is an unknown parameter
giving the probability of a random hybridization, so that the term 1 − θ
in the probability of hybridization to chromosome j is the probability of
a hybridization specifically to the homologue on that chromosome. Given
data on the number of hybridizations to the various chromosomes in species
A, the aim is to test for a significant excess of hybridizations to one of the
chromosomes in species A.

In statistical terms, the null hypothesis is that θ = 0. Under the al-
ternative hypothesis both θ and j are unknown parameters that must be
estimated in the testing procedure. The details of this testing procedure
are omitted here: These can be found in Ewens et al. (1992). The −2 log λ
ratio procedure leads, asymptotically, to

−2 log λ = (Zmax)2,

where

Zmax = max
i

ni − npi0√
npi0(1 − pi0)

,

ni is the number of observations in category i and n =
∑

j nj . The proba-
bility distribution of the test statistic Zmax is not related to a chi-square.
The reason for this is that the parameter j is discrete and the continuous
real parameter theory underlying the −2 log λ approach does not apply.

Example 3. Suppose we wish to test the null hypothesis that the parameter
M in the density function of the uniform distribution (8.14) takes some
specified null hypothesis value M0 against an alternative hypothesis that
does not specify the value of M . If the null hypothesis is true, the likelihood
of the observations X1, X2, . . . , Xn is M−n

0 . Under the alternative hypoth-
esis the maximum likelihood estimator of M is Xmax and the maximum
of the likelihood is X−n

max. When the null hypothesis is true the likelihood
ratio is then

−2 log λ = 2n log
M0

Xmax
.

This statistic does not have an asymptotic chi-square distribution as
n → +∞. This conclusion does not contradict the −2 log λ theory, since the
maximum of the likelihood M−n under the alternative hypothesis arises at
the boundary point M̂ = Xmax.

Examples 2 and 3 illustrate the fact that the above −2 log λ theory is
applicable only under certain restrictive circumstances. We return to this
topic in Section 15.9, when considering tests of hypotheses relating to phy-
logenetic trees.
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Example 4. It was stated in Example 4 of Section 3.5 that data often arise
in the form of a two-way contingency table such as Table 3.1; examples
of this were given in Sections 5.2, 5.3.4, and 6.1. We now show that the
test statistic (3.43) that uses the data in Table 3.1 arises from the −2 log λ
theory, and that often the numerical value of this statistic is close to the
numerical value of the chi-square statistic (3.42).

The probability that any count falls in row j is denoted by pj., that it falls
in column k by p.k, and that it falls in the cell in row j, column k by pjk.
The null hypothesis, that there is no association between row and column
classifications, implies that pjk = pj.p.k. This null hypothesis defines some
subspace of the parameter space corresponding to the pjk values. Under
this hypothesis the likelihood corresponding to the data in Table 3.1 is of
the form

M
r∏

j=1

c∏
k=1

(pj.p.k)Yjk ,

where M is a multinomial constant. This is maximized when

p̂j. =
yj.

y
, p̂.k =

y.k

y
.

From this,

Lmax(ω) = M

r∏
j=1

c∏
k=1

(
yj.

y

y.k

y

)Yjk

. (9.26)

Under the alternative hypothesis the probability pjk is unspecified. The
maximum likelihood estimator of pjk is Yjk/y, and this leads to

Lmax(Ω) = M

r∏
j=1

c∏
k=1

(
Yjk

y

)Yjk

. (9.27)

From (9.26) and (9.27)

−2 log λ = 2
r∑

j=1

c∑
k=1

Yjk log
(

Yjk

Ejk

)
, (9.28)

where Ejk = yj.y.k/y. (This notation arises because Ejk is often referred
to as the expected number of counts in cell (j, k) when the null hypothesis
is true.) The right-hand side in (9.28) is the test statistic (3.43).

We now show that the numerical value of this test statistic is often close
to that of the chi-square statistic (3.42). Suppose that Yjk is close to Ejk

and write Yjk = Ejk(1 + δjk). The right-hand side in (9.28) is then

2
r∑

j=1

c∑
k=1

Ejk(1 + δjk) log(1 + δjk).
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From the logarithmic approximation (B.25) this is approximately

2
r∑

j=1

c∑
k=1

Ejk(1 + δjk)
(

δjk − 1
2
δ2
jk

)
.

The identity
∑r

j=1
∑c

k=1 Ejkδjk = 0 implies that if terms of order δ3
jk are

ignored, this is

r∑
j=1

c∑
k=1

Ejkδ2
jk =

r∑
j=1

c∑
k=1

(Yjk − Ejk)2

Ejk
,

and this is the chi-square statistic (3.42).

9.5 The Analysis of Variance (ANOVA)

9.5.1 Introduction
Perhaps the most frequently used hypothesis testing procedure in statistics
is that of the Analysis of Variance (ANOVA). The simplest ANOVA, dis-
cussed in detail in Section 9.5.3, can be regarded as a generalization of the
two-sample equal variance t-test, and we shall approach ANOVA through
this generalization.

As described in Section 3.5.2, the two-sample t-test tests for equality
of the means of two groups. In the notation of Section 3.5.2, the model
adopted for the test is that

Xij = µi + Eij , i = 1, 2, (9.29)

where the Xij are assumed to be independent and the Eij are assu8med
to be NID(0, σ2) random variables. The null hypothesis being tested is
µ1 = µ2. This model is also often written in the form

Xij = µ + αi + Eij , i = 1, 2. (9.30)

In this model we can think of µ as an overall mean and αj as a deviation
from this overall mean characteristic of group j. In this form the model
is overparameterized. There are three parameters in the model when only
two are necessary. This overparameterization can be overcome by requiring
that α1 and α2 satisfy the requirement mα1 + nα2 = 0, and we always
assume that this requirement is imposed. It might seem to be a roundabout
approach to write the model (9.29) in the form (9.30), with the condition
mα1 + nα2 = 0 imposed, but for several reasons it is convenient to do so.
The test of hypothesis is identical in the two representations of the model.
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9.5.2 From t to F : Sums of Squares and the F Statistic
We start by deriving a test procedure equivalent to the two-sample two-
sided t-test described in Example 2 of Section 3.5. This test is carried out
by using |t|, the absolute value of the T statistic, as test statistic. It is
equivalent to use t2 as test statistic, since this is a monotonic function of
|t|. Straightforward algebraic manipulation (see Problem 9.4) shows that if
the square of the t statistic defined in (3.30) is written as F, then

F =
B

W
(m + n − 2), (9.31)

where, with the random variables involved in the procedure defined as in
Section 3.5.2,

X̄1 =
m∑

j=1

X1j/m, X̄2 =
n∑

j=1

X2j/n, ¯̄X = (mX̄1 + nX̄2)/(m + n),

B =
mn

m + n
(X̄1 − X̄2)2 = m(X̄1 − ¯̄X)2 + n(X̄2 − ¯̄X)2 (9.32)

and

W =
m∑

j=1

(X1j − X̄1)2 +
n∑

j=1

(X2j − X̄2)2. (9.33)

B is the between group sum of squares (more precisely called the among
group sum of squares), and W is called the within group sum of squares. By
assumption the random variables Xij have normal distributions and thus
both B and W are continuous random variables.

The sum of B and W can be shown to be
m∑

i=1

(X1i − ¯̄X)2 +
n∑

i=1

(X2i − ¯̄X)2. (9.34)

This is called the total sum of squares. The total number of degrees of
freedom m+n−1 is one less than the number of random variables. Just as
the total sum of squares is split up into a between group component and
a within group component, so also the total number of degrees of freedom
is split up into two components, 1 degree of freedom between groups and
m + n − 2 degrees of freedom within groups.

The two main components of the statistic F are B and W. Our aim is
to test for significant differences between the means of the two groups, and
the component B measures this difference by the difference between the
group averages X̄1 and X̄2. The observed value of X̄1 − X̄2 will tend to be
large when the means of the two groups differ. However, the significance
of any such difference must be measured relative to the variation within
groups. The component W measures this variation, and is unaffected by
any difference in means between the two groups. Large observed values
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of F arise when the observed variation between groups is large compared
with the observed variation within groups, and sufficiently large observed
values of F give significant evidence that a difference exists between the
two means. The ANOVA procedure makes this precise, as follows.

It can be shown that, when the null hypothesis µ1 = µ2 is true and
when the standard ANOVA assumptions listed above are met, B/σ2 and
W/σ2 are independent chi-square random variables having respectively 1
and m + n − 2 degrees of freedom. The ratio (9.31) has the F distribution
(2.152) with 1 and m+n−2 degrees of freedom (see Problem 2.28). The test
of the null hypothesis is then carried out by referring the observed value of
F to tables of significance points of the F distribution (2.152) with 1 and
m+n−2 degrees of freedom. For any desired Type I error, the values of F
that lead to rejection of the null hypothesis can be found from these tables.

This procedure demonstrates the two key steps in any ANOVA. The
first is the subdivision of the observed total sum of squares into several
components (in the above case the observed values of B and W ), each
measuring some meaningful component of variation. The second step is the
comparison of these components to test some hypothesis, using for each
comparison the appropriate F statistic.

The two-group comparison above generalizes immediately to a test for
the equality of the means of any number of groups, and then to a hierarchy
of further ANOVA tests. We now describe examples of these ANOVA tests.
All of them are particular cases of the multiple regression test introduced
briefly in Section 8.4.3. In illustrating these ANOVA tests we change the
generic multiple regression notation Y on the left-hand side of (8.42) to X,
which is standard notation in ANOVA.

9.5.3 One-way Fixed Effects ANOVA
The one-way ANOVA test is a direct generalization of the two-sample t-test
to the case of an arbitrary number g of groups, in which the null hypothesis
is that the means of all the groups are equal. We write the ni observations
in group i as Xi1, Xi2, . . . , Xini

for i = 1, 2, . . . , g. The model generalizing
(9.29) is

Xij = µi + Eij , j = 1, 2, . . . , ni, i = 1, 2, . . . , g, (9.35)

and the model generalizing (9.30) is

Xij = µ + αi + Eij , j = 1, 2, . . . , ni, i = 1, 2, . . . , g. (9.36)

In both models the Eij are assumed to be NID(0, σ2). The model (9.36),
like the model (9.30), is overparameterized, and the overparameterization
is overcome by requiring that

∑
niαi = 0. This overparameterized model

is often more convenient to use than is (9.35), and the test of hypothesis is
the same in both models.
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In some cases the assumption of independence made above is not ap-
propriate and an analysis different from that given in this section is
appropriate. This is discussed in Section 9.7.

There are several different ways in which ANOVAs can be classified. One
of these concerns the distinction between a fixed effect model, a mixed ef-
fects model and a random effect model. For the moment we consider the
properties of a fixed effects model; some of the properties of mixed and ran-
dom effects models, and the distinction between the three forms of models,
are discussed in Section 9.5.7. In a fixed effects model, the parameter αi in
(9.36) is considered to be a fixed (but unknown) constant characteristic of
group i.

The null hypothesis in the ANOVA model (9.36) is that α1 = α2 = · · · =
αg = 0. The parameter µ is not involved in the test. It should be noted that
despite the appearance of the word “variance” in the expression “Analysis
of Variance,” the hypothesis tested in this (and any) ANOVA procedure is
a test about means. discussed later.

If the requirement
∑

njαj = 0 is not imposed, the model (9.36) is over-
parameterized, and is a particular case of the multiple regression model
(8.43). This may be seen by writing

Y = (X11, X12, . . . , X1n1 , X21, X22, . . . , X2n2 , . . . , Xg1, Xg2, . . . , Xgng
)′,

E = (E11, E12, . . . , E1n1 , E21, E22, . . . , E2n2 , . . . , Eg1, Eg2, . . . , Egng
)′,

β = (µ, α1, . . . , αg)′,

and choosing as the matrix C in (8.43) the one-way ANOVA “design ma-
trix,” defined as in (9.37). In this matrix, all elements in the first column
are 1, the first n1 elements in the second column are 1 and the rest are 0,
the elements in rows n1 + 1 through n2 of column 3 are 1 and the rest 0,
. . . , the elements in rows n1 +n2 + · · ·+Ng−1 +1 through n1 +n2 + · · ·+ng

of column g are 1 and the rest are 0.
The matrix C so defined is not of full rank, so that the multiple regression

theory of Section 8.4.3, and in particular equation (8.44), cannot be applied
directly. This problem arises only because the model is overparameterized.
Imposition of the requirement

∑
niαi = 0 implies that (for example) αg can

be written in terms of α1, . . . , αg−1 and this leads to a multiple regression
model in which the the matrix replacing C is of full rank. This allows us
to use multiple regression theory directly.

The test procedure is a direct extension of the two-group procedure de-
scribed in Section 9.5.2. The total sum of squares

∑g
i=1
∑ni

j=1(Xij − ¯̄X)2 is
subdivided into the between group sum of squares B and the within group
sum of squares W. These are the direct generalizations of the two-group
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0
1 1 0 · · · 0
...

...
...

...
...

1 1 0 · · · 0
1 0 1 · · · 0
1 0 1 · · · 0
...

...
...

...
...

1 0 1 · · · 0
...

...
...

...
...

...
...

...
...

...
1 0 0 · · · 1
...

...
...

...
...

1 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.37)

values in (9.32) and (9.33), and are defined by

B =
g∑

i=1

ni(X̄i − ¯̄X)2, (9.38)

W =
g∑

i=1

ni∑
j=1

(Xij − X̄i)2. (9.39)

Here X̄i =
∑ni

j=1 Xij/ni and ¯̄X =
∑g

i=1
∑ni

j=1 Xij/N, where N is defined as∑g
i=1 ni. Just as the total sum of squares is split up into two components, so

also the total degrees of freedom N −1 is subdivided into two components,
the between group degrees of freedom g − 1, and the within group degrees
of freedom N − g.

We define the between group mean square as the between group sum of
squares divided by the between group degrees of freedom, and the within
group mean square as the within group sum of squares divided by the within
group degrees of freedom. The test statistic F is the ratio of these two mean
squares, or equivalently

F =
B

W
× N − g

g − 1
. (9.40)

The test statistic F in (9.40) is the direct generalization of that in (9.31),
and has the F distribution with g − 1, N − g degrees of freedom when the
null hypothesis is true and the standard ANOVA assumptions are all met.
The test is therefore carried out by referring the observed value of F to
significance points of this F distribution.
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There are various ways in which the ANOVA assumptions might not be
met. The first of these arises if the random variables Xij do not have a
normal distribution. The procedure is fairly robust against non-normality,
so that the F statistic has approximately the F distribution for non-normal
data, provided that the non-normality is not extreme. Non-parametric al-
ternatives generalizing the Mann–Whitney test of Section 3.8.2, and also
a permutation procedure, are available if non-normality appears to be
extreme. As with the t-test, the ANOVA test is fairly robust when the
variances in the various groups differ, at least when the group sizes are
equal.

9.5.4 The Two-Way Fixed Effects ANOVA
We now extend the one-way fixed effects ANOVAs discussed in Section
9.5.3 to two-way ANOVAs. We provide only an overview of this model,
since a full description of its properties is beyond the scope of this book.

As an example of a two-way ANOVA, suppose that we wish to compare
the expression levels of a gene in individuals having lung cancer. These in-
dividuals fall into a different risk classes (for example, ultrahigh, very high,
intermediate, and low) and also into b different age groups. Suppose that
the data consist of n individuals for each risk-class/age-group combination.
Before the observations are taken, the typical expression level can be rep-
resented as Xijk, where i indicates the risk class involved, (i = 1, 2, . . . , a),
j indicates the age group involved, (j = 1, 2, . . . , b), while k takes the
possible values 1, 2, . . . , n, corresponding to the n individuals in each risk
class/age-group combination.

These random variables can be arranged in a two-way table, each column
in the table corresponding to one risk class and one row to one age group.
This explains the terminology “two-way” ANOVA. Each risk-class/age-
group combination defines a “cell.” The most important requirement in
a two-way ANOVA is replication, that is, in this case, of obtaining more
than one individual in each cell. With the data as described above we have
n replications in each cell. This is a balanced design, since the value of
n is the same for each cell. The theory for an unbalanced design is more
complicated and is not considered here; see for example Sokal and Rohlf
(1995) for a discussion of this case.

The model assumed in a two-way ANOVA is that

Xijk = µ+αi+βj+δij+Eijk, i = 1, 2, . . . , a, j = 1, 2, . . . , b, k = 1, 2, . . . , n,
(9.41)

where the Eijk are NID(µ, σ2) random variables. Thus the mean of Xijk is
assumed to be of the form µ+αi +βj + δij . Here αi is fixed parameter and
is an additive contribution to the mean corresponding to risk class i, βj is a
fixed parameter and is an additive contribution to the mean corresponding
to age group j, and δij is a fixed risk-class/age-group interaction parameter
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whose meaning is discussed below. An interaction term of the form δij can
and should be added in any two-way ANOVA model if the possibility of
interaction exists, as is presumably the case in this example. If there were
no replication, so that n = 1, it is impossible to test for the existence of
any interaction. This is the main reason why replication is important. A
two-way ANOVA model that assumes that there is no interaction is of the
form

Xijk = µ + αi + βj + Eijk, i = 1, 2, . . . , a, j = 1, 2, . . . , b, k = 1, 2, . . . , n.
(9.42)

We return to this model below.
As it stands the model (9.41) is overparameterized, and the overparam-

eterization is removed by imposing the constraints
∑

i αi =
∑

j βj = 0,∑
i δij = 0 for all j,

∑
j δij = 0 for all i.

It should be noted that an additivity assumption is made in the model
(9.41). The mean of Xijk is assumed to be the sum of four terms, corre-
sponding to an overall mean, an additive contribution from risk class i, an
additive contribution from age group j, and an additive interaction term.
There is no reason a priori why such an additivity assumption is appropri-
ate, and if the additivity assumption is not justified, unreliable P -values can
arise in the analysis. Authors in the bioinformatics literature often appear
to be willing to assume an additive model, perhaps after a transformation
of the original data (often by carrying out the analysis on the logarithms
of the original data), under the assumption that the procedure is robust
against mild non-additivity.

While the model (9.41) is more complicated than (9.36), it still can be
represented in the general linear model form (8.42) and can be analyzed
by general linear model methods.

In the two-way ANOVA with replication the total sum of squares is
divided into four components. In the example considered above these are
a risk-class sum of squares, an age-group sum of squares, an interaction
sum of squares and a within cells, often called “residual” or “error”, sum
of squares. Associated with each sum of squares is a corresponding degrees
of freedom and hence a corresponding mean square, defined as the sum of
squares divided by the degrees of freedom. We do not give the details of
these partitions here.

The mean squares are then compared using F ratios to test for signifi-
cance of the various effects. The first step in the procedure is to test for a
significant risk-group/age-class interaction. The F ratio used for this is the
ratio of the interaction mean square and the within cells mean square. It
may not be reasonable to test for significant differences between risk classes
and also between age groups if a significant risk-class/age-group interaction
is found. Such a situation would arise, for example, if there were two risk
classes and two age groups, and the averages of the observations in the four
cells are as shown in Table 9.1. Here there is no evidence of interaction,
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since the value of the measurement appears to increase additively from risk
class 1 to risk class 2 by the same amount in the two age classes.

risk class
1 2

age group 1 4 12
age group 2 7 15

Table 9.1. No evidence of interaction.

One problem with the procedure described above is that interaction ef-
fects are often hard to detect, so that the investigator might proceed to
test main effects under an erroneous impression that interaction is not
significant.

If there does appear to be a significant interaction, one common practice
is not to test the main effects (risk classes and age groups) under the argu-
ment that if the interaction is significant, no uniform main effect statement
is possible. Such a situation appears to arise, for example, if the averages
of the observations in the four cells were as shown in Table 9.2. Here the
value of the measurement appears to increase from risk class 1 to risk class
2 for one age group but to decrease for the other, so that it may not, for
example, be said to be uniformly higher in one risk group compared to the
other. On the other hand, if the averages in the four cells were as shown

risk class
1 2

age group 1 4 15
age group 2 11 6

Table 9.2. An example of interaction.

in Table 9.3, there might be significant interaction, but it might still be
is reasonable to conclude that there is a significant difference in the mea-
surement between risk classes. In cases of this type, testing for main effects
should be done with caution.

risk class
1 2

age group 1 4 12
age group 2 3 18

Table 9.3. A second example of interaction.
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In cases where there is no replication, the only way in which main effects
(risk groups, age classes) can be tested arises when we are willing to assume
the no interaction model (9.42). In this case we use the interaction mean
square as a residual and it would appear in the denominator of the F
ratios used to test for risk-class and age-group effects. However, making
the assumption that there is no interaction can be dangerous.

9.5.5 Multi-Way Fixed Effects ANOVAs
It is straightforward to extend one-way and two-way fixed effects ANOVAs
to multi-way ANOVAs. The models become quite complicated when in-
teractions are allowed. For example, the overparameterized version of a
three-way ANOVA model is of the form

Xijkm = µ + αi + βj + γk + δij + ηik + νjk + ψijk + Eijkm, (9.43)

involving three two-way interactions and one three-way interaction. Testing
is again done in a hierarchical way, starting with the three-way interaction,
proceeding to two-way interactions if the three-way interaction is not sig-
nificant, and then to main effects if the various two-way interactions are
not significant.

9.5.6 The 2m Design, Confounding, and Fractional
Replication

A particular form of the one-way ANOVA is the 2m factorial design. Here
we consider m “factors,” each taken at two “levels.” There are 2m possible
combinations of levels, or groups. In this model we can test both for main
effects and for interactions between main effects. In order to assess which
main effects and which interactions are significant it is necessary to carry
out a replicated experiment, and we suppose that there are n replications
for each of the 2m treatments.

We shall illustrate this model using the case m = 3, so that there are
eight groups, and use as an example the case where the factors are gender
(female or male), affectedness status (affected or not affected), and tissue
(lung or kidney). We denote these three factors considered by the letters A,
B and C, and the eight groups by abc, ab, ac, bc, a, b, c, 1. If a corresponds
to female, b to affected and c to lung, the group “ac,” for example, refers to
data from lung tissue from an unaffected female and the group “b” refers
to data from kidney tissue from an affected male.

We write the totals of the n observations for the various groups as
Tabc, Tab, . . . , T1. The total between group sum of squares can be subdi-
vided into seven individual sums of squares, corresponding respectively to
the three main effects (A, B and C ), the three pair-wise interactions (AB,
AC and BC ), and one triple-wise interaction (ABC ). As an example, the



9.5. The Analysis of Variance (ANOVA) 327

sum of squares for the main effect of A (gender) is

(Tabc + Tab + Tac + Ta − Tbc − Tb − Tc − T1)2/8n. (9.44)

In this expression any total involving data from a female is added in
the numerator and any total involving data from a male is subtracted.
Less obviously, the sum of squares for the BC (affectedness status/tissue)
interaction is

(Tabc − Tab − Tac + Ta + Tbc − Tb − Tc + T1)2/8n. (9.45)

Expressions such as these provide the numerator in the various F ratios
for testing for the three main effects, the three pairwise interactions, and the
one triple-wise interaction. We do not pursue the analysis of this example
in detail since our main interest is in confounding and partial replication
procedures associated with it.

When m is about five or more, the number of groups becomes large, so
that the total number of observations required, n2m, is also large. In this
case it is possible to reduce the number of observations by the process of
confounding. Thus it might be claimed that, in the above example, the ABC
interaction is likely to be very small or non-existent and in any event not of
interest. If this claim is justified a design which loses information about this
interaction would be preferred to a design that retains this information,
since it reduces the amount of data to be collected. There are standard
ANOVA designs that achieve this aim.

A concept closely associated with confounding is that of fractional repli-
cation. To illustrate this concept, suppose that in the example above, data
are obtained only from the groups abc, a, b, and c, that is lung data from
affected females, kidney data from unaffected females, kidney data from
affected males, and lung data from unaffected males. Then only the totals
Tabc, Ta, Tb, and Tc are available. The expressions (9.44) and (9.45) show
that the sum of squares for both the main effect A and the BC interaction
are

(Tabc + Ta − Tb − Tc)2/4n.

(The denominator term involves 4 rather than 8 since now only four groups
are considered.) This means that the main effect of A and the BC interac-
tion effect cannot be distinguished from each other, and A and BC are said
to be the alias of each other. Similarly the alias of B is AC and the alias
of C is AB. The between groups sum of squares is now split up into three
components, and a main effect, for example A, can be tested for significance
only if it is assumed that its alias effect BC is zero.

A design involving aliasing in the context of microarrays will be discussed
in Section 13.3.7.
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9.5.7 Random and Mixed Effects Models
So far we have considered only fixed effects models. In the two-way ANOVA
of Section 9.5.4, for example, risk classes and age groups are considered
fixed. They have a significance to us and if we conducted two experiments
on two different occasions we would retain these categories. Other factors
In other cases an effect is thought of as “random.” For example, if the data
in the risk-class/age-group experiment were collected on several different
essentially randomly chosen days, we have no specific interest in these var-
ious days. Nevertheless we must extract a “between days” sum of squares
in the analysis, since if there is a significant day to day effect, failure to do
so lowers the efficiency of the test for risk classes and age groups.

We shall see below that different procedures are used for fixed and ran-
dom effects models. Because of this, it is common practice to use Greek
letters to denote fixed effects and upper case Roman letters to denote ran-
dom effects. As an example, suppose that in the the example of Section
9.5.4, data are collected on a risk classes on d different days, with n data
values being taken on each day, and that no age group data are taken. The
day is a random effect, and an appropriate model is of the form

Xik
 = µ + αi + D
 + Gi
 + Eik
, (9.46)

where the suffix � refers to days.
It is assumed that

∑
αi = 0, that the Eik
 are NID(0, σ2,) that the D


are random variables corresponding to the various days and are NID(0, σ2
D),

and that the Gi
 are risk-classes × days interaction random variables and
are NID(0, σ2

AD). Any interaction term involving at least one random effect
is necessarily random, and this notation is followed in (9.46). This is a mixed
effects model, with one effect fixed and the other random.

The details of an ANOVA analysis depend on which effects are fixed
and which are random. For example, in a two-way ANOVA described by
(9.46), having one effect fixed (risk classes) and one random effect (days),
the fixed effect mean square is compared to the interaction mean square
for significance. The reason for this can be seen from (9.47), which displays
the expected values of the three mean squares.

between risk classes = σ2 + nσ2
AD + nd

∑
i

α2
i /(a − 1),

interaction = σ2 + nσ2
AD, (9.47)

residual = σ2.

The null hypothesis, that there is no risk-class effect, claims that the αi

are all zero, and when this null hypothesis is true the expected values of
the between risk classes mean square and the interaction mean square are
identical. This implies that the appropriate test statistic is the ratio of
these two mean squares, and the significance of this ratio is found from F
tables with a − 1 and (a − 1)(b − 1) degrees of freedom. This is not true
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of the ratio of the expected values of the between risk classes mean square
and the residual mean square, since this ratio is not equal to 1 under the
null hypothesis.

On the other hand, in the original risk-class/age-group example, the
expected values of these three mean squares are as shown in (9.48),

between risk classes = σ2 + nb
∑

i

α2
i /(a − 1),

interaction = σ2 + n
∑

i

∑
j

γ2
ij/{(a − 1)(b − 1)}, (9.48)

residual = σ2,

so that when the null hypothesis is true the expected values of the between
risk classes mean square and the residual mean square are identical in this
model. This implies that the appropriate F ratio to test the null hypothesis
is the between risk classes mean square divided by the residual mean square.
The use of different denominator mean squares for different models has been
emphasized in the microarray context by Churchill (2002).

The model for multi-way mixed effects ANOVAs can become quite com-
plicated. As a simple example, and upper case Roman letters suppose that
in the the example of Section 9.5.4, data are collected on d different days.
An appropriate model is now

Xijk
 = µ + αi + βj + δij + D
 + Gi
 + Hj
 + Pij
 + Eijk
, (9.49)

where the suffix � refers to days. If there are several fixed effects and several
random effects, the number of interactions becomes quite large. This often
occurs in the microarray context, and often many of these interactions
are simply assumed to be zero in order to simplify the analysis. We do
not discuss this matter further here, and return to the question of using
ANOVA models to analyze microarray data in Chapter 13.

9.6 Multivariate Methods

9.6.1 Introduction
In multivariate analysis we consider data consisting of random vectors
(X1, X2, . . . , Xk)′ rather than of (scalar) random variables. Such a vector
might arise, as in Section 8.5, if we contemplate measuring k characteristics
on each individual, for example height, weight, arm length, etc. The ele-
ments in the vector are usually correlated, as would be the case in this
example, and indeed these correlations lie at the heart of multivariate
analysis.
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9.6.2 One-sample T 2 Tests
In this section we consider the multivariate generalization of the one-sample
two-sided t-test of Example 1 in Section 3.5. The basic concepts and as-
sumptions are identical to those in this t-test, the only change being that
vector random variables replace scalar random variables, and the discussion
below mirrors that of the t-test case.

Suppose that X1,X2, . . . ,Xn are independent k-dimensional random
vectors, each having the multivariate normal distribution (2.33) with mean
vector µ = (µ1, µ2, . . . , µk)′ and variance–covariance matrix Σ. We wish
to test the null hypothesis that µ = µ0, where µ0 = (µ10, µ20, . . . ,
µk0)′ is some given vector of means. The alternative hypothesis leaves µ
unspecified. The values of the elements in the matrix Σ are unspecified.

Each of the k different null hypotheses µp = µp0 could be tested, sep-
arately from the others, by a t-test. However, the T 2 procedure described
below is to be preferred to carrying out k separate t-tests. First, the multi-
ple testing problem discussed in Section 3.11 arises when k tests are carried
out in parallel. If an experiment-wise Type I error of α is desired, each in-
dividual t-test should have a Type I error of about α/k. This problem does
not arise with the T 2 test. Second, and perhaps more important, the T 2

procedure automatically exploits the correlational structure between the k
different measurements. Näıve application of separate t-tests does not do
this.

We first use the data to estimate µ and Σ. The estimator of µ is the
direct parallel of the estimator in the scalar case, namely the vector of
averages X̄′ = (X̄1, X̄2, . . ., X̄k)′. The typical variance estimator follows
the prescription of (3.5) and the typical covariance estimator follows the
prescription of (3.17). We denote the matrix formed by these estimators by
Σ̂. With these definitions, the test statistic used to test the null hypothesis
is T 2, defined by

T 2 = n(X̄ − µ0)
′Σ̂−1(X̄ − µ0). (9.50)

When the null hypothesis is true, the statistic F, define by

F =
(n − k)T 2

(n − 1)k
,

has an F distribution with (k, n − k) degrees of freedom. The observed
value of F , calculated from the data, may then be used to test the null
hypothesis.

We do not discuss this procedure further, since our main interest is in
the two-sample case, considered in Section 9.6.3. We do however return to
this one-sample case in Section 9.7.
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9.6.3 Two-sample T 2 Tests
In this section we consider the multivariate generalization of the two-sample
two-sided equal variance t-test of Example 2 in Section 3.5, testing now for
equality of the vector of means of two groups of interest. As for the one-
sample case, the basic concepts and assumptions are identical to those in
the two-sample two-sided equal variance t-test, with vector random vari-
ables replacing scalar random variables, and the discussion below mirrors
that of the t-test case. As in the one-sample case, we do not wish to carry
out the test using k separate t-tests.

Suppose that X11,X12, . . . ,X1m are independent random vectors, each
having the multivariate normal distribution (2.33) with mean vector µ1
and variance–covariance matrix Σ, and X21, X22, . . . , X2n are independent
random vectors, each having the multivariate normal distribution (2.33)
with mean vector µ2 and variance–covariance matrix Σ. It is also assumed
that X1i is independent of X2j for all i and j. The aim is to test the null
hypothesis that the mean vectors in the two groups are identical, that is
that µ1 = µ2 (= µ, unspecified). The alternative hypothesis leaves the
values of both µ1 and µ2 unconstrained. The matrix Σ is unknown and is
unspecified under both hypotheses, but is assumed to be the same in the
two groups considered.

We first use the data to estimate µ1, µ2, and Σ. The estimators of µ1
and µ2 are the direct parallels of the estimators in the scalar case: µi is
estimated by the vector of averages X̄′

i = (X̄i1, X̄i2, . . ., X̄ik)′, (i = 1, 2.)
The estimation of the matrix Σ generalizes the estimation of the variance

of a scalar random variable as given in (3.31). The (p, q) element σ̂pq in Σ̂
is defined by

σ̂pq =

∑m
j=1(X1jp − X̄1p)(X1jq − X̄1q) +

∑n
j=1(X2jp − X̄2p)(X2jq − X̄2q)

m + n − 2
,

(9.51)
where Xijp is the pth element in the vector Xij and X̄ip is the pth element
in the vector X̄i, i = 1, 2, and likewise for q. For the case p = q, this is the
estimate σ̂2

p of the variance of the pth measurement, and follows the format
of (3.31).

With these definitions, the T 2 statistic is

T 2 =
mn

m + n
(X̄1 − X̄2)′Σ̂−1(X̄1 − X̄2). (9.52)

When the various distributional assumptions of the random vectors Xij

made above hold and the null hypothesis µ1 = µ2 is true,

m + n − k − 1
k(m + n − 2)

T 2

has an F distribution with k and m + n − k − 1 degrees of freedom.
Given the observed vectors x11,x12, . . . ,x1m and x21, x22, . . . , x2n, the

observed value of T is found by replacing X̄j by x̄j and Σ̂ by S, where
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the pq element in S is found by replacing Xijp by xijp and Xijq by xijq

in (9.51). The resulting value is then tested using F tables. Clearly the
calculation of the observed value of T assumes that the inverse matrix S−1

exists. In almost all classical applications of multivariate analysis this is
the case.

9.6.4 Optimal Linear Functions: Discriminant Functions
A procedure associated with the T 2 test is that of discriminant analysis.
Suppose that we consider the expression levels of k different genes in two
risk classes of a particular tumor. The aim of a discriminant analysis is to
find that linear combination of the expression levels in the various genes
that best discriminates between the two risk classes. In abstract terms, the
aim is to find that linear combination α1X1+α2X2 + · · · + αkXk = α′X of
the elements in the vector (X1, X2, . . ., Xk) that best discriminates between
the two groups. This is a question of estimation, and thus might more
naturally be considered in Chapter 8. However, the discriminant function
procedure is closely associated with the t and the T 2 test – for example, the
test of whether significant discrimination can be made between two groups
reduces to a T 2 test – so we consider it, albeit briefly, here.

So far we have not defined the expression “best discriminates.” We con-
sider the data vectors x11,x12, . . . ,x1m and x21, x22, . . . , x2n discussed in
Section 9.6.3. The vector xij can be replaced by the linear combination
wij =

∑
k αkxijk. From this it is possible to calculate a t statistic, with the

values w11, w12, . . . , w1m in the first group and w21, w22, . . . , w2n in the sec-
ond group. The combination α′X that best discriminates between the two
original groups of vectors is defined as that which maximizes the square of
the t statistic computed from the various wij values. The vector a achieving
this aim is given (see Problem 9.5) by

a = S−1(x̄1 − x̄2), (9.53)

where S is as defined above. This calculation also assumes that S−1 exists.
The linear combination with the elements of a as coefficients is called

the (estimated) discriminant function. In using the word “best” above,
we mean only best in the sense of maximizing the square of a t statistic,
as described. In other contexts a different interpretation of “best” might
be appropriate. We take up the matter of discriminant analysis again in
Section 13.3.8, in the context of microarrays.

9.7 ANOVA: the Repeated Measures Case

In some cases the assumption of independence of the observations in an
ANOVA, made throughout in Section 9.5, is not justified. For example,
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the heights of a plant measured at different time points are not indepen-
dent, especially if the time points are close to each other. In this section
we consider aspects of the “repeated measures” analysis designed to han-
dle this case, using the “plants” example. Repeated measures designs can
be quite complex and different assumptions can lead to different analy-
ses. In particular, a distinction should be made between “univariate” and
“multivariate” approaches to the analysis of repeated measures data. A
discussion of the different assumptions made under these two approaches is
given by von Ende (2001). Here we follow the multivariate approach, which
is more appropriate to the use of repeated measures in microarray analy-
sis. Many issues arise within multivariate repeated measures designs, so our
brief account is necessarily a superficial one. For a more detailed account of
these designs, see Davis (2003). Computational aspects are discussed, for
example, in the SAS Institute SAS/STAT (1999) manual.

We consider first the one-sample case. Suppose that we plan to measure
the height of n plants at k successive times points t1, t2, . . . , tk. We de-
note the (at this stage, random) heights of plant i at these time points by
Xi1, Xi2 . . . , Xik.

We assume that for each plant these heights have a multivariate normal
distribution with unknown mean vector µ = (µ1, µ2, . . .µk)′ and unknown
variance–covariance matrix Σ. One straightforward (null) hypothesis is that
the plants are not growing, implying that µ1 = µ2 = · · · = µk. Because of
the dependence structure, we test this null hypothesis by multivariate meth-
ods, specifically by using a T 2 statistic similar to that in Section 9.6.2. This
null hypothesis cannot be tested directly by the methods of that section,
since the common value of the µj is not specified by this null hypothesis,
but a simple amendment using differences allows us to use the methods of
Section 9.6.2. There are many equivalent ways in which this can be done.
As one approach, if we define Wij by Wij = Xij − Xi1, j = 2, 3, . . . , k, the
null hypothesis claims that the mean of Wij is 0 for all i and j. We then
carry out a T 2 test of the form of that in Section 9.6.2, using the random
variables Wij , whose null hypothesis mean vector µ0 is 0′. Carrying out the
test using the Wij values instead of the Xij values requires the estimation
of the k − 1 means of the Wj random variables as well as an estimate of
the variances of and the covariance between these random variables. This
is done by standard methods.

We do not give the details of this test here, and have discussed it to
serve as an introduction to tests of null hypotheses that might be of more
interesting. One such null hypothesis is that the mean height of a plant is
a linear function of time, so that µj is of the regression form α + βtj , for
some unknown parameters α and β. However, the regression methods of
Section 8.4.3 are not appropriate for the analysis, since those methods in
this context would assume the heights of a plant at different times to be
independent. Details of the appropriate repeated measures procedures for
the test of this and other hypotheses are given by Davis (2003).
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We turn now to two-sample repeated measures tests. Suppose that we
have two groups of plants, m in the first group and n in the second. As
above, the heights of all plants are measured at k successive time points
t1, t2, . . . , tk. The vector of mean heights at these time points for plants in
the first group is denoted µ1 = (µ11, µ12, . . . , µ1k)′ and that for plants in
the second group is denoted µ2 = (µ21, µ22, . . . , µ2k)′. One null hypothesis
of interest is that µ1 = µ2. This test is carried out directly using the two-
sample T 2 test of Section 9.6.3, under the assumption that the variance–
covariance matrix Σ is the same in both groups.

This test does not capture the time sequence implicit in the repeated
measures data, since the T 2 test of Section 9.6.3 is invariant to any re-
ordering of the k random variables considered. However, in the repeated
measures context, where this ordering relates to the successive time points,
is of central importance. We therefore think of it as a preliminary to tests
that do take this order into account.

A perhaps more interesting null hypothesis is that the profiles of the
means are the same in the two groups. This null hypothesis allows µ1j to
differ from µ2j , j = 1, 2, . . . , k, but claims that the values of µ1j − µ2j , j =
1, 2, . . . , k although possibly non-zero, are the same for all values of j. Stan-
dard repeated measures designs are available to test this (less restrictive)
null hypothesis. Rejection of this null hypothesis implies an interaction in
plant height between time and group membership.

This test also does not capture the time sequence implicit in the repeated
measures data. A test that does capture this time sequence is the test of
the null hypothesis that µij is of the form αi +βtj , implying that the mean
growth rates for the two groups of plants are equal, and the same at all time
points. This null hypothesis claims that not only are the values of µ1j −µ2j

the same for all values of j, but also that µi(j+1) − µij is independent of j.

9.8 Bootstrap Methods: the Two-sample t-test

Bootstrap estimation methods were introduced in Section 8.6. In this sec-
tion we consider the bootstrap alternative to the two-sample t-test. The
bootstrap procedure has similarities to, and significant differences from,
the permutation procedure discussed in Section 3.8.2, and we start by
discussing these similarities and differences.

In both procedures we start with data in two groups, and from these cal-
culate the numerical value of some statistic. The data are then rearranged
in some way, and the value of the statistic calculated from the rearranged
data. This rearrangement procedure is replicated a large number R of times,
and the original value of the test statistic is declared to be significant if
it is a sufficiently extreme member of all the rearranged values. However
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the details of the rearrangement procedure are different in the permutation
and the bootstrap procedures.

A permutation procedure giving an alternative test to the two-sample
t-test was described in Section 3.8.1, where it was noted that is that it
relies on the assumption that the variances of the random variables in the
two groups are equal. Perhaps the main aim of the bootstrap procedure is
to overcome this problem.

A permutation can be thought of as sampling without replacement. Once
an observation has been chosen by the permutation procedure to go into
one group, it cannot be chosen again. This implies that each observation
is placed exactly once into one or the other group, and may well go into
the group different from that in which it actually arose. The bootstrap
procedure differs from this in two respects. In each of the R bootstrap
replications, a random sample of m values is taken with replacement from
the data values in the first group; these form the “data” in the first group
for the replication in question. Similarly, a random sample of n values is
taken with replacement from the data values in the second group; and
these form the “data” in the second group for replication in question. Thus
in contrast to the permutation procedure, not only is sampling carried
out with replacement, but also any observation always remains within its
original group.

The value of some statistic, for example the t statistic, is then computed
from each bootstrap sample. The observed value of t is judged to be signif-
icant with Type I error α if its value lies among the 100α% most extreme
bootstrap t values.

The fact that in the bootstrap procedure sampling is with replace-
ment, rather than without replacement, in line with the general bootstrap
concepts described in Section 8.6.4, implies that there is no automatic
monotonic relation between the t statistic (3.30) and x̄1−x̄2. In this respect
the bootstrap procedure differs from that of the permutation procedure.
The choice of test statistic for the bootstrap procedure therefore requires
some discussion. Efron and Tibshirani (1993) claim that use of the t statistic
is preferable to use of the difference x̄1 − x̄2.

A key component of both the permutation and the bootstrap procedures
is to use the replications to estimate the null hypothesis distribution of the
test statistic t. The randomization method of the permutation test does
this automatically, but in the bootstrap procedure an additional step is
necessary. The null hypothesis is that the means of the two groups are
equal, and to estimate the null hypothesis distribution of t, before the
replications are carried out all of the original observations are adjusted in
the bootstrap procedure so that the original averages in the two groups
are equal. This is perhaps most easily achieved by subtracting from each
observation the average of the group it is in.

The following is an important difference between the permutation and
the bootstrap procedure. The permutation method applies only to the case
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where the null hypothesis claims identical probability distributions for the
observations in the two groups, since only under this assumption is the
symmetry invoked by this procedure justified. This implies in particular an
assumption of equal variances in the two groups. By contrast, the bootstrap
method uses the plug-in principle and probabilities estimated as in equation
(8.60), and thus tests the more general null hypothesis that the two group
means are equal without making the assumption of equal variances. It thus
extends the range of possibilities for testing for equal means in two groups.

9.9 Sequential Analysis

9.9.1 The Sequential Probability Ratio Test
Sequential analysis is a statistical hypothesis testing procedure in which the
sample size is not fixed in advance, but depends on the outcomes of the suc-
cessive observations taken. Several important results in BLAST theory are
borrowed from sequential analysis, and there are many parallels between
sequential analysis theory and the statistical theory of BLAST, so we con-
sider sequential analysis in some detail. We focus on the case of discrete
random variables, since that provides the most appropriate comparison
with BLAST.

We consider some random variable Y having probability distribution
P (y; ξ). In its simplest and most frequently occurring form, hypothesis
testing in sequential analysis usually relates to tests about the numerical
value of the parameter ξ, the form of the probability distribution of Y
being known. Suppose that the null hypothesis specifies a value ξ0 for the
parameter ξ and the alternative specifies a value ξ1. Thus both hypotheses
are simple. Because the sample size is not chosen in advance, we can specify
not only the desired numerical values α of the Type I error but also the
desired numerical value β of the Type II error.

The sequential analysis procedure prescribes that we take observations
one by one and calculate, after each observation is taken, the discrete
analogue of the likelihood ratio (9.1). Sampling stops, and the alterna-
tive hypothesis is accepted, whenever this ratio becomes sufficiently large,
that is, reaches or exceeds some value B. Similarly, sampling stops, and the
null hypothesis is accepted, whenever it becomes sufficiently small, that is,
reaches or is less than some value A. Sampling continues while

A <
P (y1; ξ1)P (y2; ξ1) · · ·P (yn; ξ1)
P (y1; ξ0)P (y2; ξ0) · · ·P (yn; ξ0)

< B. (9.54)

Our aim is to choose A and B such that the Type I and Type II errors are α
and β, respectively. Because of the discrete nature of the process, boundary
overshoot almost always occurs. In this case the desired Type I and II
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errors α and β are approximately achieved by the choice A = β/(1 − α)
and B = (1 − β)/α.

It is often convenient to take logarithms throughout in (9.54), so that
with A = β/(1 − α) and B = (1 − β)/α, sampling continues as long as

log
β

1 − α
<
∑

i

log
P (yi; ξ1)
P (yi; ξ0)

< log
1 − β

α
. (9.55)

Sampling stops and the null hypothesis is accepted if the lower inequality
is eventually broken, and stops and the alternative hypothesis is accepted
if the upper inequality is eventually broken.

In Section 1.14.3 we defined the support, or score, S1,0(y) of the observed
value y of a random variable Y for the probability distribution claimed by
the alternative hypothesis over the probability distribution claimed by the
null hypothesis. In the present notation this may be written

S1,0(y) = log
P (y; ξ1)
P (y; ξ0)

. (9.56)

The inequalities (9.55) can then be rewritten as

log
β

1 − α
<
∑

i

S1,0(yi) < log
1 − β

α
, (9.57)

the expression
∑

i S1,0(yi) being the accumulated support provided by the
observations for the alternative hypothesis over the null hypothesis.

For continuous random variables the probability P (y; ξ) in (9.54) is re-
placed by a density function f(x; ξ). We do not discuss the continuous
random variable case further, since the theory and procedures are similar
to those of the discrete case.

Example. Sequence matching. Suppose that in the sequence-matching test
(page 307) the null and alternative hypotheses respectively specify the val-
ues p0 = 0.25 and p1 = 0.35 for p, and that both the Type I error and the
Type II error are chosen to be 0.01. If Yi is defined to be 1 when there is
a match at site i and is defined to be 0 when there is not, equation (9.55)
shows that sampling, that is moving from one position in the matched
sequences to the next, is continued while

log
1
99

<
∑

i

S1,0(Yi) < log 99, (9.58)

where

S1,0(Yi) = log
(0.35)Yi(0.65)(1−Yi)

(0.25)Yi(0.75)(1−Yi)
(9.59)

is the support offered by Yi in favor of the alternative hypothesis. In terms
of the support concept, the procedure leads to the acceptance of the null
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hypothesis when the accumulated level of support for the alternative hy-
pothesis reaches log(1/99) = −4.595, so that the accumulated level of
support for the null hypothesis reaches 4.595. The alternative hypothe-
sis is accepted when the accumulated level of support for that hypothesis
reaches log(99) = 4.595.

Using (9.59), the inequalities (9.58) can be written

−9.581 <
∑

i

(Yi − 0.2984) < 9.581. (9.60)

The procedure defined by (9.60) is a random walk in which the step size
is either 0.7016 (for a match) or −0.2984 (for a mismatch). This illustrates
the close link between sequential analysis and random walks.

It is important to note that, unlike the fixed-sample- size test discussed
in Section 3.4.1, the testing procedure depends on the specifics of the al-
ternative hypothesis. Thus if the alternative hypothesis had been p = 0.30
rather than p = 0.35, the inequalities (9.60) would be replaced by

−18.284 <
∑

i

(Yi − 0.2745) < 18.284. (9.61)

This describes a random walk in which the step size is either 0.6255 (for a
match) or −0.2745 (for a mismatch). Thus the step sizes of this walk differ
from those of the walk described by (9.60), as do the boundaries of the
walk. Thus while the sequential procedure has the advantage of allowing
the Type II error to be specified, it has the disadvantage of not testing
against a composite alternative hypothesis. However, whatever the true
value of the parameter being tested might be, we can find the probability
that the null hypothesis is rejected. This leads to a discussion of the power
function of a sequential test.

9.9.2 The Power Function for a Sequential Test
Suppose that in the sequential test described in Section 9.9.1 that the
true value of the parameter of interest is ξ. We might wish to know the
probability that alternative hypothesis is eventually accepted, given that
the parameter takes this value. This probability is the power P(ξ) of the
test. An approximate formula for P(ξ), derived by ignoring the possibility
of boundary overshoot, is (Wilks (1962))

P(ξ) ∼=
1 −
(

β
1−α

)θ∗

(
1−β

α

)θ∗

−
(

β
1−α

)θ∗ , (9.62)



9.9. Sequential Analysis 339

where, except in one specific case discussed below, θ∗ is the unique non-zero
solution for θ of the equation∑

y∈R

P (y; ξ)
(

P (y; ξ1)
P (y; ξ0)

)θ

= 1, (9.63)

where R is the range of values of Y . Equivalently, and again except in one
specific case, θ∗ is the unique non-zero solution for θ in the equation∑

y∈R

P (y; ξ)eθS1,0(y) = 1, (9.64)

where S1,0(y) is defined in equation (9.56).
The value of θ∗ depends on the value of ξ. Two cases are of particular

interest, namely ξ = ξ0 and ξ = ξ1. Inspection of equation (9.63) shows
that when ξ = ξ0 the value of θ∗ is 1. Insertion of this value in (9.62) gives
P (ξ0) ∼= α, as required. When ξ = ξ1 the value of θ∗ is −1, and insertion
of this value in (9.62) gives P (ξ1) ∼= 1 − β, again as required.

The left-hand side in (9.64) is the moment-generating function of S1,0(Y )
if ξ is the true value of the parameter. Since S1,0(Y ) can take both positive
and negative values, the proof of Theorem 1.1 on page 40 shows that if
the mean of S1,0(Y ) is non-zero, there is a unique non-zero value θ∗ of θ
solving (9.64). When the mean of S1,0(Y ) is zero there is a double root of
(9.64) at 0, and a special analysis is needed for this case. However, this one
isolated value is not of any significance to us.

The power calculation is interesting in its own right, since power calcu-
lations in statistical tests are frequently made. We shall see in Section 9.9.3
that the power calculation is also needed to find the mean sample size in
the sequential test.

The parameter θ∗, first introduced in the literature in the context of se-
quential analysis, is identical to that discussed in Chapter 7 in describing
properties of random walks and also identical to the parameter θ∗ that will
be used in Chapter 10 to discuss BLAST theory.

The sequence-matching power function. In the sequence-matching example
the parameter of interest is the probability p of a match, and we replace
the generic parameter notation ξ used above by the Bernoulli notation p.
Suppose that the null hypothesis value of p is 0.25 and the alternative hy-
pothesis value is 0.35. Since the random variable of interest Y can take only
two values (+1 for a match, 0 otherwise), the expression (9.63) simplifies
to

p

(
0.35
0.25

)θ

+ (1 − p)
(

0.65
0.75

)θ

= 1. (9.65)

This may be solved for θ∗ for any chosen value of p and the value found
inserted in the right-hand side of equation (9.62). As an example, if p = 0.3
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(that is, the probability of a match is halfway between the values claimed
by the null and alternative hypotheses), the solution of equation (9.65) is
found (by numerical methods) to be θ∗ = −0.32, and insertion of this value
in equation (9.62) shows that the probability that the alternative hypoth-
esis is accepted is about 0.537. Although 0.3 is halfway between the null
and alternative hypothesis values 0.25 and 0.35, this probability is not 0.5.

In the discussion above it was in effect assumed that the functional form
of the probability distribution of the random variables in the sequential
process is known, and that all that is in question is the value of some
parameter in that distribution. Thus in equation (9.63) it is assumed that
the form of the true probability distribution P (y; ξ) is same as that defined
by the null and alternative hypotheses.

This restriction is unnecessary for power calculations. It might be the
case that the true probability distribution is of a different form than that
assumed under both null and alternative hypotheses. If the probability
distribution of the random variable Y is Q(y), the equation defining θ∗ is

∑
y∈R

Q(y)
(

P (y; ξ1)
P (y; ξ0)

)θ∗

= 1. (9.66)

Once θ∗ is found from this equation, equation (9.62) may be used to find
the probability that the alternative hypothesis is accepted.

9.9.3 The Mean Sample Size
The sample size in a sequential test is the (random) number of observations
taken until one or the other hypothesis is accepted. An approximation to
the mean sample size may be found by ignoring the possibility of boundary
overshoot. The approximation is found by using methods essentially identi-
cal to those used in Section 7.4.3 in finding the mean number of steps until
a random walk stops. That is, two expressions are calculated for the mean
value of the final sum

∑
i S1,0(Yi), one of which involves the mean sample

size, and by equating the two expressions we can solve for the value of the
mean sample size.

The first expression is found as follows. The sequential procedure con-
tinues so long as the inequalities (9.55) hold. If boundary overshoot is
ignored, the final value of

∑
i S1,0(yi) is either log β/(1 − α) (with proba-

bility 1−P(ξ)) or log(1−β)/α (with probability P(ξ)), where P(ξ) is given
by equation (9.62). The mean of the final value of

∑
i S1,0(Yi) is thus, from

equation (1.24),

(1 − P(ξ)) log
(

β

1 − α

)
+ P(ξ) log

(
1 − β

α

)
. (9.67)
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The second expression in effect uses the random walk equation (7.23).
The term mh on the right-hand side of equation (7.23) becomes, in the
sequential case, the mean sample size. The term “E(S)” on the right-hand
side of equation (7.23) is, in the sequential case,

E (S1,0(Yi)) = E

(
log

P (Yi; ξ1)
P (Yi; ξ0)

)
=
∑
y∈R

P (y; ξ) log
P (y; ξ1)
P (y; ξ0)

. (9.68)

Assuming this mean to be non-zero, it follows by equating the two expres-
sions for the mean of the final value of

∑
i S1,0(Yi) that the mean sample

size is

(1 − P(ξ)) log( β
1−α ) + P(ξ) log(1−β

α )∑
y∈R P (y; ξ) log P (y;ξ1)

P (y;ξ0)

. (9.69)

Both numerator and denominator in this expression depend on the value
of P(ξ), and hence on the parameter θ∗, so that the mean sample size itself
also depends on the value of this parameter.

The mean of S1,0(Yi) is zero for only one value of the parameter ξ, so we
do not pursue the mean sample size formula for this case.

A generalization of (9.69), namely

(1 − P(ξ)) log( β
1−α ) + P(ξ) log(1−β

α )∑
y∈R Q(y) log P (y;ξ1)

P (y;ξ0)

, (9.70)

applies in the case where the probability distribution Q(y) of Y is of a
different form from that assumed in null and alternative hypotheses. A cal-
culation similar to this is relevant to the theory of BLAST, as discussed in
Section 10.6.2.

The sequence-matching mean sample size. In the sequence-matching ex-
ample where the null hypothesis value of p is 0.25 and the alternative
hypothesis value of p is 0.35, and the Type I and Type II errors are both
0.01, the expression (9.69) reduces to

9.190P(p) − 4.595
p log 7

5 + (1 − p) log 13
15

. (9.71)

When the null hypothesis is true, so that p = 0.25 and the probability
P(0.25) that the alternative hypothesis is accepted is 0.01, the mean sample
size is 194. When p = 0.30 and the probability P(0.30) that the alternative
hypothesis is accepted is 0.537 (calculated above), the mean sample size
is found from (9.71) to be 441. When the alternative hypothesis is true,
p = 0.35, P(0.35) = 0.99, and the mean sample size is 182.

One of the motivations for the development of sequential methods was
to find a procedure that led to a decision to accept some hypothesis with
a smaller mean sample size than that needed for a fixed-sample-size test
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with the same Type I and Type II errors. It is thus interesting to note that
in the sequence-matching example, the sample size of the fixed-size test
having the same Type I and II errors as the sequential test is about 450.

It sometimes causes concern that there is a value of p for which the
denominator in the expression (9.71) is zero. However, this is the value of p
for which the double root of equation (9.63) arises and for which a different
analysis is needed. Since this refers to one isolated value of p, this is of no
importance.

The mean sample size, as with the power function, depends on the specific
choice made under the alternative hypothesis for the probability p of a
match at any site.

9.9.4 The Effect of Boundary Overshoot
The sequential analysis theory described above assumes that there is no
boundary overshoot. In practice, there will almost always be boundary
overshoot, and in this case the actual Type I and Type II errors of the
test differ from the nominal values α and β that were used to define the
boundaries in the testing procedure. Random walk theory can be used to
assess how significant the effects of boundary overshoot are.

To illustrate this, consider the sequential test of the null hypothesis that
the Bernoulli parameter p is 0.45 against the alternative hypothesis that it
is 0.55, with nominal Type I and Type II errors of 5%. Sampling continues
while

−14.67 <
∑

i

(2yi − 1) < 14.67,

where yi = 1 if trial i results in success and yi = 0 if trial i results in failure.
Defining ui = 2yi − 1, this means that sampling continues while

−14.67 <
∑

i

ui < 14.67,

where ui = 1 if trial i results in success and ui = −1 if trial i results in
failure. Thus

∑
i ui performs a simple random walk. Since this sum can take

only integer values, the walk will continue in practice until
∑

i ui reaches
either −15 or 15. Thus there must be boundary overshoot. Equation (7.10)
can then be used to show that if p = 0.45 (that is, the null hypothesis is
true), the actual Type I error is 4.7% rather than the nominal 5%. The
actual Type II error is also 4.7%.

It can be shown that in any sequential procedure the sum of the actual
Type I and Type II errors is less than the sum α+β of the nominal values,
and usually (as in the above example) both are less than their respective
nominal values.
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The effect of a boundary overshoot can, however, be more important
than it is in this example. BLAST theory recognizes this and deals with it
in a novel way, as described in Chapter 10.

Problems

9.1. Suppose that the null hypothesis of Example 1 of Section 9.4.2 is true.
Then one can write yi/n = pi +hi, where hi is a small deviation from zero,
typically of order n−1. The λ ratio (9.25) can then be written as

λ =
∏

i

(
pi

pi + hi

)yi

. (9.72)

This implies that

−2 log λ = 2
k∑

i=1

yi log
(

1 +
hi

pi

)
. (9.73)

(i) Approximate the logarithmic term in (9.73) by an expression
calculated from the approximation (B.25).

(ii) Write yi as npi + nhi in the expression obtained in (i).

(iii) Show that if terms of order h3
i are ignored, the expression in step (ii)

reduces to the X2 statistic (3.40).

9.2. Suppose that the null hypothesis being tested in Example 2 of Section
3.4.1 is true. Use the fact that the mean of Yj is npj and the variance of
Yj is npj(1 − pj) to show that the mean value of the statistic (3.39) is
exactly k − 1 (the mean of a chi-square random variable with k − 1 degrees
of freedom (see Problem 1.26)).

(More difficult). Find the variance of the statistic (3.40) when the null hy-
pothesis is true, and compare this with the chi-square distribution value
2(k − 1).

9.3. Develop the one-sample T statistic defined in (3.28) and the two-sample
paired T statistic defined in (3.38) by using a likelihood ratio procedure
parallel to that used in Example 1 of Section 9.3.1 for the the two-sample
unpaired T statistic.

9.4. Prove the claim made in Section 9.5.2 that the square of the t statistic
defined in (3.30) is the F statistic defined in (9.31).

9.5. Prove the claim leading to equation (9.53).
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9.6. What value would the t statistic take in the bootstrap procedure de-
scribed in Section 9.8 in the unlikely event that the same observation was
sampled m times in the first group and n times in the second group?

9.7. Develop the sequential likelihood ratio test of the null hypothesis that
the mean of a Poisson distribution is λ0 against the alternative hypothesis
that the mean of the distribution is λ1, with Type I error α and Type II
error β. Here λ0 and λ1 are given constants with λ1 > λ0.

9.8. Continuation. If the true mean of the Poisson distribution is λ, show
that θ∗ is the non-zero solution of the equation

θ∗(λ0 − λ1) − λ + λ

(
λ1

λ0

)θ∗

= 0. (9.74)

If λ0 = 4, λ1 = 5, solve equation (9.74) for λ for the values θ∗ = −1.2,
−1.0, −0.8, −0.6, −0.4, −0.2, +0.2, +0.4, +0.6, +0.8, +1.0, +1.2.

9.9. Continuation. Use the results of Problem 9.8 to sketch the power curve
in the case α = β = 0.05.

9.10. Continuation. Use the results of Problem 9.9 to sketch the mean sam-
ple size curve.

9.11. For the two respective cases ξ = ξ0 and ξ = ξ1, discuss the denomi-
nator in equation (9.69) as a relative entropy.
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BLAST

10.1 Introduction

BLAST (Basic Local Alignment Search Tool) is a widely used method for
assessing which nucleic acid or protein sequences in a large database have
significant similarity to a given query sequence. Many of the results derived
in previous chapters, particularly those relating to the maximum of several
random variables, the geometric-like distribution, P -values, the renewal
theorem, random walks, and sequential analysis, were presented because
they are needed in the statistical theory associated with the BLAST proce-
dure described in this chapter. For concreteness the discussion is in terms
of protein (amino acid) sequences; the analysis for nucleic acid sequences
is similar to that for protein sequences.

Currently there are two implementations of BLAST, one by NCBI (the
US National Center for Biotechnology Information) and the other at Wash-
ington University. For most of this chapter we consider a simple early
version of BLAST, leading to a readily understood statistical analysis. We
first describe Washington University’s version 1.4, which was used to gener-
ate the examples of Section 10.5, and then describe various generalizations
leading to the current implementations.
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10.2 The Comparison of Two Aligned Sequences

10.2.1 Introduction
We start by considering as given an ungapped global alignment of two
protein sequences, both of length N , as shown, for example, in (7.2). This
is done mainly as a preliminary step to the generalizations in the following
sections. In particular, the generalization to finding the best among all local
alignments of two sequences will be considered in Section 10.3. The further
generalization to database searches will be considered in Section 10.4.

The null hypothesis to be tested is that for each aligned pair of amino
acids, the two amino acids were generated by independent mechanisms,
so that if amino acid j occurs at any given position in the first sequence
with probability pj and amino acid k occurs at any given position in the
second sequence with probability p′

k, the null hypothesis probability that
they occur together in a given aligned pair is

null hypothesis probability of the pair (j, k) = pjp
′
k. (10.1)

The theory of Chapter 9 shows that classical statistical testing theory re-
quires the specification of an alternative hypothesis. For the moment we
simply write

alternative hypothesis probability of the ordered pair (j, k) = q(j, k),
(10.2)

without any particular specification of the form of the function q(j, k). The
choice of the form of this function is discussed at length in Section 10.2.4.

10.2.2 The BLAST Random Walk
In this section and the following sections we give the basic idea behind the
statistical aspects of BLAST, considering first the case described above, of
two aligned sequences, both of length N.

We number the positions in the alignment from left to right as positions
1, 2, . . . , N . A score S(j, k) is allocated to each position where the aligned
amino acid pair (j, k) is observed. The choice of the scores S(j, k), j, k =
1, 2, . . . 20 is discussed in Section 10.2.4: For the moment we note only that
there is a close connection between the choice of the choice of the scores
S(j, k) and the choice of the alternative hypothesis probabilities q(j, k)
given in (10.2).

The matrix S = {S(j, k)} is the substitution matrix of the process: as-
pects of these matrices were discussed in Section 6.5. It is required in the
theory, and is assumed throughout, that at least one element in the sub-
stitution matrix be positive and, for reasons discussed below, that the null
hypothesis mean score

∑
j,k pjp

′
kS(j, k) be negative. In order to apply the

theory of Chapter 7 we also assume throughout that the greatest common
divisor of the scores is 1.
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An accumulated score at position i is calculated as the sum of the scores
for the various amino acid comparisons at positions 1, 2, . . . , i. As i in-
creases, this accumulated score undergoes a random walk, as described for
example in (7.3) and Figure 7.2 for the protein sequence comparison given
in (7.2). When the null hypothesis is true, the walk has negative drift and
will go through a succession of increasingly negative ladder points, as de-
fined in Section 7.1. Because the substitution matrix will usually include
elements, or scores, whose values are −2 or less, the accumulated score at
any ladder point will not necessarily be one less than the accumulated score
at the preceding ladder point. This implies that, in random walk terms,
boundary overshoot can occur. An analysis of this overshoot is needed for
BLAST calculations, as outlined briefly below in Section 10.2.3.

Let Y1, Y2, . . . be the respective maximum heights of the excursions of
this walk relative to the height of any ladder point after leaving this ladder
point and before arriving at the next, or relative to the height of the last
ladder point and arriving at the end of the sequence. We define Ymax as
the maximum of these maxima: Ymax is in effect the test statistic used in
BLAST, so it is necessary to find its null hypothesis distribution.

The various random variables Y1, Y2, . . . are independent, and ignoring
end effects for now, can be taken as being identically distributed. The
asymptotic probability distribution of any Yi was shown in Chapter 7 to
be the geometric-like distribution (7.63). The values of C and λ in this
distribution depend on the substitution matrix used and the amino acid
frequencies {pj} and {p′

k}. The probability distribution of Ymax then follows
from the theory of Section 2.11, which, apart from C and λ, depends on the
mean number of ladder points in the walk. (In the notation of Section 2.11,
this is the value of n.) In the following section we discuss the computation
of the central parameters C and θ∗ as well as the mean number of ladder
points, drawing on the random walk theory developed in Chapter 7.

The above procedure shows why it is necessary that the mean score∑
j,k pjp

′
kS(j, k) be negative. If this were not so the BLAST random walk

would contain arbitrarily long upward excursions from ladder points and
the entire testing procedure would break down.

10.2.3 Parameter Calculations
The expression for C is given in equation (7.61), and requires only nota-
tional amendments for application to BLAST. The step size is identified
with a score S(j, k), and the null hypothesis probability of taking a step of
any size is found from the two sets of frequencies {pj} and {p′

j}.
The computation of λ also follows the random walk principles laid down

in Chapter 7. As noted below equation (7.42), λ (= θ∗) is found from an
equation involving the mgf of the step size in this random walk. When the
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null hypothesis is true, this equation is∑
j,k

pjp
′
keλS(j,k) = 1. (10.3)

The calculation of λ from this equation will usually require numerical
methods: See Appendix B.15.

The calculation of the null hypothesis probability distribution of Ymax
depends not only on C and λ but also on the mean number of ladder
points in the BLAST walk. This mean number depends in turn on the
mean distance A between ladder points. A general formula for A is given
in equation (7.41) and is readily converted to the situation discussed here.
However, the arguments leading to this formula do not necessarily provide
an efficient general formula for finding the constants R−j in equation (7.41),
and we now describe two alternative approaches.

The first alternative approach uses a decomposition of paths. Consider
as a simple example a walk in which the possible steps are +1 and −2,
with respective probabilities p and q = 1 − p. Any ladder point reached
in the walk is at a distance 1 or 2 below the previous one. The respective
probabilities of these two cases are denoted by R−1 and R−2 = 1 − R−1,
as in Chapter 7.

The probability that −2 is a ladder point is the probability that the
walk goes immediately to −2, together with the probability of the event
that the walk first goes to +1, and then starting from +1, reaches 0 as the
first point reached below +1 and then −2 as the first ladder point below
0. This implies that

R−2 = q + p(1 − R−2)R−2. (10.4)

The positive solution of this equation is

R−2 =
−q +

√
4pq + q2

2p
. (10.5)

From this the value of R−1 follows as 1 − R−2, and then the value of A
follows from equation (7.41).

For general substitution matrices this method might not be effective. In
such a case, Karlin and Altschul (1990) provide rapidly converging series
expansions that give accurate values of A using only a few terms in the
series. We assume from now on that a value of A, arrived at by one method
or another, is in hand.

Since the two sequences compared are each of length N , and the mean
distance between ladder points is A, the mean number of ladder points is
equal for all practical purposes to N/A. While various approximations are
involved with this calculation, the intuitive interpretation is clear: If, for
example the length N is 1000 and the mean distance A between successive
ladder points is 50, one expects about 20 ladder points in the walk involved
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with the comparison of the two sequences, and this is the value given by
the expression N/A.

10.2.4 The Choice of a Score
So far, we have taken the score S(j, k) as given, and have not discussed
what might be a reasonable choice, on statistical and genetical grounds,
for this score. In applications of BLAST this score, whether found by a
BLOSUM or a PAM matrix, is a log likelihood ratio (as discussed briefly
in Section 6.5), and we now indicate why this is appropriate.

The random walk described in Section 10.2.2 is determined by the sum
of the scores S(j, k) at each position during the walk. In sequential analysis
one also considers the sum of scores. In sequential analysis the score used
is a log likelihood ratio, arrived at through statistical optimality methods.
Specifically, if the random variable Y whose probability distribution is being
assessed is discrete, this is the “score” statistic S1,0(y), defined in equation
(9.56) as the log likelihood ratio

S1,0(y) = log
P (y; ξ1)
P (y; ξ0)

.

Based on the comparison of the BLAST and the sequential analysis proce-
dures, it can be argued that a suitable score to use in BLAST should also
be the logarithm of a likelihood ratio. Under this argument, if the amino
acid pair (j, k) is observed at any position, and if pjp

′
k and q(j, k) are, re-

spectively, the null and the alternative hypothesis probabilities of this pair,
the (discrete random variable) score S(j, k) becomes

S(j, k) = log
q(j, k)
pjp′

k

. (10.6)

Any score proportional to S(j, k) is also reasonable.
The second argument favoring the choice (10.6) for the score associated

with the pair (j, k) is more subtle (Karlin and Altschul (1990)). This argu-
ment also leads to the choice of a specific proportionality constant. Suppose
some arbitrary substitution matrix is chosen, with (j, k) element S(j, k).
Now let q(j, k) be defined implicitly by

S(j, k) = λ−1 log
q(j, k)
pjp′

k

, (10.7)

where λ is defined in equation (10.3), and thus explicitly by

q(j, k) = pjp
′
keλS(j,k). (10.8)

The right-hand side is the typical term on the left hand-side in equation
(10.3). Therefore

∑
j,k q(j, k) = 1. Thus the q(j, k) (which are all positive)

form a probability distribution. This is not an arbitrary distribution. Karlin
and Altschul (1990) and Karlin (1994) show that in practice, when the null
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hypothesis is true, the frequency with which the observation (j, k) arises
in high-scoring excursions, where the score used is as given in equation
(10.7), is asymptotically equal to q(j, k). They then argue that a scoring
scheme is “optimal” if the frequency of the observation (j, k) in high-scoring
excursions is asymptotically equal to the “target” frequency q(j, k), the
frequency arising if the alternative hypothesis is true, (i.e., the frequency
in the most biologically relevant alignments of conserved regions). This,
then, argues for the use of S(j, k) as defined in equation (10.7) as the score
statistic.

These arguments lead us to adopt the following procedure. Suppose that
the alternative hypothesis specifies a well-defined probability q(j, k) for the
amino acid pair (j, k), while the null hypothesis specifies a probability pjp

′
k

for this pair. Then we define the score S(j, k) associated with this pair as
that given by equation (10.7).

These arguments do not yet specify how to determine the most appro-
priate form for the q(j, k)’s. There are various possibilities for this. One
frequently adopted choice is that deriving from the evolutionary arguments
that lead to the PAMn matrix construction described in Section 6.5.3. In
the notation of Section 6.5.3,

q(j, k) = pjm
(n)
jk , (10.9)

so that

S(j, k) = log
m

(n)
jk

p′
k

. (10.10)

The values of the q(j, k)’s for the simple symmetric model of Section 6.5.3
are given in equation (6.35) for one specific value of n. The derivation
of these values emphasizes that q(j, k) is a function of n, and that some
extrinsic choice of a reasonable value of n must be made to use PAMn
matrices in BLAST methods. We discuss aspects of this choice in Section
10.6.

The choice of S(j, k) as the logarithm of a likelihood ratio can be related
to the concepts of relative entropy and support discussed in Section 1.14.2.
Specifically, the score defined by equation (10.7) is proportional to the
support given by the observation (j, k) in favor of the alternative hypothesis
over the null hypothesis. Equation (1.124) shows that when the alternative
hypothesis is true, the mean H of this support is

H =
∑
j,k

q(j, k) log
q(j, k)
pjp′

k

, (10.11)

and this is the relative entropy defined in equation (1.119). Equation (10.7)
shows that this relative entropy can be written as

H =
∑
j,k

q(j, k)λS(j, k) = λE (S(j, k)) , (10.12)
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the expected value being taken assuming that the alternative hypothesis is
true.

From the discussion following (10.8), if the score S(j, k) for the pair
(j, k) is defined as in (10.7), the mean score in high-scoring segments is
asymptotically

∑
j,k q(j, k)S(j, k), and from (10.12) this is

λ−1H. (10.13)

This asymptotic result is used in BLAST calculations (see Section 10.3.3).
Simulations, however, show that the convergence to this asymptotic value

is very slow. For the symmetric PAMn substitution matrix discussed in
Section 6.5.4 with n = 259, and with equal amino acid frequencies, the
asymptotic value λ−1H of the mean step size in high-scoring segments,
found from computation of λ and H from (10.3) and (10.11), respectively,
is 0.446. This is identical to the value given in equation (6.36), found from
Markov chain considerations. For this example, Table 10.1 shows simulation
estimates of this mean for various values of N , the length of the alignment.
The slow rate of convergence to the asymptotic value 0.446 is clear. This

N 500 5,000 50,000 500,000 5,000,000 limiting value
mean step 1.021 .712 .608 .560 .533 .446

Table 10.1. Simulation values for the mean step size in maximally-scoring seg-
ments, as a function of N . Simulations performed with 10,000 to 1,000,000
repetitions.

observation will be relevant to the edge correction formula discussed in
Section 10.3.3.

The value of the relative entropy H appears on BLAST printouts. How-
ever, the calculation used for these printouts is slightly different from that
implied by (10.12). The value of q(j, k) used to compute the score S(j, k)
may well be unknown, so that while the values of λ and S(j, k) are known,
direct computation of H as defined in (10.12) is not possible.

The BLAST printout value of H uses an indirect approach. With the
values of λ, the S(j, k), and the pj and p′

k in hand, q(j, k) is calculated
by using equation (10.8). The printout value of H is now calculated as in
(10.12), using the values of q(j, k) so calculated.

10.2.5 Bounds and Approximations for the BLAST P -Value
We have seen that the test statistic used in BLAST is the maximum Ymax
of n ∼= N/A random variables, each being a random upwards excursion
height following a ladder point in the BLAST random walk. The theory
of Section 7.6.4 shows that each upward excursion has, approximately and
asymptotically, the geometric-like distribution (1.19). We use this result
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in this section to obtain asymptotic bounds for the null hypothesis distri-
bution of Ymax and hence asymptotic bounds for a BLAST P -value. An
approximation used in some BLAST implementations for this P -value will
also be given.

The analysis of Section 2.11.3 shows that there exists an asymptotic
distribution for the maximum of n iid continuous random variables whose
density function has support of the form (A, +∞). The BLAST test statistic
Ymax is, however, a discrete random variable, and an asymptotic distribu-
tion for the maximum of n iid discrete random variables, analogous to that
for continuous random variables, is known not to exist. On the other hand
it is possible to use the continuous distribution results to find asymptotic
bounds for the distribution of Ymax. The procedure is as follows.

If Xmax is the maximum of n iid continuous random variables, and if
Ymax = 	Xmax
 is the integer part of Xmax, then Ymax is a discrete random
variable and

Xmax − 1 < Ymax ≤ Xmax.

Thus for any positive integer y,

Prob(Xmax ≤ y) ≤ Prob(Ymax ≤ y) ≤ Prob(Xmax ≤ y + 1). (10.14)

Let Xmax be the maximum of n iid random variables each having the
exponential distribution (1.66), and put Ymax = 	Xmax
. Then the argu-
ment surrounding equations (2.115) and (2.116) shows that Ymax has the
same distribution as the maximum of n iid random variables, each having
the geometric distribution (1.69). Application of (2.130) and the bounds in
(10.14) shows that to a close approximation,

e−ne−λy ≤ Prob(Ymax ≤ y) ≤ e−ne−λ(y+1)
, (10.15)

or equivalently

1 − e−ne−λy ≤ Prob(Ymax ≥ y) ≤ 1 − e−ne−λ(y−1)
, (10.16)

for any positive integer y.
This discussion suggests how a parallel calculation for the maximum of

random variables having a geometric-like distribution can be obtained. If
Ymax is the maximum of n iid random variables, each having the geometric-
like distribution given in (1.74), then a calculation analogous to that leading
to (10.16) gives the approximate asymptotic inequality

1 − e−nCe−λy ≤ Prob(Ymax ≥ y) ≤ 1 − e−nC e−λ(y−1)
. (10.17)

Whereas for the geometric distribution the upper bound in (10.15) and the
lower bound in (10.16) hold even for small y, the inequalities in (10.17)
are ultimately based on the asymptotic expression (1.74), which applies for
large values of y as well as large n. They might not hold for small values
of y, even when n is large.
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If we now replace n by N/A for the mean number of BLAST ladder
points and define a new parameter K by

K =
C

A
e−λ, (10.18)

the inequality (10.17) becomes

1 − e−NKe−λ(y−1) ≤ Prob(Ymax ≥ y) ≤ 1 − e−NK e−λ(y−2)
. (10.19)

If we replace y in this inequality by x + λ−1 log N , we obtain

e−Ke−λ(x−1) ≤ Prob(Ymax − λ−1 log N ≤ x) ≤ e−Ke−λx

, (10.20)

or equivalently

1 − e−Ke−λx ≤ Prob(Ymax ≥ λ−1 log N + x) ≤ 1 − e−Ke−λ(x−1)
. (10.21)

Allowing for notational changes, this is identical to one of the inequalities
(1.13) in Karlin and Dembo (1992). Equivalently, for any value ymax,

1 − e−KNe−λymax ≤ Prob(Ymax ≥ ymax) ≤ 1 − e−KNe−λ(ymax−1)
. (10.22)

These inequalities give bounds for the P -value corresponding to any ob-
served value ymax of Ymax. These bounds for a BLAST P -value are not
directly relevant in practice, since in practice a BLAST search involves the
comparison of a short query sequence with a large database, consisting of
many fragments, and there is no a priori alignment of the query sequence
with any part of the database. This fact introduces various complications
which we shall take up in the following sections. Nevertheless, we shall see
that the P -value approximation used in the implementation of BLAST de-
scribed in Section 10.5 derives ultimately from the lower P -value bound in
(10.22).

It is often difficult to calculate P -values even for relatively simple random
variables, so it is remarkable that P -values can be approximated with the
comparatively simple and efficient procedure described above. On the other
hand, we shall see in Section 11.6.1 that while the approximation is often
conservative (that is, can overestimate the true P -value), it can also be anti-
conservative, that is underestimate it. This might be because the geometric-
like distribution on which the bounds in (10.22) are ultimately based is an
asymptotic one, and might not apply for comparatively small values of
ymax. Also, it would be more appropriate to use the conservative upper
bound in (10.22) rather than the lower bound.

The calculation of the bounds in (10.22) requires calculation of both λ
and K. The computation of λ via equation (10.3) is comparatively straight-
forward. The calculation of K from the right-hand side in equation (10.18)
would require the calculation of C, A, and λ. However, an exact calculation
of K is straightforward in at least two cases. The first of these arises when
the largest of the S(j, k) is +1, and the second when the smallest S(j, k)
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is −1, arising for example in the simple DNA scoring scheme described
in Section 7.1. Using the notation S for the size of a step in the BLAST
random walk, the two respective formulae for K are

K =
(
e−λ − e−2λ

)
E
(
SeλS

)
(10.23)

and

K =
(
e−λ − e−2λ

) (E(S))2

E (SeλS)
, (10.24)

the expectations being taken assuming that the null hypothesis (10.1) is
true.

10.2.6 The Normalized and the Bit Scores
Karlin and Altschul (1993) call the expression

λYmax − log(NK) (10.25)

a “normalized score,” denoted here by S′. In terms of this score, the
inequalities (10.20) can be written as

e−eλe−s ≤ Prob(S′ ≤ s) ≤ e−e−s

. (10.26)

From the upper inequality we obtain the approximation

Prob(S′ ≥ s) ∼= 1 − e−e−s

. (10.27)

The P -value corresponding to an observed value s′ = λymax − log(NK) of
S′ is, from (10.27),

P -value ∼= 1 − e−e−s′
. (10.28)

This is identical to the approximation given by the lower bound in (10.22).
When s is large, (10.27) may be further approximated by

Prob(S′ ≥ s) ∼= e−s. (10.29)

The similarity between the approximation (10.27) and equation (2.127) is
of course no coincidence, since S′ is a (normalized) extreme value. The ap-
proximation (10.27) and the fact that the mean and variance of the density
function whose cumulative distribution function is (2.126) are respectively
γ (Euler’s constant) and π2/6 show that these are approximately mean
and variance of S′. From (10.25) and the linearity property of a mean (see
Section 1.4), the approximate null hypothesis mean and variance of Ymax
are, approximately,

λ−1 (log(KN) + γ) , and π2/(6λ2) (10.30)

respectively. The value of γ is usually much smaller than KN , and in
BLAST calculations the mean is often approximated by

λ−1 (log(KN)) . (10.31)
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BLAST printouts or published papers record a score similar to the nor-
malized score S′, namely the “bit” score. In more recent printouts this is
defined by

bit score =
λYmax − log K

log 2
. (10.32)

Previous printouts recorded a bit score defined by

bit score =
λYmax

log 2
. (10.33)

The bit score (10.33) has an invariance property, since its value, and
hence its probability distribution, does not change if all entries in the sub-
stitution matrix used are multiplied by the same constant, say G. This can
be seen from the fact that such a multiplication changes the value of Ymax
by a multiplicative factor of G, but at the same time (see equation (10.3))
changes the value of λ by a multiplicative factor 1/G. Thus the bit score
(10.33) remains unchanged by this multiplication.

If the expression on the right-hand side of (10.27) is used to approximate
the distribution of the normalized score S′, then to this level of approxi-
mation the normalized score has a distribution also having the invariance
property, since the right-hand side in (10.27) is free of any parameter.

A much stronger result than this is true. Whereas the value of Ymax has no
absolute interpretation if the substitution matrix from which it is calculated
is not specified, the normalized score S′ and the bit score do have such
an interpretation. In the case of S′ this is made clear by approximations
such as (10.27): Here the right-hand side is free of any parameters, so that
the (approximate) distribution of S′ is known whatever the details of the
substitution matrix. If N is given, the same can be said for the bit score
(10.32).

10.2.7 The Number of High-Scoring Excursions
In this section we define and discuss the quantity E′, whose calculation
leads ultimately to the quantity “Expect” found on BLAST printouts.
Throughout the discussion we ignore edge effects: These are discussed in
detail in Section 10.3.3.

Consider excursions from a ladder point in the random walk described
by the comparison of the two sequences. We have seen that under the
null hypothesis, for each such excursion, the maximum height Y has a
geometric-like distribution whose parameters can be calculated. Denoting
as above the maximum heights of the excursions from the various ladder
points by Y1, Y2, . . . , the relation (1.74) shows that the probability that any
Yi takes a value v or larger is approximately Ce−λv, where C and λ are those
appropriate to the walk in question. Since to a close approximation the
number of excursions can be taken to be N/A, as discussed in Section 10.2.3,
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the mean number of excursions reaching a height v or more is approximately
NC
A e−λv. In the standard BLAST calculations discussed in the printout in

Section 10.5, this mean is replaced by the approximating value

NKe−λv, (10.34)

where K is given by (10.18). In Section 10.4 we shall trace back the printout
P -value calculation to the expected value expression (10.34).

Since Y1, Y2, . . . are iid random variables, the number of excursions hav-
ing a height v or more has a binomial distribution with mean given by
(10.34). The theory developed in Section 4.2 shows that when v is large,
the number of excursions reaching a height greater than or equal to v,
that is, the number of high-scoring segment pairs (HSPs) with a score v
or more, has, using the Poisson approximation to the binomial, a Poisson
distribution with mean given in (10.34). (A more sophisticated analysis,
based on equations such as (2.81) that allow for the fact that the number
of ladder points is a random variable, arrives at the same conclusion.) Thus,
to test for significance, the actual number of such excursions achieving a
score exceeding v can be compared with the tail probability of this Poisson
distribution.

The expected value of the number of excursions corresponding to the
observed maximal score ymax is found by replacing the arbitrary number v
in equation (10.34) by ymax. This expected value is denoted by E′, so that

E′ = NKe−λymax . (10.35)

The relation between E′ and the normalized score S′ defined in (10.25) is

S′ = − log E′, (10.36)

and the relation between E′ and the P -value approximation is found from
(10.28) as

P -value ∼= 1 − e−E′
, E′ = − log(1 − P -value). (10.37)

It follows from the approximation (B.21) that the approximate P -value is
very close to E′ when E′ is small.

Similar calculations may be made for any high-scoring excursion.

10.2.8 The Karlin–Altschul Sum Statistic
Focusing on the value of Ymax loses the information provided by the heights
of the second-largest, third-largest, etc., excursions in the random walk. In
this section we discuss a statistic that uses information from these other
excursions.

Consider the r largest excursion heights, that is, the r largest Yi values,
assuming that there are at least r ladder points. It is convenient to use
a notation that is different from the notation for order statistics used in
Chapter 2, and assume that Y1(= Ymax) ≥ Y2 ≥ · · · ≥ Yr. By analogy
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with the definition in equation (10.25) we can compute r normalized scores
S′

1, S
′
2, . . . , S

′
r from Y1, Y2, . . . , Yr, where

S′
i = λYi − log(NK). (10.38)

Note that S′
1 = S′ as defined in equation (10.25).

Karlin and Altschul (1993) show that to a close approximation, the null
hypothesis joint density function fS(s1, . . . , sr) of S = (S′

1, . . . , S
′
r) is

fS(s1, . . . , sr) = exp

(
−e−sr −

r∑
k=1

sk

)
. (10.39)

We can use any reasonable function of S′
1, S

′
2, . . . , S

′
r as test statistic. Trans-

formation methods such as those introduced in Chapter 2 can then be used
to find the distribution of this test statistic, and this in turn allows the
computation of a P -value, and also an E, or Expect, value, corresponding
to any observed value of this statistic.

The specific statistic suggested by Karlin and Altschul (1993) is the
sum Tr = S′

1 + · · · + S′
r of the normalized scores. This is called the

Karlin–Altschul sum statistic. Using transformation methods such as those
described in Section 2.13, Karlin and Altschul use the joint density func-
tion (10.39) to calculate the null hypothesis density function f(t) of Tr.
The resulting expression is

fTr (t) =
e−t

r!(r − 2)!

∫ +∞

0
y(r−2)exp(−e(y−t)/r)dy. (10.40)

As an exercise in transformation theory we confirm this calculation for the
case r = 2 in Appendix D. When t is sufficiently large, this density function
can be used to find the approximate expression

Prob(Tr ≥ t) ∼= e−ttr−1

r!(r − 1)!
. (10.41)

In the case r = 1, this is the approximation given in equation (10.29).
The approximation (10.41) is sufficiently accurate when t > r(r + 1), and
popular implementations of BLAST use (10.41) when this inequality holds.

If t is the observed value of Tr, the right-hand side in (10.41) then pro-
vides the approximate P -value corresponding to this observed value. This
is used as a component of the eventual BLAST printout P -value.

Karlin and Altschul (1993) provide an example (see their Table 1) in
which the observed values of the highest two normalized scores are s′

1 =
4.4 and s′

2 = 2.5. Using the value r = 1 in the approximation (10.41),
the P -value corresponding to the highest normalized score 4.4 is e−4.4 =
0.012. Using the value r = 2, the P -value corresponding to the sum 6.9 of
the highest two normalized scores is calculated from (10.41) as 6.9

2 e−6.9 =
0.0035, and these calculations confirm those given by Karlin and Altschul.
For further aspects of these calculations, and of the calculations in their
Table 2, see Problems 10.13 and 10.14.



358 10. BLAST

A further aspect of the use of a test statistic based on Tr is that of
consistent ordering. We say that r HSPs, HSP1, HSP2, . . . , HSPr, between
two sequences are consistently ordered if whenever the midpoint in the
first sequence in HSPi comes before the midpoint in the first sequence in
HSPj, then the same is true for the midpoints of the second sequence.
More generally, one might require that the sequences in the different HSPs
not overlap, or overlap no more than some fixed proportion (in popular
implementations of BLAST, the default value of this proportion is 0.125).
When consistent ordering is required, the P -value calculations must be
amended. In the case where overlaps are unrestricted, this requirement
cuts down the search space by a factor of r!, the number of orderings of
the r HSPs. This implies that the P -value calculated from (10.41) should
be divided by r!. A simple approximation (Karlin and Altschul (1993)) is
that P -value calculations are amended by replacing t, the observed value
of Tr, by t+log(r!) in the right-hand side of (10.41), or by a corresponding
amendment to the calculations using (10.40). The popular implementations
of BLAST use this approach, and furthermore allow the degree to which
the HSPs overlap to be restricted. Restricting overlaps should require a
further adjustment of the P -value. This is not apparently done by the
popular implementations. However, an adjustment is made to the “edge
correction” factor discussed below, which may or may not account for this
(see Section 10.3.3).

A further complication introduced by the use of the sum statistic in
BLAST is that of multiple testing. In practice, the value of r is not fixed
in advance and is allowed to vary. Thus the problem of multiple testing,
discussed in Section 3.11, arises. We delay discussion of the way in which
this problem is handled in BLAST calculations until Section 10.3.4.

In BLAST printouts the notation r is replaced by N . We have used r here
because N is used to denote a sequence length. Further, r is the notation
used in the fundamental paper of Karlin and Altschul (1993).

10.3 The Comparison of Two Unaligned Sequences

10.3.1 Introduction
The theory of Section 10.2 considered calculations relevant to a fixed un-
gapped alignment in the comparison of two sequences each of length N .
In this section we consider a more general question. We are given two se-
quences of lengths N1 and N2, but we are not given any specific alignment
between them. The goal is to find the significance of high-scoring segment
pairs between all possible (ungapped) local alignments. The highest-scoring
pair is called the maximal-scoring segment pair (MSP).
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10.3.2 Theoretical and Empirical Background
BLAST considers all ungapped alignments determined by all possible rela-
tive positions of the two sequences. For each relative position, the alignment
is extended as far as possible in either direction, giving a total of N1+N2−1
ungapped alignments. Figure 10.1 shows the first five alignments between
two sequences of length 11 and 9 respectively.

sequence 1 . . . . . . . . . . .
sequence 2 . . . . . . . . .

sequence 1 . . . . . . . . . . .
sequence 2 . . . . . . . . .

sequence 1 . . . . . . . . . . .
sequence 2 . . . . . . . . .

sequence 1 . . . . . . . . . . .
sequence 2 . . . . . . . . .

sequence 1 . . . . . . . . . . .
sequence 2 . . . . . . . . .

Figure 10.1.

Each such alignment yields a random walk similar to that considered in
Section 10.2.2, giving a collection of random walks. There are N1N2 amino
acid comparisons that can be made as the two sequences take all possible
positions relative to each other.

The theory for this case is far more complicated than that outlined in
Section 10.2, where only one alignment occurs. Among other matters the
question of the dependence of the walks arising in different alignments
must be addressed. The key papers developing the theory are Dembo et
al. (1994a, 1994b). The theory is too advanced for this book, and here we
simply reproduce the relevant results, the most important of which is that,
to a sufficient approximation, many of the conclusions of Section 10.2 carry
over to the present case, with N replaced by N1N2.

However, there are several qualifications to make about this statement.
First, several conditions (given by Dembo et al. (1994a, 1994b)) need to be
satisfied before the theory of Section 10.2 can be used. Second, some of the
theoretical results proved apply only in the limit as both N1 and N2 become
large. Thus the theory might not hold in the case of interest in practice,
where both sequences might be of length only a few hundred or less. Thus
many simulations have been carried out to assess the extent to which the
theory of Section 10.2 carries through to cases of practical interest; see, for
example, Altschul and Gish (1996) and Pearson (1998). A broad conclusion
reached from these simulations is that the theory of Section 10.2 does carry
over to a reasonable approximation if N is replaced by the product N1N2,
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or by a more refined function allowing for edge effects. Thus with much
but not complete theoretical and empirical support, and remembering that
cases can arise that are not covered by the theory of Section 10.2, we now
use that theory for the comparison of two sequences, replacing N by N1N2
for the moment, and by a more refined expression in Section 10.3.3.

We consider first the random variable Ymax, the maximum score achieved
in the random walk comparing the sequences, using all possible ungapped
local alignments between the two. This score corresponds to the MSP. Any
MSP or HSP starts at a ladder point in the BLAST random walk and
finishes the first time that the maximum upward excursion from this ladder
point is reached. Under the heuristic adopted, Ymax is the maximum of a
number of geometric-like random variables, whose distribution depends on
the parameters λ, C, and n. The calculations for λ and C follow as in
Section 10.2.3. The mean number of ladder points in this random walk
corresponding to the collection of all alignments of the two sequences is
approximated by

N1N2

A
, (10.42)

where A is the mean distance between ladder points. This value is used
throughout the following theory. The discussion at the end of Section 10.2.3
applies equally well to explain this formula. The theory discussed in Section
10.2.3 can now be used, with the value given by equation (10.42) for the
mean number of ladder points, the value of C given by equation (7.61), and
the value of λ given by equation (10.3).

The key formulae discussed above are now taken over to the present case
with these parameter values. Thus assuming that the null hypothesis (10.1)
is true, the inequalities (10.21) are replaced by

1−e−Ke−λx ≤ Prob(Ymax > λ−1 log(N1N2)+x) ≤ 1−e−Ke−λ(x−1)
, (10.43)

and if the normalized score S′ is redefined as

S′ = λYmax − log(N1N2K), (10.44)

the inequality (10.26) and the approximations (10.27) and (10.29) continue
to hold. As a result, the right-hand side in the latter approximation also has
the interpretation of an approximate P -value corresponding to the observed
value s of S′ as defined in (10.44).

Similarly, the expected number E′ of excursions reaching a height ymax
or more is found by replacing equation (10.35) by

E′ = N1N2Ke−λymax , (10.45)

and the approximate null hypothesis mean of Ymax is

λ−1 (log(N1N2K) + γ) . (10.46)
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10.3.3 Edge Effects
The calculations of the preceding sections do not allow for edge effects, an
important factor in the comparison of two comparatively short sequences.
In this section we discuss the adjustments to the previous calculations that
are used in BLAST calculations to allow for edge effects.

A high-scoring random walk excursion induced by the comparison of the
two sequences might be cut short at the end of a sequence match, so that
the height of high-scoring excursions, and the number of such excursions,
will tend to be less than that predicted by the theory above. Whereas much
of BLAST theory concerns two long sequences for which edge effects are of
less importance, in practice BLAST considers databases made up of a large
number of often short sequences, for which edge effects are important. Thus
BLAST calculations allow for edge effects, and do this by subtracting from
both N1 and N2 a factor depending on the mean length of any high-scoring
excursion. The justification for this is largely empirical (Altschul and Gish
(1996)).

Equation (10.13) shows that the mean value of the step in a high-scoring
excursion asymptotically approaches the value λ−1H. Given that the height
achieved by a high-scoring excursion is denoted by y, equation (7.23) sug-
gests that the mean length E(L|y) of this excursion, conditional on y, is
given by

E(L|y) =
λy

H
. (10.47)

BLAST theory then replaces N1 and N2 in the calculations given above re-
spectively by N ′

1 = N1−E(L), N ′
2 = N2−E(L). Specifically, the normalized

score (10.25) is replaced by

λYmax − log(N ′
1N

′
2K), (10.48)

with

N ′
1 = N1 − λYmax

H
, N ′

2 = N2 − λYmax

H
. (10.49)

The expression (10.34) for the expected number of excursions scoring v or
higher is correspondingly replaced by

N ′
1N

′
2Ke−λv, (10.50)

with N ′
1 = N1 − λv/H, N ′

2 = N2 − λv/H. Similarly, the calculation of E′

given in (10.35) is replaced by

E′ = N ′
1N

′
2Ke−λymax . (10.51)

The use of edge corrections using (10.49) assumes that the asymptotic
formula (10.13) for the mean step size in a high-scoring excursion is appro-
priate. The simulations discussed in Section 10.2.4 show that this might
not be the case, at least when N1 and N2 are both of order 102. Table
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10.2 shows empirical MSP mean lengths (from simulations with 10,000 to
1,000,000 replications) and the values calculated from (10.47) for the simu-
lation leading to the data of Table 10.1. Clearly the values calculated from
(10.47) are inaccurate for anything other than very large values of N . Thus
while the calculated values approach the empirical values as N increases
(in line with the convergence of the mean step sizes to the asymptotic value
in Table 10.1), the use of the edge correction implied by (10.49) might in
practice lead to P -value estimates less than the correct values, that is, to
anti-conservative tests, for anything other than very large values of N . The
use of the observed value of the length of the MSP appears to give more
accurate results (Altschul and Gish (1996)).

N 500 5,000 50,000 500,000 5,000,000
Empirical mean length 43.2 106.8 181.1 258.0 335.9
Calculated mean length 98.7 168.4 237.4 301.8 373.9

Table 10.2. Empirical values for the mean length of the MSP and the value found
from (10.47) and empirical values of ymax. Simulations performed with 10,000 to
1,000,000 repetitions.

In the popular implementations of BLAST the edge effect correction
factor for the Karlin–Altschul sum statistic Tr is calculated as follows.
First, a raw edge effect correction is calculated as λ(Y1 + Y2 + · · ·+ Yr)/H,
generalizing the term λYmax/H given in (10.49). When consistent ordering
is required and overlaps are restricted by a factor f , this is then multiplied
by a factor 1 − (r + 1)f/r, where f is an “overlap adjustment factor” that
can be chosen by the investigator. The default value of f is 0.125, implying
that overlaps between segments of up to 12.5% are allowed. The use of f
is illustrated by an example in Section 10.5.2. To this the value r − 1 is
added, leading eventually to an edge correction value E(L), defined by

E(L) =
λ

H
(Y1 + Y2 + · · · + Yr)

(
1 − r + 1

r
f

)
+ r − 1. (10.52)

While this formula is used in BLAST, there appears to be no publication
justifying its validity. It could be tested empirically in the spirit of Altschul
et al. (1996). The values of N1 and N2 in the normalized score formula
(10.38) are then replaced, respectively, by

N ′
1 = N1 − E(L), N ′

2 = N2 − E(L). (10.53)

The normalized scores in (10.38) are now redefined as

S′
i = λYi − log(N ′

1N
′
2K), (10.54)

and with this new definition the sum statistic Tr is redefined as

Tr = S′
1 + S′

2 + · · · + S′
r. (10.55)
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The problems discussed above concerning the accuracy of the approxi-
mation (10.47) leading to the expressions for N ′

1 and N ′
2, and hence of

calculations derived from S′
i and Tr, apply here also.

If the r HSPs are required to be consistently ordered, a term log r! is
added to Tr (as discussed in Section 10.2.8), and if the sum so calculated
is t, the P -value is then calculated as in (10.41).

10.3.4 Multiple Testing
There is no obvious choice for the value of r when the sum statistic is
used in the test procedure. It is natural to consider all r = 1, 2, 3, . . . ,
and choose the set of HSPs with lowest sum statistic P -value as the most
significant, regardless of the value of r, and this is what is done in BLAST
calculations. However, this procedure implies that a sequence of tests, one
for each r, rather than a single test, is performed, so that the issue of mul-
tiple testing, discussed in Section 3.11, arises. Green (unpublished results)
has found through simulations that ignoring the multiple testing issue leads
to a significant overestimate of BLAST P -values, so that an amendment to
formal P -value calculations is indeed necessary.

Unfortunately, there is no rigorous theory available to deal with this
issue, and in practice it is handled in an ad hoc manner. For example,
in the Washington University versions of BLAST, the P -value is adjusted
when r > 1 by dividing the formal P -value by a factor of (1 − π)πr−1. The
parameter π has default value .5, but its value can be chosen by the user.
The default value 0.5 is used in the example in Section 10.5.

When r = 1 the procedure is slightly different. The factor (1 − π)πr−1

in this case is 1 − π, and this implies that the value of E′ given in (10.35)
is divided by 1 − π to find the amended expected value E. The BLAST
default value 0.5 of π implies that E = 2E′, so that E is calculated to be

E = 2N ′
1N

′
2Ke−λymax . (10.56)

The P -value corresponding to this is then found, using the analogy with
(10.37), to be

P -value ∼= 1 − e−E . (10.57)

The P -value and Expect calculations used in BLAST embody the amend-
ments discussed above to the theoretical values (given in Section 10.2).
These amendments relate to edge effect corrections, multiple testing cor-
rections and, in the case of the sum statistic, the consistent ordering and
overlap corrections. Some details of these amendments appear not to be
mentioned in BLAST documentation in the popular implementations of
BLAST, and only become clear by careful reading of the code.
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10.4 The Comparison of a Query Sequence Against
a Database

We now consider the case that is most relevant in practice. In this case we
have a single “query” sequence, and we wish to search an entire database of
many sequences for those with significant similarity to the query sequence.
To do this, first a (heuristic) search algorithm is employed to find the high-
scoring HSPs, or sets of HSPs. The P -values and Expect values of these
HSPs are then approximated. These approximations are discussed in this
section.

Whereas query sequence amino acid frequencies are taken from the query
sequence at hand, database frequencies often are taken from some (differ-
ent) published set of estimated amino acid frequencies, for example those in
Robinson and Robinson (1991). These might be different again from those
used to create the substitution matrix.

In approximating database P -values and Expect values, the size of the
entire database must be taken into account. This raises another multiple
testing problem in addition to that discussed above. What is done in prac-
tice is first to use the results of the last section to compare the query
sequence to each individual database sequence, to obtain P -values for in-
dividual sequence comparisons. Then the individual sequence P -values are
adjusted to account for the size of the database. If all the sequences in
the database were the same size, then we could just multiply the Expect
values by the number of sequences, using the linearity property of means
(see (2.66)). As an approximation to this, what is done in practice is to
multiply by D/N2, where D is the total length of the database, (i.e., the
sum of the lengths of all of the database sequences), and N2 is the length
of the database sequence that aligns with the query to give the HSP (or
HSPs) in question. These Expect values are then converted to P -values.
The details are as follows.

We consider first the case of single HSPs (r = 1). Because of its linearity
properties, the most useful quantity for database searches is the quantity
E, defined in (10.56), and its generalizations for other HSPs. Suppose that
in the database sequence of interest there is some HSP with score v. The
Poisson distribution is then used to approximate the probability that in
the match between query sequence and database sequence at least one
HSP scores v or more. This probability is approximately

1 − e−E . (10.58)

Since the entire database is D/N2 times longer than the database sequence
of interest, the mean number of HSPs scoring v or more in the entire
database, namely the BLAST printout quantity Expect, is given by

Expect =
(1 − e−E)D

N2
. (10.59)
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From this value of Expect an approximate P -value is calculated from
(10.37) as

P -value ∼= 1 − e−Expect. (10.60)

This is the BLAST printout P -value for the case r = 1 in the
implementation of BLAST discussed in Section 10.5

We shall see in Section 10.5 that the BLAST printout P -value is found
by first using (10.59) to calculate “Expect” and then finding a P -value
from (10.60). Once allowance is made for multiple testing, the size of the
database, edge effects, and the multiple alignment situation, the value of
“Expect” derives directly from the expression for E′ – see the calculations
in (10.62) and (10.63) – then back to (10.51) and thence to (10.34). Thus
from the relation between a P -value and an expected value given in (10.37),
the BLAST printout P -value traces back to the lower bound for a P -value
given in (10.22), as was claimed below (10.34).

For the case r > 1, sum statistics for various database sequences are
calculated as described in Section 10.2.8, and P -values are calculated either
from (10.40) or (10.41), using all the amendments discussed above. From
each such P -value a total database value of Expect is calculated using a
formula generalizing that derived from (10.59), namely

Expect =
(P -value)D

N2
, (10.61)

where N2 is the length of the database sequence from which the sum is
found. From this a P -value is calculated as in (10.60).

Finally, all single (i.e., r = 1) HSPs or summed (r > 1) HSPs with
sufficiently low values of Expect (or, equivalently, sufficiently low P -values)
are listed, and eventually printed out in increasing order of their Expect
values. The value of r, given as N in the printout, is also listed.

10.5 Printouts

In this section we relate the above theory to an actual BLAST print-
out, describing the comparison of a query sequence with the Swiss Protein
Database SWISS-PROT.

BLAST printouts give the values of λ, calculated from (10.3), of K, cal-
culated from (10.18) amended appropriately for sequence comparisons, and
H, found from the procedure described at the end of Section 10.2.4. They
also list the statistics “Score” or “High Score,” which in the case r = 1 are
the values of the maximal scores ymax or other high-scoring HSPs. In the
case of the sum statistic Tr (with r > 1), the score of the highest-scoring
component in the sum is listed. Also listed are the “bit scores” associated
with these, together with “Expect” values and P -values calculated as de-
scribed in Section 10.4. We repeat that variants of these calculations are
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possible for different versions of BLAST and that sometimes more sophis-
ticated calculations, taking into account factors not discussed above, are
used.

10.5.1 Example
A partial printout of Example 3 from the Washington University BLAST
1.4 program follows:1

BLASTP 1.4.10MP-WashU [29-Apr-96] [Build 22:25:52 May 19 1996]

Query= gi|557844|sp|P40582|YIV8_YEAST HYPOTHETICAL 26.8 KD PROTEIN IN HYR1
3’REGION.

(234 letters)

Database: SWISS-PROT Release 34.0
59,021 sequences; 21,210,388 total letters.

----------------------------------------------------------------------
Smallest

Sum
High Probability

Sequences producing High-scoring Segment Pairs: Score P(N) N

sp|P46429|GTS2_MANSE GLUTATHIONE S-TRANSFERASE 2 (EC 2.... 53 0.010 3
sp|P46420|GTH4_MAIZE GLUTATHIONE S-TRANSFERASE IV (EC 2... 70 0.14 1
sp|P41043|GTS2_DROME GLUTATHIONE S-TRANSFERASE 2 (EC 2.... 54 0.19 2
sp|P34345|YK67_CAEEL HYPOTHETICAL 28.5 KD PROTEIN C29E4... 50 0.42 2
sp|Q04522|GTH_SILCU GLUTATHIONE S-TRANSFERASE (EC 2.5.... 62 0.87 1

----------------------------------------------------------------------

>sp|P46429|GTS2_MANSE GLUTATHIONE S-TRANSFERASE 2 (EC 2.5.1.18) (CLASS-SIG).
Length = 203

Score = 53 (24.4 bits), Expect = 0.010, Sum P(3) = 0.010
Identities = 10/19 (52%), Positives = 15/19 (78%)

Query: 167 ISKNNGYLVDGKLSGADIL 185
I+KNNG+L G+L+ AD +

Sbjct: 136 ITKNNGFLALGRLTWADFV 154

Score = 46 (21.2 bits), Expect = 0.010, Sum P(3) = 0.010
Identities = 8/21 (38%), Positives = 13/21 (61%)

Query: 45 PELKKIHPLGRSPLLEVQDRE 65
PE K P G+ P+LE+ ++

Sbjct: 39 PEFKPNTPFGQMPVLEIDGKK 59

1http://sapiens.wustl.edu/blast/blast/example3-14.html
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Score = 36 (16.6 bits), Expect = 0.010, Sum P(3) = 0.010
Identities = 8/26 (30%), Positives = 12/26 (46%)

Query: 202 EDYPAISKWLKTITSEESYAASKEKA 227
E YP K ++T+ S A + A

Sbjct: 173 EQYPIFKKPIETVLSNPKLKAYLDSA 198

>sp|P46420|GTH4_MAIZE GLUTATHIONE S-TRANSFERASE IV (EC 2.5.1.18) (GST-IV)
(GST-27) (CLASS PHI).
Length = 222

Score = 70 (32.3 bits), Expect = 0.15, P = 0.14
Identities = 17/56 (30%), Positives = 27/56 (48%)

Query: 18 RLLWLLDHLNLEYEIVPYKRDANFRAPPELKKIHPLGRSPLLEVQDRETGKKKILA 73
R L L+ ++YE+VP R PE +P G+ P+LE D + + +A

Sbjct: 18 RALLALEEAGVDYELVPMSRQDGDHRRPEHLARNPFGKVPVLEDGDLTLFESRAIA 73

>sp|Q04522|GTH_SILCU GLUTATHIONE S-TRANSFERASE (EC 2.5.1.18) (CLASS-PHI).
Length = 216

Score = 62 (28.6 bits), Expect = 2.1, P = 0.87
Identities = 15/43 (34%), Positives = 21/43 (48%)

Query: 18 RLLWLLDHLNLEYEIVPYKRDANFRAPPELKKIHPLGRSPLLE 60
R+L L +LE+E VP A P ++P G+ P LE

Sbjct: 15 RVLVALYEKHLEFEFVPIDMGAGGHKQPSYLALNPFGQVPALE 57

----------------------------------------------------------------------

Matrix name Lambda K H
--------------------------------------
BLOSUM62 0.320 0.137 0.401

The first calculation is to check the values of “Score” (equivalently “High
score”) in the printout, using the BLOSUM62 matrix in Table 6.7. As an
example, the score 53 for the MANSE GLUTATHIONE match is calculated
as 4 + 1 + · · · + 1, deriving from the I − I match, the S − T match, . . . ,
the L − V match in the first of the three components of the match of the
query and the SWISS-PROT database. Other scores are found similarly.

We next verify the calculations leading to the Maize Glutathione match
sequence value of 0.15 for Expect. For this case, the printout above shows
that

N1 = 234, N2 = 222, ymax = 70.

Equation (10.49), in conjunction with the printout values of λ and H, gives

N ′
1 = 234 − 0.32(70)

0.401
= 178, N ′

2 = 222 − 0.32(70)
0.401

= 166.
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Inserting these values and the printout value of K in (10.51), we get

E′ ∼= (178)(166)(0.137)e−0.32(70) ∼= 7.6(10)−7. (10.62)

Multiplying by the multiple testing factor 2 gives E ∼= 15.2(10)−7. Inserting
this value in (10.59), we get

Expect ∼=
(
1 − e−15.2(10)−7

) 21,210,388
222

∼= 0.15, (10.63)

in agreement with the value 0.15 for Expect found in the printout.
Given this value, equation (10.60) gives an approximate P -value of 0.14,

in agreement with the printout calculation. Further, equation (10.33) gives
a value 0.320(70)/ log 2 ∼= 32.3 for the bit score, in agreement with the
printout value.

A similar set of calculations gives, to a close approximation, the value
2.1 for Expect in the Silcu Glutathione match.

We finally consider the Manse Glutathione match, for which r = 3, and
describe the calculations leading to the printout value 0.010 for Expect.
As noted above, this value of Expect is found using a series of amendment
calculations, starting with the edge correction. The expression (10.52), to-
gether with data in the printout and the default value 0.125 for f , leads to
an edge correction of

0.32
0.401

(53 + 46 + 36)
(

1 − 4
3
(0.125)

)
+ 2 = 91.78.

Thus from (10.53), N ′
1 = 142.2835 and N ′

2 = 111.2835. Using these values
in (10.38), the amended observed value of T3 is computed as

0.32(53 + 46 + 36) − 3 log ((0.137)(142.22)(111.22)) = 20.16.

The consistent ordering requirement holds, so we add log 3! = 1.79 to this to
get the value 21.95. The P -value corresponding to this is found from (10.41)
to be 1.181(10)−8. Multiplying by the multiple testing factor 23 = 8 yields
a value of 9.448(10)−8. The value of E is essentially identical to this.

Finally, the total database Expect value is found by multiplying this by
21,210,388/203, and this gives the value 0.010 found in the printout.

It might be a matter of concern that various somewhat arbitrary con-
stants enter into the above calculations. This concern is reinforced by
the fact that the cumulative distribution function of maximum statistics
changes very sharply, as demonstrated in Table 3.4. As a result, calculated
P -values are quite sensitive to the somewhat arbitrary numerical values of
these constants. In practice, this concern is not important, since users of
BLAST printouts seldom view a P -value even as small as 10−5 as inter-
esting, and use the numerical P -values together with significant biological
judgment.



10.5. Printouts 369

10.5.2 A More Complicated Example
The way in which some BLAST outputs are formatted can be confusing.
The partial output from a BLAST search against SWISS-PROT is given
below,2 in which only the set of HSPs between the query and one database
sequence are shown. There are 12 HSPs in total; however, since consistent
ordering is required, the smallest sum P -value comes from a set of 8 HSPs.

Query= gi|604369|sp|P40692|MLH1_HUMAN MUTL PROTEIN HOMOLOG 1 (DNA MISMATCH
(756 letters)

Smallest
Sum

High Probability
Sequences producing High-scoring Segment Pairs: Score P(N) N

sp|P38920|MLH1_YEAST MUTL PROTEIN HOMOLOG 1 (DNA MIS... 675 1.7e-138 8

>sp|P38920|MLH1_YEAST MUTL PROTEIN HOMOLOG 1 (DNA MISMATCH REPAIR PROTEIN.)
Length = 769

Score = 675 (309.6 bits), Expect = 1.7e-138, Sum P(8) = 1.7e-138
Identities = 127/222 (57%), Positives = 170/222 (76%)

Query: 8 IRRLDETVVNRIAAGEVIQRPANAIKEMIENCLDAKSTSIQVIVKEGGLKLIQIQDNGTG 67
I+ LD +VVN+IAAGE+I P NA+KEM+EN +DA +T I ++VKEGG+K++QI DNG+G

Sbjct: 5 IKALDASVVNKIAAGEIIISPVNALKEMMENSIDANATMIDILVKEGGIKVLQITDNGSG 64

Query: 68 IRKEDLDIVCERFTTSKLQSFEDLASISTYGFRGEALASISHVAHVTITTKTADGKCAYR 127
I K DL I+CERFTTSKLQ FEDL+ I TYGFRGEALASISHVA VT+TTK + +CA+R

Sbjct: 65 INKADLPILCERFTTSKLQKFEDLSQIQTYGFRGEALASISHVARVTVTTKVKEDRCAWR 124

Query: 128 ASYSDGKLKAPPKPCAGNQGTQITVEDLFYNIATRRKALKNPSEEYGKILEVVGRYSVHN 187
SY++GK+ PKP AG GT I VEDLF+NI +R +AL++ ++EY KIL+VVGRY++H+

Sbjct: 125 VSYAEGKMLESPKPVAGKDGTTILVEDLFFNIPSRLRALRSHNDEYSKILDVVGRYAIHS 184

Query: 188 AGISFSVKKQGETVADVRTLPNASTVDNIRSIFGNAVSRELI 229
I FS KK G++ + P+ + D IR++F +V+ LI

Sbjct: 185 KDIGFSCKKFGDSNYSLSVKPSYTVQDRIRTVFNKSVASNLI 226

Score = 215 (100.6 bits), Expect = 1.7e-138, Sum P(8) = 1.7e-138
Identities = 39/85 (45%), Positives = 58/85 (68%)

Query: 259 LLFINHRLVESTSLRKAIETVYAAYLPKNTHPFLYLSLEISPQNVDVNVHPTKHEVHFLH 318
+ FIN+RLV LR+A+ +VY+ YLPK PF+YL + I P VDVNVHPTK EV FL

Sbjct: 259 IFFINNRLVTCDLLRRALNSVYSNYLPKGNRPFIYLGIVIDPAAVDVNVHPTKREVRFLS 318

Query: 319 EESILERVQQHIESKLLGSNSSRMY 343
++ I+E++ + ++L ++SR +

Sbjct: 319 QDEIIEKIANQLHAELSAIDTSRTF 343

2http://blast.wustl.edu/blast/example2-14.html
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Score = 136 (64.7 bits), Expect = 1.7e-138, Sum P(8) = 1.7e-138
Identities = 40/121 (33%), Positives = 58/121 (47%)

Query: 636 LIGLPLLIDNYVPPLEGLPIFILRLATEVNWDEEKECFESLSKECAMFYSIRKQYISEES 695
L LPLL+ Y+P L LP FI RL EV+W++E+EC + + +E A+ Y + S

Sbjct: 649 LKSLPLLLKGYIPSLVKLPFFIYRLGKEVDWEDEQECLDGILREIALLYIPDMVPKVDTS 708

Query: 696 TLSGQQSEVPGSIPNSWKWTVEHIVYKALRSHILPPKHFTEDGNILQLANLPDLYKVFERC 756
S + E I + +++++ANLPDLYKVFERC

Sbjct: 709 DASLSEDEKAQFINRKEHISSLLEHVLFPCIKRRFLAPRHILKDVVEIANLPDLYKVFERC 769

Score = 93 (45.2 bits), Expect = 1.7e-138, Sum P(8) = 1.7e-138
Identities = 21/52 (40%), Positives = 29/52 (55%)

Query: 539 ALAQHQTKLYLLNTTKLSEELFYQILIYDFANFGVLRLSEPAPLFDLAMLAL 590
A QH KL+L++ + ELFYQI + DFANFG + L D+ + L

Sbjct: 549 AAIQHDLKLFLIDYGSVCYELFYQIGLTDFANFGKINLQSTNVSDDIVLYNL 600

Score = 76 (37.4 bits), Expect = 1.7e-138, Sum P(8) = 1.7e-138
Identities = 17/49 (34%), Positives = 30/49 (61%)

Query: 501 INLTSVLSLQEEINEQGHEVLREMLHNHSFVGCVNPQWALAQHQTKLYL 549
+NLTS+ L+E++++ H L ++ N ++VG V+ + LA Q L L

Sbjct: 509 VNLTSIKKLREKVDDSIHRELTDIFANLNYVGVVDEERRLAAIQHDLKL 557

Score = 42 (22.0 bits), Expect = 1.7e-138, Sum P(8) = 1.7e-138
Identities = 8/26 (30%), Positives = 16/26 (61%)

Query: 609 EYIVEFLKKKAEMLADYFSLEIDEEG 634
E I+ + + ML +Y+S+E+ +G

Sbjct: 614 EKIISKIWDMSSMLNEYYSIELVNDG 639

Score = 41 (21.5 bits), Expect = 1.7e-138, Sum P(8) = 1.7e-138
Identities = 9/33 (27%), Positives = 20/33 (60%)

Query: 365 SLTSSSTSGSSDKVYAHQMVRTDSREQKLDAFL 397
S T++++ K +++VR D+ + K+ +FL

Sbjct: 381 SYTTANSQLRKAKRQENKLVRIDASQAKITSFL 413

Score = 39 (20.6 bits), Expect = 1.5e-21, Sum P(5) = 1.5e-21
Identities = 9/27 (33%), Positives = 14/27 (51%)

Query: 411 IVTEDKTDISSGRARQQDEEMLELPAP 437
+ T+ K D + R + +MLE P P

Sbjct: 112 VTTKVKEDRCAWRVSYAEGKMLESPKP 138

Score = 37 (19.7 bits), Expect = 1.7e-132, Sum P(7) = 1.7e-132
Identities = 7/22 (31%), Positives = 13/22 (59%)

Query: 503 LTSVLSLQEEINEQGHEVLREM 524
+TS LS ++ N +G R++

Sbjct: 409 ITSFLSSSQQFNFEGSSTKRQL 430
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Score = 36 (19.3 bits), Expect = 4.2e-46, Sum P(7) = 4.2e-46
Identities = 9/40 (22%), Positives = 20/40 (50%)

Query: 14 TVVNRIAAGEVIQRPANAIKEMIENCLDAKSTSIQVIVKE 53
TV N+ A +I + ++++ +D K ++ I K+

Sbjct: 215 TVFNKSVASNLITFHISKVEDLNLESVDGKVCNLNFISKK 254

Score = 34 (18.4 bits), Expect = 1.7e-138, Sum P(8) = 1.7e-138
Identities = 7/20 (35%), Positives = 12/20 (60%)

Query: 242 MNGYISNANYSVKKCIFLLF 261
++G + N N+ KK I +F

Sbjct: 241 VDGKVCNLNFISKKSISPIF 260

Score = 34 (18.4 bits), Expect = 9.1e-106, Sum P(5) = 9.1e-106
Identities = 6/23 (26%), Positives = 14/23 (60%)

Query: 209 NASTVDNIRSIFGNAVSRELIEI 231
N +++ +R +++ REL +I

Sbjct: 510 NLTSIKKLREKVDDSIHRELTDI 532

Information about the 12 HSPs is summarized in Table 10.3. The HSPs
are numbered 1 to 12 as they occur above. The P -values indicated for any
HSP are calculated from some Karlin–Altschul sum statistic associated
with the HSP. Thus these P -values do not apply to the HSP itself, but
rather to the HSP in conjunction with other HSPs with which it forms a
consistent set. When more than one consistent set contains an HSP, the
P -value reported for any HSP is the smallest one. Consistent sets have
not been given on the standard printout, so that determining which HSPs
form which consistent sets has been left to the user. An option, however,
has recently been implemented in the Washington University version of
BLAST 2.0 that will allow the output of consistent sets.

HSP 1 2 3 4 5 6
N 8 8 8 8 8 8

P -value 1.7e-138 1.7e-138 1.7e-138 1.7e-138 1.7e-138 1.7e-138
query span 8-229 259-343 636-756 539-590 501-549 609-634
target span 5-226 259-343 649-769 549-600 509-557 614-639

HSP 7 8 9 10 11 12
N 8 5 7 7 8 5

P -value 1.7e-138 1.5e-21 1.7e-132 4.2e-46 1.7e-138 9.1e-106
query span 365-397 411-437 503-524 14-53 242-261 209-231
target span 381-413 112-138 409-430 215-254 241-260 510-532

Table 10.3.
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The eight HSPs forming the most significant set are 1, 11, 2, 7, 5, 4, 6,
3, listed in their consistent order. Notice that HSP 5 overlaps HSP 4, as
shown by the HSP spans. This overlap is allowed under the default option,
since there is no overlap after removing the right 12.5% of residues from
HSP 5 and the left 12.5% of residues from HSP 4. The first seven HSPs
are consistent; the eighth is not consistent with the previous seven, and
it forms the consistent set containing HSPs 8, 5, 4, 6, 3, listed in their
consistent order. HSP 9 is part of the set 1, 11, 2, 9, 4, 6, 3. HSP 10 is
part of the set 10, 2, 7, 5, 4, 6, 3, and HSP 12 is part of the set 1, 12,
4, 6, 3. It might not always be so easy to find consistent sets, especially
when there are hundreds of HSPs and very long HSPs. Furthermore, there
may be ambiguities in that a given HSP may report an N(= r) of 5, yet be
consistent with two different sets of 4 HSPs. In this case BLAST reports the
set with lower P -value. However, it might not be clear from the printout
which set this is, and it might be necessary to calculate the significance
values to find it.

10.6 Minimum Significance Lengths

10.6.1 A Correct Choice of n

When sequences are distantly related, the similarities between them might
be subtle. Thus we shall not be able to detect significant similarity unless
a long alignment is available. On the other hand, if sequences are very
similar, then a relatively short alignment is sufficient to detect significant
similarity. In this section we discuss how this issue can be put on a more
rigorous foundation.

If the similarity is subtle, each aligned pair will tell us less, in terms of
information, than each aligned pair in more similar sequences. This will
lead us to the concept of information content per position in an alignment.
The theory to be developed relates to a fixed ungapped alignment of length
N .

The PAMn substitution matrix has been discussed extensively above. In
this section we take for granted the evolutionary model underlying these
matrices. Our analysis follows that of Altschul (1991). In particular, we
assume for convenience, with Altschul, that the amino acid frequencies in
the two sequences compared are the same. However, in some other respects
our analysis differs from his.

The analysis of Section 10.2.4 shows that an investigator using a PAMn
substitution matrix in a BLAST procedure is in effect testing the alterna-
tive hypothesis that n is the correct value to use in the evolutionary process
leading to the two protein sequences compared against the null hypothesis
that the appropriate value of n is +∞. In this section we assume that the
alternative hypothesis is correct (that is, that the correct value of n has
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been chosen), and in effect explore aspects of the power of the testing pro-
cedure by finding the mean length of protein sequence needed before the
alternative hypothesis is accepted. In the following section we explore the
effects of an incorrect choice of n.

Suppose that, in formal statistical terms, we decide to adopt a testing
procedure with Type I error α. Equation (10.29) shows that the value s
of the normalized score statistic S′ needed to meet this P -value require-
ment is approximately given by s = − log α. From equation (10.25) the
corresponding value ymax of Ymax is

ymax = λ−1 log
(

NK

α

)
. (10.64)

When the alternative hypothesis is true, the mean score for the comparison
of the amino acids at any position is, from (10.7),∑

j,k

q(j, k)S(j, k) = λ−1
∑
j,k

q(j, k) log
q(j, k)
pjpk

. (10.65)

Equation (7.23) shows that if the mean final position in a random walk
is F and the mean step size is G, the mean number of steps needed to
reach the final position is F/G. This then suggests that the mean sequence
length needed in the maximally scoring local alignment in order to obtain
significance with Type I error α is the ratio of the expressions in (10.64)
and (10.65), namely

log
(

NK
α

)∑
j,k q(j, k) log q(j,k)

pjpk

. (10.66)

Altschul (1991) calls this the “minimum significance length.” The expres-
sion (10.66) does not change if we change the base of both logarithms. The
choice of the base 2 for these logarithms has an “intuitive appeal” (Altschul
(1991)), since then various components in the resulting expression can be
interpreted in terms of bits of information, as discussed in Appendix B.10.
We thus make this choice in the following discussion, and write the ratio
(10.66) as

log2
(

NK
α

)∑
j,k q(j, k) log2

(
q(j,k)
pjpk

) . (10.67)

We consider first the denominator in (10.67). This can be thought of as the
mean of the relative support, in terms of bits, provided by one observation
for the alternative hypothesis against the null hypothesis, given that the
alternative hypothesis is true.

It follows that the numerator in (10.67) can be thought of as the mean to-
tal number of bits of information needed to claim that the two sequences are
similar. The value of K is known from experience to be typically about 0.1,
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and α is typically 0.05 or 0.01. Thus the value of the numerator is largely
determined by the length N , and to a close approximation is log2 N . Given
the value N = 1,000, for example, this approximate numerator expression
shows that about 9.97 bits of information are needed in order to claim
significant similarity between the two sequences.

Our main interest, however, is not in the numerator or the denominator of
(10.67), but in the ratio of the two, that is, the minimum significant length.
When n is large, q(j, k) is close to pjpk; the mean information per aligned
pair given in the denominator is small and the minimum significant length
is large. This is as expected: If null and alternative hypotheses specify quite
similar probabilities for any aligned pair, many observations will in general
be needed to decide between the two hypotheses. On the other hand, if n is
small, the mean relative support for the alternative hypothesis provided by
each aligned pair is large, and the minimum significant length is small. The
limiting (n → 0) values q(j, j) = pj , q(j, k) = 0 for j �= k, together with the
convention that 0 log 0 = 0 (see Appendix B.7), show that as n → 0, the
denominator in (10.67), that is, the mean support from each position in
favor of the alternative hypothesis, approaches −∑j pj log2 pj . If all amino
acids are equally frequent, this mean support is log2 20 = 4.32, and we can
think of this as 4.32 bits of information. In practice, the actual frequencies
of the observed amino acids imply that a more appropriate value is about
4.17. Thus the minimum significant length is (log2 N)/4.17. If N = 1,000,
this is about 2.39.

When N = 1,000 and n = 250, corresponding to a PAM250 substitution
matrix, the probabilities q(j, k) are such that each amino acid pair provides
a mean of only 0.36 bits of information, and a minimum significance length
of about log(1000)/0.36 = 9.97/0.36 = 28 is required on average to accept
the alternative hypothesis.

10.6.2 An Incorrect Choice of n

The above calculations all assume that the correct value for n has been
chosen, and thus the correct alternative hypothesis probabilities q(j, k) were
used. In practice it is impossible to choose a unique correct value for n
when using a PAM matrix, since different species in the database will have
different distances from the species corresponding to the query sequence.
This matter has been addressed by Altschul (1993). To illustrate some
of the points at issue we suppose that there is a unique correct value m
leading to a PAMm matrix, but that some incorrect value n was chosen
and a PAMn matrix used instead. What does this imply?

Suppose that with the correct choice m the probability of the ordered
pair (j, k) is r(j, k). The mean score is then

λ−1
∑
j,k

r(j, k) log
q(j, k)
pjpk

. (10.68)
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Clearly r(j, k) = q(j, k) when n = m, and equation (1.120) then shows that
the mean score is positive. More generally, the mean score is positive if n
and m are close. However, as m → +∞, r(j, k) → pjpk, and for this value
of r(j, k) the mean score is negative. Thus for any choice of n there will
be values of m sufficiently large compared to n so that the mean score is
negative. This matter is discussed further below.

In cases where the mean score (10.68) is positive, the minimal significance
length is

log
(

NK
α

)∑
j,k r(j, k) log q(j,k)

pjpk

. (10.69)

This minimal length depends on q(j, k), that is, on the choice of n. This
choice of n may well involve substantial extrinsic guesswork, and it is thus
important to assess the implications of an incorrect choice. Altschul (1991)
gives examples of the effect on the minimal significance length of using
scores derived from one PAM matrix when another is appropriate.

The fact that the mean (10.68) can be negative requires some discussion.
Negative means arise when m is sufficiently large compared to n, that is,
when the two species being compared diverged a long time in the past
relative to the time assumed by the PAM matrix used in the analysis. In
this case the data are better explained by assuming no similarity between
the two sequences than by assuming a close similarity between the two
sequences. The more negative this mean, the more likely it is that the null
hypothesis will be accepted, and in the limit m → +∞, when r(j, k) = pjpk,
the probability of rejecting the null hypothesis is equal to the chosen Type
I error.

As an example of this effect, if in the simple symmetric model of Section
6.5.4 the value n = 100 is chosen, the mean score (10.68) is negative when
m is 193 or more.

These observations indicate the perils of deciding on too small a value
of n. Whereas a correctly chosen small value of n leads to shorter minimal
significance lengths, as discussed above, an incorrectly small choice may
lead to the possibility that a real similarity between the two sequences will
not be picked up. The practice sometimes adopted of using a variety of
substitution matrices to overcome this problem must be viewed with some
caution, particularly in the light of the multiple testing problem discussed
in Section 3.11.

10.7 BLAST: A Parametric or a Non-parametric
Test?

In parametric tests the test statistic is found from likelihood ratio ar-
guments, as discussed in Chapter 9. By contrast, the test statistic in a



376 10. BLAST

non-parametric test is often found on reasonable but nevertheless arbi-
trary grounds, as was, for example, the non-parametric Mann–Whitney
test statistic discussed in Section 3.8.2.

Many of the calculations and arguments used in the immediately preced-
ing sections derive from the derivation of the score S(j, k) in a substitution
matrix from likelihood ratio arguments: See, for example, equations (10.6)
and (10.7). In this sense the BLAST testing theory can be thought of as a
parametric procedure deriving from the likelihood ratio theory in Section
9.2.1.

The assumptions made in this theory are, however, subject to debate. For
example, Benner et al. (1994) claim that the time homogeneity assumption
implicit in the calculations cannot be sustained, claiming, for example, that
the genetic code influenced substitutions earlier in time and various chem-
ical properties influenced substitutions more recently. Thus comparisons
of distantly related species can be problematic. Even in the comparison
of more closely related species, it is not clear that a uniform set of rules
governs substitutions. Further, if the data in a large database come from a
collection of species whose respective evolutionary divergence times might
differ widely, the concept of a uniformly correct choice of n (see Section
10.6) is not meaningful.

Even if these, and similar claims are true, the statistical aspects of the
BLAST procedure are still valid, in the sense that the P -value calculations
are still correct. The P -value calculations take the scores in the substitution
matrix as given, so that even if these scores were chosen in any more or
less reasonable way, rather than from theoretical deductions using some
evolutionary Markov chain and likelihood ratio theory, no problems arise
with the correctness of the P -value calculations. In this sense the BLAST
testing process can be thought of as a non-parametric procedure, where the
choice of test statistic does not derive from a likelihood ratio or any other
optimality argument but is chosen instead on commonsense grounds. On
the other hand, if the various assumptions implicit in finding a substitution
matrix from likelihood ratio arguments are not correct, some of the theory
in the preceding sections, particularly that associated with the optimal
choice of n for a PAMn matrix, needs amendment.

10.8 Gapped BLAST and PSI BLAST

10.8.1 Gapped BLAST
In this section we outline two important generalizations that have been
made and are incorporated in current BLAST implementations.

The first generalization allows gaps in the sequence alignments (Altschul
et al. (1997)). To outline this generalization we first recall a result from the
ungapped theory, namely that in the case of two unaligned sequences of
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respective lengths N1 and N2, the approximate mean and variance of the
test statistic Ymax, given in (10.30) and (10.31), are

λ−1(log(KN1N2)) and π2/(6λ2) (10.70)

respectively, and that Ymax has an (approximate) distribution given
implicitly by (10.43).

Suppose now that gaps are allowed in the alignment of the two sequences,
with some chosen linear gap penalty. In the comparison of the two sequences
there will be some maximum score Y

(gapped)
max , the maximum score over all

possible gapped alignments. The null hypothesis probability distribution
of Y

(gapped)
max is determined by the substitution matrix used and the gap

penalty chosen. However, this null hypothesis distribution is not easy to
find, and Altschul et al. (1997) follow an empirical approach to estimating
it, using simulation results of Altschul and Gish (1996).

These simulations were carried out using various substitution matrices
and various gap penalties. In the case of the BLOSUM62 substitution ma-
trix, the gap penalty used was chosen to be 12 + k for a gap of size k. Two
independent amino acid sequences, of respective lengths N1 and N2, were
generated at random, using the amino acid probabilities given by Robin-
son and Robinson (1991). From these sequences the highest score, denoted
here y1, the observed value of Y

(gapped)
max , was found. This procedure was

then repeated a large number n of times (n =10,000 in their simulations),
yielding n observed highest scores y1, y2, . . . , yn. The mean and variance
of Y

(gapped)
max were then estimated using ȳ and s2 (defined in (3.6) with a

change of notation from xi to yi) respectively.
The approximation is then made that the distribution of Y

(gapped)
max is of

the same the form (10.43) as that arising in the ungapped case, with revised
values for K and λ.

The method of moments procedure, discussed in Section 8.4, is used to
estimate the revised values of K and λ, using the method of moments
equations

ȳ = λ̂−1(log(K̂N1N2), s2 = π2/(6λ̂2), (10.71)

derived from (8.35) and (10.70). The solution of these equations is

K̂ = (N1N2)−1eȳλ̂, λ̂ = π/(s
√

6). (10.72)

This procedure was then repeated for a number of (N1, N2) combinations.
There is no guarantee that the estimates of K and λ are independent
of N1 and N2. The value of λ̂ does however appear to be approximately
independent of N1 and N2, being about 85% of the corresponding value in
the ungapped case. The values found for K̂ do depend on N1 and N2, but
carrying out edge corrections as in Section 10.3.3 does appear to overcome
this problem to a large extent.
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There is also no guarantee that the complete distribution of Y
(gapped)
max

is close to that of the ungapped statistic Ymax, even with a change of the
parameters K and λ as just described. To a first approximation, however,
this appears to be the case for the BLOSUM62 matrix. With this degree
of empirical support, the gapped case is handled as in the ungapped case
with revised values of K and λ.

Simulations with a PAM250 matrix (with a gap penalty of 15 + 3k) lead
to similar conclusions, as do simulations using the sum statistics described
in Section 10.2.8. Since the BLOSUM62 and the PAM250 substitution ma-
trices are used often, these conclusions are useful in practice. Since only
very small P -values are usually of interest in a BLAST search, compar-
atively small inaccuracies in the above approximations are probably not
important.

Gapped BLAST calculations at NCBI no longer use the Karlin-Altschul
sum statistic, so the corresponding printouts do not show the N column in
the BLAST printout.

The approach described above and currently implemented depends on
simulation results, carried out necessarily for a restricted range of cases.
However, generalizations of the theory to cover the case of gaps have re-
cently been made: see Mott and Tribe (1999), Siegmund and Yakir (2000),
Storey and Siegmund (2001), and Chan (2003). Storey and Siegmund show
that if a penalty of δ is assigned to each gap in the alignment of two
sequences, then (10.45) should be replaced by

E′ = N1N2Ke−λymax

(
1 − T

eθ∗δ − 1

)
, (10.73)

for a constant T whose explicit form we do not give here. The choice δ =
+∞ in effect allows no gaps, and in this case (10.73) reduces to (10.45).
Chan (2003) considers the case of an arbitrary non-decreasing gap penalty,
and using a generalization of the mgf equation (10.3) that incorporates
this penalty, finds a sharp upper bound for the P -value associated with
any observed value of ymax.

10.8.2 PSI BLAST
A second generalization is PSI (position specific iterated) BLAST. In
regular BLAST a fixed substitution matrix is used to score positions in
alignments, regardless of the position in the query sequence. Substitution
matrices are trained on data mainly from the alignment of well conserved
functional domains in protein coding genes, and the procedure relies on
one matrix to provide, on average, the most meaningful scores for all posi-
tions in the query sequence simultaneously. In PSI-BLAST, the procedure
using a standard substitution matrix is used as a first step. The sequences
that are found are then used to derive a separate scoring scheme for each
position in the query sequence. This new scoring scheme is then used to



10.8. Gapped BLAST and PSI BLAST 379

perform a second BLAST search, which can be more sensitive and thus
find subtler homology than does the first. The sequences returned on the
second iteration can then be used to derive a scoring scheme again, and
perform a third round, which can be more sensitive than the second. This
procedure can be iterated until no further iteration seems useful.

An entire substitution matrix is not derived for each position in the
query sequence. Since the base in the query sequence does not change,
what will be derived for each position is essentially the one row in the
matrix corresponding to the particular base at that position in the query
sequence. If the same base exists in two or more positions in the sequence,
each position will still get its own (most likely) unique scoring scheme. This
leads to the term “position specific iterated” (PSI) BLAST.

An outline of the original procedure, which is carried out in association
with gapped BLAST, is as follows. The query sequence is first compared to
the data base using standard BLAST methods, and all database sequence
segments having a sufficiently close similarity with the query (for example
having a value of “Expect” less than 0.01) are noted. Various data-trimming
procedures are now carried out; for example, only one copy of closely similar
database segments are retained (found by using arguments similar to those
leading to the Henikoff and Henikoff procedure of Section 6.5.2).

Consider now some site in the query sequence. This site will be aligned
with some collection of the remaining database segments, and in general
some interval of query sequence sites around this site will also align to
these segments. From this collection of sites a frequency fi of amino acid
i is calculated. These frequencies are to be used as a basis for estimating
the frequency Qi of amino acid i at this site.

The original PSI-BLAST implementation as described in Altschul et al.
(1997) estimated Qi by using pseudocounts. The pseudocount frequencies
gi are defined by

gi =
∑

j

fjq(i, j)/pj , (10.74)

where q(i, j) is a frequency generically of the “target” form (10.8). Qi is
then defined as a linear combination

Qi =
αfi + βgi

α + β
. (10.75)

While in standard BLAST q(i, j) = q(j, i), this equality no longer occurs
automatically in the iterations of PSI-BLAST. This implies that the equa-
tion

∑
i gi = 1 no longer necessarily holds, so that the gi do not necessarily

form a probability distribution. Because of this problem a new form of PSI-
BLAST, described in Schäffer et al. (2001) has been implemented. In this
implementation, Qi is in effect defined as

Qi =
αfi + β

∑
j fjp(i, j)/pj

α + β
, (10.76)
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where pi is the background frequency of amino acid i and p(i, j) is the
frequency with which amino acids i and j are aligned through evolutionary
descent. With this definition the required equality

∑
i Qi = 1 does hold.

The logarithm of the ratio Qk/Pk is now used in a manner similar to
that on the right-hand side in (10.10) to form a score to be used in the
iterated PSI-BLAST process.

Another generalization, not currently implemented in BLAST, is to the
case of Markov-dependent sequences, the theory for which is developed by
Karlin and Dembo (1992). However, the theory for this generalization, and
the full theory for the other generalizations referred to above, is beyond
that appropriate for an introductory book.

10.9 Relation to Sequential Analysis

There are many similarities between the BLAST calculations given in this
chapter and sequential analysis calculations discussed in Section 9.9. First
and foremost, the central BLAST parameter λ (= θ∗) was first introduced
into probability theory in the context of sequential analysis, being used
in that theory to calculate power curves (see equations (9.62) and (9.64)),
as well as mean sample size (see equation (9.69)). Second, both sequential
analysis and BLAST theory center on running sums of iid random variables,
and further, the random variables in both cases are either logarithms of
likelihood ratios or multiples of logarithms of likelihood ratios.

It is therefore interesting to compare further the calculations deriving
from (10.66) with the analogous calculation for a sequential test of hy-
pothesis. If the alternative hypothesis is true, the mean step size in the
sequential procedure defined by (9.55) is∑

y

p(y; ξ1) log
(

p(y; ξ1)
p(y; ξ0)

)
.

From (9.55), the accumulated sum in the sequential procedure necessary to
reject the null hypothesis is log ((1 − β)/α), where α and β are the Type I
and Type II errors, respectively. If these errors are both small, as is normally
the case, this is close to log(1/α). If we argue as in the derivation of the
ratio (10.66) above, the mean number of observations needed to reject the
null hypothesis when the alternative hypothesis is true, in a test with Type
I error α, would be the ratio

log(1/α)∑
y p(y; ξ1) log

(
p(y;ξ1)
p(y;ξ0)

) . (10.77)

If we identify the observation y in a sequential test with the pair (j, k) in a
sequence comparison, the denominators in the two expressions (10.66) and
(10.77) are identical. The comparison between the two expressions thus
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concerns only their respective numerators. The numerator in (10.66) can
be written as log(1/α) + log(N1N2K). The difference between the two
numerators is, then, the additive factor log(N1N2K). This factor arises
because in the BLAST procedure the test statistic is essentially the max-
imum of N1N2/A iid geometric-like random variables, and the mean of
such a maximum, like the mean of the maximum of n iid geometric ran-
dom variables given in equation (2.118), is approximately log(N1N2K), as
shown in (10.31). This comparison shows how much more stringent a test
based on a maximal test statistic must be compared to one based, in the
sequential procedure, on the typical value of a statistic. Once allowance for
this difference is made, the similarity between the two procedures becomes
apparent.

A second connection between sequential analysis and BLAST testing de-
rives from the comparison of the denominator in the sequential analysis
expression (9.70) and the denominator in the BLAST expression (10.69).
In the sequential analysis case the form of the correct probability distri-
bution Q(y) of Y differs from that assumed under the null and alternative
hypotheses. In the BLAST case the parallel comment might be, for ex-
ample, that the elements in the substitution matrix were calculated from
the evolutionary process leading to some PAM matrix, whereas some quite
different evolutionary model might be appropriate.

A further connection between the BLAST and the sequential analysis
testing procedures is that in both cases the step size in the testing pro-
cedure depends implicitly on some alternative hypothesis. In this respect
both procedures differ from the (fixed-sample-size) test of Section 3.4.1 for
the parameter p in a binomial distribution, where the testing procedure is
independent of the alternative hypothesis value of p (so long as it exceeds
the null hypothesis value).

Despite these connections between BLAST and the sequential testing
procedure, the two procedures are rather different, and in some respects
the BLAST procedure is more like the fixed sample size test. For example,
the sample size is in effect fixed in advance and the test does not rely on
achieving some specified Type II error.

Problems

10.1. Consider the calculation that led to equation (10.5). Use the path
decomposition method to do the analogous calculation for the probability
u that the generalized random walk under consideration reaches −1 as its
first ladder point. Check that u + v = 1.

10.2. For the simple random walk of Section 7.2 the value of θ∗ is given in
(7.7), the value of C is 1− e−θ∗

, and the value of A is (q − p)−1. From this,



382 10. BLAST

the value of K, calculated from equation (10.18), is (q − p)(e−θ∗ − e−2θ∗
).

Making the change of notation θ∗ = λ, check that both equations (10.23)
and (10.24) give this value.

10.3. (This and the following problems refer to the symmetric PAM ma-
trix discussed in Section 6.5.4.) the case C = 1 corresponding to the value
n = 259 leads to a mean step size, when the alternative hypothesis is true,
of 0.446 (see equation (6.36)). BLAST theory shows that this value should
also be given by the expression λ−1H (see (10.13)). Use the values for
q(j, k) and q(j, j) given in (6.35), the values pj = p′

k = 0.05 in the expres-
sion (10.11) to compute H, and equation (10.3) to compute λ (in the case
S(j, j) = 12, S(j, k) = −1 (j �= k)), to verify this.

10.4. Continuation. Show mathematically that the alternative hypothesis
mean size in any simple symmetric PAM model (that is, for any value of
n), is equal to the value of λ−1H for that model.

10.5. Continuation. Use the expression (6.32) for each diagonal element in
the substitution matrix for the simple symmetric PAM model and the value
−1 for each off-diagonal element, together with equation (10.3), to show
that in the simple symmetric PAM model the value of λ is − log

(
1−( 9495)n).

If the value of λ is 0.320 (as in the printout of the example of Section 10.5.1,
what is the corresponding value of n?

10.6. Continuation. Suppose that the PAM model of the “simple symmet-
ric” example of Section 6.5.4, for which in particular pj = p′

k = 0.05,
leads to a substitution matrix in which S(j, j) = 10 (j = 1, 2, . . . , 20) and
S(j, k) = −1 (j �= k).

(i) Use equation (10.3) to find the associated value of λ. (This will require
numerical methods.)

(ii) From the result of (i), use equation (10.24) to find K.

(iii) Use equation (10.8) to find the (common) values of q(j, j) (j = 1,
2, . . . , 20) and the (common) values of q(j, k) (j �= k).

(iv) From the results of (ii) and (iii), find the relative entropy H defined
in (10.11).

(v) Use equations (6.28) and (6.29) to find the value of n implied by the
values of q(j, j) and q(j, k) found in (iii) above.

(vi) Use the value of n found in (v) in the expression (6.31) to confirm
the ratio −10 for S(j, j)/S(j, k).

10.7. Continuation. Repeat Problem 10.6 with the value 10 for S(j, j) re-
placed by (i) 6, 8, 12, and 14, with S(j, k) = −1 (j �= k) and pj = p′

j = 0.05
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(as in Problem 10.6). Compare your values of λ, K, and H with those on
BLAST printouts.

10.8. Continuation. Repeat Problem 10.6 with S(j, j) replaced by 20 and
S(j, k) replaced by −2. Comment on the similarities and differences be-
tween your calculations and those of Problem 10.6.

10.9. Continuation. Suppose that the diagonal elements in a simple sym-
metric PAM matrix all take the value S and all off-diagonal elements take
the value −1. If λ = 0.320 (as in the printout of Section 10.5.1), find the
value of S. From this, use equation (6.32) to find the value of n (in the
PAMn matrix). Also, use equation (10.24) to find the value of K, and com-
pare this with the value in the printout of Section 10.5.1.

10.10. Continuation. Suppose that in the simple symmetric example of
Section 6.5.4 the value n = 50 is chosen to calculate the simple PAM sub-
stitution matrix. Find the values of the true value m for this model for
which the mean score (10.68) is negative.

10.11. Suppose that only two amino acids “X” and “Y” exist, occurring with
respective frequencies 0.6 and 0.4. Suppose that a PAM matrix is used in
a sequence alignment and that the match probabilities corresponding to
this matrix are q(X,X) = 0.46, q(X,Y ) = 0.28, q(Y, Y ) = 0.26. Compute
the mean score (10.68) in the cases (i) r(X,X) = 0.38, r(X,Y ) = 0.44,
r(Y, Y ) = 0.18, (ii) r(X,X) = 0.40, r(X,Y ) = 0.40, r(Y, Y ) = 0.20, (iii)
r(X,X) = 0.42, r(X,Y ) = 0.36, r(Y, Y ) = 0.22, (iv) r(X,X) = 0.44,
r(X,Y ) = 0.32, r(Y, Y ) = 0.24. Comment on your answers.

10.12. Use the BLOSUM62 substitution matrix of Table 6.7 to check the
score 70 given for the Maize Glutathione match in the BLAST printout of
Section 10.5.

10.13. This problem refers to Table 1 of Karlin and Altschul (1993). Given
the values of λ, K, and N(= N1N2) referred to in their paper, confirm
that the three normalized scores listed can be derived from the three cor-
responding scores listed, using equation (10.25).

10.14. This problem refers to Table 2 of Karlin and Altschul (1993). Given
the values of “Score,” λ, K, and N(= N1N2) referred to in their paper,
confirm their calculations for the various normalized scores and the various
segment and sum P -values.
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Stochastic Processes (iii): Markov
Chains

11.1 Introduction

Introductory aspects of the theory of Markov chains were discussed in
Chapter 4. In the present chapter further details of the theory of Markov
chains will be discussed, first for Markov chains with no absorbing states
and then for Markov chains with absorbing states. Our analysis of finite
Markov chain theory is often oversimplified, since an examination of some
of the subtleties involved in the full theory is not appropriate for bioinfor-
matics. A recent and more complete exposition of the theory can be found
in Norris (1997).

The two distinguishing Markov characteristics were introduced in Chap-
ter 4, as were the concepts of the states of a Markov chain, transition
probabilities between these states, and the concept of a transition matrix
displaying these transition probabilities. It was shown that the random walk
of Chapter 7 is a special example of a Markov chain. The statistical anal-
ysis associated with BLAST can also in principle be approached through
Markov chain theory, as discussed below in Example 2 of Section 11.6.2.
However, the special features of BLAST make the analyses of Chapter 7
and Chapter 10 more straightforward than a Markov chain analysis.



11.2. Markov Chains with No Absorbing States 385

11.2 Markov Chains with No Absorbing States

11.2.1 Introduction
Finite, aperiodic irreducible Markov chains were introduced and discussed
in Chapter 4. It was shown in that chapter that perhaps the most impor-
tant feature of such a chain is its stationary distribution. Several properties
of this distribution were introduced but no formal proof was given of them.
Here we outline these proofs, derived here under the assumption, made
throughout, that the Markov chain of interest is finite, aperiodic, and
irreducible.

11.2.2 Convergence to the Stationary Distribution
In Chapter 4 it was shown that the n-step transition matrix P (n) of a
Markov chain is the nth power of the single-step transition matrix, that is,
that P (n) = Pn. It was also claimed that as n → +∞, P (n) approaches a
matrix all of whose rows are identical and all of which display the station-
ary distribution of the Markov chain. Computer programs such as Maple
or Mathematica have subroutines for finding powers of matrices, so that
these can be used to provide a straightforward computational method for
finding n-step transition probabilities, for any value of n, and for finding
the stationary distribution to any desired level of approximation.

However, it is appropriate to consider a mathematical, rather than a
numerical, approach to finding P (n). Matrix theory shows why the high
powers of the transition matrix approach the “stationary distribution”
matrix (4.29) and, further, indicates the rate at which these high pow-
ers converge. The relevant linear algebra theory is outlined in Appendix
B.19, and we now discuss its application to Markov chains.

Suppose that P is the transition matrix of a finite aperiodic irreducible
Markov chain. It can be shown that this matrix has one eigenvalue λ1 equal
to 1 and that all other eigenvalues have absolute value less than 1.

We choose right and left eigenvectors r1 and �′
1 corresponding to the

eigenvalue 1 by the requirements �′
11 = 1 and �′

1r1 = 1, where 1 is a
column vector all of whose elements are 1. The eigenvector �′

1 satisfies the
equation

�′
1 = �′

1P. (11.1)

This, however, is the same equation (4.27) as that satisfied by the stationary
distribution ϕ. It can be shown that there is a unique solution of this
equation that also satisfies the normalization requirement �′

11 = 1, so that
�′
1 = ϕ′.
Since the n-step transition probabilities are given by the elements in

the matrix Pn, it follows from the identity of �′
1 and ϕ′ and the spectral

expansion (B.49) that as n increases, the n-step transition matrix P (n)
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approaches the matrix

1ϕ′, (11.2)

where ϕ′ is the stationary distribution of the Markov chain with transition
matrix P . This is a matrix all of whose rows are equal to ϕ′. This completes
the outline of the proof of the claim made concerning expression (4.29).

It is also important to consider the rate of convergence to the stationary
distribution. The spectral expansion of Pn in (B.49) shows that this rate
depends on the magnitude of the nonunit eigenvalues of P , and in particular
on that of the largest absolute nonunit eigenvalue(s).

11.2.3 Stationary Distributions: A Numerical Example
The eigenvalues of the transition matrix P given in (4.30) are

λ1 = 1.0000, λ2 = 0.5618, λ3 = 0.4000, λ4 = 0.3382.

Sets of left and right eigenvectors satisfying �j
′rj = 1 (j = 1, 2, 3, 4) are

(0.2414, 0.3851, 0.2069, 0.1667), (−.3487, 0.5643,−.2155, 0.0000),
(0.0000, .6667, 0.0000,−0.6667), (0.3800, 0.2348,−0.6148, 0.0000),

and ⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
−1.3088
.7662

−.5162
.7662

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
.25
.25
.25

−1.25

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
.7953
.0679

−1.1090
0.0679

⎤⎥⎥⎦ .

The matrix Pn is, then,⎡⎢⎢⎣
.2414 .3851 .2069 .1667
.2414 .3851 .2069 .1667
.2414 .3851 .2069 .1667
.2414 .3851 .2069 .1667

⎤⎥⎥⎦+ (.5618)n

⎡⎢⎢⎣
.4564 −.7385 .2820 0

−.2672 .4324 −.1651 0
.1800 −.2913 .1112 0

−.2672 .4324 −.1651 0

⎤⎥⎥⎦

+(.4000)n

⎡⎢⎢⎣
0 .1667 0 −.1667
0 .1667 0 −.1667
0 .1667 0 −.1667
0 −.8333 0 .8333

⎤⎥⎥⎦+(.3382)n

⎡⎢⎢⎣
.3022 .1867 −.4890 0
.0258 .0159 −.0417 0

−.4214 −.2604 .6818 0
.0258 .0159 −.0417 0

⎤⎥⎥⎦ .

For the values n = 2, 4, 8, 16 the matrices found from this expansion agree
with those given in the expressions (4.32)–(4.35). However, the spectral
expansion above indicates clearly the geometric rate at which the stationary
distribution is reached.

11.2.4 Reversibility and Detailed Balance
The use of a substitution matrix for BLAST calculations, as well as the
evolutionary considerations to be discussed in Chapter 14, indicate the
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importance of examining the relationship between a Markov chain running
forward in time (the direction in which evolution has actually proceeded)
and the corresponding “time-reversed” chain running backward in time
(the direction relevant to many evolutionary inferences made on the basis
of contemporary data). This issue is particularly relevant in comparing
two related contemporary sequences, where one sequence is reached from
the other by going backward in time to an assumed common ancestor and
then forward in time to the other sequence. We now consider aspects of this
relation for a finite, irreducible, and aperiodic Markov chain with stationary
distribution ϕ.

Suppose that at time 0 the initial state of the Markov chain with tran-
sition matrix P is chosen at random in accordance with the stationary
distribution ϕ. The discussion surrounding equation (4.25) shows that this
distribution then applies at all future times. During the course of t transi-
tions the chain will move through a succession of states, which we denote
by S(0), S(1), . . . , S(t). Define S∗(i) by S∗(i) = S(t − i). We show below
that the probability structure determining the properties of the reversed
sequence of states S∗(0), S∗(1), . . . , S∗(t) is also that of a finite aperi-
odic irreducible Markov chain, whose typical element p∗

ij is found from the
typical element pij of P by the equation

p∗
ij =

ϕjpji

ϕi
. (11.3)

Furthermore, the stationary distribution of the reversed chain is also ϕ.
These claims are proved as follows. The fact that the reversed process

has transition probabilities given by (11.3) follows from the conditional
probability formula (1.104) when Ai is the event “S∗(u) = Ei” and Aj is the
event “S∗(u+1) = Ej .” The fact that

∑
j p∗

ij = 1 follows immediately from
the stationary distribution property

∑
j ϕjpji = ϕi: See equation (4.26).

The fact that the stationary distribution of the time-reversed process is ϕ
follows from the equations∑

i

ϕip
∗
ij =

∑
i

ϕjpji = ϕj .

The equality of the extreme left- and right-hand expressions is the defining
property of a stationary distribution: See equation (4.25). Irreducibility and
aperiodicity are equally quickly demonstrated.

Suppose that a probability distribution λ= {λj} can be found such that

λipij = λjpji (11.4)

for all (i, j) pairs. Summation of both sides of equation (11.4) over all
possible values of i yields∑

i

λipij =
∑

i

λjpji = λj .
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But this is the defining equation of the stationary distribution. This
observation sometimes provides the most convenient way of finding the
stationary distribution of an irreducible aperiodic Markov chain: If a dis-
tribution λ can be found for which equation (11.4) holds for all (i, j) pairs,
then this is the stationary distribution ϕ of the Markov chain, which then
satisfies

ϕipij = ϕjpji for all (i, j). (11.5)

These are the so-called detailed balance equations. From equation (11.3),
the detailed balance equations hold if and only if p∗

ij = pij , in which case
the properties of the reversed-time Markov chain are equivalent to those of
the forward-time chain. An observer watching the successive states in the
reversed chain would have no way of telling whether he/she was watching
the reversed or the original chain. Examples of reversible and irreversible
Markov chains used in evolutionary models are given in Section 14.1.

A version of the reversibility criterion in a form more convenient for evo-
lutionary processes was given by Tavaré (1986): see the expression (14.23).
An arbitrary Markov chain is unlikely to be reversible; for example, the
Markov chain with transition matrix (4.24) is not reversible, since the terms
in this matrix and in the stationary distribution (4.31) do not satisfy the
detailed balance equations.

The reversibility property is often assumed implicitly in comparing se-
quences from two different contemporary species, since to get from one
species to another one must travel backward in time to a common ancestor
and then forward in time to the other species. The calculations leading
to PAM matrices, discussed in Section 6.5.3, consider only Markov chains
going forward in time. It is thus of interest to show that the transition
matrix M1, defined in Section 6.5.3 and used to compute various PAMn
substitution matrices, is reversible for all practical purposes. This is done
as follows.

M1 is a particular case of the matrix P , defined through equations (6.20)
and (6.21), so it is sufficient to prove that P is reversible. It is reasonable to
assume that the quantity

∑
m Ajm appearing in the denominator of (6.19)

is, for all practical purposes, proportional to the stationary probability
ϕj of amino acid j. This implies that Ajk = bϕjajk for some constant b.
Equation (6.20) then implies that Ajk = dϕjpjk for some constant d. But
the matrix {Ajk} is by construction symmetric, so that Ajk = Akj for all
(j, k). From this,

dϕjpjk = dϕkpkj .

Cancellation of the constant d shows that this is the reversibility
requirement (11.5).

It is of considerable interest to note that the transition matrix of the
PAM model is in effect the most general of all reversible 20 × 20 Markov
chain models (Goldman (2002)).
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11.3 Higher-Order Markov Dependence

11.3.1 Testing for Higher-Order Markov Dependence
The test of Markov dependence (more exactly, first-order Markov depen-
dence) of successive nucleotides in a DNA sequence was discussed in Section
5.2. This was presented as a chi-square test, and the calculations of Exam-
ple 4 of Section 9.4 show that this is an approximation to a −2 log λ test.
In this section we extend the analysis to tests of higher-order Markov de-
pendence (defined in the following paragraph) via the −2 log λ procedure,
following the discussion by Tavaré and Giddings (1989). For concreteness
we present the discussion in terms of DNA sequences.

The probability structure of the nucleotides in a DNA sequence is de-
scribed by a Markov chain of order k ≥ 1 if the probability that any
nucleotide occurs at a given site depends on the nucleotides at the preced-
ing k sites. The transition probabilities for the case k = 3, for example, are
of the form

ph:mnr = Prob(Yj+3 = ah |Yj+2 = am, Yj+1 = an, Yj = ar),

where Yq denotes the nucleotide at site q, and the ak are specified nucleotide
types. This notation shows that for general k there are 3×4k such transition
probabilities.

Suppose that the null hypothesis is that the Markov chain is of order
k − 1, and the alternative that it is of order k, for some value of k. (The
test discussed in Section 5.2 is for the case k = 1.) The likelihood of the
data under both hypotheses may be written down in terms of arbitrary
parameters of the form ph:mnr under both null and alternative hypotheses.
The likelihoods under null and alternative hypotheses are then maximized
with respect to these parameters and the −2 log λ statistic calculated.

The number of arbitrary parameters under null and alternative hypothe-
ses are, respectively, 3 × 4k−1 and 3 × 4k, so that the −2 log λ test has
9 × 4k−1 degrees of freedom. Thus once k exceeds 2, extensive data would
be required to ensure that the asymptotic chi-square properties of −2 log λ
apply. Further details are given by Tavaré and Giddings (1989) and Reinert
et al. (2000). In general, it has been found that even DNA in nonfunctional
intergenic regions tends to have high-order dependence.

11.3.2 Testing for a Uniform Stationary Distribution
If the hypothesis of Markov dependence is accepted, a further test of inter-
est is whether the stationary distribution of the Markov chain is uniform.
We will discuss this in the case of first-order dependence; the discussion for
higher-order dependence is similar.

In the first-order case, equation (4.25) shows that a necessary and suf-
ficient condition that the stationary distribution be uniform is that the
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transition probabilities in each column of the transition matrix sum to
1. This implies that, for example, the elements in the fourth row of the
transition matrix are determined by the elements in the first three rows.

The probability of any observed DNA sequence can be calculated under
the null hypothesis that the stationary distribution is uniform. Since under
this hypothesis the elements in each row and each column of the transi-
tion matrix must sum to 1, there are 9 free parameters. The probability of
the observed sequence can be maximized with respect to these parameters.
Under the alternative hypothesis the only constraint is that the elements
in any row must sum to 1 and therefore there are 12 free parameters. The
probability of the observed sequence can then be maximized with respect to
these parameters. From these two maximum likelihoods a −2 log λ statistic
may be calculated. Under the null hypothesis this statistic has an asymp-
totic chi-square distribution with 3 degrees of freedom. This then provides
a testing procedure for uniformity of the stationary distribution.

11.4 Patterns in Sequences with First-Order
Markov Dependence

If the test of independence in the previous section suggests that there is
Markov dependence in a DNA sequence it is of interest to extend the calcu-
lations concerning patterns in Section 5.7 to the Markov dependence case.
These extensions require only a more careful bookkeeping than is needed in
Section 5.7, and have been made by several authors; summaries and refer-
ences are given by Robin and Daudin (1999) and Reinert et al. (2000). The
discussion here is in terms of nucleotide sequences, with attention focused
on a word w = w1w2 . . . wk of length k.

We assume that some 4 × 4 transition matrix P of the Markov chain
is given or postulated, describing the transition probabilities from one nu-
cleotide to the next along the DNA sequence. The typical term in this
matrix is pwiwj , and the stationary probability of the letter wi is denoted
ϕwi

. It is assumed that for all practical purposes stationarity has been
reached.

Many expressions found in Section 5.7 can be generalized immediately
to the Markov case. For example, (5.40) becomes

E(Y1(N)) = (N − k + 1)ϕw1pw1w2pw2w3 · · · pwk−1wk
. (11.6)

This is identical to (5.40) if we define

π = ϕw1pw1w2pw2w3 · · · pwk−1wk
, (11.7)

where π is the Markov chain probability that w occurs at any site after
site k − 1. The variance formula (5.42) can also be generalized easily.
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The distribution of the number of sites between successive occurrences
of w can be found by extending the calculations leading to the generating
function (5.55). We suppose that w has just occurred at some site in the
sequence. We call this “appearance A.” We wish to find the probability q(y)
that w first reappears y sites after appearance A. The argument that led to
equation (5.53) in the independent case shows that this is the probability
that it does appear y sites after appearance A, less the probability that it
first appears at some position j sites after appearance A (j < y) and then
also appears y − j sites after this.

If y < k, it is impossible for w appear y sites after appearance A unless it
can overlap with itself appropriately. If εj is defined as in Section 5.7.1, it is
possible for w to reappear y sites after appearance A only if εk−y = 1. When
this is the case, since the letter wk occurred in the final site corresponding
to appearance A, the probability that w appears y sites after appearance
A is

pwkwk−y+1pwk−y+1wk−y+2 · · · pwk−1wk
.

We denote this probability by Q(y), so that the probability that w occurs
y sites after appearance A is εk−yQ(y).

The probability that w first occurs j sites after appearance A and also
y− j sites after this is the sum over j (j = 1, 2, . . . , y−1) of the probability
p(j) that w first appears j sites after appearance A, multiplied by the
probability, given that it appears j sites after appearance A, that it appears
y − j sites after this. These arguments lead to

p(y) = εk−yQ(y) −
y−1∑
j=1

p(j)εk−y+jQ(y − j). (11.8)

The case y ≥ k can be handled similarly.
These equations lead to the generating function for the probability dis-

tribution of the distance until w next appears after appearance A, which
generalizes the “independence” generating function (5.55). The mean and
variance of this number of sites can then be found directly from this gen-
erating function: it is found that equation (5.59) continues to hold for the
mean if π is defined as in (11.7), and that only minor modifications are
needed to equation (5.60) for the variance.

Similar, and indeed simpler, calculations can be made for the generating
function, for the mean and for the variance of the number of sites until the
first occurrence of w after the origin. Further details are given by Robin
and Daudin (1999).
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11.5 Markov Chain Monte Carlo

Markov chains can be used for a variety of calculation and optimization pur-
poses in bioinformatics to which they are not initially clearly related. The
methods used are described as “Markov Chain Monte Carlo” methods. We
discuss two of these in this section, describing first the Hastings–Metropolis
algorithm on which they are based.

11.5.1 The Hastings–Metropolis Algorithm
The aim of the Hastings–Metropolis algorithm is to construct an aperiodic
irreducible Markov chain having some prescribed stationary distribution
ϕ′ = (ϕ1, ϕ2, . . . , ϕs)′, where ϕj > 0, j = 1, . . . , s.

We choose a set of constants {qij} such that qij > 0 for all (i, j) and∑
j qij = 1 for all i. We then define aij by

aij = min
(

1,
ϕjqji

ϕiqij

)
(11.9)

and pij by

pij = qijaij , i �= j, (11.10)

and pii = 1 −∑j �=i pij . Since qij > 0 for all (i, j), this construction shows
that pij > 0 for all (i, j) including the case i = j (see Problem 11.8), so
that the Markov chain defined by the {pij} is aperiodic and irreducible.

Theorem 10.1. The stationary distribution of the Markov chain defined by
(11.10) is ϕ′.

This theorem is checked by showing that the detailed balance require-
ments (11.5) hold. Suppose without loss of generality that ϕjqji/ϕiqij < 1.
Then ϕiqij/ϕjqji > 1 and

aij =
ϕjqji

ϕiqij
, pij =

ϕjqji

ϕi
, aji = 1, pji = qji. (11.11)

From these results the detailed balance requirement ϕipij = ϕjpji follows.
The special case where ϕjqji/ϕiqij = 1 is easily handled separately.

The above proof can be extended to the case where some qij are zero,
so long as qji > 0 whenever qij > 0 and the Markov chain defined by the
resultant pij is aperiodic and irreducible.

Different Markov chains may be constructed by different choices of the
qij , all having the desired stationary distribution ϕ′, and for any given
application one choice will often be more useful than another.
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11.5.2 Gibbs Sampling
Let Yi, i = 1, 2, . . . , k, be discrete finite random variables, Y the ran-
dom vector (Y1, Y2, . . . , Yk)′, and PY (y) the distribution of Y . Assume
furthermore that PY (y) > 0 for all y.

We will define a Markov chain whose states are the possible values of
Y . Enumerate the vectors in some order as vectors 1, 2, . . . , s and identify
vector j with the jth state in a Markov chain whose transition probabilities
we now define. If vectors i and j differ in more than one component, put
pij = 0. If they differ in at most one component, suppose, to be concrete,
that they differ in their first component (if they differ at all). Write vector
i as (y1, y2, . . . , yk) and vector j as (y∗

1 , y2, . . . , yk). Then we define

pij = Prob(Y1 = y∗
1 |Y2 = y2, Y3 = y3, . . . , Yk = yk) (11.12)

=
Prob(Y1 = y∗

1 , Y2 = y2, Y3 = y3, . . . , Yk = yk)
Prob(Y2 = y2, Y3 = y3, . . . , Yk = yk)

, (11.13)

where the probabilities in both numerator and denominator are calculated
using PY (y).

We claim that this Markov chain is irreducible and aperiodic, and
furthermore has stationary distribution PY (y).

Aperiodicity follows from the fact that pii > 0, and irreducibility follows
from the fact that each state in the Markov chain can be reached, after a
finite number of steps, from every other state. The fact that the stationary
distribution is PY (y) is proved as follows.

Define qij = pij . Then from (11.9) it follows that if the denominator in
(11.13) is denoted by Q,

aij = min
(

1,
PY (y∗

1 , y2, . . . , yk)PY (y1, y2, . . . , yk)/Q

PY (y1, y2, . . . , yk)PY (y∗
1 , y2, . . . , yk)/Q

)
= 1.

This implies that pij = qijaij , and from Theorem 10.1, PY (y) is the sta-
tionary distribution of the Markov chain defined by the {pij}.

Example. In this example we show that the segment alignment procedure
of Section 6.6 is essentially a Gibbs sampling procedure. The alignment
procedure was described in Section 6.6 as a Markov chain process with S
states, each state corresponding to an array of amino acids having N rows
and W columns. We define cij(s) as the number of times that amino acid
j occurs in column i in the array corresponding to state s in this Markov
chain, and put

q∗
ij(s) =

cij(s) + bj

N + B
, qij(s) =

cij(s)
N

,

where the bj are pseudocounts, B =
∑

bj , as defined in Section 6.6.



394 11. Stochastic Processes (iii): Markov Chains

We define pj as the background frequency of amino acid j. The relative
entropy between {q∗

ij(s)} and {pj} is

W∑
i=1

20∑
j=1

q∗
ij(s) log

(
q∗
ij(s)
pj

)
. (11.14)

States for which this relative entropy is high are those corresponding to
good alignments. Our aim is therefore to find states for which this relative
entropy is high.

We associate with state s in this Markov chain the probability λs, defined
by

λs = const
W∏
i=1

20∏
j=1

(
q∗
ij(s)
pj

)cij(s)

, (11.15)

where the constant is chosen so that
∑S

s=1 λs = 1.
We will say that states s and u are neighbors if either s = u or if the

arrays corresponding to these two states differ only in the entries in one
row. This implies that in the step-by-step procedure described in Section
6.6 it is possible to move in one step from state s to state u and also from
state u to state s.

If states s and u are neighbors, for any position i the respective values
of the counts cij(s) and cij(u) either will be identical for all 20 values of
j or will be identical for 18 values of j and differ by +1 and −1 for the
remaining two values of j. The values +1 and −1 arise when there are
different amino acids in position i in the row where states s and u differ.

For any state a, define ar as the reduced array obtained by removing
row r from state a. Then if states s and u differ in row r, qij(sr) = qij(ur).
For each (i, j) pair, the values of q∗

ij(s) and q∗
ij(u) are very close to this

common value qij(sr), and from now on we make the approximation that
both are equal to qij(sr).

Making this approximation, the ratio λs/λu becomes, in the notation
adopted in equation (6.39),

λs

λu
=

q1,s(1)q2,s(2) . . . qW,s(W )

q1,u(1)q2,u(2) . . . qW,u(W )
· pu(1)pu(2) . . . pu(W )

ps(1)ps(2) . . . ps(W )
. (11.16)

Equations (6.39) and (11.16) jointly imply that with the approximation
made above,

λs

λu
=

pus

psu
,

so that

λspsu = λupus (11.17)

for all neighboring states. Equation (11.17) is also true for states that are
not neighbors, since in this case both sides of the equation are 0. But this
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equation is identical in form to equation (11.4) and the detailed balance
equation (11.5). Thus the step procedure described in Section 6.6 is, for
all practical purposes, that of a Gibbs sampling process, and λs is the
stationary probability of state s in the procedure.

States with high stationary probability are visited comparatively fre-
quently in the procedure and thus may be recognized. Since log λs is
approximately a linear function of the relative entropy (11.14), we have
achieved the aim of ensuring that states such that {q∗

ij(s)} and {pj} have
high relative entropy are visited comparatively frequently and can thus be
identified. This is the reason for the choice of the transition probabilities
introduced in Section 6.6.

11.5.3 Simulated Annealing
The goal of the simulated annealing procedure is to find, at least approx-
imately, the minimum of some positive function defined on an extremely
large number s of “states” E1, . . . , Es, and to find those states for which
this function is minimized (or approximately minimized). Write the value
of this function for state Ej as f(j).

To illustrate some aspects of the simulated annealing procedure, it is
useful to consider the travelling salesman problem, which is equivalent in
complexity to many problems that arise in bioinformatics. In this classical
problem, a salesman wishes to find the minimal travelling path linking n
cities, returning finally to his city of origin. The number of possible paths
is O(n!), which is extremely large when n exceeds 20 or 30. In this case
there is no hope of listing the total distance along each path and thus
finding the minimum distance by exhaustive search. We may call any such
path a “state” Ej , and define f(j) as the total distance travelled along the
path. Although the number of paths is very large, once a path Ej is given,
the distance f(j) along that path is easily computed, and “similar” paths
should have similar total distances.

The concept of a collection of states and a function f(j) corresponding
to state Ej may be generalized. Let T be a fixed positive parameter whose
value is as yet unspecified. The aim is to construct a Markov chain with
states Ej , j = 1, 2, . . . , s, such that the stationary distribution probability
ϕ(j; T ) of the state Ej is

ϕ(j; T ) = C · exp(−f(j)/T ). (11.18)

Here the constant C is chosen to ensure that the sum of the probabilities
in the stationary distribution is 1.

The reason for this construction is the following. Suppose that for some
state Ej , f(j) is small. If a Hastings–Metropolis procedure can be used to
build a Markov chain with stationary distribution {ϕ(j; T )}, then at sta-
tionarity the chain should visit state Ej comparatively often, since from
(11.18) the stationary distribution probability for this state is compara-
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tively large. Thus starting in any state and following the procedure for a
large number of iterations, states with low values of f(·) should become
recognizable.

We construct a “neighborhood” of each state, the neighborhood of state
Ej being chosen as a set of states in some sense “close” to Ej , and to which
the variable in the Markov chain can move, in one step, from Ej . Moves in
one step to states outside the neighborhood are not allowed. We make the
following four requirements about these neighborhoods.

(a) If Ej is in the neighborhood of Ek, then Ek is in the neighborhood
of Ej .

(b) The number of states in the neighborhood of any given state is
independent of that state. This number is denoted by N .

(c) The neighborhoods are linked in the sense that the Markov chain can
eventually move, after a finite number of steps, from Ej to Em, for
all (j, m).

(d) Given that the Markov chain is in Ej , it may next move only to a
state in the neighborhood of Ej .

Suppose that in the travelling salesman problem the cities to be visited
are A, B, C, D, E. Any choice of a path through these cities by the sales-
man is equivalent to an ordering of these cities, for example ADEBC. If a
neighboring path is defined by switching the order of two adjoining cities,
for example in the above case to ADBEC, then requirements (a) and (b)
above are satisfied.

Requirements (a)–(d) can be relaxed with care, but for simplicity we im-
pose them as stated. Subject to these requirements, the choice of N and of
the states in the neighborhood of any given state are in principle arbitrary,
but in practice the usefulness of the simulated annealing algorithm depends
to some extent on a wise choice of these.

Suppose that the variable in the Markov chain is currently in state Ei.
The Hastings–Metropolis quantity qij is chosen in the simplest possible
way, namely

qij =
{

N−1 if Ej is in the neighborhood of Ei,
qij = 0 otherwise.

For each (i, j) for which qij = N−1, this choice implies that the Hastings–
Metropolis quantity aij is given by

aij = min
(

1,
ϕ(j; T )N
ϕ(i; T )N

)
= min

(
1, e(f(i)−f(j))/T

)
. (11.19)



11.5. Markov Chain Monte Carlo 397

Consequently, the desired Markov chain has transition probabilities pij as
follows: When i �= j,

pij =

⎧⎨⎩ N−1 ϕ(j;T )
ϕ(i;T ) if Ej is a neighbor of Ei and ϕ(i; T ) > ϕ(j; T ),

N−1 if Ej is a neighbor of Ei and ϕ(i; T ) < ϕ(j; T ),
0 if Ej is not a neighbor of Ei,

and

pii = 1 −
∑
j �=i

pij .

In the above procedure a large value of T implies that all states in the
neighborhood of the present state of the Markov chain are chosen with
approximately equal probability, and also that the stationary distribution
of the Markov chain tends to be uniform. A small value of T implies that
different states in the neighborhood of Ei tend to have rather different sta-
tionary distribution probabilities. However, too small a choice of T might
lead to the procedure tending to stay near local maxima and not move to
other higher maxima. Part of the art of the process is in choosing a value
of T that allows comparatively rapid movement from one neighborhood to
another (large T ) but at the same time picks out states within neighbor-
hoods with comparatively large stationary probabilities (small T ).

Example. Waterman (1995) describes an application of the simulated
annealing process to the so-called double digest problem. Restriction en-
donucleases were described briefly in Section 5.8.1. In the double digest
procedure a length of DNA is subjected to two restriction endonucleases,
both separately and together. When the DNA is subjected to the first re-
striction endonuclease it will be cut wherever the recognition sequence for
that restriction endonuclease occurs, and a parallel comment applies for the
second restriction endonuclease. When both are applied together the DNA
is cut whenever either recognition sequence occurs. The data thus consist
of three sets of sequence lengths, the sum of the lengths in each set being
the length of the original DNA sequence, and the aim is to reconstruct,
from these lengths, the original set of locations of the two recognition se-
quences. This problem is “NP-complete,” implying in particular that no
polynomial-time algorithm is known (or, conjecturally, can ever be known)
for its solution. Thus heuristic methods are required, and the simulated
annealing method is one such approach.

Suppose that the application of both restriction endonucleases together
cuts the DNA into s segments of lengths c(1), c(2), . . . , c(s), numbered so
that c(1) ≤ c(2) ≤ · · · ≤ c(s). Suppose also that the first restriction en-
donuclease cuts the DNA into n segments, which we write A1, A2, . . . , An,
and the second cuts the DNA into m segments, which we write B1, B2, . . . ,
Bm. Without mixing the Ai’s with the Bi’s, these segments may be placed
jointly into n!m! different orderings. Each ordering defines a sequence of
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points on the DNA as the cut points of one of the two restriction endonu-
cleases, and for any ordering these j cut points will divide the DNA into s
segments, some of whose lengths can be 0. These lengths are now numbered
dj(1), dj(2), . . . , dj(s) in such a way that dj(1) ≤ dj(2) ≤ · · · ≤ dj(s).

If all measurements are error-free, at least one of these n!m! orderings
will produce the lengths c(1), c(2), . . . , c(s). To find these orderings, or more
generally if measurement errors are possible to find those orderings that
most closely achieve this, it is reasonable to attempt to find the values of
j that minimize a function f(j) of the form

f(j) =
s∑

u=1

(dj(u) − c(u))2

c(u)
.

An interesting choice of the neighborhood of any ordering for the sim-
ulated annealing procedure is the generalization of that given above for
the travelling salesman. Consider any of the n!m! orderings of the seg-
ments produced by the two restriction endonucleases, for example (with
n = 5, m = 4) A5A2A1A4A3 and B3B4B1B2. The neighborhood of this or-
dering can be taken as any ordering for which at most one switch between
adjoining segments in each ordering is made, for example A5A1A2A4A3 and
B3B4B2B1. Waterman (1995) discusses more efficient choices than this in
both the double digest and the travelling salesman problems.

11.6 Markov Chains with Absorbing States

11.6.1 Theory
We now turn to Markov chains where there are absorbing states. These
were introduced and discussed briefly in Section 4.7. In this section we
discuss two questions asked about these Markov chains, namely, “If there
are two or more absorbing states, what is the probability that a specified
absorbing state is the one eventually entered?” and “What is the mean
time until an absorbing state is eventually entered?”

Let Y (1), Y (2), . . . be a sequence of random variables such that

Prob(Y (t + 1) = j |Y (t) = i) = pij , i, j = 1, 2, . . . , s.

Thus the successive values of Y (·) have probabilistic behavior governed by
a Markov chain with s states E1, E2, . . . , Es.

We first consider the case with two absorbing states, which are assumed
to be E1 and Es, so that p1j = 0 for j �= 1 and psj = 0 for j �= s. For
i = 2, 3, . . . , s− 1, let wi be the probability that eventually Y (t) = s, given
that Y (0) = i. Then a generalization of the argument that led to equation
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(7.4) shows that the wi are the solution of the simultaneous equations

wi =
s−1∑
j=2

pijwj + pis, i = 1, 2, 3, . . . , s. (11.20)

A generalization of the argument that led to (7.11) shows that if ti is
the mean number of transitions in the Markov chain until either Y (t) = 1
or Y (t) = s, given that Y (0) = i, then the ti are the solution of the
simultaneous equations

ti =
s−1∑
j=2

pijtj + 1, i = 2, 3, . . . , s − 1. (11.21)

These equations are subject to the boundary conditions t1 = ts = 0.
We next consider the case where there is only one absorbing state, which

we take to be Es. In this case the probability of eventual absorption in Es

is 1, and is thus not of interest. On the other hand, the probability that
absorption in Es takes place at or before some designated number of steps
in the chain might well be of interest: See Example 2 in Section 11.6.2. The
mean time until the absorbing state Es is eventually entered is found by
replacing equations (11.21) by

ti =
s−1∑
j=1

pijtj + 1, i = 1, 2, . . . , s − 1, (11.22)

with boundary condition ts = 0.

11.6.2 Examples
Example 1. Word recurrence lengths. The theory of Markov chains with
absorbing states can be used to find the mean distance between successive
recurrences of a word consisting of a short DNA sequence, as discussed in
the “non-overlapping” analysis of Section 5.8. The Markov chain approach
is due to Karlin and Brendel (1996), and we initially follow their analysis.

We assume that the nucleotides a, g, c, and t occur with respective fre-
quencies pa, pg, pc, and pt and that successive nucleotides are independent.
Suppose first that the word of interest is atg. A calculation in Section 5.8.2
shows that when overlaps are not counted, the mean distance between suc-
cessive occurrences of this word is 1/(paptpg). This result can be found
using the theory of absorbing Markov chains as follows.

We consider all words consisting of three nucleotides and divide these
into four “types”: atg, xya, xat, and “other.” Here x and y are arbitrary
nucleotides, possibly identical, and “other” consists of all words of length
three other than those listed. These types then form the four states in a
Markov chain, as described below. The DNA sequence is scanned from left
to right, starting immediately following an occurrence of atg, and our aim
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is to find the mean number of nucleotide sites until the next occurrence.
This is done by making atg an absorbing state of the Markov chain and
seeking the mean number of sites visited until it is entered, assuming that
the initial state is “other.” The Markov chain transition matrix is then

atg xya xat other

atg
xya
xat

other

⎡⎢⎢⎣
1 0 0 0
0 pa pt pc + pg

pg pa 0 pc + pt

0 pa 0 1 − pa

⎤⎥⎥⎦ .
(11.23)

Let t2, t3, and t4 be the mean number of sites until atg is first observed,
given respectively that the current state is xya, xat, and “other.” Our aim
is to find t4. This Markov chain has only one absorbing state, so equations
(11.22) show that t2, t3, and t4 satisfy the simultaneous equations

t2 = pat2 + ptt3 + (pc + pg)t4 + 1,

t3 = pat2 + (pc + pt)t4 + 1,

t4 = pat2 + (1 − pa)t4 + 1.

Solving these equations gives t4 = 1/(paptpg), as found in Section 5.8.2.
We next consider the word ata. A calculation in Section 5.8.2 shows

that the mean number of nucleotides before this sequence first occurs is
(1+papt)/p2

apt. To find this result using Markov chain theory it is necessary
to consider the four “types” ata, ata, xat, and “other,” which again we use
as the four states in a Markov chain. Here x is an arbitrary nucleotide, and
ata is any word of length three finishing with a and not starting with at.
The transition matrix for this Markov chain, with ata being regarded as
an absorbing state, is

ata ata xat other

ata
ata
xat

other

⎡⎢⎢⎣
1 0 0 0
0 pa pt pc + pg

pa 0 0 1 − pa

0 pa 0 1 − pa

⎤⎥⎥⎦ .
(11.24)

If t2, t3, and t4 are the mean numbers of sites until ata is first observed,
given that the current state is ata, xat, and “other,” respectively, equation
(11.22) shows that

t2 = pat2 + ptt3 + (pc + pg)t4 + 1,

t3 = (1 − pa)t4 + 1,

t4 = pat2 + (1 − pa)t4 + 1.

These equations yield t4 = (1 + papt)/(p2
apt), again as found in Section

5.8.2.
This approach generalizes naturally to the case where there is a Markov

dependence between successive nucleotides. Some references to the recent
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Markov dependent literature are given at the end of Section 5.9.

Example 2. Markov chains and the alignment of two sequences. The BLAST
theory relating to two aligned sequences of equal length discussed in Section
10.2 relies on asymptotic results for geometric-like random variables. In this
section we discuss an exact as opposed to an asymptotic analysis, following
the work of Daudin and Mercier (2000). To simplify the discussion we
consider the analysis in terms of DNA sequences. An essentially identical
analysis applies for protein sequences.

The two sequences are scanned from left to right, and a score S(i, k),
determined from some score matrix, is allocated at any site if the two
respective nucleotides at that site are nucleotides i and k. The accumulated
score after the first j sites have been scanned is denoted by Sj . As in
Chapter 10, the test statistic of interest is Ymax, which is redefined here by

Ymax = max
a,b

(Sb − Sa),

where a runs over all ladder points of the random walk defined by the
successive Sj values and b ≥ a.

The calculations in Chapter 10 provide an approximate asymptotic null
hypothesis probability distribution for Ymax, and this allows a readily com-
puted P -value approximation for the eventual observed value ymax of Ymax.
By contrast, the Daudin and Mercier analysis provides, at least in principle
although not necessarily easily in practice, an exact P -value calculation for
the observed value ymax of Ymax.

It is assumed, as in Chapter 10, that the mean score at any site is nega-
tive. The random walk defined by the accumulated score Sj , j = 1, 2, 3, . . . ,
proceeds through a sequence of increasingly negative ladder points, as de-
scribed in Chapter 10. We define S∗(j) as the accumulated score at the last
ladder point before site j. (The point (0, 0) is classified as a ladder point.)
From the accumulated score we define a new sequence {Uj}, the height of
the current excursion up to site j, given by

U0 = 0, Uj = max(0, Sj − S∗(j)), (11.25)

but subject to the further requirement that if Uj ≥ s for some j and some
number s discussed below, then Uj is immediately set to the value s and
stays there thereafter, that is, that Uj = Uj+1 = · · · = s.

The successive values of the Uj are governed by a Markov chain in which
the possible values of Uj are 0, 1, . . . , s, with the value Uj = s corresponding
to an absorbing state. The transition probability matrix of this Markov
chain, which we denote by P , is found from the probability distribution of
the steps S(i, k).

Let the length of each of the aligned sequences be N . The event that
Ymax ≥ s is the event that this Markov chain enters the state Uj = s at
or before the Nth step in the chain. This probability can be calculated
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from the Nth power of P , and this allows the calculation of an exact P -
value associated with an observed value s of Ymax. Thus application of this
approach does not take place until this observed value is known.

The matrix P could be quite large, and N could be extremely large. Thus
the calculation of PN could involve substantial computing, but would still
be feasible for values of s and N arising in practice. Mercier and Daudin
(2001) carry out these calculations for the representative examples of Karlin
and Altschul (1990) to show that the upper bound for the P -value in a
BLAST search given in Karlin and Altschul (1990) (and given in (10.21))
is usually quite accurate, although in two of the ten cases considered is less
than the actual P -value. In these two cases the P -value is comparatively
large, and so presumably this anomaly arises because the asymptotic theory
on which BLAST calculations depend is not sufficiently accurate.

The calculations described above refer to a fixed alignment. The general
BLAST procedure of comparing two unaligned sequences requires that this
calculation be repeated a large number of times, which might be impractical
with current computing power.

In the case s = +∞ the successive values of the Uj follow a Lindley
process. This process possesses a stationary distribution whose properties
allow alternative bounds for the P -value in a BLAST search with a single
fixed alignment. This approach to the theory is developed by Bacro et al.
(2002)., who develop the theory of Mercier and Daudin (2001) further. In
particular, they give a simple derivation of the bounds (10.21) and derive
sharper bounds than these that are easy to compute. For further theoreti-
cal developments along these lines, see Daudin et al. (2001) and Daudin et
al. (2003).

Example 3. Clumping behavior of motifs. The CHI motif in H. influenzae,
consisting of the four words {gatggtgg, gctggtgg, ggtggtgg, gttggtgg}, was
discussed in Section 5.9. Under a simple Bernoulli model, this motif has a
comparatively simple clumping behavior: the probability P that the first
word of the motif in any clump is overlapped by itself or some other word
is independent of the first word. In this case equation (11.22) specializes to

t = Pt + 1. (11.26)

It is straightforward to calculate P (see Problem 11.9), and then to calculate
t from (11.26).

A slightly more complicated case arises for the motif {aaa, ata}. We
think of a Markov chain process starting in state E1 if the first word in
a clump is aaa and in state E2 if the first word in a clump is ata. The
process continues to occupy one or other of these states while the clump
continues, and enters absorbing state E3 when the clump stops. If ti is the
mean number of words in the clump if the initial state is Ei, equations
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(11.22) give

t1 = pat1 + ptpat2 + 1, t2 = p2
at1 + ptpat2 + 1. (11.27)

These equations give

t1 =
1

1 − pa − papt + p2
apt − p3

apt
, t2 =

1 − pa + p2
a

1 − pa − papt + p2
apt − p3

apt
.

Given that a clump occurs, it is natural to assume that the first word is aaa
with probability pa/(pa + pt) and is ata with probability pt/(pa + pt). In
this case the unconditional mean number of words in the clump is (t1pa +
t2pt)/(pa + pt).

11.7 Continuous-Time Markov Chains

11.7.1 Definitions
Markov processes can be in either discrete or continuous time, and in either
discrete or continuous space; that is to say, there are four types of Markov
processes. The Markov chains considered in Chapter 4 and so far in this
chapter are in discrete time and discrete space. In this section we consider
a random variable Y that takes values in some discrete space but whose
values can change in continuous time. The value of Y at time t is denoted
by Y (t).

The “Markov” and the “time homogeneity” assumptions are defined for
the continuous-time process as follows. The Markov assumption is that,
given that Y = i at any time u, the probability that Y = j at any future
time u + t does not depend further on the values before time u. The time
homogeneity assumption is that the conditional probability

Prob(Y (u + t) = j |Y (u) = i) (11.28)

is independent of u, so we write it as Pij(t).
We focus on the case where the possible values of Y (t) are 1, 2, . . . , s

and where it is assumed that the transition probability equations (11.28)
take the form

Pij(h) = qijh + o(h), j �= i, (11.29)
Pii(h) = 1 − qih + o(h), (11.30)

as h → 0, with qi defined by

qi =
∑
j �=i

qij . (11.31)

We shall call the qij the instantaneous transition rates of the process. If
qi is independent of i, the expression (11.30) becomes identical in form
to (4.1). The justification for the choice of the mathematical forms on the
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right-hand sides of (11.29) and (11.30) is the same as that given in Chapter
4 leading to the expression (4.1).

In Section 14.3.1 we consider evolutionary models in which equations of
the form (11.29) and (11.30) are assumed. The justification for this is, in
effect, that a change at a position in a population from i to j in a small
time interval of length 2h is approximately twice the probability that this
happens in a time interval of length h. Therefore, a generalization of the
argument leading to the expression (4.1) leads to equations (11.29) and
(11.30). In some evolutionary models that we consider it happens that qi

is independent of i, so that the Poisson process theory of Chapter 4 may
be used directly for them. When qi depends on i we may regard the pro-
cess governing the number of transitions as a generalization of the Poisson
process of Chapter 4.

11.7.2 Time-Dependent Solutions
By the time-homogeneity property of the process of interest,

Pij(t + h) =
∑

k

Pik(t)Pkj(h),

where the sum is taken over all possible states. From this, equations
(11.29)–(11.31) imply that for fixed i,

Pij(t + h) = Pij(t)(1 − qjh) + h
∑
k �=j

Pik(t)qkj + o(h). (11.32)

From this equation and the assumptions (11.29)–(11.31) we arrive at the
following system of differential equations:

d

dt
Pij(t) = −qjPij(t) +

∑
k �=j

Pik(t)qkj , j = 1, 2, . . . , s. (11.33)

These are called the forward Kolmogorov equations of the system. They can
be solved explicitly in cases where the qkj take simple forms. An example
is given in Problem 11.10. Some applications in the evolutionary context
where these equations can be solved are given in Sections 14.3.1, 14.3.2,
and 14.3.3.

11.7.3 The Stationary Distribution
A stationary distribution {ϕj} has the property that if at any time t
Prob(Y (t) = j) = ϕj for all j, then for all j, Prob(Y (u) = j) = ϕj for
all u > t. Thus a stationary distribution, if it exists, can be found by re-
placing the derivatives on the left-hand sides of the system of equations
(11.33) by zero and replacing Pij(t) and Pik(t) by ϕj and ϕk, respectively,



11.7. Continuous-Time Markov Chains 405

to get

qjϕj =
∑
k �=j

ϕkqkj , j = 1, 2, . . . , s. (11.34)

This equation is used in an evolutionary context in Sections 14.3.1, 14.3.2,
and 14.3.3.

11.7.4 Detailed Balance
When a stationary distribution {ϕj} exists, the detailed balance conditions
analogous to the discrete-time conditions (11.5) are that for all i, j, and t,

ϕiPij(t) = ϕjPji(t). (11.35)

A simpler form of this criterion is that

ϕiqij = ϕjqji, (11.36)

where the qij are defined in equation (11.29).

11.7.5 Exponential Holding Times
Suppose that Y (t) = j. Then Y (·) will remain at the value j for some
length of time until it changes to some value other than j, and we now find
the probability density function of the time until such a change occurs.

Let T be the (random) time until the value of Y (·) moves to some value
different from j. Then

Prob(T ≥ t + h) = Prob(T ≥ t) · Prob(T ≥ t + h |T ≥ t).

From the Markov and time homogeneity properties of the process, this is

Prob(T ≥ t + h) = Prob(T ≥ t) · Prob(T ≥ h). (11.37)

The probability that T ≥ h is the probability that the random variable has
not moved from the value j before time h, and if terms of order o(h) are
ignored, this is the probability 1 − qjh + o(h) given in equation (11.30).
Thus

Prob(T ≥ t + h) = Prob(T ≥ t) · (1 − qjh) + o(h). (11.38)

Rearrangement of terms gives

Prob(T ≥ t + h) − Prob(T ≥ t)
h

= −qj Prob(T ≥ t) +
o(h)
h

,

and the limiting operation h → 0 gives

d

dt
Prob(T ≥ t) = −qj Prob(T ≥ t). (11.39)
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Standard differential equation calculations show that

Prob(T ≥ t) = C · e−qjt,

for some constant C. The case t = 0 shows that C = 1, so that

Prob(T ≥ t) = e−qjt. (11.40)

Allowing for a change in notation, this is identical to equation (1.67), and
thus T has an exponential distribution. From (1.54), the density function
of T is

f(t) = qje
−qjt, t > 0. (11.41)

To summarize, if Y (·) has just arrived at the value j, it next moves to
some other value after a random length of time having the exponential
distribution given in equation (11.41). This implies that having just arrived
at the value j, the mean time spent at this value before moving to some
other value is q−1

j .

11.7.6 The Embedded Chain
In some applications we might not be interested in the time spent by Y (·)
at any value but only in the sequence of values that Y (·) assumes. In other
words we are interested only in the so-called embedded chain of the process.
This embedded chain is a discrete-time Markov chain whose transition
probabilities are

pjk =
qjk

qj
. (11.42)

These are conditional probabilities, derived from (1.101); given that a
change occurs, the probability that it is to k is given by (11.42). Markov
chain theory can be used to find properties of this embedded process. These
properties can provide information about the original time-dependent pro-
cess. For example, if a time-dependent process has absorbing states, the
probability that the process enters a specific absorbing state is the same
as the corresponding probability in the embedded chain. The latter proba-
bility might be found more easily using discrete time Markov chain theory
than by the continuous time theory of this section. On the other hand it
is not possible to find absorption time properties for the continuous time
process from the embedded chain.

Problems

11.1. Suppose that the transition matrix P of a Markov chain is given by

P =
[
0.6 0.4
0.3 0.7

]
. (11.43)
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Use the definitions (B.45) and (B.46) to find the (two) eigenvalues and the
(two pairs of) corresponding left and right eigenvectors of P .

11.2. Use your answer to Problem 11.1 to check that equation (B.48) holds.

11.3. For the matrix P given in (11.43), find P 2 by direct matrix multipli-
cation. Then find P 2 by using the eigenvalues and eigenvectors calculated
in Problem 11.1, together with the right-hand side of equation (B.49).

11.4. Find the stationary distribution of the Markov chain whose transition
matrix is given in (11.43). Find P 3 and P 4 using the spectral expansion,
and thus check that Pn is approaching the matrix defined through the sta-
tionary distribution.

11.5. Suppose that a reversible Markov chain with transition matrix P =
{pij} and stationary distribution ϕ whose typical element is ϕi. Show that
for such a matrix ϕip

n
ij = ϕjp

n
ji. (Hint: this equation is true for n = 1: see

equation (11.5)). Now use induction and the fact that

p
(n+1)
ij =

∑
k

p
(n)
ik pkj =

∑
k

pikp
(n)
kj .

Assuming that the matrix M1 defined in Section 6.5.3 is reversible, use this
result to show that the expression in (6.24) is unchanged by reversing the
roles of j and k (as is desired in the context of PAM matrices).

11.6. Use equation (11.5) to show that if the transition matrix of a finite
irreducible aperiodic Markov chain is symmetric, then that Markov chain
is reversible.

11.7. Suppose that a finite aperiodic irreducible Markov chain has transi-
tion probability matrix P and stationary distribution ϕ′. Show that if k is
any constant, 0 < k < 1, then the Markov chain with transition probabil-
ity matrix P ∗ = kP + (1 − k)I also has stationary distribution ϕ′. What
interpretation or explanation can you give for this result?

11.8. Prove the assertion made below equation (11.10), that pij > 0 for all
(i, j) including the case i = j.

11.9. Calculate the value of P in equation (11.26).

11.10. A simple Markov chain has two states, called here “0” and “1,” with
instantaneous transition rates q01 = q10 = α. Write down the differential
equation (11.33) for this case, and show that the solution is

Pii(t) =
1
2

+
1
2
e−2αt, Pij(t) =

1
2

− 1
2
e−2αt, (i �= j, i, j = 0, 1). (11.44)
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Let t → +∞ to find the stationary distribution of this Markov process, and
show that this distribution satisfies (11.34).



12
Hidden Markov Models

We divide this brief account of hidden Markov models into three sections:
(i) a description of the properties of these models, (ii) the three main algo-
rithms of the models, and (iii) applications. For a more complete account
of these models, see Rabiner (1989).

12.1 What is a Hidden Markov Model?

A hidden Markov model (HMM) is similar to a Markov chain, but is more
general, and hence more flexible, allowing us to model phenomena that we
cannot model sufficiently well with a regular Markov chain model. An HMM
is a discrete-time Markov model with some extra features. The main addi-
tion is that when a state is visited by the Markov chain, the state “emits”
a letter from a fixed time-independent alphabet. Letters are emitted via
a time-independent, but usually state-dependent, probability distribution
over the alphabet. When the HMM runs there is, first, a sequence of states
visited, which we denote by q1, q2, q3, . . . , and second, a sequence of emitted
symbols, denoted by O1,O2,O3, . . . . Their generation can be visualized as
a two-step process as follows:

initial
q1

→emission
O1

→transition
to q2

→emission
O2

→transition
to q3

→emission
O3

→· · ·

We denote the entire sequence of qi’s by Q and the entire sequence of Oi’s
by O, and we write “the observed sequence O = O1,O2, . . . ” and “the state
sequence Q = q1, q2, . . . .”
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Often we know the sequence O but do not know the sequence Q. In such
a case the sequence Q is called “hidden.” An important feature of HMMs
is that we can efficiently answer several questions about O and Q.

One of these questions concerns the estimation of the hidden state se-
quence that has the highest probability given the observed sequence. We
illustrate this with a simple example. Consider the Markov chain with two
states S1 and S2, with uniform initial distribution and transition matrix[

.9 .1

.8 .2

]
.

Let A be an alphabet consisting only of the numbers 1 and 2. State S1
emits a 1 or 2 with equal probability 1

2 , state S2 emits a 1 with probability
1
4 and a 2 with probability 3

4 . Suppose the observed sequence is O = 2, 2, 2.
What sequence of states Q = q1, q2, q3 has the highest probability given O?
In other words, what is

argmax
Q

Prob(Q | O)?

There are eight possibilities for Q. Each of these can be written down and
its probability calculated, and from this it is found that the answer to the
above question is Q = S2, S1, S1. The sequence Q contains more S1’s, even
though S2 is more likely to produce a 2 when visited (probability 3

4 ) than
S1 (probability 1

2 ). The reason is because S1 is much more likely to be
visited than S2 (p11 = .9 and p21 = .8).

We can also calculate

Prob(O) =
∑
Q

Prob(O | Q) · Prob(Q). (12.1)

This calculation is useful in distinguishing which of several models is most
likely to have produced O.

In the above example all of these calculations can be done by hand.
However, models arising in practice have many states, sometimes hundreds,
and an alphabet with many symbols (often 20, one for each amino acid).
In these cases, calculation of the quantities above by exhaustive methods
becomes impossible even for the fastest computers. Fortunately, there are
dynamic programming approaches that overcome this problem, which we
discuss in detail below. Before turning to the algorithms, however, it is
necessary to introduce some specific notation. An HMM will consist of the
following five components:

(1) A set of N states S1, S2, . . . , SN .

(2) An alphabet of M distinct observation symbols A = {a1, a2, . . . , aM}.

(3) The transition probability matrix P = (pij), where

pij = Prob(qt+1 = Sj | qt = Si)
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(4) The emission probabilities: For each state Si and a in A,

bi(a) = Prob(Si emits symbol a).

The probabilities bi(a) form the elements in an N × M matrix B =
(bi(a)).

(5) An initial distribution vector π = (πi), where πi = Prob(q1 = Si).

Components 1 and 2 describe the structure of the model, and 3–5 describe
the parameters. It is convenient to let λ = (P, B, π) represent the full set
of parameters. We can now describe the main algorithms.

12.2 Three Algorithms

There are three calculations that are frequently required in HMM theory.
Given some observed output sequence O = O1,O2, . . . ,OT , these are:

(i) Given the parameters λ, efficiently calculate

Prob(O | λ).

That is, efficiently calculate the probability of some given sequence
of observed outputs.

(ii) Efficiently calculate the hidden sequence Q = q1, q2, . . . , qT of states
that is most likely to have occurred, given O. That is, calculate

argmax
Q

Prob(Q | O).

(iii) Assuming a fixed topology of the model (i.e., a fixed graph structure
of the underlying Markov chain, as defined in 4.9), find the parameters
λ = (P, B, π) that maximize Prob(O | λ).

We address these problems in turn.

12.2.1 The Forward and Backward Algorithms
We first consider problem (i). The naive way of calculating Prob(O) is to
use formula (12.1). This calculation involves the sum of NT multiplications,
each being a multiplication of 2T terms. The total number of operations is
thus on the order of 2T · NT .

Unless T is quite small, this calculation is computationally infeasible.
For example, if N = 4, T = 100, the number of calculations is on the order
of 1060. It would take the life of the universe to make such a calculation.
Fortunately, there is a much more efficient and computationally feasible
procedure, called the forward algorithm.
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The forward algorithm focuses on the calculation of the quantity

α (t, i) = Prob(O1,O2,O3, . . . ,Ot, qt = Si), (12.2)

which is the joint probability that the sequence of observations seen up to
and including time t is O1,O2,O3, . . . ,Ot, and that the state of the HMM
at time t is Si. The α(t, i) are called the forwards variables.

Once we know α(T, i) for all i, then Prob(O) can be calculated as

Prob(O) =
N∑

i=1

α(T, i). (12.3)

We calculate the α(t, i)’s inductively on t. The first calculation is of the
initialization step, and uses the obvious result

α(1, i) = πibi(O1). (12.4)

Next, the equation

α(t + 1, i) =
N∑

j=1

Prob(O1,O2,O3, . . . ,Ot+1, qt+1 = Si and qt = Sj)

leads to the induction step

α(t + 1, i) =
N∑

j=1

α (t, j)pjibi(Ot+1). (12.5)

This equation gives α(t+1, i) in terms of the α(t, j), so that α(t+1, i) can
be calculated quickly once the α(t, j) are known. We use (12.4) to calculate
α(1, i) for all i; then we use (12.5) to calculate α(2, i) for all i and again to
calculate α(3, i) for all i, and so on, until we have obtained the α(T, i) for
all i, needed in (12.3).

This procedure provides an algorithm for the solution to problem (i). The
algorithm requires on the order of TN2 computations, and thus is feasible
in practice, even for very large models.

Before going on to problem (ii), we consider briefly the backward part of
the forward–backward algorithm. This provides another approach to solv-
ing problem (i), but we introduced it because we will use the “backwards”
variables when we discuss problem (iii).

In the above, we calculated successively α(1, ·), α(2, ·), . . . , α(T, ·), that
is, we calculated forward in time. In the backward algorithm we calculate
another quantity backwards in time, as the name suggests. We do not use
these quantities to solve (12.3): instead, we shall need them for a later cal-
culation. The goal of the backwards algorithm is to calculate the probability
β(t, i), defined by

β(t, i) = Prob(Ot+1,Ot+2, . . . ,OT | qt = Si), (12.6)
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for 1 ≤ t ≤ T − 1, and for convenience we define β(T, j) to be 1 for all j.
We then calculate (12.6) working backwards from t = T − 1. The relevant
equations for this procedure are

β(t − 1, i) =
N∑

j=1

pij bj(Ot)β(t, j). (12.7)

Using these equations we can successively calculate β(T − 1, i) for all i,
β(T − 2, i) for all i, . . . , and β(1, i) for all i.

12.2.2 The Viterbi Algorithm
Given some observed sequence O = O1,O2,O3, . . . ,OT of outputs, we want
to compute efficiently a state sequence Q = q1, q2, q3, . . . , qT that has the
highest conditional probability given O. In other words, we want to find a
Q that makes Prob(Q | O) maximal, that is, we want to calculate

argmax
Q

Prob(Q | O). (12.8)

There may be many Q’s that maximize Prob(Q | O). We give an algo-
rithm that finds one of them. It can easily be generalized to find them all.
However, for our applications this generalization will not be necessary.

The Viterbi algorithm carries out the efficient computation of (12.8).
The algorithm is divided into two parts. It first finds maxQ Prob(Q | O),
and then “backtracks” to find a Q that realizes this maximum. This is an-
other dynamic programming algorithm.

First define, for arbitrary t and i,

δt(i) = max
q1,q2,...,qt−1

Prob(q1, q2, . . . , qt−1, qt = Si and O1,O2,O3, . . . ,Ot)

(δ1(i) = Prob(q1 = Si and O1)). In words, δt(i) is the maximum probability
of all ways to end in state Si at time t and have observed sequence O1,
O2, . . . , Ot. Then

max
Q

Prob(Q and O) = max
i

δT (i). (12.9)

The probability in this expression is the joint probability of Q and O, not
a conditional probability. Our aim is to find a sequence Q for which the
maximum conditional probability (12.8) is achieved. Since

max
Q

Prob(Q | O) = max
Q

Prob(Q and O)
Prob(O)

,

and since the denominator on the right-hand side does not depend on Q,

argmax
Q

Prob(Q | O) = argmax
Q

Prob(Q and O)
Prob(O)

= argmax
Q

Prob(Q and O).
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The first step is to calculate the δt(i)’s inductively. Then we will
“backtrack” and recover the sequence that gives the largest δT (i). The
initialization step is

δ1(i) = πibi(O1), 1 ≤ i ≤ N. (12.10)

The induction step is

δt(j) = max
1≤i≤N

δt−1(i)pijbj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N. (12.11)

We recover the qi’s as follows. Define

ψT = argmax
1≤i≤N

δT (i),

and put qT = SψT
. Then qT is the final state in the state sequence required.

The remaining qt for t ≤ T − 1 are found recursively by first defining

ψt = argmax
1≤i≤N

δt(i)piψt+1 ,

and then putting qt = Sψt . If the argmax is not unique, we arbitrarily take
one value of i giving the maximum.

12.2.3 The Estimation Algorithms
We now address problem (iii). Suppose we are given a set of observed data
from an HMM for which the topology is known (by topology we mean
the graph structure of the underlying Markov model). We wish to try to
estimate the parameters in that HMM. The parameter space is usually far
too large to allow exact calculation of a set of parameter estimates that
maximizes the probability of the data. Instead, we employ algorithms that
find “locally” best sets of parameters. This partial solution to the problem
has proven to be useful in many applications.

The focus on local estimation means that the procedure is heuristic.
Therefore, the efficacy of the procedure must evaluated empirically by using
benchmarks and test sets for which there are known outcomes. This matter
is discussed further below.

Some additional comments are in order. It is not necessary to assume
that the data come from an HMM. Instead, it is usually more accurate to
assume that the data are generated by some random process that we try
to “fit” with an HMM. Sometimes it might be possible to achieve a tight
fit with an HMM and sometimes it might not.

The discussion above shows that we should use the term “estimation”
of parameters cautiously in this section. Our aim is to “set” parameters at
values providing a good fit to data rather than to estimate parameters in
the sense of Chapter 8.

We now describe the Baum–Welch method of parameter estimation. This
is a difficult algorithm, so we do not provide proofs of the claims made but
instead indicate the intuition behind the method.
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We assume that the alphabet A and number of states N is fixed at the
outset, and that the parameters πi, pjk, and bi(a) are unknown and are to be
“estimated.” The data we use to estimate the parameters constitute a set of
observed sequences {O(d)}. Each observed sequence O(d) = O(d)

1 ,O(d)
2 , . . .

has a corresponding hidden state sequence Q(d) = q
(d)
1 , q

(d)
2 , . . . .

The procedure starts by setting the parameters πi, pjk, and bi(a) at some
initial values. These can be chosen from some uniform distribution or can
be chosen to incorporate prior knowledge about them. We then calculate,
using these initial parameter values,

πi = the expected proportion of times in state Si at
the first time point, given {O(d)},

(12.12)

pjk =
E(Njk | {O(d)})
E(Nj | {O(d)})

, (12.13)

bi(a) =
E(Ni(a) | {O(d)})
E(Ni | {O(d)})

, (12.14)

where Njk is the (random) number of times q
(d)
t = Sj and q

(d)
t+1 = Sk for

some d and t; Ni is the (random) number of times q
(d)
t = Si for some d and

t; and Ni(a) equals the (random) number of times q
(d)
t = Si and it emits

symbol a, for some d and t. The expected values in (12.13) and (12.14) are
conditional expected values, as defined in (2.59).

We show how to calculate these efficiently below. These are the “re-
estimation” parameter values that then replace πi, pjk, and bi(a). These
values follow the form of estimation used, for example, in equation (3.10).
The algorithm proceeds by iterating this step.

It can be shown that if λ = (πi, pjk, bi(a)) is replaced by λ = (πi,
pjk, bi(a)), then Prob({O(d)} |λ) ≥ Prob({O(d)} | λ), with equality holding
if and only if λ = λ. Thus successive iterations continually increase the
probability of the data, given the model. Iterations continue until either
a local maximum of the probability is reached or until the change in the
probability becomes negligible.

In order to discuss the calculations needed for (12.13)–(12.12), define
ξ
(d)
t (i, j) by

ξ
(d)
t (i, j) = Prob(q(d)

t = Si, q
(d)
t+1 = Sj | O(d)), (12.15)

where i, j = 1, . . . , N , and t ≥ 1. The conditional probability formula
(1.101) shows that this is equal to

Prob(q(d)
t = Si, q

(d)
t+1 = Sj ,O(d))

Prob(O(d))
.

The denominator is Prob(O(d)) and is thus calculated efficiently using the
methods of Section 12.2.1. The numerator is calculated efficiently by writing
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it in terms of the forwards and backwards variables discussed in Section
12.2.1,

Prob(q(d)
t = Si, q

(d)
t+1 = Sj ,O(d)) = αt(i)pijbj(O(d)

t+1)βt+1(j). (12.16)

Let I
(d)
t (i) be the indicator variables defined by

I
(d)
t (i) =

{
1, if q

(d)
t = Si,

0, otherwise.

The number of times Si is visited is then
∑

d

∑
t I

(d)
t (i). The expected

number of times Si is visited, given {O(d)}, is then∑
d

∑
t

E(I(d)
t (i) | O(d)). (12.17)

Now E(I(d)
t (i) | O(d)) is Prob(q(d)

t = Si | O(d)), which is

N∑
j=1

ξ
(d)
t (i, j). (12.18)

Thus the expected number of times Si is visited, given {O(d)}, is

∑
d

∑
t

N∑
j=1

ξ
(d)
t (i, j).

Similarly, the expected number of transitions from Si to Sj given {O(d)} is∑
d

∑
t

ξ
(d)
t (i, j).

These expressions give efficient formulae to calculate all the quantities
in equations (12.12)–(12.14) except the numerator of (12.14). This is
calculated as follows.

Define the indicator random variables I
(d)
t (i, a) by

I
(d)
t (i, a) =

{
1, if q

(d)
t = Si and O(d)

t = a,
0, otherwise.

Then E(I(d)
t (i, a) | O(d)) is the expected number of times the dth process

is in state Si at time t and emits symbol a, given O(d). The numerator of
(12.14) is equal to

∑
d

∑
t E(I(d)

t (i, a) | O(d)), which is

∑
d

∑
t

∑
O(d)

t =a

N∑
j=1

ξ
(d)
t (i, j).
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12.3 Applications

We sketch here the applications of HMMs in several different areas of com-
putational biology. Only a brief outline of each application is given: further
details may be found in the references provided.

12.3.1 Modeling Protein Families
In this section we develop an HMM to model protein families, and we shall
use the model for two purposes: to construct multiple sequence alignments
and to determine the family of a query sequence. These applications were
first presented in Krogh et al. (1994). In order to present the main ideas
we simplify many of the details.

Figure 12.1 gives an example of the basic type of HMM we shall use. This
example has “length” five; any length is possible. The underlying Markov
model is presented in graphical form (as in Section 4.9). The states are
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Figure 12.1. Hidden Markov model for a protein family.

the squares, diamonds, and circles labeled m0, m1, . . . , m5, i0, i1, . . . , i4,
and d1, d2, . . . , d4, respectively. The squares are called the match states,
the diamonds the insert states, and the circles the delete states. The edges
not shown have transition probability zero. State m0 is the start state, so
that the process always starts in state m0. A transition never moves to the
left, so that as time progresses the current state gradually moves to the
right, eventually ending in match state m5, the end state. When this state
is reached the process ends. A match or delete state is never visited more
than once.

The alphabet A consists of the twenty amino acids together with one
“dummy” symbol representing “delete” (denoted δ). Delete states output
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δ with probability one. Each insert and match state has its own distribution
over the 20 amino acids, and cannot emit a δ. That is, only a delete state
can emit a δ, and each delete state emits only δ.

If the emission probabilities for the match and insert states are uni-
form over the 20 amino acids, the model will produce random sequences
that do not have much in common except possibly their lengths. At the
other extreme, if each state emits one specific amino acid with probabil-
ity one, and if further the transitions from mi to mi+1 have probability
one, then the model will always produce the same sequence. Somewhere
in between these two extremes the parameters of the model can be set so
that it produces sequences that are similar, thus producing what can be
thought of as a “family” of sequences. Each choice of parameters produces
a different family. This family can be rather “tight,” meaning all sequences
in it are very similar, or can be “loose,” so that there is little similarity
between the sequences produced. It is also possible that the similarity is
high in some positions of the sequences produced and low in others. This
will happen if some match states have distributions concentrated on a few
amino acids while the others have distributions in which all amino acids
are approximately equally likely. By contrast, the dynamic programming
sequence alignment algorithms and BLAST allow one gap open penalty
and use one substitution matrix uniformly across the entire length of the
sequences compared. Allowing gap penalties and substitution probabilities
to vary along the sequences reflects biological reality better. Alignments of
related proteins generally have regions of higher conservation and regions
of lower conservation. The regions of higher conservation are called func-
tional domains, because their resistance to change indicates that they serve
some critical function. Dynamic programming alignment and BLAST are
essential for certain applications, such as pairwise alignments, or aligning
a small number of sequences. But for modeling large families of sequences,
or constructing alignments of many sequences, HMMs allow for efficiency,
and at the same time exploit the larger data sets to increase flexibility.

In the HMM model of a protein family the transition (arrow) from a
match state to an insert state corresponds to the gap open penalty, and
the arrow from an insert state to itself corresponds to the gap extension
penalty. Loosely speaking, the distribution over the amino acids for any
state takes the place of a substitution matrix. The probabilities in the model
can differ from position to position in the sequence, since each arrow has its
own probability and each match and insert state has its own distribution.
Thus the HMM model is sufficiently flexible to model the varying features
of a protein along its length. While the model can be made even more
flexible by adding further parameters, more data are needed to estimate
these parameters effectively. The model described has proven in practice to
provide a good compromise between flexibility and tractability. Such HMM
models of are called profile HMMs.
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All applications start with training, or estimating, the parameters of
the model using a set of training sequences chosen from a protein fam-
ily, such as the set of all globins in GenBank. This estimation procedure
uses the Baum–Welch algorithm. The model is chosen to have length equal
to the average length of a sequence in the training set, and all param-
eters are initialized by using uniform distributions (i.e., amino acids are
given probability 1

20 , and transitions of the same type are given 1
2 equal

probabilities).1

12.3.2 Multiple Sequence Alignments
In this section we describe how to use the theory described above to com-
pute multiple sequence alignments for a family of sequences. The sequences
to be aligned are used as the training data, to train the parameters of the
model. For each sequence the Viterbi algorithm is then used to determine
a path most likely to have produced that sequence. These paths can then
be used to construct an alignment. Amino acids are aligned if both are
produced by the same match state in their paths. Indels are then inserted
appropriately for insertions and deletions.

We illustrate this with an example. Consider the sequences CAEFDDH and
CDAEFPDDH. Suppose the model has length 10 and their most likely paths
through the model are

m0m1m2m3m4d5d6m7m8m9m10

and

m0m1i1m2m3m4d5m6m7m8m9m10,

respectively. Then the alignment induced is found by aligning positions
that were generated by the same match state:

m0 m1m2m3m4 d5 d6 m7m8m9m10

m0 m1 i1 m2m3 m4d5 m6m7m8m9m10

C A E F D D H

C D A E F P D D H
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This leads to the alignment

C−AEF−DDH
CDAEFPDDH

.

1What Krogh et al. (1994) do is somewhat more complicated. They allow the length of
the model to change along with the parameters after each iteration of the re-estimation
algorithm. They also must adjust the Baum–Welch algorithm from how we have de-
scribed it, in order to handle the delete states. The reader interested in implementing
these applications should refer to the literature for further details.
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More generally, suppose we have the five sequences

CAEFTPAVH,
CKETTPADH,
CAETPDDH,
CAEFDDH,
CDAEFPDDH,

and the corresponding paths returned by the Viterbi algorithm are

m0m1m2m3m4m5m6m7m8m9m10,
m0m1m2m3m4m5m6m7m8m9m10,
m0m1m2m3d4m5m6m7m8m9m10,
m0m1m2m3m4d5d6m7m8m9m10,
m0m1i1m2m3m4d5m6m7m8m9m10.

Then the induced alignment is

C−AEF T PAVH
C−KET T PADH
C−AE−T PDDH
C−AEF−−DDH
CDAEF−PDDH

.

This technique can give ambiguous results in some cases. For example, if
the model has length two and the sequences ABAC and ABBAC had

m0m1i1i1m2m3 and m0m1i1i1i1m2m3

as paths, then the leading A’s and trailing C’s will be aligned, but it is not
clear how to align the BA from the first sequence to the BBA from the second.
In such cases Krogh et al. (1994) represent the ambiguous symbols with
lowercase letters and do not attempt to give alignments of these regions.

This technique can be used to align many sequences with relatively little
computing power. By contrast, dynamic programming algorithms cannot
in practice align 50 or 100 long sequences. This is the value of a heuristic
approach. Another advantage of the method is that it allows the sequences
themselves to guide the alignment, rather than having a precomputed
substitution matrix and gap penalties. Thus less bias should be introduced.

Krogh et al. (1994) tested this method on a family of 625 globin se-
quences. They used a published alignment of seven of these sequences
constructed using knowledge of the three-dimensional structure of the se-
quences (Bashford et al. (1987)). (An alignment using a three-dimensional
structure is considered reliable and so serves as a benchmark for testing
multiple alignment algorithms.) They chose 400 of the 625 globins to train
the model and then used the Viterbi algorithm to align all 625. These align-
ments were then compared to the induced alignment on the seven sequences
from the Bashford alignment. The alignments agreed extremely well.
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12.3.3 Pfam
Pfam is a web-based resource maintained by the Sanger Center (web URL
(http://www.sanger.ac.uk/Pfam/). Pfam uses the basic theory described
above to determine protein domains in a query sequence. A protein usually
has one or more functional domains, namely portions of the protein that
have essential function and thus have low tolerance for amino acid substi-
tutions. Proteins in different families often share high homology in one or
more domains. Entire protein families can be characterized by HMMs, as
in the previous section, or one can characterize just functional domains.
Pfam focuses on the latter.

Suppose that a new protein is obtained for which no information is
available except the raw sequence. We wish to “annotate” this sequence.
Annotation is the process of assigning to a sequence biologically relevant
information, such as where the functional domains are, what their homol-
ogy is to known domains, and what their function is. The typical starting
point is a BLAST search. This will return all sequences in the chosen
databases that have significant similarity to the query sequence. BLAST
can return many such sequences. Though this is an important step in the
annotation process, it is also desirable to have a database not of protein
sequences themselves, but of protein domains. Pfam is not the first such
database; however, previous domain databases do not use methods as flex-
ible as HMMs and consequently tend not to model entire domains, but
rather only the most highly conserved “motifs” that can be put in un-
gapped multiple sequence alignments. The use of HMMs allows for more
effective characterization of full domains.

The domains in Pfam are determined based on expert knowledge, se-
quence similarity, and other protein family databases. Currently, Pfam
contains 2,008 protein domains. For each domain a set of examples of this
domain is selected. The sequences representing each domain are put into an
alignment, and the alignments themselves are used to set the parameters;
that is, Baum–Welch is not used. Recall that an alignment implies for each
sequence in the alignment a path through the HMM, as described in the
previous section. The proportion of times these paths take a given tran-
sition is used to estimate the transition probabilities, and likewise for the
emission probabilities. These alignments are called “seed alignments” and
are stored in the database. Given the HMMs for all of the domains, a query
sequence is then run past each one using the forward algorithm. When a
portion of the query sequence has probability of having been produced by
an HMM above a certain cutoff, the domain corresponding to that HMM is
reported. Furthermore, the sequence can be aligned to the seed alignment
using the Viterbi algorithm as described above. For more details, see the
Pfam web site.
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12.3.4 Gene Finding
Genomic sequences with lengths on the order of many millions of bases
are now being produced, and the sequences of entire chromosomes are be-
coming available. Such sequences consist of a collection of genes separated
from each other by long stretches of nonfunctional sequence. It is of central
importance to find where the genes are in the sequence. Therefore, com-
putational methods that quickly identify a large proportion of the genes
are very useful. The problem involves bringing together a large amount of
diverse information, and there have been many approaches to doing this.
Currently, a popular and successful gene finder for human DNA sequences
is GENSCAN (Burge et al. (1997)), which is based on a generalization of
hidden Markov models. We sketch below an algorithm similar in spirit to
that in GENSCAN in order to illustrate the basic concept of an HMM hu-
man gene finder. To increase the accuracy of the procedure it is necessary
to introduce many details that we do not describe here. The interested
reader is encouraged to read Burge et al. (1997) and Burge (1997).

Semihidden Markov Models
Suppose that, in an HMM, p is the probability of the transition from any
state to itself. The probability that the process stays in this state for n
steps is pn−1(1 − p), so that the length of time the process stays in that
state follows a geometric distribution. For the gene model we construct, it
is necessary to allow other distributions for this length. In a semi-hidden
Markov Model (semiHMM, more logically called a hidden semi-Markov
model) all transition probabilities from a state to itself are zero, and when
the process visits a state it produces not just a single symbol from the
alphabet but rather an entire sequence. The length of the sequence can
follow any distribution, and the model generating the sequence of that
length can be any distribution. The positions in the sequences emitted
from a state need not be iid.

The model is formulated more precisely as follows. Each state S has
associated with it a random variable LS (L for “length”) whose range is a
subset of 0, 1, 2, . . . , and for each observable value � of LS there is a random
variable YS,
 whose range consists of all sequences of length �. When state S
is visited a length � is determined randomly from the distribution for LS .
Then the distribution for YS,
 is used to determine a sequence of length
�. Then a transition is taken to a new state and the process is repeated,
generating another sequence. These sequences are concatenated to create
the final output sequence of the semiHMM.

The algorithms involved in this model are an order of magnitude more
complex than for a regular HMM, since given an observed output sequence
not only do we not know the path of states that produced it, we also do not
know the division points in the sequence indicating where a transition was
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made to a new state. The gene-finding application requires a generalization
of the Viterbi algorithm. There is a natural generalization. However, since
one is generally working with very long sequences, the natural generaliza-
tion does not run in reasonable time. In practice, further assumptions must
be made. Burge (1997) observed that if the lengths of the long intergenic
regions can be taken as having geometric distributions, and if these lengths
generate sequences in a relatively iid fashion, then the algorithm can be ad-
justed so that practical running times can be obtained. These assumptions
are not unreasonable in our case, and so they should not greatly affect the
accuracy of the predictions. We shall omit the technical details surrounding
this issue. Our goal is to convey the main idea of how an HMM gene finder
works.

A parse φ is a sequence of states q1, q2, . . . , qr and a sequence of lengths
d1, d2, . . . , dr. Given an observed sequence s from a semiHMM, the Viterbi
algorithm finds an optimal parse φopt such that Prob(φopt | s) ≥ Prob(φ | s)
for all parses φ. In other words, φopt is a parse that is most likely to have
given rise to the sequence s. As we will see, the optimal parse gives the
gene predictions.

Gene Structure
We now outline the basic properties of human genes that are to be captured
in the model. The statistical aspects arise because (1) characteristics shared
by genes have similar but not identical properties and (2) signals that genes
share can also exist randomly in the non-gene sequence. This issue has also
been discussed in Section 5.3.

A gene consists mainly of a continuous sequence of the DNA that is
copied, or “transcribed,” into RNA, called “premessenger” RNA or pre-
mRNA. This pre-mRNA consists of an alternating sequence of exons and
introns. After transcription the introns are edited out of the pre-mRNA,
and the final molecule, called “messenger RNA” or mRNA, is translated
into protein. There can be some other editing and processing of an mRNA
before translation. However, that will not be important for our purposes.

The region of the DNA before the start of the transcribed region is called
the upstream region. This is where the promoter of the gene is, the region
where certain specialized proteins bind and initiate transcription. There
are different definitions of what constitutes the promoter region; often it is
taken to be the 500 bases before the start of transcription. Here we shall
be interested in only about 40 bases upstream from the start of transcrip-
tion, since specific signals in the promoter region are extremely complex
and are not well characterized. Our model, and the model used by Burge
(1997), uses the so-called TATA box, which is a fairly common signal (ap-
proximately 70% of genes contain this signal), which is located 28–34 bases
upstream from the start of transcription. We do not try to capture any
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other signal in the promoter region. For those genes without a TATA box,
we rely on identifying the gene by the other signals in its transcribed re-
gion. The 5′ untranslated region (5′UTR) follows the promoter. This is a
stretch of DNA that does not get translated into protein. We call the first
8 bases of this region the cap end of the 5′UTR. Near the other end of
the 5′UTR, just before the start codon in the first exon, is a signal that
indicates the start of translation, called the translation initiation signal.
We shall refer to the 18 bases just before the start codon as the transla-
tion initiation end (TIE) of the 5′UTR. This is followed either by a single
exon or by a sequence of exons separated by introns. An intron may break
a codon anywhere between its three nucleotides. Each intron has signals
indicating its beginning and end. Modeling these signals well is crucial for
correctly predicting the intron/exon structure. Following the final exon is
the 3′ untranslated region (3′UTR), which is another stretch of sequence
that is transcribed but not translated. Near the end of the 3′UTR are one
or more Poly–A signals signaling the end of transcription. A Poly–A signal
is 6 bases long with the typical sequence AATAAA.

The Training Data
Each state of the model we construct is a model in its own right. It is neces-
sary to train each state to produce sequence that models the corresponding
part of an actual gene. To do this we start with a large set of training data
consisting of long stretches of DNA where the gene structures have been
completely characterized. Burge et al. (1997) compiled 2.5 million bases
(Mb) of human DNA with 380 genes, consisting of 142 single-exon genes
and a total of 1,492 exons and 1,254 introns. Many of these are complete
genes consisting of both the upstream and downstream regions. In addition
to this they included the coding region only (no introns) of 1,619 human
genes.

The Model
We model a 5′ to 3′ oriented gene with a 13 state semiHMM as shown in
Figure 12.2. The first row represents the intergenic region. The second row
represents the promoter. The third row is the 5′UTR. The fourth row of
five states represents the introns and exons. The final row is the 3′UTR
and the Poly–A signal.

We first describe how each state is trained by giving the distributions
of LS and YS,
. We then discuss how the transition probabilities are set.
The intergenic region between genes is labeled N in Figure 12.2. For com-
pletely uncharacterized sequence it is reasonable to assume that genes are
randomly distributed. The number of genes in any given stretch of this
uncharacterized sequence is therefore modeled by a Poisson distribution,
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Figure 12.2.

and the distance between genes is modeled by an exponential distribution.
Hence we model the length LN with a geometric distribution (since it is
the discrete analogue of the exponential) with mean equal to the size of
the human genome (approximately 3 billion nucleotides) divided by the
number of genes (approximately 60,000). Given an observed value � of LN ,
the sequence of length � is generated by a fifth-order Markov model (as
described in Section 11.3). The parameters of this model are set using the
noncoding portions of the genes in the training set. This fifth-order model
has 3 · 45 = 3072 parameters. Training so many parameters is possible
only because there are millions of bases of DNA in the training set. There
is known to be at least fifth-order Markov dependence in such noncod-
ing DNA. A fifth-order Markov chain model is used in particular because
it provides improved performance over lower-order models and because a
higher-order model cannot be trained with the current training sets avail-
able. This model for producing sequence will be used for several of the
states (those denoted by N1 and N2, as well as the entire 3′UTR), and will
be referred to as the intergenic null model .

The TATA box is modeled with a 15-base weight matrix similar to that
described in Section 5.3.2. The path can bypass the TATA box, which is
necessary because only about 70% of genes have them.



426 12. Hidden Markov Models

The state following the TATA box produces a sequence following the
null intergenic model. The length of the sequence LN1 follows a uniform
distribution from 28 to 34 bases.

The cap end state models the signal at the start of transcription. There
has been shown to be information content in at least the first few bases of
this sequence, and it is modeled with an 8-base weight matrix derived from
the training data.

State N2 is modeled with the intergenic null model with length given by
a geometric distribution with mean 735 bases. This state is the main part
of the 5′UTR.

The state labeled TIE contains the translation initiation signal. This
state is modeled by a 18-base weight matrix derived from the training
data.

The states on the next row are the exons and introns. There are two
paths that can be taken through this row. The state on the right corre-
sponds to single exon genes (SEG). It is necessary to give single exon genes
their own state because the distribution of their lengths is quite differ-
ent from the lengths of the exons of multiexon genes. The generation of
codons is not, however, different from the multiexon genes. They both use
a fifth-order Markov model, but in contrast to the intergenic region, this
Markov model is nonhomogeneous. For each position in the codon there is
a separate model. So in effect there are three times as many parameters as
in the homogeneous intergenic model. This is partly why the training set
was supplemented with the coding region of 1619 complete genes (with no
introns), which gave approximately 2.3 million bases of coding sequence.
The SEG generates a sequence starting with the start codon atg and ending
with one of the three stop codons taa, tag, tga, chosen in accordance with
their observed frequencies in the training set. The intervening codons are
produced according to the fifth-order nonhomogeneous Markov model. The
length of the single-exon gene is taken from an empirical distribution from
the training set.

The situation with multiexon genes is more complicated. One compli-
cation arises from the fact that a single codon may be split between two
exons. To handle this, the exon states in the model only produce a sequence
that has length that is a multiple of three. The intron state produces one
codon and then a further random number, either 0, 1, or 2, with proba-
bility 1

3 of each. If this random number is 1, it places the first nucleotide
at the beginning and the last two at the end; if 2, it places the first two
nucleotides at the beginning and the last one at the end; and if it is 0, it
does not include the codon at all.2

2Burge handles this in a different way, by creating three internal exon and three
intron states, each corresponding to a different “phase.” Due to the technical nature of
the algorithms, that method may be more effective than the one described here. This
method does, however, require that the model be complicated substantially in order to
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Empirical distributions from the training set are used for the lengths
of the initial, internal, and terminal exons. Intron length is modeled with
a geometric distribution. The codons in the exons are modeled with the
same fifth-order nonhomogeneous Markov model as the single-exon genes.
The intron sequence is generated by the intergenic null model, except at
the ends. At the beginning of an intron is a signal called the donor splice
signal, and at the end is the acceptor splice signal. Each of these tells the
machinery in the cell where to splice out the intron during the editing
process. It is important to model these signals well in order to predict
intron/exon structure correctly. The donor signal is taken to be the first
six nucleotides of the intron, and the acceptor signal is the last 20. A weight
matrix or first-order Markov approach is generally insufficient to capture
these signals effectively. Ideally, we would like to have a complete joint
probability distribution for these sequences. However, there is insufficient
data to do this. For the donor signal we instead use the maximal dependence
decomposition discussed in Section 5.3.4, and for the acceptor signal we use
a second-order Markov model.3 All of this is incorporated into the single
intron state I.

The 3′UTR is modeled with the intergenic null model, with geometric
length of mean approximately 450. The Poly–A signal has constant length
6 bases and is modeled with a weight matrix.

We now turn to the issue of assigning probabilities to the transitions.
Most of the transitions have probability one. The exception is the transi-
tions from N , from TIE, and from I. Since approximately 70% of genes
have a TATA box, the transition probability from N to TATA is 0.7 and
to N1 is 0.3. The transition probability from the state labeled TIE to the
state labeled SEG is taken from the proportion of single-exon genes. The
transitions from the intron state I are also taken from the appropriate
proportions observed in the training data.

With the model so defined, given an uncharacterized sequence of DNA,
we apply the Viterbi algorithm to obtain an optimal parse. The parse gives
a list of the states visited and the lengths of the sequences generated at
those states. We thus get a decomposition of the original sequence into
gene predictions, as well as predictions of complete gene structure for each
predicted gene.

In practice, there are many more considerations in optimizing the perfor-
mance. Perhaps one of the most important is that many of the probabilities
that have been estimated depend on the cg content of the region of the DNA

avoid technically violating the semiHMM assumption. We made an effort here to give a
model that satisfies the definition of a semiHMM, at the likely cost of some degree of
accuracy.

3Burge models the donor splice signal also as dependent on the last three bases of
the exon. Again, this violates the definition of semiHMM, so we have not included these
dependencies in our model.
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being searched. For example, regions with high cg content tend to contain
a significantly higher density of genes. Burge’s model takes this and sev-
eral other factors into careful consideration, and the model continues to be
refined as more and different types of data become available.

Problems

12.1 Define an HMM λ with the following parameters:

Three states, S1, S2, S3, alphabet A = {1, 2, 3},

P =

⎡⎣0 1/2 1/2
1 0 0
0 1 0

⎤⎦ ,

π =

⎡⎣1
0
0

⎤⎦ ,

b1(1) = 1
2 , b1(2) = 1

2 , b1(3) = 0,
b2(1) = 1

2 , b2(2) = 0, b2(3) = 1
2 ,

b3(1) = 0, b3(2) = 1
2 , b3(3) = 1

2 .

What are all possible state sequences for the following observed sequences
O, and what is p(O | λ)?

(a) O = 1, 2, 3.
(b) O = 1, 3, 1.

12.2 Given an HMM λ, suppose O = O1,O2, . . . ,OT is an observed se-
quence with hidden state sequence q1, q2, . . . , qT . For t = 1, 2, . . . , T , let
σt = Sjm where

j = argmax
i

Prob(Ot | qt = Si).

In other words, σt is the state most likely to produce symbol Ot. Construct
an HMM λ with uniform initial distribution, three states, and an alphabet
of size three, and give an observed sequence of length two, O = O1O2, for
which

Prob(O | λ) > 0, but Prob(q1 = σ1, q2 = σ2 |λ) = 0.
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12.3 Given an observed sequence O, we have given an efficient method for
calculating

argmax
Q

Prob(Q | O).

One might ask why we are interested in this Q and not

argmax
Q

Prob(O | Q) (12.19)

instead. The latter state sequence Q, after all, is the one that if given has
the highest probability of producing O. To illustrate why this is the wrong
Q to find, construct an HMM where the Q given by (12.19) is such that
Prob(Q) = 0, so could not possibly have produced O.

12.4 Prove that the reestimation parameters (12.12)–(12.14) do indeed sat-
isfy
∑

i πi = 1,
∑

k pjk = 1, and
∑

a bi(a) = 1.

12.5 Consider the five amino acid sequences

WRCCTGC, WCCGGCC, WCGCC, WCCCGCC, WCCGC.

Suppose their respective paths through a protein model HMM of length 8
are

m0m1i1m2m3m4m5d6m7m8,
m0m1m2m3m4m5m6m7m8,
m0m1m2d3d4m5m6m7m8,
m0m1m2m3m4m5m6m7m8,
m0m1m2m3d4m5d6m7m8.

Using the theory of Section 12.3.2, give the alignment of the sequences that
these paths determine.



13
Gene Expression, Microarrays, and
Multiple Testing

13.1 Introduction

13.1.1 Introduction to Microarrays
The major part of this book has dealt with sequence data; however, much
of the important information about a gene is not evident directly from its
sequence, for example exactly when, where, and how much it is expressed.
For a typical cell at a given time, many proteins are not required, while
others are required in varying abundances (see Section 3.5.2 and Appendix
A). Consequently, in a given cell the cellular machinery is relatively inactive
for some genes, at any given time, producing none or very few copies of
the protein, while for other genes it is very active, producing many copies.
Though we would like to measure the protein abundances directly, it turns
out to be much easier to measure the relative mRNA levels in cells, and
so in practice that is often what is done. It is important to keep in mind,
however, that this is only an indirect measure of protein levels, since there
are many other factors which determine how much and how fast the mRNA
gets translated into protein.

Microarrays are a tool for measuring, in a given sample, the mRNA levels
for thousands of genes simultaneously. A sample can be either a single cell,
or a population of cells (e.g. a whole pancreas). In most cases samples
consist of many cells because of the technical difficulties of performing
single cell assays. When expression of a gene is evident from a sample
consisting of a population of cells, then at least one cell in the sample must
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be expressing that gene. What can be concluded will then depend on the
purity of the sample.

The analysis of microarray data is a relatively new field, dating back
less than 10 years, and the theory at every level is still in the formative
stages. Nevertheless, it is a rapidly growing field with published papers
appearing almost daily utilizing and developing the theory. For a sense
of the scope and development in the technology and application of this
new research method the reader is referred to the review articles in Nature
Genetics (2002). Our treatment is necessarily introductory, with a focus on
the statistical aspects. For accounts of the broader scope of the field, see
for example Schena (2003), Speed (2003), Knudsen (2002), Parmigiani et
al. (2003), Baldi and Hatfield (2002), Draghici (2003), Grigorenko (2003),
Kohane (2003), and Stekel (2003).

Due to the highly highly parallel and highly variable nature of microarray
data, the statistical methods used to analyze these data are necessarily
complex. To serve as an introduction, our focus is on three of the most basic
questions which microarray data are used to address, and which involve
statistical methods. These are:

(1) What genes are expressed in a given sample?

(2) Which genes are differentially expressed between different samples?

(3) How can one find different classes, or clusters, of genes which are
expressed in a correlated fashion across a set of samples? How can
one find different classes of samples based on their gene expression
behavior?

Microarray data can be used to address many further questions, for example

(4) How can gene-gene interactions in cascades or networks of activity
over time be discovered?

Besides being beyond the scope of this book, much of the theory for ques-
tions such as (4) has not settled down enough to be appropriate for an
introductory textbook. Indeed work continues on all of the above questions,
and the theory, as well as the technology itself, will continue to evolve.

Before addressing the questions listed above, it is important to under-
stand the nature of the raw data obtained from a microarray experiment
and how these raw data are pre-processed into a form suitable for statis-
tical analysis. The data are technically complex, but it is necessary to go
through these aspects in some detail in order to appreciate the fact that
the data eventually analyzed have often been arrived at after several ma-
nipulations of the original data. We summarize various technical details
associated with microarray data in the following sections.
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13.1.2 Microarray Data
Most microarrays fall into one of two main categories. One is the “spotted
array” and the other is the “probe-set” array (primarily produced by the
Affymetrix company). Although spotted arrays and probe-set arrays differ
from each other in various technical details, the two procedures share many
common features and for the most part are designed to answer similar
experimental questions.

Spotted Arrays
Spotted microarrays are either glass slides or nylon filters which are printed
with thousands of “spots,” where each spot contains millions of identical
“probes” for a particular gene. A probe for a gene consists of a piece of
single stranded DNA sequence which either has the same sequence as, or
is complementary to, a segment of that gene’s mature mRNA (of course
the nucleotide “t” in DNA is replaced with “u” in mRNA). The length of
the probes on spotted arrays range from around 70 nucleotides to the full
length of mRNAs which can be thousands of nucleotides long. A typical
array will have thousands of such spots representing thousands of genes.

Many genes share common features, so the probes must be chosen judi-
ciously in order avoid ambiguously representing more than one gene. This
can rarely if ever be accomplished perfectly, so some “cross-hybridization”
is unavoidable.

There are two predominant approaches to selecting probes. The first is
to choose them from libraries of cDNA clones. These are the libraries from
which databases of ESTs are constructed (see Section 2.9.2). ESTs are small
pieces of the sequence of the cDNA clones in the library, and by aligning
them to known genes using BLAST we can obtain functional information
about many of them. Currently we can get functional information in this
way for about half of the cDNA clones in a typical library coming from a
human tissue. A set of cDNA clones from various libraries is chosen, either
based on the tissue source of the library, or of the sequence similarity to
known genes, or any of many other criteria, depending on the intended use
of the array. Usually uncharacterized clones are put on the array as well
as the characterized ones, because the patterns of expression of unchar-
acterized clones can reveal novel genes that are important to the system
being studied and can then be followed up for further investigation and
characterization.

The second method for choosing the probes is to start with the genomic
sequence, which is now becoming available for many species. First, putative
genes are annotated on the sequence either manually, or computationally
using an ab initio gene finding algorithm (see Section 12.3.4). Parts of
each gene’s coding sequence are then chosen to be probe sequences. They
are chosen to be as unique to that gene as possible, to minimize cross-
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hybridization. Oligonucleotide probes are then synthesized representing the
chosen sequences and spotted onto the array.

Once the probes for the spots are chosen, many arrays are printed as
uniformly as possible. However, due to the printing process, there is some
variation in spot size and probe concentration. This adds noise to the data,
which can, to some extent, be corrected for, as will be discussed below.

Each array is then used to assay the gene expression for one sample.
To do this, the mRNA is extracted from the sample and copied into DNA
(so that one of the strands is complementary to the mRNA). One or both
strands are labelled with a radioactive or fluorescent tag. The labelled DNA
is then applied to the array in a denatured state (that is, separated into
single strands). For the mRNAs which are expressed in the sample and
which come from genes that are represented by a spot, a part of each
corresponding labelled DNA will be complementary to the probes in that
spot and so will hybridize to them. Probes in spots for unexpressed genes
will at most pick up stray background signal or cross-hybridization.

A scanner is then used to generate a digital image so that the more
labelled DNA that has hybridized to a spot, the brighter the spot will be
on the image (see Figure 13.1 for an example of such an image from a glass
slide microarray array with 1,936 spots and tagged with a green fluorescent
dye). In order to avoid saturation effects the probe should be laid down far
in excess of the numbers of labelled mRNA that are hybridized.

Statistical analysis requires numerical data, so the image is processed
to “quantify” the spots into numerical intensities, where brighter spots
are given higher intensities. Finding a suitable algorithm to accomplish
this task is a difficult problem which involves some statistical issues, but
is mainly a problem of an algorithmic nature, so we shall not discuss it
here. However, when analyzing microarray data, one should have a good
understanding of the algorithms used to quantify their data and the various
issues involved because the quality of the results is very sensitive to this
step (Schena (2003), Draghici (2003), Geschwind et al. (2002)).

Because of the way in which the arrays are printed, there is inevitable
variation in the number of probe sequences delivered to the various spots,
as well as variation in spot size. This can introduce significant noise into
the data because a larger spot can tend to give a greater signal. To control
for this, a reference sample is often labelled with a different dye (for ex-
ample Cy3 (“green”) can be used for the sample and Cy5 (“red”) for the
reference), and the two labelled extracts co-hybridized to the array simul-
taneously. The array is then scanned at two frequencies giving two digital
images, a red and a green, which are separately quantified to give a red
and a green signal for each spot. In the red/green ratio the variation due to
spot size and concentration is greatly reduced. Suppose, for example, that
a gene is expressed at the same level in both samples, and the two samples
are assessed by a two-channel array, one sample per channel. An array with
larger spots will tend to have a larger intensity in both channels, and there-
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Figure 13.1. A scan of one channel of a two-channel glass slide microarray with
1936 spots

fore the ratio will be (roughly) equal to one regardless of spot size. Figures
13.2 and 13.3 illustrate the importance of this normalization. The graphs
in Figure 13.2 are the individual channel intensities for one spot location
from 34 two-channel microarrays. The species is Plasmodium falciparum
and the green channel of the 34 arrays represent a partial time-course in
the lifecycle of the organism. The red channel was used as a reference and
is the same in all 34 arrays, it is a pool of the mRNA from all of the time
points. The graph on the left is the red channel and the graph on the right
is the green channel. Since the red channel of every array was hybridized
with the same RNA, the graph on the left should be flat if measurements
were perfect. For comparison, Figure 13.3 shows the graph of the ratios of
the two channels shown in Figure 13.2. Even though there is over 4-fold
change in intensity in each of the two channels, there is only a 1.6-fold
change between the maximum and minimum ratios.

These so-called “two-channel” array experiments are among the most
common types of arrays in use today. While introduction of the reference
sample reduces one source of variation, it can force the investigator to de-
sign a more complex experiment. For example, if one is to compare sample
types A to B, then in order to use the two-channel method one can intro-
duce a third sample C and perform several A to C arrays and several B to C
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Figure 13.2. Graphs of the raw red (left) and green (right) channel intensities
of Plasmodium falciparum gene PF11 0244 in 34 two-channel microarrays. The
green channel consists of 28 different time-points in the Plasmodium falciparum
asexual lifecycle (with replicate arrays for several time points), the red channel
consists of a pool of all time points in the asexual lifecycle and is identical for
every array.
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Figure 13.3. Graph of the ratios of the two channels of the same experiments as
in Figure 13.2.

arrays, and compare the A/C and B/C ratios. This is known as a reference
design. Alternatively one might perform several direct A to B comparisons
using the two channels, one for A and the other for B. This is known as
the direct comparison design. In the reference design we have reduced one
type of variation while introducing another by adding a third sample type
into the design. However, in the latter case we have restricted the types of
statistical analyses we can apply, because we do not have reliable measure-
ments from each of the two classes, so that we must find a method that
works directly with ratios. Therefore, in the experimental design stage one
must deal with several tradeoffs to try to perform the most efficient and
effective experiment possible.
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Probe-Set Arrays
The Affymetrix, or probe-set, approach is to use short probes, called
“match” probes, on the order of 20 bases long, and to use a set of 10 to 20
different probes for each gene, each matching a different small segment of
the mRNA. In addition one generally uses the same number of “mismatch”
probes, which consist of the match probes with one base changed in each.
A probe and its mismatch are called a “probe pair” (denoted PM and MM
for “perfect match” and “missmatch”), and generally there are 10 to 20
probe pairs per gene. The mismatch probes allow for some estimation of
the stray signal coming from cross hybridization and any other factors not
due to the true signal. The use of mismatch probes also allows for a test of
whether this probe-set represents an expressed gene (see Section 13.2.2).

The intensities from all of the match and mismatch probes are combined
into one summary value measure for that gene. For each probe pair, the PM
intensity contains the true signal as well as the stray signal. The MM probe
is intended to measure the stray signal, and the difference of the PM and
MM measurements (PM–MM) a measure of the “true” signal. It is, how-
ever, far from ideal, as MM will contain also some true signal, and might
not represent accurately the true stray signal. On the other hand there are
multiple probe pairs, generally 10–20, so one can hope that some of these
effects will tend to average out. Therefore the summary value for an en-
tire probe set should be some kind of average over the individual PM–MM
values. The simple average can be negative, and is also not robust to out-
liers, so other more sophisticated forms of averaging have been suggested,
which we now discuss. Desirable properties that the summary intensities
should have is that of nonnegativity, that they have a linear relationship
with actual mRNA concentration, and that they be robust to corrupted
data. The most recent algorithm Affymetrix has suggested, the MAS 5.0
algorithm (see Affymetrix (2003)) adjusts the PM–MM values before tak-
ing the average. The algorithm retains probes where PM–MM is positive
and substitutes the average of the positive PM–MM values for those PM–
MM values which are negative. If all probe pairs are negative then an even
more ad hoc approach is taken where the contribution of the MM probes is
diminished. All averages are calculated using the Tukey biweight method,
which is robust to outliers (Press (1992)).

Several benchmark data sets were generated to test how well the MAS 5.0
method satisfies the desired properties listed in the previous paragraph. In
each of these data sets, a number of genes are spiked into an mRNA solution
at varying concentrations. In this way the true abundances of the spiked in
genes are known, and it can be checked how well the methods estimate the
true values. From these data the MAS 5.0 method was shown to have rea-
sonable properties. The reader is referred to the Affymetrix documentation
for more information on this procedure (www.affymetrix.com).
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When there are multiple arrays in a study, even if they are not replicates
of the same condition, it is possible to construct a model, for each gene,
with the abundance levels of the gene in the various arrays as parameters
of the model. Estimates of those parameters then give abundance levels for
each array. How well this works depends on how good the model is and
how well we can estimate the parameters of that model.

The first model was proposed by Li and Wong (2001). It is based on the
observation from spike-in benchmarks, such as those described above, that
the intensities for each probe increase linearly with respect to the actual
RNA abundance level in the sample, while the slope of line depends on the
probe. The simplest such model is

PMij − MMij = θiφj + Eij , i = 1, . . . , g, j = 1, . . . , I (13.1)

where i indexes the array and j indexes the probes. (The gene in question is
fixed.) The parameter θi is the abundance of the gene in the ith experiment.
The φj ’s are the coefficients of the linear relationship between PMij−MMij

and θi for probe j. The Eij terms are the random component of the model.
A least-squares procedure is used to estimate the θi’s and the φj ’s, as
described in Section 8.4.3. The procedure assumes the distribution of the
Eij are independent of i and j. This assumption generally does not hold for
microarray data; however, this model provides enough of an approximation
to reality to gives meaningful results. Studies using the spike-in benchmark
data sets show this method provides summary values that are less variable
than the MAS 5.0 method, and which have good signal detection properties
(Irizarry et al. (2003)).

It should be noted that the model (13.1) is overparameterized, and in
order to solve it uniquely the equation

I∑
j=1

φj = I (13.2)

is added to the system. Recall that a similar step was taken in Section
9.5. However, in that case we were testing a hypothesis, and adding this
extra equation did not effect the validity of the procedure. We did not then
attempt to estimate the actual values of the parameters. In the present case
we are not testing a hypothesis; instead, we are interested in estimating
the actual values of the θi’s in the model. In this case the effect of adding
equation (13.2) to the model is to put the estimated value of the probe set
for one gene on a (possibly) different scale from the estimated value of the
probe set for another. This does not cause problems for comparison of the
estimated values for the same gene across arrays; however, it does cause
a problem for the comparison of the estimated values between different
genes on the same array. Therefore one must be careful when making such
comparisons.
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Many refinements to this procedure are available and the description
above outlines the simplest of them. A description of more recent methods
is provided by Irizarry et al. (2003).

In most of what follows we shall assume each gene is associated with a
single intensity, as in the spotted array case, and will ignore the individual
PM and MM intensities. In this way we shall take a perspective that does
not treat Affymetrix data much differently from spotted array data.

13.1.3 Sources of Bias and Variation

Variation, Experimental versus Biological
There are very many sources of variation in microarray data. The first
distinction to be made is between biological and experimental variation.
Biological variation is the natural variation between different cells or differ-
ent populations of cells. Experimental or technical variation is the variation
deriving from the technical aspects of the procedure. There are many steps
involved which are not reproducible exactly, even with the exact same
mRNA, which lead to such technical error. These are due to errors such as:

(1) Array-specific effects: No two arrays are identical, so that there is a
random array-to-array variation. Furthermore multiple printing pins
are used to print each array, in order to speed up the printing process,
often leading to pin specific variation in final observed intensities.

(2) Gene-specific effects: Hybridization conditions cannot be optimized
simultaneously for many elements (genes/transcripts) at once.

(3) Dye-specific effects: Incorporation of fluorescent dye (used to detect
hybridized material) varies. With two dyes, there might be differences
in incorporation for the same transcript.

(4) Background noise and artifacts: There is always a low level back-
ground glow on any array, as well as dust, scratches, smears,
etc.

(5) Preparation effects: operator, time/day of assay, weather, etc.

We want to capture the biological variation and minimize the experi-
mental variation. For example, sometimes there is a significant day-to-day
effect on the observed intensity levels for some genes, therefore, if possible,
all hybridizations will be done on the same day. If this is not possible, then
the statistical methods may have to account for this effect so that the extra
data adds power to the methods in spite of the increased variation.

We also have to consider the nature of the inference we can draw from the
data at hand. For example, if we were looking for a gene which is expressed
differently between human cancer cells and normal cells, we would have to
perform many experiments with a random sample of many different types
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of cancerous and normal cells, across many randomly chosen individuals,
in order to draw general conclusions. Our inference relates only to that
comparison for which we have an adequate random sample. If all of the
cells come from one individual, then we can only draw conclusions about
that individual.

Unfortunately, the form of replication necessary to draw general infer-
ences is both expensive and very time consuming. This implies that often
only as few as two or three replicates are available, with as many as ten or
twenty being the exception rather than the rule.

There are also many non-systematic sources of variation that cannot be
eliminated. Perhaps the most troublesome of these arises from the level of
background noise which precludes the possibility of using microarrays to
detect low levels of expression. Many important genes such as transcription
factors, which induce the transcription of other genes, are expressed at low
levels, and will generally be missed by microarrays. Furthermore, since
two-channel data deals with ratios, the spots whose intensity levels are in
the background level in both channels can introduce a large amount of
variability into the distribution of these ratios.

Systematic Experimental Bias, and Calibration
Other types of variation cause systematic biases, and these can sometimes
be corrected. For example with spotted two-channel Cy3/Cy5 microarrays,
the green dye often has a tendency to be stronger than the red dye. Fur-
thermore the magnitude of this effect varies from array to array. If we can
measure this bias we can correct for it. A simple approach is to divide all
ratios for each array by the mean or median of all ratios over the array.
After this operation, the mean (or median) intensity over all arrays is one,
thus putting all arrays on the same footing. This is an example of a global
normalization where the same adjustment is performed for each spot. We
now look at a method of local normalization.

There is a convenient method of displaying microarray data which has
become fairly standard, and helps to visualize the spread between the two
channels of a two-channel microarray, possibly revealing intensity depen-
dent dye biases. If G(g) is the Cy3 intensity for a gene g, and R(g) is the
Cy5 intensity for g, then we plot M = log2(G(g)/R(g)) on the vertical axis,
against A = (log2(G(g) + log2(R(g)))/2 on the horizontal axis (see Figure
13.4). This is called an MvA plot in the literature. In this way the horizon-
tal axis represents the intensity of the spot, as measured by the average of
the logged values of the two channels, and the vertical axis represents the
difference between the two logged expression values in the two channels.
Having the logarithm on the vertical scale allows for symmetry in the graph
about the M = 0 line.

If M = 3, for example, there is an eight-fold greater intensity in the
green channel than in the red channel. If an experiment compares two
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Figure 13.4. MvA plot

samples where most of the genes are expected to be expressed at roughly
the same levels, then the MvA plot should be roughly symmetric about the
horizontal line M = 0. If it is not, a loess curve (see Section 8.4.3) can be
fit to the plot and the intensities adjusted by subtracting the values on the
curve. This normalization, known as loess normalization, normalizes for the
intensity dependent dye bias present in the ratios of a two-channel array.
The procedure produces normalized ratios and does not provide normalized
values for the individual channels.

Typically a loess curve is fit to the graph, as described on page 288. This
can also be done print tip by print tip if one notices print tip dependent
biases, which often occur. Figure 13.5 shows an MvA graph, with a loess
curve fitted to it. Figure 13.6 shows the MvA plot after correcting. It is
important to note that what is changed in this correction are the M values.
It makes no sense to talk about the corrected A values, so the original A
values are used for the horizontal axis in Figure 13.6. Because of this it also
makes no sense to use the A and the normalized M values to solve back for
the two channels in the hope of obtaining a normalization for the individual
channels. If one must use individual channel data for some reason, for
example for trying to determine whether or not a gene is expressed in a
particular condition, then a further normalization would be required.

Another issue of normalization involves the spread of the M values across
the array, which may depend on the array itself and not on the biology.
The loess procedure described above does not normalize the spread of the
M values. Some packages are available to perform spread normalization
(e.g. Yang et al. (2001)) in the expectation that this will give better results
in the subsequent analysis. However, there is currently little theory, if any,
which justifies these normalizations or which investigates their effect on
subsequent analyses.
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Figure 13.5. MvA plot with loess curve
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Figure 13.6. Normalized MvA plot of loess corrected data.

When one may not assume that most of the genes are unchanged between
the two conditions, applying this method may normalize out true biological
differences. For example, it is common to build arrays containing only genes
known to be expressed in a particular tissue, for example a pancreas or a
liver specific array. In such a case it is quite possible that a majority of the
genes are differentially expressed and that there is not a balance between
up and down regulation.

Unfortunately, when experiments are performed using such arrays, there
are no good normalization methods which can correct for it, since there
would be no way to tell the difference between a dye-effect and a biological
effect. For example, if every gene on the array is x-fold more abundant
in one condition and the dye effect causes another y-fold increase in the
observed expression in that condition, then the MvA plot will be symmetric
around the line M = x + y and the loess correction will eliminate both the
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dye bias (y) and the biological effect (x). Arrays and experiments should be
designed with this issue in mind, so that for example a number of control
genes might be put on the array across a spectrum of intensities. Control
genes are those that are expected not to change in the conditions being
investigated. The loess curves can then be fit to just the control genes to
perform the correction.

Another popular approach is to perform quantile normalization. In these
methods the data are adjusted so that all arrays have the same quantiles.
Again, data may not satisfy the assumption that the quantiles should be
equal, as would occur for example if all genes on the array are upregulated.

Another popular normalization is to perform “dye-swap” experiments. In
this case the solutions to be hybridized to the two channels are each divided
into equal parts and two arrays are hybridized, with the dye assignments
switched between the two arrays. The intensities from the two arrays are
averaged, in the hope that the dye bias will be averaged out. This only
works if the bias is not array specific. This method is not subject to the
same assumptions as the previous ones, where differential expression should
be symmetric or quantiles should be equal. However, the independence of
the dye bias from the arrays is another strong assumption that generally
does not hold, and in fact when it fails to hold, averaging dye-swaps can
actually compound bias instead of reducing it.

Other Effects
In any microarray study there are certain factors of interest, such as the
difference between normal and diseased tissue, or between various devel-
opmental stages. There can also be other effects that are undesirable, but
unavoidable. For example, in the previous section we have discussed a dye
bias and methods to normalize the data to remove it. There can be other
effects such as a “day” effect where the observed intensities depend not
only on the condition but on the day the experiment was performed. It is
common for the experiments to be performed a few a day over a period of
several days, or even much longer. ANOVA methods can be used to try to
determine if there is a systematic effect on the intensities depending on the
day, or on any other factor which might possibly have a systematic effect,
as long the experiment is designed correctly. If two conditions are compared
and all of the first condition experiments were performed on one day and
all of the second condition on a second day, then the two effects (condition
and day) are totally confounded and there can be no way to tease them
apart. If however the conditions are randomly assigned to the two days,
then an ANOVA analysis might reveal significant day effects. This would
be done by the model (9.46), where “days” is taken as a random effect.

We have discussed in detail above the practical problems involved in
microarray data generation, and some of the many assumptions and ap-
proximations that are used. We have done this in detail because the
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interpretation of microarray data via statistical methods, to which we now
turn, must always be made with these assumptions and approximations in
mind. For further comments of this type, see Miklos and Maleszka (2004).

13.2 The Statistical Analysis of Microarray Data:
One Gene

13.2.1 Introduction
A microarray experiment in effect consists of thousands of single gene ex-
periments run in parallel, so that in assessing which genes are differentially
expressed between two samples one is conducting thousands of statistical
tests in parallel. Because the analysis of the many gene case relies on an un-
derstanding of the single gene case, we defer consideration of the many-gene
case to Section 13.3, and consider first the single gene case.

13.2.2 Determining Whether a Gene is Expressed
We start with the most basic question of whether a given gene is expressed
in a given sample. We set the null hypothesis H0 to be that the gene is
not expressed, then with appropriate negative controls we can construct a
method which accepts or rejects H0 with appropriate error rate control. As
discussed in Section 3.4.1, failure to reject H0 does not allow any conclu-
sions about the statement that the gene is not expressed; it simply means
there was not enough evidence to conclude the gene is expressed. Negative
controls can be gene specific, such as scrambling some proportion of the
bases in the probe(s) for each gene, or they can be probes from a completely
different species, not similar to any gene in the species being investigated.
If the gene in question is actually expressed we should see a greater amount
of hybridization to the perfectly matching probe than to the negative con-
trols. With replicate measurements, a difference of the means of the two
groups can be tested, as discussed below.

For Affymetrix arrays there are gene-specific negative controls provided
by the mismatch probes. Since there are multiple match and mismatch
probes for each gene, we can apply a statistical test to determine whether
there is a higher overall expression level from the match as opposed to
the mismatch probes. The Wilcoxon signed-rank test, described in Section
3.8.3, is used in the Affymetrix MAS 5.0 suite to test for a significant
difference between the PM and MM intensities.

Furthermore, as discussed above, the failure to reject the null hypothesis
does not imply that the null hypothesis is true. Nevertheless this method is
used by Affymetrix to assign “Present” (P) and “Absent” (A) calls (as well
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as “Marginal” (M) calls when the P -value is between .04 and .06). Several
caveats are in order when applying this method.

The first is that an A means something much less precise than a P. The
method controls the Type I error rate only, so there is no control over the
possibility of making a false A call. An A call should therefore be taken
only as there being insufficient evidence that the gene is present.

The second caveat regards the way in which the null hypothesis must be
formulated in order to apply the MAS 5.0 Wilcoxon test, as described in
Section 3.8.4. The null hypothesis assumes complete equality of the distri-
butions of the match and mismatch probe intensities. Because of this we
might also, for example, call a gene present due to the fact that its PM
and MM intensities have very different variances but do not have different
means.

The third caveat is that since this method is applied to a single array,
it does not take into account biological variability. Therefore care must
be taken in the conclusions that are drawn. Several replicate arrays from
the same condition can however be combined to give one P -value for the
hypothesis that the gene is not expressed, as discussed in Section 3.12.

The fourth caveat is that there is no multiple testing correction done
to the Wilcoxon P -values. Therefore, even if no genes are expressed,
approximately 5% of them will be given P calls anyway.

13.2.3 Testing for Differential Expression
Possibly the most common aim of an investigator using microarrays is to
find genes that are differentially expressed between two different samples,
for example in normal versus disease cells. Consequently, the statistical
theory for this problem has undergone considerable development, and
accordingly we shall devote considerable attention to it.

Affymetrix provides a differential expression algorithm in the MAS 5.0
suite which is based on the Wilcoxon test and is similar in spirit to the
method described in the previous section for making the “P” and “A”
calls. As in the method in the previous section, this method utilizes only
one array per condition. As such, the differential expression method suf-
fers from the same caveats as the “is expressed” method. Another problem
is that it might be difficult to determine how to normalize the two ar-
rays to each other if one array is brighter overall than the other. In such
cases, unless some normalization is made, there will be a tendency for
all genes to be found to be differentially expressed. Another issue is how
to handle one- versus two-sided tests. The Affymetrix solution to these
problems is ad hoc and non-standard (see the Affymetrix technical guide
Affymetrix (2003)), and as a result the significance measure returned is not
a well-defined P -value. It is therefore not clear how to combine them to in-
corporate biological replication, making the conclusions that can be drawn
quite narrow. Alternatively there are more standard approaches which use
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the summary values (see Section 13.1.2) and not the individual probe val-
ues themselves, and these approaches utilize replicate arrays per condition.
This will be our approach to this problem from now on with regards to
Affymetrix data.

Designing Experiments
Before considering the question of differential expression further, we must
address experiment design issues. When comparing between two conditions,
which we denote by condition A and condition B (e.g. cancerous versus
normal cells), most of the statistical methods at our disposal assume a
number of independent measurements from each condition. In other words,
the data can be put into a matrix

A1 A2 · · · Am B1 B2 · · · Bn

G1 a11 a12 · · · a1m b11 b12 · · · b1n

G2 a21 a22 · · · a2m b21 b22 · · · b2n

G3 a31 a32 · · · a3m b31 b32 · · · b3n

...
...

...
...

...
...

...
Gg ag1 acg2 · · · agm bg1 bg2 · · · bgn

(13.3)

where columns correspond to microarrays and rows correspond to genes.
The columns labelled with the Ai’s correspond to arrays from the first
condition, and the columns labelled with the Bi’s correspond to the arrays
from the second condition. Designing an experiment to give data in such a
form is natural when using one-channel arrays. With Affymetrix probe-sets
arrays, data come in this format when the probe sets are converted into
summary values, as described in Section 13.1.2. When two-channel arrays
are used, some decisions must be made in order to put the data into this
format. The individual channel data could be used, but the loss of the
normalizing effect is generally too great. Alternatively, the reference design
can be used: a third sample C is introduced as a common reference for one
of the channels of every array. Several A versus C arrays and several B
versus C arrays are generated, and the ratios A/C and B/C comprise the
entries in the data matrix.

In the data matrix for a reference design, the information as to whether
the ratio was formed by two high intensities, or from two low intensities,
has been lost. Because of this, the low intensity background spots tend to
introduce a lot of noise into the data matrix. Therefore it is not uncom-
mon to perform a pre-processing of the data before analysis, for example
by eliminating all spots with intensities in the background range for all
arrays. Furthermore, because the distribution of the ratios of positive ran-
dom quantities is often skewed to the right, it is common to perform a log
transform of the ratios to remove the skewness of the distribution of the
data before continuing analysis.
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As an alternative to using a reference design, one could hybridize a col-
lection of arrays with condition A in one channel and condition B in the
other, yielding a set of ratios values directly comparing the two conditions,
the direct comparison design. Because the channels should not be sepa-
rated, data generated via the direct comparison design cannot generally be
analyzed with the same kinds of statistical methods as with the reference
design. However this design has the advantage of not introducing a third
sample and therefore should lead to less variability in the data.

We start with the case where the data are in the form of (13.3).

Two-Class Data
The Choice of Test Statistic: One Gene

In this section we discuss aspects of the use permutation methods to test
whether the expression levels in two conditions differ for any specific gene.
Some permutation procedures appropriate for this were discussed in Section
3.8.1, and we first review some of the points made in that section.

The first point to recall is that, in contrast to the situation arising in
parametric hypothesis testing procedures, there is no theoretical “best”
test statistic to use in a permutation procedure. In practice, the t statistic
(3.33), the t′ statistic (3.37), the Mann–Whitney statistic of Section 3.8.2,
or the ratio r of the average expression levels in the two groups are often
used.

This observation leads to a second point discussed in Section 3.8.1,
namely that the null hypothesis tested by a permutation procedure is that
the complete probability distribution of any observation in the first condi-
tion is the same as that as the complete distribution for any observation in
the second condition. Use of t, t′, or r as the permutation statistic implies
that a difference in the means of the observations in the two groups is of
primary interest. However, since equality of these two means is not the ex-
act hypothesis being tested in a permutation procedure, a significant result
arising when one of these statistics is used does not necessarily imply that
a significant difference in the means has been found.

Third, when the number of observations m in the first condition is equal
to the number n in the second, the permutation distributions of t and t′

are identical, so there is no benefit gained in using t′ as the permutation
test statistic. Indeed it can be argued that, since the null hypothesis tested
in the permutation procedure is identity of distributions of the two groups
of observations, use of the statistic t′, which is designed to handle cases
where the variances of observations in the two groups differ, is illogical.

Fourth, as shown in Section 3.8.1, for the case of a single gene the use
of t as the permutation test statistic is equivalent to the use of the average
of the observations in either condition. Use of this average rather than t
involves significant savings in computation. When carrying out permutation
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procedures for many genes, however, use of t rather than an average can
be preferred, as discussed below in Section 13.3.3.

Parametric and Non-Parametric Tests

Since for the moment we are focusing on differential expression tests for
one gene, we consider the data in one row only of the data matrix (13.3).
Following this we shall consider the single gene case of a direct comparison
design where the data come as a set of ratios.

The first issue is how to formulate a null hypothesis about the gene’s
expression level in the two experimental conditions. Two possible null
hypotheses are: “The means are the same in both groups” and “The distri-
butions are the same in both groups.” How we formulate the null hypothesis
determines which methods we may apply to control the Type I error rate.
There is a gain in using the latter formulation in that it will allow permu-
tation methods to be applied, and there are often no apparent alternatives
to permutation methods which do not make troublesome assumptions. For
example, if we are willing to believe that the distribution of the gene’s in-
tensity in each of the two conditions is normal, with equal variance, then
we can apply a standard t-test such as in Section 3.5.2 to test for equality
of means. If the respective variances in test and control groups are possibly
not equal, the test statistic t′ defined in (3.37) could be used. However nor-
mality may rarely be assumed. Whether the assumption holds will depend
on the particular gene and sample being studied. Since a population from
which the samples are drawn (e.g. breast cancer cells) can be a mixture of
more basic types of samples (e.g. different types of breast cancer), mixtures
of distributions are possible.

Because the normality assumption might not be justified, the observed
value of the t (or t′) statistic should not be referred to t tables for signifi-
cance. Instead, the statistic t is often used as the basis for a permutation
test, as described in Section 3.8.1. That is, the value of this statistic is
calculated for all

(
m+n

m

)
permutations of the data, and the null hypothesis

is rejected if the observed value of this statistic is a sufficiently extreme
member of the various permutation values.

If it becomes necessary to test for the equality of means and not just
complete equality of distributions, then one can use the bootstrap method,
as described in Section 8.6. Applying this method requires more replicates
per condition to achieve similar power.

The ANOVA Approach
In Section 9.5 the central ANOVA concept was discussed, that is the par-
tition of a total amount of variation in a body of data into meaningful
components, with an eventual assessment of the significance of the amount
of variation in these various components. This concept has been used fre-
quently in the analysis of microarray data. Normally ANOVA is used for



448 13. Gene Expression, Microarrays, and Multiple Testing

the analysis of microarray data in the multi-gene context. However, it is
convenient to introduce ANOVA briefly in the simpler one-gene context.
Multi-gene analyses are discussed, in Section 13.3.7.

We here consider the one-gene analysis of Wolfinger et al. (2001), in-
tended largely as a preliminary to a multi-gene analysis. For any gene g,
Wolfinger et al. set up the model (in our notation)

Xgik = µ + τk + Ai + Dik + Egik. (13.4)

This model is in the form of the mixed model (9.46). Here Xgik is the
intensity for the gth gene, in the ith array, and in the kth condition. The
random variable Ai refers to array i, the parameter τk to condition k (k =
1, 2), and the random variable Dik to the interaction between array i and
condition k. The notation reflects the fact that conditions are regarded as
fixed effects and arrays as random effects. We are interested in testing the
hypothesis τk = 0, k = 1, 2, which can be accomplished via the methods of
Section 9.5.

Direct Comparisons
We cannot apply the methods of the previous sections to compare two
conditions with a set of two-channel arrays where one condition is in one
channel and the other condition is in the other channel, unless we separate
the channels. However, there is generally great variation introduced by spot
size and other factors that are corrected for by taking ratios. Not using the
correction afforded by taking ratios can dramatically affect the results and
it is therefore recommended never to separate channels for a comparative
analysis (see for example Yang and Thorne (2003)). It is better in this case
to use instead a one-sample test, such as the one-sample t-test described
in Section 3.5.1.

A permutation procedure can also be used in the one-sample case in
the following way. Given a set of n ratios ai/bi, i = 1, 2, . . . , n, it is possi-
ble to form 2n − 1 new sets of ratios by systematically replacing various
ratios by their reciprocals. For example, if n = 4, two of the 15 new
sets that can be formed in this way are {b1/a1, a2/b2, a3/b3, b4/a4} and
{a1/b1, a2/b2, b3/a3, b4/a4}. The test statistic of interest is then calculated
for all 2n possible sets, giving a permutation distribution of this statis-
tic. From this the permutation P -value of the actual set of ratios can be
obtained.
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13.3 Differential Expression – Multiple Genes

13.3.1 Introduction
Microarrays are not used to determine whether a single gene is differentially
expressed between two conditions, because they generate much noisier and
less reliable data than other single gene methods. For example, “real time
PCR” (RT PCR) will determine whether a particular gene is differentially
expressed with a higher degree of accuracy. However RT PCR is usually too
time consuming and expensive to perform on more than a small fraction
of the genes that can be put on a microarray. RT PCR is suitable for
answering the question: “Is this gene differentially expressed between the
two conditions?” but is not suitable for answering the question: “Which
genes are differentially expressed between the two conditions?”

Microarrays are more appropriate for the latter question, at least for
those genes which are moderate or highly expressed. Microarrays are often
combined with RT PCR, with microarrays being used as a first filter of
the genes for a small set of putatively differentially expressed genes, which
should contain a reasonably high proportion of truly differentially expressed
genes, which can then be followed up with RT PCR for stronger verifica-
tion. The statistical challenge is in defining a procedure for the microarray
filtering phase which achieves acceptable control of false positive and false
negative rates.

13.3.2 Ranked lists
A simple approach to help find the differentially expressed genes is just
to produce a ranking of genes. For example, genes could be ranked in de-
creasing order of the absolute value of their corresponding t-statistics. This
should tend to group the genes most likely to be differentially expressed
at or near the top of the list. In this way investigators can work their way
down the list from the top.

To the extent that the statistics corresponding to different genes have
different null hypothesis distributions, a smaller value of the statistics for
one gene may actually be more significant than a larger one for another,
and therefore the ranking procedure might not produce a ranking by actual
significance of the statistic. To overcome this one can rank the genes by the
P -values of the statistics instead of the values of the statistics themselves.
The P -values assigned by any single gene method do not have the same
meaning in a multiple gene context; however, the P -values can still give a
meaningful ranking.

In order to estimate P -values one can apply the permutation test de-
scribed in Section 3.8.1 and then rank genes by their P -values as given
by this test. If there are not sufficiently many replicates, the ranking by
permutation P -values could give a less meaningful ranking than by the
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statistics themselves. For example, if there are only four replicates for each
condition, there are only

(8
4

)
= 70 different permutation P -values possible,

as opposed to a continuum of possible P -values of the statistic. Therefore
replacing the statistic by its permutation P -value increases granularity.

We illustrate this with an example. Suppose that there are 7,000 genes
on the array of which ten are differentially expressed, and suppose that
they are the top ten members of the ranked list of genes, as ranked by the
absolute value of the statistic. If there are four replicates per condition,
so that there are 70 permutations, then the smallest possible permutation
P -value is 1/70 ∼= .01428, and roughly 7000/70 = 100 genes will have this
P -value just by chance. The ten truly differentially expressed genes will
be lost in the noise in such a P -value ranking. Therefore, one would like
to have at least as many permutations as there are genes. For an array
of 7,000 genes this would require at least eight replicates per condition.
Fortunately the number of permutations increases rapidly with the number
of replicates; for example ten replicates per condition already gives 184,756
permutations.

If we are willing to make parametric assumptions about the data, then we
can obtain parametric P -values, as in Section 3.5.2. Parametric assump-
tions are rarely valid for gene expression data; however for those genes
whose differential expression is extreme, any reasonable method should
find them.

13.3.3 The Choice of Statistic
In the multiple-testing case, the test statistic is replaced by a vector of
statistics, one for each row of the data matrix (13.3). Examples are the t-
statistic, or the ratio of the respective averages of the two groups. The issue
of finding an optimal statistic is more difficult in the multiple gene case,
because what might be optimal for one row (gene) may not be optimal for
another.

If for each gene the expression level intensities are normally distributed
and have equal variances in the two conditions, then the t-statistic puts all
tests on an equal footing. The gene with the higher t-statistic, in absolute
value, is the gene with the more significant data. If the normality and equal
variance assumptions do not hold, this might not be the case, and indeed
these assumptions cannot reasonably be assumed in gene expression data
(Grant et al. (2002)). However, the t-statistic is still widely used, based on
the belief that it is robust to the assumptions.

Attempts have been made to adjust the t-statistic in order to make its
distribution less dependent on the gene. Storey and Tibshirani (2003) in-
troduce a correction factor into the denominator of the t-statistic. The data
are put into 100 bins based on the value of the usual t-statistic denominator.
The correction factor is then chosen to minimize how much the dispersion
of the adjusted t-statistic varies from bin to bin. This is a heuristic step for
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which there is no supporting theory. Empirical studies show, however, that
multiple testing results can be dramatically effected by this parameter.

Another issue which arises in using the t-statistic is that the denominator,
which is essentially the pooled sample variance of the data, itself has very
large variance. This is particularly true when there are few replicates, as is
usually the case with microarray data. In order to have better estimates,
it has become popular to pool together genes with intensities at similar
levels, and use the data from all such genes to derive one variance estimate
to be used as the denominator of the t-statistic for all of them. This has
become known as “borrowing strength across genes.” As above however,
there is little theory to support this.

13.3.4 Confidence Measures
The ranking procedures described above are sufficient for some studies,
however, it is generally preferred, particularly when there is no a priori
knowledge about how many genes are differentially expressed, to produce
sets of genes, where there is some kind of confidence measure imposed on
the sets to control the number of non-differentially expressed genes they
contain.

A simple example illustrates the difficulty in interpreting the gene-by-
gene P -values in parallel. Suppose that we have an array with 10,000 genes,
100 of which are differentially expressed, and we predict that all genes whose
P -value is less than .05 are differentially expressed. In this case, approxi-
mately (.05)× 9,900 = 495 false predictions will be made. Therefore, even
if the procedure successfully predicts all 100 truly differentially expressed
genes, they will be lost among a set of approximately 500 false predictions.
Even though we started with a gene-by-gene P -value of .05, we end up
with a set of predictions with about 83% false positives. If we lower the
P -value cut-off to the more stringent value .01, then there will still be ap-
proximately 50% false positives in the set of predictions. If there are only a
few genes which are differentially expressed, then even a P -value cut-off of
.001 can give poor results. Since it is unknown in advance how many genes
are truly differentially expressed, one does not know how low to set the
cutoff to a achieve a desired confidence. This is one form of the multiple
testing problem.

Since there is a large number of genes on the arrays and generally few
replicates available, this problem must be considered in some depth. Several
books and review articles are devoted to the general statistical problem of
multiple testing, for example Westfall and Young (1993) and Hochberg and
Tamhane (1987). Much of the theory in these publications is not relevant
for microarray analysis, and some of the theory that is relevant is very
recent, or is not included in traditional treatments. Therefore we tailor our
treatment of multiple testing theory to the microarray context, although
many of the principles discussed are more widely applicable.
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Null Hypotheses in the Multiple Gene Context: Strong versus
Weak Control
In the single gene case the null hypothesis specifies equal distributions (or
perhaps means) of the expression levels in the two experimental conditions,
as described in Section 3.5.2. We will refer to the null hypotheses for the
individual genes as the gene-wise null hypotheses. One natural extension to
multiple genes is to declare equality in both conditions for every gene. This
is called the complete null hypothesis, denoted H0. But generally it is not
this hypothesis which we are interested in accepting or rejecting, because
it does not in itself indicate which genes are differentially expressed, and
can only show that some gene is differentially expressed.

In the multiple gene case we are interested in procedures that predict
which genes are differentially expressed, and in proving that the procedure
controls the number of false-positives in some way. There are two prevail-
ing approaches to defining false positive rates in a differential expression
prediction procedure, depending on whether or not we are willing to accept
any false positives at all. The first is the Family-Wise Error Rate (FWER),
and the second is the False Discovery Rate (FDR). Essentially the FWER
is the probability of having even one (or more) false positives in the pre-
dicted set, while the FDR is the expected proportion of the predicted set
which consists of false predictions. Both will be discussed below, but these
are the kinds of false positive rates that should be kept in mind in the
following discussion. For any procedure, if the FDR or FWER is known to
be less than α, then the procedure is said to control the FDR or FWER
error rate to level α.

The data matrix (13.3) gives rise to a g-dimensional vector V of test
statistics, the elements of which have some unknown joint probability dis-
tribution F . Suppose V 0 is the subvector of V consisting of the components
of V for which the null hypotheses are true, and suppose F ′ is a probabil-
ity distribution of V which agrees with F on V 0. Because the distributions
F and F ′ agree on the true null hypotheses, if the FWER or FDR of a
procedure is controlled to level α assuming the distribution F ′, then the
procedure also controls the error rate to level α assuming the distribution
F , the true distribution. We will refer to any F ′ which agrees with F on
V 0 as a pivotal distribution for V with respect to V 0.

Most procedures that control the FWER and FDR start with gene-
by-gene P -values and then adjust them in some way, and reject those
hypotheses for which the adjusted P -values are less than some cutoff. The
cutoff is chosen so as to guarantee a desired bound on the error rate. The
gene-by-gene P -values are calculated under some pivotal distribution F ′. If
a procedure can only be proven to control the error rate when all hypothe-
ses are null, i.e. when V = V 0 (so that F ′ = F ), then the procedure is said
to give weak control of the error rate. If it is not necessary that V = V 0 for
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the procedure to control the error rate, then the procedure is said to give
strong control .

The above discussion only concerns the false-positive aspect of the pro-
cedure. In order to be able to find the true-positives, the distribution F ′

must be chosen judiciously so that the observed values of the test statistic
for the false hypotheses will tend to be extreme. We will refer to any F ′

which agrees with F on V ′, and for which the test statistic for the false
hypotheses will tend to be extreme, as a pivotal null distribution for V . We
use the notation F 0 for a pivotal null distribution, however, it should be
kept in mind that F 0 is a distribution of the whole vector V , and not just
the sub-vector V0.

The permutation distribution of V obtained by permuting the columns
of the data matrix in all possible ways approximately equals F on V 0, and
will tend to produce extreme P -values for the truly differentially expressed
genes. Therefore the permutation distribution provides a distribution in
which to do the P -value calculations. A bootstrap procedure will also give
a distribution with these properties. In the permutation and bootstrap
procedures we use the data itself to obtain an approximate F 0, and in
practice such an approximation is what is usually used in place of a pivotal
null distribution. Therefore it is important to keep in mind, when using a
bootstrap or permutation distribution in place of a true pivotal distribution,
that the procedure only approximately controls the error rate to the desired
level.

It is conceivable that one might also obtain a pivotal null distribution
in a parametric manner. We now consider a very simplified and artificial
example designed to illustrate this concept. Consider two genes, g1 and g2
in a cell, and suppose that the means µ1 and µ2 determine the distribution
of the vector of intensities (X1, X2) as multivariate normal distribution
(2.33)

fX(x) =
1

(2π)n/2|Σ|1/2 e− 1
2 (x−µ)′Σ−1(x−µ), −∞ < xi < +∞, (13.5)

with variance–covariance matrix

Σ =
[
1 0
0 1

]
.

Suppose that we have two populations of cells P1 and P2, with genes g1 and
g2 having intensities (X1, X2) in P1 and (X ′

1, X
′
2) in P2. Suppose (X1, X2)

has mean (µ1, µ2), and (X ′
1, X

′
2) has mean (µ′

1, µ
′
2). The means µ1, µ2, µ′

1,
µ′

2 are unknown to us. The variance of X1, X2, X ′
1, and X ′

2 is 1, regardless
of the values of µ1, µ2, µ′

1, µ′
2. Therefore the t statistic of either component,

under the hypothesis that µ1 = µ′
1 and µ2 = µ′

2, follows the t distribution.
In this case F 0 can be taken to be a product of two independent t distribu-
tions (T1, T2). If µ1 = µ′

1, but µ2 �= µ′
2, the t statistic of the first component

still follows the t distribution.
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Suppose, however, that the variance–covariance matrix is

Σ =
[
µ2 0
0 µ1

]
.

Now the form of the distribution of the statistic at either gene depends on
the hypothesis at the other gene. In this case, if µ1 = µ′

1 and µ2 �= µ′
2, then

the t statistic at the first component no longer follows the t distribution as
the variainces are not equal in the two groups, while if µ2 = µ′

2 then the
variances are equal and it does follow the t distribution. Therefore if g1 is
not differentially expressed and g2 is differentially expressed, then F 0 is not
pivotal, in that the F 0 obtained by setting µ1 = µ′

1 and µ2 = µ′
2 does not

agree with the true distribution F on V 0. This problem exists even though
the statistics are independent.

In the multiple testing literature such as Westfall and Young (1993) there
is a general condition imposed upon the parametric complete null hypoth-
esis known as “subset pivotality,” which guarantees F 0 agrees with the
true distribution F on V 0. This hypothesis is needed to apply most of the
multiple testing methods in Westfall and Young, including the Bonferroni
correction. In the literature these methods are often applied to microar-
ray data with the subset pivotality issue glossed over. However, since most
methods implicity or explicitly use permutation distributions, this generally
has not effected the conclucions.

13.3.5 The Family-Wise Error Rate (FWER)

Suppose that we plan to carry out g statistical tests of g null hypotheses Hj
0 ,

j = 1, . . . , g, and that g0 of the null hypotheses are true. The family-wise
error rate (FWER) is the probability that at least one of the g0 true null
hypotheses will be rejected. The multiple testing problem was introduced
in Section 3.11; however, the methods discussed were not shown to give
strong control of the FWER.

Single-Step Methods
The simplest single-step method, known as the Bonferroni correction, is
as follows. Gene-by-gene P -values are generated using some single-gene
method, as described above, and we denote the P -value for gene i by pi.
The pi are then “corrected” by dividing by g, and the corrected P -value
pig is denoted by p̃i. The procedure rejects all hypotheses where p̃i < α.
This method guarantees weak control of the FWER at level α as shown in
Section 3.11.

If the gene-by-gene P -values are obtained assuming a pivotal null distri-
bution (for example, the permutation distribution as in described in Section
3.8.1), then the method does give strong control. A proof is as follows:
Suppose for notational convenience that the true null hypotheses (the non-
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differentially expressed genes) are hypotheses i = 1, . . . , g0, and that the
false null hypotheses (the differentially expressed genes) are hypotheses
i = g0 + 1, . . . , g. Of course the value of g0 is unknown to us. Let F be
the true distribution of the vector of statistics, and F 0 the pivotal null
distribution of the vector under which the P -values are computed. Denote
by Hi

0 the hypothesis that gene i is not differentially expressed. Then at
least one Hi

0, i ≤ g0, is rejected if

min
i≤g0

pig ≤ α.

We want to show that

Prob(min
i≤g0

pig ≤ α|F ) < α.

This probability is

Prob(min
i≤g0

pig ≤ α|F 0)

since F is equal to F 0 when i ≤ g0. Further,

Prob(min
i≤g0

pig ≤ α|F 0) < Prob(min
i

pig ≤ α|F 0),

which is less than α, by the theory in Section 3.11, because F 0 is exactly the
distribution under which the P -values pi were calculated. This completes
the proof.

The Bonferroni correction described above is one of a family of correc-
tions known as “one-step” methods, due to the fact that all of the P -values
undergo the same equivalent correction, in this case multiplication by g. If
g is very large, as is often the case for the analysis of microarray data, the
Bonferroni correction will give a very conservative cutoff for significance.

In the case where all of the P -values can be assumed to be independent,
a less conservative method can be applied. In this case

Prob(min
i

pi ≤ α|F 0) = Prob(g(1 − x)g−1 ≤ α|F 0),

by equation (2.88). In this one-step procedure, each of the P -values is
compared to the Šidák significance point K(g, α), defined from equation
(2.141), with g replacing n, as

K(g, α) = 1 − g
√

1 − α. (13.6)

Those null hypotheses for cases in which the P -value is less than this sig-
nificance point are rejected, while the remainder are not rejected. Strong
control for this method can be established in a similar way to the Bonferroni
correction.

A convenient way of formulating the above is in terms of adjusted P -
values. In the Bonferroni method, for each i, define p̃i to be pig. In the case
of independence and the use of the Šidák method, define p̃i = 1− (1−pi)g.
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Then in both cases the FWER is

Prob(min
i≤g0

p̃i < α|F 0).

The formulation in terms of adjusted P -values is convenient, and we shall
use them again below. However the terminology should not be taken to
indicate that p̃i is an actual probability, in contrast to unadjusted P -values.

Step-Down Methods
In this section we describe the step-down methods of Westfall and Young
(1993) for controlling the FWER at some chosen value α. These methods
are less conservative than the one-step methods of the previous section. In
these procedures different adjustments are made to the P -values of different
genes. We start with the step-down version of the Bonferroni method.

First, the observed P -values are written in increasing order as p(1),
p(2), . . . , p(g), so that p(j) ≤ p(k) if j < k. The various null hypotheses
are then correspondingly ordered as H

(1)
0 , H

(2)
0 , . . . , H

(g)
0 . This ordering is

fixed throughout the procedure, and the P -values are examined in turn,
according to this ordering.

The initial step in the step-down procedure is to compare the smallest
observed P -value p(1) with α/g, where α is the chosen FWER. If p(1) > α/g,
then all null hypotheses are accepted and no further testing is done. If p(1) <

α/g, the null hypothesis H
(1)
0 is rejected and the sequential procedure moves

to step 2.
In step 2, if reached, p(2) is compared to α/(g − 1). If p(2) > α/(g − 1),

the null hypotheses H
(2)
0 , H

(3)
0 , . . . , H

(g)
0 are all accepted and no further

testing is done. If p(2) < α/(g −1), the null hypothesis H
(2)
0 is rejected and

the step-down procedure moves to step 3.
In general, if step j is reached, then if p(j) > α/(g − j + 1), then all

further hypotheses are accepted and no further testing is done. If p(j) <

α/(g − j + 1), hypothesis H
(j)
0 is rejected and the procedure moves to step

j + 1.
The rule at step 1 ensures that the FWER is controlled at the level α

in the weak sense. The event that the smallest P -value is less than α/g is
equivalent to the event that at least one P -value is less than α/g. If all null
hypotheses are true, the probability of the latter event has been shown to
be α.

To show that this method gives strong control of the FWER is more
difficult. Assume as before that the true null hypotheses are hypotheses i =
1, . . . , g0, and that the false null hypotheses are hypotheses i = g0+1, . . . , g.
Let F be the true distribution of the vector of test statistics, and F 0 the
pivotal null distribution under which the P -values are calculated.
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Suppose that pi′ = mini≤g0 pi. Then pi′ = p(j), for some j necessarily
less than g0. Then in order for at least one Hi

0, i ≤ g0 to be rejected, it
must be that pi′ ≤ α/(g− j +1) because the jth step is the first step where
a true null hypothesis is considered in the procedure. Now

Prob(min
i≤g0

pi ≤ α/(g − j + 1) |F )

is approximated by

Prob(min
i≤g0

pi ≤ α/(g − j + 1) |F 0)

and this is less or equal to

Prob(min
i≤g0

pi ≤ α/(g − g0 + 1) |F 0),

which amounts to a single-step adjustment which has been shown to be
less than α.

The condition (that p(1) > α/g) determining whether all null hypotheses
are accepted is identical in both the one-step approach and the step-down
approach. However, given that H

(1)
0 is rejected, the condition (p(2) < α/(g−

1)) that H
(2)
0 is rejected is less stringent in the step-down procedure than

the corresponding condition (p(2) < α/g) in the one-step procedure. A
similar remark holds for all further hypotheses. This observation justifies
the claim for the increased power of the step-down procedure.

This is not to say that the step-down method has uniformly better prop-
erties than the one-step method. For example, when all null hypotheses are
true, the probability that a specified null hypothesis is accepted under the
one-step approach is larger than the corresponding probability under the
step-down approach. This observation is in line with the fact that in statis-
tics it is seldom the case that one procedure is better than another in all
respects: Under some restrictions, or following some criteria, one procedure
will be better, while under other restrictions, or following other criteria, the
other will be better.

In spite of the increased power obtained by replacing a single-step Bon-
ferroni correction by a step-down Bonferroni correction, the step-down
procedure is generally still overly conservative. In the context of gene ex-
pression data, where g is so large, this is an issue. A less conservative
alternative to the Bonferroni correction is needed.

We now consider an approach known as the minP method. We start
with the single-step version of the procedure, and then generalize to the
step-down version. For gene gi, let Ti be the t-statistic and pi the P -value
of the observed value ti under some pivotal null distribution F 0. A less
conservative one-step adjustment than the Bonferroni is

p̃j = Prob(min
i

Pi < pj |F 0).
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The procedure is to reject exactly those hypotheses Hi
0 for which p̃i < α. It

is evident directly from the definition of p̃i that this procedure controls the
FWER in the weak sense. The verification that it also controls the FWER
in the strong sense is similar to the proof on page 454 that the one-step
Bonferroni method gives strong control.

To turn this into a step-down procedure, we rank the P -values as p(1),. . . ,
p(g), where p(1) is the smallest P -value. In this case adjusted P -values are
defined as follows:

p̃(1) = Prob(min
i≥1

Pi < p(1)|F 0)

and

p̃(j) = max{p̃(j−1), Prob(min
i≥j

Pi < p(j)|F 0)}, for j ≥ 2. (13.7)

The reason for taking successive maxima is to maintain the same order of
adjusted and unadjusted P -values.

Rejection of those null hypotheses Hi
0 for which p̃i < α gives strong

control of the FWER at level α. The proof of this claim is similar to that
for the step-down Bonferroni method. For the algorithm describing how to
actually calculate these adjusted P -values, see Ge et al. (2003).

There is some choice in how the P -values were adjusted above. The
minimum in the probability term in (13.7) is calculated over a fixed set of
indices i ≥ j. One might do the calculation instead with the distributions
of the true jth minimum. If the P -values are adjusted in this way, which
might seem more natural, then strong control of the FWER actually no
longer holds.

A further important caveat applying to all of the FWER methods above
is that there are generally very few replicates available per condition, often
as few as three or four. In this case it is unreasonable to use permutation
P -values because of increased granularity, as discussed in Section 13.3.2.
For example, if there are only three replicates per condition, there are
only 20 permutations, and thus continuous t-statistic data will have been
forced into 20 significance levels. If there are 100 differentially expressed
genes out of a total of 10,000 on an array, there may be roughly 500 genes
in the highest significance bracket, just by chance, obscuring the true 100
regardless of any procedure that works strictly with the P -values. Therefore
in the case of few replicates, an alternative to the P -value approach is
needed. In this case it is preferable to work directly with the t-statistics.
They are ordered just as the P -values were, but now the most significant
is the largest in absolute value. In this case we estimate

Prob(max
i≤j

|Ti| > |t(j)| |F 0). (13.8)

This procedure, known as the maxT approach, will also give strong con-
trol of the FWER as well as the P -value approach, and preserves the
granularity of the data. However, this method has the disadvantage that
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it loses some power to find those genes whose statistics have less variable
distributions.

13.3.6 The False Discovery Rate (FDR)
Even when step-down methods are used, insisting on an FWER of the
order of 5% can lead to quite conservative results. We might try raising the
FWER if we are willing to accept some false positives, as is generally the
case in practice. A problem with FWER methods, however, is that once
they allow false positives, there is no control over how many they allow,
because what is controlled is merely the probability that the number of
false positives is greater than zero.

Because of this, the false discovery rate (FDR) approaches to multiple
testing, introduced by Benjamini and Hochberg (1995), have gained popu-
larity in the analysis of microarray data. This approach does not attempt
to control the FWER; instead, it controls the proportion of false positives
among the set of all genes predicted to be differentially expressed. If there
are 10,000 genes on the array and 100 are differentially expressed, the re-
searcher might tolerate a quite high FDR, since even an FDR of 50% would
enrich the set of candidate differentially expressed genes from one true pos-
itive in 100 to 50 true positive in 100, giving a set of predictions appropriate
for PCR follow-up verification.

Consider those genes for which the null hypothesis is rejected. Let V be
the number of these genes for which the null hypothesis is true (and is thus
falsely rejected) and S the number for which the null hypothesis is false
(and is thus correctly rejected). Let R = V + S. The quantity Q is defined
as

Q =
{

0, if V = R = 0
V/R, if R > 0.

. (13.9)

Thus V , S, R, and Q are random variables, and even after the experiment
is completed the value of Q is unknown to us. The original definition of
the FDR is the expected value E(Q) (Benjamini and Hochberg (1995)). In
its simplest formulation, the aim of an FDR procedure is to control this
expected value E(Q) to be some prescribed value α (or less).

We note two properties of the FDR. First, if the complete null hypothesis
is true, then V = R so that Q = 1 whenever R > 0. The expected value
E(Q) in this case is Prob (R > 0), which is just the FWER. Second, if
some null hypotheses are not true, the FDR is less than the FWER.

It is important to keep in mind that an FDR is fundamentally different
from a P -value, and is used for a very different purpose. A P -value is gen-
erally used to assess the significance of data. Published data claiming to be
significant must have rigorously defined P -values achieving some accept-
able significance level, generally .05 or .01. On the other hand, an FDR is
generally used as a culling tool. As such, an FDR of .5 might be perfectly
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acceptable to the investigator, and it will not be problematic if the true
FDR is only approximately .5. For example if the investigator chooses a
method which is supposed to achieve an FDR of .1, and yet realizes an
FDR of only .3, in practice that will generally be good enough for their
purposes. Therefore, there is some latitude in the assumptions that can be
made in FDR methods. That being said, it is preferable to find the best
method possible to accurately control the FDR.

We start by describing the original procedure developed to control the
FDR. We will then discuss some shortcomings of this procedure and of the
definition of FDR itself, and then will investigate some alternatives.

Benjamini and Hochberg Step-Up Methods
The original method proposed to control the FDR was given in Benjamini
and Hochberg (1995). This method is similar to FWER methods in that it
starts with gene-by-gene P -values derived from g tests, under g individual
null hypotheses, one for each gene. It is assumed that these P -values are
independent. This independence assumption is one problem in applying
this method to gene expression data.

By the definition of a P -value, for those tests where the null hypothesis
is true, the individual P -values have uniform distribution. Let g0 be the
number of tests for which the null hypothesis is true and g1 = g−g0 be the
number of tests for which the null hypothesis is false. Which hypotheses
are true and which are false is unknown, and the value of g0 is unknown as
well. Let H1, H2, . . . , Hg0 be the true null hypotheses and Hg0+1, Hg0+2,
. . . , Hg the false null hypotheses.

The g hypothesis tests will result in individual test P -values P1, P2, . . . ,
Pg respectively, which by assumption are independent. Each Pi is a random
variable and we denote the observed value of Pi by pi. Let P(i) be the ith
smallest of the Pi (so that P(1) ≤ P(2) ≤ · · · ≤ P(g)) and let H(i) be the
hypothesis corresponding to P(i).

Let qi = i
g α, i = 1,. . . , g, where α is the desired false discovery rate, and

k be the maximum i such that p(i) ≤ qi, where p(i) is the observed value
of P(i). The Benjamini-Hochberg testing procedure is as follows. If there is
no value i such that p(i) ≤ qi we accept all g null hypotheses. If k ≥ 1 we
reject the null hypotheses H(1), . . . , H(k) and accept all others. Note that
by the definition of k, there still may be i′ < k such that p(i′) > qi′

With these preliminaries in place and Q defined as in (13.9), we have the
following:

Theorem. E(Q) = g0
g α.

The expected value on the left is calculated under the true distribution of
the data and not under any kind of complete null hypothesis, and therefore
the theorem states that the FDR is controlled in the strong sense. Accord-



13.3. Differential Expression – Multiple Genes 461

ingly, the proof must show that E(Q) ≤ α regardless of the value of g0.

Proof of the theorem.

As above we assume that the hypotheses are ordered so that hypotheses
H1, H2, . . . , Hg0 are true and Hg0+1, Hg0+2, . . . , Hg are false. Let Av,s be
the event that exactly v true and s false null hypotheses are rejected. Then

E(Q) =
g1∑

s=0

g0∑
v=1

v

v + s
Prob(Av,s).

(If v = 0 then Q = 0, so that the inner sum starts from 1.)
For any i (i = 1, 2, . . . , g0) let A

(i)
v,s be the event that Hi is rejected and

that, in total, v true and s false null hypotheses are rejected. Then in the
sum

g0∑
i=1

Prob(A(i)
v,s),

the probability of any particular combination of v rejected true null hy-
potheses occurs exactly v times, one for each choice of i, (i = 1, 2, . . . , g0).
It follows that

Prob(Av,s) =
1
v

g0∑
i=1

Prob(A(i)
v,s). (13.10)

From this,

E(Q) =
g1∑

s=0

g0∑
v=1

v

v + s

1
v

g0∑
i=1

Prob(A(i)
v,s)

=
g0∑

i=1

g1∑
s=0

g0∑
v=1

1
v + s

Prob(A(i)
v,s).

For any fixed k = v + s, this gives

E(Q) =
g0∑

i=1

g∑
k=1

1
k

Prob(A(i)
k ).

The event A
(i)
k is the intersection of the events Bi,k (that Hi is rejected)

and C
(i)
k (that of the remaining g − 1 hypotheses other than Hi, exactly

k − 1 are rejected). Since the g tests are independent, the events Bi,k and
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C
(i)
k are independent. Therefore

E(Q) =
g0∑

i=1

g∑
k=1

1
k

Prob(Bi,k) · Prob(C(i)
k )

=
g0∑

i=1

g∑
k=1

1
k

Prob(Pi ≤ qk) · Prob(C(i)
k )

=
g0∑

i=1

g∑
k=1

1
k

· kα

g
Prob(C(i)

k ),

the last equality holding because Pi is has a uniform distribution in [0,1]
for i ≤ g0. Therefore

E(Q) =
g0∑

i=1

α

g

g∑
k=1

Prob(C(i)
k )

or

E(Q) =
g0

g
α

g∑
k=1

Prob(C(i)
k ).

But from the law of total probability,
∑g

k=1 Prob(C(i)
k ) = 1. Therefore

E(Q) =
g0

g
α,

as was to be shown. �

The above proof, like the original proof of Benjamini and Hochberg
(1995), assumes that the g different tests are independent. In the microar-
ray case this assumption is not reasonable. Benjamini and Yekutieli (2001)
have extended the proof to the case of positive regression dependence be-
tween the tests. In the case of an arbitrary dependence structure, they show
that the theorem holds (with FDR α) provided that qi is redefined as

qi =
αi

g
∑g

j=1
1
j

.

Unfortunately there is not much evidence about what form of dependence
there is between the expression levels of different genes. Therefore, making
any assumptions about the form of dependence has unknown consequences.

From the proof above it can be seen that the FDR is actually controlled
to the level g0α/g, which is at most α.

The false discovery rate FDR defined above may be written as

E(V/R |R > 0) Prob(R > 0).
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Storey (2002) introduced the “positive false discovery rate,” denoted pFDR,
defined by

pFDR = E(V/R |R > 0).

This differs from the FDR by not including the term Prob(R > 0), but by
conditioning on the event R > 0 instead. Storey indicates various advan-
tages of the pFDR over the FDR. If Prob(R > 0) is not close to one, then
these can be somewhat different. Given the latitude in acceptable FDR
values, as discussed on page 459, and the fact that if R > 0 then gener-
ally Prob(R > 0) is not small, this is not a grave issue, so we shall not
investigate the pFDR further.

Permutation Methods
The Benjamini and Hochberg (1995) method described in Section 13.3.6 for
controlling the FDR has several drawbacks. First, it depends on a knowl-
edge of the various P -values associated with the various genes, and if a
parametric test is used, these P -values are not usually known with high
accuracy, since standard assumptions for parametric tests, for example t
tests, seldom apply for microarray data. Second, the procedure assumes
that the various tests are independent, and this is in effect never the case
for microarray data. Next, the true FDR of the Benjamini and Hochberg
(1995) procedure is not known, since the procedure controls the mean value
of Q (defined in (13.9)) to be less than or equal to g0α/g, where α is the
desired FDR and g0 is the number of genes for which the null hypothe-
sis is true. Since the value of the ratio g0/g is not known, the Benjamini
and Hochberg method controls the FDR at a value less than or equal to
α, but does not estimate it. We now discuss how these problems might
be addressed by using permutation methods, where we assume that the
permutation is carried out using entire columns of the data matrix (13.3).
Practical and theoretical aspects of the two-sample permutation procedure
are discussed in Section 3.8.1, and we draw on these in discussing some
permutation approaches to the problems listed above.

The permutation test for differential expression for one gene was dis-
cussed in Section 3.8.1 and its use for many genes was referred to briefly in
Sections 13.3.2 and 13.3.3. The permutation P -value associated with the
observed value of the test statistic is easily calculated from the permutation
procedure. The problem of dependence between genes will be overcome by
the permutation of entire columns of the data matrix. We now focus on the
problem of the estimation of the FDR.

If it is assumed that R > 0, the FDR is defined as the mean of the ratio
V/R. Both V and R are random variables and this ratio is also a random
variable. Because the distribution of gene expression levels do not follow
standard probability distributions, we cannot find the mean of V/R using
parametric assumptions.
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Since permutation of the columns of the data matrix (13.3) will tend to
eliminate differential expression, the mean value of V can be estimated from
the P =

(
m+n

n

)
permutations of the data. Note that it is not enough just

to take the mean of the permutation distribution of V , however with some
adjustments an estimate of E(V ) can be obtained from this distrubution.
On the other hand, R is simply the total number of genes declared to show
significant differential expression, including both true and false positives,
and thus the probability distribution of R cannot be estimated by the per-
mutation procedure. Although bootstrap resampling can give an estimate
of the distribution of R, neither permutation nor bootstrap methods can
help us in estimating the distribution of V/R, and hence its mean. The
values of V and R are correlated and the correlation between them is not
known.

We therefore abandon the aim of estimating the mean of V/R and in-
stead consider E(V )/R. The mean of V can be (roughly) estimated by
permutations, as described above, and the value of R is known from our
testing procedure. At the moment, this appears to be all that is possible in
a permutation approach to estimating a quantity similar to the FDR.

We now describe a popular permutation method for estimating the FDR.
This is the so-called statistical analysis of microarrays (SAM) approach,
proposed by Tusher et al. (2001) and further developed by Storey and
Tibshirani (2003). The procedure is similar to that described above but
differs from it in several ways, discussed below.

The Tusher et al. (2001) SAM procedure starts with the data matrix
(13.3). It then computes, for gene i = 1, 2, . . . , g, the t-like statistic

d(i) =
x̄i − ȳi

s(i) + s0
, (13.11)

with s(i) defined as in (3.34) and with a change in notation of s to s(i), x1i

to xi and x2i to yi. If s0 = 0, d(i) would be identical to a t statistic. The
positive quantity s0 is added to the t statistic denominator for reasons
discussed below. The g genes are then ranked according to their respective
d(·) values, and the notation is changed so that the gene with the largest
d(·) is now called gene 1, the gene with the second largest d(·) value is now
called gene 2, and so on.

The first step of the procedure is to assess which genes exhibit a signif-
icant difference between the groups compared. To do this, all P =

(
m+n

n

)
permutations of the data are considered, with entire columns in the data
matrix (13.3) being permuted together. (If m and n are large, a random
sample of such permutations might be used.) The original data make up
permutation 1. For each permutation p = 1, 2, . . . , P and for each gene
i = 1, 2, . . . , g the values dp(i), p = 1, 2, . . . , P, are calculated following the
prescription in (13.11). With this notation d(i) would be written d1(i).

For any permutation p the genes are ranked as above, that is according
to their respective dp(·) values, with now the gene with the largest value
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of dp(·) ranked first, the gene with the second-largest value of dp(·) ranked
second, and so on. The various dp(i) values now form a matrix. The en-
tries in row i of this matrix, apart from the first entry, do not necessarily
correspond to gene i, and often will not. Instead, they correspond, in per-
mutation column p = 2, 3, . . . , P to whatever gene led to the ith largest
dp(i) value in that column.

The average dE(i) of the entries in the ith row is then computed, and
the difference d(i) − dE(i) is calculated for each gene.

A threshold value ∆ is now chosen, and gene i is declared to be signifi-
cantly differentially expressed if |d(i)−dE(i)| > ∆. Thus gene i is declared
to be significantly differentially expressed if the value d(i) corresponding
to it differs sufficiently from the permutation estimate of the mean of the
ith most differentially expressed gene. A small value of ∆ leads to a large
number of false positives and a large value of ∆ to a small number of false
positives. However the focus in the procedure is on the FDR and not on
controlling the number of false positives.

The next aim is to estimate the FDR associated with this procedure.
Suppose that the largest negative value of d(i) among genes declared sig-
nificantly differentially expressed is denoted by a and the smallest positive
value of d(i) among genes declared significantly differentially expressed
is denoted by b. The SAM procedure then calculates, for permutation
p = 1, 2, . . . , P , the number of genes with a value of dp(·) less than a
or greater than b. The average over all permutations of the numbers so
calculated is then found. The FDR is then estimated as the ratio of this
average divided by the actual number R of genes declared significantly ex-
pressed. This procedure can be carried out for a range of values of ∆ and
a subjective choice made of a reasonable choice of ∆ based on the array of
FDR estimates generated by a variety of choices of ∆.

The procedure as described so far leads to an upward bias in the esti-
mation of the FDR, since the null hypothesis is presumably not true for
some genes, and yet the permutation procedure in effect makes all genes
null. Storey and Tibshirani (2003) address this problem. Suppose that the
proportion g0/g of genes for which the null hypothesis is true is denoted
by π0. If π0 were known, an improved estimate of the FDR is found by
multiplying the estimate described above by π0. However π0 is not known,
and Storey and Tibshirani estimate it as follows. Consider some small pos-
itive constant a (Storey and Tibshirani choose a = 0.15,) and let n1 be the
number of genes whose d(·) value lies in the range (−a,+a). Those genes
for which the null hypothesis is true will be more abundant in this range
than genes for which the null hypothesis is not true. For every permuta-
tion of the data there will be some genes whose d(·) value lies in the range
(−a,+a). Define n2 as the average (over all permutations) of the number
of genes for which this is the case. Then it is reasonable to estimate π0 by
n1/n2.
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The actual SAM approach to estimating the FDR has differences from
that described above, and we now discuss some of these differences.

The SAM approach uses as test statistic the quantity d(i) defined in
(13.11), specifically in including the quantity s0 in the denominator of
what would otherwise be a t statistic. Since the values of the d(i) are to be
compared across all genes, it is considered desirable that the probability
distribution of d(i) should be independent of i. The value of s0 is chosen
so as minimize the estimated coefficient of variation of the d(i)’s. This
procedure can at best be described as a reasonable heuristic. It cannot
ensure that the variance of d(i) is independent of gene expression.

The value of the above procedure for choosing s0 is can be questioned in
that what is of primary interest is the power of the method, i.e the number
of differentially expressed genes it finds for a given FDR, and currently
there is no theorem proving that this value of s0 achieves maximum power,
even approximately. In fact examples can be constructed for which the
value of s0 chosen is quite far from optimal, for example when the null
genes have highly bimodal distributions.

One might therefore consider not using the s0 parameter at all. However,
it turns out that the method is very sensitive to this parameter, particularly
when there are only a few replicates per condition. The reason for this is
that s0 dominates the denominator of d(i) when s(i) is relatively small
compared to it. This has two effects. First, since there are generally many
null genes, there are many null genes whose s(i) is vanishingly small, by
chance, and for these genes the t statistics blow up. The larger s0 is, the
more this effect will be mitigated. On the other hand, when s0 is too large,
the non-null genes with small s(i) tend to get lost in the noise. Therefore,
what value to set s0 to depends on the nature of the differentially expressed
genes as well as the non-differentially expressed genes. A moderate value
of s0 is usually optimal for finding the greatest number of differentially
expressed genes.

There is no known formula that can be applied to the data matrix to
determine the value of s0 which maximizes the power. However, a power
criterion to determine s0 would be desirable.

The method of estimation of V in the SAM procedure differs from that
described above, in which the expected value of V for any gene is estimated
by data values solely for that gene. In the SAM approach this expected
value is estimated pooling data from many other genes. This again is a
heuristic with potentially unexpected consequences.

Relation Between the FWER Step-Down and FDR Step-Up
Methods
The step-down procedure using Šidák significance points compares the jth
smallest P -value p(j) with the jth Šidák significance point K(g − j + 1, α).
We reject null hypotheses H

(1)
0 , H

(2)
0 , . . . , H

(m)
0 and accept all remaining
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null hypotheses if p(j) < K(g − j + 1, α), j = 1, 2, . . . , m and p(m+1) >
K(g − m, α). This procedure yields an FWER of α.

In the FDR procedure we reject null hypotheses H
(1)
0 , H

(2)
0 , . . . , H

(m)
0

and accept all remaining null hypotheses if p(j) < jα
g and p(m+1) > (m+1)α

g .
This procedure leads to an FDR of at most α.

To compare the two procedures we note that for large g, small j, K(g −
j + 1, α) ∼= α/(g − j + 1). Thus to a close approximation the comparison of
the properties of the two approaches reduces to a comparison of

α/(g − j + 1) and jα/g.

For large g, small j, the second expression is about j times larger than the
first. This implies that, with the same data in the two cases, the step-down
procedure will reject fewer, perhaps far fewer, null hypotheses than will the
FDR procedure. This is as we expect: the step-down approach is intended
to be far more stringent than the FDR approach. The FDR approach trades
a higher family-wide error rate for increased power.

13.3.7 The ANOVA Approach: Many Genes
In this section we outline some features of the ANOVA approach to the
analysis of microarray data, focusing on the spotted array technique. The
analysis of Kerr et al. (2000), may be taken as an example of the use of
the ANOVA technique, so we refer to this analysis frequently below, using
it to illustrate the advantages and disadvantages of the ANOVA approach.

For reasons discussed below, the logarithm of any expression level, rather
than the expression level itself, is generally used in the ANOVA analysis.
Thus to discuss ANOVA models of spotted microarray data we follow this
practice and denote the logarithm of any expression level generically by
X. Several ANOVA models, of a greater or lesser complexity, have been
proposed for the analysis of microarray data. The model considered by
Kerr et al. (2000) is

Xijkg = µ + Ai + δj + τk + γg + Big + ψkg + Eijkg. (13.12)

Here Xijkg is the logarithm of a a gene expression level for array i, dye j,
tissue type k, and gene g. On the right-hand side in (13.12), Ai is a random
effect due to array i, δj is a fixed effect due to dye j, τk is a fixed effect due
to tissue type k, γg is a fixed effect due to gene g while Big, and ψkg are
(random) array×gene and (fixed) tissue×gene interactions respectively.1 A
slightly different model is discussed in Kerr and Churchill (2001).

Kerr et al. (2000) focus attention on the gene×tissue interaction, since
if the F ratio testing for this interaction is significant, we have significant

1Our notation differs from that of Kerr et al. (2000) in that we denote fixed effects
parameters with greek characters and random effects parameters with roman.
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evidence that some genes are expressed differently in different tissues. Fur-
ther enquiry is needed to determine which genes these are. One drawback
of this approach is that interaction effects are difficult to determine in any
ANOVA unless the interaction is quite strong, as discussed in Section 9.5.4.

To what extent does an microarray model of the form (13.12) satisfy
ANOVA assumptions? The broad requirements for any ANOVA analysis
were discussed in Section 9.5. Some of these were that the random vari-
ables involved each has a normal distribution, that the variances of all
random variables be the same, that the various random variables involved
be independent, and that the ANOVA linearity modeling assumption is
acceptable.

It is generally accepted that microarray expression levels do not in prac-
tice have a normal distribution, and in the ANOVA approach the logarithm
of expression levels are routinely used in the analysis. It is thus assumed in
a formal ANOVA using F distribution tables that these logarithms have a
normal distribution, at least to a sufficiently close approximation. On the
other hand, non-parametric methods are possible which do not rely on the
normal distribution assumption.

The logarithmic transformation does not however ensure that the vari-
ances of all expression levels considered will be equal. The case of unequal
variances in ANOVA has been discussed extensively in the literature, the
general conclusion being that when the variances are not extremely differ-
ent from each other, significance levels found formally from F tables will
differ only mildly from the true values.

When many genes are considered simultaneously the question of the in-
dependence assumption of gene action arises. Groups of genes sometimes
act in a concerted fashion, and thus their expression levels will not be
independent.

Next, the linearity assumption of the mean of the logarithm expression
levels, as is assumed for example in the model (13.12), implies that a mul-
tiplicative model for the expression levels themselves is assumed, with the
array, the dye, the tissue type, the gene and the various interactions all
acting multiplicatively on expression level. This may or may not be a
reasonable assumption.

Finally, various possible terms are not included on the right-hand side
of (13.12). These include a number of interaction terms, as well as terms
for primary effects; for example, no print-tip effects are included. Also the
array × tissue interaction in the model (13.4) of Wolfinger et al. (2001)
is not included in the model. The exclusion of various interaction terms is
discussed below.

Clearly the use of an ANOVA model runs the risk of making implicit
assumptions that might not be correct. Against this, ANOVA models
are often rather robust against departures from assumption, as discussed
in Section 9.5.3, and further, it is possible to test whether some of the
assumptions made are reasonable.
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An experimental design allowing for all possible combinations of dyes,
tissue types, arrays, and genes might be impractically large. Kerr et al.
(2000) discuss a design involving two arrays, two dyes (red and green), two
tissue types (liver and muscle), and 1,286 genes. In array 1 liver tissue is
labelled with red dye and muscle tissue with green dye, while in array 2
muscle tissue is labelled with red dye and liver with green. This dye-swap
experiment is illustrated, for any one gene, in Table 1 of Kerr et al. (2000).

In this experiment only four of the possible eight combinations, namely
{liver, red dye, array 1}, {liver, green dye, array 2}, {muscle, red dye, array
2}, and {muscle, green dye, array 1}, are carried out. Kerr et al. refer to
this design as a (2 × 2) Latin square, but a 2 × 2 Latin square has no
degrees of freedom for the estimation of error (Cochran and Cox (1957)),
so we prefer to think of this design as being a fractional replication (see
Section 9.5.6). If we denote array 1 by a, the red dye by b and liver by c,
the only treatments carried out are abc, a, b, and c, and this is precisely
the fractional replication design in Section 9.5.6. The defining contrast is
ABC and so this design implies the aliasing of tissue with the array × dye
interaction, of arrays with the tissue × dye interaction, and of dyes with the
array × tissue interaction. These three interactions are all assumed to be
zero and do not appear explicitly in the model (13.12). Thus it is assumed,
for example, that all the variation due to the aliased effects of tissues and
the array × dye interaction is due solely to differences between tissues. If
then there had been a substantial array × dye interaction, this would lead
to an inflated estimate of the tissues effect.

The ANOVA design for the experiment discussed by Kerr et al. (2000)
involves 1,286 genes, with the design of the above table used for each gene.
This implies a total of 5,144 observations and thus 5,143 degrees of freedom.
It has a sum of squares for arrays, for dyes and for tissue types, each having
one degree of freedom, a sum of squares for genes having 1,285 degrees of
freedom, a sum of squares for the array × gene interaction having 1,285
degrees of freedom and a sum of squares for the tissue × gene interaction
with 1,285 degrees of freedom. The remaining sum of squares, with 1,285
degrees of freedom, is treated as residual, or error. This implies that the
dye × gene interaction sum of squares is part of the error sum of squares,
and thus this interaction is assumed to be zero, while the assumption that
the interactions referred to in the previous paragraph are all zero implies
that all other sums of squares not listed above can be treated as treated as
error. Kerr et al. (2000) focus on the F ratios for genes and tissue × gene
interaction and find significant values for each. This implies that different
genes are expressed significantly overall, and that some genes are expressed
significantly more in some tissues than in others. They then conduct further
tests to assess which genes are differentially expressed.

Although Kerr et al. (2000) do find a significant tissue × gene interaction
effect, in general interactions in an ANOVA are harder to detect that main
effects. If a large number of genes is considered when many of these genes
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are not expressed in the tissues being examined, the effects of those genes
that are expressed in these tissues, and of those that are differentially ex-
pressed, might be swamped by the noise generated by unexpressed genes.
Further, the assumption implicit in the ANOVA analysis described above,
that the variance of the logarithm of the expression level is the same for
all genes, cannot be expected to be true in general.

Many microarray ANOVA designs other than that of Kerr et al. (2000)
are to be found in the literature, and it is not possible to survey them all
here. General principles for microarray ANOVA designs are discussed in
Churchill (2002), Speed (2003), and Glonek and Solomon (2002).

13.3.8 Comparing Two Groups by Discriminant Analysis
A natural approach to assessing the genes whose expression levels differ
between two groups is that of discriminant analysis. We might first con-
sider carrying out a T 2 test as described in (9.52), and if significance is
obtained, indicating that the expression levels of some genes differ signifi-
cantly between the two groups, attempt to find which genes do so differ by
using the discriminant function (9.53). However, both these efforts will in
general fail in the microarray context. The reason for this can be seen in
two equivalent ways. First, in the microarray context the number of mea-
surements made in the T 2 procedure is the number of genes analyzed, and
this is usually several thousand. The values of n and m, the number of
observations in each of the two groups considered, is far smaller than this,
often being of order 10 or fewer. One of the degrees of freedom for the T 2

test then becomes negative, indicating that the test cannot be carried out.
The second reason is associated with the first one, and is that the matrix
S, whose inverse is needed in both the T 2 test and the discriminant func-
tion calculation, is singular. Thus no inverse matrix exists and the required
mathematical procedures cannot be performed.

This problem is avoided by Dudoit et al. (2002), who compare expression
levels of many genes between various groups. The number of observations
for each gene is on the order of 80. Dudoit et al. first reduce the number
of genes in the discrimination procedure by computing a between group to
within group F statistic for every gene. They then consider only those genes
that have the p highest absolute value of F . The choice of p depends on the
data set considered, but must be well below 80 in order to overcome the
degrees of freedom problem mentioned above. If p is chosen to be about 30,
the matrix S in Section 9.6.4 is “ill-conditioned”, so that the value of S−1

changes considerably with quite small changes in the data values. Dudoit
et al. found that it is necessary to reduce the number p of genes considered
to about 10 in order for the discriminant procedure to work well.
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13.4 Principal Components and Microarrays

The concept of principal components was discussed in Section 8.5.3. In
the microarray context, k (the number of observations) is the number g
of genes considered on an array, and this is typically many thousands.
Since one of the aims in an microarray analysis is to reduce the number
of genes considered to those mainly relevant to the question at hand, a
principal components analysis allows a significant reduction when the aim
is to decide which genes have the largest variation in expression level.

One of the computational problems of the procedure outlined in Section
8.5.3 in the microarray context is that the matrix defined (8.53) and (8.54)
is of size g × g, and thus has g eigenvalues. However all but n of these
are zero, and the nonzero eigenvalues, which are the only ones of interest,
can be found by the technique of singular value decomposition (see Schott
(1997) for a clear description of the technique). This technique also provides
the eigenvectors associated with these eigenvalues.

Suppose that it is decided that the total variation in the data can be
reasonably represented by some small number a of principal components
c1, c2, . . . , ca (see (8.59) for the case a = 2). These principal compo-
nents have been called “eigengenes” (Speed (2003)). Suppose that the first
principal component is

∑
aixi, where the ai are the coefficients in that

component and xi is the expression level for gene i. Restricting attention
to those genes for which |ai| > c, for some chosen cut-off value c, allows
us to focus on a small set of genes that might be used in a future microar-
ray experiment. A similar procedure can be carried out for any of the a
principal components considered.

One aim in a microarray analysis is to place the genes into clusters of
genes with similar behavior across a set of arrays. Gene clusters can be
found using a variety of methods, or principles, some of which we describe
briefly in the section below.

One use for the principal components technique is as a preliminary step in
the formation of clusters of genes. Formation of clusters of many thousands
of genes can present visual problems, so that selecting a subset of genes
on which to concentrate, for example those genes with a high coefficient
weighting in the first principal component, can provide a substantial aid in
the clustering process.

13.5 Clustering Methods

13.5.1 Hierarchical Clustering
Gene clusters can be found by a variety of measures. Some of these are
based on a “distance” between any pairs of genes. One popular form of
distance is based on correlation calculations. If the expression levels of two
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genes are taken in n individuals, an estimate of the correlation between
these levels can obtained using the estimator (3.16). As discussed in Section
3.3.3, however, this is a biased estimator of the true correlation, the bias
being of order n−1. Since in microarray analysis the value of n is often quite
small, this is a significant bias.

Given a estimate r of the correlation between expression levels of two
genes, a distance between these genes can be defined in various ways. If the
sign of r is deemed not to be important, two possible distance definitions
are 1−|r| and log |r|. These are both 0 when r = ±1, indicating that genes
that are judged to be perfectly correlated are taken as having no distance
between them. When r = 0, the former distance is 1 and the latter infinite.

Genes can now be arranged in a hierarchical clustering as described by
one or another distance-based method discussed in Chapter 15. The prob-
lem of the bias in the correlation estimate should, however, be kept in mind
in such a process. Tree estimation with many species (here, cluster estima-
tion with many genes) is sensitive to small changes in distance measures, so
that any gene cluster formed using a correlation-based distance, especially
with a small value of n, should be viewed with caution.

The hierarchical method is unsupervised, in that the number of clusters is
not fixed in advance. The K-means approach described below is supervised,
since the number of clusters is fixed extrinsically by the investigator.

13.5.2 Other Forms of Clustering
The clustering method just described has a hierarchical character to it.
Other methods do not have such a character and can be thought of simply
as partitioning methods, with no hierarchy implied between the various
partitions. Two popular such methods are the K-means approach and the
self organizing maps (SOM) approach. We now describe the first of these
briefly.

In the K-means approach a fixed number K is decided upon, and each of
the various genes is eventually to be allocated to exactly one of K groups.
This method again relies on some distance measure between genes. A rea-
sonable starting point is to make a common-sense allocation of each gene
into one or other group. Then an average, or centered, value can be found for
each group by a least squares procedure, and from this a “within-groups”
sum of squares W , analogous to that in an ANOVA, can be calculated.
This is found by summing the squares of the distances of each gene from
its group average value, and then summing this sum over all groups.

Each gene is then potentially re-assigned to a new cluster, following the
rule that the distance of every gene from every group average is calculated,
and every gene is then assigned to the cluster which minimizes this distance.
(Often a gene will be assigned to the cluster it is currently in.)
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A new cluster average is then computed from a least squares procedure,
using the genes now in that cluster, and the process above is repeated until
no gene changes clusters.

The number of genes in each cluster is thus not fixed in advance. Further,
the actual choice of group assignments of the various genes might depend on
the initial allocation chosen for genes into groups, so that various possible
initial assignments should be used.

Problems

13.1 Let X1 and X2 be independent random variables, each having the uni-
form distribution on (0, 1). Let X(1) and X(2) be the corresponding order
statistics. Find an equation satisfied by A1 and A2, with (A1 ≤ A2), if we
require that Prob(X(1) ≥ A1, X(2) ≥ A2) = 1 − α, for some given constant
α, (0 < α < 1). Show that the choice A1 = A2 = K(2, α) (defined in
(2.141)) satisfies this equation.

13.2 Continuation. Suppose that an experiment consists of two distinct and
independent sub-experiments, and that the P -values for each of these are
denoted P1 and P2 respectively. Let P(1) and P(2) be the corresponding
ordered P -values. Find an equation satisfied by two constants A1 and A2
(A1 ≤ A2), such that an family-wise Type I error of α is attained when
both null hypotheses are accepted if and only if P(1) ≥ A1 and P(2) ≥ A2.
If A1 and A2 are used respectively instead of K(2, α) and K(1, α) in a
Westfall and Young step-down process, for what choices of A1 and A2 is
the requirement of the strong control of the family-wise Type I error at α
satisfied?

13.3 Continuation. Consider two distinct independent t-tests. Suppose the
Westfall and Young step-down procedure is used to obtain an family-wise
Type I error α. Find the probability that a specified one of the two null
hypotheses is accepted, given that both null hypotheses are true. Show that
this probability is less than the corresponding probability K(2, α) arising
under the one-step procedure.

13.4 Continuation. Now consider g distinct independent t-tests. Suppose
the Westfall and Young step-down procedure is used to obtain a family-
wise Type I error α. Show that the probability that a specified one of the
g null hypotheses is accepted, given that all null hypotheses are true, is

1 − α

g
− α2

g
− · · · − αg

g
.
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Compare this probability with the corresponding probability K(g, α) aris-
ing under the one-step procedure.

13.5 Continuation. It is not necessary to consider the Westfall and Young
step-down procedure as being carried out in a sequential manner: which
hypotheses are accepted and rejected is determined in one step by the lo-
cation of the point (p(1), p(2), . . . , p(g)) in the (P(1), P(2), . . . , P(g)) space.
For the case g = 2, and given a family-wise Type I error α, sketch the region
R in the (P(1), P(2)) plane having the property that both null hypotheses
are rejected using this sequential procedure if (p(1), p(2)) falls within R.
Hence find the probability that both hypotheses are rejected when both
null hypotheses are true. Check your answer using calculations deriving
from the step-down procedure. What is the corresponding probability in
the one-step procedure? Relate your answer to this last question to your
answer to question 13.3.

13.6 Continuation. Compare the region R determined in Problem 13.5 with
the region R′ such that both null hypotheses are rejected using the one-step
procedure if (p(1), p(2)) falls within R′.



14
Evolutionary Models

14.1 Models of Nucleotide Substitution

The contemporary biological data from which so many inferences are
made are the result of evolution, that is, of an indescribably complicated
stochastic process. Very simplified models of this process are often used
in the literature, in particular for the construction of phylogenetic trees,
and aspects of these simplified models are discussed in this chapter. The
emphasis is on introductory statistical and probabilistic aspects. A proba-
bilistic approach has the merit of allowing the testing of various hypotheses
concerning the evolutionary process. Hypothesis-testing questions in the
evolutionary context are discussed in Section 15.9.

While there is clearly genetic variation from one individual to another
in a population, there is comparatively little variation at the nucleotide
level. For example, two randomly chosen humans typically have different
nucleotides at only one site in about 500 to 1,000. To a sufficient level of
approximation it is reasonable to assume, for the great majority of sites,
that a single nucleotide predominates in the population. Indeed if this were
not so, the concept of a paradigm “human genome” would be meaningless.
Thus from now on, when we use the expression “the nucleotide at a given
site in a population” we mean, more precisely, the predominant nucleotide
at this site in the population.

Over a long time span the nucleotide at a given site might change. To
analyze the stochastic properties of this change, we ignore the (perhaps
comparatively brief) time period during which one nucleotide replaces an-
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other in the population, and imagine an effectively instantaneous change in
frequency of a nucleotide from a value close to 0 to a value close to 1. We
shall describe this event as the substitution of one nucleotide by another,
meaning more precisely the substitution of the predominant nucleotide by
another. The time unit chosen to evaluate the properties of this substitu-
tion process is arbitrary, but is often large, perhaps on the order of tens of
thousands of generations.

We focus on DNA sequences and consider the predominant nucleotide
at some specified site in some population. In Section 4.5 the states of a
Markov chain were labeled according to the generic convention as states
E1, E2, E3, . . . , Es. In analyzing substitution processes for DNA sequences
it is often convenient to change notation and to identify the states with the
nucleotides a, g, c, and t, taken in this order. With this notation a Markov
chain would, for example, be said to be in state g if, in the population
considered, the predominant nucleotide at the site of interest is g. If unit
time in the Markov chain is taken as, for example, 200,000 generations, a
change from state a to state c in one time unit means the substitution of
the nucleotide a by the nucleotide c after a period of 200,000 generations.

When this notational convention is used for a discrete-time Markov chain,
symbols such as pag denote the probability of a change in the predominant
nucleotide from a to g after one time unit. In the continuous-time models
considered in Section 14.3, again with unit time taken at some agreed value,
the probability of a change in the predominant nucleotide from a to g in a
time period of length t is denoted by Pag(t).

The comparison of genetic data from two contemporary species often
relies on a model of the evolutionary processes leading to these species.
Various statistical procedures used in this comparison might require trac-
ing up the tree of evolution from one species to a common ancestor and
then down the tree to the other species. If the stochastic process assumed
for tracing upwards is to be the same as that for tracing downwards, the
stochastic process must be reversible. This is one reason why the concept
of reversibility was introduced in Section 11.2.4. One aim of the analysis
below is to check whether the various stochastic models that we introduce
are indeed reversible.

14.2 Discrete-Time Models

14.2.1 The Jukes–Cantor Model
The simplest (and earliest) model of nucleotide substitution is the Jukes–
Cantor model (Jukes and Cantor (1969)). The original version of this model
was a continuous-time process. In this section we consider the parallel (and
simpler) discrete-time version, and discuss the continuous-time process in
Section 14.3.1.
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The discrete-time Jukes–Cantor model is a Markov chain with four states
a, g, c, and t. With the states labeled in this order, the transition matrix P
for this model is given by

P =

⎡⎢⎢⎣
1 − 3α α α α

α 1 − 3α α α
α α 1 − 3α α
α α α 1 − 3α

⎤⎥⎥⎦ . (14.1)

Here α is a parameter depending on the timescale chosen: If unit time were
chosen as 100,000 generations, α would take a value smaller than it would
be if unit time were chosen as 200,000 generations. Whatever time scale is
chosen, it is clearly necessary that α be less than 1

3 .
The transition matrix P in (14.1) possesses several elements of symmetry,

and in particular the model assumes that whatever the nucleotide in the
population is at any time, the three other nucleotides are equally likely to
substitute for it. Our first aim is to analyze the properties of this Markov
chain by the spectral decomposition methods discussed in Appendix B.19.

The eigenvalue equation (B.45) shows that the matrix (14.1) has eigen-
values 1 (with multiplicity 1) and 1 − 4α (with multiplicity 3). The left
eigenvector corresponding to the eigenvalue 1 is (.25, .25, .25, .25), and thus
the stationary distribution is the discrete uniform distribution

(ϕa, ϕg, ϕc, ϕt)′ = (.25, .25, .25, .25)′. (14.2)

This implies that after a long time has passed, the four nucleotides are
essentially equally likely to predominate in the population, as might be
expected from the symmetry of the model. The spectral expansion (B.49)
of Pn is

Pn =

⎡⎢⎢⎣
.25 .25 .25 .25
.25 .25 .25 .25
.25 .25 .25 .25
.25 .25 .25 .25

⎤⎥⎥⎦+ (1 − 4α)n

⎡⎢⎢⎣
.75 −.25 −.25 −.25

−.25 .75 −.25 −.25
−.25 −.25 .75 −.25
−.25 −.25 −.25 .75

⎤⎥⎥⎦ . (14.3)

From this it follows that whatever the predominant nucleotide in the pop-
ulation is at time 0, the probability that this is also the predominant
nucleotide at time n is

.25 + .75(1 − 4α)n, (14.4)

and the probability that some other specified nucleotide is the predominant
nucleotide at time n is

.25 − .25(1 − 4α)n. (14.5)

These values confirm the stationary distribution given in equation (14.2),
and also show that the rate of approach to the stationary distribution is
determined by the numerical value of the eigenvalue 1 − 4α.
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14.2.2 The Kimura Models
The highly symmetric assumptions implicit in the Jukes–Cantor model
are not realistic. A transition, that is, the replacement of one purine by
the other (for example of a by g) or of one pyrimidine by the other, is
in practice more likely than a transversion, that is, the replacement of
a purine by a pyrimidine or of a pyrimidine by a purine. Kimura (1980)
proposed a (continuous-time) two-parameter model to allow for this. The
transition matrix P for the discrete-time version of this model, with the
same ordering of states as that used for the Jukes–Cantor model, is⎡⎢⎢⎣

1 − α − 2β α β β
α 1 − α − 2β β β
β β 1 − α − 2β α
β β α 1 − α − 2β

⎤⎥⎥⎦ . (14.6)

Here α is the probability of a transition in one time unit, while β is the
probability that a purine is substituted by a nominated pyrimidine in one
time unit and is also the probability that a pyrimidine is substituted by a
nominated purine in one time unit. It is required that α + 2β < 1.

The eigenvalue equation (B.45) shows that the matrix (14.6) has eigen-
values 1 (multiplicity 1), 1−4β (multiplicity 1), and 1−2(α+β) (multiplicity
2). The left eigenvector corresponding to the eigenvalue 1 is (.25, .25, .25,
.25)′, so that in this model, as in the Jukes–Cantor model, the stationary
distribution is again discrete uniform. The spectral expansion (B.49) of Pn

is

Pn =

⎡⎢⎢⎣
.25 .25 .25 .25
.25 .25 .25 .25
.25 .25 .25 .25
.25 .25 .25 .25

⎤⎥⎥⎦+ (1 − 4β)n

⎡⎢⎢⎣
.25 .25 −.25 −.25
.25 .25 −.25 −.25

−.25 −.25 .25 .25
−.25 −.25 .25 .25

⎤⎥⎥⎦

+ (1 − 2(α + β))n

⎡⎢⎢⎣
.5 −.5 0 0

−.5 .5 0 0
0 0 .5 −.5
0 0 −.5 .5

⎤⎥⎥⎦ . (14.7)

This spectral expansion implies that whatever the predominant nucleotide
at time 0 at any site, the probability that this is also the predominant
nucleotide at time n is

.25 + .25(1 − 4β)n + .5 (1 − 2(α + β))n
. (14.8)

If the initial nucleotide is a purine, the probability that at time n the
predominant nucleotide is the other purine is

.25 + .25(1 − 4β)n − .5 (1 − 2(α + β))n
. (14.9)
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A parallel remark holds for pyrimidines. The probability that after n time
units a purine has been substituted by a specific pyrimidine is

.25 − .25(1 − 4β)n, (14.10)

and the probability that it has been replaced by one or the other pyrimidine
is

.5 − .5(1 − 4β)n. (14.11)

A parallel remark holds for the replacement of a pyrimidine by a purine. The
rate of approach to the stationary distribution depends on the numerical
values of α and β. If α > β, as would normally be assumed, the largest
nonunit eigenvalue is 1 − 4β.

A generalization of the above original Kimura model is provided by the
so-called Kimura 3ST model. Here the transition matrix is of the form⎡⎢⎢⎣

1 − α − β − γ α β γ
α 1 − α − β − γ γ β
β γ 1 − α − β − γ α
γ β α 1 − α − β − γ

⎤⎥⎥⎦ , (14.12)

where α, β, and γ are all unknown parameters. This Markov chain also has
a uniform stationary distribution. The detailed balance requirements (11.5)
hold, so that the Markov chain is reversible. This also implies reversibility
of the Jukes–Cantor Markov chain (14.1) and the Kimura two-parameter
Markov chain (14.6), since these are special cases of this model.

14.2.3 Further Generalizations of the Kimura Models
Although the Kimura models are more realistic than the Jukes–Cantor
model, they nevertheless possess symmetry assumptions that make them
unrealistic. In particular, they have uniform stationary distributions, which
is at variance with observation. Increasingly complex models have been pro-
posed over the years to give a closer match between theory and observation.
Each may be analyzed, in greater or lesser detail, by algebraic methods sim-
ilar to those used for the Jukes–Cantor and the Kimura models. These have
usually been proposed in the context of continuous-time models (discussed
below), but the principles apply equally to discrete-time models, and we
discuss them here in the discrete-time context.

An immediate generalization of the Kimura model (14.6) allows the
purine to pyrimidine substitution probability to differ from the pyrimi-
dine to purine substitution probability. This implies a transition matrix P
of the form⎡⎢⎢⎣

1 − α − 2γ α γ γ
α 1 − α − 2γ γ γ
δ δ 1 − α − 2δ α
δ δ α 1 − α − 2δ

⎤⎥⎥⎦ . (14.13)
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The stationary distribution of the Markov chain implied by this model is(
δ

2(δ + γ)
,

δ

2(δ + γ)
,

γ

2(δ + γ)
,

γ

2(δ + γ)

)′
. (14.14)

This is not uniform if δ �= γ, although it does possess symmetry properties
in that it allocates equal stationary probabilities to the two purines and to
the two pyrimidines. The Markov chain defined by this transition matrix,
like that defined by the Jukes–Cantor model and the Kimura model, is
reversible.

A further generalization has been made by Blaisdell (1985), who allows
different within-transition and within-transversion rates. The transition
matrix P for this model is⎡⎢⎢⎣

1 − α − 2γ α γ γ
β 1 − β − 2γ γ γ
δ δ 1 − β − 2δ β
δ δ α 1 − α − 2δ

⎤⎥⎥⎦ . (14.15)

The stationary distribution of this Markov chain is found to be(
δ(β+γ)

θ(α+β+2γ) ,
δ(α+γ)

θ(α+β+2γ) ,
γ(α+δ)

θ(α+β+2δ) ,
γ(β+δ)

θ(α+β+2δ)

)′
, (14.16)

where θ = γ + δ. This stationary distribution and the elements in the tran-
sition matrix (14.15) show that this model is not reversible. On the other
hand, the elements in the stationary distribution can now all be differ-
ent from each other, a property not enjoyed by any other model discussed
above.

Another generalization has been made by Schadt et al. (1998), who intro-
duced a continuous-time model whose discrete-time analogue has transition
matrix P given by⎡⎢⎢⎣

1 − α − γ − λ α γ λ
ε 1 − ε − γ − λ γ λ
δ κ 1 − β − δ − κ β
δ κ σ 1 − δ − κ − σ

⎤⎥⎥⎦ .

This transition matrix is reversible if and only if

βγ = λσ, αδ = εκ. (14.17)

Further generalizations, steadily relaxing symmetry assumptions, have been
made by Takahata and Kimura (1981) and Gojobori et al. (1982).

14.2.4 The Felsenstein Models
A different form of generalization of the Jukes–Cantor model was in-
troduced by Felsenstein (1981), whose notation we adopt here. In the
discrete-time version of this model, (often referred to as the F81 model, to
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distinguish it from the more general model discussed below), the probability
of substitution of any nucleotide by another is proportional to the station-
ary probability of the substituting nucleotide. This implies a transition
matrix P of the form⎡⎢⎢⎣

1 − u + uϕa uϕg uϕc uϕt

uϕa 1 − u + uϕg uϕc uϕt

uϕa uϕg 1 − u + uϕc uϕt

uϕa uϕg uϕc 1 − u + uϕt

⎤⎥⎥⎦ , (14.18)

where (ϕa, ϕg, ϕc, ϕt) is the stationary distribution and u is a parameter of
the model. (It will be shown in Section 14.2.7, and is easily checked directly,
that the stationary distribution for the model defined by (14.18) is indeed
(ϕa, ϕg, ϕc, ϕt).)

A second Felsenstein model, (Felsenstein and Churchill (1996), see also
Kishino and Hasegawa (1989)), often called the F84 model, is more general
than that given by (14.18), and is the evolutionary model used in the
PHYLIP package. This model has a transition matrix similar to that of
(14.18), except that the upper-left 2 × 2 component of (14.18) is replaced
by [

1 − u + uϕa − uKϕg

ϕa+ϕg
uϕg + uKϕg

ϕa+ϕg

uϕa + uKϕa

ϕa+ϕg
1 − u + uϕg − uKϕa

ϕa+ϕg

]
, (14.19)

and the lower-right component 2 × 2 of (14.18) is replaced by[
1 − u + uϕc − uKϕt

ϕc+ϕt
uϕt + uKϕt

ϕc+ϕt

uϕc + uKϕc

ϕc+ϕt
1 − u + uϕt − uKϕc

ϕc+ϕt

]
, (14.20)

The transition matrix defined by these amendments to the model (14.18),
as with the model (14.18) itself, has stationary distribution (ϕa, ϕg, ϕc, ϕt) .
From this it is easily shown that the model is reversible. The quantity K
is positive and is a parameter of the F84 model not included in the F81
model: larger values of K increase transition substitution rates compared
to those in the model (14.18).

Although the model (14.18) generalizes the Jukes–Cantor model, to
which it reduces if ϕa = ϕg = ϕc = ϕt = .25, it does not generalize
the Kimura two-parameter model. On the other hand the model defined
by (14.18), (14.19), and (14.20) does generalize the Kimura two-parameter
model (14.6), reducing to that model when the stationary distribution is
uniform. (This requires the identifications of the parameters α and β in the
Kimura model with u(2K + 1)/4 and u/4 respectively.) It also of course
generalizes the model (14.18), to which it reduces when K = 0.
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14.2.5 The HKY Model
A further model, introduced by Hasegawa et al. (1985), and called here
the HKY model, assumes that the transition probability matrix P is of the
form⎡⎢⎢⎣

1 − uϕg − vϕ1 uϕg vϕc vϕt

uϕa 1 − uϕa − vϕ1 vϕc vϕt

vϕa vϕg 1 − uϕt − vϕ2 uϕt

vϕa vϕg uϕc 1 − uϕc − vϕ2

⎤⎥⎥⎦ , (14.21)

where ϕ1 = ϕc+ϕt, ϕ2 = ϕa+ϕg. This model is an amalgam of the Kimura
model (14.6) and the Felsenstein model, and includes these as particular
cases.

The eigenvalues and eigenvectors of these matrices follow from those
given by Hasegawa et al. (1985) for the analogous continuous-time process.
The eigenvalues are

λ1 = 1, λ2 = 1 − v, λ3 = 1 − uϕ1 − vϕ2, λ4 = 1 − vϕ1 − uϕ2. (14.22)

The corresponding left eigenvectors are

�1 = (ϕa, ϕg, ϕc, ϕt)
�2 = (ϕ1ϕa, ϕ1ϕg,−ϕ2ϕc,−ϕ2ϕt)
�3 = (0, 0, 1,−1)
�4 = (1,−1, 0, 0)

and the corresponding right eigenvectors are

r1 = (1, 1, 1, 1)′

r2 =
(

1
ϕ2

,
1
ϕ2

,
−1
ϕ1

,
−1
ϕ1

)′

r3 =
(

0, 0,
ϕt

ϕ1
,
−ϕc

ϕ1

)′

r4 =
(

ϕg

ϕ2
,
−ϕa

ϕ2
, 0, 0
)′

.

These have been normalized by the requirement (B.47), and this leads im-
mediately to the spectral expansion (B.49) for the powers of the transition
matrix (14.21). The left eigenvector �1 also shows that (ϕa, ϕg, ϕc, ϕt) is
the stationary distribution of the Markov chain for this model, as the nota-
tion anticipated. The HKY Markov chain is reversible: See Section 14.2.7.
Thus the HKY model is the most flexible of those discussed for considering
evolutionary processes. This matter is discussed further in Section 15.7.
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14.2.6 Other Models
All of the above models have various simplifying assumptions built into
them. At the other extreme, a model having no such properties might
be more appropriate in practice; the numerical model (4.30), possessing no
symmetry or other simplifying features, was introduced with this possibility
in mind. In contrast to the algebraically defined models described above,
the rate of approach to stationarity for almost every numerical model, and
the stationary distribution itself, can only be found through a numerical
spectral expansion such as in Section 11.2.3.

The simpler models discussed above are unrealistic in that, for exam-
ple, they imply uniform nucleotide frequency distributions. More complex
models, however, might not be reversible, and thus should not be used for
the reconstruction of phylogenetic trees. The choice of one model over an-
other is thus often a difficult matter. Tests of one model against another
are discussed in Chapter 15.

14.2.7 The Reversibility Criterion
The discussion of Section 11.2.4 shows that the reversibility requirement
is necessary for various inferential procedures, and equation (11.5) gives
the reversibility requirement for any finite Markov chain. We now discuss
the reversibility criterion in the context of evolutionary models, focusing
on DNA substitutions and the 4 × 4 transition matrices used to describe
these substitutions. We assume that all transition matrices considered refer
to irreducible aperiodic Markov chains, so that any model discussed has a
stationary distribution, denoted as above by (ϕa, ϕg, ϕc, ϕt).

The general 4 × 4 transition matrix has twelve free parameters, namely
three free transition probabilities in each of the four rows of the transition
matrix. (The fourth transition probability in each row is determined by the
remaining three.) However another parameterization, using twelve different
free parameters, is more useful for our present purposes. This parameteri-
zation was given by Tavaré (1986), (see Swofford et al. (1996)), and under
this parameterization the transition matrix is written in the form⎡⎢⎢⎣

1 − uW uAϕg uBϕc uCϕt

uDϕa 1 − uX uEϕc uFϕt

uGϕa uHϕg 1 − uY uIϕt

uJϕa uKϕg uLϕc 1 − uZ

⎤⎥⎥⎦ . (14.23)

Here A, B, . . . , L are the twelve free parameters, (ϕa, ϕg, ϕc, ϕt) is the
stationary distribution of the Markov chain, and

W = Aϕg + Bϕc + Cϕt, X = Dϕa + Eϕc + Fϕt,

Y = Gϕa + Hϕg + Iϕt, Z = Jϕa + Kϕg + Lϕc.



484 14. Evolutionary Models

The necessary and sufficient condition for the Markov chain with
transition matrix (14.23) to be reversible is that the equations

A = D, B = G, C = J, E = H, F = K, I = L (14.24)

are all satisfied. When this condition holds, we call the model (14.23) the
general reversible process model , following the terminology of Yang (1994)
in the analogous continuous-time model. The general reversible model has
six free parameters, which can be taken as A, B, C, E, F , and I, so one
can think of paying for reversibility by losing the choice of six further
parameters, or by losing six degrees of freedom.

It is easily checked that when the conditions (14.24) hold, (ϕa, ϕg, ϕc,
ϕt) is indeed the stationary distribution of the model (14.23) (see Problem
14.4).

The Felsenstein F81 model (14.18) is the particular case of (14.23) with
A = B = · · · = L = 1, the Felsenstein F84 model defined by (14.18),
(14.19) and (14.20) is the particular case of (14.23) with B = C = E =
F = G = H = J = K = 1, A = D, I = L, and the HKY model is a
special case of (14.23) with B = C = E = F = G = H = J = K and A =
D = I = L. All three models are thus reversible, as claimed above. The
choice of one of these models instead of the general reversible model may
also be thought of as involving a loss of degrees of freedom. These degrees
of freedom are relevant to the test of one these models against the general
reversible model, a matter discussed in Section 15.9.4.

14.2.8 The Simple Symmetric Amino Acid Model
The simple symmetric matrix M1 defined in in Section 6.5.4 is the “amino
acid” 20×20 matrix generalization of the “nucleotide” Jukes–Cantor matrix
(14.1). Like that model it is reversible. The n-step transition probabilities
{m

(n)
jk } given in equations (6.28) and (6.29) define the spectral expan-

sion of this matrix, which is a direct analogue spectral expansion of the
Jukes–Cantor matrix (14.1). As with the Jukes–Cantor model, the sim-
ple symmetric model is not realistic. We have analyzed it in some detail in
Chapters 6 and 10 because it illuminates various properties of more realistic
PAM models.

14.3 Continuous-Time Models

As justified in Section 11.7.1, it is assumed for all continuous-time evolu-
tionary models considered that the transition probabilities are of the form
described in (11.29) and (11.30).
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14.3.1 The Continuous-Time Jukes–Cantor Model
The Jukes–Cantor and Kimura models were first proposed as continuous-
time models, and in their continuous-time versions can be analyzed by the
methods of Section 11.7. It is convenient to continue to label the states as
a, g, c, and t, as in Section 14.1, and to introduce the further notation that
i, j, and k are arbitrary members of the set {a, g, c, t}.

In the Jukes–Cantor model the instantaneous transition rates qij and qi

are defined by qij = α for all i �= j, and qi = 3α. Replacing qkj and qj in
equation (11.33) by α and 3α, respectively, we get

d

dt
Pij(t) = −3αPij(t) + α

∑
k �=j

Pik(t). (14.25)

Since
∑

k �=j Pik(t) = 1 − Pij(t), this equation simplifies to

d

dt
Pij(t) = α − 4αPij(t). (14.26)

This is a linear differential equation and may be solved by standard meth-
ods. The solution involves a constant of integration, which is allocated
by the boundary conditions Pii(0) = 1, Pij(0) = 0, i �= j. Using these
boundary conditions, the solution is found to be

Pii(t) = .25 + .75e−4αt, (14.27)

Pij(t) = .25 − .25e−4αt, j �= i. (14.28)

These equations show that as t → ∞, both Pii(t) and Pij(t) approach
0.25. Thus in the stationary distribution all nucleotides have equal prob-
ability at any site, as is expected from the symmetry of the model. This
stationary distribution can also be found by applying equations (11.34).
The similarity of the expressions for Pii(t) and Pij(t) and the expressions
given in equations (14.4) and (14.5) indicate why the present model is the
continuous-time analogue of the discrete-time Jukes–Cantor model.

The fact that qi is independent of i shows that if an event is defined
as the substitution of one nucleotide for another, substitutions follow the
laws of a homogeneous Poisson process as discussed in Section 4.1. The
probability that j substitutions occur in time t is given by the Poisson
probability distribution (4.10) with parameter 3α. It can be shown (see
Problem 14.7) that if j transitions from one state to another have occurred
in the continuous-time Markov process described by equation (14.26), the
probability that the process has returned to its initial state after these j
transitions is

1
4

+
3
4

(
−1

3

)j

. (14.29)

The probability that j transitions do occur in time t is given by (4.10) with
the parameter λ replaced by 3α. Combining these results, the probability
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that at time t the original nucleotide is the predominant one is

∞∑
j=0

e−3αt (3αt)j

j!

(
1
4

+
3
4

(
−1

3

)j
)

. (14.30)

By equation (B.20), this reduces to the right-hand side in equation (14.27).
Equation (14.28) is found similarly.

Suppose that two independent contemporary populations are available
that descended from a common population t units of time ago, and that
the evolutionary properties of these two populations since their common
ancestor are described by the Jukes–Cantor model. We would like to use
data from these two populations to estimate the evolutionary parameter α
in this model, describing in a sense the rate at which one nucleotide replaces
another in these populations. We would also like to estimate the time t,
since this can be used in defining a distance between the two populations.

It is convenient to begin the analysis by considering the probability p
that, at a given site, the predominant nucleotides in the two populations
differ. Given two DNA sequences each consisting of N nucleotide sites, and
with the assumption that the replacement processes at all sites are inde-
pendent and have identical stochastic properties, the theory of Section 3.3.1
shows that p̂, the observed proportion of sites at which the predominant
nucleotides differ between the two populations considered, is an unbiased
estimator of p. It is thus natural to estimate p by p̂. Further, equation
(2.77) shows that the variance of this estimate is

variance of p̂ =
p(1 − p)

N
. (14.31)

The simplicity of this calculation follows largely from the iid assumption
made. This assumption is unlikely to hold in practice, and we later examine
some of the consequences of its not holding.

We now use this estimate, and its variance, to discuss the estimation of t
and of the parameter α in the Jukes–Cantor model. Poisson process theory
shows that in this model, the mean number of substitutions, in t units of
time, at any nucleotide site down the two lines of descent leading from the
common founder to the two populations is 6αt. The mean number ν of
substitutions down the two lines of descent at all N sites together is then
ν = 6Nαt.

The symmetry inherent in the Jukes–Cantor model implies that whatever
the predominant nucleotide at time 0, the probability I(t) that at time t
the two descendent populations have the same predominant nucleotide is

I(t) = (Pii(t))
2 +
∑
j �=i

(Pij(t))
2
,
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where Pii(t) is given by (14.27) and Pij(t) is given by (14.28). These
equations show that

I(t) = .25 + .75e−8αt. (14.32)

The probability p that the nucleotides are different in the two populations
is thus

p = 1 − I(t) = .75(1 − e−8αt). (14.33)

This equation relating p to αt can be found in a second, more efficient, way.
The reversibility of the Jukes–Cantor model implies that the properties of
the stochastic process describing any line of descent is the same as that
describing the process in reverse, that is, by considering the corresponding
line of ascent. The elapsed time up the line of ascent from one of the two
contemporary populations up to the founder population, and then down
the line of descent from the founder population to the other contemporary
population, is 2t. Therefore, the probability that, at any nucleotide site,
the same nucleotide occurs in both populations is given by equation (14.27)
with t replaced by 2t. This leads directly to the expression (14.32) and thus
to (14.33).

The evolutionary parameters introduced above are all functions of the
composite parameter αt. Standard practice in estimating αt is to invert the
relation between p and αt in (14.33), yielding

αt = −1
8

log
(

1 − 4
3
p

)
,

and thus to estimate the composite αt by

α̂t = −1
8

log
(

1 − 4
3
p̂

)
. (14.34)

This right-hand side is defined only if p̂ < 3
4 . When p̂ ≥ 3

4 the two sequences
are more dissimilar than two random sequences will tend to be, and it is
natural to define t = +∞. Even when p̂ < 3

4 the estimator (14.34) is a
biased estimator of αt, and in fact, there is no unbiased estimator of αt.
We consider this “within-model” bias further in Section 14.3.6. For the
moment we follow the implications of the estimation procedure in 14.34).

Equation (14.34) shows that unless t can be estimated extrinsically, the
aim of estimating the parameter α cannot be achieved. Similarly, unless α
can be estimated extrinsically, the aim of estimating t cannot be achieved.
All that is possible is estimation of the composite parameter αt. If on
the other hand the parameter α can be regarded as being the same for
all populations, at all times, and at all nucleotide sites, then proportional
values for t can be found, and these can be used as surrogate distances in
a phylogenetic tree estimation procedure as described in Section 15.5.
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The estimate ν̂ of ν = 6Nαt is

ν̂ = −3N

4
log
(

1 − 4
3
p̂

)
. (14.35)

The issue of bias discussed above arises also for this estimator, but again
we ignore it.

The estimation formula (14.35) has several interesting consequences.
Perhaps the most interesting is that if p̂ is small, the Taylor series
approximation (B.25) shows that

ν̂ ∼= N

(
p̂ +

2
3
p̂2
)

.

Thus ν̂ is marginally larger than Np̂, the observed number of sites at which
the predominant nucleotides in the two populations differ from each other.
For example, if in 300 of N = 3,000 sites the predominant nucleotide differs
between the two populations, then p̂ = 0.1 and ν̂ ∼= 320. Thus it is estimated
that about 20 substitutions occurred but are not observed by counting the
differences between the extant sequences. This is because more than one
substitution can occur in the same position. The quantity ν accounts for
all substitutions.

The statistical differentials variance formula (B.33) can be used to ap-
proximate the variances of the estimators (14.34), and (14.35). We illustrate
this by considering the variance of ν̂. Equation (B.33) shows that this
variance is approximately(

dν̂

dp̂ p̂=p

)2

(variance of p̂),

which from (14.31) is (
dν̂

dp̂ p̂=p

)2
p(1 − p)

N
.

By equation (14.35), this equals

Np(1 − p)e8ν/3N . (14.36)

Since maximum likelihood estimators have optimality properties as dis-
cussed in detail in Chapter 8, it is appropriate to find the maximum
likelihood estimate of the parameter ν. Suppose that of the N sites sampled
there are j = Np̂ sites for which different nucleotides appear in the two
populations. Under the iid assumption the likelihood of the data in terms
of ν is, from equations (14.32) and (14.33), proportional to(

3
4

(
1 − e−4ν/3N

))j (1
4

+
3
4
e−4ν/3N

)N−j

, (14.37)
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where 8αt has been replaced by 4ν/3N . The derivative of the logarithm of
this expression with respect to ν is

1
N

e−4ν/3N

(
j

p
− N − j

1 − p

)
, (14.38)

where

p =
3
4

(
1 − e−4ν/3N

)
. (14.39)

It follows from this that the expression (14.35) for ν̂ in is the maximum
likelihood estimate of ν if p̂ is given by j/N .

This result also follows directly from the invariance property of maximum
likelihood estimators, discussed in Section 8.3. The maximum likelihood
estimator of p is p̂ = j/N , and the relation (14.39) between p and ν implies
that the maximum likelihood estimate ν̂ is given by (14.35). In the following
section we use this more direct approach when analyzing the continuous-
time Kimura model.

A further differentiation of the log likelihood and the asymptotic variance
formula (8.18) shows that the asymptotic variance of ν̂ is identical to the
expression in (14.36).

14.3.2 The Continuous-Time Kimura Model
The analysis of the continuous-time Kimura model (14.6) is more complex
than that for the Jukes–Cantor model, and the notation must be handled
more carefully. The instantaneous parameters qij and qi, introduced in
equations (11.29) and (11.30), take the values

qij = α for the (i, j) pairs (a, g), (g, a), (c, t), and (t, c),
qij = β for the (i, j) pairs (a, c), (a, t), (g, c), (g, t),

(c, a), (c, g), (t, a), and (t, g).

In all cases,

qi = α + 2β. (14.40)

If these choices are made, the system of equations (11.33) yields a set of
four simultaneous differential equations typified by

d

dt
Paa(t) = −(α + 2β)Paa(t) + αPag(t) + β (Pac(t) + Pat(t)) , (14.41)

where the notation now indicates specific nucleotide types. The boundary
conditions for these equations are Pii(0) = 1 for all i, Pij(0) = 0 for all
j �= i. This system of four differential equations can be solved, and for any
i the value of Pii(t) is found to be

Pii(t) = .25 + .25e−4βt + .5e−2(α+β)t. (14.42)
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The expression for Pij(t) depends on the choice of i and j. If the initial
predominant nucleotide is a specified purine (respectively pyrimidine), then
the probability that at time t the predominant nucleotide is the other purine
(respectively pyrimidine) is

.25 + .25e−4βt − .5e−2(α+β)t. (14.43)

If the initial predominant nucleotide is a specified purine (respectively
pyrimidine), then the probability that at time t the predominant nucleotide
is a pyrimidine (respectively purine) is

.5 − .5e−4βt. (14.44)

The probabilities given by these expressions reduce to the corresponding
formulae for the Jukes–Cantor model when α = β. They are also the con-
tinuous time analogues of the discrete-time equations (14.8), (14.9), and
(14.11). A further implication of these equations is that, as expected, in the
stationary distribution for this model all nucleotides have equal probability.

The detailed balance requirements (11.35) hold for the Kimura model, so
that the process is reversible. This implies that the Jukes–Cantor process
is also reversible.

As in the Jukes–Cantor model, Poisson process theory is relevant to the
evolutionary properties of the Kimura model. For the Kimura model qi,
defined in (14.40), is independent of i. Thus if an event is defined as a
substitution from one nucleotide to another at any nucleotide site in the
line of descent of any population, the probability that j events occur in
time t is given by equation (4.10), with the generic parameter λ now given
by α + 2β.

The observed number of transition substitutions and the observed num-
ber of transversion substitutions can be used to estimate the parameters
of the Kimura model using the reversibility property of the model and the
“line of ascent and descent” argument described in Section 14.3.1. Here t
is replaced by 2t in the right-hand sides of equations (14.42), (14.43), and
(14.44). The resulting expressions then show that if

γ = 4(α + β)t, φ = 8βt,

then the probability p1 that at any site one purine (pyrimidine) occurs in
one sequence and the other purine (pyrimidine) in the other sequence is

p1 = .25 + .25e−φ − .5e−γ .

The probability p2 that at any site a purine (pyrimidine) occurs in one
sequence and a pyrimidine (purine) in the other sequence is

p2 = .5 − .5e−φ.

Suppose that in a DNA sequence consisting of N nucleotide sites there
are n1 sites where one purine (pyrimidine) occurs in the sequence of one
population and the other purine (pyrimidine) in the sequence of the other
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population, and n2 sites where a purine occurs in one sequence and a pyrim-
idine in the other. The observed proportions p̂1 = n1/N and p̂2 = n2/N are
the maximum likelihood estimators of p1 and p2, respectively (see Problem
8.2). The invariance property of maximum likelihood estimators discussed
in Section 8.3 implies that the maximum likelihood estimates γ̂ and φ̂
satisfy the equations

p̂1 = .25 + .25e−φ̂ − .5e−γ̂ ,

p̂2 = .5 − .5e−φ̂.

These equations lead to the maximum likelihood estimates

γ̂ = − log(1 − 2p̂1 − p̂2), (14.45)

φ̂ = − log(1 − 2p̂2). (14.46)

In the DNA sequence considered, the mean number ν of nucleotide substitu-
tions through the course of evolution since the original founding population
is

ν = 2N(α + 2β)t = N(.5γ + .25φ).

From equations (14.45) and (14.46), the maximum likelihood estimator ν̂
of ν is

ν̂ = −N (.5 log(1 − 2p̂1 − p̂2) + .25 log(1 − 2p̂2)) . (14.47)

This estimator is subject to the same qualifications as those made for the
Jukes–Cantor estimator.

It is interesting to compare calculations derived from (14.47) with those
from the parallel Jukes–Cantor model. If N = 3,000 and the data yield
210 transitional and 90 transversional changes, and thus 300 changes in
total, then p̂1 = 0.07 and p̂2 = 0.03. The total number of changes from one
predominant nucleotide to another at some time during the evolution of the
two populations since their common founder population is then estimated
from equation (14.47) to be about 326. This is somewhat larger than the
corresponding estimate in the Jukes–Cantor model.

This implies that if a satisfactory estimate of α and β are available extrin-
sically, the estimate of t differs in the Kimura and the Jukes–Cantor models
given the same data in each. Thus if the true model is the Kimura model and
the Jukes–Cantor equation (14.34) is used to estimate t, then a “between-
models” biased estimation procedure has been used. This indicates a
problem with using an estimate of t as a surrogate for a between–population
distance, as discussed above. In practice, the true evolutionary procedure
was far more complex than that described by the Kimura model, so that
even larger biases can be expected if a simple model such as the Jukes–
Cantor model or the Kimura model is used for estimation of evolutionary
parameters. This is discussed further in Section 14.3.6.
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All the above estimators can also be found by writing down the likelihood
and maximizing its logarithm with respect to γ and φ. In this case the
likelihood is a multinomial, being proportional to(

.25 + .25e−φ + .5e−γ
)N−n1−n2 (

.25 + .25e−φ − .5e−γ
)n1 (

.5 − .5e−φ
)n2

.
(14.48)

Maximization of this function with respect to φ and γ leads to estimators
identical to those in (14.45) and (14.46). If the values of α and β are known,
a similar procedure may be used to find the maximum likelihood estimate
of t. A procedure very similar to this is discussed below in Section 14.3.5.

While the procedure of maximizing (14.48) is unnecessarily long so far
as finding estimates is concerned, there is one advantage to it. Variance
approximations for γ̂ and φ̂ can be found from a second differentiation
of the logarithm of the likelihood, using the information matrix (8.31),
together with an approximation for the covariance of γ̂ and φ̂ parallel to
those for the variances of γ̂ and φ̂. The parameter ν is a linear combination
of γ and φ, and the variance of ν̂ can be found by applying equation (2.62).

14.3.3 The Continuous-Time Felsenstein Model
The discrete-time Felsenstein model was discussed in Section 14.2.4. That
model is the discrete-time version of a continuous-time model originally
proposed to address the problem of phylogenetic tree reconstruction, and
so we now describe this continuous-time model.

The essential assumption of the discrete-time Felsenstein model (14.18) is
that the probability of the substitution of one nucleotide by another is pro-
portional to the stationary probability of the substituting nucleotide. This
assumption is maintained in the continuous-time version of the model. If,
for example, the predominant nucleotide at any given time t is a, the model
assumes that for small h, the probability that the predominant nucleotide
at time t + h is X is uϕXh, where X stands for any of the nucleotides g, c,
and t, while the probability that the predominant nucleotide continues to
be a at time t + h is 1 − u(ϕg + ϕc + ϕt)h, where in all the above expres-
sions terms of order o(h) are ignored. Parallel assumptions are made if the
predominant nucleotide at time t is g, c, or t.

These assumptions define the instantaneous transition rates qjk and qj

in equations (11.29) and (11.30), and this leads to specific forms for four
simultaneous differential equations of the form (11.33). The solution of
these equations is

Pii(t) = e−ut + (1 − e−ut)ϕi, (14.49)

Pij(t) = (1 − e−ut)ϕj , j �= i. (14.50)

This solution implies that the continuous-time Felsenstein model satisfies
the detailed balance equations (11.35), and is thus reversible.
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14.3.4 The Continuous-Time HKY Model
The continuous-time analogue of the HKY model (14.21) is discussed in
detail by Hasegawa et al. (1985). Its time-dependent solution is given by
the spectral expansion corresponding to the discrete-time model (14.21),
with λn

j replaced by e(λj−1)t. It shares all the desirable properties of its
discrete-time analogue, and is used in phylogenetic studies, as discussed in
Chapter 15.

14.3.5 Continuous-Time Amino Acid Model
The simple symmetric discrete-time model of Section 14.2.8 has a direct
continuous-time analogue, found from the Kolmogorov equations (11.33) by
putting qjk = α. We shall choose α so that the PAM requirement that the
probability that the initially predominant amino acid after one time unit
is still predominant is 0.99. With these choices the solutions of equations
(11.33) are

Pii(t) = .05 + .95e−20αt, (14.51)

Pij(t) = .05 − .05e−20αt, j �= i. (14.52)

These equations are similar in form to the Jukes–Cantor equations (14.27)
and (14.28). The requirement Pii(1) = 0.99 yields α = 0.00053.

These calculations allow maximum likelihood estimation of t, the time
(in “PAM model” time units) back to an assumed common ancestor of two
contemporary amino acid sequences, provided that the simple symmetric
model can be assumed. Suppose, for example, that two contemporary se-
quences of length 10,000 are compared and that in this comparison there
are 1,238 matches and 8,762 mismatches. Since the simple symmetric model
is reversible and the time connecting the two sequences is 2t, the invariance
property of maximum likelihood estimators and equation (14.51) show that
the maximum likelihood estimate t̂ of t satisfies the equation

.1238 = .05 + .95e−40αt̂. (14.53)

The solution of this equation (with α = 0.00053) is t̂ = 120.5. Of course, as
discussed in Section 14.2.8 with respect to its discrete-time analogue, this
simple model is quite unrealistic, so that a result such as this cannot be
taken as applying to real evolutionary processes.

Further “amino acid” transition matrices may be found from the “amino
acid” analogues of the Kimura, Felsenstein and HKY models. For exam-
ple, the continuous-time amino acid analogue of the continuous-time F81
Felsenstein model (14.50) was discussed by Hasegawa and Fujiwara (1993),
and has properties which are the direct “amino acid” extensions of those
of the Felsenstein model.

Models based on amino acids can be far more complicated than those
based on nucleotides. For example, Muse and Gaut (1994) consider a model
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with a 61 × 61 transition matrix whose states correspond to the non-
terminating codons. In this model the probability of a substitution of codon
i by codon j in time δt is of the form απnδt for a synonymous substitution
(that is, if codons i and j correspond to the same the amino acid), is of
the form βπnδt for a non-synonymous substitution for which codons i and
j differ by a single nucleotide substitution, and is 0 if codons i and j differ
by more than a single nucleotide substitution. Here πn is the population
frequency of the substituting nucleotide.

Further properties of amino acid models where reversibility is assumed
are developed by Müller and Vingron (2000).

14.3.6 A Remark About Bias
Three different forms of bias arise in the discussion in Sections 14.3.1 and
14.3.2, and it is important to distinguish among them.

First, in Section 14.3.1 the estimator α̂t given by equation (14.34) is
biased: its expected value is not the true value of αt. This bias is analo-
gous to that arising for the maximum likelihood estimate of the parameter
k described below equation (8.34). Although in both cases the correct
probability distribution is assumed (the probabilities defined by the Jukes–
Cantor model in Section 14.3.1, the gamma distribution in the case of
estimating k), a bias in the estimation of a parameter still arises. We might
call this a “within-model” bias.

We could hope to amend the estimator to lower or even remove the
bias. In the case of the estimation of k as discussed below equation (8.34),
the bias would be removed by using the method of moments estimator, or
decreased by using the maximum likelihood estimation with a large sample
size. In the case of equation (14.34), a bias reduction is possible by using
a Taylor series approximation to the right-hand side. The second-order
Taylor approximation (B.30) shows that the right-hand side in (14.34) may
be approximated by

−1
8

log
(
1 − 4

3
p
)

+
1
6

p̂ − p

1 − 4p/3
+

8
9

(p̂ − p)2

(1 − 4p/3)2
. (14.54)

The mean of p̂ is p and the variance of p̂ is as given in equation (14.31).
Thus the expected value of the right-hand side in (14.54) is

−1
8

log
(
1 − 4

3
p
)

+
8
9

p(1 − p)
N(1 − 4p/3)2

. (14.55)

This implies that the estimator α̂t
∗

of αt, defined by

α̂t
∗

= α̂t − 8
9

p̂(1 − p̂)
N(1 − 4p̂/3)2

, (14.56)

removes some of the bias arising for the estimator α̂t defined in (14.34).
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Second, the bias discussed in Section 14.3.2 arises for a different reason
than that discussed above. In that section the true evolutionary model is
the Kimura two-parameter model, but the parameter αt in that model is
estimated by the procedure which assumes the Jukes–Cantor evolution-
ary model, that is through equation (14.34). Thus this bias arises through
model misspecification, and the bias might be called a “between-models,”
or “systematic,” bias. This form of bias is not removed by increasing the
sample size. Nor is a bias reduction possible along the lines of that leading
to (14.56) when the true evolutionary model is quite unknown.

In the case of the bias discussed in Section Section 14.3.2, if the value
of α is known, the model misspecification described implies a bias in the
estimation of the evolutionary time t. While the numerical value of the bias
is not large, the two models involved, that is the Kimura two-parameter
model and the Jukes–Cantor model differ from each other only through the
value of one parameter. Thus the two models are “close.” One can expect
a far greater bias if the Jukes–Cantor model, or any other relatively simple
evolutionary model, is used for estimation of evolutionary parameters when
in fact a far more complicated model is appropriate.

Finally, in using any evolutionary model to estimate properties of a phy-
logenetic tree, independent evolutionary processes are often assumed at
the various sites, with the same stochastic process properties assumed at
all sites, at all times and in all species. These assumptions are unrealistic,
and using them adds a further systematic bias in estimation procedures.
This bias also is not removed by increasing the sample size or by methods
similar to those leading to the revised estimator (14.56).

These various biases have obvious implications concerning the reliability
of any phylogenetic tree reconstruction. This matter is discussed further in
Chapter 15 in the context of such a reconstruction.

Problems

14.1 Prove equation (14.3) by induction on n. (For a discussion of proofs
by induction, see Section B.18.)

14.2 Check that the stationary distribution of the Markov chain (14.15) is
the vector given in (14.16).

14.3 Check that the Markov chains (14.12) and (14.13) are reversible by
showing that they satisfy the detailed balance conditions (11.3), but that
the chain defined by (14.15) does not satisfy these conditions and is thus
not reversible.
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14.4 Show that when the conditions (14.24) hold, the stationary distribu-
tion of the model (14.23) is (ϕa, ϕg, ϕc, ϕt).

14.5 The Jukes–Cantor model (14.1) is a special case of (that is, is nested
within) the Kimura model (14.6). It is also special case of (that is, is nested
within) the Felsenstein model (14.18). Show that it is the only model that
is nested within both the Kimura model (14.6) and the Felsenstein model
(14.18), and that neither the Kimura model nor the Felsenstein model is
nested within the other.

14.6 Show that the conditions (14.24) are necessary and sufficient for the
transition matrix (14.23) to be reversible.

14.7 Derive the expression (14.29). (Hint: use the result of Problem 4.7.)

14.8 Check that the continuous-time Kimura model satisfies the detailed
balance requirements (11.36).

14.9 Show that the sum in the expression (14.30) does reduce, as claimed,
to the expression on the right-hand side of (14.27).

14.10 The aim of this question is to compare the numerical values of the two
estimators ν̂ given respectively in equations (14.35) for the Jukes–Cantor
model and (14.47) for the Kimura model. In this comparison we identify
the values of p̂ in the Jukes–Cantor model with p̂1 + p̂2 in the Kimura
model.

(i) Use the logarithmic approximation (B.24) to show that when p̂1 and
p̂2 are both small, the two estimators are close, and differ by only a
term of order p̂2.

(ii) Use the more accurate approximation (B.25) to compare the values
of the two estimators when (a) p̂1 = p̂2, (b) p̂1 = 2p̂2. Thus show that
even when p̂1 = p̂2 the two estimates of ν differ.

14.11 Estimate the standard deviation of the estimate t̂ = 120.5 found by
solving equation (14.53).



15
Phylogenetic Tree Estimation

15.1 Introduction

The construction, or more accurately the estimation, of phylogenetic trees
is of interest in its own right in evolutionary studies. It is also useful in
many other ways, for example in the prediction of gene function; aspects
of this area of the emerging field of phylogenomics are discussed by Eisen
(1998). In this chapter we give a brief introduction to this topic, on which
there is a vast literature. Our focus tends to be on problems and difficulties
in currently used procedures. Accounts of the whole field are provided by
Hillis et al. (1996) and by Felsenstein (2004).

We deliberately use the expression “tree estimation” rather than the
more commonly used “tree reconstruction,” since the latter expression can
be taken to imply an error-free process leading to the correct tree. In reality,
tree estimation is prone to many potential forms of error, some of which
we discuss here.

A phylogenetic tree is binary if each node except the root connects with
either one or three branches, while the root, of which there can be at most
one, connects with two branches. A tree without a root is called an unrooted
tree.

The evolutionary relationships between a set of species is represented by
a binary tree, and in this book we consider only binary trees. “Species”
may refer either to organisms or to sequences such as protein or DNA.
It is required that the set of “species” have a common ancestor, so that
while one would not construct a tree relating a hemoglobin protein to a
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ribosomal protein, it would be natural to construct a tree relating the
various hemoglobins.

The following are examples of rooted phylogenetic trees. The first relates
five different species and the second relates five different hemoglobins. The
unlabeled nodes represent common ancestors of the children nodes below
them.
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The lengths of the edges represent evolutionary time, so the longer an
edge is, the longer is the evolutionary time separating the nodes at the ends
of the edge. The node at the top, the root, represents a common ancestor
to all species in the tree. In these examples the leaves represent extant
species, so they are all at the same vertical height. This may not be so in a
tree with extinct species, where the leaves are at possibly different levels,
as in the following example:
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An unrooted tree shows the evolutionary relationships between the
species at the leaves but does not indicate the direction in which evolu-
tionary time flowed between the internal nodes. Each node connects either
one or three edges in an unrooted tree. An example of an unrooted tree
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(with five leaves) is:
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Given a set of species, there is some (unknown) phylogenetic tree con-
necting the members and giving their true evolutionary relationships. Our
goal is to infer the tree as accurately as possible from information about
the species. Before the advent of genetic information this was normally
done using morphological information, such as the shape of the teeth and
bones. The advent of genetic information in the form of DNA or protein
sequences has fostered a more mathematical/algorithmic approach to tree
estimation.

We discuss in turn three main types of tree-reconstruction methods,
namely distance methods, parsimony methods, and statistical methods.

15.2 Distances

Several of the algorithmic procedures used in tree reconstruction are based
on the concept of a distance between species. We thus introduce the concept
of distance in this section and describe some properties of the distances that
arise in phylogenetic reconstruction.

The most natural way to define the distance between species is in terms of
years since their most recent common ancestor. If this distance were known,
no other distance measure would be needed. In practice, this distance is
seldom if ever known, and surrogate distances are used instead. The use of
surrogates will affect the accuracy of tree reconstruction, as discussed in
Sections 15.5 and 15.8. For the moment we assume that distances in years
are known, and we call these exact distances.

Let S be a set of points. The standard requirements for a distance mea-
sure on S are that for all x and y in S, (i) d(x, y) ≥ 0, (ii) d(x, y) = 0 if
and only if x = y, (iii) d(x, y) = d(y, x), and (iv) for all x, y, and z in S
d(x, y) ≤ d(x, z) + d(z, y).
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A distance measure d(·, ·) on a set of species is said to be tree-derived1 if
there is a tree with these species at the leaves such that the distance d(x, y)
between any pair of leaves x and y is the sum of the lengths of the edges
joining them. This distance satisfies the three requirements above. However,
not all distance measures on a set S are tree derived, since a tree-derived
measure must satisfy certain additional requirements, as demonstrated by
the unrooted tree shown:
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The distances in this tree must satisfy the strict inequality d(x, z) <
d(x, y) + d(y, z). For a tree-derived distance measure, this strict inequality
must hold for all species x, y, and z in the tree.

For rooted trees joining extant sequences there are further requirements.
In the rooted tree shown,
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the distances between x, y and z must satisfy the equation d(x, y) = d(x, z)
and the additional requirements d(y, z) < d(x, y), d(y, z) < d(x, z). This
requirement motivates a further abstract distance measure concept. Any
distance measure on a set S that satisfies the requirement that of the three
distances between any three members of the set, two are equal and are
greater than the third, is said to be ultrametric.2

Thus a tree-derived distance measure on a (rooted) tree of extant species
(with exact edge lengths) is ultrametric. The converse of this statement,
that any ultrametric distance is tree derived, will be proved in Section 15.3.
We shall show further how such a tree can be found, and that up to trivial
changes this tree is unique. This allows us to go from a set of extant species
to the unique rooted tree that relates them, as long as we know the exact
distances between all pairs of species.

Not all tree-derived distance measures are ultrametric, as is the case
when the tree represents only extant species and exact distances. However,
if a distance measure is tree-derived it is still possible to recover a unique
unrooted tree giving all distances between species. This is demonstrated

1The term additive is generally used. For our purposes “tree-derived” is more natural.
2Ultrametric distances arise in many contexts, not only biology, and the definition

varies depending on the context. For phylogenetics, this is the correct definition.
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in Section 15.4. In practice, distances used in tree reconstruction are not
necessarily tree-derived, being surrogate distances that only estimate true
distances. Properties of surrogate distances are discussed in Section 15.5.

15.3 Tree Reconstruction: The Ultrametric Case

In this section we prove that if an ultrametric distance measure between
species is given, then there is a unique (up to trivial changes) rooted
tree joining these species that gives these distances. (What “up to triv-
ial changes” means will be made clear as we proceed.) This tree is found
using a constructive method that differs from the well-known UPGMA (un-
weighted pair group method using arithmetic averages) algorithm discussed
below.

We assume that a set of species s1, s2, . . . , sn is given with an ultrametric
distance measure d(x, y) between all pairs of species x and y. The proof of
the above claim is by induction. We first construct the correct tree relating
two species and show it is unique. We then show that if we can reconstruct
the tree correctly and uniquely for m species s1, s2, . . . , sm, for some m ≥ 2,
we can do this also for m + 1 species s1, s2, . . . , sm+1.

The first step is the construction of a tree relating s1 and s2. Both s1 and
s2 must be equidistant from the root, so there is clearly a unique solution:
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(In this and similar steps we ignore trivial changes such as interchanging
s1 and s2.) Now suppose there are m + 1 species, m ≥ 2. By the induc-
tion hypothesis, we can assume the tree can be uniquely reconstructed for
s1, s2, . . . , sm. Consider the root of the tree and the two edges emanating
from it. The species s1, s2, . . . , sm divide into two sets, the set SL consisting
of the species down the left edge from the root and the set SR consisting
of the species down the right edge from the root. Let x be any element of
SL and y be any element of SR.
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x∈SL y∈SR (15.2)

Now consider species sm+1 and the three distances between x, y, and
sm+1. The ultrametric property implies that there are three possibilities,
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depending on which pair of these three is equidistant from the third. These
possibilities are (1) d(sm+1, x) = d(sm+1, y), (2) d(sm+1, y) = d(x, y), and
(3) d(sm+1, x) = d(x, y).

If (1) holds, d(x, y) is strictly less than d(sm+1, x) = d(sm+1, y). In this
case, we place sm+1 follows:
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where a = d(sm+1, x)/2 and b = d(sm+1, x) − d(x, y)/2. Since d(x, y) <
d(sm+1, x), b is positive, as required.

This gives a tree that gives the correct distances between sm+1, x, and y.
We must check that this placement gives the correct distance from sm+1 to
any other species. For any species z in SL or SR, d(z, old root) = d(x, y)/2.
Thus the distance from sm+1 to z in the new tree is a + b + d(x, y)/2, and
it is required to show that this is equal to d(sm+1, z). Now, in the new tree

d(sm+1, x) = a + b +
d(x, y)

2
, (15.3)

so it is sufficient to show that d(sm+1, x) = d(sm+1, z) for all z in SL
and SR. Suppose z ∈ SL. By the induction hypothesis, the tree does
give the correct distance for x, y, and z, so d(x, z) < d(x, y). Therefore,
d(x, z) < d(x, y) < d(sm+1, x), the second inequality following from (15.3).
Therefore, by the ultrametric property, d(sm+1, x) = d(sm+1, z) as desired.
The corresponding argument when z is in SR is symmetric to this case.

In case (2), d(sm+1, y) = d(x, y). The ultrametric property then shows
that d(sm+1, x) < d(x, y). Since x is in SL and y is in SR,

d(x, y) = d(x, z) for any z in SR. (15.4)

Therefore, d(sm+1, x) < d(x, z) for all z in SR, and

d(sm+1, z) = d(x, z) for all z in SR. (15.5)

Thus sm+1 is equidistant from every member of SR. There are two possi-
bilities: Either sm+1 is also equidistant from every member of SL or it is
not. If sm+1 is equidistant from every member of SL, we add sm+1 to the
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tree, as shown:
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Here a = d(sm+1, x)/2 and b = d(sm+1, y)/2 − a. Since d(sm+1, x) <
d(sm+1, y) it follows that b > 0, as it must be.

We next check that this allocation gives the correct distances. For z in SL
we must show that d(sm+1, z) = 2a, that is, that d(sm+1, z) = d(sm+1, x).
This requirement follows from the assumption that sm+1 is equidistant
from every member of SL. Now suppose that z is in SR. Then the distance
between sm+1 and z in the tree above is a+ b+ 1

2d(x, y). This simplifies to
1
2 (d(sm+1, y)+d(x, y)). By (15.4) and (15.5), this is equal to d(sm+1, z), as
required.

This leaves the case where sm+1 is equidistant from every member of SR
but is not equidistant from every member of SL. If we remove the root and
its two edges from the tree (15.2), we are left with two trees, one relating
the species in SL and one relating the species in SR. We call these TL and
TR, respectively. The tree TL contains m − 1 or fewer leaves, so we know
by induction that sm+1 can be uniquely added to this tree and all the
distances between sm+1 and the rest of the leaves in TL are correct. Call
this new tree T ′. We know further that since sm+1 is not equidistant to
every leaf in TL, T ′ has the same root as TL. Therefore, we can put back
together the whole tree relating all of s1, s2, . . . , sm+1 as
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We now show that sm+1 has the correct distances to the rest of the species
s1, . . . , sm. Since we know that T ′ has been correctly reconstructed, this is
true for all species in SL. Suppose z is in SR. Now x is in SL, so the tree
constructs the distance from sm+1 to z to be d(x, z). We must therefore
show that d(x, z) = d(sm+1, z). We know that d(x, sm+1) < d(x, y) (this
follows from assumption 2), and we know that d(x, y) = d(x, z). Therefore,
d(x, sm+1) < d(x, z). The ultrametric property therefore gives us d(x, z) =
d(sm+1, z), as desired.
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The proof for case (3) is identical in form to this proof.
�

This proof is constructive in that it provides an algorithm for reconstruct-
ing the tree. One adds the species to the tree one by one in no particular
order, with the inductive step showing explicitly where each next species
should be added.

We now sketch the UPGMA algorithm of Sokal and Michener (1958),
which is used frequently for tree reconstruction. In the case of ultrametric
distances, this reconstructs the same tree as that derived by the meth-
ods described above. This algorithm can be used for any set of distances,
ultrametric or not; however, if the distance is not ultrametric, it cannot
reconstruct a tree that gives back the distance. It is often used anyway, as
an approximation.

Two species are neighbors if the path between them contains only one
node. Thus in the tree below, x and y are neighbors while x and z are not.
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For a tree whose derived distance satisfies the ultrametric property, pairs
of species that are closest together with respect to the distance metric are
neighbors.

The UPGMA algorithm uses the concept of groups of species. We start
with the set of groups where each group consists of a single species. Let
d(i, j) be the distance between species i and j. We define the distance
between groups Gu and Gv, with respective sizes n1 and n2, by

d∗(Gu, Gv) =
1

n1n2

∑
x ∈ Gu
y ∈ Gv

d(x, y).

Suppose at the first step that the two groups with minimal distance between
them are groups Gr = {x} and Gs = {y}. These are now joined with a
two-leaf rooted tree, with root “species” r1, as shown in the diagram.
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Groups Gr and Gs are now replaced by the single group Grs = {x, y}.
The algorithm continues with this new group, with the distance from Grs

to any remaining group being defined as above.
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The group Grs is now added to the previous set of groups and Gr and Gs

removed. The process is repeated with this new set of groups. In general,
at each step the pair of groups having smallest distance between them is
replaced by a new group consisting of the union of these two groups.

This process is repeated, building the tree in a bottom-up way until it is
entirely reconstructed.

This procedure gives the tree topology. One then can solve for the correct
lengths for all of the edges in the tree. For example, in the first step species
x and y are joined at the node r1, the distance from any other species z to
r1 is

1
2
(d(x, z) + d(y, z) − d(x, y)). (15.7)

If the distance is ultrametric, this procedure builds the (unique) correct
tree. Unfortunately, when distances are not ultrametric, as in practice will
almost always be the case, this tree reconstruction method can give quite
misleading results. The tree that the algorithm returns is necessarily a tree
relating extant species, and therefore will give an ultrametric distance, so if
the original distance is not ultrametric an incorrect tree must be returned.
One might think that this tree will at least have the correct topology, if not
the correct edge lengths; however as is shown in the diagram below this is
not always the case. In this tree, x and y are the two closest leaves in the
tree, but they are not neighbors.
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This problem leads to the tree construction method described in the
following section.

15.4 Tree Reconstruction: the Neighbor-Joining
Approach

In this section we show that given any tree-derived distance measure on a
set of species, a tree can be constructed giving this distance measure. This
method was introduced by Saitou and Nei (1987).

The proof of this claim uses the quantity δ(x, y), defined by

δ(x, y) = (N − 4)d(x, y) −
∑

z �=x,y

(d(x, z) + d(y, z)), (15.8)
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where N is the number of species. The function δ(x, y) is not a distance
measure because it may take negative values. However, the following is true.

Theorem. Suppose S is a set of species and d is a tree-derived distance
on S obtained from an unrooted tree. If x and y are such that δ(x, y) is
minimum, then x and y are neighbors.

Proof. We follow the proof of Studier and Keppler (1988). Consider four
species as in the following tree:
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We have

δ(i, j) = −d(i, k) − d(i, �) − d(j, k) − d(j, �)

and

δ(i, k) = −d(i, j) − d(i, �) − d(k, j) − d(k, �),

so that

δ(i, k) − δ(i, j) = −d(i, j) − d(k, �) + d(i, k) + d(j, �).

The above diagram shows that the positive terms on the right-hand side
in this equation include the length of the internal edge twice, whereas the
negative terms do not include it. Therefore, δ(i, k) − δ(i, j) > 0, that is,
δ(i, k) > δ(i, j). Every leaf in an (unrooted) four-leaf tree has a neighbor.
Therefore, any value of δ arising for a pair of non-neighbors x and y is
greater than that for neighbors x and z.

Suppose now that N > 4. In this case not all species have neighbors in
the sense defined above. Suppose i and j are such that δ(i, j) is minimum,
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but i and j are not neighbors. If i has a neighbor k, then

δ(i, k) − δ(i, j)
= (N − 4)d(i, k) − (N − 4)d(i, j)

−
∑

z �=i,k

d(i, z) −
∑

z �=i,k

d(k, z) +
∑

z �=i,j

d(i, z) +
∑

z �=i,j

d(j, z)

= (N − 4)d(i, k) − (N − 4)d(i, j)

−
⎛⎝d(i, j) +

∑
z �=i,j,k

d(i, z)

⎞⎠−
⎛⎝d(k, j) +

∑
z �=i,j,k

d(k, z)

⎞⎠
+

⎛⎝d(i, k) +
∑

z �=i,j,k

d(i, z)

⎞⎠+

⎛⎝d(j, k) +
∑

z �=i,j,k

d(j, z)

⎞⎠
= (N − 3)d(i, k) − (N − 3)d(i, j) −

∑
z �=i,j,k

d(k, z) +
∑

z �=i,j,k

d(j, z)

=
∑

z �=i,j,k

(d(i, k) + d(j, z) − d(i, j) − d(k, z)). (15.9)

The following tree shows that each quantity in the summand is negative.

�

�

�

� �

�

�

.

................................................................................

.

.....................
.....................

.....................
.................

. ....................................................................................................................... .

.....................
.....................

.....................
..................

................................................................................

i

k j

z

Therefore, δ(i, k) < δ(i, j), contradicting the minimality assumption on
δ(i, j). It follows that neither i nor j can have a neighbor if δ(i, j) is minimal,
and the tree must be as shown:
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⎫⎪⎬⎪⎭

i j

k � k′ �′

P2 P3

(15.10)

In this tree P1, P2, and P3 are paths, not edges, but all other line segments
represent edges. The path to any leaf other than those shown joins this
diagram along one of the paths P1, P2, or P3. The key observation is that
we can assume the existence of both k and � down path P2, because if there
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were only one leaf down path P2, it would have to be a neighbor of i. A
similar observation holds for k′ and �′, because neither is a neighbor of j.

We focus for the moment on i, j, k, and �.
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(15.11)

A calculation similar to the one that led to (15.9) gives

δ(k, �) − δ(i, j)

=
∑

z �=i,j,k,


(
[d(i, z) + d(j, z) − d(i, j)] − [d(k, z) + d(�, z) − d(k, �)]

)
.

(15.12)

The proof of this claim is left as an exercise (Problem 15.3).
By our assumption that δ(i, j) is minimal, the left-hand side of (15.12) is

non-negative, so that the sum on the right-hand side is nonnegative. Any
leaf z different from i, j, k, and � joins the diagram (15.11) at path P1 or at
path P2. Let p(z) be the point where the path from z meets this diagram
above. This leads to the two possibilities shown below.
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We calculate the summand in (15.12) in both cases. In the left-hand case
this summand is equal to −2d(a, b) − 2d(a, p(z)), and in the right-hand
case it is equal to 2d(a, p(z)) − 2d(b, p(z)). Given one leaf of each type, say
leaf z1 of the type in the left-hand diagram and leaf z2 of the type in the
right-hand diagram, addition of the two summands gives

−2d(a, b) − 2d(a, p(z1)) + 2d(a, p(z2)) − 2d(b, p(z2)),

and since −d(a, b) + d(a, p(z2)) < 0, this is negative. It follows that there
must be more leaves of type 2 than there are of type 1. Tree (15.10) then
shows that there are strictly more leaves joining P2 than P3.
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However, exactly the same argument can be applied to show that more
leaves must join P3 than P2. This contradiction shows that the assumption
that i and j are not neighbors is impossible, so that the theorem is proved.�

The above proof shows how an unrooted tree can be reconstructed when
the distances d(i, j) are tree-derived. Let x and y be such that δ(x, y) is the
minimum of all δ(i, j) values, where δ(i, j) is defined in (15.8). We know
from the above that x and y are neighbors. Let r1 be the node on the path
that joins them. Since d(i, j) is assumed to be a tree-derived metric, the
distance d(r1, z) for any leaf z �= x, y is calculated as defined in (15.7).
Using any such leaf, d(x, r1) and d(y, r1) are determined by

d(x, r1) =
d(x, z) − d(y, z) + d(x, y)

2
,

and

d(y, r1) =
d(y, z) − d(x, z) + d(x, y)

2
.

We next replace x and y in our original set of species with r1, and repeat
the process. Eventually the entire tree is reconstructed.

The “neighbor-joining” algorithm of tree reconstruction for distances
that are possibly not tree-derived is based on the above procedure. For
each distance d(i, j), we calculate the quantity δ(i, j), and the species x, y
for which this quantity is minimized are first paired. Distances from the
node r1 joining species x and y are then calculated using (15.7). Species x
and y are then replaced by a new species r1 and the procedure repeated
starting from a new set of values δ(i, j) including this node. Eventually, a
tree is reconstructed. If the distances between species are not tree-derived,
and are given for example as inferred distances as discussed in Section 15.5,
there is no guarantee that the tree developed is the correct tree.

15.5 Inferred Distances

Unfortunately, exact distances between species are seldom if ever known,
and inferred distances must be used instead. We now discuss some
properties of these distances.

If d(x, y) is the exact distance between extant species x and y and d′(x, y)
is an inferred distance between x and y, and if there is a constant C such
that d(x, y) = Cd′(x, y) for all x and y, then since d is tree-derived, d′ will
be also. The relationship between trees and tree-derived distance measures
discussed in Section 15.4 shows that a tree reconstructed from d′ has the
same topology, that is, the same branching structure and same labeling of
the leaves, as that found using d.
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We now discuss inferred distances used in practice using DNA informa-
tion derived from each species considered. The molecular clock need not
run at the same speed along different lineages. This can happen for several
reasons, including differing generation lengths in different species, different
degrees of importance of the biological sequence to the particular species,
and so on. Thus a distance measure reflecting the molecular clock might
lead to the following tree joining mouse, elephant, and elephant shrew:
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In this example the molecular clock ran faster in the mouse and shrew
lineages than in the elephant lineage, so that proportions were not kept
with the actual exact distances. If an inferred distance measure perfectly
captures this difference in rates, it will be tree-like, and the neighbor-joining
algorithm can be used to reconstruct the tree that gave these inferred
distances. This tree will have the same branching structure as the true
tree, often its most interesting feature.

In practice, such reconstruction is seldom possible. An inferred distance
between two extant species is sometimes found by using aligned DNA se-
quences taken from each, using an inferred distance measure proportional
to

− log
(

1 − 4
3
p

)
, (15.13)

where p is the proportion of nucleotides where the two sequences differ. This
estimate derives from equations such as (14.34), and thus implicitly assumes
a Jukes–Cantor model of evolution. It is thus subject to the comments
made below equation (14.47), so that if some more complicated model is
appropriate, these estimators might have undesirable properties.

A more complicated inferred distance may be derived from the Kimura
two-parameter model of Section 14.3.2, using the analogue of (15.13) for
that model. This is done in the example of Section 15.8. If, as is almost
certain to be the case in practice, a model more complex than the Kimura
two-parameter model is appropriate, then inferred distances using this
model might also have undesirable properties.

There are further problems concerning inferred distance estimates. First,
proteins and protein-coding DNA sequences have subregions that are highly
conserved and other regions that change more readily. After a long time
the latter regions will diverge significantly between sequences, while the
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conserved regions remain more or less the same. Second, the rates at which
these sequences evolve also depend on the generation times of the species
involved. Finally, measures such as (15.13) are only as good as the align-
ment on which they are based. “Nonfunctional” sequences, when distantly
related, are difficult to align correctly.

As a result of these problems, inferred distances calculated from genetic
data of extant species will seldom if ever give a distance proportional to the
true distance, and need not even satisfy the three fundamental properties
of distance measures given in Section 15.2.

Despite these problems it is still possible to apply the UPGMA and
neighbor-joining algorithms. Because inferred distances do not necessarily
satisfy the three basic properties of distances, negative distances can arise
in the inferred trees. Further, the UPGMA and neighbor-joining trees need
not agree, as is shown in the example of Section 15.8.

15.6 Tree Reconstruction: Parsimony

Under the parsimony approach a total “cost” is assigned to each tree, and
the optimal tree is defined as that with the smallest total cost. The focus
is on finding an optimal topology , or shape, and not on edge lengths. The
parsimony approach to tree construction is based on the assumption that
the tree (or trees) with least cost should be used to estimate the phylogeny
of the species involved.

We describe the cost calculation for the case of DNA sequences when
unit cost is made for each nucleotide substitution. A central step in the
procedure is to allocate sequences to the internal nodes in the tree. For any
such set of sequence allocations the total cost of the tree is the sum of the
costs of the various edges, where the cost of an edge joining two nodes, or
a node and a leaf, is the number of substitutions needed to move from the
sequence at one to the sequence at the other.

In principle the optimal tree is found in two steps. First, all possible
tree topologies must be listed, including the allocation of the species from
which the data are found to the leaves. Second, for any such choice the
labeling of the internal nodes of the tree that minimizes the cost of the
tree must be found. This second step is accomplished by Fitch’s algorithm
(Fitch (1971)). This algorithm provides the optimal set of internal nodes
for a fixed topology. Once these are found the minimum “cost” of a tree
with a given fixed topology can be found. The final tree is that which, over
all choices of topology, has overall minimum cost.

In practice, the most difficult problem associated with this procedure
concerns the listing of all possible topologies of the tree. For trees joining
a small number of species the optimal tree can be found by complete enu-
meration of all possible tree topologies. For three species there is only one
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form for the topology, namely that shown in (15.1), with three choices for
the labeling of the species x, y and z. Figure (6.3) on page 246 shows the
five optimal allocations of internal nodes for the three aligned sequences
AA, AB, and BB, found by complete enumeration. With four species there
are two different forms of topology for rooted trees, as shown. There are
three essentially different labelings for the left-hand tree (three choices for
the species chosen as the neighbor of the left-most species) and twelve for
the right-hand tree (four choices for the rightmost species, three remaining
choices for the next to rightmost species), giving fifteen essentially different
labeled trees in all. Once again complete enumeration is straightforward.
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Although complete enumeration methods are possible when the num-
ber of species is small, the number of possible trees increases extremely
rapidly as the number of species increases, and complete enumeration is
not possible with more than a small number of species. When there are s
species at the leaves of a rooted tree there are 1× 3× 5× · · · ×(2s − 3)
= (2s − 3)!/2s−2(s − 2)! essentially different tree topologies. For 20 species
this is about 8 × 1021 topologies. Despite this, some researchers use parsi-
mony methods to reconstruct trees with as many as 500 or more species,
and this requires the use of heuristic methods (see Durbin et al. (1998)).

The parsimony method does not construct arm lengths. Nor does it use
any explicit evolutionary model. Proponents of the method see the latter
as an advantage: to the extent that any evolutionary model used in tree
reconstruction might be misleading, a method not dependent on any model
has some merit. Others see the lack of an evolutionary model, and the lack
of constructed arm lengths, as disadvantages to the method.

15.7 Tree Estimation: Maximum Likelihood

In this section we discuss the maximum likelihood estimation of the phy-
logenetic tree leading to a number of contemporary species from some
common ancestor species, given genetic data from the contemporary species
and some continuous-time evolutionary model such as one of those dis-
cussed in Section 14.3. Maximum likelihood phylogenetic tree estimation
was introduced by Edwards and Cavalli-Sforza (1964), but much of the
theory was introduced by, or follows from, Felsenstein (1981).

Suppose first that the topology of the tree is given and that the aim
is to find the maximum likelihood estimate of the various arm lengths in
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the tree, given some continuous-time evolutionary model. This is done by
writing down the likelihood of the data in terms of these lengths as param-
eters, and then maximizing this likelihood with respect to these lengths.
This maximization process is, in practice, usually extremely difficult, even
when many simplifying assumptions are made. One such simplifying as-
sumption often made is the iid assumption, that the substitution processes
at different sites within any species are described by the same stochastic
model and that these processes are independent from one site to another.
The assumption of independent evolution at different sites allows an analy-
sis of the evolution at the various sites separately, with an overall likelihood
obtained by multiplying individual site likelihoods, or in practice an over-
all log likelihood obtained by summing log likelihoods. It is also frequently
assumed that time homogeneity of the common stochastic process applies,
and that different species evolve independently. These assumptions can
hardly be expected to approximate reality closely, and much recent re-
search attempts to remove them or at least to assess the biases involved
when they are incorrectly made. We refer to some of these analyses in Sec-
tion 15.9.4. On the other hand, in view of the comments about modeling
in Section 4.10, in particular the fact that one can expect a simple initial
model to be refined by further work, these assumptions form a reasonable
starting point for the stochastic approach to the estimation of phylogenetic
trees.

We now discuss an analysis in which the iid assumption is made. Initially,
no specific assumption is made below about the evolutionary model chosen.
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Figure 15.1.

As a specific example, suppose that we have data from five species
s1, . . . , s5 and that the topology of the phylogenetic tree connecting them
is as given in Figure 15.1. Then at any particular site the five respective
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nucleotides in these five species are known, and these comprise all the data
available for this site. Denote these five nucleotides by A, B, C, D, E. We
do not know the nucleotides at the internal nodes n0, n1, n2, and n3, nor
do we know the lengths �1, . . . , �8 of the various arms in the tree. The aim
of the process is to estimate �1, . . . , �8, which are lengths of time.

Suppose that the nucleotide at the root n0 is W and is given, and that
the nucleotides at the nodes n1, n2, and n3 are X, Y , and Z, respectively.
Then there is a certain likelihood for the arm lengths �1, . . . , �8, deriving
from whichever nucleotide evolutionary model is chosen. The stationary
probability of the nucleotide W is denoted by ϕW and the probability,
under the model assumed, of a substitution of nucleotide A by nucleotide
B after time � is denoted by PAB(�). Then the joint probability that W is
indeed the nucleotide at the root of the tree, that the nucleotides X, Y ,
and Z occur at the nodes as indicated, and that the arm lengths take the
values �1, . . . , �8 is

ϕW PWX(�1)PWZ(�2)PXY (�3)PXC(�4)PY A(�5)PY B(�6)PZD(�7)PZE(�8).
(15.14)

Expressions of this form are now computed for all 64 possible combi-
nations of nucleotides at the internal nodes. The sums of the resulting
expressions give the likelihood of �1, . . . , �8 conditional on the assumption
that the nucleotide at the root of the tree is W . This calculation is then
made for all four possible nucleotides at the root of the tree, and the sum of
these four expressions is, for the site in question, the likelihood of �1, . . . , �8.

This procedure is now repeated over all the nucleotide sites in the data,
and the overall likelihood is computed from the product of the various
site likelihoods. This overall likelihood can now, at least in principle, be
maximized.

This procedure can now be done, again in principle, for all possible
topologies, and then the maximum likelihood tree is that which, taken
over all possible topologies, has the maximum likelihood.

These comments gloss over difficult computational problems. There are,
however, some computational simplifications possible. In the first part of
the process, the various summations implied by the above operations can
be reorganized in a way that saves considerable computational effort, as
pointed out by Felsenstein (1981). A second computational saving was also
noted by Felsenstein. If the stochastic process of nucleotide substitution
assumed is reversible, it is impossible to estimate the location of the root
of the tree. This “pulley principle” implies that in the reversible case the es-
timation procedure relates to unrooted trees. Since with s observed species
there are (2s − 3)!/2s−2(s − 2)! rooted trees, as noted in Section 15.6, and
the smaller number (2s − 5)!/2s−3(s − 3)! of unrooted trees (Edwards and
Cavalli-Sforza (1964), Felsenstein (1978a)), one might think that the use
of unrooted trees would imply some useful economy in computation. How-
ever, even for comparatively small s the number of unrooted trees is still
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prohibitively large for a complete search, and thus heuristic methods are
necessary for the second part of the process.

Felsenstein (1981) suggests as one heuristic method the strategy of build-
ing up an unrooted tree starting with two species and successively adding
species. If at any stage there are k − 1 species in the tree, there are 2k − 5
segments to which species k can be attached. Each of these is tried in
turn, the maximum of the likelihood for each possible attachment is cal-
culated, and the topology with the highest likelihood accepted. Before the
next species is tried, local rearrangements of the current tree can be carried
out to see whether any rearrangements increase the likelihood. If so, the
rearrangement maximizing the likelihood is accepted.

This process does not necessarily lead to the tree with the maximum like-
lihood, and the tree constructed by this process will depend on the initial
two species chosen and the order in which species are added. Neverthe-
less, with reasonably self-consistent data the same tree will tend to arise
whatever order of species is chosen (Felsenstein (1981)). Different orderings
can be tried, and if more than one tree is obtained from the different or-
derings, that with the highest likelihood can be chosen. Heuristic methods
such as this overcome some of the computationally difficult problems of
tree estimation.

In some cases the maximum-likelihood tree can be shown to be identical
to the tree found by parsimony methods. This is interesting because the
first attempt at phylogenetic tree reconstruction by maximum-likelihood
methods (Edwards and Cavalli-Sforza (1964)) proved to be beyond the
computing power of the time, and Edwards and Cavalli-Sforza resorted
to an algorithmic parsimony approach to the problem. The links between
maximum likelihood estimates and parsimony estimates are examined in
detail by Tuffley and Steel (1997). Identity of the two will occur only under
the simplest, and probably unrealistic, evolutionary models. Further as-
pects of the relation between the maximum likelihood and parsimony tree
reconstruction methods are given by Lewis (1998).

When the evolutionary process possesses simplifying properties, for ex-
ample iid substitution processes at the various sites, time homogeneous
substitution processes, and identical processes along the various arms of
the phylogenetic tree, one would expect that all methods discussed above
would lead to similar trees, all of which should be close to the true tree.
This would be especially so if the stochastic substitution process assumed in
the data analysis were the same as that generating the actual substitutions.
Kuhner and Felsenstein (1994) generate data at the tips of various trees un-
der all the simplifying assumptions listed above. The substitution process
at any site used in deriving the simulated data was chosen as the Kimura
two-parameter model discussed in Section 14.3.2, and this was in effect the
model assumed in the data analysis. Further, the transition/transversion
ratio assumed in the analysis was set equal to that in the simulation. A
further feature of the analysis was that the mean number of substitutions
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at any one site in the entire phylogenetic tree was about 0.02 in the “low”
substitution and about 0.9 in the “high” substitution model. However, even
at the high rate 0.9, the probability of two or more substitutions at a given
site in the entire tree is, from the Poisson approximation (4.11), about
1 − e−.9(1 + .9) = .23, so that on average two or more substitutions will
arise in less than one quarter of cases. This implies that the tree reconstruc-
tion process is simpler than those arising when many substitutions can be
expected to occur, for which there will be an increased level of scrambling
of data at the tips of the trees.

The simulation results of Kuhner and Felsenstein (1994) confirm that
under these many simplifying assumptions, all standard tree estimation
methods lead to similar results and to trees either identical to, or very
close to, the true tree, with accurate estimates of arm lengths and other
features. Kuhner and Felsenstein also carry out simulations when substi-
tution rates are allowed to vary between branches of the tree and when
substitution rates are allowed to vary between different sites. In this case
inaccuracies and biases arise in the various estimation procedures consid-
ered. This indicates the danger of tree reconstruction methods using real
data when the simplifying iid and constancy of rates assumptions are made,
since in practice these assumptions are unlikely to hold. This is illustrated
by the example of Section 15.8.

For real data sets a different picture can emerge. Yang (1994), (1996a),
(1996b), (1997a), (1997b) analyzed a variety of data sets from various pri-
mate species. Although it is not easy to summarize the results of these
analyses briefly, some broad conclusions do emerge. First, simple models
such as the Jukes–Cantor, Kimura, and and the simple Felsenstein model
(14.18) can result in severe estimation errors of branch lengths. The HKY
model must perform better than these models since they are all special
cases of this model, and the added complexity of the HKY model does
appear to add significant flexibility to the modeling process. However the
HKY model itself sometimes performs significantly worse than the gen-
eral reversible process model (see Section 14.2.7), of which it is itself a
particular case. Thus increasing the complexity of the model often seems
to be necessary and to be worth the loss of degrees of freedom involved.
On the other hand the completely general evolutionary model (14.23) does
not seem usually to perform significantly better than the general reversible
process model. Thus given the desirability of the reversibility criterion, the
latter model appears often to provide a reasonable compromise between
simplicity and analyzability on the one hand and complexity and reality
on the other.

Further aspects of Yang’s analysis refer to the question or substitution
rate heterogeneity, discussed in Sections 15.9.3 and 15.9.4.
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15.8 Example

The various tree construction methods outlined above use different ap-
proaches to construction and different optimality criteria. Those methods
based on distances suffer from the fact that the inferred distances nor-
mally used need not be proportional to the true distances, and in fact
may not even be tree-like. Further, all methods make either explicit or
implicit assumptions about the evolutionary process. These are explicit in
the maximum likelihood approach but implicit in other approaches. For
example, the logic of the parsimony approach relies implicitly on an as-
sumption of equal evolutionary rates in all edges of the tree and at all
times. These assumptions clearly are not correct for the real historical
evolutionary process, and the explicit assumptions used in many maxi-
mum likelihood approaches are also not likely to reflect biological reality
closely. Given this, the “between-model” biases that can arise as described
in Section 14.3.6 become relevant.

It is therefore not surprising that the four methods described, namely
ultrametric reconstruction, neighbor joining, parsimony and maximum
likelihood, will often produce different trees when real (as opposed to sim-
ulation) biological data are used, even when the same data are used in the
four methods. This is illustrated in the example in this section, which in-
vestigates the evolutionary relationships between 14 species of mammals.
We will see that even though all four methods disagree to some extent,
there are divisions that they all do agree on. This leads to the concept
of a consensus tree, which tries to capture this information. We do not
give the details of consensus trees, but we illustrate the basic idea in this
example. The DNA used in the tree construction is from the interphotore-
ceptor retinoid binding protein (Stanhope et al. (1996)). Sequences for the
14 species were taken from Genbank, aligned using CLUSTAL W (Thomp-
son et al. (1994)), and a 532 nucleotide ungapped subalignment extracted
by eye and used as input to the various tree algorithms. The species are

Marsupial Mole Whale Insectivore
Wombat Dolphin Human
Rodent Pig Sea Cow
Elephant Shrew Horse Hyrax
Elephant Bat

and the alignment is
gctccagcaaatgatcaagtaccaggtattggagggcaatgtgggttacctaagagtggactacatccctggccag
gctccagcaaatgatcaagtaccaggtactggagggtaatgtgggttacctgagagtggactacatccctggccag
gctacagaggaatattcaccatgaggttctggagggcaacttgggttacctatgggtggacgatctcttgggccag
gctggagagaagcatgagctacaggattctggatggtaatgtgggctacttgcagatagacaacatcccaggccag
gctgcagacaagcatgagctacaaggttctggagggcaacgtgggctacctgcgggtagacaacatcccaggccag
gctgcagaacggcctccgccatgaggttctggaaggcaatgtgggctacctgcgggtggacgacatcccaggccag
gctgcagaacggcttccgccatgaggttctggaaggcaatgtgggctacctgcgggtggacgacatcccgggccag
gctgcacaatagtctccgccatgaggttctggaaggcaatgtgggctacctgcgggtggacgacatcccaggccag
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gctgcaggagggcatccgctatgacattctggagggcgacgtgggctacttgcgagtggacaacatcccgggccag
gctgcaaaaggccatccactacaatgttctggagggcaacgtgggctactttcgggtggacgacatcccgagccag
gctgcagagggccatccgctaccaggttctggcggccaatgtgggctacctggggagggataacctccccggtcag
gctgcaaaggggcctccgccatgaggttctggagggtaatgtgggctacctgcgggtggacagcgtcccgggccag
gctgcagaccagcatgagctacaaggttctggatggcaatgtgggctacctgcgggtagacaacatccctggccag
actgcagacaagcatgagctacaaggttctggagggcaacgtgggttacctgcgggtagacaacattccgggtcaa

gaggtagtagaaaaagtcggggagttcctggtgaatgacatctggaagaagctcatggggacatcctctctagtgc
gaggtggtagagaaagtcggggagttcctggtgaatgatgtctggaagaagctcatggggacctcttctctggtgt
gaggtactgagtaagctcgggggattcctggtggcccacatgtgggggcagctcatgaatacctctggcttggtgc
gaggtactgagccgactaggggccttcctggtggcccatgtctggagacagctcatgggcacctctgctttggtgt
gaggtgctgaaccagctgggggccttcctggtgactcacgtctggaagcagcttatgggctcctctgccttagtgc
gaggtgatgagcaagctgaggagcttcctggtggccaacgtctggaggaagctcatgggcacctctgccttggtgc
gaggtgatgagcaagctgaggagcttcctggcggccaacgtctggaggaagctcatgggcacctctgccttggtgc
gaggtgatgaacaagctggggagcttcctggtagtcaacgtctgggaaaagctaatgggcacctctgccttggtgc
gaggtggtgagcaagctggggggcttcctggtggacaatgtctggaggaagctcatgggcacctctgccttggtgc
gaggtggtgagcaatcttgggggcttcctcgtggacaatttctggaggaagctcctgggcacctctgccttggtgc
gaggtggtgaccatactgggggctctcctggtggccaatgtctgggggaagctcatagccacctctcccttggtgc
gaggtgctgagcatgatgggggagttcctggtggcccacgtgtgggggaatctcatgggcacctccgccttagtgc
gaggtgctgagccgtctggggggcttcctggtgactcacatctggaagcagctcatgggctcctctgccttagtcc
gatgtgctgaaccagctggggggcttcctggtgactcatgtgtggaagcagctcatgggctcctctgccttagtgc

tagatctccagcacagcacagggggtgaagtttcgggaatcccctttgtcatttcctatctacatcagggggatat
tggatctccagcacagcacgggaggcgaagtttcaggaatcccgtttgtcatttcctacctacaccagggggataa
tagatctccggcactgtactggggggcatgtttctggtattccctatgtcatctcctacttgcaccccgggaacac
tggacctgcggcagtgcacaggaggccatgtttccagcatcccttaccttatttcctacctgcacccagcgggcac
tggacctgcgacactgcacagggggccatgtctccagcatcccttacctcatttcctacctgcacccgggcggcac
tggacctccgccattgcactgggggccacatttctggcatcccctatgtcatctcctacctgcacccggggaacac
tggacctccgccactgcactggcggccacatttccggcatcccctatgtcatctcctacctgcacccagggaacac
tagacctccggcactgcaccaggggccacgtttctggcatcccctatgtcatctcctacctgcacccagggaacac
tggacctccggcactgcactgggggccacgtttccggcatcccctatatcatctcctacctgcacccaggaaacac
tagacctcccacactgcactggggggcacgtttctgggatctcctatgtcatctcctacttgcaccgagggaacac
tggacctccgacactgcactgggggccatgtctctgggatcccctacgtcatctcctacctgtacccaggaaacac
tggatctccggcactgcacaggaggccaggtctctggcattccctacatcatctcctacctgcacccagggaacac
tggacctgcggcactgtatgggtggccatgtctccagcatcccttacatcatctcctacctacaccccggaggagc
tggacctaaggcactgcacggggggccatgtctccagtatcccttacctcatctcctacctgcatccagggagcac

cctgctccatgtagacacagtttatgaccggccatcaaacactaccacagagatctggacccagcctcaggtgctg
tctgctgcatgtagacacagtttatgaccggccatcaaacaccaccacagagatctggaccctgccccaggtgttg
aatcatgcatgtgaacaccatctatgatcggccctctaataccaccacagagatctggaccttggccaaggtcctg
ggtcctgcacgttgacaccatttacaaccgtccctctaacacaaccactgagctctggactttgcctcaggtgctt
cgtgctgcacgtggacaccatttacaaccgcccctccaatacgactacggagctctggaccttgccccaggtgctg
agtcctgcacgtggataccatctatgatcgcccctctaatacgaccactgagatctggaccctgcccgaagtccta
agtcctgcatgtggataccatctacgatcgcccctctaatacgaccactgagatctggaccctccccgaagtccta
ggtcctgcacgtggacaccatctatgaccgtccctccaatacgaccactgagatctggaccctgcccgaagtcctg
ggtcctgcacgtggacaccatctacgaccgcccctccaatacgaccactgagatctggaccctgcccgaggtcctg
cgtcctgaatgtggacccactctatgaccccccctccaacacgaccacagagatctggaccctgccccaggtcctg
ggtcctgcatatggacaccatctatgaccgcccctccaatatcaccactgagctctggaccctgccccagctccag
catcctgcacgtggacactatctacaaccgcccctccaacaccaccacggagatctggaccttgccccaggtcctg
agtgctgcatgtggacaccatttacaaccgcccctccaatacgactactggggtctggaccttgccccaagtgctg
tgtgctgcacgtggacaccatttacaaccgcccctccaatacaactactgagctctggaccttgccccaggtgctg

ggtgagaggtatggaggggagaaggacatggtggttctcaccagccatcatactgtaggggtagctgaggatatcg
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ggtgagaggtacggtggggagaaggacgtggtggtcctcaccagccatcacacggtcggggtagcagaggatattg
ggggagaggtacagtgctgacaaggatgtggtggtcctcaccagtggccacactggaggagtgggtgaggacattg
ggggagagatacagtgctgagaaggatgtggtggtcctcaccagtggtcaaacccggggtgtggctgaggacattg
ggggagaggtatagcgccgacaaggatgtggtggtcctcaccagtggccacaccaggggcgtggccgaggacatcg
ggagagaactacggtgccgataaggatgtggtggtcctcaccagtggtcgcaccgggggtgtggctgaggacatcg
ggagacaactacggtgccgataaggatgtggtggtcctcaccagtggtcgcacggggggtgtggctgaggacatct
ggagacaggtacagtgcggataaggacgtggtggtcctcaccagcagccacacagggggcgtggctgaggacatcg
ggagagaggtacagtgccgacagggatgtggtggtcctcaccagtggccacaccgggggcgtggccgaggacattg
ggagagaggtacagtgctgacaaggatgttgtggtcctcaccagtggccacactggaggagtggctgaggacattg
ggagagcggtacggtgcagacaaggatgtggtggtcctcatcagcgaccacactgggggtgtggctgaggacatta
ggagaaaggtacggtgccgacaaggatgtggtggtcctcaccagcagccagaccaggggcgtggccgaggacatcg
ggagaaaggtacagtcccaacaaggatgtggtggtcctcaccagtggccacaccaggggcgtggccgaagacatcg
ggggagagatacagtgctgacaaggatgtggtggtcctcaccatgggccacaccaggggtgtggccgaggacatcg

cctatattctcaagaagatgcgccgggccattgtggtgggagagcagactctgggaggggccctagatctccggaa
cctacatcctcaagaagatgcgccgggccattgtggtgggagagcagactctgggaggggccctagatctccggaa
cctatatcctcaaacagatgcgcagggccatcatggtgggtgagcagactgaaggtggtgccctggacctccagaa
tctacatcctcaagcagatgggcagggccatagtggtgggtgaacgtactgggggggtctccctggacctccagaa
tctacatcctcaagcagatgggcagggccatcgtggtgggcgagcggactgagggtggtgccctggacctccagaa
cttatatcctcaaacaaatgcgcagggccattgtggtgggcgagcggactgtggggggggccttggacctccagaa
cttatatcctcaaacagatggacagggccatcgtggtggacgaacggactgtggggggggccttggacctccagaa
cctacatcctcaaacagatgcgcagggccattgtggtcggcgagcgaactgtggggggtgccctggacctccagaa
cttacatcctcaaacagatgcgcaggaccatcgtggtgggtgagcggaccgtgggaggtgccctggacctccagaa
cttacatcctcaaacagatgcgcagggccattgtggtgggtgagcagactgtggggggtgccctggacctccagaa
cttacatcctcaaacagatgcgccgggctattgtggtgggcgagcagactgtgggggctgctctggacctccagaa
cgcacatccttaagcagatgcgcagggccatcgtggtgggcgagcggactgggggaggggccctggacctccggaa
ttcacatccttaagcagatgggcagggccatagtggtgggcgagaagacggaggcaggtgccctgcacctccagaa
tctacatcctcaagcagatgggcagggccattgtggtaggcgagcggaccgagggtggtgccctggacctccagaa

gctgcgcatcggtcagtcagactttttcatcactgtgcccgtgtcacgctccctgagcccccttggtggggggagt
gcttcgtattggtcagtcagactttttcatcactgtgcccgtgtcccgttctctgagccccctcagtggggggagc
actgaggataggccagtccaacttcttcctcacagtgcctctggcgatgtctctggggccgatgggtggaggtggc
gctaaggatagccaactctgacttcttcctcactctacctgtgtccaggtccttggggcctctgggtggaggcacc
gataggccactctgacttcttcctcactctgcctgtgtctaggtccttaggccccctgggcgggggaagccagaca
gataggccagtctgacttctttctcaccgtgcccgtgtccaggtccctggggcccctgggcaagggcagtcagact
gataggccagtctgagttctttctcacagtgcccgtgtccaggtccctggggcccctgggcaagggcagccagact
gataggccagtccgacttctttctcaccgtgcctgtgtccaggtccctggggcccctgggtgagggcagccagaca
gataggccagtccgacttcttcctcaccgtgcccgtgtccaggtccctgggtctgcgcgaggtcctcatgcataac
gataggccagtctgacttcttcctcactgtgcctgtgtctaggtccctgggggctctgggtgggggcaggcagaca
gataggccagtctgacttcttcatcactctgcctgtctccaggtctctggggactctgggcgggggcagccagaca
gataggcgagtctgacttcttcttcacggtgcccgtgtccaggtccctggggccccttggtggaggcagccagacg
gataggtcactctgatttctttctcactctgcctgtgtccaggtccttggggcctttgggcaggggaagccagaca
aataggtcactcagacttctttttcactctgcctgtgtccaggtcactgggccccttaggcaggggaagccagaca

Tree reconstruction using the parsimony, maximum likelihood, UPGMA,
and neighbor-joining methods was carried out using PHYLIP (Phylogeny
Inference Package, Felsenstein (1980–2000)). We give below the output as it
is given from the package. The distances used in the UPGMA and neighbor-
joining methods are those given by the distance matrix in PHYLIP, and
are based on the maximum likelihood estimates of the divergence times
between any two species under the continuous time version of the second
Felsenstein model of Section 14.2.4. These distances are:



520 15. Phylogenetic Tree Estimation

mars.mole .00 .11 .41 .44 .39 .37 .40 .37 .41 .36 .40 .37 .42 .39
wombat .11 .00 .39 .40 .36 .33 .35 .33 .35 .32 .33 .33 .38 .34
rodent .41 .39 .00 .33 .30 .24 .25 .22 .28 .23 .25 .23 .32 .31
elph.shrew .44 .40 .33 .00 .20 .26 .26 .25 .28 .28 .28 .26 .20 .21
elephant .39 .36 .30 .20 .00 .22 .23 .22 .25 .25 .24 .21 .11 .12
whale .37 .33 24 .26 .22 .00 .03 .10 .16 .17 .18 .17 .22 .24
dolphin .40 .35 .25 .26 .23 .03 .00 .11 .16 .19 .18 .17 .22 .25
pig .37 .33 .22 .25 .22 .10 .11 .00 .17 .18 .19 .17 .24 .24
horse .41 .35 .28 .28 .25 .16 .16 .17 .00 .17 .21 .20 .25 .26
bat .36 .30 .23 .28 .22 .17 .19 .18 .18 .00 .15 .20 .27 .27
insectivor .40 .33 .25 .28 .26 .18 .18 .19 21 .15 .00 .19 .26 .26
human .37 .33 .28 .26 .21 .17 .17 .17 .23 .20 .19 .00 .22 .23
sea cow .42 38 .32 .20 .11 .22 .22 .24 .25 .27 .26 .22 .00 .14
hyrax .39 .34 .31 .21 .12 .24 .25 .24 .26 .27 .26 .24 .14 .00

Because these distances are not tree-derived, the trees found from the
UPGMA and neighbor-joining methods need not be identical (and, as
shown in Figure 15.2, are not in this case), and will only approximate the
real tree. These two trees are shown in Figure 15.2, and the trees derived
from the parsimony and maximum likelihood trees are shown in Figure
15.3.

+--mars.mole +--------rodent
+-------+ !
! +--wombat ! +whale
! ! +--+
! +------rodent +--+ +--+ +dolphin
! ! ! ! ! !
! ! +whale ! ! +--+ +--pig
! ! +--+ ! ! ! !

--+ ! +--+ +dolphin ! +--+ +-----horse
! +--+ ! ! ! !
! ! ! +--+ +--pig ! ! +---bat
! ! ! ! ! ! +--+
! ! ! +--+ +----horse ! +----insectivore
! ! ! ! ! !
! ! +--+ +----human --+----human
+---+ ! !
! ! +---bat ! +----mars.mole
! +--+ ! +----------+
! +---insectivore ! ! +-wombat
! +--+
! +-----elph.shrew ! +-------elph.shrew
! ! ! !
+--+ +--elephant +--+ +--elephant

! +--+ ! +--+
+--+ +--sea cow +--+ +---sea cow

! !
+---hyrax +---hyrax

Figure 15.2. UPGMA and neighbor-joining trees
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+--insectivor +-wombat
+-------------+ !
! +--bat ! +--------rodent
! ! +--+
! +--------horse ! ! +----human

+-+ +-----+ ! !
! ! ! ! +-----pig ! +--+ +---sea cow
! ! ! +--+ ! ! ! +--+
! ! ! ! +--dolphin ! ! ! ! ! +---hyrax
! +-+ +--+ ! ! +---+ +--+
! ! +--whale ! +--+ ! +--elephant
! ! ! ! ! !
! ! +-----------human ! ! ! +------elph.shrew

+--+ ! ! ! ! !
! ! +--+ +-----sea cow ! ! ! +-----horse
! ! ! +--+ ! ! +--+
! ! ! ! ! +--hyrax ! +--+ ! +--pig
! ! +--+ +--+ ! ! ! +--+

+--+ ! ! +--elephant ! ! ! ! +-dolphin
! ! ! ! ! ! ! +--+
! ! ! +--------elph.shrew +---+ ! +whale
! ! ! ! ! !

-+ ! +------------------rodent ! ! +----insectivor
! ! ! !
! +---------------------wombat ! +---bat
! !
+------------------------mars.mole +----mars.mole

Figure 15.3. Parsimony and Maximum Likelihood trees

It is interesting to note that some relationships are preserved in all four
trees, while others vary from tree to tree. The human species has the most
ambiguous placement. The UPGMA tree groups human with horse, pig,
dolphin, and whale; the neighbor-joining tree places human further away
from those species; the parsimony tree places humans with the group con-
taining elephant, sea cow, hyrax, and elephant shrew; and the maximum
likelihood tree places humans with rodents. These wide differences highlight
the effects of the different modeling assumptions, the different optimality
criteria, and the different broad approaches to tree construction. The prob-
lems associated with modeling and hypothesis testing in tree construction
are thus significant, and are discussed further in Section 15.9.
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15.9 Modeling, Estimation, and Hypothesis
Testing

15.9.1 Estimation and Hypothesis Testing
Suppose that a phylogenetic tree has been estimated by one of the meth-
ods discussed in Section 15.8 or by some other reasonable method. How
much confidence can we place in the various features that this tree pos-
sesses? We illustrate approaches to this question by discussing the concept
of monophyletic groups and the estimation of the entire tree topology.

Given any internal node in a phylogenetic tree, there is a set of leaves,
that is, contemporary species, that descend from that node. We call any
such a set of leaves a monophyletic group. A tree reconstructed from a set
of species can be thought of as a set of predictions of monophyletic groups.
Suppose that the investigator is a priori interested in the possible existence
of some monophyletic group, and this monophyletic group does arise in a
given tree estimation process. How much confidence can be placed in the
claim that this represents a true monophyletic group? As a related question,
how much confidence can be placed in the estimate of the entire topology
of the tree?

Any tree estimation method implicitly or explicitly assumes certain prop-
erties of the evolutionary process leading to the data at the leaves of the
tree from which the evolutionary reconstruction is made. If these assump-
tions are incorrect, a misleading assessment of monophyletic groups and the
overall tree topology can arise. If several different estimation procedures all
rely on similar but nevertheless incorrect implicit assumptions about the
evolutionary process, or if resampling estimates are based on the same, but
incorrect, evolutionary assumptions, consistency of a monophyletic group
or of the tree topology from one estimation procedure to another does not
add confidence to the claim that this represents a true group or topology.
Thus the fact that {Elephant, Elephant Shrew, Hyrax, Sea Cow} forms a
monophyletic group in all four of the tree estimation examples in Section
15.8 does not mean that we can assign any particular measure of confidence
to the statement that Elephant, Elephant Shrew, Hyrax, and Sea Cow re-
ally do form a monophyletic group. This is the first and most important
point to make when assessing the accuracy of evolutionary tree estimation.

Even if an estimation procedure correctly assumes the properties of the
evolutionary process leading to the data at the leaves of the tree, it is
not certain that correct monophyletic groups or the correct tree will be
estimated from these data. This follows from the stochastic nature of the
evolutionary process and of the sampling procedure.

Despite these problems, it is often asked how much confidence one can
place in some feature of an estimated phylogenetic tree. Bootstrap methods
are (incorrectly) sometimes used for this purpose, and we now discuss their
properties in the phylogenetic estimation context.
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15.9.2 Bootstrapping and Phylogenies
There is some confusion in the literature about what a bootstrap procedure
can do, and what the properties of the procedure are. For example, boot-
strap methods are sometimes said to lead to confidence intervals, or at least
bootstrap confidence intervals, for some monophyletic group. However this
use of terminology is misleading and is avoided here: a confidence interval
properly defined is a range of real numbers, whereas in the monophyletic
group context what is sought in the bootstrap procedure is a measure of
confidence in the claim that an estimated monophyletic group is a real one.

In the bootstrap procedure of Section 8.6.4, a collection of n “observa-
tions” is drawn from n data values (x1, x2, . . . , xn) with replacement, and
the procedure is then repeated a large number R of times. This leads for
example to confidence intervals using (8.66).

By analogy, the bootstrap procedure in the phylogenetic context pro-
ceeds as follows. Suppose that a phylogenetic tree has been estimated by
some given method, for example maximum parsimony, using as data the
nucleotides at n aligned nucleotide sites in each of m species at the leaves
of the tree. We can think of the m-tuple of m nucleotides at site i in
these species as a data vector xi, and the entire collection of the data at
n aligned sites as a set of vector values (x1, x2, . . . , xn). Following the
bootstrap paradigm, n vectors are drawn from (x1, x2, . . . , xn) with re-
placement from the original data. Some vectors, that is some sites, might
not be represented at all in this sample, some might be represented once,
some twice, and so on. The phylogenetic tree is then estimated using this
bootstrap sample as “data,” employing the same estimation procedure as
for the original data. The process is then repeated a large number R of
times, and a phylogenetic tree is estimated from each bootstrap sample by
the same method as that used for the original data. What can these R trees
tell us?

Before answering this question a preliminary comment is in order. The
general bootstrap procedure of Chapter 8.6 assumes that the data (x1,
x2, . . . , xn) are the observed values of iid random variables. Thus in ap-
plying the bootstrap procedure as described above one assumes implicitly
that the evolutionary processes at the various sites are independent and
have identical stochastic properties. These are strong assumptions that are
likely to be violated in practice. Newton (1996) emphasizes the impor-
tance of the independence assumption, and makes the reasonable point
that sampling from separated sites in the DNA sequence available, rather
than from adjoining sites, might be used to try to achieve the independence
requirement.

Suppose nevertheless that the bootstrap procedure is carried out. Clearly,
any feature that does not appear in most of the R trees is not interesting.
What can be said about those features that do occur in all, or almost
all, of the R trees? To discuss this we consider the concepts of the preci-
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sion, repeatability, and accuracy of phylogenetic bootstrap procedures, as
introduced by Hillis and Bull (1993).

The concept of precision relates to the bootstrapping procedure itself,
and measures the extent to which an inference derived from R bootstrap
samples can be expected to agree with the corresponding inference derived
from an infinite collection of bootstrap samples of the same data. This is a
question internal to the bootstrap procedure and has no direct relation to
inferences concerning the unknown phylogeny itself, and we do not consider
it further here.

The next concept is that of repeatability. Repeatability is defined as the
probability that some feature of interest (for example some monophyletic
group) which was obtained from an actual sample taken from some set of
n sites would also arise using data hypothetically obtained from another
set of n sites. The initial aim of the bootstrapping procedure as introduced
by Felsenstein (1985) was to estimate repeatability using bootstrap data
from the actual sample. Although the data at the two sets of n sites arise
from the same phylogenetic tree, the properties of the stochastic processes
at the two sets of sites need not in principle be the same: parameters
such as mutation rates can differ, for example, between the two sets of
sites. Clearly one can only expect a bootstrap procedure of the actual
data to estimate repeatability if the properties of the stochastic processes
leading to the actual data and the hypothetical data are the same. The
calculations described below assume that this assumption, which we call
the iid assumption case, holds.

Suppose for example that one is interested in some group of species, and
the feature of interest is whether this group is monophyletic. An alternative
definition in the iid assumption case is that repeatability is the probability
that, given that this group is estimated as being monophyletic when the
data at hand are used, it will be estimated again as being monophyletic
using data from a re-run of the stochastic evolutionary process that led
to the original data, with the same phylogenetic tree and the same tree
estimation algorithm used in the re-run as applied for the original data.
This definition allows simple simulation estimation of repeatability, and
thus a comparison of this estimate with its bootstrap estimate. We discuss
this further below.

We now turn to the most important question, namely that of accuracy.
Suppose again that one is interested in some group of species, and the ques-
tion of interest is again whether this group is monophyletic. The accuracy
of a tree estimation procedure is the probability that, if in fact this group
truly is monophyletic, that the group will appear as monophyletic in the
estimated tree.

There are two aspects concerning the question of accuracy. First, as dis-
cussed in Sections 14.3.6 and 15.8, any estimation procedure makes implicit
or explicit evolutionary assumptions that might differ from those applying
for the true historical evolutionary tree. If there is a substantial difference
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between the true evolutionary process and that assumed either implicity or
explicitly in the estimation process, one can expect incorrect tree estima-
tion to arise. Any error in the estimated tree will tend to be shared with
bootstrap tree estimates, so that close agreement between an estimated
tree and a large proportion of bootstrap estimates does not automatically
imply confidence that the estimated tree is accurate. Thus even if a high
proportion of bootstrap tree estimates lead to the same monophyletic group
as that obtained from the original data, one has no increased confidence
that the monophyletic group is a real one if there is a systematic bias in
the tree estimation procedure. This obvious, but important, point is often
overlooked in the literature.

Second, several authors have asked, when no such systematic bias arises,
what the bootstrap procedure can tell us about the repeatability and ac-
curacy of a phylogenetic tree estimate. Hillis and Bull (1993), for example,
claim on the basis of many simulations that even when no systematic bi-
ases arise, bootstrap estimates when taken as estimates of accuracy are
biased and often conservative. This matter, and the question of the extent
to which a bias correction is possible, is discussed at length by Felsenstein
and Kishino (1993) and by many other authors.

The simple evolutionary model of Newton (1996) allows explicit calcu-
lations bearing on the above questions. This model has the same general
nature as the continuous time Jukes–Cantor evolutionary model, but with
one of only two, rather than four, possible “nucleotides”, called “0” and
“1,” possible at any site. As the the Jukes–Cantor model, extremely simple
properties are assumed: specifically, the parameter qij of equation (11.29)
is taken as a fixed constant α, being the same at all sites, all times, and
in all branches of the phylogenetic tree. Further, independent evolution is
assumed at different sites. As a further simplification, only three species, A,
B, and C, were considered. This model is then the simplest of all possible
evolutionary models.

With three species, only three (binary rooted) topologies are possible,
denoted ((AB)C), ((AC)B), and ((BC)A). The correct topology is the first
of these, that is where A and B form a monophyletic group. In this topology
the time backwards from the present to the branching of species A and B is
t0 and the time from the present back to the initial branching of the group
(AB) with C is 1.

The data at the various sites observed fall into four groups. For any site
in the first group the types observed in all three species are the same (that
is, all are “0” or all are “1”). For any site in the second group the same
type (“1” or “0”) arises in species A and B and the other type (“0” or “1”)
arises in species C. For any site in the third (resp. fourth) group, species
C shares the same type with species A (resp. B) that is different from the
type in species B (resp. A). Sites in the first group are uninformative, and
do not support any specific topology. Sites in the second group support the
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correct topology and sites in groups 3 and 4 support one or other incorrect
topology. Sites in groups 2, 3 and 4 are informative for topology estimation.

The respective probabilities that any given site fall into these groups
are denoted by p1, p2, p3 and p4. By symmetry, p3 = p4. Any sample of n
sites will yield a data vector (y1, y2, y3, y4) of the numbers of sites falling
into these four respective types. Apart from an unimportant combinatorial
constant, the probability of this data vector is, from equation (2.30),

py1
1 py2

2 py3+y4
3 . (15.15)

Under the (incorrect) respective topologies (AC)B and (BC)A, this
probability becomes, respectively,

py1
1 py3

2 py2+y4
3 , py1

1 py4
2 py2+y3

3 . (15.16)

Newton chooses as the topology estimate the maximum likelihood estima-
tor, that is the topology that maximizes the likelihood of the data.Thus the
correct topology will be inferred if the expression in (15.15) exceeds both
those in (15.16). Algebraic rearrangement shows that this occurs if(p2

p3

)y2−y3

> 1,
(p2

p3

)y2−y4

> 1. (15.17)

In all practical cases the probability p2 that the data support the correct
topology exceeds the probability p3 that the data support some specific
incorrect topology. In this case (15.17) becomes

y2 > y3, y2 > y4. (15.18)

In this simple model, this is also the criterion for choosing the correct
topology under a parsimony approach.

The results of Problem 11.10 may be used (see Problem 15.6) to show
that

p1 =
1 + 2e−4α + e−4αt0

4
, p2 =

1 − 2e−4α + e−4αt0

4
, p3 = p4 =

1 − e−4αt0

4
.

(15.19)
Our aim is to find the probability P of accuracy, that is the probability
that the inequalities (15.18) are satisfied, given the various multinomial
probabilities in (15.19).

Newton (1996) conducted simulations with various values of t0, n and of
α (his λ is identical to our 2α) to estimate P. However, his criterion for a
correct tree estimation was not (15.18) but

y2 ≥ y3, y2 > y4. (15.20)

Using this criterion, he found by simulation that when α = 1/2, t0 =
2/3, n = 100, the estimate P̂ of P is about 0.74. (Use of (15.18) yields
an estimate of about 0.71. (This implies that the probability that two trees
have the same likelihood is about 6%.) Using his criterion, the average boot-
strap estimate P̂B was 0.63, suggesting a downward bias in the bootstrap
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estimation for this case of about 14%. This arises despite the extraordinar-
ily simple model considered and fact that the bootstrap iid assumption was
made in the simulations. At least for this simple case, this bias confirms
the claim that bootstrap estimators of accuracy are conservative.

We now consider the relation between P and repeatability. Repeatability
is the probability that either the correct tree is found on two independent
re-runs of the evolutionary process or that the same incorrect topologies are
found in two such re-runs. Assuming that an unambiguous tree is estimated
on each re-run, this probability is

P 2 + 2((1 − P )/2)2 = (3P 2 − 2P + 1)/2. (15.21)

This is less than P when P > 1/3, the relevant case for the tree under
consideration, and when P = 0.74 takes the value 0.58. The bootstrap
estimate P̂B is about 9% greater than this.

When the number n of sites examined is increased, both the accuracy
and the repeatability approach 1, as does the bootstrap estimate of re-
peatability. Given the extreme simplicity of the model, and the fact that
all assumptions needed for the bootstrap are assumed to hold, this is to be
expected.

In a model as simple as this it is possible to make progress theoretically,
and to do this we consider an analysis drawing on that of Zharkikh and Li
(1992a).

From the inequality (15.18) the probability P that an estimated tree is
accurate is the probability of the event Y2 > max(Y3, Y4). This event can
be written as the event Y ∗ > 0, where

Y ∗ = Y2 −
(

Y3 + Y4

2
+

|Y3 − Y4|
2

)
. (15.22)

From equation (2.66), the mean of Y ∗ is the sum of the means of the three
terms on the right-hand side of (15.22). The means of Y2 and (Y3 + Y4)/2
are found immediately: that of Y2 is np2 and, since p3 = p4, that of (Y3 +
Y4)/2 is np3. The mean of |Y3 − Y4|, however, is not found so immediately.
Y3 − Y4 has mean 0 and, from (2.31) and (2.62), has variance 2np3(1 − p3)
+2np2

3 = 2np3, the second term in the sum in this expression arising from
the covariance between Y3 and Y4. If a random variable X is N(0, σ2),
equations (1.55) and (1.64) show that

E(|X|) =
∫ +∞

−∞
|x| 1√

2πσ
e− x2

2σ2 dx. (15.23)

The symmetry of the integrand around x = 0 shows that this integral is

2
∫ +∞

0
x

1√
2πσ

e− x2

2σ2 dx,
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and the change of variable y = x2/2σ2 shows that this is

σ

√
2
π

∫ +∞

0
e−ydy = σ

√
2
π

. (15.24)

Thus the mean of |Y3 − Y4|/2 is
√

np3/π, and from this the mean of Y ∗ is

np2 − np3 −
√

np3/π. (15.25)

The bootstrap procedure mimics that in (15.22). If we denote the boot-
strap numbers corresponding to Y2, Y3, and Y4 by YB2, YB3, and YB4, we
define the bootstrap analogue Y ∗

B of Y ∗ by the equation

Y ∗
B = YB −

(
YB3 + YB4

2
+

|YB3 − YB4|
2

)
. (15.26)

The probability that the bootstrap sample supports the correct topology
is the probability that Y ∗

B > 0. There is however one important difference
between this calculation and the parallel calculation with Y ∗. Since p3 = p4,
the mean of Y3 −Y4 is 0. However it is not necessarily the case, and indeed
usually will not be, that y3 = y4, the mean of YB3 −YB4, is 0. This implies
an increase in the mean of YB3 − YB4 compared to that of Y3 − Y4, so that
the mean of Y ∗

B is less than that of Y ∗. This implies that the probability
that Y ∗

B > 0 is less than the probability that Y ∗ > 0. This implies in turn
that the bootstrap probability of P is smaller than the true value, in line
with the above simulation results.

In summary, even in the extremely simple evolutionary model discussed
above, standard estimation procedures can give biased estimators both of
accuracy and repeatability when the number of sites sampled is not large.
More important than this is the fact that the real historical biological pro-
cess is infinitely more complicated than the simple model just discussed,
or indeed with any evolutionary model used in practice. Thus potentially
large problems of systematic bias, as discussed in Section 14.3.6, must be
expected. These biases will be shared by bootstrap tree estimates. Further,
when the iid assumptions necessary for the bootstrap do not hold, as will
likely be the case in practice, further problems with bootstrap inferences
about the true phylogenetic tree can be expected. Clearly bootstrap meth-
ods, if employed at all with real biological data, should be used with the
utmost caution and with a full understanding of these problems.

15.9.3 Assumptions and Problems
The fact that in the example of Section 15.8 the four tree construction
methods lead to four quite different trees should be a cause for concern.
The differences arise because of the different approaches that the four
methods adopt. Further, the methods based on distance measures assumed
the Kimura two-parameter stochastic evolutionary model. This is an over-
simplified model, which cannot be expected usually to describe reality well.
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As discussed in Chapter 14, distances estimated under one model when an-
other more complex model is appropriate are biased. Of course, it is difficult
in practice to know what a reasonable model might be, so that it is impor-
tant to assess the problems that arise if a tree is estimated under one model
when some other model is appropriate. In this section we discuss aspects of
modeling problems in the phylogenetic context and in the following section
discuss hypothesis testing involving models.

The concept of a consistent estimator of a parameter was introduced in
Section 8.2. Steel (1994) demonstrated that if the frequencies of the various
nucleotides (for DNA sequences) or amino acids (for protein sequences) can
be taken as known, then under an iid assumption of the substitutions at
different sites, a consistent estimator of a phylogenetic tree can be found.
However, Steel et al. (1994) show that if the frequencies of the various
nucleotides (for DNA sequences) or amino acids (for protein sequences) are
unknown, then with site-to-site variation in substitution rates it can be
impossible in principle to estimate a phylogenetic tree consistently, even
with the most extensive data.

Similarly, Chang (1996b) demonstrated that when the correct evolu-
tionary model is used, and under further mild restrictions, a consistent
estimate of an evolutionary tree topology, together with the various branch
lengths, can be achieved. These models assume identical substitution pro-
cesses at all sites. However, when different substitution processes apply at
different sites, for example with site-to-site variation in substitution rates,
inconsistent tree estimation can occur (Chang (1996a)).

Yang (1993) approached the problem of site-to-site variation in substitu-
tion rates in the Felsenstein model by allowing the rate parameter u to be
a site-to-site random variable following a gamma distribution with mean 1
and variance 1/β, for which, from Section 1.10.5,

fU (u) =
ββuβ−1e−βu

Γ(β)
, u ≥ 0. (15.27)

Yang’s analysis assumes the Felsenstein model of substitution, and a similar
analysis can be made for other models. Yang also discusses properties of a
−2 log λ testing procedure to assess whether a site-to-site variation model
provides a significantly better fit than the “fixed u” model. This procedure
is discussed further in Section 15.9.4.

Lake (1987) also addressed the problem of site-to-site variation in sub-
stitution rates and developed a model allowing this variation for which
consistent estimation is possible. However, this model is specialized and
may not apply widely. In general, the problem of site-to-site variation in
substitution rates appears to be difficult to overcome. Questions concern-
ing the reconstruction of phylogenetic trees by algorithmic methods in the
presence of site-to-site variation in substitution rates are discussed by Steel
et al. (1994).
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The analysis described in Section 15.7, and other analyses of phylogenetic
tree estimation in the literature, assume that even if rates differ from site to
site, at least the evolutionary processes at the various sites are independent.
However, population genetics theory shows that very close sites evolve in a
dependent manner. This matter has been addressed by various authors, in
the context of both maximum likelihood estimation and algorithmic esti-
mation. Dixon and Hillis (1993) discuss the use of weights to accommodate
non-independence in a parsimony analysis. Others have examined substi-
tution processes in regions rather than at nucleotide sites when various
correlated and other independent substitution processes structures are as-
sumed (Muse (1995), Schöniger and von Haeseler (1994), (1995)). Since
correlated substitutions are known to be the case, more research on this
matter is necessary.

A further interesting fact is that there can be more than one maximum
likelihood tree, and that the topologies of the various trees having maxi-
mum likelihood can be different. This was demonstrated by Steel (1994),
and disproved a claim (Fukami and Tateno (1989)) that a unique maxi-
mum likelihood tree exists. It can be argued that while Steel’s result is
true in principle, it is very unlikely in practice that multiple maximum
likelihood trees will arise, especially with extensive data sets. The simula-
tions of Rogers and Swofford (1999) suggest that the multiple maximum
phenomenon will rarely occur in practice. Nevertheless, the very possibil-
ity of multiple maxima should cause concern, especially when the various
optimality properties of maximum likelihood estimators are invoked in
phylogenetic tree estimation.

Most of the models described in this section are simple ones, and it is
agreed that they cannot describe the real historical evolutionary process
with any accuracy. It can however be argued that simpler rather than
more complex models are desirable when investigating phylogenetic trees.
There are three arguments in favor of this viewpoint (Sullivan and Swofford,
2001). First, even the most complex model likely to be used will still be
far from the correct model describing the actual historical evolutionary
process, so that not much might be gained in terms of reality with the
more complicated model. Second, a substantial increase in the number of
parameters in a model makes parameter estimation quite difficult, so that
unreliable parameter estimates, leading to unreliable tree estimates, will
arise when a model with many parameters is used. Finally, if the tree
estimation procedure is comparative robust, so that the estimate is not
strongly biased when an incorrect model is used, then a simpler model
might be preferred to a more complex one. While these arguments are
worth serious consideration, we have seen that a model specification that
differs only in small details from the correct model can lead to biased tree
estimation. The difficult question of a “best” approach to tree estimation
is still unresolved.
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15.9.4 Phylogenetic Models and Hypothesis Testing
In this section we discuss aspects of hypothesis testing in the context of
phylogenetic tree construction. The derivation of tests of hypotheses in
this area, and the analysis of properties of these tests, is an active area
of current research and we refer to aspects of this later. Here we consider
comparatively simple aspects of the hypothesis-testing question.

The testing vehicle that we discuss is the −2 log λ test statistic discussed
in Section 9.4. It is tempting to use this statistic in cases where various
parameters of the phylogenetic tree of interest have been estimated by
maximum likelihood, since this test statistic is a function of the ratio of
two maximum likelihoods. However, inappropriate use of this statistic can
cause problems, as we discuss below.

Suppose that a set of aligned DNA sequences from a collection of species
is given, and we wish to test the (alternative) hypothesis that these data
are significantly better explained by the Kimura model of Section 14.3.2
than by the Jukes–Cantor model of Section 14.3.1. The null hypothesis is
that the Kimura model does not explain the data better than the Jukes–
Cantor model. In statistical terms, this is a test of the null hypothesis that
in the Kimura model, α = β.

It is important to note two aspects of this test. First, the two hypotheses
are nested, since the Jukes–Cantor model is a special case of the Kimura
model. Thus the “nesting” requirement of the −2 log λ testing method is
met. Second, if the actual topology of the phylogenetic tree, which can
loosely be thought of as an unknown parameter, is also estimated as part
of the maximizing procedure, then the requirement that the parameters of
interest be real numbers is not met. Because of this, the asymptotic null
hypothesis distribution of −2 log λ might not be chi-square. Thus for the
moment we assume that the tree topology is given, and that the estimation
procedure relates only to the various arm lengths.

Even this restriction does not guarantee that the asymptotic null hy-
pothesis chi-square distribution of −2 log λ can be assumed. Part of the
estimation procedure relates to the unknown DNA sequences at the inter-
nal nodes of the tree, and if we take these as unknown parameters, the
question of estimating discrete parameters arises. It is therefore important
to assess what the asymptotic null hypothesis distribution of −2 log λ is. It
appears that this is very difficult to do theoretically, and that it is necessary
to resort to computer simulation. Here we present the results of Whelan
and Goldman (1999), who follow the simulation approach.

Whelan and Goldman take the topology of the phylogenetic tree as given,
and carry out a random procedure of DNA substitution at the various sites
in a DNA sequence, assuming that the substitution process is described by
the Jukes–Cantor model. They then find the maximum of the likelihood
of the derived data in the species at the leaves of the tree under both the
Jukes–Cantor model and the Kimura model, and from this they compute
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−2 log λ. This procedure is then replicated a large number of times, and
from these replicates an accurate assessment of the null hypothesis distri-
bution of −2 log λ can be found. It is found that this distribution is very
close to that of chi-square with one degree of freedom.

It is therefore reasonable to assume in this case, where the topology of
the tree is given, that the −2 log λ statistic has an approximate chi-square
distribution with one degree of freedom under the null hypothesis. Suppose
that for a given set of data we do not reject the null hypothesis when car-
rying out this test. It is important to be aware of what this implies. It does
not necessarily imply that the Jukes–Cantor model provides a satisfactory
explanation of the data. What it does imply is that the Kimura model,
with one further free parameter, does not give a significantly better fit to
the data than the Jukes–Cantor model. Thus the test is a comparative one
rather than an absolute one, and we have not shown in any absolute sense
that the Jukes–Cantor model provides an adequate fit to the data. It is im-
portant to make this point, since claims of absolute fit rather than relative
fit are sometimes made by carrying out the −2 log λ procedure in similar
cases.

Whelan and Goldman (1999) carry out a variety of similar assessments,
and we outline three of their results here. First, if the stationary proba-
bilities ϕa, ϕg, ϕc, and ϕt in the Felsenstein model of Section 14.3.3 are
all equal to .25, then that model becomes the Jukes–Cantor model, so
that the Jukes–Cantor model is nested within the Felsenstein model. Since
ϕa + ϕg + ϕc + ϕt = 1, there are three more free parameters under the
Felsenstein model than under the Jukes–Cantor model. It then becomes
reasonable to hope that, if the null hypothesis is the Jukes–Cantor model
and the alternative hypothesis is the Felsenstein model (with arbitrary sta-
tionary probability values), and where the topology of the tree is given, the
null hypothesis distribution of −2 log λ is approximately chi-square with
three degrees of freedom. The simulations of Whelan and Goldman (1999)
support this conclusion.

Second, suppose that the null hypothesis is the Jukes–Cantor model and
the alternative hypothesis is the Felsenstein model with stationary proba-
bility values equal to the observed values in the data. Then neither model
is nested within the other and we have no theoretical support for the claim
that the null hypothesis distribution of −2 log λ is chi-square. Whelan and
Goldman (1999) show that the null hypothesis distribution of −2 log λ is
not close to a chi-square with three degrees of freedom, and that in fact
negative values of −2 log λ can arise, an impossibility for a random variable
truly having a chi-square distribution. This matter is referred to again in
Problem 15.7.

Third, in Section 15.9.3 we discussed models that allow unequal substi-
tution rates at various sites. Since the assumption of equal rates leads to
simpler models, it is important to find a test for it. Such tests are important
because, for example, an unjustified assumption of equal substitution rates
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can lead to biases in substitution matrix estimation (Kelly and Churchill
(1996)).

Whelan and Goldman (1999) and Goldman and Whelan (2000) discuss
this matter. They consider the test of a null hypothesis Jukes–Cantor
model, with substitution rate 1 at all sites, against an alternative hypoth-
esis Jukes–Cantor model for which the substitution rate at any site is a
random variable having the gamma distribution (15.27) with mean 1 and
variance 1/β. They also consider the parallel test for the Felsenstein model.

Although in both models the relevant null and alternative hypotheses
differ by one free parameter, and the null hypothesis is nested within the
alternative, the simulations show that the null hypothesis distribution of
−2 log λ is not chi-square with one degree of freedom. This occurs because
the null hypothesis value of β is +∞, corresponding to a variance of zero.
The value +∞ is not covered by the asymptotic −2 log λ theory, since
that theory requires β to be a real number. The −2 log λ testing procedure
has been misused in the literature to assess whether significant site-to-site
variation in substitution rates occurs within the Felsenstein model.

Self and Liang (1987) suggest that in this case the null hypothesis dis-
tribution of −2 log λ is approximately that of a random variable taking the
value 0 with probability 1

2 and having a chi-square distribution with one de-
gree of freedom also with probability 1

2 , and their simulations support this
suggestion. On an associated point, Ota et al. (1999) show that boundary
maximum likelihood estimates such as those arising in Example 3 of Sec-
tion 9.4 of parameters cannot have asymptotic normal distributions, and
the theory of Chapter 8 then implies that the asymptotic −2 log λ testing
theory cannot hold. A simple example of such a boundary estimate, and
its clearly non-normal asymptotic distribution, is provided by Example 3
of Section 9.4.

The null hypothesis chi-square mixture of Self and Liang (1987) is not
always applicable. Ota et al. (2000) show that when there are two or
more boundary parameter estimates, the null hypothesis distribution of
−2 log λ cannot be expressed as a linear combination of any number of
chi-square distributions. This remark is relevant because models with two
or more boundary maximum likelihood estimates are beginning to appear
(Huelsenbeck and Nielsen (1999)).

These observations indicate the dangers in unthinking application of tests
using −2 log λ. A further and more serious problem arises, as discussed
above, when the maximum likelihood procedure involves estimating the
topology of the phylogenetic tree as well as its branch lengths, a case not
covered by the −2 log λ theory. Here the null hypothesis distribution of
−2 log λ is far from chi-square, essentially because the tree topology is not
a real number able to take values in some interval. This matter is discussed
further by Goldman (1993), who notes that several authors have made
an inappropriate chi-square assumption in the literature when the tree
topology is estimated as part of the testing procedure.
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The chi-square distribution of −2 log λ is an asymptotic one, relating to
an indefinitely increasing sample size. With a sufficiently large sample size
one might expect that the true tree topology will be inferred, so that the
problem just mentioned would not arise. However, the sample size necessary
for this situation to occur is probably immense, and far larger than any
realistic sample size arising in practice.

Goldman et al. (2000) provide a general and comprehensive discussion
of the use of likelihood ratio tests of topologies in phylogenetics. The main
point that they make is that the frequently used Kishino–Hasegawa test
(Kishino and Hasegawa (1989) designed to decide between competing phy-
logenetic topology hypotheses is valid only only certain assumptions, in
particular that the topologies being compared are specified a priori. This
test has often been misused, in particular in cases where one of the topolo-
gies being compared is the maximum likelihood topology and is thus not
specified a priori), and Goldman et al. show that severe biases can arise in
the test in such cases.

The bootstrap testing procedure is often thought of as one that over-
comes problems of an unknown null hypothesis distribution. However
Andrews (2000) has shown that when a maximum likelihood estimate is a
boundary value, problems can arise even with the bootstrap operation.

Much of the discussion above concerning the problems of hypothesis
testing in the phylogenetic tree context has used as an example the test
of the (null hypothesis) Jukes–Cantor model against the (alternative hy-
pothesis) Kimura model, within which it is nested. These problems also
arise in other tests. Yang (1994) discusses tests of the Felsenstein and the
HKY models against the general reversible model, within which they are
nested. He also considers the test of the general reversible process model
itself against a completely arbitrary model. The number of degrees of free-
dom used in these tests are derived from the number of degrees of freedom
by which the respective models differ, as discussed in Section 14.2.7. The
extent to which a more restrictive model can be accepted depends on the
data analyzed, so that general conclusions are not easily obtained. Yang
does however claim that, broadly speaking, the general reversible process
model can be recommended and that the completely arbitrary model is not
recommended.

It is clear that the hypothesis tests considered above barely scratch the
surface of what is possible and necessary. A list of possible tests, and
the outcomes of these tests, is given by Huelsenbeck and Rannala (1997).
Among the many results that they present, Huelsenbeck and Rannala con-
firm that the distribution of −2 log λ is far from chi-square when the tree
topology is estimated as part of the testing procedure. They also give the
results of several tests where −2 log λ is correctly applied to real data sets,
to assess what modeling assumptions may reasonably be made in practice.
As one important example, they show that substitution rates vary signif-
icantly from one lineage to another, thus rejecting the “molecular clock
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hypothesis” favored by many population geneticists that the substitution
rate per generation is constant in all branches of the phylogenetic tree. This
hypothesis is further discussed by Tourasse and Li (1999). They show that
the Kimura model fits observed data significantly better than the Jukes–
Cantor model, so that transition substitution rates differ significantly from
transversion substitution rates. Models allowing different substitution rates
between sites fit observed data significantly better than models that assume
the same rate at all sites. Models that allow different substitution rates in
different regions of the genome fit observed data significantly better than
models that assume the same rate in all regions, a result confirmed by
the recent chromosome 22 data (Dunham et al. (1999)). Liò and Gold-
man (1998) discuss further aspects of model testing, and the use of hidden
Markov models, in analyzing models with different substitution rates at
different sites.

Testing for monophyly provides an important case of hypothesis test-
ing involving tree structure. Here the null hypothesis to be tested is that
some group of species is monophyletic. The maximum likelihood tree can
be constructed under the (null) hypothesis of monophyly of a certain set
of species and can also be constructed without this restriction, and the
two likelihoods compared. Huelsenbeck et al. (1996) and Huelsenbeck and
Crandall (1997) point out that the null hypothesis distribution of −2 log λ
is far from chi-square when the null hypothesis claim of monophyly is cor-
rect. This again arises because tree topology is not a real number taking
values in some interval. Indeed, it is not even clear how many degrees of
freedom −2 log λ would have if it did have a null hypothesis chi-square dis-
tribution. If −2 log λ is to be used in a test of monophyly, its null hypothesis
distribution must be found empirically, using simulation methods.

An excellent description of these problems is given by Huelsenbeck and
Crandall (1997), who also provide a summary of maximum likelihood es-
timation procedures used in phylogenetic analysis, and their properties. A
further description of statistical problems in phylogenetic analysis is pro-
vided by Holmes (1999), who gives an amusing table listing “translations”
of expressions frequently used in biological articles into the corresponding
standard statistical terminology.

Problems

15.1 Prove that a tree-derived distance satisfies the four properties of a
distance given on page 499.

15.2 Prove that for a tree whose derived distance satisfies the ultramet-
ric property, pairs of species with the smallest distance between them are
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neighbors.

15.3 Prove equation (15.12).

15.4 For five species a, b, c, d, and e, with distance given by

a b c d e

a 0 2 8 8 8
b 0 8 8 8
c 0 4 4
d 0 2
e 0

,

reconstruct the tree using both algorithms in Section 15.3. For the first
algorithm, use the order a, b, c, d, e. Show the partial tree for each step,
together with edge lengths.

15.5 For five species a, b, c, d, and e, with distance given by

a b c d e

a 0 9 8 7 8
b 0 3 6 7
c 0 5 6
d 0 3
e 0

,

reconstruct the tree using the neighbor-joining algorithm of Section 15.4.
Show the partial tree in each case, together with edge lengths. Now recon-
struct the tree, together with edge lengths, using the UPGMA algorithm
of Section 15.3. Compare your answers for the two reconstructions.

15.6 Use the result of Problem 11.10 to derive the expressions (15.19).

15.7 In what circumstances will negative values of −2 log λ arise in test-
ing the Jukes–Cantor model against the Felsenstein model in which the
stationary probabilities are set to the observed values?



Appendix A
Basic Notions in Biology

We outline here the basic notions from biology that are needed in the book.
Deoxyribonucleic acid (DNA) is the basic information macromolecule of
life. It consists of a polymer of nucleotides, in which each nucleotide is
composed of a standard deoxyribose sugar and phosphate group unit, con-
nected to a nitrogenous base of one of four types: adenine, guanine, cytosine,
or thymine (abbreviated here a, g, c, and t, respectively). Because of sim-
ilarities in the chemical structure of their nitrogenous bases, adenine and
guanine are classified as purines, while cytosine and thymine are classi-
fied as pyrimidines. Adjacent nucleotides in a single strand of DNA are
connected by a chemical bond between the sugar of one and the phosphate
group of the next. The classic double-helix structure of DNA is formed when
two strands of DNA form hydrogen bonds between their nitrogenous bases,
resulting in the familiar “ladder” structure. Under normal conditions, these
hydrogen bonds form only between particular pairs of nucleotides (referred
to as base pairs): Adenine pairs only with thymine, and guanine pairs only
with cytosine. Two strands of DNA are complementary if the sequence of
bases on each is such that they pair properly along the entire length of both
strands (see Figure A.1). The sequence in which the different bases occur
in a particular strand of DNA represents the genetic information encoded
on that strand. By virtue of the specificity of nucleotide pairing, each of the
two strands of any DNA molecule contains all of the information present in
the other. There is also a chemical polarity to polynucleotide chains such
that the information contained in the a, g, c, and t bases is synthesized and
decoded in only one direction.
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... --------------------------------------- ...
a c c g t a t a a c g a t c c t c t g a
: : : : : : : : : : : : : : : : : : : :
t g g c a t a t t g c t a g g a g a c t

... --------------------------------------- ...

Figure A.1. Example of a portion of DNA sequence. The dashed lines represent
the sugar-phosphate backbone, and the letters represent the nitrogenous bases.
Dotted lines connecting base pairs denote hydrogen bonds. Note the specificity
of base-pairing (a to t, c to g).

In the cell, DNA is organized into chromosomes, each of which is a contin-
uous length of double stranded DNA that can be hundreds of millions base
pairs long. Most human cells contain 23 pairs of chromosomes, one mem-
ber of each pair paternally inherited and the other maternally inherited.
The two chromosomes in a pair are virtually identical, with the exception
of the sex chromosome, for which there are two types, X and Y. Nearly
every cell in the body contains identical copies of the full set of 23 pairs of
chromosomes. An organism’s total set of DNA is referred to as its genome;
the human genome contains more than three billion base pairs.

A human chromosome consists mostly of non-protein-coding DNA, the
function of which is only just becoming understood (see for example Gibbs
(2003)). Interspersed in the DNA are protein-coding genes. These genes
constitute only approximately 2% of the human genome; however, they are
the classic focus of attention of geneticists. Genes themselves are often orga-
nized into exons, which are the sequences that will eventually be used by the
cell, alternating with introns, which will be excised and discarded. The hu-
man genome is currently thought to contain approximately 30,000–40,000
genes (International Human Genome Sequencing Consortium (2001)). The
information in these genes will go on to be encoded in RNA (ribonucleic
acid), and in many cases ultimately in proteins.

The first step in this process is transcription, the creation of an RNA
molecule using the DNA sequence of a gene as a template. Transcription
is initiated at non-coding sequences called promoters, located immediately
preceding the gene. Like DNA, RNA is made up of a series of nucleotides,
but with several important differences: RNA is single-stranded, contains the
sugar ribose, and substitutes the nitrogenous base uracil for thymine. After
post-transcriptional modification, which includes the removal of introns, the
RNA will go on to various fates within the cell. Of particular interest is
mRNA (messenger RNA), which will be translated into protein.

A protein is comprised of a sequence of amino acids. There are twenty
amino acids which commonly appear in proteins. Each of these amino acids
is represented by one or more sequences of three RNA nucleotides known
as a codon; for example, the RNA sequence aag encodes the amino acid ly-
sine. The combination of four possible nucleotides in groups of three results
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in 43 or 64 codons, meaning that most amino acids are coded for by more
than one codon. An organelle known as the ribosome performs the trans-
lation of mRNA into protein. The ribosome pairs each codon in the RNA
sequence with the appropriate amino acid, and then adds the amino acid
onto the growing protein. The process of translation is mediated by two
special types of codon: start codons signal the location on the RNA molec-
ular where translation should begin, while stop codons signal the location
where translation should terminate. Once the sequence of amino acids that
make up a particular protein is assembled, the protein dissociates from the
ribosome and folds into a specific three-dimensional form. The function of
a protein ultimately depends on both its three-dimensional structure and
its amino acid sequence. Proteins go on to perform a variety of functions
in the cell, covering all aspects of cellular functions from metabolism to
growth to division.

Currently, functions have been assigned to only a small proportion of the
genes in even the best understood of model organisms. In order to assign
function to the remaining genes, it is helpful to examine the expression
patterns of these genes in various tissues. Microarray technology developed
over the past several years now allows the measurement of mRNA levels
for tens of thousands of genes simultaneously. This provides an efficient
and convenient way to determine the expression patterns of genes in many
different types of tissues, but at the same time provides new challenges in
information cataloging and statistical analysis.



Appendix B
Mathematical Formulae and Results

B.1 Numbers and Intervals

It is a nontrivial matter to define the real numbers carefully, and for our
purposes this is not necessary. We will instead take the real numbers as a
starting point. Intuitively, they represent all the numbers that correspond
to lengths, together with their negatives and zero. The real numbers can
be put in one-to-one correspondence with the points on a line.

The integers are all the numbers . . . ,−3,−2,−1, 0, 1, 2, 3, . . . . The pos-
itive integers, sometimes called the natural numbers, are the numbers 1,
2, 3, . . . , whereas the non-negative integers are the numbers 0, 1, 2, 3, . . . .
The rational numbers are those that can be written as ratios of integers,
i.e., in the form a

b , where a and b are integers. The irrational numbers are
the real numbers that cannot be so written. It can be shown, for example,
that

√
2, π, and e are all irrational.

We use four kinds of intervals in this book. The first kind consists of
open intervals. These intervals are denoted by round brackets:

(a, b) = set of all real numbers x such that a < x < b.

When we write such an interval, we always assume a < b; otherwise, the
interval would be empty. We also allow a to be −∞ and/or b to be ∞.
The second kind consists of closed intervals. These intervals are denoted
by square brackets:

[a, b] = set of all real numbers x such that a ≤ x ≤ b.



B.2. Sets and Set Notation 541

In this case we do allow a = b, but we do not allow a or b to be infinite.
The final kind consists of half-open intervals, of the form

(a, b] = set of all real numbers x such that a < x ≤ b

and

[a, b) = set of all real numbers x such that a ≤ x < b.

For the first kind a can be −∞ and in the second b can be ∞. We require
a < b in all such intervals.

B.2 Sets and Set Notation

The sets we need to consider in this book are subsets of n-dimensional
space, for n = 1, 2, . . . . By n-dimensional space we mean the set of n-
tuples (x1, x2, . . . , xn) where x1, x2, . . . , xn are real numbers. Other sets we
consider are subsets of these sets. For example, S might be the set of all
n-tuples (x1, x2, . . . , xn) where xn is positive. If n = 2, then this is the half-
plane above the horizontal axis. We refer to the tuples in S as members
or elements of S. If s is a member of S, we write s ∈ S, and if s is not a
member of S, we write s �∈ S. If S1 and S2 are two sets in the same space,
their union is the set of elements that are in S1 or S2 (or both), written
S1 ∪ S2. Their intersection is the set of elements that are in both S1 and
S2, written S1 ∩ S2.

Suppose S1 is a subset of m-dimensional space and S2 is a subset of n-
dimensional space. Then the Cartesian product of S1 and S2 is the subset
of (m + n)-dimensional space consisting of (m + n)-tuples whose first m
components form an element of S1 and whose last n components form an
element of S2. The Cartesian product of S1 and S2 is written S1 × S2. If
S1 = [a, b] and S2 = [c, d], then S1 × S2 is a rectangle.

B.3 Factorials

Let n be a positive integer. Then we define n! (pronounced “n factorial”)
to be

n! def= n(n − 1)(n − 2) · · · 3 · 2 · 1.

It will be apparent later that it is convenient to define 0! = 1. Note that
n! = n(n − 1)!, and thus n!

(n−1)! = n.
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B.4 Binomial Coefficients

Let r be any real number and let k be a positive integer. We define the
binomial coefficient

(
r
k

)
by(

r

k

)
def=

r(r − 1)(r − 2) · · · (r − k + 1)
k!

,

and for k = 0, put
(

r
k

)
= 1. The reason why it is called a “coefficient” will

be explained in Appendix B.6.
When n is a positive integer and k ≤ n,

(
n
k

)
= n!

(n−k)!k! takes on a
combinatorial meaning, which we shall discuss shortly.

B.5 The Binomial Theorem

In this section we describe the basic version of the binomial theorem, and
in a later section we shall revisit it in more generality. The basic version
states that for any real numbers a and b, and any positive integer n,

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k. (B.1)

In particular,

(x + 1)n =
n∑

k=0

(
n

k

)
xk. (B.2)

We provide a proof of (B.1) later, but first we need to discuss some
combinatorial issues.

B.6 Permutations and Combinations

Consider n distinguishable balls in an urn, numbered 1 to n. Let k ≤ n be
a positive integer. We are interested in the following two “combinatorial”
quantities:

(1) In how many orders can we choose k of the balls without replacement?
Equivalently, how many k-tuples of distinct integers (n1, n2, . . . , nk)
are there, where 1 ≤ ni ≤ n?

(2) In how many ways can we choose k of the balls from the urn, without
replacement?

The key distinction between these two counting problems is that the first
considers the order in which the objects were chosen, whereas the second
does not. The first quantity is called the number of permutations of n
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objects taken k at a time, and we denote it by nPk. The second quantity
is called the number of combinations of n objects taken k at a time and is
often referred to as “n choose k.” We do not introduce a notation for “n
choose k,” since we will soon show that it is equal to

(
n
k

)
.

We can easily list all the possible permutations of 3 things taken 2 at a
time as

(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2),

so that 3P2 = 6. On the other hand, there are 3 combinations of 2 things,

{1, 2}, {1, 3}, {2, 3}.

In general, there can be n choices for the first element in the permutation,
and for each of those there are n − 1 choices for the second element, etc.,
down to n−k+1 choices for the kth element in the permutation. Therefore,

nPk = n(n − 1)(n − 2) · · · (n − k + 1) =
n!

(n − k)!
.

It should be clear that for each permutation of n objects taken k at a
time, there will be k! that involve the same k objects, each arranged in a
different order. Therefore, it follows that the number of combinations of n
things taken k at a time (i.e., the answer to question 2 above) is equal to

nPk

k!
=
(

n

k

)
.

Thus, it is natural that
(
n
1

)
= n and

(
n
n

)
= 1. The motivation behind the

definition of
(
n
0

)
= 1 should now be clear.

We can now give a combinatorial proof of the binomial theorem. Consider
the product

(a + b)n =

n times︷ ︸︸ ︷
(a + b)(a + b) · · · (a + b) .

The right-hand side can be expanded by repeated application of the dis-
tributive property. We end up with one term of the form akbn−k for every
way we can choose a’s from k of the terms in the product. Therefore, the
coefficient of akbn−k is

(
n
k

)
. This explains why

(
n
k

)
is called a binomial

coefficient .

B.7 Limits

We cannot give a rigorous introduction to limits, since the subject has
many subtleties and complexities that would take us unreasonably far
afield. There are two kinds of limits we consider in this book: discrete
and continuous limits. Continuous limits arise for functions defined on
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the real numbers. Discrete limits are for functions defined on the nat-
ural numbers. The latter kind of functions are usually called sequences
and are usually denoted using subscripts, typically with a notation of
the form a1, a2, a3, . . . , an, . . . , instead of the usual functional notation
f(1), f(2), f(3), . . . , f(n), . . . . When we want to address the entire func-
tion (sequence) at once, we write {an}∞

n=m, where m is the first index in
the sequence, or as {an} when the domain of n is clear. In the discrete case
we are mainly interested in the limit as n goes to infinity:

lim
n→∞ an.

An important discrete limit, proven in most basic calculus books by an
application of L’Hospital’s rule, is that for any fixed t,

lim
n→∞

(
1 +

t

n

)n

= et. (B.3)

Certain uniform approximations can be derived from this. For example, for
all |t| ≤ 1, the approximation(

1 +
t

n

)n

≈ et

is accurate to within 1% for all n ≥ 50, to within .1% for all n ≥ 500, and
to within .01% for all n ≥ 5,000.

For functions of a real variable f(x), we consider limits as x approaches
any real value (in the domain of the function), or ±∞. A limit of importance
for us is the limit of the function x log x as x → 0 from the right, usually
written

lim
x→0+

x log x.

It can be shown that this limit is equal to 0. Thus when an expression of
the form

∑
x xlogx arises in some application, where 0 is a possible value

for x, we put that the term in the sum corresponding to x = 0 equal to 0.

B.8 Asymptotics

Computational issues often require an analysis of the asymptotic behavior
of functions. To be more precise, let f(t) and g(t) be functions that are
defined on the non-negative real numbers and takes values in the positive
real numbers. We are interested in methods for describing how f(t) and
g(t) behave with respect to each other as t approaches some limit (possibly



B.8. Asymptotics 545

infinity). To this end, five basic relations between such functions are defined.

(1a) f = O(g) at ∞, if there are constants C, K ≥ 0 such that
f(t)
g(t) ≤ C for all t > K.

(1b) f = O(g) at a, a < ∞ if there are constants C, h ≥ 0 such that
f(t)
g(t) ≤ C for all t within h of a.

(2) f = o(g) at a, if limt→a
f(t)
g(t) = 0.

(3) f ∼ g at a, if limt→a
f(t)
g(t) = 1.

(4) f Ω g at a, if f = O(g) and g = O(f) at a.
(5) f ≈ g at a, if limt→a(f(t) − g(t)) = 0.

Conditions 1a and 1b are read “f is big ‘oh’ of g as t approaches a,”
condition 2 is read “f is little ‘oh’ of g as t approaches a,” condition 3 is
read ‘f is asymptotic to g as t approaches a,” and condition 4 is read “f
is ‘omega’ of g as t approaches a.”

The intuition behind 1a is that if it holds, then for sufficiently large values
of t, f(t) is no bigger than some fixed constant times g(t). The intuition
behind 1b is similar, replacing “sufficiently large” with “sufficiently close.”

Even though the function f(t) = 2t becomes arbitrarily larger than
g(t) = t, as t gets larger, f = O(g) at infinity. When a = ∞, and the
functions involved are polynomials, the relevant terms are the largest pow-
ers of t that occur in each polynomial. If the largest power in g is at least as
large as the largest power in f , then f = O(g) at infinity, and if the largest
power in f is at least as large as the largest power in g, then f = O(g)
at zero. On the other hand, if f is a polynomial, and g is an exponential
function with base greater than 1, such as et, then it is never the case that
g = O(f) at infinity. These statements are usually verified by repeated
applications of L’Hospital’s rule.

If f = o(g) at a, then f is in some sense “eventually” (i.e., for t sufficiently
close to a) smaller than g. For example, t2 + t = o(t3) at infinity. However,
even though t2 − t is smaller than t2 by more than a constant factor, t2 − t
is not o(t2) at infinity (in fact t2 − t ∼ t2 at infinity).

If f ∼ g, then f and g grow at roughly the same rate. This does not,
however, mean that the f(t) ≈ g(t) as t → ∞. For example if f(t) = t2

and g(t) = t2 + t, then f ∼ g; however, g(t) − f(t) = t → ∞. One must
therefore be careful to use the exact definitions when using these asymptotic
concepts.

For the purposes of bioinformatics, the most important asymptotic
classes of functions are the ones that are asymptotic to either polynomials
(or more generally, to any power of t), logarithms, or exponentials. We say
that a function asymptotic to some polynomial as t → ∞ has polynomial
growth, one asymptotic to a logarithm as t → ∞ has logarithmic growth,
and one asymptotic to an exponential as t → ∞ has exponential growth.
Obviously, other types of growth exist, such as “doubly exponential,” “fac-
torial,” etc. One should note that a function with polynomial growth is not
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necessarily a polynomial, for example f(t) = t +
√

t is not a polynomial,
but f(t) ∼ t at infinity, and g(t) = t is a polynomial.

An order of magnitude relation used often in this book is of the form
f(h) = λh+o(h) for h small. This means that if we write f(h) = λh+g(h),
then g(h)/h → 0 as h → 0+. Terms of order o(h) are always written as
+o(h) in such cases, even though they may well be negative.

B.9 Stirling’s Approximation

The concepts of the previous section were framed in terms of continuous
limits, but they can all be translated into the discrete case by substitut-
ing sequences for the functions of real variables. Our next two results
are discrete asymptotic equations for n! and

(
n
k

)
. The first is Stirling’s

approximation:

n! ∼
√

2π nn+1/2e−n. (B.4)

From this it follows that(
n

k

)
∼ 1√

2π

√
n√

k(n − k)

(
k

n

)−k (
1 − k

n

)−(n−k)

. (B.5)

B.10 Entropy as Information

Suppose that some number between 1 and 64 (inclusive) is chosen at ran-
dom by person A, and person B is required to find this number. By asking
questions using a strategy in which the number of possibilities is halved
with the answer to each question (the first being, perhaps, “is the number
32 or less?”), it is clear that six questions are sufficient to determine un-
ambiguously which number was chosen. The precise form of the question
is not fixed: For example, the first question might be, “is the number odd
or even?” but the form of the questions, in which the number of possible
cases is halved after each question, is clear. We can say that six bits of
information are sufficient to determine the number chosen if this form of
question is used. Further, no other system of questions can consistently
outperform this one, in the sense that the mean number of questions asked
by any other system must be at least 6.

It is clear that when a person must determine one of 2k numbers, k ques-
tions, or k bits of information, are needed. A more complicated calculation
arises in other cases. Suppose, for example, that one of the 20 amino acids
is chosen at random. If the amino acids are numbered 1, 2, . . . , 20 in some
agreed order, the first two questions, and their answers, might be, “is the
number of the amino acid 10 or less?” (yes), “is the number of the amino
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acid 5 or less?” (no). At this point the next question might be “is the num-
ber 6, 7, or 8?” If the answer is “no,” only one further question is needed to
determine whether the number is 9 or 10. If the answer is “yes,” the next
question might be, “is it either 6 or 7?”. If the answer is “no,” no further
questions are needed to determine the number. If the answer is “yes,” one
further question is needed. Thus often four but in some cases five questions
are needed. (It is an interesting exercise to prove that the mean number of
questions that need to be asked is 4.4.) In general, if a number is chosen
from a large number N of numbers, the mean number of questions needed
to determine which one was chosen is approximately log2 N . This is con-
firmed by the fact that log2 20 = 4.32. The number of questions is exactly
log2 N when N is of the form 2k, for some positive integer k.

If the random variable Y discussed in the entropy formula (1.117) takes
one of N possible values, each with equal probability, and 2 is used as the
base of the logarithms in the formula, then the entropy defined is log2 N .
Thus in this case the entropy measures the number of bits of information
needed to find any given value of this random variable. The more general
formula (1.117) allows for an extension of this argument to the case where
Y does not have a uniform distribution.

B.11 Infinite Series

We present the definition of what a series is and give a survey of the few
most relevant results for us.

Let {ak}∞
k=1 be a sequence of real numbers. Using the ak’s we define a

new sequence

sn = a1 + a2 + · · · + an,

and sn is called the nth partial sum of the sequence {ak}. A shorthand
notation is sn =

∑n
k=1 ak. We define the infinite series

∑∞
k=1 ak by

∞∑
k=1

ak
def= lim

n→∞ sn,

as long as the limit on the right-hand side exists. Thus the symbol
∑∞

k=1 ak

is the limit of the partial sums sn as n → ∞. If the limit does not exist,
we say that the series diverges. There are many ways in which a series can
diverge, but if in particular the limit on the right-hand side tends to infinity,
we say that the series diverges to infinity. As an example of a series that
diverges, but not to infinity, consider

∑∞
k=1(−1)k; for this series sn = 0 if

n is even and sn = −1 if n is odd.
A basic fact about infinite series is that

∞∑
k=m

ak converges ⇒ lim
k→∞

ak = 0.
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The essence of the proof is that ak = sk − sk−1, but lim sk = lim sk−1, so
the limit of ak as k → ∞ is zero.

The converse is not, however, true. The classic example is the harmonic
series

∞∑
k=1

1
k

.

This series diverges, albeit very slowly. If sn is the sum of the first n terms
in this series, then it can be shown that sn ∼ log n, so sn “diverges like”
log n. In fact, more can be shown. The limit

lim
n→∞

( n∑
k=1

1
k

− log n

)
(B.6)

exists, and is approximately equal to .5772156649 . . . . This is the famous
Euler’s constant , denoted by γ, that appeared in Chapter 2 as the mean of
the extreme value distribution (2.128). Because of the limiting relationship
(B.6), it is common practice, for large n, to use the approximation

n∑
k=1

1
k

≈ log n + γ, (B.7)

since the right-hand side is easier to calculate than the left-hand side. More
important, use of this approximation often simplifies and clarifies the im-
plication of some mathematical formulae involving

∑n
k=1 1/k when n is

large (see, for example, Problem 2.24).
Although the harmonic series diverges, the series

∞∑
k=1

1
kp

(B.8)

converges when p > 1. As might be suprising, when p is an even integer,
the sum of the series involves π: for example, when p = 2,

∞∑
k=1

1
k2 =

π2

6
. (B.9)

This is used in Chapter 2.
Another important kind of series used often in this book is the geometric

series. These are any series of the form
∞∑

k=m

rk, (B.10)

where −1 < r < 1. In contrast to the situation for the series in the ex-
pression (B.9), there is a simple formula for the sum of a geometric series,
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namely
∞∑

k=m

rk =
rm

1 − r
. (B.11)

In particular,
∞∑

k=0

rk =
1

1 − r
. (B.12)

The most basic example is

1 +
1
2

+
1
4

+
1
8

+
1
16

+ · · · =
∞∑

k=0

1
2k

=
1

1 − 1
2

= 2.

B.12 Taylor Series

Until now we have been discussing series of fixed terms. It is also necessary
to consider series of variable terms. For example, we can consider the left
side of equation (B.12) as a function of r, where r ranges over the (open)
interval from −1 to 1, and thus consider equation (B.12) as an equation of
functions. To emphasize this point we rewrite (B.12), replacing r with x,
as

∞∑
k=0

xk =
1

1 − x
, for −1 < x < 1. (B.13)

This is an example of a Taylor series, and in this section we state without
proof various relevant results from the theory of Taylor series. There is a
class of functions, called analytic functions, that have various important
properties. In particular, they are infinitely differentiable. That is, the first,
second, third, etc. derivatives exist at every point in their domain. We de-
note the kth derivative of f(x) at the point a by f (k)(a).

Definition. A function f(x) defined on an open interval containing zero is
analytic at zero if f (k)(0) exists for all k, and for all x in some open interval
containing zero (this interval is possibly smaller than the domain of f(x)),

f(x) =
∞∑

k=0

f (k)(0)
k!

xk. (B.14)

In the expression the zeroth derivative of the function f(x) is taken as the
function itself. Equation (B.14) is called the Taylor series expansion of f(x)
at zero.

The motivation for the expression (B.14) is as follows. The linear poly-
nomial p1(x) = f(0)+f ′(0)x is the tangent line to the graph of f(x) at the
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point (0, f(0)). This linear function has the same value and same deriva-
tive at zero as f(x). This is the best linear approximation to f(x) at zero
(see figure B.1). The polynomial p2(x) = f(0) + f ′(0)x + f ′(0)

2 x2 has the
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p1(x)

f(x)

1 2 3 4−1−2−3−4

y

x

Figure B.1. The linear approximation p1(x) = f(0) + f ′(0)x to a function f(x).

same value, derivative, and second derivative at zero as does f(x). Just as
p1(x) is the best linear approximation to f(x) near zero, p2(x) is the best
quadratic approximation to f(x) near zero (i.e., the best approximation by
a parabola). In general,

pn(x) =
n∑

k=0

f (k)(0)
k!

xk (B.15)

has the same value and derivatives as f at zero, up to the nth derivative, and
is the best approximation to f , near zero, by an nth degree polynomial.
That is, the nth-order Taylor polynomial approximation to the function
f(x) is

f(x) ≈
n∑

k=0

f (k)(0)
k!

xk. (B.16)

If f (k)(0) exists for all k, then if one takes the limit n → ∞ one might
hope that (B.14) always holds, but this is not the case; not all functions
are analytic. However, the cases where this procedure fails do not arise for
the functions considered in this book, so whenever we need to rewrite a
function in terms of its Taylor series expansion (B.14), we shall feel free to
do so.
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Another useful fact is that if f(x) =
∑∞

k=0 akxk converges in an open
interval containing zero, then f ′(x) =

∑∞
k=1 kakxk−1 in the same open

interval. In other words, we can differentiate the series term by term. This
fact implies that if a series

∑
akxk converges for all x in some open interval

containing zero, then it is an analytic function on that interval and is its
own Taylor series expansion at zero.

We conclude by giving some examples useful for bioinformatics, and we
also give the generalization of (B.14) to other points in the domain be-
sides zero. The first example, already given in (B.13), is the geometric sum
formula, which we can now see in a new light: The right-hand side is the
Taylor expansion of 1

1−x . Differentiating term by term gives

f ′(x) =
∞∑

k=1

f (k)(0)
k!

kxk−1 =
∞∑

k=1

f (k)(0)
(k − 1)!

xk−1. (B.17)

Using this, we can easily get a new Taylor series from the old one. For
example, from (B.13) we get

1
(1 − x)2

=
∞∑

k=1

kxk−1, for − 1 < x < 1, (B.18)

and

2
(1 − x)3

=
∞∑

k=2

k(k − 1)xk−2, for − 1 < x < 1. (B.19)

Another basic Taylor series is the one for the exponential function ex,
namely

ex = 1 + x +
x2

2
+

x3

3!
+ · · · =

∞∑
k=0

xk

k!
, (B.20)

for all real numbers x. If |x| is small, this implies that

ex ∼= 1 + x, (B.21)

or, more accurately,

ex ∼= 1 + x +
1
2
x2. (B.22)

Another important Taylor series is that for the (natural) logarithm. If
−1 < x ≤ 1, this is

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · =

∞∑
k=1

(−1)k+1 xk

k
. (B.23)

If |x| is small, this implies that

log(1 + x) = x + o(x) at zero, (B.24)
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or more accurately,

log(1 + x) = x − x2

2
+ o(x2) at zero. (B.25)

As a final example of a Taylor series expansion, we revisit the binomial
theorem. From the fact that (1+x)α is analytic at zero, we get the general
version of the binomial theorem:

Theorem (General Binomial Theorem). For −1 < x < 1 and α any real
number,

(1 + x)α =
∞∑

k=0

(
α

k

)
xk. (B.26)

A function can be analytic at points other than zero, as the following more
general definition shows.

Definition. Let f(x) be a function defined on an open interval containing
a. Then f is analytic at a if (1) f (k)(a) exists for all k and (2) for all x in
some open interval containing a (this interval being possibly smaller than
the domain of f), we have

f(x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k. (B.27)

The nth-order Taylor approximation following from this, generalizing
equation (B.16), is

f(x) ≈
n∑

k=0

f (k)(a)
k!

(x − a)k, for x close to a. (B.28)

As two particularly important cases, the first-order, or linear, approxi-
mation is

f(x) ∼= f(a) + (x − a)f ′(a), for x close to a, (B.29)

and the second-order approximation is

f(x) ∼= f(a) + (x − a)f ′(a) +
(x − a)2

2
f ′′(a), for x close to a. (B.30)

We have thus far defined the concept of a function’s being “analytic” at
a point. We call a function f(x) analytic in an interval if it is analytic at
every point in the interval. If f(x) is analytic at every point in its domain
we say that f(x) is an analytic function.
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B.13 Uniqueness of Taylor Series

One of the reasons why Taylor series are so useful is the fact that they
satisfy certain uniqueness properties. In particular, if f(x) =

∑∞
n=0 anxn

and g(x) =
∑∞

n=0 bnxn and f(x) = g(x) for all x in some open interval
where both f and g converge, then ak = bk for all k. This is because if
f(x) = g(x) for all x in an open interval, then this interval must contain
zero, and then f (k)(0) = g(k)(0) for all k; thus

0 = f (k)(0) − g(k)(0) = k!(ak − bk),

which implies ak = bk for all k.
This is a convenient fact. From it we see that a random variable with

positive integer values is characterized by its pgf in the following sense.
Let Y1 and Y2 be discrete random variables taking positive integer values
and suppose that p1(t) and p2(t) are their respective pgfs. If p1(t) = p2(t)
on an open interval containing 1, then the probability distributions of Y1
and Y2 are identical. This useful observation is used, often implicitly, many
times in this book. In the next section we shall see that this is true even
if we drop the assumption that the random variable takes only positive
integer values.

B.14 Laurent Series

A Laurent series is a generalization of Taylor series, being of the form

∞∑
k=−∞

ak(x − b)k.

For us the interesting case is b = 0 so we restrict attention to Laurent series
of the form

∞∑
k=−∞

akxk.

If a random variable can take negative as well as positive integer values, its
pgf is a Laurent series of this form, with t replacing x and with

∑
ak = 1.

Our interest in this series is for values of t close to 1. When the series∑∞
k=−∞ aktk converges in an open interval containing t = 1, as it does in

all cases we consider in this book, then similar properties hold for these
series as held for Taylor series. In particular, a probability distribution is
still characterized by its pgf.
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B.15 Numerical Solutions of Equations

Many equations arising in practice cannot be solved exactly, and the best
that is possible is to find arbitrarily accurate numerical solutions. For ex-
ample, the calculation of λ from equation (10.3) will normally require these
methods. Here we outline Newton’s method for the approximate numerical
solution of some equation.

Suppose that we wish to find the solution of the equation f(x) = 0. Let
a be a first estimate of this solution. The equation (B.29) shows that an
approximation x1 to the required solution is given by

x1 ∼= a − f(a)
f ′(a)

.

We now take x1 as a new estimate of the solution and find an improved
estimate x2 from the equation

x2 ∼= x1 − f(x1)
f ′(x1)

.

This procedure can be repeated until an estimate of the solution having
any desired degree of accuracy is found. In some cases the process can lead
to a diverging rather than a converging sequence of values, so some care
must be exercised in using it.

B.16 Statistical Differentials

Suppose that X1 is a random variable with mean µ and small variance (so
that X1 is unlikely to differ much from µ). Equation (B.29) then shows
that if f is analytic,

f(X1) − f(µ) ∼= (X1 − µ)f ′(µ). (B.31)

Let X2 = f(X1). Then taking expectations throughout in the approxima-
tion (B.31),

mean of X2 ∼= f(µ). (B.32)

Squaring in equation (B.31) and then taking expectations leads to the
first-order approximation

variance of X2 ∼= (f ′(µ))2 variance of X1. (B.33)

The approximations made in deriving this formula imply that it must be
used with some caution.

One use of (B.33) is to derive a random variable X2 whose variance is ap-
proximately independent of its mean. The variance of X2 is approximately
independent of the mean of X2 if the transformation f(·) is chosen so that
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the right-hand side in (B.33) is independent of µ. This will arise if

X2 = f(X1) = const
∫ X1 1

σ(X1)
dµ, (B.34)

where σ(X1) is the standard deviation of X1, assumed to depend on µ.
For example, if X1 has a Poisson distribution, for which the mean and
variance ar equal, the required transformation is X2 = const

∫X1 1√
µdµ =

const
√

X1. When the standard deviation of X1 is proportional to its mean,
use of (B.34) shows that X2 = log X1 has a variance approximately inde-
pendent of its mean. (See Problem 1.38 for an example of a case where the
logarithmic transformation leads to a random variable whose variance is
completely independent of the mean.)

B.17 The Gamma Function

The gamma function is an analytic function defined for positive u by the
integral

Γ(u) =
∫ ∞

0
e−ttu−1dt. (B.35)

The gamma function extends the factorial function to all positive numbers,
as can be seen from the facts that

Γ(u + 1) = uΓ(u), for all positive real numbers u, (B.36)

and

Γ(1) = 1, (B.37)

which imply

Γ(n) = (n − 1)! when n is a positive integer. (B.38)

When u is positive but not an integer, equation (B.36) can be used to
find Γ(u), provided that values of the gamma function for values of u in
(say) the interval (1, 2) are available. These values are listed in Table 6.1
of Abramowitz and Stegun (1972). A useful value of the gamma function
is

Γ
(

1
2

)
=

√
π. (B.39)

We need two further facts about the derivative of the gamma function.
First, (

d Γ(u)
du

)
u=1

= −γ, (B.40)
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where γ is Euler’s constant defined in (B.6). Second,(
d2 log Γ(u)

d u2

)
u=1

=
π2

6
. (B.41)

The fact that Γ(n) = (n − 1)! when n is a positive integer allows a rapid
evaluation of the integral ∫ ∞

0
λxn e−λxdx, (B.42)

which arises in connection with finding the moments of the exponential
distribution (1.66). The change of variable u = λx leads to the calculation∫ ∞

0
λ−nun e−udu = n!λ−n, (B.43)

for the nth moment of this distribution.
Fractional moments are also sometimes of interest: Thus if X is a random

variable having the exponential distribution (1.66),

E(X1/2) =
∫ ∞

0
λ−1/2u1/2e−udu

=
Γ(3/2)√

λ
=

√
π

2
√

λ
(B.44)

from (B.36) and (B.39).

B.18 Proof by Induction

One of the most useful methods of proving some proposition P (n) about
a positive integer n is a proof by induction. In a proof of this type we (i)
first prove that P (n) is true for the particular case n = 1, and then (ii)
show that the truth of P (n) for the case n = m implies its truth for the
case n = m + 1. Using (ii) for the case m = 1, (i) and (ii) together imply
the truth of P (n) for the case n = 2. Then using this result and (ii) for the
case m = 2 implies the truth of P (n) for the case n = 3, etc. Thus (i) and
(ii) together imply that P (n) is true for all positive integers.

A classic simple example of such a proof is as follows. Define S(n) by
S(n) = 1 + 2 + 3 + · · · + n and then define the proposition P (n) as S(n) =
n(n+1)/2. This proposition is true for the case n = 1, since 1 = 1(1+1)/2.
Suppose that P (n) is true for n = m, so that 1+2+ · · ·+m = m(m+1)/2.
Then 1 + 2 + · · · + m + (m + 1) = (1 + 2 + · · · + m) + (m + 1) = m(m +
1)/2 + (m + 1) = (m + 1)(m + 2)/2. This shows that P (n) is also true for
the case n = m + 1.
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B.19 Linear Algebra and Matrices

In this section we quote without proof several results from the theory of lin-
ear algebra that are relevant to material in the text. It is assumed that the
reader is familiar with the basics of linear algebra, including the concepts
of matrices and their eigenvalues and eigenvectors, of vectors, of matrix
and vector products, and of the transposition operation (denoted here by
“′”). The vector v is assumed to be a column vector, so that the vector v′

is taken as a row vector.
Let P be an s × s matrix. This matrix has s eigenvalues, possibly

not all distinct, denoted by λ1, λ2, . . . , λs, found as the s solutions to the
determinantal equation (in λ)

|P − λI| = 0. (B.45)

It is possible that there are solutions of equation (B.45) having multiplicity
exceeding 1: For our purposes we assume that all eigenvalues of P are
distinct.

Corresponding to the eigenvalue λj is a right eigenvector rj and a left
eigenvector �′

j , both defined only up to a multiplicative constant, for which

Prj = λjrj , �′
jP = �′

jλj . (B.46)

We now assume that these eigenvectors are normalized so that

�′
jrj = 1 for all values of j, j = 1, 2, . . . , s. (B.47)

Although this normalization does not uniquely determine �′
j and rj , it is

sufficient for our purposes. With this normalization, P can be expressed in
terms of its eigenvalues and eigenvectors in a spectral expansion as

P =
s∑

j=1

λjrj�
′
j . (B.48)

If λj is an eigenvalue of P with corresponding right eigenvector rj and
left eigenvector �′

j , then for any positive integer n, λj
n is an eigenvalue of

Pn, with right and left eigenvectors rj and �′
j , respectively. This implies

that the spectral expansion of Pn is

Pn =
s∑

j=1

λj
nrj�

′
j . (B.49)

This result has relevance to us when P is the transition matrix of a Markov
chain, since the spectral expansion of Pn gives useful information about
n-step transition probabilities of this chain.

The theory is more complex when some eigenvalues of P have multiplicity
greater than 1, but in all cases of interest to us, a spectral expansion of the
form (B.49) exists and is used often in Markov chain theory in the text.



Appendix C
Computational Aspects of the
Binomial and Generalized Geometric
Distribution Functions

The expression for the generalized geometric cumulative distribution
function FY (y) given in equation (6.3) can be written as

(1 − p)k+1

k!

(
k!
0!

+
(k + 1)!p

1!
+

(k + 2)!p2

2!
+ · · · +

y!py−k

(y − k)!

)
. (C.1)

In Section 6.3 we consider the calculation of Prob(Y ≤ y − 1), which we
denote here by Q(y), for the values y = k+1, k+2, . . .. It is thus of interest
to find an efficient way of carrying out this calculation for any given values
of p and k and a collection of values of y. The expression (C.1) shows that

Q(y + 1) − Q(y) = (1 − p)k+1
(

y

k

)
py−k. (C.2)

Replacing y by y + 1 in (C.2) we get

Q(y + 2) − Q(y + 1) = (1 − p)k+1
(

y + 1
k

)
py+1−k, (C.3)

and from (C.2) and (C.3) we obtain

Q(y + 2) − Q(y + 1) =
y + 1

y − k + 1
p (Q(y + 1) − Q(y)) . (C.4)

This leads to the recurrence relation (Wilf (2003))

Q(y + 2) =
(y + 1)p + y − k + 1

y − k + 1
Q(y + 1) − y + 1

y − k + 1
pQ(y) (C.5)
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This can be solved rapidly for any chosen collection of values of y, using
the initial conditions

Q(k + 1) = (1 − p)k+1, Q(k + 2) = (1 − p)k+1 (1 + (k + 1)p) .

It can also be shown that

Q(y) =
y∑

j=k+1

(
y

j

)
(1 − p)jpy−j . (C.6)

This is a sum of binomial probabilities. The discussion in Section 1.3.6
relating the cumulative distribution functions of the binomial and the gen-
eralized geometric show why this is so. The event that y − 1 or fewer trials
occur before the trial at which failure k + 1 arises is exactly the same as
the event that there are k + 1 or more failures in the first y trials. Q(y) is
defined as the probability of the former event, and so it is also the probabil-
ity of the latter event. This is what equation (C.6) states. This observation
allows us to use the recurrence relation (C.5) to calculate the distribution
function of the binomial distribution (1.8) for specific values of y and p.

Arratia et al. (1986) in effect show that for the case where y is large and
p is small, a close approximation for Q(y) is

Q(y) = Prob(Y ≤ y − 1) ∼= 1 − ykpy−k(1 − p)k

k!
. (C.7)

This is exact for k = 0 and when k = 1 differs from the exact value by
an amount py, which, when p is small and y is large, is very small. For
larger values of k the approximation (C.7) is also very accurate, although
the accuracy decreases slightly as k increases. The approximation (C.7) is
useful in many applications, and often saves us from making an exact but
tedious numerical calculation.



Appendix D
BLAST: Sums of Normalized Scores

Our aim in this appendix is to use the joint density function (10.39) for
the case r = 2, namely

f(s1, s2) = exp (−(s1 + s2) − e−s2), (D.1)

to derive the “r = 2” case of equation (10.40), namely

f(t) =
e−t

2

∫ +∞

0
exp(−e(y−t)/2) dy, (D.2)

for the density function T2 = S1+S2, the sum of the highest two normalized
scores in a BLAST calculation.

To do this we introduce the dummy variable Y , defined by Y = S1 −S2.
The domain of the two random variables S1 and S2 in the (S1, S2) plane is
S1 ≥ S2, and this transforms into the domain Y ≥ 0 in the (T2, Y ) plane.
The Jacobian J of the transformation from (S1, S2) to (T2, Y ) is 2, and we
can write s1 + s2 = t and s2 = (t − y)/2. Equations (2.145) and (D.1) then
show that the joint density function of T2 and Y is

f(t, y) =
1
2
exp(−t − e(y−t)/2). (D.3)

The density function of T2 is found by integrating out y over the range
y ≥ 0 in this joint density function, and this leads immediately to equation
(D.2).



References

Abramowitz, M. and I. Stegun (1972). Handbook of Mathematical Func-
tions. Dover, New York.

Affymetrix Statistical Algorithms Reference Guide (2003).
http://www.affymetrix.com/support/technical/manuals.affy

Altschul S.F. (1991). Amino acid substitution matrices from an informa-
tion theoretic perspective. J. Mol. Biol. 219, 555–565.

Altschul S.F. (1993). A protein alignment scoring system sensitive at all
evolutionary distances. J. Mol. Evol. 36, 290–300.

Altschul, S.F. and W. Gish (1996). Local alignment statistics. Methods in
Enzymology 266, 460–480.

Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W.Q.
Miller, and D.J. Lipman (1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Research
25, 3389–3402.

Andrews, D.K.W. (2000). Inconsistency of the bootstrap when the pa-
rameter is on the boundary of the parameter space. Econometrica 68(2),
399–406.



562 References

Arratia, R., L. Gordon, and M.S. Waterman (1986). An extreme value the-
ory for sequence matching. Ann. Statist. 14, 971–983.

Arratia, R., L. Goldstein, and L. Gordon (1989). Two moments suffice for
Poisson approximations: the Chen-Stein method. Ann. Prob. 17, 9–25.

Arratia, R., E.S. Lander, S. Tavaré, and M.S. Waterman (1991). Genomic
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Tavaré, S. (1986). Some probabilistic and statistical problems in the anal-
ysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17,
57–86.



578 References
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Multinomial distribution, 71–73,

76, 77, 114, 116, 129,
315, 492

Multiple testing, 149–151, 186,
363, 451–467

in BLAST, 358
null hypothesis, 452–454
permutation methods, 463–

466
single-step methods, 454–456
step-down methods, 456–459
step-up methods, 460–463

Mutation, 222
MvA plot, 439–441
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Needleman–Wunsch algorithm, 231–
234, 237

Negative binomial distribution,
16–17

cumulative distribution func-
tion, 17

graph of, 16
mean, 23
variance, 23

Neighbor, 504–509
Neighbor-joining method of phy-

logenetic tree estimation,
505–511, 519, 521

Neighborhood, 396
Nested hypotheses, 309, 313, 531–

533
Neyman–Pearson lemma, 305
Nitrogenous base, 537
Nonparametric methods, 138, 375
Normal distribution, 31–34, 121,

201, 279, 533
approximation to the bino-

mial, 32
approximation to the Pois-

son, 34
assumed for t-test, 126
assumption of, 127
graph of, 31
mean, 31
moment-generating function,

39
multivariate, 72
standard normal, 31, 88
variance, 31

Normalization, 439–442
global, 439
local, 439
loess, 440
quantile, 442

Normalized score, 354
NP-complete, 397
Nucleotide, 1, 53, 170, 183, 188,

222, 475–494, 537
predominant, 475

Null hypothesis, 189

Numerical solutions of equations,
554

Observed sequence, 409
Oligonucleotide, 433
Order statistics, 99–103, 296,

356
Overparameterization, 318, 320,

321, 324, 326

P call, 444
p(t), 25, 67, 90, 204, 206
P -value, 122, 134, 136–138, 189,

194, 358, 360, 362–365,
368, 371–373, 376, 401,
455–459

adjusted, 363, 456, 458
approximation by simulation,

225
bounds for, 351–354

PAM matrix, 161, 238, 244–249,
349–351, 372, 374–376,
381, 388, 484

simple example, 248
PAM model, 484, 493
Parameter, 2, 6, 10, 20, 411

calculation in BLAST, 347–
349

Parse, 423, 427
Parsimony method of phyloge-

netic tree estimation, 499,
511–512, 515, 519, 521

Path decomposition, 348
Patterns, 196

in DNA sequences, 196–211,
227, 390–391

Permutation, 542–543
Permutation distribution, 446, 448,

453, 454
Permutation test, 101, 139–447
Pfam, 421
pgf, see Probability-generating func-

tion
Phylogenetic tree, 55, 169, 170,

229, 245, 313, 316, 475
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binary, 497
edge of, 498
most parsimonious, 245
rooted, 497–498, 500, 501,

504, 514
topology of, 284, 509, 511–

515, 529–534
unrooted, 497–500, 506, 512,

514, 515
Phylogenomics, 497
Pivotal distribution, 452, 453
Pivotal null distribution, 453–457
Pivotal quantity, 125–127, 312
Plug-in

estimate, 53, 295
statistic, 295, 336

Poisson distribution, 17–18, 65,
67, 77, 180, 181, 201,
202, 211, 356, 364, 424,
485, 516

as limiting form of binomial,
18, 158

compound, 201
estimation of parameter, 278
graph of, 17
mean, 23
normal approximation to, 34
relation to gamma, 159
variance, 23

Poisson process, 10, 155–159,
168, 169, 176, 180, 183,
485, 486, 490

Poly–A, 424
Pólya–Aeppli distribution, 201,

202, 211
estimation of parameters, 278

Polymerase chain reaction, 160
Polymorphism, 222
Positive FDR, 463
Posterior distribution, 148
Power curve, 338–342, 380
Power of a test, 123, 305–307,

373, 457
pre-mRNA, 423
Primer, 160

Principal components, 292, 471
Prior distribution, 146–148
Probability, 2–3

conditional, 44, 101
of an event, 43
posterior, 146
prior, 146

Probability distribution
asymptotic, 83
conditional, 75–79
continuous, 26–29
discrete, 4–6
empirical, 295, 426, 427
initial (in Markov chain), 163
joint, 71, 87
marginal, 73–75

Probability-generating function (pgf),
24–26, 90, 204

uniqueness property, 26, 67
Probe, 432, 433

match, 436
mismatch, 436

Profile HMM, see Hidden Markov
model, profile

Promoter, 197, 423, 538
Protein, 48, 84, 125, 183, 222,

430, 538
domain, 421
sequence, 169, 170, 183, 220,

222, 227, 345, 539
Pseudocount, 149, 252, 253, 379,

393
Pulley principle, 514
Pure birth process, 159
Purine, 162, 478, 479, 490, 537
Pyrimidine, 162, 478, 479, 490,

537

Query sequence, 257, 345, 364–
372

r-scans, 192–197, 215
Random variable(s)

average of, 87–89
continuous, ix, 26
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dependent case, 70
derived, 87
discrete, ix, 3
function of, 20, 88
maximum of, 87, 92–138
minimum of, 87, 90, 93
sum of, 87–89

Random walk, 257–273, 345
asymptotic theory, 265, 268–

273
general, 266–273
restricted, 271–273
simple, 259–265
unrestricted, 269–271

Range of a random variable, 4, 5
Rank, 142
Re-estimation, 415
Recognition sequence, 207
Recurrent event, 207
Reference design, 435, 445
Regression, 289

weighted, 288
Relative entropy, 50, 350, 351,

394–395
Renewal theorem, 268, 270, 345
Repeatability, 524
Repeated Measures ANOVA, 332–

334
Repeats, 188–192
Replication in ANOVA, 326
Restriction endonuclease, 192, 207,

397
RNA, 84, 183, 423, 538

messenger (mRNA), 84, 183,
423, 430, 538

Robustness, 323, 324
Root, in a phylogenetic tree, 497
Rooted phylogenetic tree, 500,

501, 504, 514

SAM, 464–466
Sample average, 276
Schadt model, 480
Score, 50, 349–351, 401

distance, 229

in BLAST printout, 365
similarity, 229, 244

SEG, 426
semiHMM, see Hidden Markov

model, semi
Sequence, 547

convergence of, 547
divergence of, 547
partial sum of, 547

Sequential analysis, 336–343, 345,
349, 380–381

relation to BLAST, 336
Series

exponential, 551
geometric, 548
harmonic, 548
infinite, 547

convergence of, 547
divergence of, 547

Laurent, 25, 553
logarithmic, 551
Taylor, see Taylor series

Set(s), 541
element of, 541
intersection of, 541
union of, 541

Shotgun sequencing, 174–183
Šidák correction, 150, 186, 455,

466
Signal, 185, 423, 424

acceptor, 427
donor, 427
poly–A, 424
TATA box, 423, 425, 427
translation initiation, 424, 426

Significance point, 120
Similarity

score, 229, 244
tests for, 223

Simulated annealing, 395–398
Single exon gene, 426
Single-step methods, 454–456
Skewness, 24
Smith–Waterman algorithm, 234
SOM, 472
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Species of mRNA, 84
Spectral expansion, 249, 385, 386,

477, 478, 482–484, 493,
557

Standard deviation, 21, 296
Standard Normal Distribution, 31,

88
State sequence, 409
Stationary distribution, 165–167,

387–390, 392–393, 395,
397, 404–405, 477–485,
490

convergence to, 385
Statistic

chi-square, 130, 132, 187, 188,
221, 314, 317, 389, 532

t, 126, 141, 335, 446, 447,
450, 451

Statistical differential, 488, 554–
555

Statistical method of phyloge-
netic tree estimation, 499

Statistics, 2–3, 111–151
Bayesian methods, 112–113
classical methods, 112–113

Step-down methods, 456–459
Westfall–Young, 456–459

Step-up methods
Benjamini and Hochberg, 460–

463
Stirling’s approximation, 546
Strong control, 453–456, 458, 461,

473
Subset pivotality, 454
Substitution, 222, 476
Substitution matrix, 51, 89, 164,

229, 231, 238–249, 346,
348, 349, 351, 355, 364,
372, 376, 381, 386, 388,
418, 420, 533

BLOSUM, 238–244, 349
PAM, 248–249, 349, 375, 381

Substitution rate, 529, 533
Success run, 14
Sum of random variables, 87–89

properties of, 66, 87, 90
Sum of squares, 319

between group, 319
total, 319
within group, 319

Sum statistic, Karlin–Altschul, 356–
358

Summary values, 436, 445
Support, 26, 50, 99, 133, 194, 350,

373
accumulated, 51, 89, 133, 337

Surrogate distance, 509–511

t statistic, 126, 141, 335, 446, 447,
450, 451

t-test, 138, 139, 310, 335, 459
TATA box, 423, 425, 427
Taylor series, 25, 284, 488, 549–

553
uniqueness of, 553
used for approximating func-

tions, 552
Temporally homogeneous prop-

erty, 161
Test statistic, 120

Karlin–Altschul, 357
maximum as, 134, 225, 347,

401
Thymine, 1, 476–494, 537
Time homogeneity, 155, 162, 403,

405
Topology

of a graph, 168, 411, 414
of a tree, 284, 509, 511–515,

529–534
Total variation distance, 18, 202
Training data, 184–188, 419, 424–

427
Transcription, 84, 423, 426, 538
Transformation

multiple, 103–105, 357, 560
single, 51–53

Transition, 478, 480, 491, 535
Transition probability, 162, 245,

246
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Transition probability matrix, 162,
164–168, 172, 184, 187,
217, 244–248, 384–388,
390, 400, 401, 406, 407,
410, 477–484, 493, 496,
557

Transition rates, instantaneous,
403, 492

Transition/transversion ratio, 515
Translation, 84, 423

initiation signal, 424, 426
Translation initiation end, 424,

426
Transversion, 478, 480, 490, 491,

535
Tree, phylogenetic, see Phyloge-

netic tree
Tryptophan, 229
Tukey biweight method, 436
Two standard deviation rule, 32,

114, 299
Type I error, 120, 189, 336, 373,

380
Type II error, 120, 336, 380

Uniform distribution
continuous, 30, 37, 53, 91,

92, 101, 192, 296
graph of, 30
mean, 30
variance, 30

discrete, 13–14, 389, 477–
479, 547

mean, 23
variance, 23

Union
of events, 42, 43, 270
of sets, 541

Unrooted phylogenetic tree, 500,
506, 512, 514, 515

Untranslated region, 424
UPGMA method of phylogenetic

tree estimation, 501, 504–
505, 511, 519, 521

Uracil, 538

Variance
Bernoulli distribution, 23
beta distribution, 37
binomial distribution, 23
continuous uniform distribu-

tion, 30
discrete uniform distribution,

23
exponential distribution, 35
gamma distribution, 36
geometric distribution, 23
mgf and, 38
negative binomial distribu-

tion, 23
normal distribution, 31
of a continuous random vari-

able, 28
of a discrete random vari-

able, 21–23
pgf and, 25
Poisson distribution, 23

Variance stabilization, 554
Viterbi algorithm, 413–414, 419,

420, 423, 427

Wald’s identity, 263, 267
Weak control, 452, 454, 456, 458
Weight matrix, 185, 425–427
Westfall–Young step-down meth-

ods, 456–459
Wilcoxon test, 143–145, 444
Word, 196–399

Yule process, 160

z-score, 31, 32, 143, 215
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