

تعليمات هامة:
عزيزى الطالب:

1. اقرأ التتليمات جيدا سواء فى مقدمة كراسة الامتحان أو فى مقدمة الأسئلة ، وفى ضـوئها أجـب عن الأسئلة .
r. r.r. عند إجابتك للأسئلة للمقالية، أجب فيما لايزيد عن المساحة المحددة لكل سؤال. مثال :
₹. عند إجابتك عن أسئلـة الاختيار من متعدد إن وجدت: ظتل الائرة ذات الرمز الالال عثى الإجابة الصحيحة تظلـيلاُ كاملاُ لكل سؤال . مثال : الإجابة الصحيحة (جـ) مثّلا

- في حالة ما إذا أجبت إجابة خطأ، ثم قمت بالثنطب وأجبت إجابة صحيحة تحسب الإجابة صحيحة. - وفي حالة ما إذا أببت إجابة صحيحة، ثم قمت بالثشطب وأجبت إجابة خطأ تحسب الإجابة خطأ. - في حالة التظليل علي أكثر من رمز، تعتبر الإجابة خطأ.

ملحوظة:
 فـلن تقفر إلا الإجابة الأولي فقط .
ه- إدا أجيت عن سؤال من الأسئلة المقالية بإجابتين ، فسيتم تقير الإجابة الأولى فقط ، فانثطب أنت الإجابة التّي لا ترغب فيها .

7 - يسمح باستذام الالة الحاسبة
V- عد أسئلة كراسة الامتحان ((1^) سؤلاً .

9- تأكد من ترقيم الأسئلة ، ومن عدد صفحات كراسة الاستان الامتحان ، فهي مسؤوليتكّ.
.
11- الارجة الكلية للاختبار (• •) درجة .

أجب عن الأسئلة التالية:

1.	If the algebraic measure for the displacement vector of a particle is given by the relation: $S=t^{2}-4 t$, then the particle decelerated in the interval.	إذا كان القياس الجبري لمتجه إزاحة جسيم تعطي بالعلاقة ف = يتباطأ في الفترة
(a)	[0,2[]r.] (i)
(b)]0,2]	[rır [$¢$
(c)	[2, ∞ [$] \infty \times r]($
(d)]2, ∞ [] 0 rr [${ }^{\text {c }}$

\qquad

2.	If the algebraic measure of the velocity of a body is given by the relation $\mathrm{v}=(10-2 \mathrm{t}) \mathrm{cm} / \mathrm{sec}$,then the covered distance during the $3^{\text {rd }}$ second only from its motion $=\ldots \ldots \ldots \mathrm{cm}$	إذا كانت ع = ((فإن المسافة المقطوعة خلا الثانية الثالثة فقط من حركته = سم	.
(a)	2	r (i)	
(b)	3	$r \oplus$	
(c)	4	$\varepsilon \Theta$	
(d)	5	0 (2)	

\qquad

3.	A canon of mass 250 kg shots a bullet of mass 10 kg with velocity $100 \mathrm{~m} / \mathrm{sec}$,then the reaction velocity of the canon equals	مدفع كتلته . 0 ب كجم يطلق قنيفـة كتلتهــا ارتداد المدفع تساو ي	
(a)	$4 \mathrm{~m} / \mathrm{sec}$	¢/	
(b)	$0.4 \mathrm{~m} / \mathrm{sec}$	¢/a', ¢	
(c)	$100 \mathrm{~m} / \mathrm{sec}$		
(d)	$10 \mathrm{~m} / \mathrm{sec}$	(1.) (\%)	

\qquad
4. A train of mass 300 tons ascends a slope whose inclination to the horizontal is with an angle of sine $1 / 240$ and on the direction of the line of the greatest slope of the plane .if the maximum velocity of the train is $30 \mathrm{~m} / \mathrm{sec}$ and the force of its locomotive equals 3500 kg .wt ,the magnitude of the resistance is directly proportional with the square of the velocity .Find the magnitude of resistance to the motion of the train when it moves with velocity $20 \mathrm{~m} / \mathrm{sec}$,then find the maximum power of the engine in horse.

5.	In a certain moment the momentum of a body equals $112 \mathrm{~kg} . \mathrm{m} / \mathrm{sec}$ and its kinetic energy equals 80 kg wt . $\mathrm{m} / \mathrm{sec}$,then its velocity at this moment = \qquad $\mathrm{m} / \mathrm{sec}$	في لحظة ما كانت كمية حركة جسم A . ث كجم .م/ث فتكون سرعته عند هذه اللحظة = 0
(a)	$\frac{5}{7}$	$\frac{\square}{V}$ (1)	
(b)	$\frac{10}{7}$	$\frac{10}{V}$ ¢	
(C)	7	$v \bigodot$	
(d)	14	1: 2	

\qquad

6.	A body of mass 10 kg moves in a straight line such that $\vec{a}=\left(3 t^{2}-8 t\right) \vec{n}$ where \vec{n} is the unit vector in the direction of the motion .If the norm of \vec{s} is measured by meter, t is measured by second, find the impulse after 3 seconds from the start of the motion.	جسم كتلته • ا كجم يتحرك في خط مستقيم بحيث كاتت وحدة في اتجاه الحركة إذا كان معيار فت بوحدة المتر ، N باثثانية أوجد الدفع بعد تواني من بدء الحركة.

8.	A body of mass 3 kg moves under the action of three forces $\overrightarrow{F_{1}}=2 \vec{\imath}+5 \vec{\jmath}, \overrightarrow{F_{2}}=\mathrm{a} \vec{\imath}$ $+3 \vec{\jmath}$ and $\overrightarrow{F_{3}}=2 \vec{\imath}+\mathrm{b} \vec{\jmath}$ where $\vec{\imath}$ and $\vec{\jmath}$ are two perpendicular unit vectors in the plane of the forces. If the displacement vector is given as a function on time by the relation : $\vec{S}=\left(\mathrm{t}^{2}+1\right) \vec{\imath}+\left(2 \mathrm{t}^{2}+3\right) \vec{\jmath}$,then determine the value of each of a and b , calculate the work done by the resultant of these forces during 5 sec from the start of the motion known that S is measured in meter, F in newton and t in second.	فوي مستوية س~~ في مستوي القوي فإذا كان متجه الإزاحة يعطي كدالة في الزمن + بالعلاقة: فَ ب ثم احسب الثشغل المبذول من القوة المحركة خلال ه ثواني من بدء الحركة علماً بأن ف مقاسده بالمتر ، ق بالنيوتن ،

under the action of three forces $\overrightarrow{F_{1}}=2 \vec{\imath}+5 \vec{\jmath}, \overrightarrow{F_{2}}=\mathrm{a} \vec{\imath}$ $+3 \vec{\jmath}$ and $\overrightarrow{F_{3}}=2 \vec{\imath}+\mathrm{b} \vec{\jmath}$ where $\vec{\imath}$ and $\vec{\jmath}$ are two perpendicular unit vectors in the plane of the forces. If the displacement vector is given as a function on time by the relation :
$\vec{S}=\left(\mathrm{t}^{2}+1\right) \vec{\imath}+\left(2 \mathrm{t}^{2}+3\right) \vec{\jmath}$,then determine the value of each of a and b, calculate the work done by the resultant of these forces during 5 sec from the start of the motion known that S is measured in meter , F in newton and t in second.

بتحرك جسم كثلته قوي دستوية
 س~ 6 ص~ متجها وحدة متعامدين في دستوي القوي فإذا كان دتجه الإزاحة يعطي كدالة في الزمن بالعلاقة: ف ف ، ع ع ب ثم احسب الشغل المبذول من القوة المحركة خلال 0 ثواني من بدء الحركة علماً بأن ف مقاسه بالمتر ، ق بالنيوثن ، N بالثنانية
\qquad

A body of mass $(4 t+1) \mathrm{kg}$ and its position vector is given by the relation $\vec{r}=\left(t^{2}-2 t\right) \vec{e}$ where \vec{e} is a constant unit vector , t is measured in second, $\|\vec{r}\|$ in meter. Find the magnitude of the force acts on the body at $\mathrm{t}=10 \mathrm{sec}$.

جسم كتلته (£ + 1) كجم ومتجه موضعه س (Nrوحدة ثابتة ، س مقاسه بالمتر، N بالثانية.
 v = ، 1 ث ثانية
\qquad

11.	If the power of a machine in watt is given by the relation (8t-5) and the work done at $\mathrm{t}=3 \mathrm{sec}$ equals 24 joule ,then the work done at $\mathrm{t}=1 \mathrm{sec}$ equals joule	إذا كانت قـرة آلة بالوات تعطي بالعلاقة () و (وكان الثشغل المبذول عندما 性 المبذول عندما	. 1
(a)	1	1 (1)	
(b)	2	r $¢$	
(c)	3	$r \Theta$	
(d)	4	\& (2)	

\qquad

12.	In the opposite figure: A smooth horizontal plane, if the system starts its motion from rest, then the acceleration of the system equals	المستوي أفقي أكلس إذا بدأث المجمو عة الحركة من السكون فإن عجلة حركة المجموعة نساوي	. 1
(a)	$\frac{5}{8}$	$\frac{\circ}{\lambda}$ (1)	
(b)	$\frac{3}{8}$	$\frac{r}{\lambda} \odot$	
(c)	$\frac{5}{8} g$	$s \frac{0}{\lambda} \Theta$	
(d)	$\frac{3}{8} g$	$s \frac{\mu}{\lambda}$ (2)	

A body of mass 735 gm and a spring balance of mass 140 gm in which a body of mass 350 gm is hanged on it are connected by a light inelastic string passing over a smooth small pulley fixed vertically. if the system starts its motion from rest.
Answer one of the following questions:

1-Find the velocity of the system after 3 sec from the start of the motion.

2 - Find the reading of the spring balance in kg .wt.

يمر خبط خفبف على بكرة ملساء مثبتة رأسبا ويحمل في أحد طرفيه جسماً كنلته هr جرام، وفي الطرف الآخر ميزان زنبركي كتلثه • عا جرام ومعلق به جسم كتلته . هس جر ام فإذا تحركت المجمو عة من

(أجب عن احد المطلوبين التاليّن فقط:

- أوجد سرعة المجمو عة بعد مضي ثواني من بدء الحركة.
- أوجد قر اءة المبزان الزنبركي بنقل الجرام.
\qquad

A hammer of mass 800 kg fell down from a height of 4.9 m vertically on a foundation pole of mass 320 kg to embed it vertically in the ground for a distance 10 cm . If the hammer and pole move as one body directly after collision, find their common velocity, then find the ground resistance supposing it is constant in ton
\& 1
|ارتفاع 9.؛ كتر رأسياً على عمود من
 الأرض لمسافة . 1 سم . أوجد السرعة الشُشتركة للمطرقة والجسم بعد النصادم ومقاومة الأرض للجسم بفرض ثبونها مقدرة بتقل الطن.
\qquad

15.	In the following figure: the plane and the pulley are smooth. if this system moves from rest , then the pressure on the pulley $=$ \qquad kg.wt. where $\mathrm{T}=15 \mathrm{~kg} . \mathrm{wt}$.	في الشككل المقابل : بكرة صغيرة ملساء فإذا نحركت المجموعة من السكون الضغط على البكرة =....... ث كجم حبث ش = 10 ث ك كجم.	.
(a)	5	- (1)	
(b)	$5 \sqrt{3}$	Mvo $¢$	
(c)	15	$10 ¢$	
(d)	$15 \sqrt{3}$	M O O	

Two smooth balls each of mass 0.2 kg move in one straight line on a horizontal ground; the first with velocity $4 \mathrm{~m} / \mathrm{sec}$ and the second with velocity $6 \mathrm{~m} / \mathrm{sec}$ in the same direction of the first. If the two balls collide.
Answer one of the following questions:
1-Identify the velocity of each directly after collision given that the impulse magnitude of the second ball on the first is equal to 10^{5} dyne .sec

2- Determine the kinetic

 energy loss due to collision if the two balls move after collision as one body.$$
\begin{aligned}
& \text { تُترك كرتان ملساوان كتلة كل منها } \\
& \text { r.• كجم في خط مستثغيم على مستوى } \\
& \text { أفقي أملس الأولي بسزعة ؟ ع/ ث }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الاتجاه فإذا تصـادمت الكرتان. } \\
& \text { أجب عن أحد المطلوبين التاليّن فقط: } \\
& \text { (1) أوجد سرعة كل من ألكا } \\
& \text { التصادم مباثرة علماً بأن مقـار دفـ } \\
& \text { الكرة الثانية على الأولي بساوي • } \\
& \text { داين . ث. } \\
& \text { (Y) أوجد طاقة الحركة المققودة نتيجة } \\
& \text { النصـادم اذا تحركت الكرتان بعد } \\
& \text { اللتصادم كجسم واحد }
\end{aligned}
$$

\qquad
17. A body of mass 63 gm is placed on a rough horizontal table and connected by a horizontal light string passing over a smooth pulley fixed at the edge of the table and the other end of the string is connected by another body of mass 35 gm a distance of 2.8 m from the surface of the ground. If the kinetic friction coefficient between the body and the plane equals $\frac{1}{3}$, then find the velocity of the small body when it reaches the surface of the ground.

$$
\begin{aligned}
& \text { وضع جسم كتلثة با جم على نضد أققي } \\
& \text { خشن وربط بخيط أفقي يمر على بكــرة } \\
& \text { ملساء مثبته عند حافة النضد و ربط في } \\
& \text { الطرف الأخر للخطط جسم كتلانه O ج جم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { فإذا كان معامل الاحتكاك الايناميكي بين } \\
& \text { الجسم و المسنوي } \\
& \text { تصل بها الكتلة الصغرى إلــي ســطح } \\
& \text { الأرض. }
\end{aligned}
$$

.1 V
$\square \square$

18.	If a body of mass 5 kg is projected vertically with velocity $28 \mathrm{~m} / \mathrm{sec}$,then its potential energy at the maximum height it can reach $=\ldots .$. joule	جسم كثلنه 0 كجم رأسبا لأعلي الرة ارتناع يصل إلبه = جول	11
(a)	70	v.	
(b)	200	r..	
(c)	70 g	SV.	
(d)	200 g	St..	

\qquad

