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In This Presentation… 

 

 

•We will give a definition  

•Discuss some of the inverse trig functions 

•Learn how to use it  

•Do example problems  

 



Definition 

• In Calculus, a function is called a one-to-one function if it 
never takes on the same value twice; that is f(x1)~= f(x2) 
whenever x1~=x2. 

• Following that, if f is a one-to-one function with domain A and 
range B. Then its inverse function f-1 has domain B and range A 
and is defined by 

             f^(-1)y=x 

        => f(x)=y  



A Note with an Example 

• Domain of  f-1= Range of f 

• Range of f-1= Domain of f 

• For example, the inverse function of f(x) = x3 is 

         f-1(x)=x1/3 because if y=x3, then 

         f-1(y)=f-1(x3)=(x3)1/3=x 

 

Caution Rule: the -1 in f-1 is not an exponent. 

    Thus f-1(x) does not mean 1/f(x) 

 

 

 



Cancellation Equations and 
Finding the Inverse Function: 

 

• f-1(f(x))=x for every x in A 

• f(f-1(x))=x for every x in B  

 

• To find the Inverse Function 

• Step 1: Write y=f(x) 

• Step 2: Solve this equation for x in terms of y (if possible). 

• Step 3: To express f-1 as a function of x, interchange x and y. 

                 The resulting equation is y=f-1(x). 



Example: 

• Find the inverse function of f(x) = x3+2 

 

So,                                      y=  x3+2 

Solving the equation for x:  

                                           x3=y-2 

                                           x=(y-2)1/3 

Finally interchanging x and y: 

                                           y=(x-2)1/3 

Therefore the inverse function is 

                                        f-1(x)=(x-2)1/3 



Inverse Trigonometric 
Functions: 
• The domains of the trigonometric functions are restricted so 

that they become one-to-one and their inverse can be 
determined. 

 

• Since the definition of an inverse function says that  

                    f-1(x)=y 

               => f(y)=x 

We have the inverse sine function, 

                  sin-1x=y 

             => sin y=x               and    -π/2<=y<= π/2 



Example and cancellation 
equations: 
• Evaluate sin-1(1/2) 

• We have  

                                  sin-1(1/2) =π/6 

           because         sin(π/6)= ½ 

                   and         π/6 lies between  -π/2  and  π/2  

 

• Cancellation Eq:  

          sin-1 (sin x)= x    for -π/2  <= x <=  π/2  

          sin(sin-1 x)= x      for -1 <= x <= -1 

 

 



More Inverse Functions: 

• Inverse Cosine function: 

                  cos-1x=y 

             => cos y=x    and  0<= y<= π 

 

 The Cancellation Equations: 

                     cos-1 (cos x)= x      for 0<=x<=π 

                     cos(cos-1 x)= x      for -1 <= x <= -1 

 

* Inverse Tangent Function: 

                  tan-1x=y 

             => tan y=x               and    -π/2< y < π/2 

 

 

 



More Inverse Functions 

Example:    

    Simplify cos (tan-1x) 

* Simplify cos (tan-1x) 

* Let y=tan-1x 

   Then tan y=x          and    -π/2< y < π/2 

Since tan y is known, it is easier to find sec y first: 

         sec2y=1+tan2y= 1+x2 

         sec y=(1+x2)1/2 

Thus cos (tan-1x)=cos y= 
1

𝑠𝑒𝑐𝑦
 = 

1

1+𝑥2
 

 



More on inverse 

* Inverse Cotangent Function: 

                  cot-1x=y 

             => cot y=x               and    0< y < π 

 

• Inverse Cosecant Function: 

                 cosecant-1x=y 

             => cosecant y=x      and     y Є(0, π/2] U (π, 3π/2) 

 

• Inverse Secant Function: 

                 Secant-1x=y 

             => Secant y=x        and     y Є(0, π/2] U (π, 3π/2) 

 

 



Inverse Tangent 

• lim
𝑥→∞

𝑡𝑎𝑛
− 1𝑥 =

π

2
 

 

• lim
𝑥→∞

𝑡𝑎𝑛
− 1𝑥 = −

π

2
 

 

 

• Limits of arctan can be used to derive the formula for the 
derivative (often an useful tool to understand and remember 
the derivative formulas) 

 



Derivatives of Inverse Trig 
Functions 

 

•
𝑑

𝑑𝑥
 (𝑠𝑖𝑛

− 1𝑥)= 
1

1−𝑥2
  

•
𝑑

𝑑𝑥
 (𝑐𝑜𝑠

− 1𝑥)=- 
1

1−𝑥2
 

•
𝑑

𝑑𝑥
 (𝑡𝑎𝑛

− 1𝑥)= 
1

1+𝑥2
  

•
𝑑

𝑑𝑥
 (𝑐𝑠𝑐

− 1𝑥)=- 
1

𝑥 𝑥2−1
  

•
𝑑

𝑑𝑥
 (𝑠𝑒𝑐

− 1𝑥)= 
1

𝑥 𝑥2−1
  

•
𝑑

𝑑𝑥
 (𝑡𝑎𝑛

− 1𝑥)=- 
1

1+𝑥2
  

 

 



Examples 

• Differentiate (a) y=
1

𝑠𝑖𝑛
−
1𝑥

  and (b) f(x)=x arctan 𝑥  

• Solution: 

   (a)   
𝑑𝑦

𝑑𝑥
= 

𝑑

𝑑𝑥
 𝑠𝑖𝑛

− 1𝑥
− 1 =-(sin-1x)- 2 

𝑑

𝑑𝑥
 (𝑠𝑖𝑛

− 1𝑥)  

                               =-
1

𝑠𝑖𝑛
−
1𝑥 2 1−𝑥2

   

 

   (b)  f’(x) = x
1

1+ 𝑥 2 (
1

2
𝑥

−
1

2) + arctan 𝑥  

              = 
𝑥

2(1+𝑥)
+ arctan 𝑥 



Example 

• Prove the identity tan-1x +cot-1x=
π

2
  

• Prove: 

               f(x) = tan-1x +cot-1x 

 Then,    

              f’(x) = 
1

1+𝑥2
 - 

1

1+𝑥2
 =0 for all values of x. 

Therefore f(x) =C, a constant. 

To determine the value of C, we put x=1. Then 

                  C= f(1) = tan-11 +cot-11 =
π

4
+

π

4
 = 

π

2
 

  Thus        tan-1x +cot-1x = 
π

2
 

 



Useful Integration Formulas 

•  
1

1−𝑥2
 𝑑𝑥  =sin-1x + C                                             (1) 

 

 

•  
1

𝑥2+1
 𝑑𝑥 = tan-1x + C                                               (2) 

 

 

•  
1

𝑥2+𝑎2
 𝑑𝑥 = 

1

𝑎
  𝑡𝑎𝑛

− 1 ( 
𝑥

𝑎
 ) +C                              (3) 



 Example 

• Example: 

                        Find  
𝑥

𝑥4+9
 𝑑𝑥 

Solution: 

       We substitute u= x2 because then du= 2x dx 

        and we can use (3) with a=3: 

 

             
𝑥

𝑥4+9
 𝑑𝑥 = 

1

2
  

𝑑𝑢

𝑢2+9
 =
1

2
 * 

1

3
 tan-1 ( 

𝑢

3
 )  +C 

 

     =   
1

6
 tan-1 ( 

𝑥2

3
 ) +C 

 

 



Summary  

 

•This outlines the basic procedure for solving and computing 
inverse trig functions 

 

 

•Remember a triangle can also be drawn to help with the 
visualization process and to find the easiest relationship 
between the trig identities. It almost always helps in double 
checking the work. 
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   Thank you! 

     Enjoy those trig functions…! 

 


