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“As are the crests on the heads of peacocks, 

As are the gems on the hoods of cobras, 

So is Mathematics, at the top of all sciences.” 

 

The Yajurveda, circa 600 B.C.  

 

 

 

 

 

 

 

 

 

 



A Note to the Students

———————————————

Mathematics is an abstract branch of human knowledge. Its language

and style are precise and systematic. No one can learn this subject without cap-

turing its language and the way of its thought processes. As Paul Halmos said,

the only way to learn Mathematics is to do Mathematics and you cannot

understand this subject by just reading some books, or by attending some lecture

classes on Mathematics or just by watching someone doing it! So don’t just read

this notes, but try to ask your own questions, find out your own examples, and

thereby try to internalize the concepts. While studying a theorem and its proof,

try to convince yourself where the proof uses the hypothesis and how we arrive at

the final conclusions. Each and every step of the proof requires a thorough anal-

ysis, sound reasoning, and explanations. Also, consider the following questions:

Is the entire hypothesis necessary? Is there any other alternative ways to reach

the conclusion? Can we connect the present result with any previous ideas? Is

the converse true?... Such an analytic approach will help you for a better under-

standing of the concept and to enjoy the pleasure of doing Mathematics. Take

special care to do all the problems listed in these notes, that will give you

much confidence for future studies and to face the exams. Doing problems in

an analytic and systematic way helps to internalize the abstract mathematical

concepts more better. Always remember that success is never an accident,

it is the final out come of purposeful activities and hard work.

Queries and suggestions are most welcome and that can be mailed to: vinoduni-

cal@gmail.com

C.U.Campus, Vinod Kumar. P

06 - 06- 2013.
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Chapter 1
Introduction to Groups

A group is one of the fundamental objects of study in the field of mathe-

matics known as abstract algebra . A group consists of a set of elements and

an operation that takes any two elements of the set and forms another element

of the set in such a way that certain conditions are met. The theory of groups

is the subject of intense study within mathematics, and is used in many scien-

tific fields. The branch of algebra that studies groups is called group theory.

Group theory has extensive applications in mathematics, science, and engineer-

ing. Many algebraic structures such as fields and vector spaces may be defined

concisely in terms of groups, and group theory provides an important tool for

studying symmetry, since the symmetries of any object form a group. Groups are

thus essential abstractions in branches of physics involving symmetry principles,

such as relativity, quantum mechanics, and particle physics. Furthermore, their

ability to represent geometric transformations finds applications in chemistry,

computer graphics, and other fields.

As we noted above, group is an algebraic structure consisting of a set together

with an operation that combines any two of its elements to form a third element.

5



Chapter 1. Introduction to Groups 6

To qualify as a group, the set and the operation must satisfy four conditions called

the group axioms, namely closure, associativity, identity and invertibility. Many

familiar mathematical structures such as number systems obey these axioms:

for example, the integers endowed with the addition operation form a group.

However, the abstract formalization of the group axioms, detached as it is from

the concrete nature of any particular group and its operation, allows entities

with highly diverse mathematical origins in abstract algebra and beyond to be

handled in a flexible way, while retaining their essential structural aspects. The

ubiquity of groups in numerous areas within and outside mathematics makes

them a central organizing principle of contemporary mathematics. The concept

of a group arose from the study of polynomial equations, starting with Évariste

Galois in the 1830’s. After contributions from other fields such as number theory

and geometry, the group notion was generalized and firmly established around

1870.

Many structures investigated in mathematics turn out to be groups. These

include familiar number systems, such as the integers, the rational numbers, the

real numbers, and the complex numbers under addition, as well as the non-zero

rationals, reals, and complex numbers under multiplication. Other important

examples are groups of non-singular matrices (with specified size and type of

entries) under matrix multiplication, and permutation groups, which consist of

invertible functions from a set to itself with composition as group operation.

Group theory allows for the properties of such structures to be investigated in a

general setting.

In what follows, we will discuss in detail the concept of groups with several

illustrating examples. We begin with the definition of binary operations. Recall

that a relation between the sets X and Y is any subset R of X × Y . Also, a

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 7

function or mapping, φ from X to Y is a relation between X and Y such that

each x ∈ X appears as the first member of exactly one ordered pair (x, y) in φ.

If φ : X → Y is a mapping, X is the domain of φ, Y is the codomain of φ,

and the set {φ(x) | x ∈ X}, denoted as φ[X], is the range of φ.

A function φ : X → Y is one to one if φ(x1) = φ(x2) only when x1 = x2. The

function φ is onto Y if the range of φ is Y .

Notations.

Z+,Q+, and R+ denotes the sets of positive integers, positive rational num-

bers, and positive real numbers respectively. Also, Q∗,R∗, and C∗ denotes the

sets of non zero rational numbers, non zero real numbers, and non zero complex

numbers respectively.

1.1 Binary Algebraic Structures

If m and n are any given integers, we know that the operations addition and

multiplication gives us unique integers m + n and mn respectively. In other

words, addition and multiplication are mappings from Z×Z to Z. Such mappings

are called binary operations. More precisely, we have the following definition.

Definition 1.1.1.

A binary operation ∗ on a set S is a function mapping S×S into S. Thus,

for each (a, b) ∈ S × S, ∗ assigns a unique element of S, denoted as a ∗ b.

We have observed that addition and multiplication are binary operations

on Z. It is clear that these operations defines binary operations on the sets

C,R,R+, and Z+. Let R∗ denotes the set of non zero real numbers. Then

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 8

addition is not a binary operation on R∗ (Why?), where as multiplication de-

fines a binary operation on R∗ (Why?). Is division a binary operation on

Z? No, because the quotient of two integers need not be an integer always.

Moreover,
a

b
is not defined if b = 0. It may be noted that a binary oper-

ation on a set S to be defined for every ordered pair (a, b) of elements of S.

For an operation ∗ to be a binary operation on S, we require that (i) exactly

one element is assigned to each possible pair of elements of S, and (ii) for

each ordered pair of elements of S, the element assigned to it is again in S.

Definition 1.1.2.

Let ∗ be a binary operation on S and let H be a subset of S. The H is closed

under ∗ if a ∗ b ∈ H, for all a, b ∈ H. In this case, ∗ induces a binary operation

on H.

For example, addition defines a binary operation on the subset of integers Z

of R. Consider Z with the binary operation subtraction. Clearly, the subset Z+

of positive integers is not closed under subtraction. As another example, consider

Z6 = {0, 1, 2, 3, 4, 5}, with the binary operation addition modulo 6. Clearly the

subsets {0, 3}, and {0, 2, 4} are closed under addition modulo 6. Is there any

other subsets of Z6 which are closed under addition modulo 6?

Problem 1.

Let H = {n2 | n ∈ Z+} ⊂ Z. Show that H is closed under multiplication. Is

H closed under addition?

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 9

Solution.

Let x, y ∈ H. Then x = n2
1, y = n2

2 for some n1, n2 ∈ Z+. Therefore,

xy = n2
1.n

2
2 = (n1.n2)

2 =⇒ xy ∈ H. Hence H is closed under multiplication,but

H is not closed under addition. For instance, 1 = 12 ∈ H, 4 = 22 ∈ H, but

1 + 4 = 5 /∈ H. �

Definition 1.1.3.

A binary operation on ∗ on a set S is commutative if a ∗ b = b ∗ a for all

a, b ∈ S.

For example, addition and multiplication are commutative binary operations

on Z, whereas subtraction is a binary operation on Z which is not commutative.

On the set Mn(R) of all n × n matrices with entries from R, matrix addition is

a commutative binary operation, but matrix multiplication is not commutative.

Definition 1.1.4.

A binary operation on ∗ on a set S is associative if a ∗ (b ∗ c) = (a ∗ b) ∗ c

for all a, b, c ∈ S.

Clearly, addition and multiplication are associative binary operations in Z,

but subtraction is not associative. Also, matrix addition and matrix multiplica-

tion are associative binary operations in Mn(R).

Example 1.

Let S be any non empty set and let P(S) be its power set. It can be easily

checked out that the operations intersection, union, and symmetric difference of

sets are binary operations on P(S). Are they commutative? associative?

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 10

Problem 2.

Let F be the set of all functions from a set S into S. Show that composition

of functions is an associative binary operation on F . Give an example to show

that composition of functions need not be commutative.

Solution.

Let f, g, h ∈ F . Note that f ◦ g is defined as (f ◦ g)(x) = f(g(x)),∀x ∈ S

=⇒ (f ◦ g) ∈ F . We have, ((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f(g(h(x))),∀x ∈ S

and (f ◦ (g ◦ h))(x) = (f(g ◦ h)(x)) = f(g(h(x))),∀x ∈ S. Thus ((f ◦ g) ◦ h) =

(f ◦ (g ◦ h)) =⇒ Composition of functions is an associative binary operation

in F . Let f, g : R → R be defined as f(x) = sin x and g(x) = 2x. Then

(f◦g)(x) = f(2x) = Sin(2x) and (g◦f)(x) = g(sin x) = 2 sin x =⇒ f◦g 6= g◦f .

Thus, composition of functions need not be commutative. �

On a finite set, any given binary operation can be represented by means of

a table in which the elements of the set are listed across the top as heads of

columns and at the left side as heads of rows. Note that the elements are listed

on both sides in the same order.

For example, consider the table

* a b c

a b c b

b a c b

c c b a

which defines a binary operation on the set {a, b, c}. The following table

represents the binary operation addition modulo 5 on Z5.

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 11

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

A binary operation defined by table is commutative if and only if

the entries in the table are symmetric with respect to the diagonal

that starts with the upper left corner of the table and ends at the

lower right corner.

The associativity of a binary operation from its table, just by inspection will

not be obvious.

Definition 1.1.5.

A binary algebraic structure 〈S, ∗〉 consists of a set S together with a

binary operation ∗ on a set S.

Let 〈S, ∗〉 and 〈S ′, ∗′〉 be two binary algebraic structures. An isomorphism

of S with S ′ is a one to one function φ mapping S onto S ′ such that φ(x ∗ y) =

φ(x) ∗′ φ(y), for all x, y ∈ S.

The property that φ(x ∗ y) = φ(x) ∗′ φ(y), for all x, y ∈ S is called homo-

morphism property.

If such a mapping φ exists, then S and S ′ are isomorphic binary algebraic

structures, and we denote this as S ' S ′.

A structural property of a binary algebraic structure is one that must be

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 12

shared any isomorphic structure.

For instance, the number of elements in the set S is a structural property of

the binary algebraic structure 〈S, ∗〉, where as the name of the binary operation

(or of the elements ) is not a structural property.

Remark.

If φ : 〈S, ∗〉 → 〈S ′, ∗′〉 is an isomorphism, then φ−1 : S ′ → S exists and φ−1 is

an isomorphism of 〈S ′, ∗′〉 onto 〈S, ∗〉.

Example 2.

Consider the binary algebraic structures 〈R,+〉 with usual addition, and

〈R+, .〉 with usual multiplication. Define φ : R → R+ by φ(x) = ex. If

φ(x) = φ(y), then ex = ey. Taking natural logarithm on both sides we get

x = y, showing that φ is one to one. To see that φ is onto, let r ∈ R+, then

lnr ∈ R and φ(lnr) = elnr = r. Finally, for x, y ∈ R, we have φ(x+ y) = ex+y =

ex.ey = φ(x).φ(y). Thus φ is indeed an isomorphism.

Example 3.

The binary structures 〈C, .〉 and 〈R, .〉 under usual multiplication are not

isomorphic, since the equation x.x = c has a solution in C for every c ∈ C, but

x.x = −1 has no solution in R. The binary structure 〈M2(R), .〉 of 2×2 matrices

of real numbers is not isomorphic to 〈R, .〉, since multiplication of real numbers

is commutative, but matrix multiplication is not commutative.

Problem 3.

Show that the binary structures 〈Q,+〉 and 〈Z,+〉 under usual addition are

not isomorphic.

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 13

Solution.

Note that the equation x+x = c has a solution in Q for every c ∈ Q, but this

equation may not have solution in Z for every c ∈ Z. For example, x + x = 3

does not have a solution in Z. This shows that these two binary structures are

not isomorphic. �

Definition 1.1.6.

Let 〈S, ∗〉 be a binary structure. An element e ∈ S is an identity element

for ∗ if e ∗ s = s ∗ e = s, ∀s ∈ S.

Remark.

A binary structure 〈S, ∗〉 has at most one identity element. i.e., if the identity

element exists, it is unique.

To see this, let e and ē be identity elements. Then by regarding ē as identity

element, we have e ∗ ē = e. But by regarding e as the identity element, we get

e ∗ ē = ē. This shows that e = ē.

Example 4.

On Z, define the binary operation ∗ as a∗b = max{a, b}. Does this operation

has an identity element in Z? If e is the identity element, then a ∗ e = e ∗ a =

a,∀a ∈ Z =⇒ max{a, e} = a,∀a ∈ Z =⇒ e ≤ a,∀a ∈ Z. Since Z has no

smallest element, such an e does not exists.

If we consider the above operation on the set N, 1 is the identity element for ∗.

Problem 4.

On Z× Z, define the binary operation ◦ by (a, b) ◦ (c, d) = (ac, bc+ d).

Is ◦ commutative? associative? Find the identity element.

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 14

Solution.

We have (1, 2) ◦ (3, 4) = (3, 10), and (3, 4) ◦ (1, 2) = (3, 6). This shows that ◦

is not commutative. It is an easy exercise to verify that ((a, b) ◦ (c, d)) ◦ (e, f) =

(a, b) ◦ ((c, d) ◦ (e, f)). Let e = (x, y) be the identity element for ◦. Then

(a, b) ◦ (x, y) = (x, y) ◦ (a, b) = (a, b) =⇒ (ax, bx+ y) = (xa, ya+ b) =⇒ ax =

xa = a and bx + y = ya + b = b =⇒ (x, y) = (1, 0). Thus (1, 0) is the identity

element for the binary operation ◦. �

Theorem 1.1.7.

Suppose 〈S, ∗〉 has an identity element e for ∗. If φ : S → S ′ is an iso-

morphism of 〈S, ∗〉 with 〈S ′, ∗′〉, then φ(e) is an identity element for the binary

operation ∗′ on S ′.

Proof.

Let s′ ∈ S ′. We have to prove that φ(e) ∗ s′ = s′ ∗′ φ(e) = s′. Since φ is

onto, there exists s ∈ S such that φ(s) = s′. Since e is the identity element for

∗, we have s ∗ e = e ∗ s = s. Since φ is a function, φ(s ∗ e) = φ(e ∗ s) = φ(e).

Using homomorphism property, we get φ(s) ∗′ φ(e) = φ(e) ∗′ φ(s) = φ(e), which

implies φ(e)∗′ s′ = s′ ∗′φ(e) = s′. Thus, φ(e) is an identity element for the binary

operation ∗′ on S ′.

Problem 5.

The map φ : Z → Z, defined by φ(n) = n+1 for n ∈ Z is one to one and onto

Z. Give the definition of a binary operation ∗ on Z such that φ is an isomorphism

mapping

(a) 〈Z,+〉 onto 〈Z, ∗〉, (b) 〈Z, ∗〉 onto 〈Z,+〉,

(c) 〈Z, .〉 onto 〈Z, ∗〉, (d) 〈Z, ∗〉 onto 〈Z, .〉.

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 15

In each case, find the identity element for ∗ on Z.

Solution.

(a) For φ to be an isomorphism, we must have m ∗ n = φ(m − 1) ∗ φ(n − 1) =

φ((m − 1) + (n − 1)) = φ(m + n − 2) = m + n − 1. The identity element is

φ(0) = 1.

(b) Using the fact that φ−1 must also be an isomorphism, we must have m∗n =

φ−1(m+1) ∗φ−1(n+1) = φ−1((m+1)+ (n+1)) = φ−1(m+n+2) = m+n+1.

The identity element is φ−1(0) = −1.

(c) For φ to be an isomorphism, we must have m ∗ n = φ(m − 1) ∗ φ(n − 1) =

φ((m−1).(n−1)) = φ(mn−m−n+1) = mn−m−n+2. The identity element

is φ(1) = 2.

(d) Using the fact that φ−1 must also be an isomorphism, we must have m∗n =

φ−1(m+1)∗φ−1(n+1) = φ−1((m+1).(n+1)) = φ−1(mn+m+n+1) = mn+m+n.

The identity element is φ−1(1) = 0. �

Exercises.

1. Determine whether the definition of ∗ give a binary operation on the given

set. If so, check whether ∗ is (i) commutative (ii)associative? Also, examine

∗ for identity element.

(a) On Q, a ∗ b = ab+ 1.

(b) On Q, a ∗ b = ab
2
.

(c) On Z+, a ∗ b = 2ab.

(d) On Z+, a ∗ b = ab.

(e) On Z+, a ∗ b = a− b.

(f) On Z, a ∗ b = max{a, b}.

School of Distance Education,University of Calicut



1.1. Binary Algebraic Structures 16

(g) On Z, a ∗ b = a+ b− ab.

(h) On Z+, a ∗ b = c, where c is at least 5 more than a+ b.

(i) On Z+, a ∗ b = c, where c is the smallest integer greater than both a

and b.

(j) On Z+, a ∗ b = c, where c is the greatest integer less than ab.

(k) On MnR, the set of n × n matrices with real entries under matrix

addition.

(l) On MnR, the set of n × n matrices with real entries under matrix

multiplication.

2. Find the table representing the binary operation A ∗ B = A ∪ B on the

power set of the set {a, b}.

3. How many binary operations can be defined on a set S with exactly n

elements? How many of them are commutative?

4. Show that every binary operation on a singleton set is both commutative

and associative.

5. Show that every binary operation on a set having just two elements is

associative.

6. Determine whether the given map is an isomorphism from the first binary

structure to the second. Justify your answer. [For problems, (f) to (j), F

stands for the set of all functions mapping R to R that have derivatives of

all orders.]

(a) 〈Z,+〉 with 〈Z,+〉, where φ(n) = −n.

(b) 〈Z,+〉 with 〈Z,+〉, where φ(n) = n+ 1.

School of Distance Education,University of Calicut



1.2. Groups: Definition and Elementary Properties 17

(c) 〈Q, .〉 with 〈Q, .〉, where φ(x) = x2.

(d) 〈Q, .〉 with 〈Q, .〉, where φ(x) = x3.

(e) 〈M2(R), .〉 with 〈R, .〉, where φ(A) = Determinant of A.

(f) 〈F ,+〉 with 〈F ,+〉, where φ(f) = f ′.

(g) 〈F ,+〉 with 〈F ,+〉, where φ(f)(x) =
∫ x

0
f(t)dt.

(h) 〈F ,+〉 with 〈F ,+〉, where φ(f)(x) = d
dx

[
∫ x

0
f(t)dt].

(i) 〈F , .〉 with 〈F , .〉, where φ(f)(x) = x.f(x).

(j) 〈F ,+〉 with 〈R,+〉, where φ(f) = f ′(0).

7. The map φ : Q → Q, defined by φ(x) = 3x− 1 for x ∈ Q is one to one and

onto Q. Give the definition of a binary operation ∗ on Q such that φ is an

isomorphism mapping

(a) 〈Q,+〉 onto 〈Q, ∗〉, (b)〈Q, ∗〉 onto 〈Q,+〉,

(c) 〈Q, .〉 onto 〈Q, ∗〉, (d)〈Q, ∗〉 onto 〈Q, .〉.

In each case, find the identity element for ∗ on Q.

1.2 Groups: Definition and Elementary Prop-

erties

Definition 1.2.1.

A group 〈G, ∗〉 is a set G, closed under a binary operation ∗, such that the

following axioms are satisfied.

1. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ G

School of Distance Education,University of Calicut



1.2. Groups: Definition and Elementary Properties 18

2. Existence of identity element: There is an element e in G such that

e ∗ x = x ∗ e = x, ∀x ∈ G.

3. Existence of inverse element: For each a ∈ G, there is an element

a′ ∈ G such that a ∗ a′ = a′ ∗ a = e.

Here, a′ is called the inverse of a.

Definition 1.2.2.

A group G is abelian if its binary operation is commutative.

A group that is not abelian is called nonabelian.

The word abelian derives from the name of the great Norwegian mathemati-

cian Niels Henrik Abel (1802-1829).

Remark.

In a group G , the identity element and inverse of each element are unique.

(Prove this!). For each a ∈ G, the inverse of a is denoted by a−1.

Example 5.

1. The sets Z,Q,R, and C under addition are abelian groups.

2. The sets Q+,R+,Q∗,R∗, and C∗ under multiplication are abelian groups.

3. The set Z+ under addition is not a group, since it has no identity element

for + in Z+.

4. The set Z+ ∪ {0} under addition is not a group, even if it has an identity

element 0, but no inverse for 1.

5. The set Z+ under multiplication is not a group. It has an identity element

1, but no inverse for 2.

School of Distance Education,University of Calicut



1.2. Groups: Definition and Elementary Properties 19

6. The set Mn(R) under matrix addition is an abelian group. The zero matrix

is the identity element.

7. The set Mn(R) under matrix multiplication is not a group, since the zero

matrix has no multiplicative inverse.

Problem 6.

Let 〈G, ∗〉 be a group. For a, b ∈ G, prove that (a ∗ b)−1 = b−1 ∗ a−1

Solution.

We have (a∗b)∗(b−1∗a−1) = a∗(b∗b−1)∗a−1 = a∗e∗a−1 = a∗a−1 = e. Since the

inverse of any element in a group is unique, this shows that (a ∗ b)−1 = b−1 ∗ a−1.

�

Problem 7.

Let ∗ be defined on Q+ by a ∗ b =
ab

2
. Prove that Q+ is an abelian group

under ∗.

Solution.

It is clear that Q+ is closed under ∗. Also, (a ∗ b) ∗ c = a ∗ (b ∗ c) =
abc

4
,

∀a, b, c ∈ Q+, showing that ∗ is associative.

∗ is commutative, since a ∗ b = b ∗ a =
ab

2
, ∀a, b ∈ Q+. If e is the identity for

∗, then a ∗ e = a =⇒ ae

2
= a =⇒ e = 2. Finally, computation shows that

a−1 =
4

a
, ∀a ∈ Q+. �

Theorem 1.2.3.

In a group G, with binary operation ∗ , the left and right cancellation laws

holds. i.e., a ∗ b = a ∗ c =⇒ b = c and b ∗ a = c ∗ a =⇒ b = c, ∀a, b, c ∈ G.
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Proof.

Suppose a ∗ b = a ∗ c. Multiplying from the left with a−1 on both sides, we

get a−1 ∗ (a∗b) = a−1 ∗ (a∗c). Using associativity, (a−1 ∗a)∗b = (a−1 ∗a)∗c =⇒

e ∗ b = e ∗ c =⇒ b = c. Similarly,from b ∗ a = c ∗ a, we get b = c.

Theorem 1.2.4.

If G is a group with binary operation ∗ , and if a, b ∈ G the linear equations

a ∗ x = b and y ∗ a = b have unique solutions , x, y in G.

Proof.

Try yourself!

Remark.

A set together with an associative binary operation is called a semigroup.

A monoid is a semigroup that has an identity element for the binary operation.

Note that a group is both a semigroup and a monoid.

Note that there is only one group of a single element, namely {e} with binary

operation e∗ e = e, up to isomorphism . By looking at the table representations,

we can conclude that there is only one group of two elements ( or three elements)

up to isomorphism . In the next section, we will show that there exists two non

isomorphic group structures on a set of four elements.

Problem 8.

Let S = R \ {−1}. Define ∗ on S by a ∗ b = a+ b+ ab.

(a) Show that ∗ is a binary operation on S.

(b) Show that 〈S, ∗〉 is a group.

(c) Find the solution of the equation 2 ∗ x ∗ 3 = 7 in S.
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Solution.

(a) We must show that S is closed under ∗, that is, that a + b + ab 6= −1 for

a, b ∈ S. Now a+ b+ ab = −1 if and only if 0 = ab+ a+ b+ 1 = (a+ 1)(b+ 1).

This is the case if and only if either a = −1 orb = −1 , which is not the case for

a, b ∈ S.

(b) We have a ∗ (b ∗ c) = a ∗ (b + c + bc) = a + (b + c + bc) + a(b + c + bc) =

a+ b+ c+ ab+ ac+ bc+ abc and (a ∗ b) ∗ c = (a+ b+ ab) ∗ c = (a+ b+ ab) + c+

(a+ b+ ab)c = a+ b+ c+ ab+ ac+ bc+ abc. Thus ∗ is associative. Note that 0

acts as identity element for ∗, since 0 ∗ a = a ∗ 0 = a.

Also, −a
a+1

acts as inverse of a, for a ∗ −a
a+ 1

= a +
−a
a+ 1

+ a
−a
a+ 1

+ 1 =

a(a+ 1)− a− a2

a+ 1
=

0

a+ 1
= 0. Thus 〈S, ∗〉 is a group.

(c) Because the operation is commutative, 2 ∗ x ∗ 3 = 2 ∗ 3 ∗ x = 11 ∗ x.

Now the inverse of 11 is
−11

12
, by Part(b). From, 11 ∗ x = 7, we obtain

x =
−11

12
∗ 7 =

−11

12
+ 7 +

−11

12
7 =

−11 + 84− 77

12
=
−4

12
=
−1

3
. �

Problem 9.

Show that if G is a finite group with identity e and with an even number of

elements, then there is a 6= e in G such that a ∗ a = e.

Solution.

Let S = {x ∈ G | x−1 6= x}. Then S has an even number of elements, because

its elements can be grouped in pairs x, x−1. Because G has an even number of

elements, the number of elements in G but not in S (the set G − S) must be

even. The set G − S is nonempty because it contains e. Thus there is at least

one element of G − S other than e, that is, at least one element other than e

that is its own inverse. �
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Problem 10.

Let G be a group with a finite number of elements. Show that for any a ∈ G,

there exists an n ∈ Z+ such that an = e.

Solution.

Let G has m elements. Then the elements e, a, a2, a3, ..., am are not all dif-

ferent, since G has only m elements. If one of a, a2, a3, ..., am is e, then we are

done. If not, then we must have ai = aj where i < j. Repeated left cancellation

of a yields e = aj−i. �

Problem 11.

Show that if (a ∗ b)2 = a2 ∗ b2 for all a, b in a group G, then G is abelian.

Solution.

We have (a ∗ b) ∗ (a ∗ b) = (a ∗ a) ∗ (b ∗ b), so a ∗ [b ∗ (a ∗ b)] = a ∗ [a ∗ (b ∗ b)]

and left cancellation yields b ∗ (a ∗ b) = a ∗ (b ∗ b). Then (b ∗ a) ∗ b = (a ∗ b) ∗ b

and right cancellation yields b ∗ a = a ∗ b. Thus G is abelian. �

Problem 12.

Let G be a group and let g be one fixed element of G. Show that the map ig

defined by ig(x) = gxg−1 for all x in G, is an isomorphism of G with itself.

Solution.

Let a, b ∈ G. If g ∗ a ∗ g−1 = g ∗ b ∗ g−1, then a = b by group cancellation, so ig is

a one-to-one map. Because ig(g
−1 ∗ a ∗ g) = g ∗ g−1 ∗ a ∗ g ∗ g−1 = a, we see that

ig maps G onto G. We have ig(a ∗ b) = g ∗ a ∗ b ∗ g−1 = g ∗ a ∗ (g−1 ∗ g) ∗ b ∗ g−1 =

(g∗a∗g−1)∗(g∗b∗g−1) = ig(a)∗ig(b), so ig satisfies the homomorphism property

also, and is thus an isomorphism. �
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Exercises.

1. Show that the subset S of Mn(R) consisting of all invertible n×n matrices

under multiplication is a group. [This group is called the general linear

group of degree n and is denoted by GL(n,R)]

2. Determine whether the binary operation ∗ gives a group structure on the

given set.

(a) On Z, let ∗ be defined by a ∗ b = ab.

(b) On 2Z = {2n | n ∈ Z},let ∗ be defined by a ∗ b = a+ b.

(c) On C, let ∗ be defined by a ∗ b = |ab|.

(d) On R∗, let ∗ be defined by a ∗ b = a
b
.

(e) On R+, let ∗ be defined by a ∗ b =
√
ab.

3. Let nZ = {nm | m ∈ Z} . Show that 〈nZ,+〉 is a group and 〈nZ,+〉 '

〈Z,+〉.

4. Let G be a group and let a, b ∈ G. Show that (a ∗ b)−1 = a−1 ∗ b−1 if and

only if a ∗ b = b ∗ a .

5. If G is an abelian group, prove that (a ∗ b)n = an ∗ bn for all integers n.

6. Let G be a group and suppose that a ∗ b ∗ c = e for a, b, c ∈ G. Show that

b ∗ c ∗ a = e also.

7. If ∗ is a binary operation on a set S, an element x ∈ S is an idempotent

for ∗ if x ∗ x = x. Prove that a group has exactly one idempotent.

8. Show that every group G with identity e and such that x ∗ x = e,∀x ∈ G

is abelian.
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1.3 Subgroups

Let n be a positive integer. If a is an element of a group G, written multiplica-

tively, we denote the product aaa....a for n factors a by an. We let a0 be the

identity element. Also, a−n denotes the product a−1a−1a−1...a−1 for n factors.

Definition 1.3.1.

If G is a group, then the order |G| of G is the number of elements in G.

Definition 1.3.2.

If a subset H of a group G is closed under the binary operation and if H with

the induced operation from G is itself a group, then H is a subgroup of G. We

denote this by H ≤ G or G ≥ H. Also, H < G or G > H means that H ≤ G

but H 6= G.

Example 6.

1. If G is any group, then the subgroup consisting of G itself is the improper

subgroup of G. All other subgroups of G are proper subgroups. The

subgroup {e} is the trivial subgroup of G. All other subgroups are non-

trivial.

2. 〈Z,+〉 < 〈R,+〉, but 〈Q+, .〉 is not a subgroup of 〈R,+〉.

3. The nth roots of unity in C form a subgroup Un of the group C∗ of non

zero complex numbers under multiplication.

4. There are two different group structures of order 4. Consider the group

table of Z4.
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+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

From the table, it is clear that the only proper subgroup of Z4is {0, 4}.

Another group structure of order 4 is the group V , the Klein 4-group,

which is described by the following table.

V : e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Note that V has three proper nontrivial subgroups, {e, a}, {e, b}, and {e, c}.

Now we present a characterization of subgroups.

Theorem 1.3.3.

A subset H of a group G is a subgroup G if and only if (i). H is closed under

the binary operation of G., (ii). the identity element e of G is in H, (iii). for all

a ∈ H it is true that a−1 ∈ H also.
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Theorem 1.3.4.

Let G be a group and let a ∈ G. Then H = {an | n ∈ Z} is a subgroup of G

and is the smallest subgroup of G that contains a, i.e., every subgroup containing

a contains H.

Problem 13.

Show that a non empty subset H of a group G is a subgroup of G if and only

if ab−1 ∈ H for all a, b ∈ H.

Solution.

Let H be a subgroup of G. Then for a, b ∈ H, we have b−1 ∈ H and

ab−1 ∈ H because H must be closed under the induced operation. Conversely,

suppose that H is nonempty and ab−1 ∈ H for all a, b ∈ H. Let a ∈ H. Then

taking b = a, we see that aa−1 = e is in H. Taking a = e, and b = a, we see that

ea−1 = a−1 ∈ H. Thus H contains the identity element and the inverse of each

element. For closure, note that for a, b ∈ H, we also have a, b−1 ∈ H and thus

a(b−1)−1 = ab ∈ H. �

Problem 14.

Let G be a group and let HG = {x ∈ G | xa = ax, ∀a ∈ G}. Show that HG

is an abelian subgroup of G. (HG is called the center of G.)

Solution.

Clearly HG is closed under the operation and e ∈ HG. From xa = ax, we

obtain xax−1 = a and then ax−1 = x−1a, showing that x−1 ∈ HG, which is thus

a subgroup. Let a ∈ HG. Then ag = ga for all g ∈ G; in particular,ab = ba for

all b ∈ HG because HG is a subset of G . This shows that HG is abelian. �
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Definition 1.3.5.

Let G be a group and let a ∈ G. Then the subgroup H = {an | n ∈ Z} is

called the cyclic subgroup of G generated by a, and is denoted by 〈a〉.

If the subgroup 〈a〉 of G is finite, then order of a is the order of |〈a〉| of this

subgroup. Otherwise, we say that a is of infinite order.

Remark.

If a is of finite order m, then m is the smallest positive integer such that

am = e.

Definition 1.3.6.

An element a of a group G generates G and is a generator for G if 〈a〉 = G.

A group G is cyclic if there is some element a ∈ G that generates G.

Example 7.

1. The group Z4 is and 〈1〉 = 〈3〉 = Z4. Also, 〈2〉 = {0, 2} and 〈0〉 = {0}.

2. The Klein -4 group V is not cyclic, since 〈e〉 = {e}, 〈a〉 = {e, a}, 〈b〉 = {e, b}

and 〈c〉 = {e, c}.

3. The group 〈Z,+〉 is cyclic. Both 1 and −1 are generators for this group

and they are the only generators. (Why?)

4. Consider the group 〈Z,+〉. Note that the cyclic subgroup generated by

n ∈ Z consists of all multiples of n. i.e., 〈n〉 = nZ.

Problem 15.

Show that every cyclic group is abelian.
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Solution.

Let G be cyclic and let a be a generator for G. For x, y ∈ G, there exist

m,n ∈ Z such that x = am and y = an. Then xy = aman = am+n = an+m =

anam = yx, so G is abelian. �

Problem 16.

Prove that a cyclic group with only one generator can have at most 2 elements.

Solution.

Let B = {e, a, a2, a3, ..., an−1} be a cyclic group of n elements. Then a−1 =

an−1 also generates G, because (a−1)i = (ai)−1 = an−i for i = 1, 2, ..., n−1. Thus

if G has only one generator, we must have n − 1 = 1 and n = 2. Of course,

G = {e} is also cyclic with one generator. �

Problem 17.

Show that a group with no proper nontrivial subgroups is cyclic.

Solution.

Let G be a group with no proper nontrivial subgroups. If G = {e}, then G

is of course cyclic. If G 6= {e}, then choose a ∈ G such that a 6= e. We know

that 〈a〉 is a subgroup of G and 〈a〉 6= {e}. Because G has no proper nontrivial

subgroups, we must have 〈a〉 = G. This shows that G is cyclic. �

Problem 18.

Let φ : G → G′ be an isomorphism of a group 〈G, ∗〉 with a group 〈G′, ∗′〉.

Then show that if G is cyclic, so is G′.
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Solution.

Let a be a generator of G. We claim φ(a) is a generator of G′. Let b′ ∈ G′.

Because φ maps G onto G′, there exists b ∈ G such that φ(b) = b′. Because a

generates G, there exists n ∈ Z such that b = an. Because φ is an isomorphism,

b′ = φ(b) = φ(an) = φ(a)n. Thus G′ is cyclic. �

Problem 19.

Let H be a subgroup of a group G. For a, b ∈ G, let a ∼ b if and only if

ab−1 ∈ H. Show that ∼ is an equivalence relation on G.

Solution.

We have to prove that ∼ is reflexive, symmetric and transitive. Let a ∈ G.

Then aa−1 = e and e ∈ H, since H is a subgroup. Thus a ∼ a =⇒ ∼ is reflexive.

Let a, b ∈ G and a ∼ b, so that ab−1 ∈ H. Since H is a subgroup, we have

(ab−1)−1 = ba−1 ∈ H, so b ∼ a =⇒ ∼ is symmetric. Now, let a, b, c ∈ G and

a ∼ b and b ∼ c. Then ab−1 ∈ H and bc−1 ∈ H so (ab−1)(bc−1) = ac−1 ∈ H,

implies a ∼ c. Thus ∼ is transitive. �

Exercises.

1. If H andK are subgroups of a group G, then show thatH∩K is a subgroup

of G. Is H ∪K a subgroup of G?

2. Determine whether the given set of invertible n × n matrices with real

number entries is a subgroup of GL(n,R)

(a) The n× n matrices with determinant 2.

(b) The n× n matrices with no zeros on the diagonal

(c) The n× n matrices with determinant−1.
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(d) The n× n matrices with determinant −1 or 1.

3. Find the order of the cyclic subgroup of Z8 generated by 2.

4. Let G be a group and let a be one fixed element of G. Show that Ha =

{x ∈ G | xa = ax} is a subgroup of G.

5. Let φ : G→ G′ be an isomorphism of a group 〈G, ∗〉 with a group 〈G′, ∗′〉.

If H is a subgroup of G, then show that φ[H] = {φ(h) | h ∈ H} is a

subgroup of G′.

6. If G is an abelian group and if H = {a ∈ G | a2 = e}, show that H is a

subgroup of G.
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Chapter 2
Groups of Permutations

Permutations are usually studied as combinatorial objects, we will see in

this chapter that they have a natural group structure, and in fact, there is a

deep connection between finite groups and permutations. Before, moving to

permutation groups, we will discuss some more properties of cyclic groups.

2.1 Elementary Properties of Cyclic Groups

We recall the Division Algorithm for Z. If m is a positive integer and n

is any integer, then there exist unique integers q and r such that n = mq + r,

and 0 ≤ r < m. Here, we regard q as the quotient and r as the non negative

remainder when n is divided by m.

Theorem 2.1.1.

A subgroup of a cyclic group is cyclic.

Proof.

Let G = 〈a〉 and let H ≤ G. If H = {e}, then H = 〈e〉 is cyclic. If H 6= 〈e〉,
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then an ∈ H for some n ∈ Z+. Choose m as the smallest integer in Z+ such

that am ∈ H. We claim that H = 〈am〉. Let b ∈ H. Since H ≤ G, we have

b = an for some n ∈ Z+. By division algorithm, there exists integers q and

r such that n = mq + r for 0 ≤ r < m. Then an = amq+r = (am)qar =⇒

ar = (am)−qan. Since an ∈ H, am ∈ H, and H is a group, (am)−q ∈ H, so that

(am)−qan ∈ H =⇒ ar ∈ H. Since m was the smallest positive integer such that

am ∈ H and 0 ≤ r < m, we have r = 0. Thus n = qm, so that b = an = (am)q

=⇒ H = 〈am〉. Hence a subgroup of a cyclic group is cyclic.

Corollary 2.1.2.

The subgroups of Z under addition are precisely the groups nZ under addition

for n ∈ Z

Let r and s be two positive integers. Then it is an easy exercise to show

that H = {nr +ms | n,m ∈ Z} is a subgroup of 〈Z,+〉. By above corollary, H

must be cyclic. The positive generator d of this cyclic subgroup is the greatest

common divisor (gcd) of r and s. Since d ∈ H, d = nr+ms for some integers

n and m, so that every integer dividing both r and s, must also divide d. Hence

d is indeed the largest number dividing both r and s.

We now describe all cyclic groups up to isomorphism.

Theorem 2.1.3.

Let G be a cyclic group with generator a. If the order of G is infinite , then

G is isomorphic to 〈Z,+〉. If G has finite order n, then G is isomorphic to

〈Zn,+n〉.
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Proof.

Assume that the order of G is infinite. Then, for all positive integers m,

am 6= e. We claim that ah 6= ak, whenever h 6= k. Let h > k. Then if

ah = ak =⇒ aha−k = e =⇒ ah−k = e, which is a contradiction. Hence, every

element of G can be expressed as am, for a unique m ∈ Z. Define φ : G → Z

as φ(ai) = i. Clearly, φ is well defined, one to one, and onto. Also, φ(aiaj) =

φ(ai+j) = i+ j = φ(ai) + φ(aj). Thus, φ is an isomorphism.

Now we assume that the order of G is finite, so that am = e for some positive

integer m. Choose the smallest positive integer n such that an = e. If s ∈ Z

and s = nq + r for 0 ≤ r < n, then as = anq+r = (an)qar = eqar = ar. Also, as

above if 0 < k < h < n and ah = ak, then ah−k = e and 0 < h− k < n, which is

a contradiction to the choice of n. Thus the elements e, a, a2, a3, ..., an−1 are all

distinct and precisely these are the all elements of G. Define the map ψ : G→ Zn

as ψ(ai) = i for i = 0, 1, 2, ..., n−1.. Then ψ is well defined, one to one and onto.

Since an = e, aiaj = ak, where k = i+nj. Thus ψ(aiaj) = i+nj = ψ(ai)+nψ(aj),

showing that ψ is an isomorphism.

Now we present a basic theorem regarding generators of subgroups for the

finite cyclic groups (Proof is left as an exercise to the student).

Theorem 2.1.4.

Let G be a cyclic group with n elements, and generated by a. Let b ∈ G and let

b = as. Then b generates a cyclic subgroup H of G containing n
d

elements, where

d is the gcd of n and s. Also, 〈as〉 = 〈at〉 if and only if gcd(s, n) = gcd(t, n).

Corollary 2.1.5.

If a is a generator of a finite cyclic group G of order n, then the other gener-
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ators of G are the elements of the form ar, where r is relatively prime to n. i.e.,

gcd(r, n) = 1.

Remark.

For every n ∈ Z+, we denote the number of positive integers < n and rel-

atively prime to n by φ(n) and is called the Euler function. Thus, if G is a

cyclic group of order n, then there are φ(n) distinct elements in G, each of which

generates G.

Example 8.

Consider 〈Z7,+7〉. Clearly 1 is a generator for this cyclic group. Since all

integers 2, 3, ..., 6 are relatively prime to 7, all of these elements are generators

of 〈Z7,+7〉. But for the group 〈Z8,+8〉, the only generators are 1, 3, 5, and 7.

Since gcd(2, 8) = 2, 2 generates a subgroup of order 8/2 = 4, namely {0, 2, 4, 6}.

Similarly, 4 generates a subgroup of order 8/4 = 2, namely {0, 4}. Can you

identify the subgroup generated by 6?

Example 9.

Let G be a cyclic group of order 12. Can you find the number of generators

for G?. Here, the problem is that how many integers are there relatively prime

to 12 and less than 12. We know that 1, 5, 7, and 11 are the only integers smaller

than 12 and relatively prime to 12. Hence a cyclic group of order 12 will have 4

generators.

Problem 20.

How many generators are there for a cyclic group of order 60?
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Solution.

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53,and 59 are relatively

prime to 60, so there are 16 generators for a cyclic group of order 60. �

Problem 21.

How many elements are in the cyclic subgroup of (a) Z30 generated by 25?

(b) Z42 generated by 30?

Solution.

We make use of theorem 2.1.4. (a) Since gcd (25, 30) = 5 and since
30

5
= 6,

〈25〉 has 6 elements.

(b) Since gcd (30, 42) = 6 and since
42

6
= 7, 〈30〉 has 7 elements. �

Problem 22.

In the following, give an example of a group with the described property or

explain why no example exists.

(a) A finite group that is not cyclic.

(b) An infinite group that is not cyclic.

(c) A cyclic group having only one generator.

(d) An infinite cyclic group having four generators.

(e) A cyclic group in which every element other than identity is a generator

(f) An finite cyclic group having four generators.

Solution.

(a) The Klein 4-group

(b) 〈R,+〉

(c) Z2
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(d) No such example exists. Every infinite cyclic group is isomorphic to 〈Z,+〉

which has just two generators, 1 and -1.

(e) Zp, with p as a prime.

(f) Z8 has generators 1, 3, 5, and 7. �

Problem 23.

Show that a group that has only a finite number of subgroups must be a finite

group.

Solution.

Note that every group is the union of its cyclic subgroups, because every

element of the group generates a cyclic subgroup that contains the element. Let

G has only a finite number of subgroups, and hence only a finite number of cyclic

subgroups. Now none of these cyclic subgroups can be infinite, for every infinite

cyclic group is isomorphic to Z (by theorem 2.1.3) which has an infinite number of

subgroups, namely Z, 2Z, 3Z, .... Such subgroups of an infinite cyclic subgroup

of G would of course give an infinite number of subgroups of G, contrary to

hypothesis. Thus G has only finite cyclic subgroups, and only a finite number of

those. We see that the set G can be written as a finite union of finite sets, so G

is itself a finite set. �

Problem 24.

Show that Zp has no proper non trivial subgroups if p is a prime number.

Solution.

All positive integers less than p are relatively prime to p because p is prime,

and hence they all generate Zp . Thus Zp has no proper cyclic subgroups, and
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thus no proper subgroups, because as a cyclic group, Zp has only cyclic subgroups

(By theorem 2.1.1, a subgroup of a cyclic group is cyclic ). �

Exercises.

1. Let a and b be elements of a group G. Show that if ab has finite order n,

then ba also has order n.

2. Let G be a group and suppose a ∈ G generates a cyclic subgroup of order

2 and is the unique such element. Show that ax = xa for all x ∈ G.

3. Let p and q be distinct prime numbers. Find the number of generators of

the cyclic group Zpq.

4. Let p be a prime number. Find the number of generators of the cyclic

group Zpr , where r is an integer ≥ 1.

5. Let G be a cyclic group of order n and H be a cyclic group of order m such

that gcd (m,n) = 1. Then show that G×H is a cyclic group of order mn.

6. Show that a finite group of order n is cyclic if and only if the group contains

an element of order n.

2.2 Groups of Permutations

We recall that a permutation of a set A is a function φ : A→ A that is

both one to one and onto.

Consider the operation function composition ◦ on the collection of all per-

mutations of a set A (we call this operation as permutation multiplication). If

σ and τ are any two permutations of a set A, we denote the composition of σ
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and τ by στ instead of σ ◦ τ . Note that στ is clearly one to one and onto (Prove

this!). Thus permutation multiplication is a binary operation on the collection

of all permutations of a set A.

Remember that the action of στ on A is in right- to -left order; i.e., first

apply τ , and then σ.

Theorem 2.2.1.

Let A be a nonempty set , and let SA denotes the collection of all permutations

of A. The SA is a group under permutation multiplication.

The proof of the above theorem is left as an exercise.

Definition 2.2.2.

Let A be the finite set {1, 2, 3, ..., n}. The group of all permutations of the

set A is the symmetric group on n letters, and is denoted by Sn.

Note that Sn has n! elements.

Example 10.

Let A = {1, 2, 3}. Then we list below the 3! = 6 elements of the symmetric

group on three letters.

ρ0 =

 1 2 3

1 2 3

, µ1 =

 1 2 3

1 3 2

,

ρ1 =

 1 2 3

2 3 1

, µ2 =

 1 2 3

3 2 1

,

ρ2 =

 1 2 3

3 1 2

, µ3 =

 1 2 3

2 1 3

.
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The multiplication table for S3 is shown in the table given below.

ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0

From the table, it is clear that this group is not abelian.

It is interesting to note that there is a natural correspondence between the

elements of S3 and the ways in which two copies of an equilateral triangle with

vertices 1, 2, and 3 can be placed, one covering the other with vertices on top of

vertices. Because of this fact, S3 is also the group D3 of symmetries of an

equilateral triangle.. D3 is also called the third dihedral group.

In this context, the permutations ρi corresponds to rotations and µi corre-

sponds to mirror images in bisectors of angles.

Remark.

Any group of at most 5 elements is abelian.

Lemma 2.2.3.

Let G and G′ be groups and let φ : G → G′ be a one-to-one function such

that φ(xy) = φ(x)φ(y) for all x, y ∈ G. Then the image of G under φ, φ[G] =

{φ(g), g ∈ G}, is a subgroup of G′ and φ provides an isomorphism of G with

φ[G].
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Proof.

Let x′, y′ ∈ φ[G]. Then there exists x, y ∈ G such that φ(x) = x′ and

φ(y) = y′. By assumption, φ(xy) = φ(x)φ(y) = x′y′ =⇒ x′y′ ∈ φ[G]. Thus

φ[G] is closed under the operation of G′.

Let e′ be the identity element inG′. Then, e′φ(e) = φ(e) = φ(ee) = φ(e)φ(e) =⇒

e′ = φ(e) (by right cancellation in G′) =⇒ e′ ∈ φ[G].

Let x′ ∈ G′. Choose x ∈ G such that φ(x) = x′. Note that e′ = φ(e) = φ(xx−1) =

φ(x)φ(x−1) = x′φ(x−1) =⇒ x′−1 = φ(x)−1 ∈ φ[G]. Thus φ[G] is a subgroup of

G′.

Also, φ is an isomorphism of G onto φ[G], because φ is a one-to-one map of G

onto φ[G] such that φ(xy) = φ(x)φ(y),∀x, y ∈ G.

The following theorem due to the British mathematician, Arthur Cayley

(1821− 1895) illustrates the importance of group of permutations.

Theorem 2.2.4. (Cayley’s Theorem)

Every group is isomorphic to a group of permutations.

Proof.

Let G be a group. We show that G is siomorphic to a subgroup of SG.

By above lemma, we need only to show that there exists a one-to-one function

φ : G→ SG such that φ(xy) = φ(x)φ(y),∀x, y ∈ G.

For x ∈ G, let λx : G → G be defined by λx(g) = xg, ∀g ∈ G. Then λx is

one-to-one, because if λx(a) = λx(b), then xa = xb, so by left cancellation, a = b.

Let c ∈ G. Then x−1c ∈ G, and λx(x
−1c) = x(x−1c) = c, showing that λx maps

G onto G. Thus λx is a permutation of G.

Define φ : G → SG as φ(x) = λx,∀x ∈ G. Suppose that φ(x) = φ(y). Then
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λx = λy as functions mapping G into G. In particular λx(e) = λy(e) =⇒ xe =

ye =⇒ x = y. Thus, φ is one-to-one. It remains only to show that φ(xy) =

φ(x)φ(y), i.e. to show that λxy = λxλy. Let g ∈ G. Then, λxy(g) = (xy)g. Also,

(λxλy)(g) = λx(λy(g)) = λx(yg) = x(yg). Thus by associativity, λxy = λxλy.

This completes the proof.

Problem 25.

Let σ =

 1 2 3 4 5 6

3 1 4 5 6 2

. Find (a) |〈σ〉| (b)σ100.

Solution.

(a) Starting with 1 and applying σ repeatedly, we see that σ takes 1 to 3 to 4

to 5 to 6 to 2 to 1, so σ6 is the smallest possible power of σ that is the identity

permutation. It is easily checked that σ6 carries 2, 3, 4, 5 and 6 to themselves

also, so σ6 is indeed the identity and |〈σ〉| = 6.

(b) Since σ6 is the identity permutation, we have

σ100 = (σ6)16σ4 = σ4 =

 1 2 3 4 5 6

6 5 2 1 3 4


�

Problem 26.

Find the number of elements in the set {σ ∈ S5|σ(2) = 5}.

Solution.

There are 4 possibilities for σ(1), then 3 possibilities for σ(3), then 2 possibil-

ities for σ(4), and then 1 possibility for σ(5). Thus 4 . 3 . 2 . 1 = 24 possibilities

in all, showing that 24 elements will be in the set {σ ∈ S5|σ(2) = 5}. �
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Problem 27.

Give an example of a nonabelian group such that every proper subgroup is

abelian.

Solution.

Consider the nonabelian group S3. Its proper subgroups are

{ρ0, ρ1, ρ2}, {ρ0, µ1}, {ρ0, µ2}, {ρ0, µ3},

and {ρ0}, and they are abelian. Thus, every proper subgroup of S3 is abelian. �

Problem 28.

Show that Sn is a nonabelian group for n ≥ 3.

Solution.

Let n ≥ 3, and let ρ ∈ Sn be defined by ρ(1) = 2, ρ(2) = 3, ρ(3) = 1, and

ρ(m) = m for 3 < m ≤ n. Let µ ∈ Sn be defined by µ(1) = 1, µ(2) = 3, µ(3) = 2,

and µ(m) = m for 3 < m ≤ n. Then ρµ 6= µρ so Sn is not commutative. (Note

that if n = 3, then ρ = ρ1 and µ = µ1 in S3.) �

Exercises.

1. Draw the multiplication table for the group D4 of the symmetries of a

square. (This group is also called the octic group). Identify the subgroups

of this group. Is D4 abelian?

2. Determine whether the following functions from R to R defines a permu-

tation of R.

(a) f1(x) = x+ 1
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(b) f2(x) = x2

(c) f3(x) = −x3

(d) f4(x) = ex

(e) f5(x) = x3 − x2 − 2x.

3. Let G be a group. Prove that the permutations ρa : G → G, where

ρa(x) = xa for a ∈ G and x ∈ G do form a group isomorphic to G.

4. Show that H = {σ ∈ Sn|σ(1) = 1} is a subgroup of Sn.

5. Show that a function from a finite set S to itself is one-to-one if and only

if it is onto. Is this true when S is infinite?

2.3 Orbits, Cycles, and the Alternating Groups

Let σ be a permutation of a set A. For a, b ∈ A, we let a ∼ b if and only if

b = σn(a) for some n ∈ Z. Then ∼ defines an equivalence relation on A (Prove!).

So, corresponding to σ, we obtain a partition of A into the equivalence classes

determined by the above defined equivalence relation. These equivalence classes

are called the orbits of σ.

For instance, the orbits of the identity permutation on A are the singleton

subsets of A, since the identity permutation leaves each element of A fixed.

Example 11.

Find the orbits of

(a) σ =

 1 2 3 4 5 6

5 1 3 6 2 4

 (b) µ =

 1 2 3 4 5 6 7 8

2 3 5 1 4 6 8 7


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(a) To find the orbit containing 1, we apply σ repeatedly, we see that 1 → 5 →

2 → 1, so the orbit containing 1 is {1, 2, 5}. Similarly, 3 → 3, and 4 → 6 → 4,

we see that the other orbits of σ are {3} and {4, 6} .

(b) Proceeding as in (a), we see that the orbits of µ are {1, 2, 3, 4, 5}, {6}, and

{7, 8}.

We now identify a special type of permutations.

Definition 2.3.1.

A permutation σ ∈ Sn is a cycle if it has at most one orbit containing more

than one element.

The length of a cycle is the number of elements in its largest orbit.

Two cycles are disjoint if any integer is moved by at most one of these cycles.

Clearly, identity permutation is a cycle of length 1.

We note that a cycle of length n has order n and the order of a permutation

which is expressed as a product of disjoint cycles is the least common multiple

of the lengths of the cycles.

Example 12.

Consider σ =

 1 2 3 4 5 6 7 8

3 2 6 4 5 8 7 1

 ∈ S8. The only orbit of σ that

contains more than one element is {1, 3, 6, 8}. Hence σ is a cycle of length 4. It

can be represented as (1, 3, 6, 8).

In this notation, (1, 5, 4, 6, 8) represents the cycle

 1 2 3 4 5 6 7 8

5 2 3 6 4 8 7 1


in S8.
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Theorem 2.3.2.

Every permutation σ of a finite set is a product of disjoint cycles.

Proof.

Let B1, B2, ..., Br be the orbits of σ, and let µi be the cycle defined by

µi(x) = σ(x) for x ∈ Bi and µi(x) = x, otherwise. Then it is clear that

σ = µ1.µ2...µr. Since the orbits are disjoint, being distinct equivalence classes,

the cycles µ1, µ2, ..., µr are also disjoint.

Permutation multiplication is not commutative in general. But, multiplication

of disjoint cycles is commutative. Since the orbits of a permutation are unique,

the representation of a permutation as a product of disjoint cycles, none of

which is the identity permutation is unique up to the order of factors.

Problem 29.

Compute the product of cycles (a) (1, 4, 5)(7, 8)(2, 5, 7)(b) (1, 3, 2, 7)(4, 8, 6)

in S8.

Solution.

(a) Since the cycles are not disjoint, the order of the product can’t be altered.

We see that 1 → 1 → 1 → 4, 2 → 5 → 5 → 1. Proceeding like this, we get

(1, 4, 5)(7, 8)(2, 5, 7) =

 1 2 3 4 5 6 7 8

4 1 3 5 8 6 2 7


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(b) Here the cycles are disjoint, so the order of the product does not matters.

As in (a)., we get (1, 3, 2, 7)(4, 8, 6) =

 1 2 3 4 5 6 7 8

3 7 2 8 5 4 1 6

 �

The following example illustrates that the product of two cycles need not be

a cycle.

Example 13.

Consider the cycles (1, 4, 5, 6) and (2, 1, 5) in S6. We have (1, 4, 5, 6)(2, 1, 5) = 1 2 3 4 5 6

6 4 3 5 2 1

. The orbits of this product are {1, 6}, {3} and {2, 4, 5},

so it is not a cycle.

Here, (2, 1, 5)(1, 4, 5, 6) =

 1 2 3 4 5 6

4 1 3 2 6 5

, which is also not a cycle.

A cycle of length 2 is called a transposition. A transposition leaves all

elements but two fixed, and maps each of these onto the other.

Problem 30.

Show that any permutation of a finite set of at least two elements is a product

of transpositions.

Solution.

Direct computations shows that

(a1, a2, ..., an) = (a1, an)(a1, an−1)...(a1, a3)(a1, a2).

Thus any cycle is a product of transpositions. By theorem 2.3.2, we know that
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every permutation of a finite set is a product of disjoint cycles. This shows

that any permutation of a finite set of at least two elements is a product of

transpositions. �

We note that no permutation in Sn can be expressed both as a prod-

uct of an even number of transpositions and as a product of an odd

number of transpositions.

We classify a permutation of a finite set as even or odd according to whether

it can be expressed as a product of an even number of transpositions or the

product of an odd number of transpositions, respectively.

The identity permutation ι in Sn, where n ≥ 2 is even, because ι = (1, 2)(1, 2).

Example 14.

(a)

 1 2 3 4 5 6 7 8

8 2 6 3 7 4 5 1

 = (1, 8)(3, 6, 4)(5, 7) = (1, 8)(3, 4)(3, 6)(5, 7),

so this is an even permutation.

(b)

 1 2 3 4 5 6 7 8

3 6 4 1 8 2 5 7

 = (1, 3, 4)(2, 6)(5, 8, 7) = (1, 4)(1, 3)(2, 6)(5, 7)(5.8),

so this is an odd permutation.

Problem 31.

Show that every permutation in Sn , where n ≥ 3 can be written as a product

of at most (n− 1) transpositions.

Solution.

Note that (1, 2)(1, 2) is the identity permutation in Sn, and 2 ≤ n − 1 if

n > 2. Because (1, 2, 3, 4, ..., n) = (1, n)(1, n−1)...(1, 3)(1, 2), we see that a cycle

of length n can be written as a product of n− 1 transpositions.

School of Distance Education,University of Calicut



2.3. Orbits, Cycles, and the Alternating Groups 48

Now a permutation in Sn can be written as a product of disjoint cycles, the

sum of whose lengths is ≤ n. If there are r disjoint cycles involved, we see

the permutation can be written as a product of at most n − r transpositions.

Because r ≥ 1, we can always write the permutation as a product of at most

n− 1 transpositions. �

We note that for n ≥ 2, the number of even permutation in Sn is the

same as the number of odd permutation; i.e., Sn has n!/2 even permuta-

tions and n!/2 odd permutations.

The following theorem shows that the collection of all even permutations of

{1, 2, 3, ..., n} forms a subgroup of order n!/2 of the symmetric group Sn, and

this group is called the alternating group An on n letters.

Note that the set of all odd permutations is not a subgroup of Sn. (Why?)

Theorem 2.3.3.

If n ≥ 2, then the collection of all even permutations of {1, 2, 3, ..., n} forms

a subgroup of order n!/2 of the symmetric group Sn.

Proof.

Clearly the product of two even permutations is again an even permutation.

Since n ≥ 2, the identity permutation ι in Sn, is even, because ι = (1, 2)(1, 2).

Also, note that if σ is expressed as a product of transpositions, the product of

the same transpositions taken in the opposite order is σ−1. Thus if σ is even,

so is σ−1. Thus the collection of all even permutations of {1, 2, 3, ..., n} forms a

subgroup of order n!/2 of the symmetric group Sn.
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Exercises.

1. Find all orbits of the permutation (a) σ : Z → Z, where σ(n) = n+ 1. (b)

σ : Z → Z, where σ(n) = n+ 2

2. Express the permutation

 1 2 3 4 5 6 7 8

3 1 4 7 2 5 8 6

 in S8 as a product

of transpositions.

3. Show that every permutation in Sn , where n ≥ 3 that is not a cycle can

be written as a product of at most (n− 2) transpositions.

4. Find the order of the permutation

σ =

 1 2 3 4 5 6 7 8 9 10 11 12

6 1 9 12 4 11 10 8 3 5 2 7

 in S12 .

5. Show that every odd permutation in Sn , where n ≥ 3 can be written as a

product of (2n+3) transpositions and every even permutation as a product

of (2n+ 8) transpositions .

6. Show that for every subgroup H of Sn for n ≥ 2, either all the permutations

in H are even or exactly half of them are even.

7. Show that the order of a permutation σ ∈ Sn is the least common multiple

(l.c.m.) of the lengths of its disjoint cycles.
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Chapter 3
Cosets and the Theorem of

Lagrange

Lagrange’s theorem is about finite groups and their subgroups. The theorem

is named after Joseph-Louis Lagrange (1736-1813), an Italian mathematician and

astronomer, who made significant contributions to all fields of analysis, number

theory, and classical and celestial mechanics

Before moving to the Lagrange’s theorem and its consequences, we observe

that every subgroup of a group G induces an important decomposition of G.

3.1 Cosets

Let H be a subgroup of a group G, which may be of finite or infinite order.

We exhibit two partitions of G by defining two equivalence relations ∼L and

∼R on G as follows: a ∼L b if and only if a−1b ∈ H and a ∼R b if and only

if ab−1 ∈ H. It is easy to see that these relations are reflexive, symmetric and

transitive and hence they are equivalence relations on G. Now, let a ∈ G. Then
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the equivalence class (corresponding to ∼L) containing a consists of all x ∈ G

such that a−1x ∈ H. =⇒ a−1x = h for some h ∈ H. =⇒ x = ah for some

h ∈ H. Thus the equivalence class of a under the equivalence relation ∼L is the

set {ah|h ∈ H} which we denote by aH. Similarly, we find that the equivalence

class of a under the equivalence relation ∼R is the set {ha|h ∈ H} and we denote

this set by Ha.

We call aH, the left coset of H containing a, and Ha, the right coset of

H containing a.

For example, consider the subset 3Z of Z. Here we use additive notation,

so the left coset containing the integer n is n + Z. When n = 0, 0 + 3Z =

3Z = {...,−9,−6,−3, 0, 3, 6, 9, ...}. Similarly, the left coset containing the integer

1 is 1 + 3Z = {...,−8,−5,−2, 1, 4, 7, 10, ...} and the left coset containing 2 is

2 + 3Z = {...,−7,−4,−1, 2, 5, 8, 11, ...}. We note that these three left cosets

constitute a partition of Z. Since the group Z is abelian, the left coset n + 3Z

is the same as the right coset 3Z + n, thus the partition of Z into right cosets is

the same. (Generally, the left and the right coset of a subgroup determined by

the same element need not be equal. )

From above example, we have the following observation.

For a subgroup H of an abelian group G, the partition of G into left cosets of

H is the same as the partition of G into right cosets of H.

Let H be a subgroup of G. Now we show that every left coset and right coset

of H have the same number of elements as H. We show this by exhibiting a one
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to one map of H onto a left coset gH of H for a fixed element g of G. Define

φ : H → gH by φ(h) = gh, ∀h ∈ H. Since gH = {gh|h ∈ H}, it is clear that φ

is onto. Now let φ(h1) = φ(h2) for some h1, h2 ∈ H. =⇒ gh1 = gh2. By left

cancellation, we get h1 = h2. Thus φ is one to one. This shows that every left

coset of H have the same number of elements as H. In a similar way, we can

get a one to one map of H onto the right coset Hg. Thus, every coset(left or

right) of a subgroup H of a group G has the same number of elements

as H.

Problem 32.

Find all cosets of the subgroup 4Z of 2Z.

Solution.

Since 2Z is abelian, the left cosets and the right cosets are the same. The left

coset containing the integer 0 is 0 + 4Z = {...,−8,−4, 0, 4, 8, ...} and left coset

containing the integer 2 is 2 + 4Z = {...,−6,−2, 2, 6, 10, ...}. Since these two left

cosets exhausts 2Z, they form a partition of 2Z. �

Problem 33.

Find all cosets of the subgroup 〈4〉 of Z12.

Solution.

The cosets are 0+〈4〉 = 〈4〉 = {0, 4, 8}, 1+〈4〉 = {1, 5, 9}, 2+〈4〉 = {2, 6, 10},

and 3 + 〈4〉 = {3, 7, 11}. �

Problem 34.

Let H be a subgroup of a group G such that g−1hg ∈ H for all g ∈ G and all

h ∈ H. Show that every left coset gH is the same as the right coset Hg.
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Solution.

We show that gH = Hg by showing that each coset is a subset of the other.

Let gh ∈ gH where g ∈ G and h ∈ H. Then gh = ghg−1g = [(g−1)−1hg−1]g is

in Hg because (g−1)−1hg−1 is in H by hypothesis. Thus gH is a subset of Hg.

Now let hg ∈ Hg where g ∈ G and h ∈ H. Then hg = gg−1hg = g(g−1hg) is in

gH because g−1hg ∈ H by hypothesis. Thus Hg is a subset of gH also, which

shows that gH = Hg. �

Problem 35.

Let H be a subgroup of a group G. Show that the number of left cosets of

H is the same as the number of right cosets of H.

Solution. We prove this by exhibiting a one-to-one map between the collection

of left cosets of H and the collection of right cosets of H. For any a ∈ G, we

claim that Ha−1 consists of all inverses of elements in aH . For proving this,

note that since H is a subgroup, we have {h−1|h ∈ H} = H. Therefore, Ha−1 =

{ha−1|h ∈ H} = {h−1a−1|h ∈ H} = {(ah)−1|h ∈ H}. This proves that Ha−1

consists of all inverses of elements in aH . Define a map φ from the collection of

left cosets of H into the collection of right cosets of H by φ(aH) = Ha−1. Then φ

is well defined for if aH = bH, then {(ah)−1|h ∈ H} = {(bh)−1|h ∈ H}. Because

Ha−1 may be any right coset of H, the map is onto the collection of right cosets.

Because elements in disjoint sets have disjoint inverses, we see that φ is one to

one. Thus there are the same number of left as right cosets of a subgroup H of

a group G.

�
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Exercises.

1. Find all cosets of the subgroup 4Z of Z.

2. Find all cosets of the subgroup 〈2〉 of Z12.

3. Let H be the subgroup {ρ0, µ1} of S3. Find the partitions of S3 into left

cosets and right cosets of H.

4. Find all cosets of the subgroup 〈18〉 of Z36.

5. Give an example of a subgroup of a group G of order 6 whose left cosets

give a partition of G into just one cell.

6. Give an example of a subgroup of a group G of order 6 whose left cosets

give a partition of G into 6 cells.

3.2 Theorem of Lagrange

From the examples of groups that we have considered so far, we may

observe that the order of a subgroup H of a finite group G is a divisor of the

order of G. This is known as the theorem of Lagrange, and we have the precise

statement as given below.

Theorem 3.2.1.

Let H be a subgroup of a finite group G. Then the order of H is a divisor of

the order of G.
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Proof.

Let G be a group of order n and the subgroup H have order m. Then every coset

of H also has m elements. Let r be the number of cells in the partition of G into

left cosets of H. Then n = rm, so m is a divisor of n.

Corollary 3.2.2.

Every group of prime order is cyclic.

Proof.

Let G be of prime order p, and let a ∈ G and a 6= e. Then the cyclic subgroup

generated by a, 〈a〉 must contain at least two elements a and e, so that order of

〈a〉 ≥ 2 . But by Lagrange’s theorem, order of H must divide the order of G.

This shows that order of 〈a〉 must be p, so that G is a cyclic group.

We know that the order of an element is the same as the order of the cyclic

subgroup generated by that element. Thus from Lagrange’s theorem, it follows

that the order of an element of a finite group divides the order of the

group.

Definition 3.2.3.

Let H be a subgroup of a group G. The number of left cosets of H in G is

the index (G : H) of H in G.

The index (G : H) of a subgroup H of G may be finite or infinite. If G is a

finite group, then (G : H) is finite and (G : H) = |G|/|H|, since every coset

of H contains |H| elements. But, there are the same number of left as right

cosets of a subgroup H of a group G (See Problem 35), so the index (G : H)

could be equally well defined as the number of right cosets of H in G.
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Example 15.

Consider the group Z24 and its cyclic subgroup 〈3〉 generated by 3. Since

〈3〉 = {1, 3, 6, 9, 12, 15, 18, 21} has 8 elements, its index (the number of cosets) is

24/8 = 3.

Problem 36.

Let σ = (1, 2, 5, 4)(2, 3) in S5. Find the index of 〈σ〉 in S5.

Solution.

We have, σ = (1, 2, 5, 4)(2, 3) = (1, 2, 3, 5, 4) generates a cyclic subgroup of

S5 of order 5, so its index (the number of left cosets) is 5!/5 = 4! = 24.

�

Theorem 3.2.4.

Suppose H and K are subgroups of a group G such that K ≤ H ≤ G, and

suppose that (H : K) and (G : H) are both finite. Then (G : K) is finite, and

(G : K) = (G : H)(H : K).

Proof.

Let {aiH | i = 1, 2, ..., r} be the collection of distinct left cosets of H in G

and {bjK | j = 1, 2, ..., s} be the collection of distinct left cosets of K in H.

Then it suffices to prove {(aibj)K | i = 1, 2, ..., r, j = 1, 2, ..., s} is the collection

of distinct left cosets of K in G. Let g ∈ G and let g be in the left coset aiH

of H. Then g = aih for some h ∈ H. Let h be in the left coset bjK of K in H.

Then h = bjk for some k ∈ K, so g = aibjk and g ∈ aibjK. This shows that

the collection {(aibj)K | i = 1, 2, ..., r, j = 1, 2, ..., s} includes all left cosets of

K in G. It remains to show the cosets in the collection are distinct. Suppose
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that aibjK = apbqK, so that aibjk1 = apbqk2 for some k1, k2 ∈ K. Now bjk1 ∈ H

and bqk2 ∈ H. Thus ai and ap are in the same left coset of H, and therefore

i = p and ai = ap. Using group cancellation, we deduce that bjk1 = bqk2. But

this means that bj and bq are in the same left coset of K, so j = q. Thus,

{(aibj)K | i = 1, 2, ..., r, j = 1, 2, ..., s} is the collection of distinct left cosets of

K in G.

By Lagrange’s theorem, if there is a subgroup H of a finite group G, then

the order of H divides the order of G.

In general, the converse of this result is not true. It can be shown

that if G is an abelian group of order n and m divides n, then there is always

a subgroup of order m of G. However, by looking at the subgroups of the non

abelian group A4 (which has order 12) one can see that it has no subgroup of

order 6, even though 6 divides 12.

Problem 37.

Let G be a group of order pq, where p and q are prime numbers. Show that

every proper subgroup of G is cyclic.

Solution.

By Lagrange’s theorem, the possible orders for a proper subgroup are p, q,

and 1. Now p and q are primes and every group of prime order is cyclic, and of

course every group of order 1 is cyclic. Thus every proper subgroup of a group

of order pq must be cyclic. �

Problem 38.

Show that a group with at least two elements but with no proper nontrivial

subgroups must be finite and of prime order.
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Solution.

Let G be of order ≥ 2 but with no proper nontrivial subgroups. Let a ∈

G, a 6= e. Then 〈a〉 is a nontrivial subgroup of G, and thus must be G itself.

Because every cyclic group not of prime order has proper subgroups, we see that

G must be finite of prime order. �

Problem 39.

Show that if H is a subgroup of index 2 in a finite group G, then every left

coset of H is also a right coset of H.

Solution.

Since H is a subgroup of index 2, the partition of G into left cosets of H must

be H and G−H, the compliment of H in G, because G has finite order and H

must have half as many elements as G. For the same reason, this must be the

partition into right cosets of H. Thus every left coset is also a right coset. �

Exercises.

1. Find the index of the subgroup 〈µ1〉 in the group S3.

2. Let µ = (1, 2, 4, 5)(3, 6) in S6. Find the index of 〈µ〉 in S6.

3. Show that if a group G has finite order n, then an = e, ∀a ∈ G.

4. Find the index of the subgroup 〈18〉 of the group Z36.

5. Show that every left coset of the subgroup Z of the additive group of real

numbers contains exactly one element x such that 0 ≤ x < 1.

6. Show that a finite cyclic group of order n has exactly one subgroup of each

order d dividing n, and that these are all the subgroups it has.
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Chapter 4
Homomorphisms

In this chapter, we will discuss maps from a group G to the group G′ which

preserves the group structure.

4.1 Definition and Examples

Definition 4.1.1.

A map φ of a group G into a group G′ is a homomorphism if the homo-

morphism property φ(ab) = φ(a)φ(b) holds for all a, b ∈ G.

Remark.

For any groups G and G′, there is always at least one homomorphism φ : g →

G′ namely the trivial homomorphism defined by φ(g) = e′ for all g ∈ G, where

e′ is the identity element of G′.

Example 16.

Let φ : G → G′ be a group homomorphism of G onto G′. Then G′ will

be abelian if G is abelian. To see this, let a′, b′ ∈ G′. Since φ is onto, there
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exists a, b ∈ G such that φ(a) = a′ and φ(b) = b′. Then a′b′ = φ(a)φ(b) =

φ(ab) = φ(ba) = φ(b)φ(a) = b′a′, where the third equality is due to the fact

that G is abelian. This shows that G′ is abelian. Thus, this example illustrates

how one can get information about G′ from a given information about G via a

homomorphism φ : G→ G′.

Example 17.

Let F be the additive group of all functions from R into R and let R be

the additive group of real numbers and c be any fixed real number. Define

φc : F → R by φc(f) = f(c) for f ∈ F . Since the sum of two functions

f and g is the function f + g whose value at x is f(x) + g(x), we see that

φc(f +g) = (f +g)(c) = f(c)+g(c) = φc(f)+φc(g). Thus φ is a homomorphism

of F into R, and is called the evaluation homomorphism.

Example 18.

Let GL(n,R) be the multiplicative group of all invertible n × n matrices.

Then φ : GL(n,R) → R∗ defined by φ(A) = detA, the determinant of A, for

all A ∈ GL(n,R) is a homomorphism, since det(AB) = det(A)det(B) and since

det(A) 6= 0 for any invertible n× n matrix A.

Example 19.

Consider the additive group Z of integers. For r ∈ Z, define φr(n) = rn for

all n ∈ Z. Then φr(n + m) = r(n + m) = rn + rm = φr(n) + φr(m), so φr is

a homomorphism of Z into itself. When r = 0, we get φ0, which is the trivial

homomorphism. Similarly, φ1 is the identity map and φ−1 maps Z onto Z.

Problem 40.

Determine whether the given map φ is a homomorphism.

(a) Let φ : Z → R under addition be given by φ(n) = n.
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(b) Let φ : R → Z under addition be given by φ(x) = the greatest integer ≤ x.

(c) Let φ : R∗ → R∗ under multiplication be given by φ(x) = |x|.

(d) Let φ : R → R∗ where R is additive and R∗ is multiplicative, be given by

φ(x) = 2x.

Solution.

(a) It is a homomorphism, because φ(m+ n) = m+ n = φ(m) + φ(n).

(b) It is not a homomorphism, because φ(2.6 + 1.6) = φ(4.2) = 4 but φ(2.6) +

φ(1.6) = 2 + 1 = 3.

(c) It is a homomorphism, because φ(xy) = |xy| = |x||y| = φ(x)φ(y) for x, y ∈ R∗

(d) It is a homomorphism, because φ(x + y) = 2x+y = 2x2y = φ(x)φ(y) for

x, y ∈ R∗. �

Problem 41.

Let Mn(R) be the additive group of all n× n matrices with real entries, and

let R be the additive group of real numbers. Determine whether the given map

φ is a homomorphism.

(a) Let φ : Mn(R) → R be given by φ(A) = det(A), the determinant of A ∈

Mn(R).

(b) Let φ : Mn(R) → R be given by φ(A) = tr(A), the trace of A ∈ Mn(R).

(The trace of A, tr(A) is the sum of the elements on the main diagonal of A.)

Solution.

(a) No, it is not a homomorphism. Let n = 2 and A =

 1 0

0 1

 and B =

 1 1

1 1

, so that A+B =

 2 1

1 2

. We see that φ(A+B) = det(A+B) =

4− 1 = 3, but φ(A) + φ(B) = det(A) + det(B) = 1 + 0 = 1.
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(b) Yes, it is a homomorphism. Let A = (aij) and B = (bij) where the element

with subscript ij is in the ith row and jth column. Then φ(A+B) = tr(A+B) =∑n
i=1(aii + bii) =

∑n
i=1 aii +

∑n
i=1 bii = tr(A) + tr(B) = φ(A) + φ(B). �

Exercises.

1. Let Sn be the symmetric group on n letters, and let φ : Sn → Z2 be defined

by φ(σ) = 0 if σ is an even permutation and φ(σ) = 1 if σ is an odd

permutation . Show that φ is a homomorphism.

2. Let F be the additive group of continuous functions from [0, 1] into R and

let R be the additive group of real numbers . Show that the map φ : F → R

defined by φ(f) =
∫ 1

0
f(x)dx for f ∈ F , is a homomorphism.

3. Show that the map γ : Z → Zn defined by γ(m) = r, where r is the

remainder given by the division algorithm when m is divided by n, is a

homomorphism..

4. Let GL(n,R) be the multiplicative group of invertible n × n matrices

with real entries, and let R be the additive group of real numbers. Let

φ : GL(n,R) → R be given by φ(A) = tr(A), the trace of A. Is φ a

homomorphism? Justify your answer.

4.2 Properties of Homomorphisms

In this section, we will look into some structural features of G and G′ that

are preserved under a homomorphism φ : G→ G′. We begin with the following

definition.
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Definition 4.2.1.

Let φ be a mapping of as set X into a set Y , and let A ⊆ X and B ⊆ Y . The

image φ[A] of A in Y under φ is {φ(a) | a ∈ A}. The set φ[X] is the range

of φ. The inverse image φ−1[B] of B in X is {x ∈ X | φ(x) ∈ B}.

The next theorem shows that a homomorphism φ : G → G′ preserves the

identity element, inverses, and subgroups.

Theorem 4.2.2.

Let φ be a homomorphism of a group G into a group G′.

(a) If e is the identity element in G, then φ(e) is the identity element e′ in G′.

(b) If a ∈ G, then φ(a−1) = φ(a)−1.

(c) If H is a subgroup of G, then φ[H] is a subgroup of G′.

(d) If K ′ is a subgroup of G′, then φ−1[K ′] is a subgroup of G.

Proof.

Let φ be a homomorphism of a group G into a group G′.

(a) We have φ(a) = φ(ae) = φ(a)φ(e). Multiplying on the left by φ(a)−1, we see

that e′ = φ(e). Thus φ(e) must be the identity element e′ in G′.

(b) We have e′ = φ(e) = φ(aa−1) = φ(a)φ(a−1). This shows that φ(a−1) =

φ(a)−1.

(c) Let H be a subgroup of G and let φ(a) and φ(b) be any two elements in

φ[H]. Then φ(a)φ(b) = φ(ab), so that φ(ab) ∈ φ[H]. Thus φ[H] is closed under

the operation of G′. Also, e′ = φ(e) ∈ φ[H] and φ(a)−1 = φ(a−1) ∈ φ[H]. Thus

φ[H] is a subgroup of G′.

(d) Similar to (c), try yourself!
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Definition 4.2.3.

Let φ : G→ G′ be a homomorphism of groups. The subgroup φ−1[e′] = {x ∈

G | φ(x) = e′} is the kernel of φ, denoted by Ker(φ).

Theorem 4.2.4.

Let φ : G→ G′ be a group homomorphism, and let H = Ker(φ). Let a ∈ G.

Then, the set φ−1[{φ(a)}] = {x ∈ G | φ(x) = φ(a)} is the left coset aH of H,

and is also the right coset Ha of H. Consequently, the two partitions of G into

left cosets and into right cosets of H are the same.

Proof.

We have to show that {x ∈ G | φ(x) = φ(a)} = aH. Suppose that φ(x) =

φ(a). Then φ(a)−1φ(x) = e′, where e′ is the identity element of G′. But by above

theorem, φ(a)−1 = φ(a−1), so that φ(a−1)φ(x) = e′. Since φ is a homomorphism,

this implies that φ(a−1)φ(x) = φ(a−1x), so we get φ(a−1x) = e′. But, this means

that a−1x is in H = Ker (φ), so a−1x = h for some h ∈ H =⇒ x = ah ∈ aH.

This shows that {x ∈ G | φ(x) = φ(a)} ⊆ aH.

To prove the reverse inclusion, let y ∈ aH, so that y = ah for some h in H. Then,

φ(y) = φ(ah) = φ(a)φ(h) = φ(a)e′ = φ(a) =⇒ y ∈ {x ∈ G | φ(x) = φ(a)}.

Thus, aH ⊆ {x ∈ G | φ(x) = φ(a)}, so that {x ∈ G | φ(x) = φ(a)} = aH.

In a similar way, we can show that {x ∈ G | φ(x) = φ(a)} = Ha.

Corollary 4.2.5.

A group homomorphism φ : G→ G′ is a one- to- one map if and only if Ker

(φ) = {e}.
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Proof.

Assume that Ker (φ) = {e}. Then for every a ∈ G, the elements mapped into

φ(a) are precisely the elements of the left coset a{e} = {a}, which shows that φ

is one-to-one.

Conversely, assume that φ is one-to-one. Since a homomorphism preserves

the identity element, we have φ(e) = e′. Since φ is one-to-one, we see that e is

the only element mapped into e′ by φ, so Ker(φ) = {e}.

Problem 42.

Find Ker(φ) and φ(25) for the homomorphism φ : Z → Z7 such that φ(1) = 4.

Solution.

Note that Ker(φ) = 7Z, because 4 has order 7 in Z7. We have φ(25) = φ(21+

4) = φ(21)+7φ(4) = 0+7φ(4) = φ(1)+7φ(1)+7φ(1)+7φ(1) = 4+7 4+7 4+7 4 =

1 +7 1 = 2. �

Problem 43.

Find Ker(φ) and φ(18) for the homomorphism φ : Z → Z10 with φ(1) = 6.

Solution.

Note that Ker(φ) = 5Z, because 6 has order 5 in Z10. We have φ(18) =

φ(15+3) = φ(15)+10φ(3) = 0+10φ(3) = φ(1)+10φ(1)+10φ(1) = 6+10 6+10 6 =

2 +10 6 = 8. �

Problem 44.

How many homomorphisms are there of Z onto Z?
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Solution.

Because the homomorphism φ must be onto Z, φ(1) must be a generator of

Z. Thus there are only two such homomorphisms φ, one where φ(1) = 1 so

φ(n) = n for all n ∈ Z, and one where φ(1) = −1 so φ(n) = −n for all n ∈ Z. �

Problem 45.

How many homomorphisms are there of Z into Z?

Solution.

There are an infinite number of homomorphisms from Z into Z. For any

nonzero n ∈ Z, we know that 〈n〉 is isomorphic to Z, and that φ : Z → Z given

by φ(m) = mn is an isomorphism, and hence a homomorphism. Of course φ

defined by φ(m) = 0 for all m ∈ Z is also a homomorphism. �

Definition 4.2.6.

A subgroup H of a group G is normal if its left and right cosets coincide,

that is, if gH = Hg for all g ∈ G.

Remark.

Clearly, all subgroups of abelian groups are normal.

The following corollary is immediate from the theorem 4.2.4.

Corollary 4.2.7.

If φ : G → G′ is a group homomorphism, then Ker(φ) is a normal subgroup

of G.

Problem 46.

Show that any group homomorphism φ : G→ G′ where |G| is a prime must

either be the trivial homomorphism or a one-to-one map.
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Solution.

By theorem 4.2.2, Ker(φ)= φ−1[{e′}] is a subgroup of G. By the Lagrange’s

theorem, either Ker(φ)= {e} or Ker(φ)= G because |G| is a prime number. If

Ker(φ)= {e}, then φ is one-to-one by corollary 4.2.5. If Ker(φ)= G, then φ is

the trivial homomorphism, mapping everything into the identity element.

�

Problem 47.

Let G be a group. Let h, k ∈ G and let φ : Z × Z → G be defined by

φ(m,n) = hmkn. Show that φ is a homomorphism if and only if hk = kh.

Solution.

We have φ(1, 0) = h1k0 = h and φ(0, 1) = h0k1 = k. Assume that φ is a

homomorphism. Using addition notation in Z × Z as usual, we have φ(1, 1) =

φ((1, 0)+(0, 1)) = φ(1, 0) φ(0, 1) = hk, φ(1, 1) = φ((0, 1)+(1, 0)) = φ(0, 1) φ(1, 0) =

kh. Thus if φ is a homomorphism, we must have hk = kh.

Conversely, assume that hk = kh. Then for any (i, j) and (m,n) in Z ×

Z , we have φ((i, j) + (m,n)) = φ(i + m, j + n) = hi+mkj+n = hihmkjkn =

hikjhmkn = φ(i, j)φ(m,n), where the first equality in the second line follows

from the commutativity of h and k. Thus φ is a homomorphism if and only if

hk = kh �

Exercises.

1. How many homomorphisms are there of Z into Z2?

2. Let G be a group, and let g ∈ G. Let φg : G→ G′ be defined by φg(x) = gx

for x ∈ G. For which g ∈ G is φg a homomorphism?

School of Distance Education,University of Calicut



4.2. Properties of Homomorphisms 68

3. Let G be a group, and let g ∈ G. Let φg : G → G′ be defined by φg(x) =

gxg−1 for x ∈ G. For which g ∈ G is φg a homomorphism?

4. Let φ : G → H be a group homomorphism. Show that φ[G] is abelian if

and only if for all x, y ∈ G, we have xyx−1y−1 ∈ Ker(φ).

5. Show that if G,G′ and G′′ are groups and if φ : G → G′ and γ : G′ → G′′

are homomorphisms, then the composite map γφ : G→ G′′ is a homomor-

phism.

6. Show that a homomorphism of a cyclic group is completely determined by

its value on a generator of the group.

7. Let G be any group and let a be any element of G. Let φ : Z → G be

defined by φ(n) = an. show that φ is a homomorphism. Describe the image

and the possibilities for the kernel of φ.
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Chapter 5
Rings, Integral Domains and

Fields

A ring is an algebraic structure consisting of a set together with two bi-

nary operations usually called addition and multiplication, where the set is an

abelian group under addition and a semi group under multiplication such that

multiplication distributes over addition. One of the most common examples of

a ring is the set of integers endowed with its natural operations of addition and

multiplication. The branch of mathematics that studies rings is known as ring

theory. Ring theorists study properties common to both familiar mathematical

structures such as integers and polynomials, and to the many less well-known

mathematical structures that also satisfy the axioms of ring theory. The ubiquity

of rings makes them a central organizing principle of contemporary mathematics.

Ring theory may be used to understand fundamental physical laws, such as those

underlying special relativity and symmetry phenomena in molecular chemistry.

The study of rings originated from the theory of polynomial rings and the

theory of algebraic integers. In the 1880’s Richard Dedekind introduced the con-
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cept of a ring, and the term ring was coined by David Hilbert in 1892. After

contributions from other fields, mainly number theory, the ring notion was gener-

alized and firmly established during the 1920’s by Emmy Noether and Wolfgang

Krull. Modern ring theory-a very active mathematical discipline-studies rings

in their own right. To explore rings, mathematicians have devised various no-

tions to break rings into smaller, better-understandable pieces, such as ideals,

quotient rings and simple rings. In addition to these abstract properties, ring

theorists also make various distinctions between the theory of commutative rings

and non commutative rings-the former belonging to algebraic number theory and

algebraic geometry. A particularly rich theory has been developed for a certain

special class of commutative rings, known as fields, which lies within the realm

of field theory. Likewise, the corresponding theory for noncommutative rings,

that of noncommutative division rings, constitutes an active research interest for

noncommutative ring theorists. Since the discovery of a mysterious connection

between noncommutative ring theory and geometry during the 1980’s by Alain

Connes, noncommutative geometry has become a particularly active discipline

in ring theory.

5.1 Rings and Fields

Definition 5.1.1.

A ring 〈R,+, .〉 is a set R together with two binary operations + and .,

called addition and multiplication, defined on R such that the following axioms

are satisfied:

(i) 〈R,+〉 is an abelian group.

(ii) Multiplication is associative.
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(iii) For all a, b, c ∈ R, the left distributive law, a.(b+ c) = a.b+ a.c and the

right distributive law (a+ b).c = a.c+ b.c hold.

Notations.

We denote the multiplication in a ring by juxtaposition. i.e., we use ab to

denote a.b

Example 20.

Let R be any ring, and let Mn(R) be the set of all n×n matrices with entries

from R. The addition and multiplication in R allows us to define matrix addition

and multiplication in the usual way. Then it can be shown that Mn(R) is a ring

with these operations. In particular, we can have the ringsMn(Z),Mn(Q),Mn(R)

and Mn(C). Note that multiplication is not a commutative operation in any of

these rings for n ≥ 2.

Example 21.

Let F be the set of all functions from a set R into R. Then F is a ring under

the usual function addition and point wise multiplication defined by (f+g)(x) =

f(x) + g(x) and (fg)(x) = f(x)g(x) for x ∈ R and for all f, g ∈ F .

The following theorem shows that our usual rule of signs are valid in any ring

and its proof is straight forward and we leave it as an exercise to the student.

Theorem 5.1.2.

If R is a ring with additive identity 0, then for any a, b ∈ R we have

1. 0a = a0 = 0

2. a(−b) = (−a)b = −(ab)
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3. (-a)(-b)=ab.

Definition 5.1.3.

A map φ from a ring R to a ring R′ is a homomorphism if (i) φ(a+ b) =

φ(a) + φ(b) (ii) φ(ab) = φ(a)φ(b) for all a, b ∈ R.

A homomorphism φ : R→ R′ from a ring R to a ring R′ is a isomorphism

if it is both one to one and onto .

The rings R and R′ are then isomorphic.

Example 22.

Consider the rings 〈Z,+, .〉 and 〈2Z,+, .〉. We know that as abelian groups,

〈Z,+〉 and 〈2Z,+〉 are isomorphic under the map φ : Z → 2Z defined by φ(x) =

2x, ∀x ∈ Z. But φ is not a ring isomorphism, for φ(xy) = 2xy, while φ(x)φ(y) =

2x2y = 4xy.

Definition 5.1.4.

A ring in which the multiplication is commutative is a commutative ring.

A ring with a multiplicative identity element is a ring with unity; the multi-

plicative identity element 1 is called unity.

A multiplicative inverse of an element a in a ring R with unity 1 6= 0 is

an element a−1 ∈ R such that aa−1 = a−1a = 1.

Let R be a ring with unity 1 6= 0. An element u in R is a unit of R if it has

a multiplicative inverse in R. If every nonzero element of R is a unit, then R is

a divison ring (or skew field).

A field is a commutative division ring. A noncommutative division ring is

called a strictly skew field.
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Example 23.

Note that 〈Z,+, .〉 is a commutative ring with unity. The only units in it are

−1 and 1. Thus Z is not a field. However, 〈Q,+, .〉, 〈R,+, .〉 and 〈C,+, .〉 are

fields.

Example 24.

Consider nZ,where n ∈ Z+ with usual addition and multiplication. Then it

is a commutative ring, but without unity unless n = 1, and is not a field.

Example 25.

Z×Z with addition and multiplication by components is a commutative ring

with unit (1, 1), but is not a field because (2, 0) has no multiplicative inverse.

The only units in Z× Z are (1, 1), (1,−1), (−1, 1), and (−1,−1).

Example 26.

Consider Z×Q× Z with addition and multiplication by components . This

is a commutative ring with unity, but is not a field. The units of this ring are

(1, q, 1), (−1, q, 1), (1, q,−1) and (−1, q,−1) for any nonzero q ∈ Q.

Problem 48.

Describe all ring homomorphisms of Z into Z.

Solution.

Let φ : Z → Z be a ring homomorphism. Because 12 = 1, we see that φ(1)

must be an integer whose square is itself, namely either 0 or 1. If φ(1) = 1,

then φ(n) = φ(n1) = n, so φ is the identity map of Z onto itself which is a

homomorphism. If φ(1) = 0, then φ(n) = φ(n1) = 0, so φ maps everything onto

0, which also yields a homomorphism. �
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We list below some important points to be remembered about rings and fields.

• A multiplicative inverse of an element a in a ring R with unity is unique, if

it exists.

• The set of nonzero elements of a field is an abelian group under multiplica-

tion.

• A subring of a ring is a subset of the ring that is a ring under induced

operations from the whole ring.

• A subfield of a field is a subset of the field that is a field under induced

operations from the whole field.

• Unity is the multiplicative identity element, while a unit is an element having

a multiplicative inverse.

• Unity is a unit, but not every unit is a unity.

• The units in Zn are precisely those m ∈ Zn such that gcd(m,n) = 1.

Problem 49.

Consider the map det of Mn(R) into R where det(A) is the determinant of

the matrix A for A ∈Mn(R). Is det a ring homomorphism? Justify your answer.

Solution.

Because det(A + B) need not equal det(A) + det(B), we see that det is not

a ring homomorphism. For example, det(In + In) = 2n but det(In) + det(In) =

1 + 1 = 2. �

Problem 50.

If U is the collection of all units in a ring 〈R,+, .〉 with unity, show that 〈U, .〉
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is a group.

Solution.

Let u, v ∈ U . Then there exists s, t ∈ R such that us = su = 1 and

vt = tv = 1. These equations show that s and t are also units in U . Then

(ts)(uv) = t(su)v = t1v = tv = 1 and (uv)(ts) = u(vt)s = u1s = 1, so uv is

again a unit =⇒ U is closed under multiplication. Of course multiplication in U

is associative because multiplication in R is associative. The equation (1)(1) = 1

shows that 1 is a unit. Since any unit u ∈ U has a multiplicative inverse s in U ,

we see that U is a group under multiplication. �

Exercises.

1. Show that 〈nZ,+, .〉 is a ring.

2. Show that Zn is a ring under the operations of addition modulo n and

multiplication modulo n.

3. Describe all units in the ring (a) Q (b) Z5.

4. Describe all ring homomorphisms of Z into Z× Z.

5. Describe all ring homomorphisms of Z× Z into Z.

6. Let F be the ring of all functions from R into R. For each a ∈ R, define φa :

F → R by φa(f) = f(a),∀f ∈ F . Show that φa is a ring homomorphism.

(This map is called the evaluation homomorphism) .

7. Show that an intersection of subrings of a ring R is again a subring of R.

8. Show that an intersection of subfields of a field F is again a subfield of F .
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9. Let R be a ring, and let a be a fixed element of R. Let Ia = {x ∈ R | ax =

0}. Show that Ia is a subring of R.

5.2 Integral Domains

We know that the product of any two nonzero integers is always nonzero.

But this may not be the case of arbitrary rings. For example, consider the ring

〈Z6,+, .〉. Note that product of two nonzero elements may be zero in this ring,

for instance, 2.3 = 0 in Z6. We call these type of elements as 0 divisors.

Definition 5.2.1.

If a and b are two nonzero elements of a ring R such that ab = 0, then a and

b are divisors of 0(or 0 divisors)

The following theorem illustrates the importance of the concept of 0 divisors

in rings.

Theorem 5.2.2.

The cancellation laws hold in a ring R if and only if R has no divisors of 0.

Proof.

Assume that R is a ring in which the cancellation laws hold, and let ab = 0

for some a, b ∈ R. If a 6= 0, we have ab = a0 =⇒ b = 0, by left cancellation

law. Similarly, if b 6= 0, ab = 0b =⇒ a = 0, by right cancellation law. Thus R

has no divisors of 0, if the cancellation laws hold in R.

Conversely, suppose that R has no divisors of 0, and suppose that ab = ac, with

a 6= 0. Since a 6= 0 and since R has no divisors of 0, we have 0 = ab− ac = a(b−
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c) =⇒ b− c = 0 =⇒ b = c. In a similar way, ba = ca with a 6= 0 =⇒ b = c.

Thus, if R has no divisors of 0, the cancellation laws hold in R.

Definition 5.2.3.

An integral domain D is a commutative ring with unity 1 6= 0 and contain-

ing no divisors of 0.

Example 27.

The rings Z and Zp for any prime p are integral domains, but Zn is not an

integral domain if n is not a prime. The direct product of two integral domainsD1

and D2 is not an integral domain, because the product of two nonzero elements

may be zero, for instance (d, 0)(0, d′) = (0, 0).

We now show that a field has no divisors of 0.

Theorem 5.2.4.

Every field F is an integral domain.

Proof.

Let a, b ∈ F with a 6= 0. Assume that ab = 0. Since a 6= 0, the multiplicative

inverse a−1 of a exists, multiplying the above equation on both sides by a−1,

we get a−1(ab) = a−10 = 0. This implies, 0 = a−1(ab) = (a−1a)b = eb = b,

which shows that F has no divisors of 0. Since F is a field, in particular F is a

commutative ring with unity, and we showed that F has no divisors of 0. Hence

F is an integral domain.

We know that Z is an integral domain, but not a field. We next prove that

finite integral domains are fields.
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Theorem 5.2.5.

Every finite integral domain is a field.

Proof.

Let D be a finite integral domain, and let 0, 1, a1, a2, ..., an be all the distinct

elements of D. To show D is a field, we need to prove that if a ∈ D with

a 6= 0, then the multiplicative inverse a−1 of a exists in D. Now, consider

a1, aa1, aa2, ..., aan. All these are distinct elements of D, for if aai = aaj =⇒

a(ai − aj) = 0 =⇒ ai = aj which is a contradiction to our assumption . Also,

since D has no divisors of 0, none of these elements is 0. Thus the elements

a1, aa1, aa2, ..., aan are the elements 1, a1, a2, ..., an in some order, so that either

a1 = 1 or aai = 1 for some i. Thus a has a multiplicative inverse.

Since Zp is an integral domain, if p is a prime, from the above theorem, it

follows that Zp is a field if p is a prime.

Definition 5.2.6.

If for a ring R a positive integer n exists such that a+ a+ ...+ a = n.a = 0

for all a ∈ R, then the least such positive integer is the characteristic of the

ring R.

If no such positive integer exists, then R is of characteristic 0.

For example, the ring Zn is of characteristic n, while Z,Q,R and C all have

characteristic 0.

Theorem 5.2.7.

Let R be a ring with unity. If n.1 6= 0 for all n ∈ Z+, then R has characteristic

0. If n.1 = 0 for some n ∈ Z+, then the smallest such positive integer is the
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characteristic of R.

Proof.

If n.1 6= 0 for all n ∈ Z+, then surely we cannot have n.a = 0,∀a ∈ R for

some n ∈ Z+. Therefore, R has characteristic 0.

If there is an n ∈ Z+ such that n.1 = 0, then n.a = a + a + ... + a = a(1 + 1 +

... + 1) = a(n.1) = a.0 = 0. Thus, the smallest n ∈ Z+ such that n.1 = 0 is the

characteristic of R.

Example 28.

The ring Z3×Z3 has characteristic 3 and Z3×Z4 has characteristic 12. Can

you find the characteristic of Z6 × Z15?

Problem 51.

Find all solutions in Z6 of (a) x2 + 2x+ 4 = 0, and (b) x2 + 2x+ 2 = 0.

Solution.

(a) Trying all possibilities −2,−1, 0, 1, 2, and 3, we find that x = 2 is the only

solution in Z6 .

(b) Trying all possibilities -2, -1, 0, 1, 2, and 3, we find that the given equation

has no solutions in Z6 . �

Problem 52.

Let R be a commutative ring with unity of characteristic 3. Compute and

simplify (a+ b)9 for a, b ∈ R .

Solution.

Since R has characteristic 3, 3.a = 0 for all a ∈ R, we get
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(a+ b)9 = [(a+ b)3]3 = [a3 + 3.a2b+ 3.ab2 + b3]3 = (a3 + b3)3 = a9 + 3.a6b3 +

3.a3b6 + b9 = a9 + b9. �

Problem 53.

Show that the characteristic of an integral domain D must be either 0 or a

prime p.

Solution.

Suppose that the characteristic of D is mn for m > 1 and n > 1.

Then we have (m.1)(n.1) = (mn).1 = 0. Since an integral domain have no

divisors of 0, we must have either m.1 = 0 or n.1 = 0. But if m.1 = 0, then

Theorem 5.2.7 shows that the characteristic of D is at most m. If n.1 = 0, then

characteristic of D is at most n. Thus the characteristic of D cant be a composite

positive integer, so it must either be 0 or a prime p. �

Problem 54.

An element a of a ring R is idempotent if a2 = a. Show that a division ring

contains exactly two idempotents.

Solution.

If a2 = a, then a2 − a = a(a− 1) = 0. If a 6= 0, then a−1 exists in R and we

have a− 1 = (a−1a)(a− 1) = a−1[a(a− 1)] = a−10 = 0, so a− 1 = 0 =⇒ a = 1.

Thus 0 and 1 are the only two idempotent elements in a division ring. �

Exercises.

1. A subdomain of an integral domain D is a subset of D that is an integral

domain under induced operations from D. Show that the intersection of

subdomains of an integral domain D is again a subdomain of D.
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2. Find all solutions of the equation x3 − 2x2 − 3x = 0 in Z12.

3. Solve the equation 3x = 2 in Z7.

4. Find the characteristic of Z3 × Z.

5. Let R be a commutative ring with unity of characteristic 3. Compute and

simplify (a+ b)6 for a, b ∈ R .

6. Show that a finite ring R with unity 1 6= 0 and no divisors of 0, is a division

ring.

7. Show that the characteristic of a subdomain of an integral domain D is

equal to the characteristic of D.
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Chapter 6
Introduction to Vector Spaces

Linear Algebra is that branch of Mathematics which treats the common

properties of algebraic systems that consists of a set, together with a notion of

linear combination of elements in the set.

In this chapter, we study an important algebraic system namely, vector

spaces. Vector spaces are a central theme in modern mathematics and has

extensive applications in the natural sciences and the social sciences. The ideas

behind the abstract notion of a vector space occurred in many concrete examples

during the nineteenth century and earlier. It was Descartes and Fermat who first

discussed the vector spaces R2 and R3 in much the way that are presented today.

In the study of vector spaces, we generalize the geometric concept of a vector

as a line segment of given length and direction advantageously in an abstract

way. The modern definition of a vector space seems to be due to the Italian

mathematician Giuseppe Peano (1858-1932 ). Theory of vector spaces is a fun-

damental tool in pure and applied Mathematics and is becoming increasingly

important in the Physical, Biological and Social Sciences.
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6.1 Definition and Examples

Definition 6.1.1.

Let a non empty set V of elements be given and a rule of addition of any

two elements of V , denoted by + and another rule of multiplication of elements

of V by real numbers (or complex numbers) also be defined, then the set V is

called a vector space and elements of V are called vectors of V , provided the

following conditions are satisfied.

1. For any u, v ∈ V , addition + is defined and u+ v ∈ V . i.e., V is closed under

addition. Further,

(a) Addition is commutative, u+ v = v + u for all u, v ∈ V ;

(b) Addition is associative, u+ (v + w) = (u+ v) + w for all u, v, w ∈ V ;

(c) There is a unique element 0 ∈ V , called the zero vector, such that u+ 0 = u

for all u ∈ V (Existence of additive identity);

(d) For each vector u ∈ V , there is a unique vector −u ∈ V , called the additive

inverse of u such that u+ (−u) = 0;

2. Multiplication of vectors by scalars (real or complex numbers), satisfies αu ∈

V for each u ∈ V and each scalar α. i.e., V is closed under scalar multiplication.

Further,

(e) If α is a scalar, then α(u+ v) = αu+ αv, for all u, v ∈ V

(f) If α, β are two scalars, then (α+ β)u = αu+ βu for all u ∈ V ;

(g) If α, β are two scalars, then α(β)u = (αβ)u = β(αu) for all u ∈ V ;

(h) For all elements u of V , we have 1.u = u. Here, 1 is called the unit scalar.

Remark.

Note that the conditions on the operation addition, in the above definition of

a vector space, says simply that V is an abelian group with respect to addition. If
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u, v are elements of V , then u+(−v) is usually written as u−v. Note that for any

vector v ∈ V , we have 0.v = 0, here the 0 on the left side is the scalar zero, and the

zero on the right side is the zero vector. ( 0.v = (0+0).v = 0.v+0.v =⇒ 0.v = 0).

Similarly, α0 = 0, for any scalar α.

Definition 6.1.2.

A nonempty subset S of a vector space V is called a subspace of V , if S

itself is a vector space with the operations of addition and scalar multiplication

on V .

To check whether S is a subspace or not, we need only to check that S is

closed under addition and scalar multiplication and that 0 ∈ S.

Clearly, if V is any vector space, then V itself is a subspace of V . Also, the

subset consisting of the zero vector alone is a subspace of V , called the zero

subspace of V , and it is the smallest subspace of any vector space V .

The following theorem gives a characterization of subspaces of a vector space.

Theorem 6.1.3.

A non empty subset S of a vector space V is a subspace of V if and only if

(a) If u, v ∈ S, then u+ v ∈ S for all u, v ∈ S.

(b) If u ∈ S, then αu ∈ S for each u ∈ S and every scalar α.

Proof.

Assume that (a) and (b) are true. Then commutativity and associativity of

addition follows because elements of S are in particular elements of the vector

space V . Choosing α = −1, from (b), we get −1u ∈ S, for all u ∈ S. Also, by

taking α = 0 in (b), we see that 0u = 0 ∈ S. Therefore, S is a vector space,

hence a subspace of V .
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Conversely, if S is a subspace of V , then S itself is a vector space, and in

particular, S is closed under vector addition and scalar multiplication. Hence S

satisfies the conditions (a) and (b).

The above characterization of subspaces can be modified in the following way.

A non empty subset S of a vector space V is a subspace of V if and only if for

each pair of vectors u, v ∈ S and for each scalar α, the vector αu + v is again

in S.

Now we look at some examples of vector spaces.

Example 29.

Let V be the set of all n-tuples, u = (x1, x2, ..., xn) of real numbers. For

any u = (x1, x2, ..., xn), v = (y1, y2, ..., yn) in V and for any real number α, we

define addition and scalar multiplication as follows: u + v = (x1 + y1, x2 +

y2, ..., xn +yn), αu = (αx1, αx2, ..., αxn). It is easy to see that these definitions of

vector addition and scalar multiplication makes V a vector space. This vector

space is denoted by Rn. Now let W be the subset of V consisting of all

u = (x1, x2, ..., xn) with x1 = 0. Then W is a subspace of V (Prove this!).

Example 30.

Let V be the set of all functions from the set R into R. Define sum of two

elements f, g of V as the function f + g , defined by (f + g)(x) = f(x) + g(x).

The product of the scalar α and the function f is defined as the function αf ,

where (αf)(x) = αf(x). It is an easy exercise to verify these operations make V

a vector space. Let W be the subset of V consisting of all continuous functions

on R and U be the subset of V consisting of all differentiable functions on R .
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Then W and U are subspaces of V . This is because if f and g are continuous

(resp. differentiable) functions on R and α is a real number, then f + g and αf

are continuous( resp. differentiable) functions on R. Also, the zero function is

both continuous and differentiable. In fact, U is a subspace of W , because every

differentiable function is continuous. The space P of polynomial functions on R

is a subspace of the vector space V of all functions from R into R. (Furthermore,

P is a subspace of U , and consequently, a subspace of W as well.)

Example 31.

Let Pn be the set of all polynomials in the variable x of degree ≤ n. Then

under usual addition and scalar multiplication of polynomials, the set Pn is a

vector space. (Verify!). Let V = {p(x) ∈ Pn | p(1) = 0} be the set of all

polynomials in the variable x of degree ≤ n and vanishes at 1. Then V is a

subspace of Pn, since if p1(x), p2(x) ∈ V , then (p1 + p2)(1) = p1(1) + p2(1) =

0 + 0 = 0, and (αp1)(1) = αP1(1) = α0 = 0, for all scalar α. But, the set

W = {p(x) ∈ Pn | p(x) is of degree n} is not a vector space as the zero polynomial

(the additive identity) /∈ W , and hence not a subspace of Pn.

Problem 55.

Let V be a vector space. If U and W be subspaces of V , then show that

U ∩W is a subspace of V . Is U ∪W a subspace of V ?

Solution.

Clearly, U ∩ W is a subset of V . Let u, v ∈ U ∩ W . Then u, v ∈ U and

u, v ∈ W . Since U and W are subspaces of V , u + v ∈ U , u + v ∈ W , αu ∈ U

and αu ∈ W , for any scalar α. Therefore u + v ∈ U ∩W and αu ∈ U ∩W .

Hence U ∩W is a subspace of V . Note that the union of subspaces of a vector

space V need not be a subspace of V . For example, consider the vector space
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V = {(x, y, z)|x, y, z ∈ R}. Then W1 = {(0, 0, z)|z ∈ R} and W2 = {(0, y, 0)|y ∈

R} are subspaces of V . Now (0, 0, 3) and (0, 5, 0) are two elements of W1 ∪W2 .

But their sum, (0, 5, 3) /∈ W1 ∪W2 . Thus W1 ∪W2 is not a subspace of V . �

Problem 56.

Let V = {(x, y, z)|x, y, z ∈ R} and let W be subset of V consisting of all

(x, y, z) ∈ V such that x = 1 + y. Is W a subspace of V ?

Solution.

Clearly, V is a vector space with identity element (0, 0, 0). Since (0, 0, 0) /∈ W ,

it can not be a vector space with respect to the operations in V , and hence not

a subspace of V . �

Exercises.

1. If W1 and W2 are subspaces of a vector space V , then show that their union

is a subspace of V if and only if one of the spaces Wi is contained in the

other.

2. Let V be a vector space. Show that

(a) α0 = 0, for all scalar α.

(b) 0v = 0, for all v in V .

(c) (−1)v = −v, for all v in V .

(d) If α is a non zero scalar and v is a vector such that αv = 0, then v = 0

(e) If u, v are in V , and u+ v = 0, then u = −v

3. Show that a non empty subset W of V is a subspace of V if and only if

for each pair of vectors u, v in W , and each scalar α, the vector αu + v is

again in W .
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4. Let V = {(x, y, z) | x, y, z ∈ R} and let W be the subset of V consisting of

all (x, y, z) ∈ V such that x+ y + z = 0. Show that W is a subspace of V .

5. If W1,W2 are subspaces of a vector space V , then show that their sum,

W = W1 +W2 = {w1 + w2 | w1 ∈ W1, w2 ∈ W2} is a subspace of V.

6. Let S = {p(x) ∈ P5 | p(1) = 0 and p(3) = 0}, where P5 is the space of all

polynomials in the variable x of degree ≤ 5. Show that S is a subspace of

P5.

7. Let S = {p(x) ∈ Pn | p(x) = xp′(x)}, where Pn is the space of all polyno-

mials in the variable x of degree ≤ n and p′(x) is the derivative of p(x). Is

S a subspace of Pn?.

8. Let V be the set of all m×n matrices with real entries . For A = [aij] and

B = [bij] in V , and for a scalar α, define : A + B = [aij + bij] and αA =

[αaij]. Show that, under this rules of addition and scalar multiplication V

is a vector space.

6.2 Linear Dependence and Independence

Definition 6.2.1.

Let V be any vector space. A vector u ∈ V is said to be a linear combi-

nation of the vectors u1, u2, ..., un in V if there exist scalars α1, α2, ..., αn such

that u = α1u1 + α2u2 + ...+ αnun.

For example, consider R3, the space of all 3- tuples of real numbers. Note

that (3, 1, 5) = 3(1, 0, 0) + 1(0, 1, 0) + 5(0, 0, 1). Thus, we can say the vector

(3, 1, 5) in R3 is a linear combination of (1, 0, 0), (0, 1, 0) and (0, 0, 1).
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Remark.

If all scalars α1, α2, ..., αn are zeros, then the linear combination is called

trivial linear combination.

If at least one of α′
is is non zero, then it is called a non-trivial linear

combination.

Definition 6.2.2.

Let V be a vector space , and let S = {u1, u2, ..., un} be a subset of V.

Then S is said to be linearly dependent(in short, LD) if there exist scalars

α1, α2, ..., αn, not all of which are zero, such that α1u1 + α2u2 + ...+ αnun = 0.

If α1 = α2 = ... = αn = 0 is the only solution for the equation α1u1 + α2u2 +

...+αnun = 0, then S = {u1, u2, ..., un} is linearly independent (in short, LI).

Remark.

Any set which contains the zero vector is always linearly dependent (Why?).

Example 32.

Consider the vector space R3. Then the set S = {v1 = (3, 0,−3), v2 =

(−1, 1, 2), v3 = (4, 2,−2), v4 = (2, 1, 1)} ⊂ R3 is linearly dependent, since 2v1 +

2v2 − v3 + 0.v4 = 0. The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) are

linearly independent, since α1e1 + α2e2 + α3e3 = 0 =⇒ α1 = 0, α2 = 0, and

α3 = 0.

Remark.

An infinite subset S of a vector space V is said to be linearly dependent (resp.

independent) if every finite subset of S is linearly dependent (resp. independent).

Let S = {u1, u2, ..., un} be a subset of a vector space V. Now we will show

that the set of all linear combinations of vectors in S is a subspace of V. Let W
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denotes the set of all linear combinations of vectors u1, u2, ..., un. Then W ⊂ V .

Clearly, 0 = 0u1 + 0u2 + ... + 0un ∈ W =⇒ W is nonempty. Let u, v ∈ W .

Then u and v are linear combinations of u1, u2, ..., un. So, we can write u =

α1u1 + α2u2 + ...+ αnun , v = β1u1 + β2u2 + ...+ βnun where αi, βj are scalars.

We have u + v = (α1u1 + α2u2 + ... + αnun) + (β1u1 + β2u2 + ... + βnun) =

(α1 + β1)u1 + (α2 + β2)u2 + ... + (αn + βn)un ∈ W . For any scalar α, αu =

α(α1u1 +α2u2 + ...+αnun) = (αα1)u1 + (αα2)u2 + ...+ (ααn)un ∈ W . Hence by

theorem 6.1.3, W is a subspace of V . This subspace W is called the span of S,

and is denoted by [S].

Theorem 6.2.3.

(a) If a set S = {u1, u2, ..., un} of a vector space V is linearly independent, then

every subset of S is also linearly independent.

(b) If a set S = {u1, u2, ..., un} of a vector space V is linearly dependent, then

every superset of S is also linearly dependent.

Proof.

(a) Let S1 = {u1, u2, ..., uk} ⊂ S, where k ≤ n. Suppose that α1u1 + α2u2 + ...+

αkuk = 0. Then, we have α1u1 + α2u2 + ...+ αkuk + 0uk+1 + ...+ 0un = 0. Since

S is linearly independent, we get α1 = α2 = ... = αk = 0. Thus, S1 is linearly

independent.

(b) Given that S = {u1, u2, ..., un} is linearly dependent. Therefore, there are

scalars α1, α2, ..., αn , not all of which are zero, such that α1u1+α2u2+...+αnun =

0. Now let S1 = {u1, u2, ..., un, un+1, ..., um} be any superset of S. Then we have

α1u1 + α2u2 + ... + αnun + 0un+1 + ... + 0um = 0, with not all α1, α2, ..., αn are

zero, showing that S1 is linearly dependent.
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Theorem 6.2.4.

If S = {u1, u2, ..., uk} is an ordered subset of nonzero elements of a vec-

tor space V , then S is linearly dependent if and only if one of the vectors of

{u1, u2, ..., uk} belongs to the span of the remaining vectors in S.

Proof.

Without loss of generality, assume that uk is a linear combination of

{u1, u2, ..., uk−1}. Then, there exists scalars α1, α2, ..., αk−1 such that uk = α1u1+

α2u2 + ...+ αk−1uk−1. This implies, α1u1 + α2u2 + ...+ αk−1uk−1 − uk = 0. This

shows that S is linearly dependent.

Conversely, assume that S = {u1, u2, ..., uk} is linearly dependent . Then

there are scalars α1, α2, ..., αk , not all of which are zero, such that α1u1 +α2u2 +

...+ αkuk = 0. Let αk 6= 0. Then, αkuk = −α1u1 − α2u2 − ...− αk−1uk−1, which

implies uk = −α1

αk

u1 −
α2

αk

u2 − ...− αk−1

αk

uk−1. Thus, uk is a linear combination

of {u1, u2, ..., uk−1}. Therefore, uk ∈ [u1, u2, ..., uk−1].

Problem 57.

Given that {u, v, w} is linearly independent, check whether {u−v, v−w,w−u}

is linearly independent or not.

Solution.

Let α(u− v) + β(v−w) + γ(w− u) = 0. This implies, (α− γ)u+ (β−α)v+

(γ − β)w = 0. Since, {u, v, w} is linearly independent, we get α − γ = β − α =

γ − β = 0 =⇒ α = β = γ, which may be other than zero. Therefore the set

{u− v, v − w,w − u} is linearly dependent. �
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Exercises.

1. Find the value of m such that (m, 7,−4) is a linear combination of the

vectors (−2, 2, 1) and (2, 1,−2).

2. Determine whether the set S = {1 + x, x + x2, x2 + 1} ⊂ P2, the space of

all polynomials of degree ≤ 2 is linearly dependent or independent.

3. Find three vectors in R3 which are linearly dependent and are such that

any two of them are linearly independent .

4. Show that the vectors v1 = (1, 0,−1), v2 = (1, 2, 1), and v3 = (0, 2, 2) in R3

are linearly dependent.

5. Prove that if two vectors in a vector space V are linearly dependent , one

of them is a scalar multiple of the other.

6. Are the vectors u1 = (1, 1, 2, 4), u2 = (2,−1,−5, 2), u3 = (1,−1,−4, 0) and

u4 = (2, 1, 1, 6) linearly dependent in R4?

7. Let V be a vector space and suppose α, β, γ are linearly independent vectors

in V . Prove that (α+ β), (β + γ), (γ + α) are linearly independent.

6.3 Basis and Dimension

Definition 6.3.1.

Let V be a vector space. A subset B of V is called a basis of V , if (a) B is

linearly independent, and (b) [B] = V.
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Remark.

A vector space V may have different bases, but it can be shown that if one

basis of V has n elements , then any other basis of V also has n elements.

Definition 6.3.2.

Let B be a basis of a vector space V . If the number of vectors in B is n,

then the vector space V is called n-dimensional and we write dim(V ) = n. If

V consists of zero vector alone, then V does not have a basis, and we shall say

that V has dimension 0. A vector space V which has a basis consisting of a finite

number of elements, or the zero vector space, is called finite dimensional.

Other vector spaces are called infinite dimensional.

It can be proved that if V is a vector space, and if {v1, v2, ..., vn} is a basis of

V , then any elements w1, w2, ..., wm, with m > n of V , are linearly dependent.

In particular, if V is n-dimensional, any set of n + 1 vectors in V is linearly

dependent.

Example 33.

Consider the vector space Rn and consider the vectors e1 = (1, 0, ..., 0), ..., en =

(0, 0, ..., 1). Then, e1, ..., en are linearly independent vectors in Rn. For, note

that α1e1 + ...+ αnen = 0 if and only if αi = 0 , for every i = 1, ..., n. Also, any

(x1, x2, ..., xn) ∈ Rn can be written as: (x1, x2, ..., xn) = x1e1 + x2e2 + ...+ xnen.

Thus e1, ..., en are linearly independent vectors in Rn and also [e1, ..., en] = Rn.

Thus, e1, ..., en is a basis for Rn and hence Rn is an n-dimensional vector space.

Definition 6.3.3.

If U,W are subspaces of a vector space V , then the set of all sums, u+ w of

vectors, where u ∈ U and w ∈ W is called the sum of the subspaces U and W
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and is denoted by U +W . Clearly, U +W is a subspace of V which contain each

of the subspaces U and W . Also, it can be proved that [U ∪W ] = U +W .

Now, we state a theorem about the dimension of a sum of two subspaces of

a vector space.

Theorem 6.3.4.

If U and W are subspaces of an N-dimensional vector space V , then

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Proof. Let dim(U) = m, dim(W ) = n, where m,n ≤ N . Since U ∩ W is a

subspace of both U and W , if dim(U ∩W ) = r, then r ≤ both m and n.

Let B = {u1, u2, ..., ur} be a basis for U ∩W .

Extend B to a basis for U , by adjoining (m − r) linearly independent vectors

v1, v2, ..., vm−r to B, so that B1 = {u1, u2, ..., ur, v1, v2, ..., vm−r} is a basis for U .

(See 8th question in the following exercise.)

Similarly, extend B to a basis for V , by adjoining (n − r) linearly independent

vectors w1, w2, ..., wn−r to B, so that B2 = {u1, u2, ..., ur, w1, w2, ..., wn−r} is a

basis for W .

Now, consider U +W = {u+ w | u ∈ U,w ∈ W}.

Clearly, the vectors {u1, u2, ..., ur, v1, v2, ..., vm−r, w1, w2, ..., wn−r} spans the sub-

space U +W .

We claim that

{u1, u2, ..., ur, v1, v2, ..., vm−r, w1, w2, ..., wn−r}

is linearly independent.

Assume that α1u1 + α2u2 + ... + αrur + β1v1 + β2v2 + ... + βm−rvm−r + γ1w1 +

School of Distance Education,University of Calicut



6.3. Basis and Dimension 95

γ2w2 + ...+ γn−rwn−r = 0

=⇒ α1u1 + α2u2 + ...+ αrur + β1v1 + β2v2 + ...+ βm−rvm−r = −γ1w1 − γ2w2 −

...− γn−rwn−r .............. (1)

=⇒ −γ1w1 − γ2w2 − ...− γn−rwn−r ∈ U .

Also, −γ1w1 − γ2w2 − ...− γn−rwn−r ∈ W.

Thus, −γ1w1 − γ2w2 − ...− γn−rwn−r ∈ U ∩W , so that we can write

−γ1w1−γ2w2−...−γn−rwn−r = δ1u1+δ2u2+...+δrur for some scalars δ1, δ2, ..., δr.

Therefore, γ1w1 + γ2w2 + ...+ γn−rwn−r + δ1u1 + δ2u2 + ...+ δrur = 0.

Since, {u1, u2, ..., ur, w1, w2, ..., wn−r} is linearly independent, we see that γi = 0

and δj = 0, ∀i and ∀j.

Therefore, equation (1) becomes, α1u1 + α2u2 + ... + αrur + β1v1 + β2v2 + ... +

βm−rvm−r = 0.

Since, {u1, u2, ..., ur, v1, v2, ..., vm−r} is linearly independent, we get αi = 0 and

βj = 0, ∀i,∀j..

This shows that {u1, u2, ..., ur, v1, v2, ..., vm−r, w1, w2, ..., wn−r} is linearly inde-

pendent and so it is a basis for U +W .

Hence dim(U +W ) = r+ (m− r) + (n− r) = m+ n− r = dim(U) + dim(W )−

dim (U ∩W ).

Definition 6.3.5.

If V is a finite dimensional vector space, an ordered basis for V is a finite

sequence of vectors which is linearly independent and spans V . Suppose V is

n- dimensional vector space and B = {u1, ..., un} is an ordered basis for V ,

then given v ∈ V , there exists a unique scalars (α1, α2, ..., αn) such that v =

α1u1 + α2u2 + ...+ αnun. Then (α1, α2, ..., αn) is called the coordinate vector

of v relative to the ordered basis B.
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Problem 58.

Find the coordinates of (3, 4, 5) ∈ R3 relative to the ordered basis B =

{(1, 0, 1), (1, 1, 0), (0, 1, 1)} of R3.

Solution.

Let (3, 4, 5) = α(1, 0, 1) + β(1, 1, 0) + γ(0, 1, 1). This implies, (3, 4, 5) =

(α + β, β + γ, α + γ). Equating both sides, we get α + β = 3, β + γ = 4, and

α + γ = 5. On solving, we get α = 2, β = 1, and γ = 3. Thus, the coordinates

of the vector (3, 4, 5) with respect to the given basis B is (2, 1, 3). �

Exercises.

1. Show that S = {1, x, x2} is a basis for P2, the space of all polynomials of

degree ≤ 2.

2. Show that S = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} is a basis for R3.

3. Let V be a vector space of dimension n, and let v1, v2, .., vn be linearly

independent elements of V . Then show that v1, v2, ..., vn constitutes a basis

for V .

4. Consider the subspace U = {(x, y, z)|x− y + z = 0} of R3. Find a basis of

U . What is dim U?

5. Let V be an n-dimensional vector space. Then show that

(a) Any subset of V which contains more than n vectors is linearly depen-

dent;

(b) No subset of V which contains less than n vectors can span V .
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6. Let S be a linearly independent subset of a vector space V . Suppose β

is a vector in V which is not in [S]. Then show that the set obtained by

adjoining β to S is linearly independent.

7. If W is a subspace of a finite dimensional vector space V , then show that

every linearly independent subset of W is finite and is a part of a basis for

W .

8. Let V be a vector space of dimension n. Let r be a positive integer with

r < n, and let v1, v2, ..., vr be linearly independent elements of V . Then

show that there exists elements vr+1, vr+2, ..., vn−r such that {v1, v2, ..., vn}

is a basis of V.

9. Find the coordinates of (−1, 2, 3) relative to the ordered basis

B = {(1, 1, 1), (2, 0, 1), (2, 3, 5)} of R3.

10. Find the coordinates of x2 + 2x− 1 relative to the ordered basis

B = {x+ 1, x2 + x− 1, x2 − x+ 1} of P2.
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