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1 September 3, 2015

1.1 Overview

My name is Siu([see-you]), and there are no textbooks for this course. The
website for this course is http://math.harvard.edu/~siu/math55a. There
will be no clear division between abstract algebra and analysis.

These are the things I will tell you during the lectures.

• Motivation, background, and history for the material

• Techniques, methods, ideas, and structures

• “Rigorous” presentation

I will emphasize the last one, but it is useless to only know rigorous things.
There will be weekly problem sets, and we encourage discussions. And of

course, you need to write the solutions down in you own words.
The actual level of difficulty will depend on the feedback I get from your

assignments.

1.2 Things we will cover

We focus on solving equations in a number system. There are two kinds of
equations:

• polynomial equations - This is algebra, and will be the A part

• differential equations - This is real and complex analysis and will be cov-
ered in the B part

We start with Peano’s five axioms, and from this, we can define N, Q, R,
and C. You can choose what number system you would like work in, and this
is why number systems are important. For instance, the fundamental theorem
of algebra holds in C, but does not hold in R or Q.

Historically, the whole algebra came from solving polynomial equations.
There are symmetry involved in solving equations. For instance, if

(x− a1) · · · (x− an) = xn − σ1xn−1 + σ2xn−1 − · · · ,

we get σ1 = a1 + · · ·+ an, σ2 = a1a2 + · · ·+ an−1an. The coefficients have sym-
metry between the ais. So basically solving a polynomial equation is bringing
all-symmetry down to no-symmetry. This is basically what Galois did, but by
going down steps of partial symmetry.

1.3 Peano’s axioms

I want to start from:

http://math.harvard.edu/~siu/math55a
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Russell’s paradox. Consider the set A of all sets which do not belong to them-
selves. Is A ∈ A?

In any way, you get a contradiction. The problem start from the fact that
you should know all sets before defining the set of all set, which is absurd. To
put it another way, it is circular. To overcome it, you may use the theory of
types (which I will not go into explaining). The point is that you need to be
very rigorous when doing axiomatic stuff.

Peano’s five axioms.

1. (Non-emptiness) There exists 1 ∈ N.

2. (Successor map) There exists a map ′ : N → N called the successor map
which sends x 7→ x′.

3. (Special element) x′ 6= 1 for any x ∈ N.

4. (Infectivity of successor map) x′ = y′ implies x = y.

5. (Induction axiom) If a subset A ⊂ N contains 1, and x′ ∈ A for any
x ∈ A, then A = N.

I’ll give two examples of proof using the axioms as a warm-up.

Proposition 1.1. There exist no fixed point for the successor map.

Proof. We make use of the induction axiom. Let

A = {x ∈ N : x 6= x′}.

First, 1 ∈ A since 1 6= x′ for any x ∈ A. Next we need to prove that x ∈ A
implies x′ ∈ A. If x ∈ A, by definition x 6= x′. And this implies x′ 6= x′′ because
of injectivity of the successor map. Lastly, using the induction axiom, we get
A = N.

Proposition 1.2. The image of the successor map is N \ {1}.

Proof. To use the induction axiom, we add 1 to the set we are interested in. Let

A = {1} ∪ {x′ : x ∈ A}.

1 ∈ A is clear. Also, if x ∈ A, then x ∈ N and thus x′ ∈ A.

The amazing thing about Peano’s axioms is that you can get addition from
them. Let us define addition and multiplication.

Because we have two variables, we first fix the first variable.

Definition 1.3 (Addition). Define x+ 1 = x′. Suppose we have defined x+ y.
Then we define x + y′ = (x + y)′. By induction axiom, we have defined x + y
for all x and y.

Theorem 1.4. Addition is associative.
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Proof. Let us prove (x+ y) + z = x+ (y + z). First fix x and y. Let

Ax,y = {z ∈ N : (x+ y) + z = x+ (y + z)}.

First 1 ∈ Ax,y since

(x+ y) + 1 = (x+ y)′ = x+ (y′) = x+ (y + 1).

Also if z ∈ Ax,y, then

(x+ y) + z′ = ((x+ y) + z)′ = (x+ (y + z))′ = x+ (y + z)′ = x+ (y + z′).

Thus z ∈ A implies z′ ∈ A, and it follows that Ax,y = N.

Theorem 1.5. Addition is commutative.

Proof. We want to prove x+ y = y + x. Fix y ∈ N. Let

Ay = {x ∈ A : x+ y = y + x}.

The first thing we need to prove is 1 ∈ Ay, which is 1 + y = y + 1. We use
another induction inside this induction.

Let
B = {y ∈ N : 1 + y = y + 1}.

Obviously 1 ∈ B, and y ∈ B implies

1 + y′ = (1 + y)′ = (y + 1)′ = y + (1 + 1) = (y + 1) + 1 = y′ + 1,

which in turn, implies y′ ∈ B. Thus 1 + y = y + 1 for all y ∈ N.
Now suppose that x ∈ Ay. For x′, we have

y + x′ = (y + x)′ = (x+ y)′ = x+ y′ = x+ (1 + y) = (x+ 1) + y = x′ + y.

Thus Ay = N.

Now let us define multiplication.

Definition 1.6 (Multiplication). Let x ·1 = x and x ·y′ = x ·y+x. This defines
multiplication in general because of the induction axiom.

Theorem 1.7. For any x, y, z ∈ N, we have the following:
(a) x · y = y · x
(b) (x · y) · z = x · (y · z)
(c) x · (y + z) = x · y + x · z

Proof. Homework.
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1.4 Rational numbers

Now we begin to handle division. We construct the set Q+ of all positive frac-
tions (or positive rational numbers). But first we need the concept of equivalence
relations, because we need to say a

b = c
d if ad = bc.

Definition 1.8. Let X be a set. A relation in X is a subset R ⊂ X ×X. We
use the notation a ∼ b to mean (a, b) ∈ R. The relation R (also denoted by ∼)
is an equivalence relation if

(Reflexivity) x ∼ x for all x ∈ X,
(Symmetry) x ∼ y if and only if y ∼ x,

(Transitivity) x ∼ y and y ∼ z imply x ∼ z.
Theorem 1.9 (Decomposition statement). An equivalence relation divides up
X into a disjoint union of subsets.

Proof. For x ∈ X, let Xx = {y ∈ X : y ∼ x}, known as the equivalence class
which contains x. It is clear that

X =
⋃
x∈X

Xx.

We also need to show that what we have is a disjoint union in the following
sense:

Xx ∩Xy 6= ∅ implies Xx = Xy.

Because of symmetry, it is sufficient to show Xx ⊂ Xy. By assumption there
exists an element z ∈ Xx ∩Xy, and we get z ∼ x and z ∼ y. Take any u ∈ Xx.
Because u ∼ x, x ∼ z and z ∼ y, we have u ∼ y. This shows u ∈ Xy.

Now we finally define Q+, the set of positive rational numbers.

Definition 1.10. Introduce ∼ in X = N × N such that (a, b) = (c, d) if and
only if ad = bc. We call the equivalence classes Q+.

You can check that it actually is a equivalence relation.
Next class, we will define R+ by Dedekind cuts. We have to go into the

realm of analysis to define the reals, because we need the mean-value property.
For instance, let me sketch a proof of the fundamental theorem of algebra.

Let

P (z) = zn +

n−1∑
j=0

ajz
j

be a monic polynomial with complex variables and no roots. Let f(z) = 1/P (z).
Then by certain facts in complex analysis,

f(c) =
1

2π

∫ 2π

θ=0

f(c+ reiθ)dθ

and

|f(c)| ≤ 1

2π

∫ 2π

θ=0

|f(c+ reiθ)|dθ.

Sending r →∞, we get a contradiction.
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2 September 8, 2015

The CAs would like to get the solutions for the problem sets typed in LATEX.
Last time we studied the five Peano axiom, and defined N, addition, multi-

plication, and Q+. Now we will introduce R+, and lastly C.

2.1 Non-rigorous proof of the fundamental theorem of al-
gebra

We do we need Dedekind cuts to make sure every polynomial equation is solv-
able? Last class, I said that the crucial thing was the process of averaging.
Let me prove the fundamental theorem of algebra in more detail, but not in a
rigorous way.

Theorem 2.1. For any

P (z) = zn +

n−1∑
j=0

ajz
j

with aj ∈ C and n ≥ 1, there exists a z0 ∈ C such that P (z0) = 0.

Assume P (z) 6= 0 for any z ∈ C. Then f(z) = 1/P (z) is well-defined on
C. Obviously |f(z)| → 0 as |z| → ∞ since n ≥ 1. The limit of the difference
quotient exists for f(z) = 1/P (z) in the setting of complex numbers.

For a real-valued function g(x) of a real variable x ∈ R, the difference quo-
tient (or quotient of difference) is defined as

lim
x→x0

g(x)− g(x0)

x− x0
= g′(x0).

We have not defined what a limit is, but let us just assume that we know this.
In the complex numbers, differentiation is defined similarly. A complex-

valued function f(z) of a complex variable z ∈ C. We say that the complex
derivative exists if

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0).

This looks similar to the differentiablity of real functions, but it is much stronger
in a sense that there are many ways to approach a single point. If z : R→ C is
a curve passing a point z0 at time t0, we have

g(t)− g(t0)

t− t0
=
f(z(t))− f(z(t0))

z(t)− z(t0)
· z(t)− z(t0)

t− t0

where g(t) = f(z(t)). Then we have

g′(t0) = f ′(z0)

(
dz

dt

)
t=t0

.



Math 55a Notes 10

Because f ′(z0) is independent of the curve, we get a degree of freedom.
As we have set f(z) = 1/P (z), we have

f ′(z0) = −
nzn−1

0 +
∑n−1
j=1 ajjz

j−1
0

P (z0)2
.

There exists a derivative of f under the assumption that P has no zeros, al-
though we have not proved it yet.

Now the mean value property states that

f(z0) = average of f(z) at the circle centered at z0 of radius r > 0.

This can be deduced from the chain rule.

Proof of the mean value property. Analytically it can be written down as

f(z0) =
1

2π

∫ 2π

θ=0

f(z0 + reiθ)dθ.

I have not defined eiθ yet, but eiθ = cos θ + i sin θ. We consider the map

r 7→ 1

2π

∫ 2π

θ=0

f(z0 + reiθ)dθ.

If we prove that the derivative is always 0, and that the limit when r → 0+ is
f(z0), we have proven the formula. The latter is immediate since f(z0 +reiθ)→
f(z0) as r → 0+. Note that this is possible because any curve in the complex
plane can can be retracted to a point. So we prove the former. We will apply
the chain rule to two different curve; the line going through the origin, and the
circle.

First, we have

d

dr

∫ 2π

θ=0

f(z0 + reiθ)dθ =

∫ 2π

θ=0

(
∂

∂r
f(z0 + reiθ)

)
dθ.

Looking in the radial direction, we obtain

∂

∂r
f(z0 + reiθ)

∣∣∣
r=r0

= lim
r→r0

f(z0 + reiθ)− f(z0 + r0e
iθ)

r − r0

= lim
r→r0

f(z0 + reiθ)− f(z0 + r0e
iθ)

(z0 + reiθ)− (z0 + r0eiθ)
· (z0 + reiθ)− (z0 + r0e

iθ)

r − r0

= f ′(z0 + r0e
iθ)eiθ,

and thus ∫ 2π

θ=0

(
∂

∂r
f(z0 + reiθ

)
dθ =

∫ 2π

θ=0

eiθf ′(z0 + reiθ)dθ.
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To calculate f ′(z0 + reiθ), we do the same thing over again. Looking at the
circle, we get

∂

∂θ
f(z0 + reiθ)

∣∣∣
θ=θ0

= lim
θ→θ0

f(z0 + reiθ)− f(z0 + reiθ0)

θ − θ0

= lim
θ→θ0

f(z0 + reiθ)− f(z0 + reiθ0)

(z0 + reiθ)− (z0 + reiθ0)
· (z0 + reiθ)− (z0 + reiθ0)

θ − θ0

= f ′(z0 + reiθ0)rieiθ

Therefore∫ 2π

θ=0

eiθf ′(z0 + reiθ)dθ =

∫ 2π

θ=0

1

ri

(
∂

∂θ
f(z0 + reiθ)

)
dθ

=
1

ri
f(z0 + reiθ)

∣∣∣2π
θ=0

= 0.

Proof of the fundamental theorem of algbera. Take any z0 ∈ C. Since

f(z0) =
1

2π

∫ 2π

θ=0

f(z0 + reiθ)dθ

and the f(z0 + reiθ) goes to 0 as r →∞, we get

|f(z0)| ≤ 1

2π

∫ 2π

θ=0

|f(z0 + reiθ)|dθ = 0

which contradicts f(z0) = 1/P (z0) 6= 0.

As you can see, analysis is needed to prove a theorem in algebra.
We needed two things; first is the notion of averaging which is same as

integrals, and the two-dimensional situation which makes it possible to consider
multiple directions.

2.2 Order relations

Back to rigorous presentations. Let us define upper bounds, and the least upper
bound. But first we need to define what x < y or x ≤ y means.

Definition 2.2. Let x, y ∈ N. We say that x > y if and only if there exists a
u ∈ N such that x = y + u. Let x < y if and only if y > x.

Theorem 2.3 (Trichotomy). For any x, y ∈ N, precisely one of the following
three statements holds.

x = y, x > y, x < y

The key point in the proof is that there are no fixed points in the addition
operation. In other words, for any fixed x ∈ N, we have y 6= x+y for any y ∈ N.
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Proof. First, fix x and let

Ax = {y ∈ N : y 6= x+ y}.

1 ∈ Ax since 1 is not a successor. And y 6= x + y impies y′ 6= x + y′ by the
injectivity of the successor function. Thus Ax = N, and addition has no fixed
points.

Now let us go back to the trichotomy. We need to prove two things, namely
exclusivity and inclusivity. Actually exclusivity is immediately verified by the
fact that addition has no fixed proof. For instance, if x > y and y > x, we get
x = y + a and y = x+ b, and thus x = x+ (a+ b).

For inclusivity, we fix x ∈ N and let

Bx = {y ∈ N : either x = y or x > y or x < y}.

One can prove 1 ∈ Bx by dividing into cases x = 1 and x 6= 1. If x = 1, then
1 = 1. If x 6= 1, there exists a u for which x = u′ = 1 + u. Then x > 1.

Assume y ∈ Ax. Now we have three cases. If y = x, then y′ = x + 1 > x.
If y < x, there exists a u for which x = y + u. If u = 1, we have x = y′, and
if u 6= 1, we have x = y + u = y + v′ = y′ + v for some v ∈ N. If y > x, there
exists a u for which y = x+ u, and then y′ = x+ u′. Therefore Bx = N.

As we have introduced ordering in N, we can extend this to Q+.

Definition 2.4. We say
a

b
>
c

d

if and only if ad > bc.

You can check the ordering is well-defined.

2.3 Dedekind cuts

Definition 2.5. An upper bound of a subset A ⊂ Q+ is a number U such
that x ≤ U for any x ∈ A. A least upper bound means an upper bound lub
such that lub ≤ U for any upper bound U .

We want to make every set which has an upper bound admits a least upper
bound. Dedekind used some good logic to make this true.

To define
√

2, you look at the set{
a

b
∈ Q+ :

a2

b2
< 2

}
.

This set doesn’t have a least upper bound, but we want it to exist. So you just
throw the number in. It doesn’t cost money. You just consider any set of the
form {a

b
∈ Q+ :

a

b
< ξ
}

as a real number.
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Definition 2.6. A Dedekind cut is a proper subset ξ of Q+ such that

1. (containing all numbers less than some non-member) For any x ∈ ξ and
y ∈ Q+ \ ξ, we have x < y.

2. (containing no upper bound) There does not exist an x ∈ ξ such that
x ≥ y for all y ∈ ξ.

Definition 2.7. The (positive) real numbers is defined as

R+ = {all Dedekind cuts}.

We can embed Q+ into R+ according to the map

r ∈ Q+ 7→ ξr = {s ∈ Q+ : s < r}.

We can also easily define ordering, addition, and multiplication on the real
numbers.

Definition 2.8. Let ξ and η be two distinct Dedekind cuts. Define ξ > η if
and only if ξ ⊃ η, and ξ < η if and only if ξ ⊂ a. Also, define

ξ + η = {x+ y : x ∈ ξ, y ∈ η}

and
ξ · η = {xy : x ∈ ξ, y ∈ η}.

Now we can define Q as

Q = (−Q+) ∪ {0} ∪Q+

and also
R = (−R+) ∪ {0} ∪ R+.

You can define addition, multiplication, ordering on these sets, but I am not
going to do this, because I do not want to write a whole book.

Definition 2.9. The complex numbers is defined as the product C = R×R.
The operations on the set are given as

(a, b)(c, d) = (ac− bd, ad+ bc),

(a, b) + (c, d) = (a+ c, b+ d).

Letting i = (0, 1), we get the notation we are used to.

In the first class, I said that we will be studying polynomial equations. There
are two kinds of things we want to do.

• Single polynomial of a single variable - This is mainly Galois theory.

• System of line equations in several variables - We will be doing this to do
Stokes’ theorem.

Next time, we will discuss how to solve a polynomial equation with one variable.
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Solving quadratic equations is easy. Given a equation ax2 + bx+ c = 0, we can
solve it by “completing the squares”.

a
(
x+

b

2a

)2

=
b2 − 4ac

4a
,

and now if we take roots, we get the solution.

3.1 Scipione del Ferro’s solution of the cubic equation

A general method of solving the cubic equation was first discovered by del Ferro.
Let F (X) = ax3 + bx2 + cx+ d. Imitating the quadratic case, one can translate
the variable x by letting x = t+ α. For a good α, one can eliminate the second
degree term and obtain

t3 + pt+ q = 0.

But this does not solve the equation.
So we try some other translation. Let t = u+ v. Then

t3 + pt+ q = (u3 + v3) + (u+ v)(3uv + p) + q.

Note that this is a polynomial of degree 3 over u. But we don’t want to just see
this as a polynomial over u, because it destroys the symmetry between u and
v. Instead, we set 3uv + p = 0. Then it is the same as{

u3 + v3 + q = 0

3uv + p = 0

Note that 3uv+p = 0 is the artificial relation, and u3 +v3 +q = 0 is the original
equation. Cubing the second equation, we get u3v3 = −p3/27, and then we get
a quadratic equation

X2 + qX − p3

27

whose zeroes are u3 and v3. Then you get three solutions for each variable,
and plugging each of the solutions, you finally get three solution pairs. This
quadratic polynomial is called the resolvent.

3.2 Lagrange’s idea

Lagrange saw this solution of del Ferro’s and realized that actually what del
Ferro had done was same as this.

Let ε = (−1 +
√

3)i be the cubic root of unity. The main trick is just setting

x1 = u+ v, x2 = εu+ ε2v, x3 = ε2u+ εv.
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Generally this is not possible since there are two variables and three equations,
but because x1 + x2 + x3 = 0, we can do this. If we solve the system of linear
equations, we get {

u = 1
3 (x1 + εx2 + ε2x3)

v = 1
3 (x1 + ε2x2 + εx3)

.

This is called the Lagrange’s resolvent.
Solving an equation is basically given the elementary symmetric polynomials

σ1 = x1 + · · ·+ xn, σ2 =
∑
i<j

xixj , . . . , σn = x1 · · ·xn,

describing each x1, . . . , xn in terms of these polynomials using radicals and ratio-
nals. When x1, . . . , xn are permuted, note that the symmetric polynomials are
not changed. So solving the equation is the same as bring the whole symmetry
to no symmetry in this sense.

Lagrange started to observe what happens to u and v when x1, x2, x3 are per-
muted. Using a “ladder diagram”, you see that all permutations are generated
by (12) and (23). The permutation (12) acts on u and v as

u 7→ 1

3
(x2 + εx1 + ε2x3) =

ε

3
(x1 + ε2x2 + εx3) = εv, v 7→ εu.

Also, (23) acts as
u 7→ v, v 7→ u.

To get rid of the ε, we consider the cube of u and v. Then we see that u3 + v3

and u3v3 are both symmetric functions in terms of x1, x2, x3. Hence we get a
equation with lower degree.

Lagrange applied this idea to quartic equations. Quartic roots of 1 are
1, i,−1,−i. Hence according to what previously did, we need to look at

x1 + x2 + x3 + x4

x1 + ix2 − x3 − ix4

x1 − x2 + x3 − x4

x1 − ix2 − x3 + ix4.

But just considering the third term x1 − x2 + x3 − x4, there are three possible
outcomes when a permutation acts on {x1, x2, x3, x4}. So Lagrange just let

y0 = 1
2 (x1 + x2 + x3 + x4)

y1 = 1
2 (x1 − x2 + x3 − x4)

y2 = 1
2 (x1 + x2 − x3 − x4)

y3 = 1
2 (x1 − x2 − x3 + x4).

Because any permutation acts by changing yi to±yj , the symmetric polynomials
of y2

1 , y
2
2 , y

2
3 are symmetric respect to x1, x2, x3, x4. Then you can calculate

y1, y2, y3 using the cubic formula, and subsequently, x1, x2, x3, x4.
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Actually the quartic formula was first discovered by Ferrari. But this is not
relevant with our topic, so I will go over it quickly. Starting with the equation
x4 + ax3 + bx2 + cx+ d = 0, we change it to

x2(x2 + ax) = −bx2 − cx− d,(
x
(
x+

a

2

))2

=
1

4
a2x2 − bx2 − cx− d,(

x2 +
a

2
x
)2

=
1

4
a2x2 − bx2 − cx− d.

In the cubic formula, we introduced a generic translation t = u+v and imposed
an additional condition. We do this again. Translating (x2 + a

2x), we get(
x2 +

a

2
x+

1

2
y
)2

=
(1

4
a2 − b+ y

)
x2 +

(
− cx+

1

2
ay
)
x+

(
− d+

1

4
y2
)
.

Ferrari wanted to make the right-hand side a square of a polynomial, or in
other words, make its discriminant zero. This condition in terms of y is a cubic
equation. So it is possible to calculate y, and thus x by solving the corresponding
quadratic equation.

3.3 Schematics for solving a polynomial equation

As I have said, solving a polynomial equation is performing on the coefficients
of the polynomial equations (or symmetric functions σ1, . . . , σn) the operations
of the form of rational functions and roots(radicals). Actually the roots is what
destroys the symmetry, because you need to choose what roots you will use. We
can drawing the schematic as:

σ1, σ2, . . . , σn

τ
(1)
1 , τ

(1)
2 , . . . , τ

(1)
n1

...

τ
(l)
1 , τ

(l)
2 , . . . , τ

(l)
nl

x1, . . . , xn

root-taking

Each “layer” actually represents the field of functions which share some specific
symmetry. For instance the first layer is C(σ1, . . . , σn) which is the set of rational
symmetric functions. In each step, we take roots to extend the set of functions.

Let us represent the process of solving a quadratic equation in this way.

C(σ1, σ2)

C(x1, x2) = C(τ
(1)
1 , τ

(1)
2 )

root-taking
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Writing down the symmetry of each layer in terms of groups(you can just think
this as a set of permutations for now), this is

{1} = G1 ⊂ G0 = S2,

where Sn is the set of permutations on {1, 2, . . . , n} and 1 is the identity per-
mutation.

The cubic equation has two steps.

{1} = G2 ⊂ G1 ⊂ G0 = S3

where G1 = {1, (123), (132)} is the alternating group. It can be drawn as

C(σ1, σ2, σ3)

C(τ
(1)
1 , τ

(1)
2 , τ

(1)
3 , τ

(1)
4 )

C(x1, x2, x3, x4)

where
τ

(1)
1 = σ1, τ

(1)
2 = y2y3, τ

(1)
3 = y3

2 , τ
(1)
4 = y3

3 .

The schematic for solving the quartic equation can be drawn as

{1} ⊂ K4 ⊂ A4 ⊂ S4

where A4 is the alternating group and K4 = {1, (12)(34), (13)(24), (14)(23)} is
the Klein four-group. This diagram is not the solution itself; it is more of a
reverse engineering kind of thing that shows us how complete symmetry was
brought down to no symmetry in each of the cases.
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4.1 More on solving polynomial equations

Last class, I have explained the schematics of solving a polynomial. Galois was
interested in the possibility of such a scheme.

σ1, . . . , σn

τ
(1)
1 , . . . , τ

(1)
n1

...

x1, . . . , xn

As I has said, the process of taking rationals is not very important, because it
does not destroy the symmetry. For instance, σ1/σ2 still possess whole sym-
metry. The important thing is roots, because it involves taking the root. In
quadratic equations, the symmetry is destroyed when we consider

√
σ2

1 − 4σ2.
This can be either x1 − x2 or x2 − x1, but because we don’t really know what
is what, we can go down to partial (or no) symmetry.

When we go down a step

C(σ1, . . . , σn) = C(τ
(0)
1 , . . . , τ

(0)
m0 )

C(τ
(1)
1 , . . . , τ

(1)
m1 )

...

C(x1, . . . , xn)

it is not clear what means by taking ‘roots’ of a polynomial. So instead, we

consider it to be (τ
(1)
j )κ1,j ∈ C(σ1, . . . , σn), that is, some power of an element

in the lower step is in the upper step. Galois’ theory states that in each step,

C(τ
(j)
1 , . . . , τ

(j)
nj ) is equal to C(x1, . . . , xn)Gj for some Gj , which is the subset of

C(x1, . . . , xn) consisting of elements which are invariant under the action of Gj .
So, basically, this schematics is equivalent to a ‘tower’ of groups

{1} ⊂ Gl ⊂ · · · ⊂ G0 = Sn.

There is a geometrical interpretation of the solution of quartic equation.
Consider four points P1, P2, P3, P4 on the plane, and Q1 = P1P2 ∩ P3P4, Q2 =
P1P3 ∩ P2P4, Q3 = P1P4 ∩ P2P3.
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P1

P2

P3

P4

Q1

Q3

Q2

Because the set {Q1, Q2, Q3} is only permuted by the permutation of {P1, P2, P3, P4},
we can represent the elementary symmetric polynomials of Q1, Q2, Q3 in terms
of elementary symmetric polynomials of P1, P2, P3, P4. But it is not so simple as
it looks, because the formula for Q1, Q2, Q3 involves complex conjugates. What
you need to do is just write down the formula, and take the part which does not
involve any complex conjugates. Then because permutations does not change
where conjugates are, you get a polynomial with no conjugates, and does not
change after permutation.

4.2 Basic linear algebra

When we talked about groups, they were finite groups which lay in a symmetric
group. In Lagrange’s resolvent, yi’s were represented by linear combinations of
xi’s.

These are the things we are going to do now.

• Solution of a system of linear equations

• Change of variables as a matrix multiplication

• Inverse of a matrix

• Determinant of a matrix

• Cramer’s rule and the adjoint matrix

We are actually doing determinants to do higher dimensional analysis.
When we have a curve, we calculate the length of the curve by projecting it

to an axis, and then adding up the lengths. In other word, it is∫ √
dx2 + dy2 =

∫ √
1 +

(dy
dx

)2

dx.

In calculating higher dimensional objects, such as the area of a surface, we do
the same thing with an higher dimensional analogue of Pythagoras theorem.
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We will do some review. A system of linear equations
y1 = a11x1 + · · ·+ a1nxn

...

ym = am1x1 + · · ·+ amnxn

can be represented by y1

...
ym

 =

a11 · · · a1n

...
. . .

...
am1 · · · amn


x1

...
xn


or

~y =

n∑
j=1

xj ~Aj

where Aj is the jth column of the matrix.
Gauss came up with a procedure to solve the equation. Using the following

elementary row operations, we can make the matrix in to a row echelon form.

• Multiply a row by a nonzero number.

• Switch two rows.

• replace the ith row by adding a constant times the jth row.

Everyone knows this. The important observation is that an elementary row
operation E applied to A to get A′ is the same as applying the operation to Im
to get I ′m and left multiply A to get A′.

Why is this? The jth column of the n×m matrix A isa1j

...
amj

 = a1j ~e1 + · · ·+ amj ~em.

Looking at each vector separately, applying a row operation is actually manip-
ulating the coefficient of the vector expansion correspondingly. Thus it is same
as left-multiplying a matrix.

Now consider the equation
A~x = ~b

where ~b is a column m-vector, and ~x is a column n-vector to solve as the coef-
ficients of the n column m-vectors A. We look at the augmented matrix

(A|~b)

and apply k elementary row operations. Let those elementary row operations
operated on the identity matrix be E1, E2, . . . , Ek. Then after the operations,
we will get

(Ek · · ·E1A|Ek . . . E1
~b).
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Using the Gauss elimination, there exists a wise choice of operations which
makes Ek · · ·E1A = A′ a row echelon matrix. The system is solvable if and only
if when the last t rows of A′ are identically zero the last t entries of E1 · · ·E1

~b
are zero.

Applying this theory to square matrices, we get the following theorem.

Theorem 4.1. Let A be a square matrix. Then the followings are equivalent.
(a) Elementary row operation recedes A to I.
(b) A is a product of elementary row operations.
(c) The inverse A−1 exists.
(d) A~x = 0 implies ~x = 0.

4.3 Determinant of a matrix

Definition 4.2. We define the determinant of a matrix inductively as the
following. For a 1× 1 matrix, the determinant is same as the only entry. For a
n × n matrix, denote Aij by the matrix obtained by throwing the ith row and
the jth column of A away. Then define

detA =

n∑
j=1

(−1)j−1aj1 detAj1.

This is characterized by the following properties.

• The function det is a polynomial of the entries.

• Multiplying on row by a leaves the determinant multiplied by a.

• Switching two row changes the sign of the determinant.

• Adding a scalar multiple of a row to another row leaves the determinant
unchanged.

You can check each of these by induction. In fact, these properties characterizes
the determinant, because you can use the elementary operations to reduce any
matrix to either a I or a matrix with a zero row. We can also prove det(AB) =
detAdetB from this argument.
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The next topic we want to discuss is a preparation for analysis. Stokes’ theorem
is the higher dimensional version of the fundamental theorem of calculus. We
need the notion of exterior algebra to do this. For two vectors ~u,~v ∈ R3,
there is the inner product(=dot product) ~u · ~v. And there is also the vector
product(=cross product) ~u × ~v. Exterior algebra is the higher dimensional
version of the cross product. This will be used to calculate the surface, volume,
etc, of an object.

5.1 Review of basic matrix theory

The main ingredient of this theory is the elementary row operations, which is
motivated by the Gauss elimination.

There were three kinds of elementary row operations. The first one is
E(i)↔(j) which is exchanging the ith row and the jth row. (These are not
standard notations.) The second one is E(i)→c(i) which is multiplying the ith
row by a nonzero number c. The third one is E(i)→(i)+c(j) which is adding c
times the jth row to the ith row. Here, the entries of the matrix can be either
Q,R,C, or other fields.

We can reduce a m× n matrix A to a row echelon form A′.

Definition 5.1. A row with a pivot means a row, not identically zero, where
the first (from the left) entry is 1, called the pivot.

Definition 5.2. A m × n matrix A is in row echelon form if for some 0 ≤
r ≤ m

• the first r rows are rows with a pivot,

• the last m− r rows are identically zero,

• the position of the pivot is strictly to the right of a pivot on the preceding
row,

• and all entries above a pivot are zero.

We can make a matrix into a row echelon form using the following procedure.

1. Locate the first not identically zero column.

2. E(i)↔(j) (if needed) to make the number at the first row.

3. E(i)→c(i) (if needed) to make the number 1.

4. E(j)→(i)+c(j) to make all entries under the 1 zero.

This originally was developed to solve equations and determine the solvable
ones, of form

A~x = ~b

where A is a m×n matrix, ~x is a column n-vector, and ~b is a column m-vector.
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Elementary row operations is equivalent to left multiplication by the result
of applying the operation to the identity matrix Im of order m.

Apply elementary row operation matrices E1, E2, . . . , Ek on A to make A a
row echelon form. Then

EkEk−1 · · ·E2E1A~x = Ek · · ·E1
~b.

Letting Ek · · ·E1A = A′ and Ek . . . E1
~b = ~b′, we have

A′~x = ~b′.

We can now determine solvability. Obviously, the last m− r components (from

the top) of ~b′ should vanish for a solution to exist. And actually this condition
is sufficient, because you can arbitrarily prescribe values for xj for the values
where there is no pivot in the jth column.

We can translate this into matrix algebra. If we let

S = (0|Im−r)EkEk−1 · · ·E2E1

then the equation A~x = ~b is solvable if and only if S~b = 0. This matrix is called
the compatibility matrix.

The name if this matrix actually come from partial differential equations. A
system of equations {

∂u
∂x = P (x, y)
∂v
∂x = Q(x, y)

is solvable only if
∂P

∂y
− ∂Q

∂x
= 0.

This kind of thing is called the compatibility.
Our second goal is determining when the compatibility is not necessary; i.e.,

when the equation is solvable (and also unique) for all ~b. Let A be a m × n
matrix, where m is the number of equations, and n is the number of variables.

If m < n, the solution is never unique. There are not enough pivots, and
there is always a column free with pivots. Because we can set the variable to
any number, there are at least two solutions to A~x = ~0. If m > n, compatibility
comes in.

Therefore, m = n should be true. Then the row echelon form of A should
be the identity matrix In. This means that Ek · · ·E1A = In, and then we have
A−1 = E−1

1 · · ·E
−1
k . Thus A is invertible. If A is invertible, the solution for

A~x = ~b can be easily described as ~x = A−1~b.
This also gives an algorithm for inverting a matrix. If we make the matrix

(A|I) into a row echelon form, then the result will be (I|A−1).
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5.2 Determinants again

Last time, we defined

detA =

n∑
j=1

(−1)j−1aj1 detAj1.

Consider the effect on the determinant by the elementary row operations. We
get

det(E(i)↔(j)A) = − detA

det(E(i)→c(i)A) = cdetA

det(E(i)→(i)+c(j)A) = detA

In the first operation, the sign always changes, because two switch the ith row
and the jth row, you need to move the ith row down j− i steps, and then move
the jth row up j − i− 1 steps. The sum is always odd. Note that

detE(i)↔(j) = −1, detE(i)→c(i) = c, detE(i)→(i)+c(j) = 1.

If naturally follows that det(EA) = detE detA. Then we get the following.

Theorem 5.3.
det(AB) = detA · detB.

Proof. First suppose that A is invertible. Then there exist elementary matrices
E1, . . . , Ek such that Ek · · ·E1A = I. Then A = E−1

1 · · ·E
−1
k and

detA = detE−1
1 · · · detE−1

k .

Then
det(AB) = det(E−1

1 · · ·E
−1
k B) = detAdetB.

If Ais not invertible, then the row reduced echelon form has a zero row. Then
detA = 0, and because AB is also not invertible, detAB = 0 = detA detB.

Note that we have also proved in this proof that a matrix A is invertible if
and only if detA 6= 0.

Inductively we can obtain the formula to compute the determinant from
elementary row operation matrix.

detA =
∑
ρ∈Sn

sgn(ρ)aρ(1)1aρ(2)2 · · · aρ(n)n,

where sgn is the signature, the number of exchanges to make ρ.
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5.3 Cramer’s rule

Definition 5.4. The adjugate matrix adjA is defined as

(adjA)ij = (−1)i+j detAji,

where Aji is minor matrix.

Actually the ajugate was originally called the adjoint matrix, but the adjoint
matrix is used to call the transpose. So we use the non-word ‘adjugate’.

Theorem 5.5 (Cramer’s rule).

A−1 =
1

detA
(adjA).

Proof. Let us look at the (i, k)th entry of (adjA)A. It is

n∑
j=1

(adjA)ijajk =

n∑
j=1

(−1)i+j detAji · ajk.

If i = k, the result is detA, by definition. If i 6= k, the the result is the
determinant of the matrix obtained by replacing the ith column with the kth
column. After one elementary column operation, we can make the ith column
all zero. Then the value is zero. Thus we get the desired formula.

Note that if A~x = ~b, then

~x =
1

detA
(adjA)~b

and each entry of (adjA)~b is a determinant of a matrix with some column of A

replaced by ~b.
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Today, we are going to do matrix theory in a coordinate-free manner. It is
necessary to go to exterior algebra, which is motivated by Stokes’ theorem,
which is a generalization of the fundamental theorem of calculus.

6.1 Groups, rings, and fields

Definition 6.1. A group is a set G along with the map G × G → G which
satisfies the following.

(i) Associativity: (xy)z = x(yz).

(ii) Identity: There exists 1 ∈ G such that 1 · x = x · 1 = x.

(iii) Inverse: There is a x−1 ∈ G such that x−1 · x = x · x−1 = 1.

Example 6.2. G = {invertible matrices} and G = Sn = {permutations of {1, . . . , n}}
are groups.

Definition 6.3. A ring is a set R with two maps + : R × R → R and · :
R×R→ R, where R with addition is a commutative group with identity 0, and
the associativity of multiplication and both right and left distributivity holds.

Definition 6.4. A ring D with 1 is called a division ring if for any x 6= 0, the
multiplicative inverse x−1 exists.

Definition 6.5. A field is a commutative division ring.

Example 6.6. F = Q,R,C are all fields.

Definition 6.7. A module over a ring R is a set M with addition M×M →M
with scalar multiplication R ×M → M where M with addition is an abelian
group and the (mixed) associative law a(bx) = (ab)x and the distributive laws
a(x+ y) = ax+ ay and (a+ b)x = ax+ bx holds.

Definition 6.8. A vector space over a field F is a F -module V such that
1 · x = x.

We are only interested in vector spaces. A vector space has scalar multipli-
cation and addition.

6.2 Vector spaces

Definition 6.9. A set {x1, . . . , xm, . . . } in a vector space V is called spanning
if every v ∈ V is an F -linear combination of a finite number of elements form
the set.

v =
∑
j∈J

ajxj
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Definition 6.10. A vectors space V is finite dimensional if there exists a
finite spanning subset.

For now, we will only consider finite dimensional matrices.

Definition 6.11. For v1, . . . , vm ∈ V , they are called linearly independent
if
∑m
j=1 ajvj = 0 for some aj ∈ F implies aj = 0 for all j.

Definition 6.12. A spanning linearly independent set is called a basis of V .

Note that {e1, . . . , em} is a basis if and only if every v ∈ V can be uniquely
expressed as

v =

m∑
j=1

ajej .

Proposition 6.13. Every spanning set contains a subset which is a basis.

Proof. Take away dependent elements. If {v1, . . . , vm} is the spanning set, and
it is linearly dependent, then there is aj ∈ J such that

∑m
j=1 ajvj = 0 where aj

are not all 0. If am 6= 0, then vm = − 1
am

∑m−1
j=1 ajvj can be spanned by other

elements. Thus it may be taken away with conserving the spanning property.

Using this technique of removing linearly dependent elements according to
some prescribed preference order, we can also prove the following.

Proposition 6.14. The cardinality of any linearly independent set is less than
the cardinality of any spanning set. Also, any linearly independent set can be
expanded to a basis.

Proof. If v1, . . . , vm are linearly dependent, you remove vj wit the largest j
according to the earlier argument.

(a) Let {v1, . . . , vm} be a spanning set, and let {u1, . . . , un} be a linearly
independent set. We will substitute v1, . . . , vm by u1, . . . , un one at a time.

Add un to vks to make un, v1, . . . , vm, and because v1, . . . , vm span un, we
can remove one element of vk. Without loss of generality, let it be vm. Then
we get a new spanning set {un, v1, . . . , vm−1}. Then you add un−1, and pull
another element out. If n > m, then you would need to remove uk at some
time. This means that some uis are linearly dependent. Therefore, we arrive at
a contradiction and n ≤ m.

(b) Start from any linearly independent set u1, . . . , un. And let v1, . . . , vm be
a spanning set. (This is possible since it is a finite vector space.) We do the same
thing on {u1, . . . , un, v1, . . . , vm} and remove the elements. Since we cannot
remove uis, the resulting set would be a basis which contains u1, . . . , un.

Corollary 6.15. The cardinality of any two bases are the same.

Definition 6.16. The dimension of a vector space V is defined as the cardi-
nality of any basis.
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6.3 Linear maps and the dual space

Definition 6.17. A F -linear map from a vector space V over F to another
vector space W over F is a map T : V →W such that

T (au+ bv) = aT (u) + bT (v)

for any a, b ∈ F and u, v ∈ V .

Given a basis e1, . . . , en of V and f1, . . . , fm ofW , a F -linear map T : V →W
such that

T (ej) =

m∑
k=1

akjfk,

it can be expressed as a matrix (akj) with columns

(T (e1), . . . , T (en)).

Definition 6.18. The dual V ∗ of a vector space V is defined as

V ∗ = {F -linear maps from V to W}

when F is regarded as a 1-dimensional vector space over F . (Any nonzero
element of F is a basis.) The addition is defined for any φ, ψ ∈ V ∗ as

(φ+ ψ)(v) = φ(v) + ψ(v),

and the scalar multiplication is defined as

(aφ)(v) = a(φ(v)).

The dimension dimV ∗ = dimV , because if e1, . . . , en is a basis for V over
F , then e∗j : V → F such that e∗j (ek) = δjk form a basis of V ∗.

The trivial conclusion is that V is the double dual of itself. That is, V ∗∗ = V .
We can define the Φ : V → (V ∗)∗ as

Φ(v)(f) = f(v).

This is injective, and because the dimension are the same, this is a isomorphism.
In the homework, there was a problem about the Pythagorean theorem for

parallelepiped. We can do this coordinate-free. But let us first introduce the
length abstractly via inner product. We confine F to either R or C.

Definition 6.19. Let V be a vector space over C. An inner product (−,−)V
means a V × V → C such that:

(i) u 7→ (u, v) is C-linear for fixed v ∈ V .

(ii) (u, v) = (v, u). (conjugate symmetric, or Hermitian symmetric)

(iii) (u, u) ≥ 0 for all u, and equality hold if and only if u = 0.
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Proposition 6.20. A vector space over C with an inner product (−,−)V is
conjugate self-dual.

Proof. This is because for a fixed u ∈ V , we can define a C-linear map from V
into C (or a functional on V ) by

v 7→ (v, u)V .

But (v, u) is conjugate C-linear in u.

This is important, especially in partial differential equations, and is know as
the Riesz representation theorem.

Definition 6.21. Given a vector space V over C, the complex conjugate V̄ is
a vector space defined as follows.

1. (V̄ ,+) is same as (V,+).

2. For a ∈ C, v ∈ V̄ , define the scalar product of a and v as āv.

Then the map Φ : V → V̄ such that v → v is not linear, but complex
conjugate C-linear.

Definition 6.22. Suppose we have finite dimensional C-vector spaces V and W
with inner products (−,−)V and (−,−)W . Given a C-linear map T : V → W ,
the adjoint T ∗ of T is a C-linear map W ∗ → V ∗ such that

(Tv,w)W = (v, T ∗w)V .

There is a conjugate C-linear map ΨV : V → V ∗ defined via the inner
product as

(ΨV v)(u) = (u, v)V .

That is, ΨV (av) = āΨV (v). There is the same for W , ΨW . Then we get a
commutative diagram

V W

V ∗ W ∗

T

ΨV ΨW

T∗

6.4 Tensor products

Let us define tensor products of V ∗ and W ∗. The reason we use the dual is
because of the the historical context.

Definition 6.23. Let V,W be a vector spaces over F . For an element f of V ∗

and g of W ∗, define f ⊗ g as an F -linear map from V ×W → F as

(f ⊗ g)(v, w) = f(v)g(w).
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Here, F -linear means that the function is linear respect to each variable v
and w.

Definition 6.24. The tensor product V ∗ ⊗W ∗ of V ∗ and W ∗ is defined as
the set of all F -linear maps from V ×W → F .

So, for two f ∈ V ∗ and g ∈W ∗, the tensor product f ⊗ g ∈ V ∗ ⊗W .
The dimension of the tensor product is

dimF (V ∗ ⊗W ∗) = (dimF V
∗)(dimF W

∗).

This is because if we take a basis {f1, . . . , fm} and {g1, . . . , gn}, then the set
{fj ⊗ gk}1≤j≤m,1≤k≤n is a basis of V ∗ ⊗W ∗.

This was all motivated to calculate the area of a parallelepiped. It started
from analysis, but afterwards people wanted to get rid of analysis, and think
differential forms as linear functionals.

We can also define the tensor product of many vector spaces

V ∗1 ⊗ V ∗2 ⊗ · · · ⊗ V ∗k = ⊗kV

This is the set of multilinear functionals f : V × · · · × V → F .
The exterior algebra

∧
kV is the set of all alternating multilinear maps f

from V × · · · × V → F such that

f(v1, . . . , vk) = (sgnσ)f(vσ(1), . . . , vσ(k)).
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We will talk in more detail about tensor products and exterior products. We
defined it for dual spaces, and it is because this is the historic order. I will do
exterior differential forms and Riemannian metric tensors for examples. Tensor
products will be used in handling polynomials of higher degree in many variables.

7.1 More explanation on tensor products

We started with two dual vectors spaces V ∗ and W ∗. The tensor product
V ∗ ⊗W ∗ is the set of functions

f : V ∗ ×W ∗ → F

which is linear in each variable. That is,

f(a1v1 + a2v2, w) = a1f(v1, w) + a2f(v2, w)

f(v, b1w1 + b2w2) = b1f(v, w1) + b2f(v, w2)

for each variable. If dimF V = n with basis e1, . . . , en and dimF W = m with
basis ê1, . . . , êm, then f ∈ V ∗ ⊗W ∗ is determined by f(ej , êk) for 1 ≤ j ≤ n
and 1 ≤ k ≤ m. So dimF V

∗ ⊗W ∗ = nm.
For an element α ∈ V ∗ and β ∈W ∗, we can define

(α⊗ β)(v, w) = α(v)β(w).

Such α ⊗ β is called decomposable. Not all elements are decomposable; some
sum

N∑
l=1

αl ⊗ βl ∈ V ∗ ⊗W ∗

may be not decomposable.

7.2 Wedge products and some differential geometry

Let me explain how people arrived at this, in an analytic perspective. Ricci first
introduced this thing. Let’s look at Rn, and a function F on a neighborhood of
0 in R. People know how do differentiate; partial differentiation in one direction.
Let ~v ∈ V = {vector of Rn at 0}. The we can differentiate in the direction of ~v;

∇~vF =

n∑
j=1

(
∂F

∂xj

)
vj

where ~v = (v1, . . . , vn). This is actually the dF ∈ V ∗, because given a vector
in v, we have a number ∇~vF . If F is the coordinate function F = xj , then
dxj ∈ V ∗. Then dxj ⊗ dxk ∈ V ∗ ⊗ V ∗ makes sense, where

dxj ⊗ dxk : V × V → R.
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This is known as the tensor.
There is also the Riemannian metric tensor. Suppose that you have a way

of measuring a vector. It may not be the Euclidean length, because it is not
interesting. This is the Riemannian metric tensor, and is written as

n∑
i,j=1

gij(P )(dxi ⊗ dxj) ∈ V ∗ ⊗ V ∗

where gij(P ) ∈ R and gij(P ) = gji(P ). In the standard Euclidean metric,
gij(P ) = δij . In this case, the length of the vector will be

‖~v‖ =

√√√√( n∑
i,j=1

gij(P )(dxj ⊗ dxk)
)

(~v,~v).

The exterior product is only defined only for V = W . We write V ∗
∧
V ∗ =∧

2V ∗.

Definition 7.1. The wedge product V ∗ ∧ V ∗ is a subset of V ∗⊗ V ∗. A map
f is in V ∗⊗V ∗ if and only if it is skew-symmetric (also called alternating), i.e.,
f(v1, v2) = −f(v2, v1).

Definition 7.2. The wedge product∧kV ∗ = V ∗
∧
V ∗
∧
. . .
∧
V ∗ ⊂ V ∗ ⊗ · · · ⊗ V ∗ = ⊗kV ∗

is the set of functions which is F -linear in each variable and alternating, i.e.,

f(vσ(1), vσ(2), . . . , vσ(k)) = sgn(σ) · f(v1, . . . , vk)

for any permutation σ.

The function f ∧ g is the is the skew-symmetrization of f ⊗ g. That is,

(f ∧ g)(v1, v2) = (f ⊗ g)(v1, v2)− (g ⊗ f)(v1, v2).

In the case when V is the tangent space, then

(dx1 ∧ dx2)(v1, v2) = (dx1 ⊗ dx2)(v1, v2)− (dx2 ⊗ dx1)(v1, v2)

= (dx1)(v1)(dx2)(v2)− (dx2)(v1)(dx1)(v2)

=

∣∣∣∣∇v1x1 ∇v2x1

∇v1x2 ∇v2x2

∣∣∣∣ .
Suppose that we have a 2-dimensional surface M in Rn which is parametrized
by s and t, and a point P on M . Let

V = TM,P = plane of all tangent vectors to M at P.



Math 55a Notes 33

Then we can restrict the form dxj as dxj
∣∣
TM,P

∈ (TM,P )∗. Then

dxj ∧ dxk ∈ (TM,P )∗
∧

(TM,P )∗

and we can calculate the volume as∫
M

√ ∑
1≤j<k≤n

|(dxj ∧ dxk)(~vs, ~vt)|2ds dt.

As we have done in the problem sets, this is something like the higher dimen-
sional Pythagorean theorem.

7.3 Polarization of a polynomial

Consider a polynomial in many variables of general degree. It will look like

F (x1, . . . , xn) = γ0 +

n∑
j=1

γjxj +

n∑
j,k=1

γjkxjxk + · · · .

We divide the variables to two parts x1, . . . , xn, y1, . . . , ym, and write it as

G(x1, . . . , xn,y1, . . . , ym) = a0 +

( n∑
j=1

ajxj +

n∑
k=1

bkyk

)

+

( n∑
j,k=1

ajkxjxk +

n∑
j=1

m∑
k=1

bjkxjxk +

m∑
j,k=1

cjkyjyk

)
+ · · · .

If the two ajks and cjks are zero, then the polynomial is bilinear in each parts.
Then the second degree middle term can be thought as a function in

(Cn)∗ ⊗ (Cm)∗.

The thing we did by assuming things zero is not actually a special thing, because
even in

F (x1, . . . , xn) = γ0 + T1 + T2 + · · · ,

we can view T2 as a element T̃2 = (Cn)∗ ⊗ (Cn)∗ where

T2(x1, . . . , xn) = T̃2(x1, . . . , xn;x1, . . . , xn).

This technique is called polarization. It is useful, because it is looking a function
of many variables regard the variables as coordinates in a vector space.

7.4 Binet-Cauchy formula from wedge products

I deliberately assigned the Binet-Cauchy formula as a homework. It is a formula
for the determinant of a product of non-square matrices. This follows very
naturally from wedge products.
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Let T : V →W be a map, and consider the map

T (k) : V × · · · × V →W × · · · ×W

which takes each element to its map. Now I can to do the alternation of this
and make the map ∧kT :

∧kT → ∧kW.
Note that I am skipping V ∗∗ = V .

Now let

V W UT S

where dimV = dimU = k and dimW = n and n > k. We can extend this to∧
kV

∧
kW

∧
kU∧kT ∧kS

Note that the dimension of
∧
kT and

∧
kU is 1 while the dimension of

∧
kW is(

n
k

)
. If we let e1, . . . , ek be the basis of V and ê1, . . . , êk be the basis of W , then

one can check ∧k(S · T )(e1 ∧ · · · ∧ ek) = det(ST )(ê1 ∧ · · · ∧ êk).

This is because each space is a spaces of dimension 1. Also, in each space,
∧
kT

and
∧
kU are represented by

(
n
k

)
vectors. Each of them exactly corresponds to

the choice of k rows or columns.
Also the Pythagorean theorem for the volume of a parallelepiped is the rela-

tion between inner products of V and inner products of
∧
kV . Let dimR V = n.

Note that the inner product (·, ·)V on V is the same as specifying an orthonor-
mal basis e1, . . . , en. Then ei · ej = (ei, ej)V = δij . The question is “Is there
a naturally induced inner product on

∧
kV ?” There is, because we can just

naturally say that ej1 , . . . , ejk where 1 ≤ j1 < · · · < jk ≤ n. But then does it
depend on the choice of another orthonormal basis?

Let u1, . . . , un be another choice of the orthonormal basis of V . Presumably,
the uj1 ∧ · · · ∧ujk for 1 ≤ j1 < · · · < jk ≤ n should be orthonormal with respect
to the inner product defined by e1, . . . , en. We need to check that

(ui1 ∧ · · · ∧ uik , uj1 ∧ · · · ∧ ujk) = δi1j1 · · · δikjk .

The left hand side is precisely the determinant

det

ui1 · uj1 · · · ui1 · ujk
...

. . .
...

uik · uj1 · · · uik · ujk

 =

ui1...
uik

(vj1 · · · vjk
)
.

Then we use can use the Binet-Cauchy formula and get a sum of some products
of the determinant l1, . . . , lkth column matrix and the l1, . . . , lkth row matrix.
This is the wedge product

(uj1 ∧ · · · ∧ ujk , el1 ∧ · · · ∧ elk).
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Then we have

(ui1 ∧ · · · ∧ uik ,uj1 ∧ · · · ∧ ujk)∧kV =∑
1≤l1<···<lk≤n

(ui1 ∧ · · · ∧ uik , el1 ∧ · · · ∧ elk)∧kV

· (el1 ∧ · · · ∧ elk , uj1 ∧ · · · ∧ ujk)∧kV

What we get after all this is the Lefschetz decomposition theorem.
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There will be a in-class midterm exam on November 3, Tuesday. It will mostly
cover solving equations; polynomial equations in one variable, and many linear
equations in many variables.

8.1 Historical background

Let me explain the historical starting point of tensors as higher dimensional
arrays. There is the vector ~v = (v1, . . . , vn) which is an 1-dimensional array,
and is used in physics as force, acceleration, etc. Then there is the matrix,
which is a 2-dimensional array A = (aij). In physics, this is used in describing
forces exerted on many particles, such as stress tensors or strain tensors. Then
there is the k-dimensional array. After a while, people realized that it can be
defined abstractly, and without choosing a basis.

Let V1, . . . , Vp be finite dimensional vector spaces over a field F . We defined
the V ∗1 ⊗ · · · ⊗ V ∗p as the set of linear functionals

{f | f : V1 × · · · × Vp → F}.

If dimF Vi = ni and the basis for Vi is e
(i)
1 , . . . , e

(i)
ni , there is the dual basis

(e
(i)
∗ )1, . . . , (e

(i)
∗ )ni . Then every function f can be written as

f =
∑

1≤it≤nt

fi1···ip(e
(1)
∗ )i1 ⊗ (e

(2)
∗ )i2 ⊗ · · · ⊗ (e

(p)
∗ )ip

where fi1···in is some element of F . Then f can be viewed as the p-dimensional
array (fi1...ip)1≤it≤nt

.
Moreover, if T ∈ V ∗1 ⊗ · · · ⊗V ∗p ⊗W1⊗ · · · ⊗Wq then it is a multilinear map

V1× · · · ×Vp×W ∗1 × . . .W ∗q → F . Then T can be represented as T = (T
j1···jq
i1···iq ).

Then p is called the the covariant rank, and q is called the contravariant rank.
The reason we write some indices on the top, and some on the bottom is because
we want to distinguish between the dual and the not dual.

8.2 Evaluation tensor and the contraction map

Let V be a vector space over F . An element f ∈ V ⊗ V ∗ is a linear functional
f : V ∗ × V → F . Consider the evaluation tensor, which is

f(v∗, u) = v∗(u)

for v∗ ∈ V ∗ and u ∈ V . This has covariant rank 1 and contravariant rank 1.
Let us give this a name EvalV , and represent it in terms of basis.

Let e1, . . . , en be a basis of V , and e1
∗, . . . , e

n
∗ be the dual basis. Then

EvalV (ej∗, ek) = ej∗(ek) = δjk.
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Then the array is (δjk). Note that we wrote j on top and k on the bottom. If
we write it as δjk, it is not a tensor.

Before introducing the contraction operator, let us consider the dual of tensor
product. The product V ∗1 ⊗ · · · ⊗ V ∗p is the set of multilinear functionals V1 ×
· · · × Vp → F . What is the dual of this vector space? We can show that it
is V1 ⊗ · · · ⊗ Vp. Let f ∈ V ∗1 ⊗ · · · ⊗ V ∗p . Then for a decomposable element
v1 ⊗ · · · ⊗ vp ∈ V1 × · · · × Vp, we can define

(v1 ⊗ vp)(f) = f(v1, . . . , vp).

Then we have shown that V1×. . . Vp ⊂ (V ∗1 ⊗· · ·⊗V ∗p )∗, and because V1×· · ·×Vp
generates V1 ⊗ · · · ⊗ Vp. After calculating the dimension, you can show that

(V ∗1 ⊗ · · · ⊗ V ∗p )∗ = V1 ⊗ · · · ⊗ Vp.

Rephrasing it, we can write this as

V ∗1 ⊗ · · · ⊗ V ∗p = HomF (V1 ⊗ · · · ⊗ Vp, F ).

In a general setting, you can replace F by a tensor product. Then

V ∗1 ⊗ · · · ⊗ V ∗p ⊗W1 ⊗ · · · ⊗Wq = HomF (V1 ⊗ · · · ⊗ Vp,W1 ⊗ · · · ⊗Wq).

Specifically,

V ∗1 ⊗ · · · ⊗ V ∗p ⊗W ∗ ⊗W = HomF (V1 ⊗ · · · ⊗ Vp,W ∗ ⊗W ).

But we have the evaluation map EvalW : W ∗⊗W → F , and composing it with
the HomF (V1 ⊗ · · · ⊗ Vp,W ∗ ⊗W ), we get a map

V ∗1 ⊗ · · · ⊗ V ∗p ⊗W ∗ ⊗W → HomF (V1 ⊗ · · · ⊗ Vp, F ) = V ∗1 ⊗ · · · ⊗ V ∗p .

This looks complicated, but it is more simpler in terms of bases. In terms of
bases, this map is actually (T

i1...ipj
k ) 7→ (T i1...ipδjk). This is called the contrac-

tion map.
If there is a inner product, we don’t need the dual space. If V is a vector

space over R, then the inner product gives an isomorphism V ∼= V ∗ by u 7→
(v 7→ (v, u)V ). It is more complicated if V is a vector space over C. The same
map gives us an isomorphism V ∗ ∼= V̄ , where V̄ is the complex conjugate vector
space.

Now back to contraction maps. If W is a vector space over R, then we can
define the contraction map

V1 ⊗ · · · ⊗ Vp ⊗W ⊗W → V1 ⊗ · · · ⊗ Vp,

because we have W ∼= W ∗. In terms of basis, if u1, . . . , um is a basis for W and
(uj , uk)W = gjk ∈ R, then

(T i1···ipjk) 7→ (T i1···ip)
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where
T i1···ip =

∑
j,k

T i1···ipjkgjk.

In the complex cases, we can similarly define

V1 ⊗ · · · ⊗ Vp ⊗ W̄ ⊗W → V1 ⊗ · · · ⊗ Vp.

8.3 Exterior product of two different vector spaces

Recall that if V is a vector space over F , the exterior product V ∗
∧
V ∗ is defined

as the set of elements of V ∗ ⊗ V ∗ which is skew symmetric. It doesn’t make
sense if the two vector spaces are different.

But there is a need for this. In complex analysis, we have dz1, . . . , dzn,
and sometimes we have dz̄1, . . . dz̄n. But because z1 6= z̄1, sometimes exterior
product of different vector spaces are needed.

It can be done by embedding V and W into V ⊕ W . This is generally
impossible, but in this case, we can specify an element, namely 0. When there
is a linear map V ⊗W → F , we can extend it to a multilinear map (V ⊕W )⊗
(V ⊕W )→ F , and then this is an element of (V ⊕W )∗ ⊗ (V ⊕W )∗. Then

V ∗ ⊗W ∗ ⊂ (V ⊕W )∗ ⊗ (V ⊕W )∗,

and inside this, we can define V ∗
∧
W ∗.

There was a homework problem about this. If V is a vector space over C,
we consider as a vector space over R. Then

V ⊗R C = V ⊗ V̄ .

Then we have

V
∧
V̄ ⊂ (V ⊕ V̄ )

∧
(V ⊗ V̄ ) = (V ⊗R C)

∧
(V ⊗R C).

Generally, ∧k(V ⊗R C) =
∧k(V ⊕ V̄ ) ∼=

⊕
p+q=k

(
∧pV )⊗ (

∧qV̄ ).

This is known as the Hodge decomposition, and let me explain.

8.4 Hodge decomposition

For instance, let k = 2, and consider
∧

2(V ∗ ⊕ V̄ ∗), and consider an element f .
Then f is a multilinear map

f : (V ⊕ V̄ )× (V ⊕ V̄ )→ C.

Then f(v1 ⊕ v̄2, w1 ⊕ w̄2) ∈ C. Then you can break up f into four parts
f = f1 + f2 + f3 + f4 by linearity. The four pieces will be complex function
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defined on V × V, V̄ × V, V × V̄ , V̄ × V̄ . When we impose the skew symmetry
condition on the pieces, the first and fourth pieces are just skew symmetry. So it
is just

∧
2V and

∧
2V̄ . The second and third pieces have some kind of relation,

and if we view it as the third being coming out from the second one, we can
write it as V ⊗ V̄ . However, if we view it as a whole, we can write it down as
V ∧ V̄ . In fact, these two are the same thing. So∧2(V ⊕ V̄ ) =

∧2V ⊗ (V ⊗ V̄ )⊗
∧2V̄ =

∧2V ⊗ (V
∧
V̄ )⊗

∧2V̄ .

Generally, we have∧k(V ⊕ V̄ ) =
⊕
p+q=k

(
∧pV )⊗ (

∧qV̄ ) =
⊕
p+q=k

(
∧pV )

∧
(
∧qV̄ ).



Math 55a Notes 40

9 October 1, 2015

We started out with determinants, and introduced exterior products and tensor
products, which are array or entries. There were various techniques; multi
linearity, duality, alternation, contraction, complex structure for real vector
spaces, and ultimately, Lefschetz theorem. The Lefschetz theorem breaks down
the product into simpler building blocks, by contraction with inner product. It
only works in C-vector spaces with the inner product.

9.1 Philosophy of the Lefschetz theorem

Let me explain more about the Lefschetz theorem. We consider the vector space
V over C. Then (

∧
pV )

∧
(
∧
qV̄ ) ⊂

∧
p+q(V ⊕ V̄ ). The contraction sends (p, q) of(

n
p

)(
n
q

)
dimension to (p− 1, q− 1) of

(
n
p−1

)(
n
q−1

)
dimension. On the other hand,

for the Lefschetz operator does the exterior product and sends (
∧
pV ∗)

∧
(
∧
qV̄ ∗)

to (
∧
p+1V ∗)

∧
(
∧
q+1V̄ ∗). This sends the dimension

(
n
p

)(
n
q

)
to
(
n
p+1

)(
m
q+1

)
.

Let e1, . . . , en be a C-basis of V and let (·, ·)V be a Hermitian inner product.
Let gjk̄ = (ej , ek)V . Then the tensor by which we product in the Lefschetz

operator is
∑
gjk̄e

j
∗ ⊗ ēk∗ =

∑
gjk̄e

j
∗ ∧ ēk∗.

Because people are finding wedge products to hard, I am going to give some
time to digest, and delay the proof of the Lefschetz theorem. Meanwhile, I will
do something else, which will be used in the proof.

9.2 Hodge star operator

Let V be a vector space over R with a inner product (·, ·)V . Let e1, . . . , en be
an orthonormal basis, and the dimension of

∧
kV and the dimension of

∧
n−kV

is the same, because the basis of
∧
kV is ej1 ∧ · · · ∧ ejk for j1 < · · · < jk and the

basis of
∧
n−kV is ei1 ∧ · · · ∧ ein−k

for i1 < · · · < in−k. Then for a pair, we can
assign a number as

(ej1∧· · ·∧ejk , ei1∧· · ·∧ein−k
) 7→ (ej1∧· · ·∧ejk)∧(ei1∧· · ·∧ein−k

) = sgn(π)e1∧· · ·∧en.

Then we get a map (
∧
kV )

∧
(
∧
n−kV ) → R. This map is independent of the

basis, up to orientation. The star operator ∗ :
∧
kV →

∧
n−kV as a composite

of the paring and the use of the inner product. Because the paring induces an
isomorphism (

∧
kV )∗ =

∧
n−kV , and because there is a inner product on

∧
kV ,

we get a isomorphism ∗ :
∧
kV →

∧
n−kV .

What does it mean to be independent up to orientation? It means that we
need a choice of an element θ which has unit length in

∧
kV . Then we can

express the definition of the star operator as

v ∧ (∗u) = (v, u)∧kV θ

for v, u ∈
∧
k.
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9.3 Normal form of a matrix

The idea of the normal form is building up from simpler things, just like the
Lefschetz theorem. Because tensor is far more complex than the matrix, for the
time being, we just consider matrices, or 2-tensors.

We use the technique of elementary row operations and column operations.
But we do it on a ring. The difference is that we can’t divide an element, and
make the value of the pivot to 1. So we choose the ‘smallest’ element on the
pivot column. If the ring is Z, we choose the one with smallest absolute value,
and if the ring is F [λ], we choose the one with smallest degree. The we use
the Euclidean algorithm to make the elements of the column smaller. Then
eventually, we will end up with a unique nonzero element. We do this also for
the column. Then we end up with

PAQ =


d1

d2

. . .

ds
O


with d1 | d2 | · · · | ds, where P and Q are invertible matrices.

Let F be a field and let V be a vector space over F . Let T : V → V be a
linear map. Consider the F [λ]⊕ · · · ⊕ F [λ]. This has a additive structure, and
scalar multiplication. This kind of thing is called a free F [λ]-module of rank n,
and is denoted as F [λ]n. Anyways, we can give a F [λ]-module structure over V
by

(f(λ), v) 7→ f(T ) · v.

Then the module structure is linked to the normal form of the linear map T .
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We did elementary row and column operation over a ring last class. There are
two applications.

• Structure of a finitely generated abelian groups (R = Z)

• Normal form of a matrix (R = F [λ])

The important thing is the you need Euclidean algorithm. The “size” of an
element is defined as the absolute value in the ring of integers, and the degree in
the ring of polynomials. If size b ≤ size a, then there is a r such that size r < size b
and a = qb + r. You can successively apply this algorithm to get the greatest
common divisor gcd(a, b) = c such that c = pa+ qb for some p, q ∈ R.

For a matrix A, consider the element with smallest size

smin = min{size(aij)}1≤i≤m,1≤j≤n.

Using row and column exchanges, we can move this to the top left place. Then
using Euclid’s algorithm, we can either make some element smaller than smin, or
make them all zero. If some element becomes smaller than smin, we replace this
as the smin element. Otherwise, we get a first we get a smaller (m−1)× (n−1)
matrix. Since elementary row operations and column operations can be regarded
as multiplying matrices, we get

PAQ =



d1

. . .

ds
0

. . .

 .

10.1 F [λ]-module structure of a vector space

Let R = F [λ] and T be an n× n matrix with coefficients in a field F . Then we
can regard T as T : V → V , or T ∈ HomF (V, V ). Here,

V =

n⊕
k=1

Fek

which means that e1, . . . , en is a basis. If T = (ai,j)1≤i,j≤n, then

Tej =

n∑
i=1

aijei,

where ej is the column vector with one 1 in the jth place.
V is a vector space over F , which is also a module over F . We want to make

V a module over the ring F [λ]. The scalar multiplication is defined as

(f(λ), v) 7→ f(T )v
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where f(λ) is a polynomial in F [λ] and v ∈ V . What does f(T ) mean? If
f(λ) =

∑m
j=1 cj

∧
j with cj ∈ F , then f(T ) =

∑m
j=0 cjT

j so that

f(T )v =

m∑
j=0

cj(T
jv).

This is a more complicated structure, because the map T is incorporated in the
structure. If we know the structure of this module, we know the map T .

Now we need to come up with a matrix, because we want to apply the ele-
mentary row and column operations. We introduce the notion of a free module.

Definition 10.1. A free module over R of rank n is

R⊗ · · · ⊗R = {(r1, . . . , rn) : r1, . . . , rn ∈ R}.

Let me write êj for the column vector with 1 in the jth position in the free
module F [λ]⊕n. Then we can make a map

Φ : F [λ]⊕n → V

such that êj → ej . This map is over the ring F [λ], which means that it is linear
in the sense of scalar multiplication of a polynomial. That is,

Φ

( n∑
j=1

fj(λ)êj

)
=

n∑
j=1

fj(T )ej .

Then we get an so-called exact sequence:

0 Ker Φ F [λ]⊕n V 0Φ

We claim that

Claim. As an F [λ]-module, we have the isomorphism

Ker Φ ∼= F [λ]⊕n.

Using this claim, we can change the diagram to:

0 F [λ]⊕n F [λ]⊕n V 0Φ

This second arrow is then a n× n matrix, which contains the information of T .

10.2 Kernel of the map induced by T

Now we prove the claim. By definition,

Tej =

n∑
i=1

aijei ∈ V.
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In F [λ]⊕n we have

λêj −
n∑
i=1

aij êi ∈ Ker Φ

because the image is zero. Denote this element by f̂j . Then it suffices to prove

that f̂1, . . . , f̂n make Ker Φ a free F [λ]-module of rank n, or in other words,

Ker Φ = ⊕nj=1F [λ]f̂j .

We need to prove two things; spanning and independence. First let us prove
spanning. Take any element

∑n
j=1 gj(λ)êj ∈ Ker Φ. Note that

λêj = f̂j +
n∑
j=1

aij êi ∈
∑
i=1

F [λ]f̂i +
n∑
i=1

F êi ⊂ F [λ]⊕n.

We want to get rid of the
∑n
i=1 F êi part.

Now we prove that

∧`êj ∈ n∑
i=1

F [λ]f̂i +

n∑
i=1

F êi.

This is done by induction on `. If
∧
`êj is in that module, than

∧`+1êj ∈
n∑
i=1

F [λ]f̂i +

n∑
i=1

F (λêi)

which, in turn, is then in
∑n
i=1 F [λ]f̂i +

∑F
i=1 êi.

Any
n∑
j=1

gj(λ)êj ∈
n∑
i=1

F [λ]f̂i +

n∑
i=1

F êi

can be represented as

n∑
j=1

gj(λ)êj =

n∑
j=1

hj(λ)f̂j +

n∑
j=1

bj êj .

Since the left hand side g is in the kernel of Φ, we can apply the map Φ. Then
we get

0 =

n∑
j=1

bjΦ(êj) =
∑
j=1

bjej

and thus bj = 0. Therefore,
∑n
j=1 gj(λ)êj is generated by f̂js.

We now prove linear independence. Suppose that

n∑
j=1

hj(λ)f̂j = 0.
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Then
n∑
j=1

hj(λ)
(
λêj −

n∑
i=1

aij êi

)
= 0

and it follows that

n∑
j=1

(
hj(λ)λ−

n∑
i=1

ajihi(λ)

)
êj = 0.

Then for each h,

hj(λ)λ =

n∑
i=1

ajihi(λ).

If you look at the degree of the his, you get a contradiction, because the hj
with the maximal degree times λ cannot be expressed as a linear combination
of other polynomials.

10.3 Decomposition of the module structure on V

Finally, we get a n× n matrix with entries in F [λ]. Because we actually know
what the basis is, we can actually specify what the matrix looks like. Because
we are changing the basis from f̂j to êj , and

f̂j = λêj −
∑

aij êi,

the jth column is the matrix is 

−a1j

−a2j

...
λ− ajj

...
−anj


.

Then we get

0 F [λ]⊕n F [λ]⊕n V 0
λIn−A Φ

We can apply the elementary row and column operations over F [λ] to get

P (λIn −A)Q =



1
. . . O

1
d1(λ)

d2(λ)

O
. . .

ds(λ)





Math 55a Notes 46

where dj ∈ F [λ] and d1(λ) | d2(λ) | · · · | ds(λ). Note that there are no zeros on
the diagonal, because the determinant is nonzero. Also, V is the cokernel of the
map λIn −A. The each d1(λ), . . . , ds(λ) is called the invariant factor.

The matrix P is the change of basis in the third F [λ]⊕n, and Q is the change
of basis in the second F [λ]⊕n.

The lots of 1 on the diagonal does not contribute anything to the cokernel.
The entry dj(λ) contribute

F [λ]/dj(λ)F [λ] = F ⊕ Fλ⊕ · · · ⊕ F
∧deg dj−1

to the cokernel. But because V is of dimension n, we have

deg d1 + · · ·+ deg ds = n.

Now we have decomposed V into parts which are invariant under T . But
we can further reduce things by interpolation techniques (Chinese remainder
theorem). That is, if d(λ) = g(λ)h(λ) with g and h relatively prime, then

F [λ]/d(λ)F [λ] ∼= F [λ]/g(λ)F [λ]⊕ F [λ]/h(λ)F [λ].

This is because they have the same dimension and the map is surjective. To
show that it is surjective, we need to find f1 and f2 such that{

f1(λ) ≡ 1 mod g(λ)

f1(λ) ≡ 0 mod h(λ)
and

{
f2(λ) ≡ 0 mod g(λ)

f2(λ) ≡ 1 mod h(λ)

These exist because there are q1 and q2 such that 1 = g1g + g2h.
In the special case F = C, we can use the fundamental theorem of algebra

to write

F [λ]/d(λ)F [λ] =

t⊕
j=1

F [λ]/(λ− γj)hjF [λ].

Then each of V is a direct summand of

V =
⊕
j

F [λ]/(λ− rj)kjF [λ].

This gives rise to the Jordan normal form.
We will focus on each F [λ]/(λ − r)kF [λ]. Because this is the cokernel, the

element 1 mod (λ− r)k goes to some v ∈ V . Then λ will go to Tv ∈ V , and
likewise, λk − 1 will go to T k−1v ∈ V . Then,

∧
k =

∧
k − (λ− r)k will then go

to T kv − (T − r)kv.
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Now we continue our discussion of a normal form of a matrix. The technique is
using elementary row and column operations over a ring. The main reason we
are doing only for Z and F [λ] is because we can use Euclid’s algorithm.

11.1 Review of the decomposition of V as a F [λ]-module

We started we a linear map T : V → V , and make V a F [λ]-module by defining
λ·v = Tv. If e1, . . . , en is a basis of V over F , we constructed a map F [λ]⊕n → V
by ê1, . . . , ên 7→ e1, . . . , en and got the exact sequence

0 Ker Φ F [λ]⊕n V 0.Φ

If we let f̂j = λêj−
∑n
i=1 aij êj , then f̂1, . . . , f̂n was the basis for the F [λ]-module

of Ker Φ. We proved spanning by calculating the error, and independence by
considering the maximal degree. The map Ker Φ→ F [λ]⊕n was actually λIn−T ,
and with the elementary operations, made it into a diagonal matrix with entries
1, . . . , 1, d1(λ), . . . , ds(λ). Also, V was the cokernel of λIn − T . If P (λIn − T )Q
is the diagonal matrix, then P is changing the basis ê1, . . . , ên and actually
replaces êj by the jth column of P = (pij(λ)). In other words, êj is replaced byp1j(λ)

...
pnj(λ)

 = p1j(λ)ê1 + · · ·+ pnj(λ)êj .

This new basis is the good basis, and this means that

{p1j(T )e1 + · · ·+ pnj(T )en}nj=1

is a basis of V , because P is an invertible basis with polynomial entries.
Now when we take the cokernel, the many 1s in the diagonal matrix have

zero contribution, and we obtain that V is isomorphic as a F [λ]-module to

s⊕
j=1

(F [λ]/dj(λ)F [λ])ên−s+j .

We want to decompose further. Assume that F = C (so as to apply the funda-
mental theorem of algebra to get roots of polynomials.) Decompose F [λ]/dj(λ)F [λ]
by the Chinese Remainder Theorem.

11.2 Chinese remainder theorem

For Z, consider n1, . . . , nk ∈ Z+ such that they are pairwise relatively prime.
Then there exist integers q1, . . . , qk such that

1 =

k∑
j=1

qjn1 · · ·nj−1nj+1 · · ·nk.



Math 55a Notes 48

If we let aj = qjn1 · · ·nj−1nj+1 · · ·nk, we have{
aj ≡ 1 (mod nj)

aj ≡ 0 (mod jk) (k 6= j).

Then we see that given bj , there exists an a such that a ≡ bj mod nj for all j,
namely a =

∑
j bjaj .

Ditto for F [λ]. Let g1(λ), . . . , gk(λ) relatively prime, and we can do the same
thing

1 =

k∑
j=1

qj(λ)g1(λ) · · · gj−1(λ)gj+1(λ) · · · gk(λ).

Then again, {
aj(λ) ≡ 1 (mod gj(λ))

aj(λ) ≡ 0 (mod gk(λ)) (k 6= j).

It then follows that given bj(λ) mod gj(λ), there exists a unique a(λ) such that

a(λ) ≡ bj(λ) mod gj(λ), defined by a ≡
∑k
j=1 ajbj mod g1 · · · gk.

Now factor dj(λ) = g1,j(λ) · · · gkj ,j(λ). Then we have

F [λ]/dj(λ)F [λ] ∼=
kj⊕
l=1

F [λ]/gl,j(λ)F [λ].

If we want to get the inverse of this decomposition, we need to write

1 =

kj∑
l=1

ql,j(λ)g1,j(λ) · · · gl−1,j(λ)gl+1,j(λ) · · · gkj ,j(λ).

Then the inverse map is

b1, . . . , bkj 7→
kj∑
l=1

ql,jg1,j(λ) · · · gl−1,j(λ)gl+1,j(λ) · · · gkj ,j(λ)bl(λ).

We can phrase it differently. We have an embedding

F [λ]/gl,j(λ)F [λ] ↪→ F [λ]/dj(λ)F [λ]

which is the multiplication by q̂l,j = ql,jg1,j(λ) · · · gl−1,j(λ)gl+1,j(λ) · · · gkj ,j(λ).
We can extend the identity

F [λ]⊕n/(λIn − T )F [λ]⊕n =

s⊕
j=1

(F [λ]/dj(λ)F [λ])ên−s+j ,

using the decomposition we just made to write

F [λ]⊕n/(λIn − T )F [λ]⊕n =

s⊕
j=1

( kj⊕
l=1

q̂l,j(λ)(F [λ]/gl,j(λ)F [λ])

)
.
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11.3 Jordan normal form

Now let us get back to V . Using the map Φ, we see that

V =

s⊕
j=1

( kj⊕
l=1

(q̂l,jF [λ])(T )en−s+j

)
.

Because this is a direct summand, T maps to each part q̂l,j(T )en−s+j to itself.
This is a single vector, and let us denote ẽl,j = q̂l,j(T )en−s+j .

Each of gl,j(λ) = (λ − λl,j)
sl,j should be a power of a linear polynomial.

Note that
(q̂l,jF [λ])en−s+j) = F [T ]ẽl,j ⊂ V.

as an F [λ]-module. (This subspace is not necessarily dimension 1 over F .)
Because q̂l,j(λ) was missing only gl,j(λ), when we multiply it, the element ẽl,j
becomes zero. That means that

(T − λl,j)sl,j ẽl,j = 0

in V . Then the F -basis of F [T ]ẽl,j is

ẽl,j , (T − λl,j)ẽl,j , . . . , (T − λl,j)sl,j−1ẽl,j .

This is because any polynomial h(λ) can be written uniquely as

h(λ) = c0+c1(λ−λl,j)+c2(λ−λl,j)2+· · ·+csl,j−1(λ−λl,j)sl,j−1 (mod (λ−λl,j)sl,j ).

What is the matrix representing this basis? It is
λl,j 1

λl,j 1
λl,j

. . .

λl,j

 .

This is because T maps ẽl,j to

T ẽl,j = λl,j ẽl,j + (T − λl,j)ẽl,j

and
T (T − λl,j)kẽl,j = λl,j(T − λl,j)kẽl,j + (T − λl,j)k+1ẽi,j .

Now because these are direct decompositions, we can do this for every part
and choose a basis of V so that T is represented by the matrix

J1,1

J1,2

. . .

Js,ks

 .
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This is the Jordan normal form. Note that the sum of the size of the blocks
is
∑s
j=1

∑kj
l=1 deg gl,j =

∑s
j=1 deg dj = n.

Let me give some names now. Consider the matrix λIn − T . Then dj(λ) is
the same as

gcd of the det of all (n−s+j)-minors/gcd of the def of all (n−s+j−1)-minors.

Suppose that the λ1, . . . , λn are all distinct. Then we see that the invariant
factor is just (λ− λ1) · · · (λ− λn).

Definition 11.1. The last invariant factor ds(λ) is called the minimal poly-
nomial. This is because ds is the minimal polynomial such that ds(T ) · v = 0
for all v ∈ V .

Definition 11.2. A nonzero vector v ∈ V is an eigenvector with eigenvalue
λ for T : V → V if (T − λ)v = 0. The eigenspace Eλ is the set

{eigenvectors for eigenvalue λ} ∪ {0}.

Definition 11.3. A generalized eigenvector v (of rank m) of T with eigen-
value λ for a T : V → V is a nonzero vector such that

(T − λ)mv = 0 and (T − λ)m−1v 6= 0.

Likewise, the generalized eigenspace is

Ẽλ{v : v is a generalized eigenvector} ∪ {0}.

Now you might feel home, so I will again begin talking about tensor and
wedge products. You will be comfortable with the complex structure of a vector
space V over R. When we give a complex structure, you have to give some kind
of i. So, you need to give a map J such that J : V → V such that J2 = −I.

One bad thing is that we want to say things about the eigenvalues or eigen-
vectors, but because V is over R, we cannot use the fundamental theorem of
algebra. So we extend J to the map V ⊗ C→ V ⊗ C between tensor products.
Then J becomes a C-linear map, and then the eigenvalues of J will be i and −i,
because J2 = −1. If we let P1 = 1

2 (1− iJ) and P2 = 1
2 (1 + iJ), the eigenspace

of i is

Ei = ImP1 = Im
1

2
(1− iJ).
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For a matrix T : V → V over the field F , we used the technique of replacing the
action of T on V by an F [λ]-module structure for V . We used the elementary row
and column operations over the ring F [λ] on the characteristic matrix λIn− T .
Note that this can be done over any field F , while F has to be algebraically
closed to further decompose it to a Jordan normal form.

12.1 Justifying complex multiplication on real vector spaces

We go back to the complex structure J of a real vector space V/R. The map
J : V → J is an element J ∈ HomR(V, V ) such that J2 = −1. We want to look
at the eigenspace and eigenvalues. (The reason I come back to this is because it
is a bridge between real analysis and complex analysis. This is very important.)
If v is an eigenvector, Jv = λv and hence J2v =

∧
2v = −v, so λ = ±i. But

because this is not real, we need to extend it to a vector space over C.
The intuitive idea is to multiply a vector from V by i by brute force. For

instance, if the basis of V over R is e1, . . . , en, we just write iej . But we
have to justify this. We do it by regarding V = (V ∗)∗. For an element v ∈
HomR(V ∗,R) = V , we can regard it as a R-linear map V ∗ → R. Then we
can compose it with the embedding R → C, and then v can be regarded as an
element of HomR(V ∗,C) = V ⊗R C.

More generally, let F be a field, and E be an extension field of F . Then for
any vector space W over F , we have

W ⊗F E = HomF (W ∗, E) = HomF (HomF (W,F ), E).

This is called a basis change.
Back to the complex structure. For a linear map J : V → V , we consider

the pullback J∗ : V ∗ → V ∗ of J . This is defined by

f ◦ J = J∗(f).

Note that the pullback of the pullback (J∗)∗ is the same as the original map J .
For this, we consider the diagram

Hom(V ∗,R) R C

Hom(V ∗,R)

v

J∗ Jv

and compose the map with the embedding with R → C. Then we get an
extension J : HomR(V ∗,C) → HomR(V ∗,C), and a C-linear map J ⊗ idC :
V ⊗R C → V ⊗R C. This is just a justification, and you don’t have to worry
about this when doing real things.

We now decompose the space V ⊗RC into eigenspaces by Chinese remainder
theorem. There are two eigenvalue i and −i for (the C-linear extension of) J .
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Then

Id = 1 =
1

2
(1− iJ) +

1

2
(1 + iJ).

Then as in the homework assignment, the two spaces 1
2 (1 − iJ)(V ⊗R C) is

the eigenspace for the eigenvalue i in the C-vectorspace V ⊗ C. The two maps
π1 = 1

2 (1−iJ) and π2 = 1
2 (1+iJ) are projection maps; π1+π2 = 1 and π2

1 = π1,
π2

2 = π2.
Before we go back, I want to talk about normalizing constants. We had the

identity 1 = 1
2 (1− iJ)+ 1

2 (1+ iJ). But there is the constant 1/2 which is a kind
of nuisance. Some authors just don’t write the constant explicitly, and some
authors do. Similar things happens for wedge products too. When we want to
calculate for instance( ∑

i1<···<ip

ai1···ip(ei1 ∧ · · · ∧ eip)

)
∧
( ∑
j1<···<jq

aj1···jq (ej1 ∧ · · · ∧ ejq )

)
we need to change the order. If we want to avoid lots of (−1)n, we used the
alternating convention, requiring the ai1···ip alternating i1, . . . , ip. Then∑

i1<···<ip

(ei1 ∧ · · · ∧ eip) =
1

p!

∑
i1,...,ip

ai1···ip(ei1 ∧ · · · ∧ eip).

This also arises when looking at double integrals.

12.2 Field extensions

Let me move on. We will look at the logical foundation of Galois theory. For
an equation ax2 + bx+ c = 0, we can solve it as

x =
−b±

√
b2 − 4ac

2a
.

But what does this ±
√

mean? When working in complex numbers, it is not
clear what it exactly is.

We work in the field F = Q(a, b, c) which consists of all rational functions
of the three independent variables a, b, c. What we want to do is to solve the
equation ax2 +bx+c = 0 in the field F = Q(a, b, c). Of course, it is not solvable,
because the solution involves square roots. So wee need to justify this radical.

How do we justify solving x2 − a = 0 over the field F = Q(a). We want
to construct an extension field E of F such that in E the equation x2 − a = 0
can be solved. Because the rule is that you can only do addition, subtraction,
division, multiplication and taking radicals, we are solving only the equations
of form xn − k.

The idea is that F [x]/(x2 − a)F [x] is a field. In general, if p(x) is an
irreducible element of F [x], then F [x]/p(x)F [x] is a field. That is, for any
f(x) ∈ F [x] such that f(x) 6≡ 0 mod p(x), then by Euclid’s algorithm, we can
write

1 = g(x)f(x) + h(x)p(x)
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and g(x) becomes an inverse of f(x).
Then E = F [x]/(x2 − a)F [x] is an extension of F , and the image x∗ of x of

F [x] in the quotient F [x]/(x2 − a)F [x] satisfies (x∗)2 − a = 0. This x∗ then is
the justification of

√
a. Because the other root is automatically −x∗, we don’t

really need to distinguish between
√
a and −

√
a, and it doesn’t really make

sense to distinguish between them.
In the 1820s, people proposed the problem to find a formula, but people first

needed to define what a formula means. For a polynomial equation

xn − σ1x
n−1 + σ2x

n−2 + · · ·+ (−1)nσn = 0

where σ1, . . . , σn are independent variables. The field we are working on is
F0 = F = C(σ1, . . . , σn). Now for some d0 ≥ 2 and a0 ∈ F0, we extend the field
F1 = F0[x]/(xd0 − a0)F0[x]. This is one step of the formula. For instance, if
n = 2, we choose a0 = σ2

1 − 4σ2 and d0 = 2. Next you choose some d1 ≥ 2 and
a1 ∈ F1. You do this until you get some F` such that the solution x1, . . . , xn
are the elements of F`.

12.3 The rise of Galois theory

Let x1, . . . , xn be independent variables over F . We need to find a chain of
extensions

F` = F (x1, . . . , xn) = F`−1[x]/(xd`−1 − a`−1)F`−1[x]
∪

F`−1 = F`−2[x]/(xd`−2 − a`−2)F`−2[x]
∪
...

F1 = F0[x]/(xd0 − a0)F0[x]
∪

F0 = F (σ1, . . . , σn)

Lagrange first observed that each step is actually the stabilizer of some group.
The chain of groups 1 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ G` = Sn then corresponds to

F` = F (x1, . . . , xn)
∪

F`−1 = F`G1

∪
...
∪

F0 = FG`

` .

For each step the group Gj−1 should be a normal subgroup of Gj , and the
quotient group Gj/Gj−1 should be a cyclic group. I will explain this later.

Starting with an irreducible polynomial p(x) ∈ F [x] (generalizing x2 − a),
we extend F to E = F [x]/(p(x)F [x]). Then E is actually a F -vector space. We
define the degree of extension as the dimension dimF E = [E : F ].
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But when we extend, are the “other” roots of p(x) inside E of not? Generally
they are not all in E, and you can easily write down an example. In resolving this
problem, the key idea is applying Euclid’s algorithm. Denote by x∗ the image
of x ∈ F [x] in F [x]/(p(x)F [x]). Then after extending to E, the p(x) ∈ E[x] will
contain the factor x− x∗, because p(x∗) = 0. Write

p(x) = (x− x∗)p1(x) = (x− x∗)g1(x) · · · gk(x)

for some irreducible polynomials g1, . . . , gk ∈ E[x]. Then we extend the field E
respect to g1, and we strictly increase the number of roots of p(x). This means
that after a finite number of step, we have an extension field F̃ ⊃ F such that
[F̃ : F ] <∞ and p(x) can be regarded as and element of F̃ [x] which completely
factor in to linear factors

p(x) = α(x− x1) · · · (x− xn)

with x1, . . . , xn ∈ F̃ .
Now we might have extended more than needed. So we just consider the

field F (x1, . . . , xn), which is the set of all elements of F̃ which can be expressed
as rational functions of the elements of x1, . . . , xn of F̃ with coefficients in F .
This has a name

Definition 12.1. F (x1, . . . , xn) is called a splitting field for p(x) ∈ F [x].
(Note that p need not be irreducible.)

Actually the dimension of the splitting field [F (x1, . . . , xn) : F ] is unique,
and it is related the automorphism group AutF (F (x1, . . . , xn)) which is the
group of automorphisms which fixes the field F . This is the contribution of
Galois.
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We want to look at Galois theory. The question is how to solve polynomial
equation over single variable. The main point of Galois theory is the relation
between intermediate fields and subgroup of partial symmetry. There is a one-
one correspondence, and this is the key of Galois theory.

13.1 Galois theory

We start with elementary symmetric functions F0 = F (σ1, . . . , σn) and make it
down to F` = F (x1, . . . , xn). Starting with an equation

xn − σ1x
n−1 + · · ·+ (−1)nσn,

we want to end up with the solution in F`, and the whole point is expressing
x1, . . . , xn with σ1, . . . , σn using rational functions and roots. We want

F0 = F (σ1, . . . , σn)
∩

F1 = F0( d0
√
a0)

∩
F2 = F1( d1

√
a1)

∩
...
∩

F` = F (x1, . . . , xn)

But this is not Galois theory.
The field F0 can be written as F0 = FSn=G0

` , where this means the set which

is fixed by S0. Actually eat of Fk can be written as Fk = FGk

` with the tower

G0 ⊃ G1 ⊃ · · · ⊃ G`.

This is the key of Galois theory. It show that the chain of fields is finite.
You start out with a small field F0 and extend it to F`. But there is a rule

that in each step, it should be extended to a splitting field.
We have to define the automorphism group.

Definition 13.1. An automorphism group AutF E of a field E over F is the
set of bijections f : E → E such that the restriction of f to F is the identity.

Let F̃ be an intermediate field between E and F .

E
∪
F̃
∪
F
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We want to show that there is a one-one correspondence between intermediate
fields and the automorphism groups. Let G = AutF E and let

H = {g ∈ G : g fixes every elements in F}.

We can go back to the field by

EH = {ξ ∈ E : g(ξ) = ξ for all g ∈ H}.

We can do it the other way. Starting with a subgroup H ⊂ G, we can think
of a intermediate field F̃ = EH and back to groups by AutF̃ (E).

What I presented is a way of going from intermediate fields to automorphism
groups, and another way of going from automorphism groups to intermediate
fields by considering the set of elements fixed by the group. The question is
whether these two procedures are inverses of each other. In other words, is

EH = F̃ and AutF̃ (E) = H in the two situations?

These are true if F is a splitting extension of E.
Let us look at the process of making a splitting field. For a field F , we take a

polynomial f(x) with coefficients in F . Then we construct it as F [x]/f(x)F [x].
Then the root of f(x) in E is ξ, which is the image of x. If F ⊂ F̃ ⊂ E is an
intermediate field, then if we want to construct E from F̃ , we can just take the
exactly same polynomial f(x). Since f ∈ F [x], it is also inside F̃ [x]. Then we
see that E is also a splitting field of F̃ .

But is F̃ a spitting field of F? Yes it is, if and only if F̃ = EH for a certain
H. We call subgroups with this certain property normal.

13.2 Normal groups and solvability

Definition 13.2. A subgroup H of a group G is called normal, if ghg−1 ∈ H
for any g ∈ G and h ∈ H.

This means that if we consider the tower

{1} = G` ⊂ G`−1 ⊂ · · · ⊂ G1 ⊂ G0 = Sn,

which is the solution to solving equations, Gj should be normal in Gj−1. But
because we allow only taking roots, the quotient Gj/Gj−1 should be cyclic.
Note that any abelian group can be written as a direct sum of cyclic groups. So
we can loosen the condition Gj/Gj−1 being cyclic to Gj/Gj−1 being abelian.

Also, the condition H ⊂ G is normal and G/H is abelian, is actually equiva-
lent to H containing the commutator subgroup, which is the group generated
by

{ghg−1h−1 : g, h ∈ G}.
We then can just consider the tower

G ⊃ comm(G) ⊃ comm(comm(G)) ⊃ · · · ⊃ {1}.

We can introduce a definition.
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Definition 13.3. A finite group G is called solvable if and only if some

comm(· · · (comm(G)) · · · ) = {1}

Now if we assume Galois theory, the solvability of a equation of degree n
boils down to the solvability of Sn.

Let me introduce one theory about the solvability of groups.

Theorem 13.4 (Feit-Thompson). Every group of odd order is solvable.

But this doesn’t really help when finding out whether Sn is solvable. Because
Sn has a lots of 2s, we need to take out all the trouble makers. If |Sn| = n! =
2k · (odd), then we would want a H ⊂ Sn with |H| = 2k which is normal. If we

This was actually done by Sylow.

Theorem 13.5 (Sylow). If |G| = pm · (p-free product), then G contains a sub-
group of order pm.

But I will not go into all this. Maybe I will assign as a homework problem.

13.3 Bounding theorems for Galois extensions

Now let us go back to Galois theory. There were two operations: forming the
automorphism group over a field, and forming the fixed field. We will prove
that they are inverses by bounding the dimension of the intermediate field.

One direction is bonding the “size” of the field.

Theorem 13.6 (Artin). Let E be an field, and let G ⊂ AutE be a finite
subgroup. If we consider the field F = EG, then [E : F ] ≤ |G|.

Proof. Let m = |G|, suppose that n > m and let x1, . . . , xn be any elements in
E. It suffices to prove that there exists a nonzero solution to the equation

a1x1 + · · ·+ anxn = 0

such that a1, . . . , an ∈ F . Then it will show that n > [E : F ] since any x1, . . . , xn
are linearly independent. Because n > [E : F ] for any n > m, it will follow that
[E : F ] ≤ m = |G|.

Let G = {gj}nj=1, and consider the system of equations

a1gj(x1) + · · ·+ angj(xn) = 0.

Since there are more variables than equations, there should be a nonzero solution
(a1, . . . , an) ∈ En. But since it is not a solution in F , we need to bring it down
to F .

We now have a nonzero solution a1, . . . , an ∈ E. Consider the solution
a1, . . . , an ∈ E with the maximal number of elements which are not zero. Since
we can multiply any nonzero element of E to all a1, . . . , an simultaneously, we
may assume without loss of generality a1 = 1. Suppose that there is some aj
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which is not in F , say a2 6∈ F . Then there should be some gk ∈ G such that
a2 6= gk(a2). Now for any 1 ≤ j ≤ m, we have

gk(a1)gj(x1) + gk(a2)gj(x2) + · · ·+ gk(an)gj(xn) = 0

since we can apply the whole automorphism gk to the system of equations. On
the other hand we have

a1gj(x1) + a2gj(x2) + · · ·+ angj(xn) = 0,

which is the original system of equations. Subtracting the two equations, we
get a new solution

(gk(a1)− a1, gk(a2)− a2, . . . , gk(an)− an).

This solution is nonzero because gk(a2) 6= a2, and there is at least one more
zero because gk(a1)− a1 = 0. Therefore, we get a contradiction, and it follows
that a1, . . . , an ∈ F .

The other direction is:

Theorem 13.7. Given a field F and a polynomial f(x) ∈ F [x], construct a
splitting field E of f(x) over F . Then [E : F ] = |AutF E|.

Proof. The idea is to count the degree of freedom in the remainder of Euclid’s
algorithm. If g(x) ∈ F [x] is irreducible, then deg g is the number of embeddings
of F (ξ) into a splitting field E, where ξ is the image of x in F [x]/g(x)F [x]. This
is because f(x) can be decomposed into linear factors.

Now deg g = [F (ξ) : F ], and thus [F (ξ) : F ] is the number of embeddings
of F (ξ) into E. Since g is irreducible, the minimal polynomial of ξ should be
exactly g. This means that actually F (ξ) is just E, and thus [F (ξ) : F ] =
|AutF F (ξ)|.

But g may not be irreducible. Suppose that g(x) = g1(x) · · · . Consider a
root ξ1 such that g1(ξ1) = 0. Then the field F (ξ1) factors in F [ξ] to g(x) =
(x− ξ1)h1(x) · · · . Let ξ2 be the root of h1 and consider F (ξ1)(ξ2).

Then E = F (ξ1)(ξ2) · · · (ξk). For each k, the number of embedding

F (ξ1) · · · (ξk) ↪→ E

which fixes F (ξ1) · · · (ξk−1) will be [F (ξ1, . . . , ξk) : F (ξ1, . . . , ξk−1)]. Then the
number of embeddings E ↪→ E fixing F will be the product

n∏
k=1

[F (ξ1, . . . , ξk) : F (ξ1, . . . , ξk−1)] = [F (ξ1, . . . , ξk) : F ] = [E : F ].
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We want to solve a polynomial equation, and the only known ones are quadratic,
cubic, and quartic cases. If you start out F0 = F (σ1, . . . , σn), and extend it to
F1 = F0( d0

√
a0), F2 = F1( d1

√
a1), and so forth, until Fq = F (x1, . . . , xn), we get

a complicated solution. Lagrange first related it to fixed fields of subgroups of
Sn.

The whole game is the correspondence between intermediate fields and sub-
groups. If you look at intermediate fields, it looks like there are infinitely many
choices, but if you look at subgroups, it is much more easier. Historically people
tried to to things in intermediate fields and got stuck. Galois came and said
that you can look at subgroups instead.

Generally, let E be a splitting field of a field for a polynomial f(x) with
coefficients in F . This means that the polynomial f(x) factors into linear factors,
i.e.,

f(x) = a(x− r1) · · · (x− rn)

where r1, . . . , rn ∈ E. Also, because E should be the minimal field, we have
E = F (r1, . . . , rn). These two conditions are the definition. The reason for
making this notion is to justify logically the formulas.

14.1 Separability of a polynomial

One more important thing is that all roots of a irreducible polynomial in F [x]
should be distinct. Later, it will be used in counting elements in the subgroup of
automorphism group. For a field with characteristic 0, that is, 1+1+· · ·+1 6= 0,
the roots will be always distinct. This is because for any irreducible f , the
polynomial f and f ′ cannot share a common factor. If the characteristic is
zero, problems can occur. For instance, let F = (Z/pZ)(t), and consider the
polynomial Xp − t ∈ F [X]. In the splitting field, if factors into

Xp − t = (X − p
√
t)p.

We want to say that a polynomial has distinct roots. But there might be two
or more non-isomorphic splitting fields, and one might have same roots while
the other have distinct roots. So we need the following theorem.

Theorem 14.1. Let f(x) ∈ F [x], and let F ↪→ E be a splitting field, and sup-
pose that you have another splitting field F ↪→ Ẽ. Then there is an isomorphism
E ∼= Ẽ.

Proof. We prove this by induction. Let f(x) = g1(x) · · · gk(x) and x∗ ∈ E be a
root of f(x). In Ẽ, the polynomial f(x) will split into

f(x) = (x− r1) · · · (x− rn),

and we should map x∗ to some ri. Suppose that g1(x∗) = 0. In Ẽ there should
be some r1 such that g1(r1) = 0. Then we construct

F [x]/g1(x)F [x]→ F (r1) ⊂ Ẽ
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and the elements 1, x∗, (x∗)2, . . . , (x∗)deg g1−1 will be linearly independent in

the left side, while 1, r1, r
2
1, . . . , r

deg g1−1
1 will be linearly independent in the

right side. So we construct a isomorphism F [x]/g1(x)F [x]→ F (r1) by sending
x∗ 7→ r1. Now if we let F̃ = F [x]/g1(x)F [x] = F (r1), the fields E and Ẽ are both
splitting fields of F̃ . Then we can inductively construct the isomorphism.

Definition 14.2. A polynomial f(x) ∈ F [x] is called separable if all its foots
(in a splitting field) are distinct.

14.2 The second counting argument

There are two counting proposition. One is Artin’s theorem. The other one is
this. This bounds the size of the group by the degree.

Theorem 14.3. Let E be a splitting field for a separable polynomial f(x) with
coefficients in F . Then [E : F ] = |AutF (E)|.

Proof. Again, we use induction on n−k, where n = deg f and f(x) = g1(x) · · · gk(x).
We prove the following more general formulation.

Suppose Ẽ is another extension field of F which contains a splitting field
of F . Then the number of embeddings of E into Ẽ is equal to [E : F ].

Let F̃ = F [x]/g1(x)F [x]. The the number of embedding of F̃ into Ẽ over
F is deg g1 = m, because an embedding is uniquely determined by the image
of x∗. (Note that the fact that g1 has distinct roots is used here.) Now fix any
embedding ϕj . Then

F̃ → ϕj(F̃ ) ⊂ Ẽ.

We identify the two field so that both E and Ẽ are extension fields of F̃ . Then
in the new field F̃ , the polynomial f(x) splits into

f(x) = (x− x∗)g̃1(x)g2(x) · · · gk(x).

Because this has smaller n− k, we can use the induction hypothesis.
Then the number of embeddings E ↪→ Ẽ over F̃ (ϕj(F̃ )) is [E : F̃ ]. Then

the number of all embeddings E ↪→ Ẽ over F is

[E : F̃ ][F̃ : F ] = [E : F ].

This shows that [E : F ] = |AutF (E)|.

14.3 Galois extension

There are three equivalent characteristics of a splitting field.

(i) E is a splitting field of a polynomial with coefficients in F .

(ii) For some finite subgroup of G of Aut(E), the field F is the fixed field EG.

(iii) E is a finite extension field of F , which is both normal and separable.
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Definition 14.4. Let E be a extension field of F . The field E is normal over
F if the minimum (monic) polynomial for any element of E with coefficient in
F splits in E. The field E is separable over F if the minimum polynomial is
separable, i.e., all roots are distinct. If E is both normal and separable over F ,
then it is called Galois over F .

We will prove this next class.
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You start out with a field F and a splitting field for a separable polynomial. (The
theory started out with no condition on separability.) The main point is that
the splitting field is unique, before induction. The main trick is that you can
generally construct F [x]/f(x)F [x]. After we have that it is unique, we can say
something about separability. You need separability because you want to count
things. The first thing is the dimension of E over F , and the second thing is the
number of automorphisms of E over F . Then you have [E : F ] = |AutF (E)|.
You want to make a correspondence between intermediate fields and subgroups,
and one inclusion is obvious. The other inclusion requires these countings.

15.1 Three equivalent definitions of Galois extensions

We pick up from what we left of last time.

Theorem 15.1. The three statements are equivalent.

(i) E is a splitting field of a separable polynomial f(x) over F .1

(ii) For a finite group G ⊂ AutE, the field F is the fixed field EG.

(iii) E is a separable, normal finite extension of F .

Proof of (i) ⇒ (ii). We have f(x), and we need the group G. Because we have
f(x), we have AutF (E). We use this group as G. Of course, we have to check.
Let F ′ = EG, and we want to show that F = F ′. By definition, F ⊂ F ′, because
all automorphisms of G fixes F .

Now we use the counting. The second counting tells us that [E : F ] =
AutF (E), and because F ⊂ F ′ ⊂ E, the field E is a splitting field over F ′. So
again, [E : F ′] = AutF ′(E). But let us look at AutF ′(E). This is in AutF (E),
because F ′ is bigger than F . On the other hand, every element of AutF (E)
fixes F ′, so it follows that AutF ′(E) = AutF (E). Hence

[E : F ′] = |AutF ′(E)| = |AutF (E)| = [E : F ].

By the tensor product thing, we have [E : F ′][F ′ : F ] = [E : F ]. But because
[E : F ′] = [E : F ], we see that [F ′ : F ] = 1. Therefore, F ′ = F .

Proof of (ii) ⇒ (iii). Given a finite group G inside Aut(E), we want to show
that E it is separable and normal over F = EG. Let ξ ∈ E \F , and we want to
show that the minimal polynomial fξ(x) has all roots in E, and that they are
distinct. The trick is to produce another polynomial by Artin’s technique and
compare to fξ(x).

The group G acts on ξ to produce the orbit {γξ} for γ ∈ G. And we can
consider the stabilizer subgroup

Gξ = {γ ∈ G : γξ = ξ}.
1No irreducibility is used, because we want E to be also a splitting field for f over K for

any F ⊂ K ⊂ E.
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Then G is the disjoint union

G =
⋃

1≤j≤m

γjGξ

for some γ1, . . . , γm ∈ G, and moreover the orbit is

{γξ} = {γ1ξ, . . . , γmξ}.

We now form the polynomial gξ(x) from the elementary symmetric functions of
elements in the orbit Gξ, i.e.,

gξ(x) = (x− γ1ξ) · · · (x− γmξ) ∈ F [x].

Then gξ(x) is separable, and al the roots are in E. All the elements in the orbit
are in fξ(x) because fξ ∈ F [x], and hence gξ(x) divides fξ(x). But because
fξ(x) is irreducible, we see that fξ(x) = agξ(x) for some a ∈ F \ {0}. This
shows that the extension is normal and separable.

Lastly, Artin’s theorem shows that the extension is finite. This finishes the
proof.

Proof of (iii) ⇒ (i). Let ξ1, . . . , ξ` be a basis, so that E = Fξ1 + · · · + Fξ`.
Consider gξk be the minimal polynomial of ξk. Let

f(x) = gξ1(x) · · · gξk(x),

and delete all duplicates. Then we get a separable polynomial. The splitting
field of F over f(x) shall be E.

15.2 Some comments about normality

Let E/F be a Galois extension. By this, I mean that E is separable, normal,
and finite over F . If we have a intermediate F ⊂ K ⊂ E, we know that if E is
Galois of F , then E is also Galois over K. But is K Galois over E?

You want to imitate the argument in (ii) ⇒ (iii) to show that K is normal
over F , but the big problem is that the orbit of some element in K might get
out of K. Then you would ask, “Is γ(K) ⊂ K for all γ ∈ G = AutF (E) =
Gal(E/F )?” This condition is called the invariance of K under G.

Proposition 15.2. The extension K/F is Galois if and only if G = AutF (E)
maps K to K. And this is true if and only if AutK(E) is normal in G.

We shall prove this claim. This is part of the Fundamental theorem of Galois
theory.

15.3 Fundamental theorem of Galois theory

We are now ready to state the theorem
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Theorem 15.3 (Fundamental theorem of Galois theory). Let E/F be a Galois
extension, i.e., E is a splitting field of some separable polynomial with coeffi-
cients in F . Let G = AutF (E). Let

H = {H : H is a subgroup of G},

and let
K = {K : K is a field with E ⊂ K ⊂ F}.

Then there is a correspondence between H and K, which is natural in the fol-
lowing sense: for H ↔ K, we have

H = AutK(E), K = EH .

Moreover, [E : K] = |K| and |G|/|H| = [K : F ]. Furthermore, H is normal G
if and only if K/F is Galois.

Proof of the first direction of correspondence (group → field → group).
Let E be a field, and G be a finite subgroup of Aut(E). Let F be the fixed field
F = EG. We want to prove that G = AutF (E). Note that I have removed the
base field to simplify the notation.

First, there is the trivial inclusion G ⊂ AutF (E), because by definition G
fixes F .

Now by Artin’s theorem counting, we have [E : F ] ≤ |G|. Since F is a fixed
field of some subgroup, we see that E is a splitting field of some polynomial over
F . Hence we can use the second counting to get [E : F ] = |AutF (E)|. Hence

|AutF (E)| = [E : F ] ≤ |G|.

Together with the trivial inclusion, we see that G = AutF (E).

Proof of the second direction of the correspondence (field → group → field).
We start with the Galois extension E/F , and let F ⊂ K ⊂ E. LetG = AutK(E)
and L = EG. We want to show that K ⊂ L. Again, we have the trivial inclusion
K ⊂ L.

We have two Galois extensions E/K and E/L. The second one is Galois
since K ⊂ L ⊂ E. Using the second counting, we see that

[E : L] = |AutL(E)|, [E : K] = |AutK(E)|.

But because L = EG and G = AutK(E), from the first part of correspondence
we have, we know that AutL(E) = G = AutK(E). Hence [E : L] = [E : K],
and therefore we get L = K.

Now we need to show the last sentence of the theorem; that H is normal in
G if and only if K/F is Galois. We will do this next time.
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There will be four questions in the midterm: two questions in linear algebra,
and two questions in Galois theory.

16.1 Wrapping up Galois theory

If E/F is Galois, and F ⊂ K ⊂ E is an intermediate subfield, then E/K is
automatically Galois. But the question is when K/F is also Galois.

Theorem 16.1. An intermediate field K is Galois over F if and only if AutK(E)
is normal in AutF (E).

Proof. By Galois theory, the field K is the fixed field of AutK(E) = H. First
assume that K is Galois over F . Then we need to show that for any γ ∈ G,
the conjugate γHγ−1 is in H. Consider any x ∈ K. Because K is an Galois
extension of F , the map γ−1x should be in K.2 Then H fixes K, so then γ
turns it back to x. So γHγ−1x = x. Hence H is normal in G.

(Siu skipped the other direction.)

16.2 Solvability of the polynomial with degree n

So let us get back the the solvability of a general degree n polynomial. Since
F (x1, . . . , xn) is Galois over F (σ1, . . . , σn), we know that they are all fixed fields
of some groups.

F0 = F (σ1, . . . , σn) = F (x1, . . . , xn)Sn=G0

∩
F1 = F (x1, . . . , xn)G1

∩
...
∩

Fj = F (x1, . . . , xn)Gj

∩
Fj+1 = F (x1, . . . , xn)Gj+1

∩
...
∩

F (x1, . . . , xn)Gq

In each step, Fj+1 is an extension field of Fj by adjoint the root of Xdj − aj .
For instance, if we let Fj+1 = Fj(ξj), then aj = ξ

dj
j ∈ Fj . That is, Fj+1 =

Fj [X]/(Xdj − aj)Fj [X]. Assume that F contains all djth roots of unity. Then

2This is Artin’s technique. You look at the orbit of x under G, which is
⋃
γk∈G γkx. Then∏

(X − γkx) is the minimal polynomial of x.
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all roots of Xdj − aj is in Fj+1 and hence Fj+1 is just the splitting field. This
means that Fj+1 should be Galois over Fj . We can even claim the following.

Claim. Assume that dj is prime. The extension from Fj to Fj+1 is taking the
djth root if and only if GalFj

(Fj+1) is cyclic of order dj.

Proof. There are two directions. We have assumed that the ground field F
contains the dth root of unity. Then if you have a root ξ of Xd−a then you get
all the roots by the form ωkξ. Let γk be the automorphisms sending X 7→ ωkX.
Then γk ◦ γl maps X to ωk+lX. So this shows that the Galois group is cyclic.

The other direction uses Lagrange resolvent. We convert the Galois group
action to multiplication by root of unity. Let η be a generator. Then the all the
automorphisms are 1, η, . . . , ηd−1. Take one element ξ ∈ E \F . Then F (ξ) = E,
because [E : F ] is prime and [F (ξ) : E] > 1. Then ξ, η(ξ), η2(ξ), . . . , ηd−1(ξ)
shall be the basis of F over E. Define

ζ` =

d−1∑
j=1

(ω`)jηj(ξ)

for 0 ≤ ` ≤ d− 1. This is the same thing we did for the cubic formula. Then

η(ζ`) =

d−1∑
j=1

(ω`)jηj+1(ξ) = ω−`ζ`.

Then (ζ`)
d is invariant under η, and hence (ζ`)

d is in the field Fj .

So solvability of a polynomial of degree n is equivalent to the existence of
the tower of groups

{1} = Gq ⊂ · · · ⊂ G2 ⊂ G1 ⊂ G0 = Sn

such that Gj+1 is normal in Gj and Gj/Gj+1 is the cyclic group of prime order.
There is an easier formulation using abelian groups. If H is a finite abelian

group, then it can be represented as

H =
⊕
j

(Z/p`jj Z).

Then you can easily find a subgroup H ′ ⊂ H such that H/H ′ is cyclic of prime
order. This shows that you can replace the condition “Gj/Gj+1 is the cyclic
group of prime order” with “Gj/Gj+1 is an abelian group.”

You can further shorten the tower by doing the following. You can consider
the minimal Gj+1 ⊂ Gj such that Gj/Gj+1 is abelian. This minimal subgroup
Gj+1 is actually the commutator subgroup of Gj , which is the group generated
by elements of form aba−1b−1 with a, b ∈ G. So such a tower exists if and
only if the commutator of the commutator of the commutator of the · · · of the
commutator is {1}.

Suppose that n ≥ 5. First, if you consider the commutator subgroup of Sn,
it is An.
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Theorem 16.2. For any n ≥ 5, the group An has no proper normal subgroup
except for {1}.

Proof. Suppose that there is a proper normal subgroup N of An. Consider the
“least disturbing permutation” inside N , that is the permutation with most
fixed point (except for the identity). We will first show that this is σ = (123).
Apply the inner automorphism of An on σ, and then we get all 3-cycles. Then
N should contain all permutations generated by 3-cycles. But using “ladder
diagrams,” we see that every even permutation is generated by 3-cycles. This
contradicts our assumption that N is proper in An.

Now all we are left with is proving that σ indeed is a 3-cycle. It is obvious
that σ is a composition of distinct cycles. Then σ should either have a cycle
with at least 3 elements, or have at least 2 disjoint transposition. We claim
that if σ is not a 3-cycle, then there is a less disturbing permutation. It can be
done by observing a thing like τστ−1σ−1 for like τ = (345). I will check this
later.

16.3 Digression: Primitive element theorem

There is a recipe for computing the Galois group. Suppose that E/F is a
Galois extension and let [E : F ] = n. Also for convenience, assume that F
has characteristic zero. We want to reduce it into a simple extension. This
means that one step is enough to construct F . That is, there exists a ξ ∈ E
such that E = F (ξ). Then for the minimal polynomial fξ(x) of ξ, the field
E = F [X]/fξ(X)F [X]. This kind of element is called primitive.

The idea is roughly the following. Suppose that E = F (ξ1, . . . , ξk). Then

there is a sufficiently “generic” choice of a1, . . . , ak such that ξ =
∑k
j=1 ajξj is

a primitive element. This is possible, because F is infinite.
Now you can compute the Galois group from this using this fact. Besides ξ,

there exists other roots, and let them by ξ = ξ1, . . . , ξn. We want ξj = hj(ξ)
to be true for some hj(X) ∈ F [X]. Let G = Gal(E/F ) and then we will have
|G| = n = [E : F ]. Let G = {γ1, . . . , γn}, where γ1 = idE and γj(ξ) = ξj . Then
γj corresponds to the polynomial hj . That is, you can compute the Galois group
by composing the polynomial hj modulo f(x).
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17 October 29, 2015

We continue on our discussion of the insolvability of polynomial of degree n ≥ 5.
Using Galois theory, we showed that a solution corresponds to a tower of groups

{1} = Gq ⊂ · · · ⊂ Gj+1 ⊂ Gj ⊂ · · · ⊂ G1 ⊂ G0 = Sn

where Gj+1 is normal in Gj and Gj/Gj+1 is cyclic of order dj . The the question
reduces to whether Sn is solvable or not. In retrospect, we haven’t used a lot of
tricks. We used some estimates, and the trick of extending fields.

17.1 Insolvability of Sn

We were showing that

Theorem 17.1. An is simple, i.e., has no proper normal subgroup other than
1, for n ≥ 5.

Proof. Suppose the contrary, and assume that there is a normal subgroup {1} 6=
N 6= An. Note that An is generated by 3-cycles. This is because every cycle is
a composition of a even number of transposition, and (13)(24) = (234) · (123).

If N contains a 3-cycle, then it contains all 3-cycles. This is because if ρ is
a 3-cycle then σρσ−1 can be any other 3-cycle for σ ∈ An. Then N would just
be An. Therefore it suffices to show that N contains a 3-cycle.

Consider the 1 6= σ ∈ N with the most number of fixed points. Obviously,
σ cannot be a 4-cycle since a 4-cycle is not in An. This means that σ will have
the form of either

(123 · · · ) · · · or (12)(34) · · · .

Let τ = (345). Let us look at the permutation τστ−1σ−1. If you write it out,
you will see that it is not the identity, and that it has an additional fixed point.
So σ should be the 3-cycle, and then we arrive at a contradiction.

Then people started to look at subclass of quintic polynomials which are
solvable. But it is not simple, and I don’t want to get into this topic.

17.2 Galois group of xp+1 − sx− t
This was problem 8 in the problem set.

Problem 8. Let F0 be a field of characteristics p (where p is an odd prime)
and F = F0(s, t) where s and t are two independent indeterminates over F0.
Let f(x) ∈ F (x) be the polynomial xp+1 − sx − t with coefficients in F . Show
that the Galois group of the polynomial f(x) over F is isomorphic to the group
of all linear fractional transformations

x 7→ ax+ b

cx+ d
(where a, b, c, d ∈ Z/pZ with ad− bc 6= 0)

on Z/pZ.
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Consider the field F = (Z/pZ)(s, t). Our goal is showing that the Galois
group, which acts on F , is isomorphic to some group which acts on Z/pZ. So
we need to bring F down to Z/pZ. One important trick is that if you want to
show that α ∈ Z/pZ then you can alternatively show αp−1 = 1.

Let me try to explain the geometry.

• There is the Euclidean geometry. In this geometry, lengths are fixed, so
there is only rigid motion, and there are only the translations x 7→ x+ `.
For any two points p and q, the length p − q is invariant. The frame of
reference is defined by only 1 point.

• There is also the affine geometry. You can translate, but also rescale. So
the translations look like x 7→ ax+ b. In this case, the ratio (q−p)/(r−p)
is invariant. The frame of reference is defined by 2 points.

• In projective geometry, the maps are factional translations. This is called
projective geometry, because it is analogous to projective a line to another
line from a light source. The cross ratio

q − s
r − s

/
q − p
r − p

=
(q − s)(r − p)
(q − p)(r − s)

is preserved in this case. The frame of reference is defined by 3 points in
this case.

You can actually show that preserving the cross ratio is equivalent to the
transformation being a linear fractional transformation. That is,

x− p
x− q

/
r − p
r − q

=
x̃− p̃
x̃− q̃

/
r̃ − p̃
r̃ − q̃

is equivalent to

x̃ =
ax+ b

cx+ d

for some a, b, c, d.
Let γ be a automorphism of the splitting field. Because an extension E of

F is also a vector space over F with degree n = [E : F ], then you can consider
γ as a matrix. This gives a injection

G ↪→ GLn(F ).

But this looses a lot of information, because it does not contain any information
about multiplication. So there is another embedding

G ↪→ Sn.

We do a similar thing to embed it into the group of linear fractional transfor-
mations.

Let α, β, γ be three roots of xp+1 − sx − t = 0. We want to mirror the
action of the Galois group onto Z/pZ. We use the cross-ration as some kind of
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coordinate. We already have some frame α, β, γ and a automorphism σ changes
the frame to σ(α), σ(β), σ(γ). The coordinates change by the map

x− α
x− β

/
γ − α
γ − β

7→ σ(x)− σ(α)

σ(x)− σ(β)

/
σ(γ)− σ(α)

σ(γ)− σ(β)
.

That is, the σ acts on the coordinates in the same manner.
But actually, the coordinates are in Z/pZ for roots x. This can be proved by

computing. If γp+1−sγ−t = 0 and αp+1−sα−t = 0 then γp+1−αp+1 = s(γ−α).
Likewise, we have γp+1 − βp+ 1 = s(γ − β). Then

α(γp−1 +γp−2α+ · · ·+γαp−2 +αp−1) = β(γp−1 +γp−2β+ · · ·+γβp−2 +βp−1).

Then because we are working in characteristic p, we have

α(γ − α)p−1 = β(γ − β)p−1

and (
γ − α
γ − β

)p−1

=
β

α
.

This shows that the (p − 1)th power of the cross ratio is always 1, and hence
the cross ratio is always inside Z/pZ. This brings down F to Z/pZ.

Why care about the polynomial xp+1 − sx − t? It started before Abel and
Galois. When solving the equation xn − σ1x

n−1 + · · · + (−1)nσn = 0, you can
get rid of one term by translating x 7→ x + a. But this introduces only one
degree of freedom. So people started to do other translations, and somehow got
down to x5 − sx− t. This is why we care about such things.

17.3 Constructing a regular polygon

You are allowed to use only an unmarked straightedge and compass. We want
to construct a regular n-gon, that is, all the vertices. Then getting to a point
by only a ruler and a compass is actually considering the tower of fields, where
only square roots are allowed. Let z = e2πi/17. You want to solve the equation
z17 = 1 using only square roots. How will you be able to do this?

This is an alternative formulation. Let F0 = Q, and let F1 = F0[X]/(X2 +
a0X + b0)F0[X]. Then let F2 = F1[X]/(X2 + a1X + b1)F1[X]. We keep con-
structing extension fields until z is in Fq. The problem is constructing the
intermediate fields.

Gauss’s idea is to start from z17 = 1. Then we have

z16 + z15 + · · ·+ z + 1 = 0.

And then you break z16 + · · · + z into two parts of eight terms such that the
product is inside Q. His idea is breaking up into

z30

+ z32

+ · · ·+ z314

and z31

+ · · ·+ z315

.

Then you break up each into two parts, and then do the similar things. I will
finish doing this next time.
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There was an in-class midterm this day. There were 4 problems and we were
supposed to solve them in one and a half hour.

18.1 Midterm

This was the hardest problem in the exam.

Problem3. (Wronskian and Linear Dependency) Let F be a field of char-
acteristic zero and let x be an indeterminate. Define the F -linear operator
D : F (x) → F (x) by first defining D as an F -linear map form F [x] to F [x]
which sends

P (x) =
n∑
j=0

ajx
j with a0, . . . , an ∈ F

to

(DP )(x) =

n∑
j=1

jajx
j−1

and then defining

D

(
P

Q

)
=

(DP )Q− (DQ)P

Q2

for P (x), Q(x) ∈ F [x] with Q(x) being nonzero element of F [x]. Assume as
known the well-definedness of D : F (x) → F (x) described above and assume
also as known its derivation property that

D(f1 · · · fn) =

n∑
j=1

f1 · · · fj−1(Dfj)fj+1 · · · fn

for f1, . . . , fn ∈ F (x).
(b) Let n ≥ 2 be an integer. Let

f = (f1, . . . , fn) ∈ F (x)⊕n

and
Dkf = (Dkf1, . . . , D

kfn) ∈ F (x)⊕n

for 1 ≤ k ≤ n− 1. Show that the set f1, . . . , fn in F (x) is F -linearly dependent
if and only if

f ∧Df ∧ · · · ∧Dn−1f

is the zero element of
∧
n(F (x)⊕n), where the exterior product

∧
n(F (x)⊕n) is

taken with F (x)⊕n regarded as a vector space of dimension n over the field
F (x).

3This was Problem 1 in the exam. Part (a) was more or less same as the case n = 2.
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Today I will continue the discussion on tower of fields.

19.1 Gauss’s straightedge-and-compass construction of a
regular polygon of 17 sides

The main point of the construction is to look at z = e2πi17. The rules are to
first take 0 and 1. and rational functions of the points, and square roots. That
is, we need to find a field extension

Fq = Fq−1(aq−1)
∪
...
∪

Fj = Fj−1(aj−1)
∪
...
∪

F1 = F0(a0)
∪

F0 = Q

such that z ∈ Fq.
Because z17 = 1 and z 6= 1, we have 1 + z + · · ·+ z16 = 0. That is,

z + z2 + · · ·+ z16 = −1.

We break this into two pieces x1 and x2 such that x1 · x2 is computable in Q.
Then x1 and x2 will be the roots of a quadratic polynomials and hence will be
in a degree 2 extension. Next break x1 = y1 + y2 and x2 = y3 + y4 and etcetera.

Gauss realized that if you break it up into z+z3 + · · ·+z15 and z2 + · · ·+z16

it doesn’t work. So he did it in a multiplicative way to

z30

+ z32

+ · · ·+ z314 and z31

+ z33

+ · · ·+ z315

by observing that {3`} is exactly (Z/17Z)∗.
We will first do it by brute force. It is not that bad. We have

x1 =

3∑
k=0

(
z32k

+ z−32k)
and x2 =

3∑
k=0

(
z32k+1

+ z−32k+1)
.

Checking the numbers, we see that

x1 = Z1 + Z8 + Z4 + Z2 and x2 = Z3 + Z7 + Z5 + Z6
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where Zj = zj + z−j . Because ZjZk = Zj+k + Z|j−k|, we can multiply the two
things and get

x1x2 = (Z1 + Z8 + Z4 + Z2)(Z3 + Z7 + Z5 + Z6)

= (Z4 + Z2) + (Z6 + Z5) + (Z7 + Z1) + (Z5 + Z1)

+ (Z8 + Z6) + (Z2 + Z1) + (Z6 + Z3) + (Z8 + Z5)

+ (Z6 + Z4) + (Z4 + Z3) + (Z8 + Z1) + (Z7 + Z3)

+ (Z7 + Z5) + (Z3 + Z2) + (Z7 + Z2) + (Z8 + Z4)

= −4

and you can see that every term appears four times. Hence x1 and x2 are the
roots of X2 +X − 4 = 0 and then X = (−1 +

√
17)/2.

We now break x1 to y1 + y2. We let

y1 =

1∑
j=0

Z34j and y2 =

1∑
j=0

Z32(2j+1) .

Then actually y1 = Z1 +Z4 and y2 = Z8 +Z2. The sum is something we already
know. The product is

y1y2 = (Z1 + Z4)(Z8 + Z2)

= (Z8 + Z7) + (Z5 + Z4) + (Z3 + Z1) + (Z6 + Z2) = −1.

We see that y1 and y2 are the roots of X2 − −1+
√

17
2 X − 1 = 0.

Likewise, we can let y3 = Z3 + Z5 and y4 = Z7 + Z6 and get

y3y4 = Z7 + Z4 + Z5 + Z2 + Z8 + Z3 + Z6 + Z1 = −1.

Now y1 = Z1 + Z4 and Z1Z4 = Z5 + Z3 = y3. This shows that Z1 is
computable, and then Z1 = z + z−1 and thus z is computable.

In general, for this method to work, the prime p should be of the form
p = 2n + 1. If n = k` where ` is odd, then one can factor

p = 2k` + 1 = (2k + 1)(· · · ).

So ` should be just 1 and thus p = 22k

+ 1.
We can do this with less brute force. We have

1 ≡ 3− 2 ≡ 31 − 314 ≡ 31 + 36 (mod 17).

The claim is that every number is covered in the form 3odd + 3even exactly four
times. This can be checking that 1 is covered exactly four times and multiplying
3k to see that 3k is covered exactly four times.

So how do you actually add, subtract, multiply, divide complex numbers with
straightedge and compass? Adding and subtracting is just constructing paral-
lelograms; multiplying and dividing is just drawing similar triangles. Lastly, to
get the square root, you can just consider the circle with diameter 1 + a and
draw a perpendicular line to obtain the length

√
a.
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19.2 Lefschetz decomposition

This is extremely important in algebraic geometry and differential geometry.
But the argument is purely linear algebraic.

We start out be a finite-dimensional C-vector spaces with a Hermitian inner
product. The vector space V can be regarded as an R-vector space together
with the (almost) complex structure J .

The complex structure of a real vector space is a R-linear map J : V → V
such that J2 = −1. Then the scalar multiplication is defined by (i, v) 7→ J(v).
We can then look at the eigenspace of J for eigenvalues i and −i when we go
from V to V ⊗R C. A decomposition

V ⊗R C =
1

2
(I − iJ)(V ⊗R C) +

1

2
(1 + iJ)(V ⊗R C)

into the eigenspaces follows. The maps 1
2 (1 + iJ) and 1

2 (1− iJ) are projection
maps.

The space V ⊗R C has two complex structures. The multiplication by
√
−1

can be interpreted as a J ⊗R (1C) and (1V )⊗R i. This is not surprising, because
it is the tensor product. But the surprising thing is that the two complex
structures are equal on the eigenspace

1

2
(I − iJ)(V ⊗R C).

So in the literature, people just write

V ⊗R C = V ⊕ V̄ .

There was a Hermitian inner product. Let v ∈ V and consider the norm
‖v‖. Then the square of the norm can be written as ‖v‖ = (v, v) for some inner
product if and only if the parallelogram law

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2

holds. A Hermitian inner product also satisfies (iu, v) = i(u, v) and (u, v) =
(v, u).

At first, V was a C-vector space. We apply the forgetful functor to forget
the C-vector space structure and consider it as a R-vector space, but keep the
complex structure J . Then by making it to V ⊗R C again, we can now consider
eigenspaces. If (·, ·) was a Hermitian inner product on V , then we can extend
(·, ·) by C-bilinearity to V ⊗R C.

Now we have ∧∗(V ⊗R C) =
∧∗(V ⊕ V̄ )

where
∧∗ =

⊕
p

∧
p. The wedge product V

∧
V̄ is contained in the space

∧
2(V ⊕

V̄ ).



Math 55a Notes 75

20 November 10, 2015

We were looking at Lefschetz decomposition. Normally it is not part of the ab-
stract algebra curriculum, but it is important in algebraic geometry and complex
analysis in higher dimension.

20.1 Setting of the Lefschetz decomposition

We set V as a vector space over R with a complex structure J ∈ HomR(V, V )
with J2 = −1. This is not that much, and the important thing is the inner
product (·, ·)V : V × V → R which is compatible with J . Under this situation,
we have a matrix, which is nilpotent, on a finite dimensional vector space, which
is the exterior algebra V . And we ask for a normal form for the matrix, which
is compatible with both the bidegrees of the exterior algebra of V ⊗C. Let me
explain what this means.

If you have a vector space V over F , and another W over F , we can think of
the tensor product V ⊗F W . If Φ : V → V and Ψ : W →W are both F -linear,
then the map Φ⊗F Ψ : V ⊗FW → V ⊗FW defined by the commutative diagram

V ∗ W

V ∗ W

f

ΨΦ∗

(Φ⊗Ψ)(f)

or alternatively,
(Φ⊗Ψ)(v ⊗ w) = Φ(v)Ψ(w).

Now if we have V ⊗R C, there are two complex structures JV defined on V
and JC defined on C, which is multiplication by i. Now we can extend the map
JV on V to JV ⊗ IdC : V ⊗ C→ V ⊗ C. Then we will have

(JV ⊗ IdC)2 = − IdV⊗C

and likewise, we have another complex structure

(IdV ⊗JC)2 = − IdV⊗C .

Also, if we let π+ = 1
2 (1− iJ) and π− = 1

2 (1 + iJ) we have the decomposition

V ⊗ C = Imπ+ ⊕ Imπ−

where π+ and π− are projections. The spaces are the eigenspaces of JV . On the
space Imπ+, the two complex structures JV ⊗ IdC and IdV ⊗JC agree. Because
there is a injection V ↪→ V ⊗C and a projection π+ : V ⊗C→ Imπ+, we get a
bijection V → Imπ+. Because, the complex structures agree, this can be seen
as a isomorphism of complex vector spaces. So we write π+ ' V . Likewise, we
can write π− ' V̄ . This is why people write just

V ⊗ C = V ⊕ V̄ .
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Now from this we get∧k(V ⊗ C) =
⊕
p+q=k

((
∧pV )

∧
(
∧qV )).

We define the exterior algebra as

∧∗(V ⊗ C) =

2n⊕
k=0

∧k(V ⊗ C) =
⊕

0≤p,q≤n

(
∧pV )

∧
(
∧qV̄ ).

20.2 Inner product on the complexified vector space

Given an inner product (·, ·)V : V × V → R, we can extend it by C-bilinearity
to

(·, ·)V⊗C : (V ⊗ C)× (V ⊗ C)→ C.

Definition 20.1. An inner product (·, ·)V is said to be compatible with J if

(Ju, Jv)V = (u, v)V .

The extended inner product (·, ·)V⊗C can be broken up into 4 pieces by the
decomposition

(V ⊗ C)× (V ⊗ C) = (V × V )⊕ (V × V̄ )⊕ (V̄ × V )⊕ (V̄ × V̄ )

to (·, ·)V,V , (·, ·)V,V̄ , (·, ·)V̄ ,V , and (·, ·)V̄ ,V̄ .
If we have the compatibility condition, we will have

(ũ, ṽ)V,V = (Jũ, Jṽ)V,V = −(ũ, ṽ)V,V .

Then we have (ũ, ṽ)V,V for any ũ, ṽ, and hence (·, ·)V,V ≡ 0. Likewise, we
will have (·, ·)V̄ ,V̄ ≡ 0. Moreover, by symmetry of the inner product, we have
(ũ, ṽ)V,V̄ = (ṽ, ũ)V̄ ,V . Then we can define a Hermitian inner product by

(w1, w2) = (w1, w̄2)V,V̄

for w1, w2 ∈ V . I will assign verifying that it is a Hermitian as a homework
assignment.

Definition 20.2. An orthonormal basis for a real vector space V is said to be
compatible with J if it is of the form

ξ1, Jξ1, ξ2, Jξ2, . . . , ξn, Jξn,

where dimR V = 2n.

There always exists an orthonormal basis. We can actually construct it
inductively. First pick any ξ1 of unit length, and automatically we have Jξ1.
Then because

(ξ1, Jξ1)V = (Jξ1, J(Jξ1))V = (Jξ1,−ξ1)V = −(ξ1, Jξ1)V ,
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we see that ξ is perpendicular with Jξ1. You then pick ξ2, and etcetera.
If ξ1, Jξ1, . . . , ξn, Jξn is a basis, we can easily construct a basis of V ⊗C from

it. If we project it, we get

ξ1 − iJξ1, ξ2 − iJξ2, . . . , ξn − iJξn

in Imπ+, and one can check that it is a orthogonal basis of Imπ+ by calculating

(ξk − iJξk, ξj + iJξj)V⊗C.

So we write
ej = ξj − iJξj , ēj = ξj + iJξj .

Let

ω =
i

2

n∑
j=1

ej ∧ ēj ∈ V
∧
V̄ .

Why is there a factor i/2? This is because everything started from differen-
tial geometry. If zj = xj +

√
−1yj then in the V = ⊕nj=1Cdzj we have

i

2
(dzj ∧ dz̄j) =

i

2
((dxj + idyj)

∧
(dxj − idyj)) = dxj ∧ dyj .

20.3 Lefschetz operator and Hodge star operator

Back to our discussion, the multiplication by ω gives a C-linear map

L :
∧∗(V ⊗ C)→

∧∗(V ⊗ C).

This is the Lefschetz operator.4 This is clearly nilpotent because if you wedge
ω many times it goes to zero.

Let us try to actually try the decomposition. We have this

L = Lefschetz operation

which is the (exterior) multiplication by ω. The exterior algebra is∧∗(V ⊗ C) =
⊕

0≤p,q≤n

(
∧pV )

∧
(
∧qV̄ ),

and we will just call this component (p, q). Because L is nilpotent, we see that
all the eigenvalues of L are 0. Also, L sends (p, q)→ (p+ 1, q + 1).

There are two tools we can use. The first one is the contraction operator Λ.
This operator, which we have defined many weeks before, sends (p+ 1, q+ 1)→
(p, q). The useful thing about this contraction is that the commutator is

[L,Λ] = c.

4The motivation for this whole operator is from algebraic geometry. If we have a variety
but is too complicated, we can cut it with a hyperplane. This is same as introducing a new
linear equation. The square of this linear equation can be roughly regarded as ω.
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The other tool is the Hodge star operator for a real vector space V with an
inner product, assumed that there is a choice of orientation. If e1, . . . , em is a
orthonormal basis of V , then

∧
mV ' R. The orientation is a element in this

space with unit length, for instance e1∧· · ·∧em. Then the Hodge start operator
∗ :
∧
pV →

∧
m−pV is defined by

(ϕ,ψ)(∗1) = ϕ ∧ (∗ψ),

where ∗1 is the orientation.
Now let us consider the whole thing in the context of our setting. If dimR V =

2n = m then the star operator ∗ :
∧
kV →

∧
2n−kV is defined using the orien-

tation

( i2e
1 ∧ ē1) ∧ · · · ∧ ( i2e

n ∧ ēn) = (ξ1 ∧ Jξ1) ∧ · · · ∧ (ξn ∧ Jξn) ∈
∧2nV.

By C-linearity, we can extend this to ∗ :
∧
k(V ⊗C)→

∧
2n−k(V ⊗C) and then

∗ will send
∗ : (

∧pV )
∧

(
∧qV̄ )→ (

∧n−qV )
∧

(
∧pV̄ ).

The contraction Λ is conjugate to L (up to some normalizing factor by the
Hodge star operator. That is,

Λ = (const) ∗−1 L ∗ .

It follows from this fact that the (generalized) eigenspaces for L are the same as
those for Λ. This makes things much easier, because Λ is simpler. The elements
in the kernel Ker Λ are called the primitive elements.

20.4 Statement of the Lefschetz decomposition

Now we finally get to the Lefschetz decomposition. The space

∧∗(V ⊗ C) =

2n⊕
k=0

∧k(V ⊗ C)

has midpoint n. First thing to observe is that if k > n then there is no primitive
element in

∧
k(V ⊗ C). This is because among the indices of the

∧
pV part an

the indices of the
∧
qV̄ part there should be some index in common.

Let m = (k − n)+ = max{k − n, 0}. Then any ϕ ∈
∧
k(V ⊗ C) can be

decomposed into

ϕ =
∑
`≥m

L`ϕ`

where ϕ` ∈
∧
k−2`(V ⊗ C) is primitive. This is the statement of the theorem.

The exterior algebra breaks up into

∧∗(V ⊗ C) =

2n⊕
k=0

∧k(V ⊗ C) =
⊕

0≤p,q≤n

∧p,q.
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Then we have the Hodge diamond:∧
0,0∧

1,0
∧

0,1∧
2,0

∧
1,1

∧
0,2

· · · · · ·∧
n,0 · · ·

∧
0,n

· · · · · ·∧
n,n−2

∧
n−1,n−1

∧
n−2,n∧

n,n−1
∧
n−1,n∧

n,n

This is just a visualization of what the operators do on the space. The star
operator reflects the spaces with respect to the horizontal axes. Complex conju-
gation flips the diaper with respect to the vertical axes. The operator L moves
things down, and Λ moves things up.
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21 November 12, 2015

Before I start I ought to tell you about the final. It will be a take-home final
during the reading period.

21.1 Overview of Lefschetz decomposition

So we are doing this Lefschetz decomposition, and I posted the notes in great
detail. The setting, as I explained, is you start out with a 2n-dimensional
real vector space V . There are two additional structures: the almost complex
structure J : V → V for which J2 = −1, and an inner product (·, ·)V : V ×V →
R. The inner product should be J-invariant, i.e., (u, v)V = (Ju, Jv)V for any
u, v ∈ V . The Lefschetz decomposition is about the normal form for the linear
transformation defined by the inner product which is compatible with J .

In algebraic geometry, one of the important tools is the Lefschetz theorem.
There are two part: the theory of harmonic forms, and the linear algebra part.
But the hard part is the linear algebra, and we are doing this part.

The inner product is a kind of an operator. If you give two vectors u and v,
the inner product gives a scalar. Now the inner product

(u, v) 7→ (u, Jv)V

is skew-symmetric, and therefore it can be considered as an element of
∧

2V .
The multiplication with this element is the Lefschetz operator, and because it
shifts the dimension, it is considered as a map

∧∗V → ∧∗V .
Now we can extend this to L :

∧∗(V ⊗ C) →
∧∗(V ⊗ C). If m = 2n then

we would have Lm+1 = 0. So all eigenvalues would all be 0. We can also think
of generalized eigenspaces, by considering kerLν .

We also have another operation ∗ :
∧∗V → ∧∗V defined by

(φ, ψ)(∗1) = φ ∧ (∗ψ).

This sends ∗ :
∧
pV →

∧
2n−pV . This identifies ψ ∈

∧
pV with ∗ψ ∈

∧
2n−pV .

Suppose that we are using the orientation α1 ∧ · · · ∧ α2n, where α1, . . . , α2n is
an orthonormal basis. Then ∗ will send

α1 ∧ · · · ∧ αp 7→ αp+1 ∧ · · · ∧ α2n.

Now we have the construction operator Λ, and it is conjugate to L under ∗
by

Λ = (const) ∗−1 L ∗ .

So understanding the normal form of L is same as understanding the normal
form of Λ. But people like Λ better, so we call the elements of kernel of Λ the
primitive elements. The Lefschetz decomposition decomposes the base space∧∗(V ⊗ C) according to the eigenspaces of Λ.
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21.2 Notations and basic formulas

We are going to use the orientation

(ξ1 ∧ Jξ1) ∧ · · · ∧ (ξnJξn) = (
√
−1
2 e1 ∧ ē1) ∧ · · · ∧ (

√
−1
2 en ∧ ēn)

for ∗, where ej = ξj +
√
−1Jξj . Let A = (α1, . . . , αa) and B = (β1, . . . , βb) and

M = (µ1, . . . , µm) be disjoint ordered subsets of {1, 2, . . . , n}, we denote

eA = eα1 ∧ · · · ∧ eαa , ωM = eµ1 ∧ ēµ1 ∧ · · · ∧ eµm ∧ ēµm .

So for instance,
eA ∧ ēB ∧ ωM

is in
∧
p,q, where p = m+ a and q = m+ b. This notation is good for Λ and L,

but is bad for ∗.
To compute the ∗, we let Ap and An−p be a partition of {1, 2, . . . , n}, and

likewise let Bq and Bn−q also be a partition. For the basis elements, if we have
ϕ = eAp ∧ ēBq , we will get

∗ϕ = Cp,qe
Bn−q ∧ ēAn−p .

The difficult thing is determining the constant Cp,q. From the definition we
have

(ϕ,ϕ)(∗1) = ϕ ∧ ∗ϕ.

Because we have

(ej , ej)Herm = (ej , ēj)V = (ξj +
√
−1Jξj , ξj −

√
−1ξj) = 2,

we have, for the left hand side,

(ϕ,ϕ)(∗1) = 2p+q( i2 )(e1 ∧ ē1) ∧ · · · ∧ (en ∧ ēn).

Then for the right hand side, we have

ϕ ∧ ∗ϕ = eAp ∧ ēBq ∧ Cp,qeBn−q ∧ ēAn−p

= C̄p,q(−1)n(n−p) sgn

(
Ap An−p
Bq Bn−q

)
(−1)n(n−1)/2e1 ∧ ē1 ∧ · · · ∧ en ∧ ēn.

So after comparing, we get

Cp,q =
in

2n−(p+q)
(−1)

n(n−1)
2 +np sgn

(
Ap An−p
Bq Bn−q

)
.

Consequently we have

∗(eAp ∧ ēBq ) =
in

2n−(p+q)
(−1)

n(n−1)
2 +np sgn

(
Ap An−p
Bq Bn−q

)
eBn−q ∧ ēAn−p .
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Now let us apply ∗ to the habitat for L and Λ. We will have

∗(eA ∧ ēB ∧ ωM )

= (−1)
m(m−1)

2 +
n(n−1)

2 +n(a+m)+ab+ma+sb+
s(s−1)

2
in

2n−(a+b+2m)
(eA ∧ ēB ∧ ωS),

where A,B,M, S form a partition of {1, 2, . . . , n}. The horrible horrible sign
comes from switching the various things around.5

21.3 Relations between L, Λ, and ∗
Let us check that L∗ = ∗Λ. We apply both things to eA ∧ ēB ∧ ωM and check
that the results agree. We have

L ∗ (eA ∧ ēB ∧ ωM ) = (∗(eA ∧ ēB ∧ ωM )) ∧
(
i

2

n∑
j=1

ej ∧ ēj
)

=

m∑
j=1

(const)eA ∧ ēB ∧ ωS ∧ ωµj

where M = {µ1, . . . , µm}. On the other hand, we have

Λ(eA ∧ ēB ∧ ωM ) =

m∑
j=1

(eA ∧ ēB ∧ ωM−{µj})

and hence

∗(Λ(eA ∧ ēB ∧ ωM )) =

m∑
j=1

∗(eA ∧ ēB ∧ ωM−{µj})

=

m∑
j=1

(const)µj
(eA ∧ ēB ∧ ωS ∧ ωµj ).

One can write down the constants and check that they agree .
So we have Λ = (const) ∗−1 L∗. Because you have done it before in the

problem set, I skip the commutator part. We have

[Λ, L] = n− (p+ q)

if it acts on
∧
p,q.

21.4 Commutator of powers of Λ and L

Denote by Πk the projection map of
∧∗(V ⊗ C) to

∧
k(V ⊗ C). Then the

commutator of Λ and L can be written as

[Λ, L] =

2n∑
k=0

(n− k)Πk.

5Actually I am not so sure I’ve written down things right.
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We now look at the commutator of Λ and Lr. Because Λ and L do not commute,
there is a discrepancy, and it accumulates telescopically as

[Λ, Lr] =

r−1∑
`=0

Lr−`−1[Λ, L]L` =

r−1∑
`=0

Lr−`−1

( 2n∑
k=0

(n− k)Πk

)
L`

=

r−1∑
`=0

Lr−`−1

( 2n∑
k=0

L`(n− k)Πk−2`

)
= Lr−1

r−1∑
`=0

2n∑
k=0

(n− k)Πk−2`.

Note that we have ΠkL
` = L`Πk−2` because Π does nothing except projecting,

and L shifts the degree. Therefore we get

[Λ, Lr] =
2n∑
k=0

r(n− k − r + 1)Lr−1Πk.

Now we look at how ΛsLr acts on a primitive element ϕ in
∧
k(V ⊗C). From

what we have already, we see that

ΛsLrϕ = Λs−1ΛLrϕ = Λs−1(ΛLr − LrΛ)ϕ

= Λs−1[Λ, Lr]ϕ = r(n− k − r + 1)Λs−1Lr−1ϕ.

Then if r ≥ s, we will have

ΛsLrϕ = r(r−1) · · · (r−s+1)(n−k−r+1)(n−k−r+2) · · · (n−k−r+s)Lr−sϕ.

One conclusion we can draw from this formula is:

Proposition 21.1. There is no primitive element strictly below the middle row
of the Hodge diamond.

Proof. Suppose that there is a primitive element ϕ ∈
∧
k(V ⊗ C) with k > n.

Then letting s = r = n+ 1, we get

Λn+1Ln+1ϕ = (n+ 1)!(−k)(−k + 1) · · · (−k + n)ϕ.

Because there is not enough room, we have Ln+1ϕ = 0 and hence the right hand
side is zero. But the right hand side is nonzero.

Proposition 21.2. For any ϕ ∈
∧
k(V ⊗ C), we have

ϕ =
∑
`≥m

L`ϕ`

where ϕ` ∈
∧
k−2`(V ⊗ C) are primitive elements and m = max(k − n, 0).

This is the Lefschetz decomposition, and unfortunately, we cannot finish it
today.
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22 November 17, 2015

The Lefschetz decomposition is an important example of a normal form of a
matrix. The setting is a vector space V over R with dimension 2n. There are
two additional structures: a complex structure J : V → V such that J2 = −1,
and a J-compatible inner product (·, ·)V for V . With these structures, we are

going to consider a matrix (a R-linear transformation) on
∧∗V =

⊕2n
j=0

∧
jV .

If we go to V ⊗R C over C, we can decompose

V ⊗R C = V ⊕ V̄ .

We can also consider an element of
∧

2V which maps

u∗, v∗ ∈ V ∗ 7→ (Ju∗, v∗) ∈ R.

This is in HomR(V ∗ × V ∗,R) and because it is alternating. The Lefschetz
operator L is exterior product by this element. In fact, it is

ω =

√
−1

2

n∑
j=1

ej ∧ ēj

where ξ1, Jξ1, · · · , ξn, Jξn is an orthonormal basis, which is J-compatible, and
ej = ξj −

√
−1Jξj . We also showed last time that Λ = ∗−1L∗.6 The eigenspace

of Λ, which is just the kernel ker Λ is called the primitive elements.

22.1 Proof of the Lefschetz decomposition

Now the Lefschetz decomposition states that

Theorem 22.1. Given ϕ ∈
∧
k(V ⊗R C) ⊂

∧∗(V ⊗R C), there is a unique
decomposition

ϕ =
∑
`≥m

L`ϕ`

where ϕ` ∈
∧
k−2`(V ⊗ C) and m = max(0, k − n).

The reason we start from m is because we want to get the Lefschetz isomor-
phism between

∧
p,q and

∧
n−q,n−p.

Let us prove this now. We have two tools: Λ = ∗−1L∗ and [Λ, L]
∑

(n−k)Πk.
From this, we obtained

[Λ, Lr] =

2n∑
k=0

r(n− k − r + 1)Lr−1Πk

and

ΛsLrϕ = r(r−) · · · (r − s+ 1)(n− k − r + 1)(n− k − r + 2) · · · (r − k − r + s)ϕ

for primitive ϕ ∈
∧
k(V ⊗ C) and r ≥ s.

6Siu changed the notation some time. The normal ‘contraction’ we were looking at is now
Λ̃ and Λ is defined by Λ = 2

i
Λ̃.
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Proof. We first prove existence. Let ϕ ∈
∧
k(V ⊗ C). We want to find a

decomposition.
Case 1. k ≤ n

Consider the minimal r ≥ 0 such that Λtϕ = 0. If r = 0 or r = 1, it is trivial.
We use induction on r. Suppose that we already have the decomposition for r,
and consider an element ϕ such that

Λ(Λrϕ) = 0

and then it follows that Λrϕ is primitive in
∧
k−2r(V ⊗C). Using some identity

we found, we see that
ΛrLr(Λr) = A(Λrϕ)

for some A 6= 0. The we see that

Λr(ϕ− 1

A
LrΛrϕ) = 0

and hence by induction we are done.
Case 2. k > n

Let m = k−n ≥ 1. Let r be the smallest integer at least m such that Λrϕ = 0.
This is essentially the same as the first case, and using the smear induction, we
can show that there are primitive elements ϕ` ∈

∧
k−2`(V ⊗ C) such that

Λm
(
ϕ−

r−1∑
`=m

L`ϕ`

)
= 0.

Let ϕ′ = ϕ−
∑r−1
`=m L

`ϕ`. This is in
∧
k(V ⊗ C) and Λmϕ′ = 0. Using the star

operator, we get a ∗ϕ′ ∈
∧

2n−k(V ⊗ C). Now we can decompose

ϕ′ =

r′−1∑
`=0

L`ϕ′`.

Because Λmϕ′ = 0, we have

0 = Lm(∗ϕ′) =

r′−1∑
`=0

Lm+`ϕ′`

and by uniqueness of Lefschetz decomposition, we have ϕ′` = 0. This shows that

∗ϕ′ = 0 and hence ϕ′ = 0. So ϕ =
∑r−1
`=m L

`ϕ` is a Lefschetz decomposition.
We now prove uniqueness. It suffices to show that∑

`≥m

L`ϕ` = 0

implies ϕ` = 0 for each `. Let s be the largest ` such that ϕ` 6= 0. We see that

ΛsLsϕs = (some nonzero constant)ϕs.
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If we apply Λs to the assumption, we get

0 =
∑
`≥m

ΛsL`ϕ`.

But if ` < s the term ΛsL`ϕ` vanishes, and if ` = s, we get a nonzero constant
times ϕs. This contradicts our assumption that ϕs 6= 0.

22.2 Prelude to our next topic

Now we finished Lefschetz decomposition, and I want to move to another topic,
namely spin system. This is used in quantum mechanics and is really useful. I
want to look it from the point of view of composing 2 rotations in R3. Rotations
in R2 is just a multiplication by a complex number, and is simple, but rotations
in R3 is complicated. The key in the theory is that rotation is two reflections
involving 1/2 of the angle.

Let me try two explain this in two dimensions. Say we want to rotate P by
angle θ. This is easy in dimension 2, but in higher dimensions it is not easy.
The right way to look at things is considering two lines differing by θ/2, and
reflecting P by one line and then the other line.

In three dimensions, this turns into choosing two planes by which we perform
our reflections. But there is a certain degree of freedom, because as long as both
planes contain the axis, we can rotate the plane around. So if you have two
rotations, we can make the second reflection of the first rotation and the first
reflection of the second rotation agree, by taking the reflection plane to be the
plane containing both the first axis and the second axis. Then composition is
reduced to two reflections.
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There is the quaternions developed by Hamilton, from the viewpoint of compo-
sition of space rotations. Then people started to think about higher dimension
analogues, for instance octonions. However, there are no “good” hypercomplex
number systems in higher settings. This is connected with Clifford algebras and
independent vector fields on spheres of higher dimension. These were established
by the works of Hurwitz, Radon, and Eckmann in the 1920s.

Let us look what happens what when we extend R to C. Basically, C is a
vector space over R, but with some multiplication. We can do this further.

R −→ C −→ H −→ O

But when we extend C to H, we lose commutativity, and when we extend to O
we lose associativity. But still we have involution, and a multiplicative absolute
value. If we go further, we even lose this. The absolute value means that for
indeterminates x1, . . . , xn and y1, . . . , yn, there is a rule of multiplication

zj =

n∑
k,l=1

ajulxkyl

such that
(x2

1 + · · ·+ x2
n)(y2

1 + · · ·+ y2
n) = z2

1 + · · ·+ z2
n.

23.1 Rotations of R3

Rotations of R3 fix a point, which is the axis. We can decompose any rotation
into two reflections by two planes containing the axis and making angle θ/2.
Suppose we have two rotations, we can make the plane containing the first axis
and the second axis, the first plane for the second rotation and the second plane
for the first rotation.

Then we have three planes:
1st plane of 1st rotation

2nd plane of 1st rotation = 1st plane of 2nd rotation

2nd plane of 2nd rotation

Because two reflections cancel out, we have the representation of the composition
of two rotations as the composition of two reflections. If we draw it on the 2-
sphere, representing planes by great circles, we have the figure below.
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The good thing about this representation is that it gives a geometric algorithm
determining the axis and the angle of the composite rotation. If we know the
angels and the axes, then we can draw an arc joining the two axes, and draw
two arcs making a given angle with the original arc, and take the intersection.

Now people wanted to relate “composition of rotations” to ”multiplication
of ‘hypercomplex’ numbers.” This was motivated by rotations in R2; they are
represented with complex numbers with unit length. That was the job Hamilton
set out to solve.

23.2 Representation of rotation by quaternions and SU(2)

The complex numbers C is represented by a+ bi for a, b ∈ R. People then tried
a + ib + jc for a, b, c ∈ R and i2 = j2 = −1, but failed. Then Hamilton came
along and said that you need one more variable. If we let

~i~j = ~k, ~k~i = ~j, ~j~k =~i, ~i2 = ~j2 = ~k2 = −1,

we have

(a+~ib+~jc+ ~d)(a−~ib−~jc− ~kd) = a2 + b2 + c2 + d2.

But how is it related to rotations? if we need multiplication to represent
rotations, we need some “axis” which is unchanged by the rotation. The key
here is to consider the conjugation instead of multiplication. The map

~x 7→ A~xA−1

leaves 1 unchanged. Since it is an isometry, perpendicularity is preserved, and
hence the hyperplane 1⊥, which is the set of pure imaginary numbers, is pre-
served. So it maps

~ib+~jc+ ~kd 7→~ib′ +~jc′ + ~kd′
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which now is a rotation in R3.
Another breakthrough was identifying the rotation with a complex 2 × 2

matrix. If we want a2 + b2 + c2 + d2 as the determinant, we would have(
a+ ib c+ id
−c+ id a− ib

)
= a

(
1 0
0 1

)
+ b

(
i 0
0 −i

)
+ c

(
0 1
−1 0

)
+ d

(
0 i
i 0

)
= ae0 + be1 + ce2 + de3.

The great thing is that e0 7→ 1, e1 7→~i, e2 7→ ~j, and e3 7→ ~k is a representation
of quaternions of length 1 by

SU(2) =

{(
α β
−β̄ ᾱ

)
: |α|2 + |β|2 = 1

}
.

W. Pauli introduced the “infinitesimal” form. We can write a complex num-
ber of absolute value 1 as

eiθ, where θ ∈ R.

Likewise, if we have a 2× 2 unitary matrix, we can write it as

eiA, where Āt = A is Hermitian.

So the Pauli matrices are

σx = −i~e3 =

(
0 1
1 0

)
, σy = −i~e2 =

(
0 −i
i 0

)
, σz = −i~e1 =

(
1 0
0 −1

)
and we have the relations

σxσy = iσz, σyσz = iσx, σzσx = iσy, σ2
x = σ2

y = σ2
z = 1.

We will talk more about this when we (possibly) do Lie algebras.
Suppose we rotate R3 around an axis (cosα, cosβ, cos γ) by angle θ. Then

the quaternion representing this rotation is explicitly given by

R = cos
θ

2
− i sin

θ

2
(σx cosα+ σy cosβ + σz cos γ

and then this rotations sends a pure imaginary ~x to R~xR−1 in the sense of
quaternion multiplication.

23.3 Hypercomplex number systems

The first major breakthrough was make by Hurwitz in 1922. We want to find a
ajkl such that

n∑
j=1

z2
j =

( n∑
i=1

x2
i

)( n∑
j=1

y2
j

)
for zj =

∑n
k,l=1 ajklxkyl. This problem is reduced to the Clifford algebra. The
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Definition 23.1. The Clifford algebra is the algebra generated by e0 =
1, e1, e2, . . . , ek with the relations

ejek = −ekej for distinct j, k 6= 0, e2
j = −1.

Now because the things of the form ei1 · · · eik form a basis, we see that the
dimension should be 2k.

Example 23.2. In the case k = 2, the Clifford algebra is the quaternions. This
is because we can set e3 = e1e2 and everything is the same.

Hurwitz proved that the problem can be solved only for n = 1, 2, 4, 8. Let
me explain briefly how he did it. We generalize the situation to

n∑
j=1

z2
j =

( p∑
i=1

x2
i

)( n∑
j=1

y2
j

)
.

Then we can write z as z = x1A1+· · ·+xpAp for some n×n matrices A1, . . . , Ap.
Then because we want the length to be preserved, the matrices should satisfy

(x1A
t
1 + · · ·+ xpA

t)(x1A1 + · · ·+ xpAp) = x2
1 + · · ·+ x2

p

after normalizing the matrices. The we have the system of equations

AtkAk = In, AtjAk +AtkAj = 0 (k 6= j).

This looks like the Clifford algebra, and if we multiply i to everything, we get
the Clifford algebra. Then you can replace Ak by A−1

p Ak and make Ap = I.
Then you can use the anti-commutativity to do things.

Theorem 23.3 (Hurwitz, 1922). Given any n = u24α+β such that u is odd and
β = 0, 1, 2, 3, a solution exists if and only if p ≤ 8α + 2β. If p = n, it is true
only for n = 1, 2, 4, 8.

If we denote the Clifford algebra by Cliffk, its dimension dimR Cliffk = 2k

and the set
{ei1 · · · eim : m ≥ 0, i1 < · · · < im}

is a basis. Then

G = {±ei1 · · · eim : m ≥ 0, i1 < · · · < im}

is a group.
Let V be a R-vector space of dimension n. Assume that V is a G-module,

and it acts as an isometry. Let S(V ) be the unit sphere in V , which will be the
same as Sn−1.

Theorem 23.4. For x ∈ Sn−1, the set {e1x, . . . , ekx} form a orthonormal
frame on S(V ).

This kind of gives an almost complex structure on Sn.
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I will start a new topic, which is the Young diagram. It ties the polynomial
equations and linear systems up.

24.1 Decomposing a function into symmetric parts

What are the Young diagrams, and why is it important? First let us look at S2.
This acts on the set of functions f(x, y). We see that there is a decomposition

f(x, y) = fodd(x, y) + feven(x, y)

where

fodd(x, y) =
1

2
(f(x, y)− f(y, x)),

feven(x, y) =
1

2
(f(x, y) + f(y, x)).

Then the question is what happens to more variables? Let see the three variable
case. If we have f(x1, x2, x3), we have the analogous symmetric component

fsum(x1, x2, x3) =
1

3!

∑
σ∈S3

f(xσ(1), xσ(2), xσ(3))

and the alternating component

falt(x1, x2, x3) =
1

3!

∑
σ∈S3

sgn(σ)f(xσ(1), xσ(2), xσ(3)).

What is the things in-between? We may guess it as a partially alternating and
partially symmetric object. But if f(x1, x2, x3) is symmetric between x1 and
x2, and alternating in x2 and x3, the function should be zero. So it means
that this doesn’t work.7 This was observed by Alfred Young and Issai Schur
independently.

So instead of trying to make f possess both the symmetry of x1 and x2

and the alternation for x2 and x3, we do it independently and use the non-
commutativity of the two processes.

24.2 Young diagrams and Young symmetrizers

In general, consider any element in Sn, and suppose that there are αk number
of k-cycles. Then we see that

n = α1 + 2α2 + 3α3 + · · ·+ nαn.

7This related to the braiding lemma, which is something we will do next semester in proving
the fundamental theorem of Riemannian geometry.
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We draw empty boxes, so that in the first row, there are f1 = α1 + · · · + αn
boxes, and in the second row, there are f2 = α2 + · · ·+ αn boxes, and so forth.
Then f1 + · · · + fn = n. The diagram consisting of boxes is called a Young
diagram.

A Young diagram corresponds to a partition of n identical balls into certain
groups, so it corresponds to a conjugacy class of Sn. If we put in numbers
1, 2, . . . , n inside the boxes, then we get something more complicated. This is
called a Young tableau.

Given a Young tableau, we can construct the Young symmetrizer as the
following. Consider all permutations σ which only changes elements inside the
same rows, and add them up without the sgn(σ) factor. So this will be some-
thing like the symmetrizing the f . Next consider all permutations τ which only
changes elements inside the same columns, and add them up with the sgn(τ)
factor. We stop here.

Let us consider the case n = 3. There are three Young diagrams. Consider
one of the more complex diagrams:

1 2
3

The symmetrizer then shall be

1

4

(
(f(e1, e2, e3) + f(e2, e1, e3))− (f(e3, e2, e1) + f(e3, e1, e2))

)
.

24.3 Representation of a finite group

Consider the group G = Sn. Then you can represent G as a matrix, because we
can just consider the group algebra C[G] defined as the vector space generated
by the elements of G. Then for any h ∈ Sn, it acts as a linear map on C[G],
because

h

(∑
g∈G

a(g)g

)
=
∑
g∈G

a(g)hg.

So if we let m = |G|, we get a homomorphism G → GL(m,C). We also can
think about the normal form of the representation, so that the matrices look
like block matrices for some good basis choice. Then we get a decomposition
into smaller representations.

For example, if you have G = S2, we have a representation G → GL(2,C)
which maps

1 7→
(

1 0
0 1

)
, (12) 7→

(
0 1
1 0

)
.
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This is called a representation.

Definition 24.1. Suppose that G is a finite group. A representation of the
group G is a homomorphism ρ : G → GL(m,F ) = GL(V ), where V is a n-
dimensional vector space over the field F .

Definition 24.2. A representation ρ is called irreducible if the only subspaces
W of V with the property that g(W ) ⊂W for all g ∈ G are W = 0 and W = V .

Suppose that F = C. Then we can introduce an inner product on V which
is invariant under the action of any g ∈ G by averaging the intro product over
G. That is, if we already have an inner product (·, ·)V , we can let

(u, v)∗V =
1

|G|
∑
g∈G

(gu, gv)V .

Then this is clearly a G-invariant inner product. Suppose that ρ is not ir-
reducible. Then by definition there is a G-invariant subspace W of V where
W 6= 0, V . Then for the G-invariant inner product we defined, we have

V = W ⊕W⊥

and the W⊥ will also be G-invariant. This means that we can break everything
down to irreducible representations.

24.4 Results of Schur’s theory

These are the main results in Schur’s theory.

1. A representation can be identified by a presentation by its character (which
is the trace of each matrix). This reduces matrices into scalars.

Theorem 24.3 (Schur). Let χρ be the character of an irreducible repre-
sentation. Then the set {χρ} is an orthonormal basis of character func-
tions of G.

This tells you how to calculate the number of irreducible representations.

2. We define the degree of ρ as the order of the matrix for the representation
ρ, and let us denote it by mρ. Then we have

|G| =
∑

m2
ρ

and
mρ | |G| for each ρ.

Also, there is one representation called the regular representation of G,
defined by the left multiplication on C[G]. This representation shall be
decomposed into many irreducible representations. Each representation ρ
occurs exactly mρ times in the decomposition.
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We will prove this next time, but let me tell you the main tool. Suppose
we have two representations ρ : G → GL(V ) and τ : G → GL(W ). The two
representations are equivalent if for any g

V W

V W

T

ρ(g) τ(g)

T

commutes. The T here is called the intertwining operator. In general, given
any T , possibly not intertwining, we can average it to get an intertwining one.
That is, we can let

T ′ =
1

|G|
∑
g

τ(g)Tσ(g−1)

to get a intertwining T ′. Because both σ and τ are irreducible, we see that T ′

is either invertible, which will mean that σ and τ are equivalent, or T ′ = 0.
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Young diagrams are related to representations of finite groups. Suppose that
we are trying to represent Sn. Let θ ∈ Sn act on an arrangement

α(1) α(2) · · · α(n)

to yield

β(1) β(2) · · · β(n)

There are two natural ways to make θ act.

i) The first one is change the locations with respect to θ. That is, we let
θ : 1 7→ k if α(1) = β(k). This means that α(j) = β(θ(j)) and hence
α = βθ and θ = β−1α.

ii) The second one is changing the elements with the same location. That is,
we have

θ =

(
α(1) · · · α(n)
β(1) · · · β(n)

)
.

Then θ(α(j)) = β(j) = θ = βα−1.

We will be using the first action. As long as we don’t confuse one with the
other, it doesn’t matter.

We work in the group algebra. If we apply the action of some element on f
twice as (∑

c̃(g̃)g̃
)(∑

c(g)g
)
f(x1, . . . , xn)

then it is same as the action of(∑
c̃(g̃)g̃

)(∑
c(g)g

)
on f .

25.1 Decomposition of the regular representation

Let G be a finite group. Let G act on C[G] by left multiplication. The action of
any g ∈ G is clearly an automorphism of C[G]. Hence we get a homomorphism

regG : G→ AutC(C[G])

which we will call the regular representation. We will decompose this in to
invariant summands.

Recall that a representation is a homomorphism ρ : G → GL(Vρ) where
dimC Vρ = mρ. This representation is called irreducible if any G-invariant sub-
space is either 0 or Vρ.
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First note that there is always a G-invariant inner product on Vρ. Take any
Hermitian inner product on Vρ and let

(u, v)avg =
1

|G|
∑
g∈G

(gu, gv).

Then this new inner product will be a G-invariant inner product. If Wρ is a
G-invariant subspace, then the orthogonal part W⊥ρ will be a new G-invariant
subspace and moreover we have a decomposition

Vρ = Wρ ⊕W⊥ρ .

This proves that every non-irreducible representation can be always decomposed
to smaller representations.

Two representations ρ : G → GL(Vρ) and σ : G → GL(Vσ) are called
equivalent if dimVρ = dimVσ and there is an invertible T : Vρ → Vσ such that

Tρ(g)T−1 = σ(g)

for any g ∈ G. This just means that the representation differs only in a change
of basis.

Now in order to get a description of an irreducible representation, we need
to find some “invariant” which does not change under basis change. Clearly
the trace of a matrix is invariant under conjugation. The surprising result of
Schur is that if only the trace agrees, then the two irreducible representation
are actually equivalent.

Definition 25.1. A character of a representation ρ is the function

χρ : g → tr ρ(g).

The character is a class function. That is, χρ(hgh
−1) = χρ(g) and hence χρ

can be viewed as a function on the conjugacy classes.
There are several results regarding irreducible representations.

1. One of the main result we will prove is that the set of characters of all
irreducible representations {χρ} form an orthonormal basis for the vector
space of class functions. Here, the inner product on class functions is
defined just by

(α, β) =
1

|G|
∑
g∈G

α(g)β(g).

If we have the result, we know precisely how many irreducible representa-
tions there are. Because the number of irreducible representations is just
the dimension of class functions, we se that it is the number of conjugacy
classes.

2. The second result is that for any irreducible ρ, the order mρ always divides
|G|. This is a deep result using algebraic integers.
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3. The third result is that if we decompose the regular representation to

regG =
⊕

(irred. rep. ρ)

then each ρ occurs precisely mρ times in the decomposition. This means
that for each matrix regG(g) of size |G|× |G| can be simultaneously block-
diagonalized so that the ρG(g) block occurs mρ times. If we count the
order, we get

|G| =
∑
ρ

m2
ρ.

Example 25.2. Consider S3. There is the trivial representation ρ1 : S3 →
GL(1,C) such that ρ1(g) = 1, and there is the alternated representation ρ′1 :
S3 → GL(1,C) such that ρ′1(g) = sgn(g). And there is the ρ2 using the Young
symmetrizer. Then we have one ρ1, one ρ′1, and two ρ2 in the regular represen-
tations.

25.2 Intertwining operator and Schur’s lemma

Let us start proving things. Most of these things are proved by Schur.

Definition 25.3. Let ρ : G→ GL(V ) and σ : G→ GL(W ) be two irreducible
representations. An intertwining operator is a map T : V → W such that
the diagram

V V

W W

ρ(g)

T T

σ(g)

commutes for all g ∈ G.

Note that both KerT ⊂ V and ImT ⊂ W are both G-invariant. Because
both are irreducible representations, we see that KerT is either 0 or V . Likewise,
we have ImT is either 0 or W . From this, we see that T is either 0 or invertible.

Suppose that V = W . Consider an eigenvalue λ of T . Then T −λI is also an
intertwining operator. This cannot be invertible. Thus T − λI = 0. Therefore
we have the following lemma.

Lemma 25.4 (Schur’s lemma). Suppose that T intertwines two inequivalent
irreducible representations. Then we have T = 0. Suppose that T intertwines
the same irreducible representation. Then we have T = cI for some c ∈ C.

We can using the averaging technique to explicitly construct an intertwining
operator. Suppose ρ : G→ GL(V ) and σ : G toGL(W ) be two representations,
and let T be any linear map T : V →W . Then we see that

Tavg =
1

|G|
∑
g∈G

ρ(g)Tσ(g−1)
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is an intertwining operator because

ρ(h)Tavgσ(h−1) =
1

|G|
∑
g∈G

ρ(h)ρ(g)Tσ(g−1)σ(h−1) = Tavg.

Then by Schur’s lemma, we would have Tavg = cI.

Theorem 25.5. The characters of the irreducible representations form a or-
thonormal basis in the space of class functions.

Proof. Start with a map Tjk : V → W , which is defined by the matrix with all
zeros and only one 1 in the jth row and kth column, where 1 ≤ j ≤ m and
1 ≤ k ≤ n where dimV = n and dimW = m. Then the averaging will be∑

g∈G
σ(g)Tjkρ(g−1) = 0 or cI

for some c. Now assume that j 6= k, and consider the (j, k)th entry of the
matrix. No matter what the matrix is, that entry must be zero. This means
that ∑

g∈G
σ(g)jjρ(g−1)kk = 0.

Note that ρ(g)|G| = 1 and hence every eigenvalue of ρ(g) has absolute value
one. Therefore χρ(g

−1) = χρ(g). If ρ and σ are inequivalent, we have∑
g∈G

σ(g)jjρ(g−1)kk = 0

even if j = k. If we sum it over j and k, we get∑
g∈G

χσ(g)χρ(g) = 0.

If ρ are σ are equivalent, then χρ = χσ. Because the matrix∑
g∈G

ρ(g)Tjjρ(g−1)

is a constant times the identity, but the trace is∑
g∈G

tr(ρ(g)Tjjρ(g−1)) =
∑
g∈G

trTjj = |G|,

we see that the map is |G|/mρ times the identity. So we get

1

|G|
∑
g∈G

χρ(g)χρ(g) =
1

|G|
∑
g∈G

(∑
ρ(g)jj

)(∑
ρ(g−1)kk

)
= 1.

This shows that the {χρ} are orthonormal vectors.
Lastly, we should prove that any class function orthogonal to all χρ is iden-

tically zero. We will prove this next time.
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Last time we showed that χg are orthogonal and have unit length in the space
of all class functions on G. We now actually prove that it is a basis. We will
prove that the orthogonal complement is zero, i.e.,∑

g∈G
ϕ(g)χρ(g) = 0

for all irreducible ρ implies ϕ ≡ 0 on G.

Proof. Consider

T = Tϕ,ρ =
1

|G|
∑
g∈G

ϕ(g)ρ(g).

Clearly trT = 0. Also, note that because

ρ(h)Tρ(h−1) =
1

|G|
=
∑
g∈G

ϕ(g)ρ(h)ρ(g)ρ(h−1) = T

since ϕ is a class function, we see that T is an intertwining operator between ρ
and ρ. Therefore T is a constant times the identity. But because T is traceless,
we see that T = 0.

Now note that this is 0 for all irreducible representation ρ. Because any
representation can be decomposed into irreducible representations, we see that
for any representation ρ, the T should be zero. In particular, we have

1

|G|
∑
g∈G

ϕ(g)regG(g) = 0.

If we consider the action of this on 1G ∈ C[G], we see that∑
g∈G

ϕ(g)g = 0 ∈ C[G].

Therefore ϕ ≡ 0.

This was the most complicated part. We now prove the following.

Theorem 26.1. Each irreducible representation ρ occurs as many times as mρ

in the regular representation regG.

Proof. Note that when regG is decomposed into irreducible representations and
block diagonalized, the character χregG

will be a sum of χρs as many times as
the number it occurs in the decomposition. Because χρ form an orthonormal
basis, we see that that number is just

(χregG
, χρ).

But χregG
is just |G| at 1G and 0 at other points. So we see that

(χregG
, χρ) =

1

|G|
∑
g∈G

χregG
(g)χρ(g) = χρ(1G) = mρ.

Therefore ρ occurs mρ times.



Math 55a Notes 100

26.1 Representations of Sn

Let us look at representations of Sn. Because Sn is a permutation group, we can
consider special permutations by perhaps making blocks and considering only
the permutations preserving blocks. Young’s idea was representing it as boxes.

Consider a partition n1 ≥ n2 ≥ · · · ≥ n` of n so that

n = n1 + n2 + · · ·+ n`.

We represent it we a Young diagram with nj boxes in the jth row.

If Ỹ = (ñ1, . . . , ñ˜̀) is another Young diagram, we can consider the lexicograph-

ical order and write Y ≥ Ỹ if and only if the first nk − ñk is positive.
If C[G] is decomposed into irreducible representations

C[G] = V1 ⊕ V2 ⊕ · · · ⊕ V`,

then we can consider the projection Π1 : C→ V1 and it will commute with any
g ∈ G.

C[G] V1

C[G] V1

Π1

g g

Π1

Suppose that T : C[G] → C[G] is an G-equivariant map; i.e., that T is a
left-multiplication by some T =

∑
g Tgg. Then after some calculation one sees

that there is a T̃ such that Ta = aT̃ for any a ∈ C[G].
A decomposition of C[Sn] is a set of idempotent maps e1, e2, . . . , e` such that

e1 + e2 + · · · + e` = 1 and ejek = 0. For a Young diagram Y , let eY be the
element defined by

eY =
∑
g∈G

eY,gg

where

eY,g =

{
sgn γ if g = γρ for a column-preserving γ and row-preserving ρ

0 otherwise.

8

8I gave up taking notes because I was not able to understand.
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