Course 311: Michaelmas Term 2005 Part II: Topics in Group Theory

D. R. Wilkins

Copyright © David R. Wilkins 1997-2005

Contents

2 Topics in Group Theory 2
2.1 Groups 2
2.2 Examples of Groups 3
2.3 Elementary Properties of Groups 4
2.4 Subgroups 5
2.5 Cyclic Groups 6
2.6 Cosets and Lagrange's Theorem 7
2.7 Normal Subgroups and Quotient Groups 8
2.8 Homomorphisms 11
2.9 The Isomorphism Theorems 13
2.10 Group Actions, Orbits and Stabilizers 14
2.11 Conjugacy 15
2.12 Finitely Generated Abelian Groups 15
2.13 The Class Equation of a Finite Group 18
2.14 Cauchy's Theorem 19
2.15 The Structure of p-Groups 20
2.16 The Sylow Theorems 21
2.17 Some Applications of the Sylow Theorems 22
2.18 Simple Groups 25

2 Topics in Group Theory

2.1 Groups

A binary operation $*$ on a set G associates to elements x and y of G a third element $x * y$ of G. For example, addition and multiplication are binary operations of the set of all integers.

Definition A group G consists of a set G together with a binary operation * for which the following properties are satisfied:

- $(x * y) * z=x *(y * z)$ for all elements x, y, and z of G (the Associative Law);
- there exists an element e of G (known as the identity element of G) such that $e * x=x=x * e$, for all elements x of G;
- for each element x of G there exists an element x^{\prime} of G (known as the inverse of x) such that $x * x^{\prime}=e=x^{\prime} * x$ (where e is the identity element of G).

The order $|G|$ of a finite group G is the number of elements of G.
A group G is Abelian (or commutative) if $x * y=y * x$ for all elements x and y of G.

One usually adopts multiplicative notation for groups, where the product $x * y$ of two elements x and y of a group G is denoted by $x y$. The associative property then requires that $(x y) z=x(y z)$ for all elements x, y and z of G. The identity element is often denoted by e (or by e_{G} when it is necessary to specify explicitly the group to which it belongs), and the inverse of an element x of G is then denoted by x^{-1}.

It is sometimes convenient or customary to use additive notation for certain groups. Here the group operation is denoted by + , the identity element of the group is denoted by 0 , the inverse of an element x of the group is denoted by $-x$. By convention, additive notation is rarely used for non-Abelian groups. When expressed in additive notation the axioms for a Abelian group require that $(x+y)+z=x+(y+z), x+y=y+x, x+0=0+x=x$ and $x+(-x)=(-x)+x=0$ for all elements x, y and z of the group.

We shall usually employ multiplicative notation when discussing general properties of groups. Additive notation will be employed for certain groups (such as the set of integers with the operation of addition) where this notation is the natural one to use.

2.2 Examples of Groups

The sets of integers, rational numbers, real numbers and complex numbers are Abelian groups, where the group operation is the operation of addition.

The sets of non-zero rational numbers, non-zero real numbers and nonzero complex numbers are also Abelian groups, where the group operation is the operation of multiplication.

For each positive integer m the set \mathbb{Z}_{m} of congruence classes of integers modulo m is a group, where the group operation is addition of congruence classes.

For each positive integer m the set \mathbb{Z}_{m}^{*} of congruence classes modulo m of integers coprime to m is a group, where the group operation is multiplication of congruence classes.

In particular, for each prime number p the set \mathbb{Z}_{p}^{*} of congruence classes modulo p of integers not divisible by p is a group, where the group operation is multiplication of congruence classes.

For each positive integer n the set of all nonsingular $n \times n$ matrices is a group, where the group operation is matrix multiplication. These groups are not Abelian when $n \geq 2$.

Let E^{n} denote n-dimensional Euclidean space, so that E^{2} denotes the Euclidean plane, and E^{3} denotes three-dimensional Euclidean space. A geometrical figure may be represented as a subset S of E^{n}. A symmetry of S is a transformation $T: E^{n} \rightarrow E^{n}$ of E^{n} which sends straight lines to straight lines, preserves all lengths and angles, and has the property that $T(S)=S$. The collection of all symmetries of a geometrical figure is a group, the symmetry group of S, the group operation being that of composition of transformations.

For any natural number n greater than 2, the the dihedral group $D_{2 n}$ of order $2 n$ is defined to be the symmetry group of a regular n-sided polygon in the Euclidean plane. It consists of rotations though an angle of $2 \pi j / n$ about the centre of the polygon for $j=0,1,2, \ldots, n-1$, together with the reflections in the n axes of symmetry of the polygon.

The symmetries of a rectangle that is not a square constitute a group of order 4. This group consists of the identity transformation, reflection in the axis of symmetry joining the midpoints of the two shorter sides, reflection in the axis of symmetry joining the two longer sides, and rotation though an angle of π radians $\left(180^{\circ}\right)$. If I denotes the identity transformation, A and B denote the reflections in the two axes of symmetry, and C denotes the rotation through π radians then $A^{2}=B^{2}=C^{2}=I, A B=B A=C$, $A C=C A=B$ and $B C=C B=A$. This group is Abelian: it is often referred to as the Klein 4 -group (or, in German, Kleinsche Viergruppe).

The symmetries of a regular tetrahedron in 3-dimensional space constitute
a group. Any permutation of the vertices of the tetrahedron can be effected by an appropriate symmetry of the tetrahedron. Moreover each symmetry is completely determined by the permutation of the vertices which it induces. Therefore the group of symmetries of a regular tetrahedron is of order 24, since there are 24 permutations of a set with four elements. It turns out that this group is non-Abelian.

2.3 Elementary Properties of Groups

In what follows, we describe basic properties of a group G, using multiplicative notation and denoting the identity element of the group by the letter e.

Lemma 2.1 A group G has exactly one identity element e satisfying ex $=$ $x=$ xe for all $x \in G$.

Proof Suppose that f is an element of G with the property that $f x=x$ for all elements x of G. Then in particular $f=f e=e$. Similarly one can show that e is the only element of G satisfying $x e=x$ for all elements x of G.

Lemma 2.2 An element x of a group G has exactly one inverse x^{-1}.
Proof We know from the axioms that the group G contains at least one element x^{-1} which satisfies $x x^{-1}=e$ and $x^{-1} x=e$. If z is any element of G which satisfies $x z=e$ then $z=e z=\left(x^{-1} x\right) z=x^{-1}(x z)=x^{-1} e=x^{-1}$. Similarly if w is any element of G which satisfies $w x=e$ then $w=x^{-1}$. In particular we conclude that the inverse x^{-1} of x is uniquely determined, as required.

Lemma 2.3 Let x and y be elements of a group G. Then $(x y)^{-1}=y^{-1} x^{-1}$.
Proof It follows from the group axioms that

$$
(x y)\left(y^{-1} x^{-1}\right)=x\left(y\left(y^{-1} x^{-1}\right)\right)=x\left(\left(y y^{-1}\right) x^{-1}\right)=x\left(e x^{-1}\right)=x x^{-1}=e .
$$

Similarly $\left(y^{-1} x^{-1}\right)(x y)=e$, and thus $y^{-1} x^{-1}$ is the inverse of $x y$, as required.

Note in particular that $\left(x^{-1}\right)^{-1}=x$ for all elements x of a group G, since x has the properties that characterize the inverse of the inverse x^{-1} of x.

Given an element x of a group G, we define x^{n} for each positive integer n by the requirement that $x^{1}=x$ and $x^{n}=x^{n-1} x$ for all $n>1$. We also define $x^{0}=e$, where e is the identity element of the group, and we define x^{-n} to be the inverse of x^{n} for all positive integers n.

Theorem 2.4 Let x be an element of a group G. Then $x^{m+n}=x^{m} x^{n}$ and $x^{m n}=\left(x^{m}\right)^{n}$ for all integers m and n.

Proof The identity $x^{m+n}=x^{m} x^{n}$ clearly holds when $m=0$ and when $n=0$. The identity $x^{m+n}=x^{m} x^{n}$ can be proved for all positive integers m and n by induction on n. The identity when m and n are both negative then follows from the identity $x^{-m-n}=x^{-n} x^{-m}$ on taking inverses. The result when m and n have opposite signs can easily be deduced from that where m and n both have the same sign.

The identity $x^{m n}=\left(x^{m}\right)^{n}$ follows immediately from the definitions when $n=0,1$ or -1 . The result when n is positive can be proved by induction on n. The result when n is negative can then be obtained on taking inverses.

If additive notation is employed for an Abelian group then the notation ' x ' ' is replaced by ' $n x$ ' for all integers n and elements x of the group. The analogue of Theorem 2.4 then states that $(m+n) x=m x+n x$ and $(m n) x=$ $m(n(x))$ for all integers m and n.

The associative law may be generalized to products of four or more elements of a group.

Example Given four elements x_{1}, x_{2}, x_{3} and x_{4} of a group, the products
$\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}, \quad\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right), \quad\left(x_{1}\left(x_{2} x_{3}\right)\right) x_{4}, \quad x_{1}\left(\left(x_{2} x_{3}\right) x_{4}\right), \quad x_{1}\left(x_{2}\left(x_{3} x_{4}\right)\right)$
all have the same value. (Note that $x_{1} x_{2} x_{3} x_{4}$ is by definition the value of the first of these expressions.)

Two expressions, each specifying a finite product of elements of a group G, determine the same element of G if the same elements of G occur in both expressions, and in the same order. This result can be proved by induction on the number of elements of G making up such a product.

2.4 Subgroups

Definition Let G be a group, and let H be a subset of G. We say that H is a subgroup of G if the following conditions are satisfied:

- the identity element of G is an element of H;
- the product of any two elements of H is itself an element of H;
- the inverse of any element of H is itself an element of H.

A subgroup H of G is said to be proper if $H \neq G$.

Lemma 2.5 Let x be an element of a group G. Then the set of all elements of G that are of the form x^{n} for some integer n is a subgroup of G.

Proof Let $H=\left\{x^{n}: n \in \mathbb{Z}\right\}$. Then the identity element belongs to H, since it is equal to x^{0}. The product of two elements of H is itself an element of H, since $x^{m} x^{n}=x^{m+n}$ for all integers m and n (see Theorem 2.4). Also the inverse of an element of H is itself an element of H since $\left(x^{n}\right)^{-1}=x^{-n}$ for all integers n. Thus H is a subgroup of G, as required.

Definition Let x be an element of a group G. The order of x is the smallest positive integer n for which $x^{n}=e$. The subgroup generated by x is the subgroup consisting of all elements of G that are of the form x^{n} for some integer n.

Lemma 2.6 Let H and K be subgroups of a group G. Then $H \cap K$ is also a subgroup of G.

Proof The identity element of G belongs to $H \cap K$ since it belongs to the subgroups H and K. If x and y are elements of $H \cap K$ then $x y$ is an element of H (since x and y are elements of H), and $x y$ is an element of K, and therefore $x y$ is an element of $H \cap K$. Also the inverse x^{-1} of an element x of $H \cap K$ belongs to H and to K and thus belongs to $H \cap K$, as required.

More generally, the intersection of any collection of subgroups of a given group is itself a subgroup of that group.

2.5 Cyclic Groups

Definition A group G is said to be cyclic, with generator x, if every element of G is of the form x^{n} for some integer n.

Example The group \mathbb{Z} of integers under addition is a cyclic group, generated by 1 .

Example Let n be a positive integer. The set \mathbb{Z}_{n} of congruence classes of integers modulo n is a cyclic group of order n with respect to the operation of addition.

Example The group of all rotations of the plane about the origin through an integer multiple of $2 \pi / n$ radians is a cyclic group of order n for all integers n. This group is generated by an anticlockwise rotation through an angle of $2 \pi / n$ radians.

2.6 Cosets and Lagrange's Theorem

Definition Let H be a subgroup of a group G. A left coset of H in G is a subset of G that is of the form $x H$, where $x \in G$ and

$$
x H=\{y \in G: y=x h \text { for some } h \in H\} .
$$

Similarly a right coset of H in G is a subset of G that is of the form $H x$, where $x \in G$ and

$$
H x=\{y \in G: y=h x \text { for some } h \in H\} .
$$

Note that a subgroup H of a group G is itself a left coset of H in G.
Lemma 2.7 Let H be a subgroup of a group G. Then the left cosets of H in G have the following properties:-
(i) $x \in x H$ for all $x \in G$;
(ii) if x and y are elements of G, and if $y=x a$ for some $a \in H$, then $x H=y H$;
(iii) if x and y are elements of G, and if $x H \cap y H$ is non-empty then $x H=$ $y H$.

Proof Let $x \in G$. Then $x=x e$, where e is the identity element of G. But $e \in H$. It follows that $x \in x H$. This proves (i).

Let x and y be elements of G, where $y=x a$ for some $a \in H$. Then $y h=x(a h)$ and $x h=y\left(a^{-1} h\right)$ for all $h \in H$. Moreover $a h \in H$ and $a^{-1} h \in H$ for all $h \in H$, since H is a subgroup of G. It follows that $y H \subset x H$ and $x H \subset y H$, and hence $x H=y H$. This proves (ii).

Finally suppose that $x H \cap y H$ is non-empty for some elements x and y of G. Let z be an element of $x H \cap y H$. Then $z=x a$ for some $a \in H$, and $z=y b$ for some $b \in H$. It follows from (ii) that $z H=x H$ and $z H=y H$. Therefore $x H=y H$. This proves (iii).

Lemma 2.8 Let H be a finite subgroup of a group G. Then each left coset of H in G has the same number of elements as H.

Proof Let $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, where $h_{1}, h_{2}, \ldots, h_{m}$ are distinct, and let x be an element of G. Then the left coset $x H$ consists of the elements $x h_{j}$ for $j=1,2, \ldots, m$. Suppose that j and k are integers between 1 and m for which $x h_{j}=x h_{k}$. Then $h_{j}=x^{-1}\left(x h_{j}\right)=x^{-1}\left(x h_{k}\right)=h_{k}$, and thus $j=k$, since $h_{1}, h_{2}, \ldots, h_{m}$ are distinct. It follows that the elements $x h_{1}, x h_{2}, \ldots, x h_{m}$ are distinct. We conclude that the subgroup H and the left coset $x H$ both have m elements, as required.

Theorem 2.9 (Lagrange's Theorem) Let G be a finite group, and let H be a subgroup of G. Then the order of H divides the order of G.

Proof Each element of G belongs to at least one left coset of H in G, and no element can belong to two distinct left cosets of H in G (see Lemma 2.7). Therefore every element of G belongs to exactly one left coset of H. Moreover each left coset of H contains $|H|$ elements (Lemma 2.8). Therefore $|G|=$ $n|H|$, where n is the number of left cosets of H in G. The result follows.

Definition Let H be a subgroup of a group G. If the number of left cosets of H in G is finite then the number of such cosets is referred to as the index of H in G, denoted by $[G: H]$.

The proof of Lagrange's Theorem shows that the index $[G: H]$ of a subgroup H of a finite group G is given by $[G: H]=|G| /|H|$.

Corollary 2.10 Let x be an element of a finite group G. Then the order of x divides the order of G.

Proof Let H be the set of all elements of G that are of the form x^{n} for some integer n. Then H is a subgroup of G (see Lemma 2.5), and the order of H is the order of x. But the order of H divides G by Lagrange's Theorem (Theorem 2.9). The result follows.

Corollary 2.11 Any finite group of prime order is cyclic.
Proof Let G be a group of prime order, and let x be some element of G that is not the identity element. Then the order of x is greater than one and divides the order of G. But then the order of x must be equal to the order of G, since the latter is a prime number. Thus G is a cyclic group generated by x, as required.

2.7 Normal Subgroups and Quotient Groups

Let A and B be subsets of a group G. The product $A B$ of the sets A and B is defined by

$$
A B=\{x y: x \in A \text { and } y \in B\}
$$

We denote $\{x\} A$ and $A\{x\}$ by $x A$ and $A x$, for all elements x of G and subsets A of G. The Associative Law for multiplication of elements of G ensures that $(A B) C=A(B C)$ for all subsets A, B and C of G. We can therefore use the notation $A B C$ to denote the products $(A B) C$ and $A(B C)$;
and we can use analogous notation to denote the product of four or more subsets of G.

If A, B and C are subsets of a group G, and if $A \subset B$ then clearly $A C \subset B C$ and $C A \subset C B$.

Note that if H is a subgroup of the group G and if x is an element of G then $x H$ is the left coset of H in G that contains the element x. Similarly $H x$ is the right coset of H in G that contains the element x.

If H is a subgroup of G then $H H=H$. Indeed $H H \subset H$, since the product of two elements of a subgroup H is itself an element of H. Also $H \subset H H$ since $h=e h$ for any element h of H, where e, the identity element of G, belongs to H.

Definition A subgroup N of a group G is said to be a normal subgroup of G if $x n x^{-1} \in N$ for all $n \in N$ and $x \in G$.

The notation ' $N \triangleleft G$ ' signifies ' N is a normal subgroup of G '.
Definition A non-trivial group G is said to be simple if the only normal subgroups of G are the whole of G and the trivial subgroup $\{e\}$ whose only element is the identity element e of G.

Lemma 2.12 Every subgroup of an Abelian group is a normal subgroup.
Proof Let N be a subgroup of an Abelian group G. Then

$$
x n x^{-1}=(x n) x^{-1}=(n x) x^{-1}=n\left(x x^{-1}\right)=n e=n
$$

for all $n \in N$ and $x \in G$, where e is the identity element of G. The result follows.

Example Let S_{3} be the group of permutations of the set $\{1,2,3\}$, and let H be the subgroup of S_{3} consisting of the identity permutation and the transposition (12). Then H is not normal in G, since $(23)^{-1}(12)(23)=$ $(23)(12)(23)=(13)$ and (13) does not belong to the subgroup H.

Proposition 2.13 A subgroup N of a group G is a normal subgroup of G if and only if $x N x^{-1}=N$ for all elements x of G.

Proof Suppose that N is a normal subgroup of G. Let x be an element of G. Then $x N x^{-1} \subset N$. (This follows directly from the definition of a normal subgroup.) On replacing x by x^{-1} we see also that $x^{-1} N x \subset N$, and thus $N=x\left(x^{-1} N x\right) x^{-1} \subset x N x^{-1}$. Thus each of the sets N and $x N x^{-1}$ is contained in the other, and therefore $x N x^{-1}=N$.

Conversely if N is a subgroup of G with the property that $x N x^{-1}=N$ for all $x \in G$, then it follows immediately from the definition of a normal subgroup that N is a normal subgroup of G.

Corollary 2.14 A subgroup N of a group G is a normal subgroup of G if and only if $x N=N x$ for all elements x of G.

Proof Let N be a subgroup of G, and let x be an element of G. If $x N x^{-1}=$ N then $x N=\left(x N x^{-1}\right) x=N x$. Conversely if $x N=N x$ then $x N x^{-1}=$ $N x x^{-1}=N e=N$, where e is the identity element of G. Thus $x N=N x$ if and only if $x N x^{-1}=N$. It follows from Proposition 2.13 that a subgroup N of G is normal if and only if $x N=N x$ for all elements x of G, as required.

Let N be a normal subgroup of G. Corollary 2.14 shows that a subset of G is a left coset of N in G if and only if it is a right coset of N in G. We may therefore refer to the left and right cosets of a normal subgroup N as cosets of N in G (since it is not in this case necessary to distinguish between left and right cosets).

Lemma 2.15 Let N be a normal subgroup of a group G and let x and y be elements of G. Then $(x N)(y N)=(x y) N$.

Proof If N is a normal subgroup of G then $N y=y N$, and therefore $(x N)(y N)=x(N y) N=x(y N) N=(x y)(N N)$. But $N N=N$, since N is a subgroup of G. Therefore $(x N)(y N)=(x y) N$, as required.

Proposition 2.16 Let G be a group, and let N be a normal subgroup of G. Then the set of all cosets of N in G is a group under the operation of multiplication. The identity element of this group is N itself, and the inverse of a coset $x N$ is the coset $x^{-1} N$ for any element x of G.

Proof Let x, y and z be any elements of G. Then the product of the cosets $x N$ and $y N$ is the coset $(x y) N$. The subgroup N is itself a coset of N in G, since $N=e N$. Moreover

$$
\begin{gathered}
(x N) N=(x N)(e N)=(x e) N=x N, \\
N(x N)=(e N)(x N)=(e x) N=x N, \\
(x N)\left(x^{-1} N\right)=\left(x x^{-1}\right) N=N, \\
\left(x^{-1} N\right)(x N)=\left(x^{-1} x\right) N=N .
\end{gathered}
$$

for all elements x of G. Thus the group axioms are satisfied.
Definition Let N be a normal subgroup of a group G. The quotient group G / N is defined to be the group of cosets of N in G under the operation of multiplication.

Example Consider the dihedral group D_{8} of order 8, which we represent as the group of symmetries of a square in the plane with corners at the points whose Cartesian co-ordinates are $(1,1),(-1,1),(-1,-1)$ and $(1,-1)$. Then

$$
D_{8}=\left\{\mathbf{I}, \mathbf{R}, \mathbf{R}^{2}, \mathbf{R}^{3}, \mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}, \mathbf{T}_{4}\right\},
$$

where \mathbf{I} denotes the identity transformation, \mathbf{R} denotes an anticlockwise rotation about the origin through a right angle, and $\mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}$ and \mathbf{T}_{4} denote the reflections in the lines $y=0, x=y, x=0$ and $x=-y$ respectively. Let $N=\left\{\mathbf{I}, \mathbf{R}^{2}\right\}$. Then N is a subgroup of D_{8}. The left cosets of N in D_{8} are N, A, B and C, where

$$
A=\left\{\mathbf{R}, \mathbf{R}^{3}\right\}, \quad B=\left\{\mathbf{T}_{1}, \mathbf{T}_{3}\right\}, \quad C=\left\{\mathbf{T}_{2}, \mathbf{T}_{4}\right\} .
$$

Moreover N, A, B and C are also the right cosets of N in D_{8}, and thus N is a normal subgroup of D_{8}. On multiplying the cosets A, B and C with one another we find that $A B=B A=C, A C=C A=B$ and $B C=C B=A$. The quotient group D_{8} / N consists of the set $\{N, A, B, C\}$, with the group operation just described.

2.8 Homomorphisms

Definition A homomorphism $\theta: G \rightarrow K$ from a group G to a group K is a function with the property that $\theta\left(g_{1} * g_{2}\right)=\theta\left(g_{1}\right) * \theta\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$, where $*$ denotes the group operation on G and on K.

Example Let q be an integer. The function from the group \mathbb{Z} of integers to itself that sends each integer n to $q n$ is a homomorphism.

Example Let x be an element of a group G. The function that sends each integer n to the element x^{n} is a homomorphism from the group \mathbb{Z} of integers to G, since $x^{m+n}=x^{m} x^{n}$ for all integers m and n (Theorem 2.4).

Lemma 2.17 Let $\theta: G \rightarrow K$ be a homomorphism. Then $\theta\left(e_{G}\right)=e_{K}$, where e_{G} and e_{K} denote the identity elements of the groups G and K. Also $\theta\left(x^{-1}\right)=$ $\theta(x)^{-1}$ for all elements x of G.

Proof Let $z=\theta\left(e_{G}\right)$. Then $z^{2}=\theta\left(e_{G}\right) \theta\left(e_{G}\right)=\theta\left(e_{G} e_{G}\right)=\theta\left(e_{G}\right)=z$. The result that $\theta\left(e_{G}\right)=e_{K}$ now follows from the fact that an element z of K satisfies $z^{2}=z$ if and only if z is the identity element of K.

Let x be an element of G. The element $\theta\left(x^{-1}\right)$ satisfies $\theta(x) \theta\left(x^{-1}\right)=$ $\theta\left(x x^{-1}\right)=\theta\left(e_{G}\right)=e_{K}$, and similarly $\theta\left(x^{-1}\right) \theta(x)=e_{K}$. The uniqueness of the inverse of $\theta(x)$ now ensures that $\theta\left(x^{-1}\right)=\theta(x)^{-1}$.

An isomorphism $\theta: G \rightarrow K$ between groups G and K is a homomorphism that is also a bijection mapping G onto K. Two groups G and K are isomorphic if there exists an isomorphism mapping G onto K.

Example Let D_{6} be the group of symmetries of an equilateral triangle in the plane with vertices A, B and C, and let S_{3} be the group of permutations of the set $\{A, B, C\}$. The function which sends a symmetry of the triangle to the corresponding permutation of its vertices is an isomorphism between the dihedral group D_{6} of order 6 and the symmetric group S_{3}.

Example Let \mathbb{R} be the group of real numbers with the operation of addition, and let \mathbb{R}^{+}be the group of strictly positive real numbers with the operation of multiplication. The function exp: $\mathbb{R} \rightarrow \mathbb{R}^{+}$that sends each real number x to the positive real number e^{x} is an isomorphism: it is both a homomorphism of groups and a bijection. The inverse of this isomorphism is the function $\log : \mathbb{R}^{+} \rightarrow \mathbb{R}$ that sends each strictly positive real number to its natural logarithm.

Here is some further terminology regarding homomorphisms:

- A monomorphism is an injective homomorphism.
- An epimorphism is a surjective homomorphism.
- An endomorphism is a homomorphism mapping a group into itself.
- An automorphism is an isomorphism mapping a group onto itself.

Definition The kernel $\operatorname{ker} \theta$ of the homomorphism $\theta: G \rightarrow K$ is the set of all elements of G that are mapped by θ onto the identity element of K.

Example Let the group operation on the set $\{+1,-1\}$ be multiplication, and let $\theta: \mathbb{Z} \rightarrow\{+1,-1\}$ be the homomorphism that sends each integer n to $(-1)^{n}$. Then the kernel of the homomorphism θ is the subgroup of \mathbb{Z} consisting of all even numbers.

Lemma 2.18 Let G and K be groups, and let $\theta: G \rightarrow K$ be a homomorphism from G to K. Then the kernel $\operatorname{ker} \theta$ of θ is a normal subgroup of G.

Proof Let x and y be elements of $\operatorname{ker} \theta$. Then $\theta(x)=e_{K}$ and $\theta(y)=e_{K}$, where e_{K} denotes the identity element of K. But then $\theta(x y)=\theta(x) \theta(y)=$ $e_{K} e_{K}=e_{K}$, and thus $x y$ belongs to ker θ. Also $\theta\left(x^{-1}\right)=\theta(x)^{-1}=e_{K}^{-1}=e_{K}$, and thus x^{-1} belongs to $\operatorname{ker} \theta$. We conclude that $\operatorname{ker} \theta$ is a subgroup of K. Moreover ker θ is a normal subgroup of G, for if $g \in G$ and $x \in \operatorname{ker} \theta$ then

$$
\theta\left(g x g^{-1}\right)=\theta(g) \theta(x) \theta(g)^{-1}=\theta(g) \theta\left(g^{-1}\right)=e_{K} .
$$

If N is a normal subgroup of some group G then N is the kernel of the quotient homomorphism $\theta: G \rightarrow G / N$ that sends $g \in G$ to the coset $g N$. It follows therefore that a subset of a group G is a normal subgroup of G if and only if it is the kernel of some homomorphism.

Proposition 2.19 Let G and K be groups, let $\theta: G \rightarrow K$ be a homomorphism from G to K, and let N be a normal subgroup of G. Suppose that $N \subset \operatorname{ker} \theta$. Then the homomorphism $\theta: G \rightarrow K$ induces a homomorphism $\hat{\theta}: G / N \rightarrow K$ sending $g N \in G / N$ to $\theta(g)$. Moreover $\hat{\theta}: G / N \rightarrow K$ is injective if and only if $N=\operatorname{ker} \theta$.

Proof Let x and y be elements of G. Now $x N=y N$ if and only if $x^{-1} y \in N$. Also $\theta(x)=\theta(y)$ if and only if $x^{-1} y \in \operatorname{ker} \theta$. Thus if $N \subset \operatorname{ker} \theta$ then $\theta(x)=$ $\theta(y)$ whenever $x N=y N$, and thus $\theta: G \rightarrow K$ induces a well-defined function $\hat{\theta}: G / N \rightarrow K$ sending $x N \in G / N$ to $\theta(x)$. This function is a homomorphism, since $\hat{\theta}((x N)(y N))=\hat{\theta}(x y N)=\theta(x y)=\theta(x) \theta(y)=\hat{\theta}(x N) \hat{\theta}(y N)$.

Suppose now that $N=\operatorname{ker} \theta$. Then $\theta(x)=\theta(y)$ if and only if $x N=y N$. Thus the homomorphism $\hat{\theta}: G / N \rightarrow K$ is injective. Conversely if $\hat{\theta}: G / N \rightarrow$ K is injective then N must be the kernel of θ, as required.

Corollary 2.20 Let G and K be groups, and let $\theta: G \rightarrow K$ be a homomorphism. Then $\theta(G) \cong G / \operatorname{ker} \theta$.

2.9 The Isomorphism Theorems

Lemma 2.21 Let G be a group, let H be a subgroup of G, and let N be a normal subgroup of G. Then the set $H N$ is a subgroup of G, where $H N=$ $\{h n: h \in H$ and $n \in N\}$.

Proof The set $H N$ clearly contains the identity element of G. Let x and y be elements of $H N$. We must show that $x y$ and x^{-1} belong to $H N$. Now $x=h u$ and $y=k v$ for some elements h and k of H and for some elements u and v of N. Then $x y=(h k)\left(k^{-1} u k v\right)$. But $k^{-1} u k \in N$, since N is normal. It follows that $k^{-1} u k v \in N$, since N is a subgroup and $k^{-1} u k v$ is the product of the elements $k^{-1} u k$ and v of N. Also $h k \in H$. It follows that $x y \in H N$.

We must also show that $x^{-1} \in H N$. Now $x^{-1}=u^{-1} h^{-1}=h^{-1}\left(h u^{-1} h^{-1}\right)$. Also $h^{-1} \in H$, since H is a subgroup of G, and $h u^{-1} h^{-1} \in N$, since N is a normal subgroup of G. It follows that $x^{-1} \in H N$, and thus $H N$ is a subgroup of G, as required.

Theorem 2.22 (First Isomorphism Theorem) Let G be a group, let H be a subgroup of G, and let N be a normal subgroup of G. Then

$$
\frac{H N}{N} \cong \frac{H}{N \cap H} .
$$

Proof Every element of $H N / N$ is a coset of N that is of the form $h N$ for some $h \in H$. Thus if $\varphi(h)=h N$ for all $h \in H$ then $\varphi: H \rightarrow H N / N$ is a surjective homomorphism, and $\operatorname{ker} \varphi=N \cap H$. But $\varphi(H) \cong H / \operatorname{ker} \varphi$ (Corollary 2.20). Therefore $H N / N \cong H /(N \cap H)$ as required.

Theorem 2.23 (Second Isomorphism Theorem) Let M and N be normal subgroups of a group G, where $M \subset N$. Then

$$
\frac{G}{N} \cong \frac{G / M}{N / M}
$$

Proof There is a well-defined homomorphism $\theta: G / M \rightarrow G / N$ that sends $g M$ to $g N$ for all $g \in G$. Moreover the homomorphism θ is surjective, and $\operatorname{ker} \theta=N / M$. But $\theta(G / M) \cong(G / M) / \operatorname{ker} \theta$. Therefore G / N is isomorphic to $(G / M) /(N / M)$, as required.

2.10 Group Actions, Orbits and Stabilizers

Definition A left action of a group G on a set X associates to each $g \in G$ and $x \in X$ an element $g . x$ of X in such a way that $g .(h \cdot x)=(g h) \cdot x$ and 1. $x=x$ for all $g, h \in G$ and $x \in X$, where 1 denotes the identity element of G.
Given a left action of a group G on a set X, the orbit of an element x of X is the subset $\{g . x: g \in G\}$ of X, and the stabilizer of x is the subgroup $\{g \in G: g \cdot x=x\}$ of G.

Lemma 2.24 Let G be a finite group which acts on a set X on the left. Then the orbit of an element x of X contains $[G: H]$ elements, where $[G: H]$ is the index of the stabilizer H of x in G.

Proof There is a well-defined function $\theta: G / H \rightarrow X$ defined on the set G / H of left cosets of H in G which sends $g H$ to $g . x$ for all $g \in G$. Moreover this function is injective, and its image is the orbit of x. The result follows.

2.11 Conjugacy

Definition Two elements h and k of a group G are said to be conjugate if $k=g h g^{-1}$ for some $g \in G$.

One can readily verify that the relation of conjugacy is reflexive, symmetric and transitive and is thus an equivalence relation on a group G. The equivalence classes determined by this relation are referred to as the conjugacy classes of G. A group G is the disjoint union of its conjugacy classes. Moreover the conjugacy class of the identity element of G contains no other element of G.

A group G is Abelian if and only if all its conjugacy classes contain exactly one element of the group G.

Definition Let G be a group. The centralizer $C(h)$ of an element h of G is the subgroup of G defined by $C(h)=\{g \in G: g h=h g\}$.

Lemma 2.25 Let G be a finite group, and let $h \in G$. Then the number of elements in the conjugacy class of h is equal to the index $[G: C(h)]$ of the centralizer $C(h)$ of h in G.

Proof There is a well-defined function $f: G / C(h) \rightarrow G$, defined on the set $G / C(h)$ of left cosets of $C(h)$ in G, which sends the coset $g C(h)$ to $g h g^{-1}$ for all $g \in G$. This function is injective, and its image is the conjugacy class of h. The result follows.

Let H be a subgroup of a group G. One can easily verify that $g \mathrm{Hg}^{-1}$ is also a subgroup of G for all $g \in G$, where $g H g^{-1}=\left\{g h g^{-1}: h \in H\right\}$.

Definition Two subgroups H and K of a group G are said to be conjugate if $K=g H^{-1}$ for some $g \in G$.

The relation of conjugacy is an equivalence relation on the collection of subgroups of a given group G.

2.12 Finitely Generated Abelian Groups

Let H be a subgroup of the additive group \mathbb{Z}^{n} consisting of all n-tuples of integers, with the operation of (vector) addition. A list $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{r}$ of elements of \mathbb{Z}^{n} is said to constitute an integral basis (or \mathbb{Z}-basis) of H if the following conditions are satisfied:

- the element $m_{1} \mathbf{b}_{1}+m_{2} \mathbf{b}_{2}+\cdots+m_{r} \mathbf{b}_{r}$ belongs to H for all integers $m_{1}, m_{2}, \ldots, m_{r}$;
- given any element \mathbf{h} of H, there exist uniquely determined integers $m_{1}, m_{2}, \ldots, m_{r}$ such that $\mathbf{h}=m_{1} \mathbf{b}_{1}+m_{2} \mathbf{b}_{2}+\cdots+m_{r} \mathbf{b}_{r}$.

Note that elements $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ of \mathbb{Z}^{n} constitute an integral basis of \mathbb{Z}^{n} if and only if every element of \mathbb{Z}^{n} is uniquely expressible as a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ with integer coefficients. It follows from basic linear algebra that the rows of an $n \times n$ matrix of integers constitute an integral basis of \mathbb{Z}^{n} if and only if the determinant of that matrix is ± 1.

Theorem 2.26 Let H be a non-trivial subgroup of \mathbb{Z}^{n}. Then there exists an integral basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ of \mathbb{Z}^{n}, a positive integer s, where $s \leq n$, and positive integers $k_{1}, k_{2}, \ldots, k_{s}$ for which $k_{1} \mathbf{b}_{1}, k_{2} \mathbf{b}_{2}, \ldots, k_{s} \mathbf{b}_{s}$ is an integral basis of H.

Proof We prove the result by induction on n. The result is clearly true when $n=1$, since every non-trivial subgroup of \mathbb{Z} is of the form $k \mathbb{Z}$ for some positive integer k. Suppose therefore that $n>1$ and that the result holds for all subgroups of \mathbb{Z}^{n-1}. We must show that the result then holds for all subgroups H of \mathbb{Z}^{n}.

Let k_{1} be the smallest strictly positive integer for which there exists some integral basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ of \mathbb{Z}^{n} and some element of H of the form $m_{1} \mathbf{u}_{1}+$ $m_{2} \mathbf{u}_{2}+\cdots+m_{n} \mathbf{u}_{n}$ where $m_{1}, m_{2}, \ldots, m_{n}$ are integers and $m_{i}=k_{1}$ for some integer i satisfying $1 \leq i \leq n$. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be such a basis, with $i=1$, and let \mathbf{h}_{0} be an element of H for which $\mathbf{h}_{0}=m_{1} \mathbf{u}_{1}+m_{2} \mathbf{u}_{2}+\cdots+m_{n} \mathbf{u}_{n}$, where $m_{1}, m_{2}, \ldots, m_{n}$ are integers and $m_{1}=k_{1}$.

We show that each coefficient m_{i} is divisible by k_{1}. Now, for each i, there exist integers q_{i} and r_{i} such that $m_{i}=q_{i} k_{1}+r_{i}$ and $0 \leq r_{i}<k_{1}$. Let $\mathbf{b}_{1}=\mathbf{u}_{1}+\sum_{i=2}^{n} q_{i} \mathbf{u}_{i}$. Then $\mathbf{b}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ is an integral basis of \mathbb{Z}^{n} and

$$
\mathbf{h}_{0}=k_{1} \mathbf{b}_{1}+\sum_{i=2}^{n} r_{i} \mathbf{u}_{i} .
$$

The choice of k_{1} now ensures that the coefficients r_{i} cannot be strictly positive (as they are less than k_{1}), and therefore $r_{i}=0$ and $m_{i}=q_{i} k_{1}$ for $i=$ $2,3, \ldots, n$. Moreover $\mathbf{h}_{0}=k_{1} \mathbf{b}_{1}$.

Now let $\varphi: \mathbb{Z}^{n-1} \rightarrow \mathbb{Z}^{n}$ be the injective homomorphism sending each element $\left(m_{2}, m_{3}, \ldots, m_{n}\right)$ of \mathbb{Z}^{n-1} to $\sum_{i=2}^{n} m_{i} \mathbf{u}_{i}$, and let $\tilde{H}=\varphi^{-1}(H)$. Then, given any element \mathbf{h} of H, there exist an integer m and an element $\tilde{\mathbf{h}}$ of \mathbb{Z}^{n-1} such that $\mathbf{h}=m \mathbf{b}_{1}+\varphi(\tilde{\mathbf{h}})$. Moreover m and $\tilde{\mathbf{h}}$ are uniquely determined by
\mathbf{h}, since $\mathbf{b}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ is an integral basis of \mathbb{Z}^{n}. Let $m=q k_{1}+r$, where q and r are integers and $0 \leq r<k_{1}$. Then $\mathbf{h}-q \mathbf{h}_{0}=r \mathbf{b}_{1}+\varphi(\tilde{\mathbf{h}})$, where $\varphi(\tilde{\mathbf{h}})$ is expressible as a linear combination of $\mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ with integer coefficients. The choice of k_{1} now ensures that r cannot be strictly positive, and therefore $r=0$. Then $\varphi(\tilde{\mathbf{h}}) \in H$, and hence $\tilde{\mathbf{h}} \in \tilde{H}$. We conclude from this that, given any element \mathbf{h} of H, there exist an integer q and an element $\tilde{\mathbf{h}}$ of \tilde{H} such that $\mathbf{h}=q k_{1} \mathbf{b}_{1}+\varphi(\tilde{\mathbf{h}})$. Moreover q and \mathbf{h} are uniquely determined by \mathbf{h}.

Now the induction hypothesis ensures the existence of an integral basis $\tilde{\mathbf{b}}_{2}, \tilde{\mathbf{b}}_{3}, \ldots, \tilde{\mathbf{b}}_{n}$ of \mathbb{Z}^{n-1} for which there exist positive integers $k_{2}, k_{3}, \ldots, k_{s}$ such that $k_{2} \tilde{\mathbf{b}}_{2}, k_{3} \tilde{\mathbf{b}}_{3}, \ldots, k_{s} \tilde{\mathbf{b}}_{s}$ is an integral basis of \tilde{H}. Let $\mathbf{b}_{i}=\varphi\left(\tilde{\mathbf{b}}_{i}\right)$ for each integer i between 2 and n. One can then readily verify that $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ is an integral basis of \mathbb{Z}^{n} and $k_{1} \mathbf{b}_{1}, k_{2} \mathbf{b}_{2}, \ldots, k_{s} \mathbf{b}_{s}$ is an integral basis of H, as required.

An Abelian group G is generated by elements $g_{1}, g_{2}, \ldots, g_{n}$ if and only if every element of G is expressible in the form $g_{1}^{m_{1}} g_{2}^{m_{2}} \cdots g_{n}^{m_{n}}$ for some integers $m_{1}, m_{2}, \ldots, m_{n}$.

Lemma 2.27 A non-trivial Abelian group G is finitely generated if and only if there exists a positive integer n and some surjective homomorphism $\theta: \mathbb{Z}^{n} \rightarrow$ G.

Proof Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ be the integral basis of \mathbb{Z}^{n} with $\mathbf{e}_{1}=(1,0, \ldots, 0)$, $\mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}_{n}=(0, \ldots, 0,1)$. If there exists a surjective homomorphism $\theta: \mathbb{Z}^{n} \rightarrow G$ then G is generated by $g_{1}, g_{2}, \ldots, g_{n}$, where $g_{i}=\theta\left(\mathbf{e}_{i}\right)$ for $i=1,2, \ldots, n$. Conversely if G is generated by $g_{1}, g_{2}, \ldots, g_{n}$ then there is a surjective homomorphism $\theta: \mathbb{Z}^{n} \rightarrow G$ that sends $\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$ to $g_{1}^{m_{1}} g_{2}^{m_{2}} \cdots g_{n}^{m_{n}}$.

Theorem 2.28 Let G be a non-trivial finitely generated Abelian group. Then there exist a positive integer n and a non-negative integer s between 0 and n, such that if $s=0$ then $G \cong \mathbb{Z}^{n}$, and if $s>0$ then there exist positive integers $k_{1}, k_{2}, \ldots, k_{s}$ such that

$$
G \cong C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{s}} \times \mathbb{Z}^{n-s},
$$

where $C_{k_{i}}$ is a cyclic group of order k_{i} for $i=1,2, \ldots, s$.
Proof There exists a positive integer n and some surjective homomorphism $\theta: \mathbb{Z}^{n} \rightarrow G$, since G is finitely-generated. Let H be the kernel of θ. If H is trivial then the homomorphism θ is an isomorphism between \mathbb{Z}^{n} and G. If H is non-trivial then G is isomorphic to \mathbb{Z}^{n} / H, and there exists an
integral basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ of \mathbb{Z}^{n}, a positive integer s, where $s \leq n$, and positive integers $k_{1}, k_{2}, \ldots, k_{s}$ for which $k_{1} \mathbf{b}_{1}, k_{2} \mathbf{b}_{2}, \ldots, k_{s} \mathbf{b}_{s}$ is an integral basis of H (Theorem 2.26). Then the group \mathbb{Z}^{n} / H, and thus G, is isomorphic to $C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{s}} \times \mathbb{Z}^{n-s}$, where $C_{k_{i}}$ is a cyclic group of order k_{i} for $i=1,2, \ldots, s$. Indeed there is a well-defined homomorphism $\varphi: \mathbb{Z}^{n} \rightarrow$ $C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{s}} \times \mathbb{Z}^{n-s}$ which sends each element

$$
m_{1} \mathbf{b}_{1}+m_{2} \mathbf{b}_{2}+\cdots+m_{n} \mathbf{b}_{n}
$$

of \mathbb{Z}^{n} to $\left(a_{1}^{m_{1}}, a_{2}^{m_{2}}, \ldots, a_{s}^{m_{s}}, m_{s+1}, \ldots, m_{n}\right)$, where a_{i} is a generator of the cyclic group C_{i} for $i=1,2, \ldots, s$. The homomorphism φ is surjective, and its kernel is the subgroup H. Therefore $G \cong \mathbb{Z}^{n} / H \cong C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{s}} \times \mathbb{Z}^{n-s}$, as required.

Corollary 2.29 Let G be a non-trivial finite Abelian group. Then there exist positive integers $k_{1}, k_{2}, \ldots, k_{n}$ such that $G \cong C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{n}}$, where $C_{k_{i}}$ is a cyclic group of order k_{i} for $i=1,2, \ldots, n$.

With some more work it is possible to show that the positive integers $k_{1}, k_{2}, \ldots, k_{s}$ in Theorem 2.28 may be chosen such that $k_{1}>1$ and k_{i-1} divides k_{i} for $i=2,3, \ldots, s$, and that the Abelian group is then determined up to isomorphism by the integer n and the sequence of positive integers $k_{1}, k_{2}, \ldots, k_{s}$.

2.13 The Class Equation of a Finite Group

Definition The centre $Z(G)$ of a group G is the subgroup of G defined by

$$
Z(G)=\{g \in G: g h=h g \text { for all } h \in G\} .
$$

One can verify that the centre of a group G is a normal subgroup of G.
Let G be a finite group, and let $Z(G)$ be the centre of G. Then $G \backslash Z(G)$ is a disjoint union of conjugacy classes. Let r be the number of conjugacy classes contained in $G \backslash Z(G)$, and let $n_{1}, n_{2}, \ldots, n_{r}$ be the number of elements in these conjugacy classes. Then $n_{i}>1$ for all i, since the centre $Z(G)$ of G is the subgroup of G consisting of those elements of G whose conjugacy class contains just one element. Now the group G is the disjoint union of its conjugacy classes, and therefore

$$
|G|=|Z(G)|+n_{1}+n_{2}+\cdots+n_{r} .
$$

This equation is referred to as the class equation of the group G.

Definition Let g be an element of a group G. The centralizer $C(g)$ of g is the subgroup of G defined by $C(g)=\{h \in G: h g=g h\}$.

Proposition 2.30 Let G be a finite group, and let p be a prime number. Suppose that p^{k} divides the order of G for some positive integer k. Then either p^{k} divides the order of some proper subgroup of G, or else p divides the order of the centre of G.

Proof Choose elements $g_{1}, g_{2}, \ldots, g_{r}$ of $G \backslash Z(G)$, where $Z(G)$ is the centre of G, such that each conjugacy class included in $G \backslash Z(G)$ contains exactly one of these elements. Let n_{i} be the number of elements in the conjugacy class of g_{i} and let $C\left(g_{i}\right)$ be the centralizer of g_{i} for each i. Then $C\left(g_{i}\right)$ is a proper subgroup of G, and $|G|=n_{i}\left|C\left(g_{i}\right)\right|$. Thus if p^{k} divides $|G|$ but does not divide the order of any proper subgroup of G then p must divide n_{i} for $i=1,2, \ldots, r$. Examination of the class equation $|G|=|Z(G)|+n_{1}+n_{2}+\cdots+n_{r}$ now shows that p divides $|Z(G)|$, as required.

2.14 Cauchy's Theorem

Theorem 2.31 (Cauchy) Let G be an finite group, and let p be a prime number that divides the order of G. Then G contains an element of order p.

Proof We prove the result by induction on the order of G. Thus suppose that every finite group whose order is divisible by p and less than $|G|$ contains an element of order p. If p divides the order of some proper subgroup of G then that subgroup contains the required element of order p. If p does not divide the order of any proper subgroup of G then Proposition 2.30 ensures that p divides the order of the centre $Z(G)$ of G, and thus $Z(G)$ cannot be a proper subgroup of G. But then $G=Z(G)$ and the group G is Abelian.

Thus let G be an Abelian group whose order is divisible by p, and let H be a proper subgroup of G that is not contained in any larger proper subgroup. If $|H|$ is divisible by p then the induction hypothesis ensures that H contains the required element of order p, since $|H|<|G|$. Suppose then that $|H|$ is not divisible by p. Choose $g \in G \backslash H$, and let C be the cyclic subgroup of G generated by g. Then $H C=G$, since $H C \neq H$ and $H C$ is a subgroup of G containing H. It follows from the First Isomorphism Theorem (Theorem 2.22) that $G / H \cong C / H \cap C$. Now p divides $|G / H|$, since $|G / H|=|G| /|H|$ and p divides $|G|$ but not $|H|$. Therefore p divides $|C|$. Thus if $m=|C| / p$ then g^{m} is the required element of order p. This completes the proof of Cauchy's Theorem.

2.15 The Structure of p-Groups

Definition Let p be a prime number. A p-group is a finite group whose order is some power p^{k} of p.

Lemma 2.32 Let p be a prime number, and let G be a p-group. Then there exists a normal subgroup of G of order p that is contained in the centre of G.

Proof Let $|G|=p^{k}$. Then p^{k} divides the order of G but does not divide the order of any proper subgroup of G. It follows from Proposition 2.30 that p divides the order of the centre of G. It then follows from Cauchy's Theorem (Theorem 2.31) that the centre of G contains some element of order p. This element generates a cyclic subgroup of order p, and this subgroup is normal since its elements commute with every element of G.

Proposition 2.33 Let G be a p-group, where p is some prime number, and let H be a proper subgroup of G. Then there exists some subgroup K of G such that $H \triangleleft K$ and K / H is a cyclic group of order p.

Proof We prove the result by induction on the order of G. Thus suppose that the result holds for all p-groups whose order is less than that of G. Let Z be the centre of G. Then $Z H$ is a well-defined subgroup of G, since Z is a normal subgroup of G.

Suppose that $Z H \neq H$. Then H is a normal subgroup of $Z H$. The quotient group $Z H / H$ is a p-group, and contains a subgroup K_{1} of order p (Lemma 2.32). Let $K=\left\{g \in Z H: g H \in K_{1}\right\}$. Then $H \triangleleft K$ and $K / H \cong K_{1}$, and therefore K is the required subgroup of G.

Finally suppose that $Z H=H$. Then $Z \subset H$. Let $H_{1}=\{h Z: h \in H\}$. Then H_{1} is a subgroup of G / Z. But G / Z is a p-group, and $|G / Z|<|G|$, since $|Z| \geq p$ (Lemma 2.32). The induction hypothesis ensures the existence of a subgroup K_{1} of G / Z such that $H_{1} \triangleleft K_{1}$ and K_{1} / H_{1} is cyclic of order p. Let $K=\left\{g \in G: g Z \in K_{1}\right\}$. Then $H \triangleleft K$ and $K / H \cong K_{1} / H_{1}$. Thus K is the required subgroup of G.

Repeated applications of Proposition 2.33 yield the following result.
Corollary 2.34 Let G be a finite group whose order is a power of some prime number p. Then there exist subgroups $G_{0}, G_{1}, \ldots, G_{n}$ of G, where G_{0} is the trivial subgroup and $G_{n}=G$, such that $G_{i-1} \triangleleft G_{i}$ and G_{i} / G_{i-1} is a cyclic group of order p for $i=1,2, \ldots, n$.

2.16 The Sylow Theorems

Definition Let G be a finite group, and let p be a prime number dividing the order $|G|$ of G. A p-subgroup of G is a subgroup whose order is some power of p. A Sylow p-subgroup of G is a subgroup whose order is p^{k}, where k is the largest natural number for which p^{k} divides $|G|$.

Theorem 2.35 (First Sylow Theorem) Let G be a finite group, and let p be a prime number dividing the order of G. Then G contains a Sylow p-subgroup.

Proof We prove the result by induction on the order of G. Thus suppose that all groups whose order is less than that of G contain the required Sylow p-subgroups. Let k be the largest positive integer for which p^{k} divides $|G|$. If p^{k} divides the order of some proper subgroup H of G then the induction hypothesis ensures that H contains the required Sylow p-subgroup of order p^{k}. If p^{k} does not divide the order of any proper subgroup of G then p divides the order of the centre $Z(G)$ of G (Proposition 2.30). It follows from Cauchy's Theorem (Theorem 2.31) that $Z(G)$ contains an element of order p, and this element generates a normal subgroup N of G of order p. The induction hypothesis then ensures that G / N has a Sylow p-subgroup L of order p^{k-1}, since $|G / N|=|G| / p$. Let $K=\{g \in G: g N \in L\}$. Then $|K|=p|L|=p^{k}$, and thus K is the required Sylow p-subgroup of G.

Theorem 2.36 (Second Sylow Theorem) Let G be a finite group, and let p be a prime number dividing the order of G. Then all Sylow p-subgroups of G are conjugate, and any p-subgroup of G is contained in some Sylow psubgroup of G. Moreover the number of Sylow p-subgroups in G divides the order of G and is congruent to 1 modulo p.

Proof Let K be a Sylow p-subgroup of G, and let X be the set of left cosets of K in G. Let H be a p-subgroup of G. Then H acts on X on the left, where $h(g K)=h g K$ for all $h \in H$ and $g \in G$. Moreover $h(g K)=g K$ if and only if $g^{-1} h g \in K$. Thus an element $g K$ of X is fixed by H if and only if $g^{-1} H g \subset K$.

Let $|G|=p^{k} m$, where k and m are positive integers and m is coprime to p. Then $|K|=p^{k}$. Now the number of left cosets of K in G is $|G| /|K|$. Thus the set X has m elements. Now the number of elements in any orbit for the action of H on X divides the order of H, since it is the index in H of the stabilizer of some element of that orbit (Lemma 2.24). But then the number of elements in each orbit must be some power of p, since H is a p-group. Thus if an element of X is not fixed by H then the number of elements in its orbit is divisible by p. But X is a disjoint union of orbits under the action
of H on X. Thus if m^{\prime} denotes the number of elements of X that are fixed by H then $m-m^{\prime}$ is divisible by p.

Now m is not divisible by p. It follows that $m^{\prime} \neq 0$, and m^{\prime} is not divisible by p. Thus there exists at least one element g of G such that $g^{-1} H g \subset K$. But then H is contained in the Sylow p-subgroup $g K g^{-1}$. Thus every p-subgroup is contained in a Sylow p-subgroup of G, and this Sylow p-subgroup is a conjugate of the given Sylow p-subgroup K. In particular any two Sylow p-subgroups are conjugate.

It only remains to show that the number of Sylow p-subgroups in G divides the order of $|G|$ and is congruent to 1 modulo p. On applying the above results with $H=K$, we see that $g^{-1} K g=K$ for some $g \in G$ if and only if $g K$ is a fixed point for the action of K on X. But the number of elements g of G for which $g K$ is a fixed point is $m^{\prime}|K|$, where m^{\prime} is the number of fixed points in X. It follows that the number of elements g of G for which $g^{-1} K g=K$ is $p^{k} m^{\prime}$. But every Sylow p-subgroup of G is of the form $g^{-1} \mathrm{Kg}$ for some $g \in G$. It follows that the number n of Sylow p-subgroups in G is given by $n=|G| / p^{k} m^{\prime}=m / m^{\prime}$. In particular n divides $|G|$. Now we have already shown that $m-m^{\prime}$ is divisible by p. It follows that m^{\prime} is coprime to p, since m is coprime to p. Also $m-m^{\prime}$ is divisible by m^{\prime}, since $\left(m-m^{\prime}\right) / m^{\prime}=n-1$. Putting these results together, we see that $m-m^{\prime}$ is divisible by $m^{\prime} p$, and therefore $n-1$ is divisible by p. Thus n divides $|G|$ and is congruent to 1 modulo p, as required.

2.17 Some Applications of the Sylow Theorems

Theorem 2.37 Let p and q be prime numbers, where $p<q$ and $q \not \equiv 1$ $(\bmod p)$. Then any group of order pq is cyclic.

Proof Let G be a group of order $p q$. It follows from the First Sylow Theorem that G contains Sylow subgroups N_{p} and N_{q} of orders p and q respectively. Now the number n_{p} of Sylow p-subgroups divides $p q$ and satisfies $n_{p} \equiv 1$ $(\bmod p)$, by the Second Sylow Theorem. Clearly n_{p} cannot be divisible by p, and therefore either $n_{p}=1$ or $n_{p}=q$. But $q \not \equiv 1(\bmod p)$. It follows that $n_{p}=1$. Thus the group G has just one subgroup of order p.

Now, given any element g of G, the subgroups N_{p} and $g N_{p} g^{-1}$ are of order p. It follows that $g N_{p} g^{-1}=N_{p}$ for all elements g of G. Thus N_{p} is a normal subgroup of G.

A similar argument shows that N_{q} is also a normal subgroup of G, since $p<q$, and therefore $p \not \equiv 1(\bmod q)$.

Now $N_{p} \cap N_{q}$ is a subgroup of both N_{p} and N_{q}. It follows from Lagrange's Theorem that the order of $N_{p} \cap N_{q}$ divides both of the prime numbers p and
q, and therefore $\left|N_{p} \cap N_{q}\right|=1$ and $N_{p} \cap N_{q}=\{e\}$, where e is the identity element of G.

Let $x \in N_{p}$ and $y \in N_{q}$. Then $y x^{-1} y^{-1} \in N_{p}$ and $x y x^{-1} \in N_{q}$, since N_{p} and N_{q} are normal subgroups of G. But then $x y x^{-1} y^{-1} \in N_{p} \cap N_{q}$, since $x y x^{-1} y^{-1}=x\left(y x^{-1} y^{-1}\right)=\left(x y x^{-1}\right) y^{-1}$, and therefore $x y x^{-1} y^{-1}=e$. Thus $x y=y x$ for all $x \in N_{p}$ and $y \in N_{q}$. It follows easily from this that the function $\varphi: N_{p} \times N_{q} \rightarrow G$ which sends $(x, y) \in N_{p} \times N_{q}$ to $x y$ is a homomorphism. This homomorphism is injective, for if $x y=e$ for some $x \in N_{p}$ and $y \in N_{q}$, then $x=y^{-1}$, and hence $x \in N_{p} \cap N_{q}$, from which it follows that $x=e$ and $y=e$. But any injective homomorphism between two finite groups of the same order is necessarily an isomorphism. Therefore the function $\varphi: N_{p} \times N_{q} \rightarrow G$ is an isomorphism, and thus $G \cong N_{p} \times N_{q}$.

Now any group whose order is prime number must be cyclic. Therefore the groups N_{p} and N_{q} are cyclic. Let x be an element of N_{p} that generates N_{p}, and let y be an element of N_{q} that generates N_{q}. Then $(x, y)^{n}=\left(x^{n}, y^{n}\right)$ for all integers n. It follows from this that the order of (x, y) cannot be equal to $1, p$ or q, and must therefore be equal to $p q$. Thus $N_{p} \times N_{q}$ is a cyclic group generated by (x, y), and therefore G is a cyclic group, generated by $x y$, as required.

Example Any finite group whose order is 15, 33, 35, 51, 65, 69, 85, 87, 91 or 95 is cyclic.
Theorem 2.38 Let G be a group of order $2 p$ where p is a prime number greater than 2. Then either the group G is cyclic, or else the group G is isomorphic to the dihedral group $D_{2 p}$ of symmetries of a regular p-sided polygon in the plane.

Proof It follows from the First Sylow Theorem, or from Cauchy's Theorem, that the group G contains elements x and y whose orders are 2 and p respectively. The subgroup N generated by y is then a Sylow p-subgroup of G. Now it follows from the Second Sylow Theorem that the number of Sylow p-subgroups of G divides $2 p$ and is congruent to 1 modulo p. There can therefore be only one such Sylow p-subgroup, since $2, p$ and $2 p$ are not congruent to 1 modulo p. Now if g is any element of G then $g N g^{-1}$ is a Sylow p-subgroup of G, and therefore $g N g^{-1}=N$. We deduce that N is a normal subgroup of G, of order p.

Now consider the element $x y x^{-1}$ of G. This must be an element of the normal subgroup N of G generated by y. Therefore $x y x^{-1}=y^{k}$ for some integer k. Moreover k is not divisible by p, since $x y x^{-1}$ is not the identity element e of G. Then

$$
y^{k^{2}}=\left(y^{k}\right)^{k}=\left(x y x^{-1}\right)^{k}=x y^{k} x^{-1}=x\left(x y x^{-1}\right) x^{-1}=x^{2} y x^{-2} .
$$

But $x^{2}=x^{-2}=e$, since x is an element of G of order 2. It follows that $y^{k^{2}}=y$, and thus $y^{k^{2}-1}=e$. But then p divides $k^{2}-1$, since y is an element of order p. Moreover $k^{2}-1=(k-1)(k+1)$. It follows that either p divides $k-1$, in which case $x y x^{-1}=y$, or else p divides $k+1$, in which case $x y x^{-1}=y^{-1}$.

In the case when $x y x^{-1}=y$ we see that $x y=y x$, and one can then readily verify that the group G is a cyclic group of order $2 p$ generated by $x y$.

In the case when $x y x^{-1}=y^{-1}$ the group G is isomorphic to the dihedral group $D_{2 p}$ of order $2 p$. In this case the elements x and y generate G (since they generate a subgroup of G whose order divides $2 p$ but is greater than p, and must therefore be equal to $2 p$). Under the isomorphism with the dihedral group $D_{2 p}$ the element x corresponds to a reflection in one of the axes of symmetry of the regular p-sided polygon, and the element y corresponds to a rotation of that polygon about its centre through an angle of $2 \pi / p$ radians.

Theorem 2.39 Let p and q be prime numbers with $p<q$, and let d be the smallest positive integer for which $p^{d} \equiv 1(\bmod q)$. If G is a group of order $p^{k} q$, where $0<k<d$ then G contains a normal subgroup of order q. If G is a group of order $p^{d} q$ then either G contains a normal subgroup of order q or else G contains a normal subgroup of order p^{d}.

Proof It follows from the First Sylow Theorem (or directly from Cauchy's Theorem) that the group G contains at least one Sylow q-subgroup K, and this is of order q. If $|G|=p^{k} q$ then the number n_{q} of such Sylow q-subgroups divides $p^{k} q$ and satisfies $n_{q} \equiv 1(\bmod q)$, by the Second Sylow Theorem. It follows that n_{q} is coprime to q, and therefore $n_{q}=p^{j}$ for some integer j satisfying $0 \leq j \leq k$.

If $k<d$ then none of the integers p, p^{2}, \ldots, p^{k} are congruent to 1 modulo q, and therefore $j=0$ and $n_{q}=1$. In this case there is just one Sylow q-subgroup K, and this is a normal subgroup. (Given any element g of G, the subgroup $g K g^{-1}$ is a Sylow q-subgroup, and therefore $g K g^{-1}=K$.)

If $k=d$ then none of the integers p^{j} with $0<j<d$ are congruent to 1 modulo q, and therefore either $n_{q}=1$ or $n_{q}=p^{d}$. If $n_{q}=1$ then there is just one Sylow q-subgroup K, and this is a normal subgroup.

If $n_{q}>1$ then $n_{q}=p^{d}$, and thus there are p^{d} Sylow q-subgroups, and these are of order q. Now if K_{i} and K_{j} are two distinct subgroups of order q then $K_{i} \cap K_{j}$ is a proper subgroup of both K_{i} and K_{j}, and its order is a proper divisor of the order q of K_{i} and K_{j}, by Lagrange's Theorem. But q is a prime number. It follows that $K_{i} \cap K_{j}=\{e\}$, where e is the identity element of G. We deduce from this that no element of G of order q can belong to more than one subgroup of order q. But each subgroup of G of order q
contains $q-1$ elements of order q (namely all elements of that subgroup with the exception of the identity element). It follows that the group G contains $p^{d}(q-1)$ elements of order q. Now $|G|=p^{d} q$. It follows that G contains exactly p^{d} elements that are not of order q. But it follows from the First Sylow Theorem that G contains at least one Sylow p-subgroup H, and this is of order p^{d}. This subgroup must therefore contain all the elements of G that are not of order q. It follows that the group G cannot contain more than one such Sylow p-subgroup. This Sylow p-subgroup H is therefore a normal subgroup of G of order p^{d}, as required.

2.18 Simple Groups

Definition A non-trivial group G is said to be simple if the only normal subgroups of G are the whole of G and the trivial subgroup $\{e\}$ whose only element is the identity element e of G.

Lemma 2.40 Any non-trivial Abelian simple group is a cyclic group whose order is a prime number.

Proof Let G be a non-trivial Abelian simple group, and let x be an element of G that is not equal to the identity element e of G. All subgroups of an Abelian group are normal subgroups. Therefore the subgroup of G generated by x is a normal subgroup of G, and must therefore be the whole of G. Therefore G is a cyclic group, generated by the element x. Moreover all elements of G other than the identity element are generators of G, and are therefore of order p, where $p=|G|$. Let d be a divisor of p. Then x^{d} is an element of order p / d, since p / d is the smallest positive integer k for which $x^{d k}=e$. It follows that either $d=1$ or $d=p$ (since the group G contains no element whose order is greater than 1 but less than p). It follows that the order p of G is a prime number, as required.

Using the Sylow Theorems and related results, we can prove that any finite simple group whose order is less than 60 is a cyclic group of prime order.

Now the prime numbers less than 60 are the following: 2, 3, 5, 7, 11, 13, $17,19,23,29,31,37,41,43,47,53$ and 59 . All groups of these orders are simple groups, and are cyclic groups.

If p is a prime number greater than 2 then any group of order $2 p$ is either a cyclic group or else is isomorphic to the dihedral group $D_{2 p}$ of order $2 p$ (Theorem 2.38). In either case such a group contains a normal subgroup of order p, and therefore not a simple group. In particular, there are no simple groups of orders $6,10,14,22,26,34,38,46$ or 58.

If G is a group of order p^{k} for some prime number p and for some integer k satisfying $k \geq 2$, then G contains a normal subgroup of order p (Lemma 2.32). It follows that such a group is not simple. In particular, there are no simple groups of orders $4,8,16,32,9,27,25$ and 49.

Let G be a group of order $p q$, where p and q are prime numbers and $p<q$. Any Sylow q-subgroup of G is of order q, and the number of such Sylow q-subgroups must divide $p q$ and be congruent to 1 modulo q. Now p cannot be congruent to 1 modulo q, since $1<p<q$. Therefore G has just one Sylow q-subgroup, and this is a normal subgroup of G of order q. It follows that such a group is not a simple group. In particular there are no simple groups of orders $15,21,33,35,39,51,55$ or 57 . (In particular it follows from Theorem 2.37 that any group whose order is $15,33,35$, or 51 is a cyclic group.)

It only remains to verify that there are no simple groups of orders 12,18 , $20,24,28,30,36,40,42,44,45,48,50,52,54$ or 56 .

We can deal with many of these on applying Theorem 2.39. On applying this theorem with $p=2, q=3$ and $d=2$, we see that there are no simple groups of orders 6 or 12 . On applying the theorem with $p=2, q=5$ and $d=4$, we see that there are no simple groups of orders $10,20,40$ or 80 . On applying the theorem with $p=2, q=7$ and $d=3$, we see that there are no simple groups of orders 14,28 or 56 . On applying the theorem with $p=2, q=11$ we see that there are no simple groups of orders 22,44 etc., on applying the theorem with $p=2, q=13$ we see that there are no simple groups of orders 26,52 etc., and on applying the theorem with $p=3$ and $q=5$, we see that there are no simple groups of orders 15,45 etc.

It now remains to verify that there are no simple groups of orders 18,24 , $30,36,42,48,50$ or 54 .

Using the Second Sylow Theorem, we see that any group of order 18 has just one Sylow 3-subgroup. This Sylow 3-subgroup is then a normal group of order 9 , and therefore no group of order 18 is simple. Similarly a group of order 50 has just one Sylow 5 -subgroup, which is then a normal subgroup of order 25 , and therefore no group of order 50 is simple. Also a group of order 54 has just one Sylow 3 -subgroup, which is then a normal subgroup of order 27 , and therefore no group of order 54 is simple.

On applying the Second Sylow Theorem, we see the number of Sylow 7 -subgroups of any group of order 42 must divide 42 and be congruent to 1 modulo 7. This number must then be coprime to 7 and therefore divide 6 , since $42=7 \times 6$. But no divisor of 6 greater than 1 is coprime to 1 modulo 7. It follows that any group of order 42 has just one Sylow 7 -subgroup, and this subgroup is therefore a normal subgroup of order 7. Thus no group of order 42 is simple.

On applying the Second Sylow Theorem, we see that if a group of order 30 has more than one subgroup of order 3 then it must have 10 such subgroups, and must therefore have 20 elements of order 3 (since each subgroup of order 3 contains two elements of order 3, and the intersection of two distinct subgroups of order 3 must be the trivial subgroup). Similarly if a group of order 30 has more than one subgroup of order 5 then it must have 6 such subgroups, and must therefore have 24 elements of order 5 . Obviously such a group cannot have both 20 elements of order 3 and 24 elements of order 5. Therefore it either has a single subgroup of order 3 or a single subgroup of order 5. This subgroup is normal. Therefore no group of order 30 is simple.

In order to show that there are no simple groups of order less than 60 , apart from the cyclic groups whose order is prime, it only remains to verify that there are no simple groups of orders 24, 36 and 48. In order to deal with these remaining cases, we need to make use of the following result.

Lemma 2.41 Let H and K be subgroups of a finite group G. Then

$$
|H \cap K| \geq \frac{|H||K|}{|G|}
$$

Proof Let $\varphi: H \times K \rightarrow G$ be the function with $\varphi(h, k)=h k$ for all $h \in$ H and $k \in K$. (This function is not in general a homomorphism.) Let $\left(h_{1}, k_{1}\right)$ and $\left(h_{2}, k_{2}\right)$ be elements of $H \times K$. Then $h_{1} k_{1}=h_{2} k_{2}$ if and only if $h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1}$, in which case $h_{2}^{-1} h_{1} \in H \cap K$. But then $h_{2}=h_{1} x^{-1}$ and $k_{2}=x k_{1}$ for some element x of $H \cap K$. Thus $\varphi\left(h_{1}, k_{1}\right)=\varphi\left(h_{2}, k_{2}\right)$ if and only if $\left(h_{2}, k_{2}\right)=\left(h_{1} x^{-1}, x k_{1}\right)$ for some element x of $H \cap K$. It follows that each element of the range $\varphi(H \times K)$ of the function φ is the image of exactly $|H \cap K|$ elements of $H \times K$. It follows from this that $\varphi(H \times K)$ has $\frac{|H||K|}{|H \cap K|}$ elements. But $\varphi(H \times K)$ is a subset of G. Therefore

$$
\frac{|H||K|}{|H \cap K|} \leq|G| .
$$

The required inequality now follows directly.
Let G be a finite group, and let H be a subgroup of index 2 in G (i.e., a subgroup with half as many elements as G). Then H is a normal subgroup of G. Indeed the subsets H and $G \backslash H$ of G are the left cosets and are also the right cosets of H in G, and therefore the left cosets of H in G coincide with the right cosets.

Example We now show that there are no simple groups of order 24. Let G be a group of order 24. Then G contains a Sylow 2-subgroup H of order 8. If this is the only Sylow 2-subgroup, then it is a normal subgroup, and therefore the group G is not simple. Otherwise the group G contains at least two distinct subgroups H and K of order 8. It then follows from Lemma 2.41 that $|H \cap K| \geq \frac{8}{3}$. But $|H \cap K|$ divides 8 , by Lagrange's Theorem, since $H \cap K$ is a subgroup of H and of K. Therefore $|H \cap K|=4$. It follows that $H \cap K$ is a subgroup of index 2 in H and K, and is therefore a normal subgroup of both H and K. Let

$$
J=\left\{g \in G: g(H \cap K) g^{-1}=H \cap K\right\} .
$$

Then J is a subgroup of G, and $H \cap K$ is a normal subgroup of J. Moreover H and K are subgroups of J, and therefore $|J|$ is divisible by 8 , by Lagrange's Theorem. But J is a subgroup of G, and hence $|J|$ divides 24 . Also $|J|>8$, since H (and K) are proper subgroups of J. It follows that $|J|=24$, and therefore $J=G$. But then $H \cap K$ is a normal subgroup of G of order 4, and therefore G is not simple.

An analogous argument shows that there are no simple groups of order 48: a group G of order 48 contains either a single Sylow 2-subgroup of order 16, which is then a normal subgroup of G, or else it contains a normal subgroup of order 8 which is the intersection of two distinct Sylow 2-subgroups of G.

The following result will be needed in order to show that there are no simple groups of order 36. (It may be obtained as an immediate corollary of Proposition 2.33.)

Lemma 2.42 Let G be a group of order p^{2} where p is a prime number, and let H be a subgroup of G of order p. Then H is a normal subgroup of G.

Proof Let $J=\left\{g \in G: g H g^{-1}=H\right\}$. Then J is a subgroup of G and H is a normal subgroup of J. We shall show that $J=G$.

Now the centre $Z(G)$ of G is contained in J. Moreover it follows from Lemma 2.32 that $|Z(G)|$ is divisible by p. Were it the case that $|J|=p$ then $J=H=Z(G)$. But then J would consist of all elements of G for which $g Z(G) g^{-1}=Z(G)$, and thus would be the whole of G, which is impossible. It follows that $|J|=p^{2}$ (since $|J|>p$ and $|J|$ divides p^{2}). But then $J=G$, and hence H is a normal subgroup of G, as required.

Example We now show that there are no simple groups of order 36. Let G be a group of order 36. Then G contains a Sylow 3 -subgroup H of order 9. If this is the only Sylow 3-subgroup, then it is a normal subgroup, and therefore
the group G is not simple. Otherwise the group G contains at least two distinct subgroups H and K of order 9. It then follows from Lemma 2.41 that $|H \cap K| \geq \frac{9}{4}$. But $|H \cap K|$ divides 9 , by Lagrange's Theorem, since $H \cap K$ is a subgroup of H and of K. Therefore $|H \cap K|=3$. On applying Lemma 2.42 we see that $H \cap K$ is a normal subgroup of H and of K.

Let

$$
J=\left\{g \in G: g(H \cap K) g^{-1}=H \cap K\right\} .
$$

Then J is a subgroup of G, and $H \cap K$ is a normal subgroup of J. Moreover H and K are subgroups of J, and therefore $|J|$ is divisible by 9 , by Lagrange's Theorem. But J is a subgroup of G, and hence $|J|$ divides 36 . Also $|J|>9$, since H (and K) are proper groups of J. It follows that either $|J|=18$ or 36. If $|J|=36$ then $J=G$ and $H \cap K$ is a normal subgroup of G of order 3. If $|J|=18$ then J is a subgroup of G of index 2 , and is therefore a normal subgroup of order 18 . We conclude that any group of order 36 contains at least one non-trivial normal subgroup. Therefore there are no simple groups of order 36 .

We have now shown that there are indeed no simple groups of order less than 60 , other than the cyclic groups of prime order.

There is a simple group of order 60 which is simple but is not cyclic. This group is the alternating group A_{5}, consisting of all even permutations of a set with five elements.

Lemma 2.43 The alternating group A_{5} is simple.
Proof We regard A_{5} as the group even permutations of the set $\{1,2,3,4,5\}$. There are 60 such permutations: the identity permutation, twenty 3 -cycles, twenty-four 5 -cycles, and fifteen permutations that are products of two disjoint transpositions. (Such a product of disjoint transpositions is a permutation $\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)$ that interchanges a_{1} with a_{2} and a_{3} with a_{4} for some distinct elements a_{1}, a_{2}, a_{3} and a_{4} of the set $\{1,2,3,4,5\}$.)

Now each 3 -cycle in A_{5} generates a Sylow 3 -subgroup of order 3 , and these subgroups are all conjugate to one another by the Second Sylow Theorem. It follows that any normal subgroup of A_{5} that contains at least one 3 -cycle must contain all twenty 3 -cycles, and thus its order must therefore be at least 21 (since it must also contain the identity element). Similarly each 5 -cycle in A_{5} generates a Sylow 5 -subgroup of order 5 , and these subgroups are all conjugate to one another. Therefore any normal subgroup of A_{5} that contains at least one 5 -cycle must contain all twenty four 5 -cycles, and thus its order must be at least 25 .

Now if A_{5} were to contain a subgroup of order 30, this subgroup would be the kernel of a non-constant homomorphism $\varphi: A_{5} \rightarrow\{1,-1\}$ from A_{5} to the multiplicative group consisting of the numbers 1 and -1 . But any 3 -cycle or 5 -cycle would have to belong to the kernel of this homomorphism, and therefore this kernel would contain at least 45 elements, which is impossible. We conclude that A_{5} cannot contain any subgroup of order 30. It follows from Lagrange's Theorem that any normal subgroup of A_{5} that contains at least one 3 -cycle or 5 -cycle must be the whole of A_{5}.

The group A_{5} contains 5 Sylow 2-subgroups, which are of order 4. One of these consists of the identity permutation, together with the three permutations (12)(34), (13)(24) and (14)(23). (Each of these permutations fixes the element 5.) There are four other such Sylow 2-subgroups, and all of the Sylow 2-subgroups are conjugate to one another. It follows that A_{5} does not contain any normal subgroup of order 4. Moreover A_{5} cannot contain any normal subgroup of order 2, since any element of order 2 belongs to one of the five Sylow 2-subgroups of order 4, and is therefore conjugate to elements of order 2 in the other Sylow 2-subgroups.

Now any subgroup of A_{5} whose order is divisible by 3 must contain a 3 -cycle by Cauchy's Theorem. (Theorem 2.31.) Similarly any subgroup of A_{5} whose order is divisible by 5 must contain a 5 -cycle. It follows that the order of any proper normal subgroup of A_{5} cannot be divisible by 3 or 5 . But this order must divide 60. Therefore the order of any proper normal subgroup of A_{5} must be at most 4 . But we have seen that A_{5} cannot contain any normal subgroup of order 4 or 2 . Therefore any proper normal subgroup of A_{5} is trivial, and therefore A_{5} is simple.

