
ABSTRACT ALGEBRA WITH

APPLICATIONS

Irwin Kra, State University of New York at Stony Brook

and University of California at Berkeley





Contents

Introduction 7

Standard Notation and Commonly Used Symbols 9

Chapter 1. The integers 11
1. Introduction 11
2. Induction 12
3. The division algorithm: gcd and lcm 19
4. Primes 29
5. The rationals, algebraic numbers and other beasts 34
5.1. The rationals, Q 34
5.2. The reals, R 35
5.3. The complex numbers, C 36
5.4. The algebraic numbers 36
5.5. The quaternions, H 36
6. Modular arithmetic 37
7. Solutions of linear congruences 44
8. Euler 50
9. Public key cryptography 55
10. A collection of beautiful results 57

Chapter 2. Foundations 59
1. Naive set theory 59
2. Functions 60
3. Relations 64
4. Order relations on Z and Q 67
4.1. Orders on Z 67
4.2. Orders on Q 68
5. The complex numbers 68

Chapter 3. Groups 71
1. Permutation groups 71
2. The order and sign of a permutation 77
3. Definitions and more examples of groups 83

Chapter 4. Group homomorphisms and isomorphisms. 95
1. Elementary group theory 95
2. Lagrange’s theorem 98
3. Homomorphisms 100
4. Groups of small order 101

3



4 CONTENTS

4.1. |G| = 1 103
4.2. |G| = 2, 3, 5, 7 and, in fact, all primes 103
4.3. |G| = 4 103
4.4. |G| = 6 103
4.5. |G| = 8 104
5. Homomorphisms and quotients 106
6. Isomorphisms 110
6.1. Every group is a subgroup of a permutation group 110
6.2. Solvable groups 111
6.3. MORE sections to be included 111

Chapter 5. Algebraic structures 113
1. A collection of algebraic structures 113
2. The algebra of polynomials 118
2.1. The vector space of polynomials of degree n 120
2.2. The Euclidean algorithm (for polynomials) 120
2.3. Differentiation 124
3. Ideals 125
3.1. Ideals in commutative rings 125
3.2. Ideals in Z and C[x] 127
4. CRT revisited 128
5. Polynomials over more general fields 129
6. Fields of quotients and rings of rational functions 130

Chapter 6. Error correcting codes 131
1. ISBN 131
2. Groups and codes 131

Chapter 7. Roots of polynomials 143
1. Roots of polynomials 143
1.1. Derivatives and multiple roots 147
2. Circulant matrices 147
3. Roots of polynomials of small degree 152
3.1. Roots of linear and quadratic polynomials 153
3.2. The general case 154
3.3. Roots of cubics 155
3.4. Roots of quartics 156
3.5. Real roots and roots of absolute value 1 158
3.6. What goes wrong for polynomials of higher degree? 159

Chapter 8. Moduli for polynomials 161
1. Polynomials in three guises 161
2. An example from high school math: the quadratic polynomial 162
3. An equivalence relation 162
4. An example all high school math teachers should know: the cubic polynomial 164
5. Arbitrary real or complex polynomials 164
6. Back to the cubic polynomial 165
7. Standard forms for cubics 168



CONTENTS 5

8. Solving the cubic 170
9. Solving the quartic 171
10. Concluding remarks 172
11. A moduli (parameter) count 172

Chapter 9. Nonsolvability by radicals 175
1. Algebraic extensions of fields 175
2. Field embeddings 177
3. Splitting fields 178
4. Galois extensions 179
5. Quadratic, cubic and quartic extensions 179
5.1. Linear extensions 179
5.2. Quadratic extensions 179
5.3. Cubic extensions 179
5.4. Quartic extensions 180
6. Nonsolvability 180

Bibliography 183

Index 185





Introduction

This book is closest in spirit to [7]. Except for Chapters 7 and 91, where the reader will
need some results from linear algebra (which are reviewed), this book requires no formal
mathematics prerequisites. Readers should, however, posses sufficient mathematical sophis-
tication to appreciate a logical argument and what constitutes a proof. More than enough
information on these topics can be found in [10].

The reader should be aware of the following features of the book that may not be stan-
dard.

• I have cut the book down to a bare minimum. If a reader is interested in a given
chapter or it is part of a mathematics course, then every word in it should be read
and understood. When requested all the details should be filled in and all exercises
and problems done (their content may be needed in subsequent parts of the ”main”
text).

• At times I use a ”familiar” concept before if is formally defined as in Example 1.3.
• I use italics for terms defined, either formally in definitions or informally during a

proof or discussion.
• Most nontrivial calculations and nontrivial management of sets as well as certain

algebraic manipulations are performed using the symbolic manipulation programs
MAPLE or MATHEMATICA.

• MAPLE and MATHEMATICA worksheets are included both in the text and on an
accompanying disc – this latter format will permit easy program modifications by
the reader for further exploration and experimentation. This is not a text book on
MAPLE nor on MATHEMATICA. See [3] for such a treatise. Rather, these pro-
grams are used as tools to learn and do mathematics. I have tried to use only very
simple MAPLE and MATHEMATICA programs and routines and to use, when-
ever possible, commands that are similar to ordinary mathematical expressions and
formulae.

• I have tried to keep a reasonable mixture between formal proofs and informality
(claims that certain statements are ”obvious”).

This book is an introduction to abstract algebra. I have particularly tried to pay attention
to the needs of future high school mathematics teachers. With this in mind I have chosen
applications such as public key cryptography and error correcting codes which use basic
algebra as well as a study of polynomials and their roots which is such a big part of pre-
college mathematics.

Portions of the the material in this book were used as a basis for courses tought at Stony
Brook and at Berkeley. The students challenged me with good questions and suggestions. I

1The tone and level of mathematical sophistication of these two chapters is considerably different in
these two chapters from those in the others. Much more background is expected from the reader interested
in these sections.
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8 INTRODUCTION

am very grateful to the students who read the material, corrected errors, and pointed out
ways for improving the exposition. Errors, of course, remain and are the responsibility of
the author.



Standard Notation and Commonly Used Symbols

A LIST OF SYMBOLS

TERM MEANING

Z integers
Zn congruence classes of integers modulo n
Z∗

n the units (invertible elements) in Zn

Q rationals
R reals
C complex numbers
|a| the absolute value of the number a

gcd(a1, a2, ..., an) = (a1, a2, ..., an) the greatest common divisor of the integers a1, a2, ..., an

lcm(a1, a2, ..., an) the least common multiple of the integers a1, a2, ..., an

[a]n the congruence class modulo n containing the integer a
ı a square root of −1
<z real part of the complex number z
=z imaginary part of the complex number z

z = x + ıy x = <z and y = =z
z̄ conjugate of the complex number z

r = |z| absolute value of the complex number z
θ = arg z an argument of the complex number z
z = reıθ r = |z| and θ = arg z

|R| cardinality of set R
Xcondition the set of x ∈ X that satisfy condition

ϕ(n) the Euler ϕ-function evaluated at the positive integer n
ord[a]n the order of the congruence class [a]n

a|b the integer a divides the integer b
redn reduction of integers modulo n

ker(θ) kernel of homomorphism θ
Im(θ) image of homomorphism θ
F ∗ the units (invertible elements) in the ring F

R[x] polynomial ring over the commutative ring R
F (α) smallest subfield of C containing F and α
F (x) the field of rational functions for the field F

9



10 STANDARD NOTATION AND COMMONLY USED SYMBOLS

STANDARD TERMINOLOGY

TERM MEANING

LHS left hand side
elements of sets usually denoted by lower case letters

sets usually denoted by upper case letters
RHS right hand side
iff if and only if
⊂ proper subset
⊆ subset, may not be proper

a ∈ A the element a is a member of the set A
a 6∈ A the element a is not a member of the set A
∅ the empty set
|A| the cardinality of the set A

A ∪ B the union of the sets A and B
A ∩ B the intersection of the sets A and B

Ac the complement of the set A
A − B A ∩ Bc

Xcondition the elements of X that satisfy condition



CHAPTER 1

The integers

All of us have been dealing with integers from a very young age. They have been studied
by mathematicians for thousands of years. Yet much about them is unknown and, in their
education, most people though they have consistently used integers have not paid much
attention to their basic properties. Only in 2003 was it proven that it does not take too long
to decide whether an integer is a prime or not. It is still unknown whether one can factor
an integer (into its prime factors) in a reasonably short time; although the belief is that it
cannot be done in what is called “polynomial time.” It is also surprising, perhaps, that in
addition to their obvious role in counting and recording of data, they have deep applications
to everyday life. The next to the last section of the chapter descibes a public key encryption
system that allows secure communication, (on the INTERNET, for example) that is based
on a beautiful theorem of Euler and the fact that it is very hard to factor large integers; the
last section contains a small collection of results that I found fascinating – some of them will
be needed in subsequent chapters of the book.

1. Introduction

In this chapter, we study properties of the set of integers

Z = {...,−2,−1, 0, 1, 2, 3, ...}
and the subset N ⊂ Z of natural numbers or non-negative integers

N = {0, 1, 2, 3, ...}.
We will assume that the reader is familiar with elementary logic, set theoretic notation
(reviewed in §1 of Chapter 2), and the basic properties of the binary relations of addition
(+) and multiplication (·) and the order relation1 less than or equal (≤) on the integers.
Thus our basic object of study is the quadruple

(Z; +, ·,≤).

Three other (but related) order relations are associated to ≤: less than < (meaning ≤ but
6=), greater than or equal ≥ (meaning 6<) and greater than > (meaning ≥ but 6=). It is
convenient to introduce some more notation. For all a ∈ Z, we let

Z≤a = {b ∈ Z; b ≤ a}.
The sets Z<a, Z≥a and Z>a are defined in a similar manner. In this notation N = Z≥0 = Z>−1.
Although we do not discuss the basic properties of this system, we emphasize one; the next
principle. It will be converted in the next section into a property that we will use throughout
this book.

1Relations are discussed in Chapter 2. As seen in that chapter, the four order relations on the integers
are defined in terms of the additive group (Z, +) and the subset N ⊂ Z.
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12 1. THE INTEGERS

THE WELL ORDERING PRINCIPLE: If S ⊂ Z is bounded from below (that is, there
exists a b ∈ Z such that b ≤ s for all s ∈ S) and S 6= ∅ (that is, it contains some elements),
then there exists a least or smallest element2 in S (that is there exists an a ∈ S such that
a ≤ s for all s ∈ S and if also b ≤ s for all s ∈ S, then a ≥ b); in particular, every nonempty
set of nonnegative integers contains a smallest element.

EXERCISES

(1) Show that the least element of a non empty set of integers that is bounded from
below is unique.

(2) Formulate the concept of sets of integers being bounded from above and translate
the WELL ORDERING PRINCIPLE to such sets. Prove the translation.

2. Induction

One of the most powerful tools at our disposal will turn out to be a reformulation of the
last principle into one that will be illustrated with simple examples in this section and will
be used extensively throughout the book. The well ordering principle is equivalent to

THE INDUCTION PRINCIPLE: Let a ∈ Z and assume that for each n ∈ Z≥a, we have
a statement P (n). If P (a) is true, and if for all k > a, P (k) is true whenever P (k − 1) is
true, then P (n) is true for all n ∈ Z≥a.

We begin with an informal example to illustrate the above principle.

Example 1.1. Let us assume that we have infinitely many dominos lined up in a straight
line. We are ignoring all kinds of technicalities. For example, exactly what it means to be
lined up in a straight line, how we order or number the dominos (say they are numbered 1,
2, 3, ....), the sizes of the dominos (they are all the same), the distances between dominos
(they should be small in relation to the sizes of the dominos), etc... . We claim that if we
push the first domino so that in falling it hits the second one, then all the dominoes will fall
down. The first domino certainly falls down. For induction we assume that the nth domino
has fallen down. In doing so, it pushed (hits) the (n+1)st domino causing it also to fall. We
conclude that all of the dominos fall down.

In working with the principle of mathematical induction, there is always a collection of
statements, usually an infinite number, and we are trying to prove that each statement is
true. In the above example the statements are “For each positive integer k, the kth domino
falls”. Thus we are trying to establish the validity of an infinite collection of statements.
The first statement is true, since we push the first domino to fall (and in faling it pushes
the second). The induction principle allows us to assume the truth of the nth statement (n
is an ARBITRARY positive integer) and requires us to establish the (n + 1)st statement. If
we do so, we conclude that each statement is true.

WELL ORDERING and INDUCTION are equivalent PRINCIPLES. We show first that
WELL ORDERING implies INDUCTION. Let

S = {n ∈ Z≥a; P (n) is not true}.

2In the language of analysis (calculus) courses and books, the least element of S is its minimum, infimum,
or greatest lower bound.
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Then obviously S ⊆ Z≥a. If S 6= ∅, then by the well ordering principle it would contain a
smallest element b. But b 6= a since a 6∈ S. Thus b > a and b−1 ∈ Z≥a but b−1 6∈ S. Hence
P (b − 1) is true. The induction hypothesis guarantees that under these circumstances P (b)
is also true. Thus b could not belong to S; we have arrived at a contradiction, and the set
S must be empty.

To establish the converse that INDUCTION implies WELL ORDERING, assume that
S ⊂ Z, that S 6= ∅ (let a ∈ S) and that for some b ∈ Z, b ≤ s for all s ∈ S. Assume that S
does not contain a least element. Let P (n), n ∈ Z≥(b−1), be the statement that Z≤n ∩S = ∅.
Then P (b−1) is true because S ⊂ Z≥b. Let k > (b−1). If P (k−1) were true, then so would
be P (k) because otherwise k would be a least element of S. So by induction, Z≤n ∩ S = ∅
for all n ∈ Z, n ≥ (b − 1). But this contradicts that a ≥ b and a ∈ S.

The well ordering principle (and hence also the induction principle) is equivalent to

THE STRONG INDUCTION PRINCIPLE: Let a ∈ Z and assume that for each n ∈ Z≥a,
we have a statement P (n). If P (a) is true, and if for all k > a, P (k) is true whenever P (j)
is true for integers j with a ≤ j ≤ (k − 1), then P (n) is true for all n ∈ Z≥a.

We leave it to the reader to verify the equivalence of the two forms of induction.

We proceed to two examples of the use of induction to prove elementary results.

Example 1.2. For n ∈ Z>0, evaluate the sum of the first n positive integers.

Proof. We are required to evaluate
n
∑

i=1

i = 1 + 2 + ... + n.

We first derive a formula for the sum. Notice that the first and last terms add up to n+1. So
do the second and second from the end, the third and third from the end, etc... . By grouping
appropriate terms we have produced n

2
groups each adding up to n + 1 (this statement is

correct even for odd n when appropriately interpreted). Thus

(1)
n
∑

i=1

i =
n(n + 1)

2
.

For the the second proof of the last formula, let us assume that through some process we have
reached the conjecture that (1) is true for each positive integer n. An induction argument
can turn the conjecture into a theorem. In this case P (n), for n = 1, 2, 3, ... is the identity
or equation (1). The base case n = 1 is certainly correct. Assume now that k > 1 and that
the formula holds for k − 1 (that P (k − 1) is true), then

k
∑

i=1

i =

(

k−1
∑

i=1

i

)

+ k =
(k − 1)k

2
+ k =

k2 − k + 2k

2
=

k2 + k

2
=

k(k + 1)

2
;

that is, the formula for the sum also holds for k (P (k) is true). The induction principle
allows us to conclude that (1) holds for all n ∈ Z>0. �

Example 1.3. The product of any three consecutive integers is divisible by 3.
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Remark 1.4. Formally, this problem should appear only after we have discussed divisi-
bility in the next section. We assume the reader remembers from high school mathematics
elementary properties of division of integers.

Proof. We are asked to show that for all n ∈ Z, 3|n(n+1)(n+2). Let us use induction
to establish the last assertion for all integers n ≥ −2. The base case n = −2 certainly is
true. So let us take k > −2, and assume that 3|(k − 1)k(k + 1). We need to show from this
assumption that 3|k(k + 1)(k + 2). We compute

k(k + 1)(k + 2) − (k − 1)k(k + 1) = k(k + 1)(k + 2 − k + 1) = 3k(k + 1).

Certainly 3|3k(k + 1)and hence the induction assumption that 3|(k − 1)k(k + 1) guarantees
that 3|k(k + 1)(k + 2) as required since the sum of two integers divisible by 3 is certainly
also divisible by 3. We are left to consider the case n < −2. Notice that

n(n + 1)(n + 2) = −(−n(−n − 1)(−n − 2)),

and that for any integer a, 3|a if and only if3 3|(−a). Finally observe that n < 2 if and only
if −n − 2 > 0 ≥ −2. �

EXERCISES

(1) (a) Show that the product of any three consecutive integers is divisible by 6.
(b) Show that for every positive integer n, n5 − n is divisible by 5.
(c) Show that for every positive integer n, 32n − 1 is divisible by 8.

(2) Prove that for all positive integers n,

1 + 22 + 32 + ... + n2 =
n(n + 1)(2n + 1)

6
.

(3) Do the next worksheet.
(4) This problem gives a different way to determine the function p(n) of the worksheet

below and hence a way to establish the formulae for the sum of cubes. As a conse-
quence of the first two items of that worksheet, it is reasonable to conjecture that
we have the following identity valid for all n ∈ Z>0

n
∑

i=1

i3 = an4 + bn3 + cn2 + dn + e,

for some constants a, b, c, d and e. Evaluate these constants by expressing the sum
of the first n + 1 cubes in two different ways; that is, start with

n+1
∑

i=1

i3 = a(n+1)4 + b(n+1)3 + c(n+1)2 + d(n+1)+ e = an4 + bn3 + cn2 + dn+ e+(n+1)3.

Justify this last formula and then use it to evaluate the five constants. Use the
last calculation as a basis for an induction argument to prove the conjecture (with
appropriate values for the 5 constants).

WORKSHEET # 1.
This worksheet provides a leisurely way to arrive at a formula for the sum of cubes of

integers. It is also an introduction to the use of MAPLE.

3Abbreviated in many displayed equations as iff.
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(1) (Sums of integers.) Recall that we proved (in the text) by induction that for all
positive integers n,

1 + 2 + ... + n =
n(n + 1)

2
.

(2) (Sums of squares of integers.) Similarly we proved (in the exercises) by induction
that for all positive integers n,

12 + 22 + ... + n2 =
n(n + 1)(2n + 1)

6
.

(3) (Sums of cubes of integers.) The aim of this worksheet is to formulate and then
prove a similar result for sums of cubes. We follow a leisurely path.

(4) Notice that the sum of the first n positive integers is a quadratic polynomial in n.
The sum of the squares of the first n positive integers is a cubic polynomial in n.
It is hence reasonable to expect that the sum of the cubes of the first n positive
integers is a fourth degree polynomial in n; that is,

(2) 13 + 23 + ... + n3 = an4 + bn3 + cn2 + dn + e,

for some constants a, b, c, d and e that do not depend on the variable n. What are
the corresponding constants for sums of integers and sums of squares of integers?
Can you make some “educated guesses” about what the 5 constants should be?

(5) If we are not to rely on guesswork nor on inspiration, then one of our tasks is to
determine the 5 constants. If equation (2) is to hold for all integers n, it certainly
should hold for for n = 1, 2, 3, 4 and 5, leading us to five equations

1 = a + b + c + d + e,

9 = 16a + 8b + 4c + 2d + e,

36 = 81a + 27b + 9c + 3d + e,

100 = 256a + 64b + 16c + 4d + e

and
225 = 625a + 125b + 25c + 5d + e.

(6) If our intuition is right, the above system of linear equations should have a unique
solution. Recall from your linear algebra course that a necessary and sufficient
condition for the above system of equations to have a unique solution is that the
matrix













1 1 1 1 1
16 8 4 2 1
81 27 9 3 1

256 64 16 4 1
625 125 25 5 1













be nonsingular. One could certainly compute its determinant by hand and show
that it is non-zero. Do it using MAPLE or MATHEMATICA. You should get that
the determinant equals 288.

(7) Now use MAPLE or MATHEMATICA to solve the system of equations. You should
have obtained a polynomial p(n) with rational coefficients. You are trying to prove
by induction, because so far we have no guarantee that the equation is correct, that

13 + 23 + ... + n3 = p(n)
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for all positive integers n.

Let’s make the polynomial look prettier. First write p(n) as P (n)
N

where P (n) is
a polynomial with integer coefficients and N is a positive integer, chosen as small as
possible. Now factor the polynomial P (n). The formula you now need to establish
for sums of cubes should appear similar to the ones for sums of integers and sums of
squares. Prove by induction that the formula you obtained is true. Thus finishing
this exercise.

(8) To get used to work with symbolic manipulation programs you may want, after
attempting by yourself the steps outlined above, to consult the MAPLE program
following this workshheet that outlines the commands needed to perform the cal-
culations. There is a very nontrivial initial investment of time in learning to use a
program of this kind. But, if one needs to do many symbolic calculations, it pays
off in the long run.

(9) Were your “educated guesses” about what the values of the 5 constants close to the
mark?

(10) Note that MAPLE has a command that evaluates p(n) directly.
(11) Can you formulate and prove a similar result for sums of fourth powers of integers?

MAPLE SESSION #1.
(Most MAPLE warnings were suppressed in this and other printouts.)

> a :=
Matrix([[1,1,1,1,1],[16,8,4,2,1],[81,27,9,3,1],[256,64,16,4,1],[625,12
5,25,5,1]]);

a :=













1 1 1 1 1
16 8 4 2 1
81 27 9 3 1

256 64 16 4 1
625 125 25 5 1













> with(linalg);
det(a);

288

> b := Vector[column]([1,9,36,100,225]);

b :=













1
9

36
100
225













> linsolve(a,b);
[

1

4
,

1

2
,

1

4
, 0, 0

]

> poly := (y^4 +2*y^3 +y^2)/4;
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poly :=
1

4
y4 +

1

2
y3 +

1

4
y2

> p := 4 *poly;

p := y4 + 2 y3 + y2

> factor(p);

y2 (y + 1)2

> sum(k^3,k=1..n);

1

4
(n + 1)4 − 1

2
(n + 1)3 +

1

4
(n + 1)2

> simplify(%);

1

4
n4 +

1

2
n3 +

1

4
n2

> factor(%);

1

4
n2 (n + 1)2

***END OF PROGRAM***

We follow this and, as appropriate, most other MAPLE and MATHEMATICA sessions
with some explanatory remarks.

(1) The first and third commands of the program enter the 4 × 4 matrix a and the
column vector b ∈ R4, respectively.

(2) The second command, introduces the linear algebra package (a technical MAPLE
requirement) and computes the determinant of the matrix a.

(3) Since det a 6= 0, the equation ax = b is solvable. The solution is obtained by the
fourth command.

(4) The next three commands obtain the polynomial p.
(5) The last three commands use MAPLE commands to directly evaluate the sum of

cubes.
(6) Note that MAPLE (the version used here) employs the symbol % to denote the

result of its last calculation.

MATHEMATICA SESSION #1

In the interactive MATHEMATICA session (notebook) reproduced below we study sums of
4th powers of integers. Two avenues are explored.
Sum[k∧4, {k, 2}]Sum[k∧4, {k, 2}]Sum[k∧4, {k, 2}]
17
Sum[k∧4, {k, n}]Sum[k∧4, {k, n}]Sum[k∧4, {k, n}]
1
30

n(1 + n)(1 + 2n) (−1 + 3n + 3n2)
% + (n + 1)∧4% + (n + 1)∧4% + (n + 1)∧4
(1 + n)4 + 1

30
n(1 + n)(1 + 2n) (−1 + 3n + 3n2)

Simplify[%]Simplify[%]Simplify[%]
(1 + n)4 + 1

30
n(1 + n)(1 + 2n) (−1 + 3n + 3n2)
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Expand[%]Expand[%]Expand[%]

1 + 119n
30

+ 6n2 + 13n3

3
+ 3n4

2
+ n5

5

Factor[%]Factor[%]Factor[%]
1
30

(1 + n)(2 + n)(3 + 2n) (5 + 9n + 3n2)
f [n ]:=an∧5 + b n∧4 + cn∧3 + dn∧2 + en + hf [n ]:=an∧5 + b n∧4 + cn∧3 + dn∧2 + en + hf [n ]:=an∧5 + b n∧4 + cn∧3 + dn∧2 + en + h
Solve[Coefficient[f [n] + (n + 1)∧4, n, 4] ==Solve[Coefficient[f [n] + (n + 1)∧4, n, 4] ==Solve[Coefficient[f [n] + (n + 1)∧4, n, 4] ==
Coefficient[f [n + 1], n, 4], a]Coefficient[f [n + 1], n, 4], a]Coefficient[f [n + 1], n, 4], a]
{{

a → 1
5

}}

a = 1/5a = 1/5a = 1/5
1
5

Solve[Coefficient[f [n] + (n + 1)∧4, n, 3] ==Solve[Coefficient[f [n] + (n + 1)∧4, n, 3] ==Solve[Coefficient[f [n] + (n + 1)∧4, n, 3] ==
Coefficient[f [n + 1], n, 3], b]Coefficient[f [n + 1], n, 3], b]Coefficient[f [n + 1], n, 3], b]
{{

b → 1
2

}}

b = 1/2b = 1/2b = 1/2
1
2

Solve[Coefficient[f [n] + (n + 1)∧4, n, 2] ==Solve[Coefficient[f [n] + (n + 1)∧4, n, 2] ==Solve[Coefficient[f [n] + (n + 1)∧4, n, 2] ==
Coefficient[f [n + 1], n, 2], c]Coefficient[f [n + 1], n, 2], c]Coefficient[f [n + 1], n, 2], c]
{{

c → 1
3

}}

c = 1/3c = 1/3c = 1/3
1
3

Solve[Coefficient[f [n] + (n + 1)∧4, n] ==Solve[Coefficient[f [n] + (n + 1)∧4, n] ==Solve[Coefficient[f [n] + (n + 1)∧4, n] ==
Coefficient[f [n + 1], n], d]Coefficient[f [n + 1], n], d]Coefficient[f [n + 1], n], d]
{{d → 0}}
d = 0d = 0d = 0
0
Solve[Coefficient[f [n] + (n + 1)∧4, n, 0] ==Solve[Coefficient[f [n] + (n + 1)∧4, n, 0] ==Solve[Coefficient[f [n] + (n + 1)∧4, n, 0] ==
Coefficient[f [n + 1], n, 0], e]Coefficient[f [n + 1], n, 0], e]Coefficient[f [n + 1], n, 0], e]
{{

e → − 1
30

}}

e = −1/30e = −1/30e = −1/30
− 1

30

f [n]f [n]f [n]

h − n
30

+ n3

3
+ n4

2
+ n5

5

Solve[f [1] == 1, h]Solve[f [1] == 1, h]Solve[f [1] == 1, h]
{{h → 0}}
h = 0h = 0h = 0
0
Factor[f [n]]Factor[f [n]]Factor[f [n]]
1
30

n(1 + n)(1 + 2n) (−1 + 3n + 3n2)
***END OF PROGRAM***

• The reader should note the diiference in appearance of a MATHEMATICA session
from a MAPLE session. As with MAPLE, a command line (which may appear on
more than one printed line) is followed usually by the program’s response.

• The first program command is practice to familiarize us with the language. The
computer’s response gives us confidence that we used appropriately the command.
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• The second command evaluates symbolically
∑n

k=1 k4 = 1
30

n(1 + n)(1 + 2n)(−1 +
3n + 3n2).

• Steps 3 through 6 give the induction aqrgument to establish the above formula.
• We begin an exploration of how to arrive at the above formula. From our work on

sums of first, second and third powers of integers, it is reasonable to expect that
∑n

k=1 k4 is a fifth degree polynomial in n.
• Steps 7 through 21 of the program determine this polynomial. The commands use

language that is very close to mathematical expressions and the reader should be
able to follow it.

• In the above program we equated the coefficients of the zeroth, first, second, third
and fourth powers of n in two polynomials of degree 5 to evaluate some undetermined
coedfficients. We did not use an equation for fifth powers. Why not?

3. The division algorithm: gcd and lcm

The fact that the non-zero integers are not closed under the binary operation of division,
rather than being a problem, presents an opening for all kind of investigations into the deeper
properties of integers; some of these have practical implications as we will see later.

Definition 1.5. Let a and b ∈ Z. We say that a divides b or a is a factor of b or b is a
multiple of a (and write a|b) if there exists a q ∈ Z such that b = qa.

Remark 1.6. Note that for all a ∈ Z, a|0. Thus every integer (including 0) divides 0.
But only 0 is a multiple of 0, as expected.

Caution 1.7. Do not confuse the symbols a|b and a
b
. The first states, more or less,

that b (which may be 0) can be divided by a to obtain an integer; the second represents the
number obtained by dividing a by b (which must be assumed 6= 0) which need not be an
integer.

Proposition 1.8. Let a, b, c, β and γ ∈ Z. If a|b and a|c, then a|(βb + γc).

Proof. That a|b and a|c means the existence of integers q1 and q2 such that b = q1a
and c = q2a. Thus

βb + γc = βq1a + γq2a = (βq1 + γq2)a.

�

Example 1.9. For all n ∈ Z>0, 13| (42n−1 + 3n+1).

Proof. The proof is by induction on n. The starting point, n = 1, is of course trivial.
We assume that we have the divisibility condition for k ≥ 1 and establish it for the successor
integer k + 1:

42k+1 + 3k+2 = 4242k−1 + 423k+1 − 423k+1 + 3 · 3k+1 = 16
(

42k−1 + 3k+1
)

− (16 − 3)3k+1;

the induction hypothesis tell us that 13|
(

42k−1 + 3k+1
)

and since 13|(3−16), the last propo-

sition tell us that 13|
(

42k+1 + 3k+2
)

. �

Definition 1.10. Let n ∈ Z≥0, we define n! (to be read n-factorial) by induction as

n! =

{

1 for n = 0
n(n − 1)! for n > 0

,
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and if k ∈ Z with 0 ≤ k ≤ n, then we let
(

n
k

)

=
n!

k!(n − k)!

(these are called the binomial coefficients (n choose k)).

The next result does not depend on divisibility properties and could have been established
in the previous section.

Theorem 1.11 (The binomial theorem). For all n ∈ Z>0 and all x and y ∈ Z,

(x + y)n =
n
∑

i=0

(

n
i

)

xn−iyi.

Proof. We fix x and y and use induction on n. The base case, n = 1, is trivial. Assume
that k ≥ 1 and that we have the result for n = k; that is,

(x + y)k =
k
∑

i=0

(

k
i

)

xk−iyi.

For the induction argument,

(x + y)k+1 = (x + y)(x + y)k = (x + y)
k
∑

i=0

(

k
i

)

xk−iyi =
k+1
∑

i=0

aix
k+1−iyi,

for some integers a0, a1, ..., ak+1 that we need to determine. Obviously

a0 =

(

k
0

)

= 1 =

(

k + 1
0

)

and ak+1 =

(

k
k

)

= 1 =

(

k + 1
k + 1

)

.

For (the interesting cases), 1 ≤ i ≤ k,

ai =

(

k
i

)

+

(

k
i − 1

)

=
k!

i!(k − i)!
+

k!

(i − 1)!(k − i + 1)!
= k!

(k − i + 1) + i

i!(k + 1 − i)!
=

(k + 1)!

i!(k + 1 − i)!
.

�

Remark 1.12. We have never used that x and y are integers. The theorem is valid for
general indeterminate x and y.

Theorem 1.13 (The division algorithm). For all a ∈ Z>0 and all b ∈ Z≥0, there exist
unique integers q and r such that b = aq + r and 0 ≤ r < a.

Proof. The proof has two parts.
Existence: If a > b, then q = 0 and r = b. Now assume that a ≤ b. We let

D = {b − ak; k ∈ Z≥0 and b − ak ≥ 0}.
The set of non-negative integers D is not empty since it contains b (we use k = 0). It is
bounded from below (by 0). Hence it contains a least element r; further, b−aq = r for some
q ∈ Z≥0. We need to verify that 0 ≤ r < a. Since r ∈ D, r ≥ 0. If r ≥ a, then

0 ≤ r − a = b − a(q + 1).

We conclude that r − a ∈ D contradicting the fact that r was a smallest element of D.
Uniqueness: Assume that b = aq + r as in the statement of the theorem and also that
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b = aq1 + r1 for some integers q1 and r1 with 0 ≤ r1 < a. It involves no loss of generality to
assume that r1 ≥ r. Thus

a(q − q1) = (r1 − r),

and we conclude that a|(r1 − r). If r1 6= r, then 0 < r1 − r < r1 < a and so a cannot divide
(r1 − r). We conclude that r1 = r and hence also q1 = q. �

Example 1.14. For b = 17 and a = 3, q = 5 and r = 2.

Remark 1.15. The last theorem is valid for all b ∈ Z. We establish the existence part
for b < 0. By the theorem as stated, there exist unique integers q and r such that

−b = aq + r, 0 ≤ r < a.

Thus

b = a(−q) + (−r).

If r = 0, we are done otherwise we continue with

b = a(−q) + (−r) = a(−q − 1) + (a − r).

Since 0 < a − r < a, we have concluded the existence argument. Note that the proof of
uniqueness part of the theorem never assumed that b was non-negative. Why is it unnecessary
to consider a ∈ Z≤0? If we also want to consider such a, it is convenient to introduce the
absolute value of a ∈ Z defined by

|a| =

{

a if a ≥ 0
−a if a ≤ 0

.

The division algorithm can now be stated as follows: For all a and b ∈ Z with a 6= 0, there
exist unique integers q and r such that

b = aq + r and 0 ≤ r < |a|.
This is the formulation we will use in the sequel.

Definition 1.16. It is useful to introduce two definitions with notation motivated by
computer science. Let a and b be integers with a > 0. We define the integral content or
floor

⌊

b
a

⌋

of the rational number b
a

as4 the largest integer ≤ b
a

and the ceiling
⌈

b
a

⌉

of b
a

as the

smallest integer ≥ b
a
. We define r = r

(

b
a

)

by

(3) b = a

⌊

b

a

⌋

+ r

(

b

a

)

.

Remark 1.17. Note that 0 ≤ r
(

b
a

)

< a and that (3) is another way of writing the
division algorithm. The formula is also valid, with proper interpretation, for negative a since
b
−a

= −b
a

,
⌊

b
−a

⌋

=
⌊−b

a

⌋

,
⌈

b
−a

⌉

=
⌈−b

a

⌉

and r
(

b
−a

)

= r
(−b

a

)

.

Theorem 1.18. Let a and b ∈ Z, not both 0. There exists a unique d = (a, b) =
gcd(a, b) ∈ Z>0 such that
(i) d|a and d|b and
(ii) c|d whenever c ∈ Z, c|a and c|b.

4For this definition we need the concept of order relations on the rationals. See, for example, the next
chapter for a discussion of this topic.
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Proof. Let
D = {as + bt; s and t ∈ Z and as + bt > 0}.

The set D is not empty (it contains5 either |a| or |b|) and is bounded from below (by 0). It
hence contains a smallest (positive) element d = aso + bto, where so and to ∈ Z. We have
produced d. Now we must verify its claimed properties. For the proof of (ii), note that c 6= 0
and we may assume that c ∈ Z>0. Since it divides both a and b, it obviously divides d. Thus
establishing (ii). By the division algorithm a = qd + r, where r and q ∈ Z with 0 ≤ r < d.
Thus

r = a − qd = a − q(aso + bto) = a(1 + qso) + b(−qto),

and if r > 0, then it belongs to D and is smaller than d. This contradiction shows that
r = 0 and hence d|a. Similarly d|b. We have established existence. For uniqueness assume
that d1 ∈ Z>0 also satisfies conditions (i) and (ii) (with d replaced by d1, of course). We use
(i) for d and (ii) with c = d1 to conclude that d1|d. Similarly d|d1. Since both d and d1 are
positive integers, we conclude that d = d1. �

Definition 1.19. The last theorem defined the two symbols (a, b) and gcd(a, b) that we
abbreviated by the symbol d. We call d, the greatest common divisor of a and b, and we
say that a and b are relatively prime if d = 1.

Corollary 1.20 (of proof). For all a and b ∈ Z, not both 0, (a, b) is the smallest positive
integral linear combination of a and b.

Remark 1.21. Note that (a, 0) = |a| for a ∈ Z 6=0, and that (a, b) = (|a|, |b|) for a and
b ∈ Z, not both 0. It is convenient to extend the definition of the gcd to include (0, 0) = 0.
Note also that (a, 1) = 1 for all integers a; that is, all integers are relatively prime to 1.

Example 1.22. (25, 12) = (25,−12) = 1, 1 = 1 · 25 + (−2)12 and 1 = 1 · 25 + 2(−12).

Lemma 1.23. Let a and b ∈ Z, and let b = aq + r with q and r ∈ Z. Then (a, b) = (a, r).

Proof. Let d = (a, b). Then d|r and thus d|(a, r). But also (a, r)|b (and trivially
(a, r)|a); hence (a, r)|d and we must have that (a, r) = d. �

Theorem 1.24 (The Euclidean algorithm). Let a and b ∈ Z with a 6= 0. Then
(a) if a divides b, there exists a unique q1 ∈ Z such that

b = aq1 and (a, b) = |a|,
and
(b) if a does not divide b, there exists a unique n ∈ Z>0, unique r1, r2, ..., rn ∈ Z>0 and
unique q1, q2, ..., qn, qn+1 ∈ Z such that

b = r−1 = aq1 + r1, 0 < r1 < |a|
a = r0 = r1q2 + r2, 0 < r2 < r1

r1 = r2q3 + r3, 0 < r3 < r2

·
·
·

rn−2 = rn−1qn + rn, 0 < rn < rn−1

rn−1 = rnqn+1

5If a 6= 0, then D contains a = 1a if a > 0 and it contains −a = (−1)a if a < 0
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and (a, b) = rn.

Proof. Part (a) of the theorem has, of course, already been established. For part (b),
the existence and uniqueness of n, and the collections of ri and qi follow from the division
algorithm. The form of the last line in the list of equations follows from the fact that the ri

are strictly decreasing. The last lemma tells us that

(b, a) = (a, r1) = (r1, r2) = ... = (rn−2, rn−1) = (rn−1, rn) = rn.

�

Remark 1.25. It is usuful to introduce some convenient notational conventions.

• To have consistency of natation we labeled b = r−1 and a = r0.
• The last line of the algorithm reads

rn−1 = rnqn+1 + rn+1 with rn+1 = 0.

• Note also that for i = 1, 2, ..., n + 1, qi =
⌊

ri−2

ri−1

⌋

.

Example 1.26. We apply the Euclidean algorithm to a = 30 and b = 172:

172 = 30 · 5 + 22
30 = 22 · 1 + 8
22 = 8 · 2 + 6
8 = 6 · 1 + 2
6 = 2 · 3

.

Thus (172, 30) = 2. We know that there exist integers r and s such that 2 = 172r + 30s.
We find them by reading the Euclidean algorithm back-wards (starting with the next to last
line):

2 = 8 − 6 = 8 − (22 − 2 · 8)
= 3 · 8 − 22 = 3(30 − 22) − 22

= 3 · 30 − 4 · 22 = 3 · 30 − 4(172 − 5 · 30)
= 23 · 30 − 4 · 172

.

Thus r = −4 and s = 23.
We expect to get the same result for a = 172 and b = 30. The calculations for the Euclidean
algorithm should also read more or less the same as above. They do, except that the
calculations have an extra line at the start:

30 = 172 · 0 + 30 .

We systematize the above procedure using ideas suggested by the row reduction method of
linear algebra. We describe the GCD algorithm . (We use the notation introduced in Theorem
1.24.) The algorithm consists of calculating n + 2 matrices and producing n + 1 arrows
(corresponding to row operations on matrices) between them; the computations involve only
2 × 2 integer matrices and integer vectors written as columns. We fix a and b ∈ Z and
assume that neither integer divides the other.6 The aim is to compute (a, b) and express it
as an integral linear combination of a and b. It involves no loss of generality to assume that

6The case where either a|b or b|a is, of course, trivial.
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|b| > |a|. For notational and computational convinience we use expanded (2 × 3) matrices
of the form

(4)

[

α β
γ δ

∣

∣

∣

∣

y
x

]

with integer entries. This last expanded matrix is understood to stand for the matrix product

(5)

[

α β
γ δ

] [

b
a

]

=

[

y
x

]

.

The key to the method is the realization that standard row operations preserve this symbol-
ism. We now describe the first three steps in the algorithm to find (a, b) and express it as
an integral linear combination of a and b.
[

1 0
0 1

∣

∣

∣

∣

b = aq1 + r1

a

]

q1→

[

1 −q1

0 1

∣

∣

∣

∣

r1

a = r1q2 + r2

] q2→
[

1 −q1

−q2 1 + q1q2

∣

∣

∣

∣

r1

r2

]

.

The first expanded matrix is obvious: the 2 × 2 identity matrix followed after the long

vertical dash by the column vector

[

b
a

]

. We have supplied an equality for b using the

first step of the Euclidean algorithm to justify the method. The substitution b = aq1 + r1

is not needed in practice. Recall that q1 =
⌊

b
a

⌋

. The q1 over the first arrow indicates that
we should multiply the second row by q1 and subtract it from the first row to obtain the
second expanded matrix; that is, we are subtracting from the first row the largest integral
multiple of the second row that leaves the rightmost entry of the first row nonnegative. The
q2 over the second arrow indicates that we should multiply the first row (again this is this
the row whose third entry has smallest absolute in its column) by q2 and subtract it from
the second row to obtain the third expanded matrix; that is, we are subtracting from the
second row the largest integral multiple of the first row that leaves the leftmost entry of
the second nonnegative. For convenience we place the arrow on the same line as the row
whose multiple is being subtracted. We stop this alternating process when we first obtain a
0 as the rightmost entry. If, at this stage, the row with the 6= 0 rightmost entry is [r, s, d],
then (a, b) = d = ra + sb. The line with the 0 entry in the last matrix [ρ, σ, 0] tells us that
0 = ρa + σb.

We illustrate with a = 30 and b = 172:
[

1 0
0 1

∣

∣

∣

∣

172
30

]

5→

[

1 −5
0 1

∣

∣

∣

∣

22
30

]

1→
[

1 −5
−1 6

∣

∣

∣

∣

22
8

]

2→

[

3 −17
−1 6

∣

∣

∣

∣

6
8

]

1→
[

3 −17
−4 23

∣

∣

∣

∣

6
2

]

3→

[

15 −86
−4 23

∣

∣

∣

∣

0
2

]

.

We conclude (once again) that (172, 30) = 2 = −4·172+23·30. Also that 0 = 15·172−86·30.
Signs do not alter much. We take up the case a = 30 and b = −172:
[

1 0
0 1

∣

∣

∣

∣

−172
30

]

−6→

[

1 6
0 1

∣

∣

∣

∣

8
30

]

3→
[

1 6
−3 −17

∣

∣

∣

∣

8
6

]

1→

[

4 23
−3 −17

∣

∣

∣

∣

2
6

]

3→
[

4 23
−15 −86

∣

∣

∣

∣

2
0

]

.
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We conclude (not surprisingly) that (−172, 30) = 2 = 4(−172)+23·30 and 0 = (−15)(−172)−
86 · 30. It may be only slightly surprising that the introduction of a minus sign shortened
the calculation.

THE GCD ALGORITHM – a formal description
The algorithm can be described as a diagram consisting of n + 2 matrices {Ai}; i =

0, 1, ..., n + 1, of the form (4) (that hence satisfy (5)), and n + 1 maps

qi : Ai−1 → Ai, i = 1, 2, ..., , n + 1.

The ith such map is represented by an arrow with the number qi above it7:

A0 =

[

1 0
0 1

∣

∣

∣

∣

r−1

r0

]

q1→ A1 =

[

1 −q1

0 1

∣

∣

∣

∣

r1

r0

] q2→
A2 =

[

1 −q1

−q2 1 + q1q2

∣

∣

∣

∣

r1

r2

]

q3→ A3 =

[

1 + q3q2 −q1 − q3(1 + q1q2)
−q2 1 + q1q2

∣

∣

∣

∣

r3

r2

]

...

... Ai =

[

αi βi

γi δi

∣

∣

∣

∣

ri−1

ri

]

qi+1→ Ai+1 =

[

αi+1 βi+1

γi+1 δi+1

∣

∣

∣

∣

ri+1

ri

]

...

... An =

[

αn βn

γn δn

∣

∣

∣

∣

rn−2

rn−1

] qn+1→
An+1 =

[

αn+1 βn+1

γn+1 δn+1

∣

∣

∣

∣

(a, b)
0

]

.

The starting matrix is A0 =

[

1 0
0 1

∣

∣

∣

∣

b
a

]

. For i = 1, 2, ..., n + 1, the number qi is

obtained from the entries in the matrix Ai−1, and the matrix Ai is obtained by applying the
operator qi to the the matrix Ai−1. This operator depends on the parity of the integer i. For
the above diagram, we have assumed that i is even and n is odd. The integer qi is computed
from the last column of the matrix Ai−1. For even i, the operator qi takes the second row of
the matrix Ai−1 and turns it into the second row of the matrix Ai; and it sets the first row
of the matrix Ai to be the first row of the matrix Ai−1 minus qi times its second row. For
odd i, the roles of the rows are reversed.

Proof. We need to verify that each of the matrices Ai satifies (5). We use induction
on i. The matrix A0 satisfies (5) by construction. So assume that for a given integer s,
0 ≤ s < n + 1, the matrix As satisfies (5). Let us assume that s is even.8 Thus

αsb + βsa = rs−1

and

γsb + δsa = rs.

We let qs+1 =
⌊

rs−1

rs

⌋

. Now

αs+1 = αs − qs+1γs,

βs+1 = βs − qs+1δs,

γs+1 = γs,

δs+1 = δs

7We view qi as an operator (map between matrices) and as a number (an integer); this should not cause
confusion.

8The argument for odd s is similar.



26 1. THE INTEGERS

and
rs+1 = rs−1 − qs+1rs.

Hence

αs+1b+βs+1a = (αs − qs+1γs) b+(βs − qs+1δs) a = rs−1−qs+1(γsb+δsa) = rs−1−qs+1rs = rs+1

and
γs+1b + δs+1a = γsb + δsa = rs;

finishing the induction argument. �

MATHEMATICA SESSION #2

We illustrate the use of the GCD algorithm by computing (11235, 603). This is a tran-
script of an interacive session.
m0 = {{1, 0, 11235}, {0, 1, 603}}m0 = {{1, 0, 11235}, {0, 1, 603}}m0 = {{1, 0, 11235}, {0, 1, 603}}
{{1, 0, 11235}, {0, 1, 603}}
q1 = Floor[11235/603]q1 = Floor[11235/603]q1 = Floor[11235/603]
18
m1 = m0 − 18{{0, 1, 603}, {0, 0, 0}}m1 = m0 − 18{{0, 1, 603}, {0, 0, 0}}m1 = m0 − 18{{0, 1, 603}, {0, 0, 0}}
{{1,−18, 381}, {0, 1, 603}}
q2 = Floor[603/381]q2 = Floor[603/381]q2 = Floor[603/381]
1
m2 = m1 − {{0, 0, 0}, {1,−18, 381}}m2 = m1 − {{0, 0, 0}, {1,−18, 381}}m2 = m1 − {{0, 0, 0}, {1,−18, 381}}
{{1,−18, 381}, {−1, 19, 222}}
q3 = Floor[381/222]q3 = Floor[381/222]q3 = Floor[381/222]
1
m3 = m2 − {{−1, 19, 222}, {0, 0, 0}}m3 = m2 − {{−1, 19, 222}, {0, 0, 0}}m3 = m2 − {{−1, 19, 222}, {0, 0, 0}}
{{2,−37, 159}, {−1, 19, 222}}
q4 = Floor[222/159]q4 = Floor[222/159]q4 = Floor[222/159]
1
m4 = m3 − {{0, 0, 0}, {2,−37, 159}}m4 = m3 − {{0, 0, 0}, {2,−37, 159}}m4 = m3 − {{0, 0, 0}, {2,−37, 159}}
{{2,−37, 159}, {−3, 56, 63}}
Floor[159/63]Floor[159/63]Floor[159/63]
2
m5 = m4 − 2{{−3, 56, 63}, {0, 0, 0}}m5 = m4 − 2{{−3, 56, 63}, {0, 0, 0}}m5 = m4 − 2{{−3, 56, 63}, {0, 0, 0}}
{{8,−149, 33}, {−3, 56, 63}}
q5 = Floor[63/33]q5 = Floor[63/33]q5 = Floor[63/33]
1
m6 = m5 − {{0, 0, 0}, {8,−149, 33}}m6 = m5 − {{0, 0, 0}, {8,−149, 33}}m6 = m5 − {{0, 0, 0}, {8,−149, 33}}
{{8,−149, 33}, {−11, 205, 30}}
q6 = Floor[33/30]q6 = Floor[33/30]q6 = Floor[33/30]
1
m7 = m6 − {{−11, 205, 30}, {0, 0, 0}}m7 = m6 − {{−11, 205, 30}, {0, 0, 0}}m7 = m6 − {{−11, 205, 30}, {0, 0, 0}}
{{19,−354, 3}, {−11, 205, 30}}
q7 = Floor[30/3]q7 = Floor[30/3]q7 = Floor[30/3]
10
m8 = m7 − 10{{0, 0, 0}, {19,−354, 3}}m8 = m7 − 10{{0, 0, 0}, {19,−354, 3}}m8 = m7 − 10{{0, 0, 0}, {19,−354, 3}}
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{{19,−354, 3}, {−201, 3745, 0}}
GCD[112305, 603]GCD[112305, 603]GCD[112305, 603]
3

***END OF PROGRAM***

(1) All but the last command of the program implement the GCD algorithm.
(2) The matrix m7 yields the gcd

(11235, 603) = 3 = 19 · 11235 − 354 · 603

and the companion identity

03 = −201 · 11235 + 3745 · 603.

(3) The last section of the program shows the command that MATHEMATICA uses to
compute the gcd of two integers.

Definition 1.27. Let n ∈ Z>0 and let a1, ..., an ∈ Z. We define the greatest common
divisor

(a1, ..., an) = gcd (a1, ..., an)

of a1, ..., an to be 0 if all the ai are 0 and otherwise as the positive integer m with the following
two properties:
(i) m|ai for i = 1, 2, ..., n and
(ii) whenever c ∈ Z, c 6= 0 and c|ai for i = 1, 2, ..., n, then also c|m.

Remark 1.28. Some obseravations are required.

• It should be checked that the concept is well defined (that is, that m exists and is
unique) as is done in the next theorem and that the definition for n = 2 agrees with
the previous one that we used as is obvious.

• For all 0 6= a ∈ Z, (a) = |a|. So for n = 1 there are no issues involving existence or
uniqueness of m.

Theorem 1.29. Let n ∈ Z>1. For all a1, ..., an ∈ Z, (a1, ..., an) exists and is unique.
Further

(6) (a1, ..., an) = ((a1, ..., an−1), an).

Proof. If all the ai = 0, then there is nothing to prove. So assume that they are not
all zero. We use induction on n ≥ 2. For the base case, n = 2, the existence of the gcd has
been established and (6) reads

(a1, a2) = (|a1|, a2);

a correct formula. So we assume now that k > 2 and that by induction we have the existence
of (a1, ..., ak−1) and (6) for n = k − 1. We proceed to establish the existence of (a1, ..., ak) as
well as (6) for n = k. Let m = ((a1, ..., ak−1), ak). By the induction hypothesis (a1, ..., ak−1)
exists and is unique. The case n = 2, tells us that m exists and is unique. We have only
to verify that m has the required properties. So m|(a1, ..., ak−1) and m|ak from the n = 2
assumption. But for i = 1, ..., k − 1, (a1, ..., ak−1)|ai; so also m|ai. If c ∈ Z, c 6= 0 and c|ai

for i = 1, ..., k, then also c|(a1, ..., ak−1) (the induction k− 1 case) and hence c|m (the n = 2
case). The proof of the uniqueness of the gcd is left to the reader. �
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Theorem 1.30. Let a, b and c ∈ Z, none 0, and (a, b) = 1.
(i) If a|bc, then a|c.
(ii) If a|c and b|c, then ab|c.

Proof. That a and b are relatively prime tells that there exist integers r and s such
that

1 = ar + bs.

Thus c = car+cbs. Assume that a|bc. Since a|car and a|bsc, we see that then a|c, establishing
(i). Assume that a|c and b|c, then ab|cb and ba|ca. Thus also ba|car and ab|cbs and hence
ab|(car + cbs) = c. �

Definition 1.31. Let a and b ∈ Z. We define the least common multiple M of a and
b, in symbols M = lcm(a, b), to be 0 if a and b = 0. Otherwise, we define the lcm as the
unique M ∈ Z>0 that satisfies
(i) if a 6= 0, then a|M and if b 6= 0, then b|M and
(ii) if a 6= 0 (b 6= 0) and c is a multiple of a (b), then M |c.

We leave it to the reader to define lcm(a1, ..., an) and to prove the analogue of Theorem
1.29 for the lcm of n integers.

EXERCISES

(1) For each of the following pairs of integers a and b, find (a, b) and express it as ar+bs
with r and s integers:
(a) a = 7 and b = 11.
(b) a = −55 and b = 25.
(c) a = −75 and b = 21.
(d) a = −45 and b = −81.
(e) a = 5245 and b = 1345.
(f) a = 6321 and b = −291.

(2) The Fibonnacci sequence {Fn} is defined inductively by the condition that the first
two terms of the sequence are 1 and each subsequent term is the sum of the two
preceding terms. Write down the formulae that define the terms of this sequence
and prove that for all n ∈ Z>0, (Fn, Fn+1) = 1.

(3) Let a, b and c ∈ Z, with at most one of these equal to zero. Assume that (a, c) =
1 = (b, c). Show that (ab, c) = 1.

(4) Show that the binomial coefficients

(

n
k

)

∈ Z>0.

(5) (a) Let m,n ∈ Z≥0. Prove the identity:

k
∑

i=0

(

m

i

)(

n

k − i

)

=

(

m + n

k

)

.

Hint: Consider the polynomial equation

m+n
∑

k=0

(

m + n

k

)

zk = (1 + z)m+n = (1 + z)m(1 + z)n.
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(b) Show that if n ≥ 1, then
n
∑

k=0

(

n

k

)2

=

(

2n

n

)

.

(6) Show that if n ∈ Z>0, then
n
∑

k=0

(−1)k

(

n

k

)

= 0.

(7) Show that for all a and b ∈ Z with a 6= 0,
⌊

b
a

⌋

= −
⌈−b

a

⌉

.
(8) Augment the argument of Remark 1.15 to complete the proof of the division algo-

rithm (both the existence and uniqueness claims) as given by (3) (consider the four
cases of possible signs of a and b). Base the proof of existence on Theorem 1.13 and
then supply a uniqueness proof. Give an alternate proof of existence that is valid
in all cases (thus not relying on Theorem 1.13) by considering as before the set of
integers

D = {b − ak; k ∈ Z and b − ak ≥ 0},
and establishing that this set is nonempty.

(9) Let a,b r and s ∈ Z, not all zero. Assume that d = ar + bs. Is |d| = a, b? What
integers can be written as integral linear combinations of a and b?

(10) Let n ∈ Z>0 and a1, ..., an ∈ Z, not all zero. Show that there exist and r1, ..., rn ∈ Z,
not all zero, such that

(a1, ..., an) =
n
∑

i=1

airi.

(11) Let n be a positive integer and let a1, a2, ..., an be n integers, not all zero. Define
lcm(a1, ..., an) and prove that for n ≥ 2,

lcm(a1, ..., an) = lcm(lcm(a1, ..., an−1), an).

(12) In the gcd algorithm, we started with integers a and b with 0 < |a| < |b|. What
does the algorithm produce

• if we strart with a and ka, with a and k non-zero integers?
• if we started with the integer a 6= 0 and 0?

4. Primes

The additive structure of the positive integers is rather simple. An arbitrary positive
integer n is constructed from the integers 1 (n copies of the same integer) by n−1 additions.
The multiplicative structure of the positive integers is more complicated. We turn now to
the multiplicative building blocks of Z>0.

Definition 1.32. A number p ∈ Z>1 is prime provided it has precisely two distinct
positive divisors, namely 1 and p.

Remark 1.33. Note that 1 is not a prime.

We have a fairly efficient method for producing (relatively short) lists of primes known as
the sieve of Eratosthenes. It consists of a number of steps. Let us choose a positive integer say
N and we want to produce a list of the primes less than or equal to N . We proceed as follows.
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• (First step.) We start with the list integers 2, 3, ..., N . Notice that the first entry in
our list is the prime 2.

• (Second step.) We remove from our list all proper multiples of 2; that is, integers of
the form {2i; i ∈ Z>0, 2 ≤ i ≤ N

2
}. Notice that the first two entries in the resulting

list are the first two primes; namely 2 and 3.
• (Third step.) We remove from our list all proper multiples of 3; that is, integers of

the form {3i; i ∈ Z>0, 2 ≤ i ≤ N
3
}. Notice that the first 3 entries in the resulting

list are the first two primes 2, 3 and 5.
• After r steps, we have produced a list that starts with the first r primes: 2, 3, ..., pr.
• (The r+1st step.) We remove from the list produced after r steps all proper multiples

of the rth prime pr; that is, integers of the form {pri; i ∈ Z>0, 2 ≤ i ≤ N
pr
}. The

resulting list starts with the first r + 1 primes.
• (The stopping time.) We are done as soon as p2

r+1 > N .

We need to prove that the above procedure does what we claim. We will do so after
proving the next theorem (FTA). Obviously the sieve of Eratosthenes algorithm is best
performed by a computer. A sample MAPLE program using N = 200 follows.

MAPLE SESSION #2.

> set1 := {seq(i, i = 2..200)};

set1 := {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,

70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,

92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,

126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,

158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,

174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,

190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200}

> set2 := set1 minus {seq( 2*i, i = 2..100)};

set2 := {2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45,

47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89,

91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123,

125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155,

157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187,

189, 191, 193, 195, 197, 199}

> set3 := set2 minus {seq( 3*i, i = 2..67)};



4. PRIMES 31

set3 := {2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65,

67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121,

125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169,

173, 175, 179, 181, 185, 187, 191, 193, 197, 199}
> set5 := set3 minus {seq( 5*i, i = 2..40)};

set5 := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77,

79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139,

143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199}
> set7 := set5 minus {seq( 7*i, i = 2..29)};

set7 := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163,

167, 169, 173, 179, 181, 187, 191, 193, 197, 199}
> set11 := set7 minus {seq( 11*i, i = 2..19)};

set11 := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169,

173, 179, 181, 191, 193, 197, 199}
> set13 := set11 minus {seq( 13*i, i = 2..17)};

set13 := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199}
> set17 := set13 minus {seq( 13*i, i = 2..12)};

set17 := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199}
***END OF PROGRAM***

We will see later that care must be used in employing the MAPLE set theoretic command
minus.

Theorem 1.34. Let a, b ∈ Z and p be a prime. If p|ab, then either p|a or p|b.
Proof. Assume that p does not divide a. Then (p, a) = 1; which implies that p|b by the

last theorem. �

Lemma 1.35. Let ai ∈ Z for i = 1, 2, ..., r (with r ∈ Z>0). If the prime p divides the
product a1...ar, then p|ai for some i.

Proof. The proof is by induction on r. The base case, r = 1 is trivial. So assume that
r > 1 and that p|(a1...ar−1)ar. The previous lemma say that either p|(a1...ar−1) or p|ar. In
the former case, the induction hypothesis guarantees that p|ai for some 1 ≤ i ≤ r − 1. �
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Theorem 1.36 (The fundamental theorem of arithmetic, FTA). Let n ∈ Z>1. Then
there exists a unique r ∈ Z>0 and primes p1, p2 ..., pr such that

n = p1p2...pr =
r
∏

i=1

pi.

The decomposition of n into a product of primes is unique except for order; that is, if also

n = q1q2...qs

for some s ∈ Z>0 and primes qj, j = 1, ..., s, then s = r and for each j, there exists an i
such that qj = pi.

Proof. We use strong induction on n ≥ 2 to show that factorization is possible. The
base case is trivial since n = 2 is prime. So assume that n > 2. If n is prime, there is nothing
to do. Otherwise n = ab with a, b ∈ Z, 1 < a < n and 1 < b < n. By the strong induction
assumption, both a and b can be factored as products of primes. Hence so can their product
ab.

We use induction on r ≥ 1 to show that factorization is unique. If r = 1, then n = p1 is
prime. If also n = q1q2...qs . Then p1|qj for some j and it follows that p1 = qj and s = 1. So
assume that r > 1 and that

n = p1p2...pr = q1q2...qs.

Then p1|q1q2...qs and it must be the case that p1|qj for some j. As before we conclude that
p1 = qj. Reordering the qi, we may and do assume that j = 1. Thus also p2...pr = q2...qs we
conclude by induction that r − 1 = s − 1 and that each pi (i > 1) is a qj (j > 1). �

Remark 1.37. We shall abbreviate “the fundamental theorem of arithmetic” by “FTA.”
At times it will be useful to write the factorization of an integer n ≥ 1 in a slightly different
form

n = pk1

1 pk2

2 ...pkt

t =
t
∏

i=1

pki

i ,

where t ∈ Z>0, p1, p2, ..., pt are DISTINCT primes and the ki ∈ Z>0. This factorization is
again unique if we list the primes in ascending order. We can also include (unnecessary)
primes pi with exponent ki = 0 in the products in equation (1.37). By doing so, we loose
uniqueness, but (as we shall see shortly) gain some advantages in simplifying formulae. Note
that n = 1 is represented by using any t and all the ki = 0.

Corollary 1.38. There are infinitely many primes.

Proof. Let p1, p2, ..., pn be a collection of n ∈ Z>0 distinct primes. Then either
p1p2...pn +1 is prime or some prime p divides it. Since p 6= pi for i = 1, ..., n. We have in all
cases produced a prime not in our list of n of them. There hence must be infinitely many of
them. �

Definition 1.39. We can list (enumerate) the infinitely many primes in increasing order
as

p1, p2, ..., pn, ... .

Note that this means in particular, that the entries in the list continue forever, that pn < pn+1,
and that pn ≥ n + 1 (pn > n + 1 for n > 2). We will from now on keep the above notation
and call pn, the nth prime.
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Corollary 1.40. Let a and b ∈ Z>0 and write

a =
r
∏

i=1

pni

i and b =
r
∏

i=1

pmi

i ,

where r ∈ Z>0, the pi are primes, and the ni and mi are non-negative integers. Then
(i) a|b if and only if ni ≤ mi for each i,

(ii) gcd (a, b) =
∏r

i=1 p
min{ni,mi}
i ,

(iii) lcm (a, b) =
∏r

i=1 p
max{ni,mi}
i , and

(iv) gcd(a, b) lcm(a, b) = ab.

Proof. Part (i) is obvious. To prove (ii), let d =
∏r

i=1 p
min{ni,mi}
i . Then by part (i),

d|a and d|b. If c ∈ Z>0 divides both a and b, then c =
∏r

i=1 pki

i with integers 0 ≤ ki ≤
min{ni,mi}. Thus c|d and it follows that d = (a, b). The proof of (iii) is similar to the last
argument and (iv) follows from the observation that for all pairs of integers m and n,

m + n = min{m,n} + max{m,n}.
�

Example 1.41. Since 135 = 335 and 639 = 3271, we have gcd (135, 639) = 32 = 9 and
lcm (135, 639) = 335 · 71 = 9585.

We can now formulate a proposition yielding the sieve of Eratosthenes algorithm.

Proposition 1.42. Fix an integer N > 5 and consider the steps and the list in the sieve
of Eratosthenes algorithm. Let a be the smallest integer such that p2

a+1 < N .
(a) For all r ∈ N, 1 ≤ r ≤ a + 1, after r steps, the first, r entries in our list are primes.
(b) After a + 1 steps, the list consists only of primes.

Proof. Part (a) is proven by induction on r. It is certainly true for r = 1. So assume
that r > 1 and that after r − 1 steps, the list starts with r − 1 primes. If after the rth

step, ar, the rth element in our list were not prime, then it would be divisible by a pj with
j ≤ (r − 1). But this is impossible since proper multiples of pj were eliminated from the list
at the jth step. We prove part (b) by contradiction. We know by the first part that after
a + 1 steps, the first a + 1 entries in our list are primes: p1, p2, ..., pa+1. If an entry ak in this
list with k > a + 1 is not prime, then since ak > pa+1, ak = bc with one of b or c ≤ pa+1. Say
that b ≤ pa+1. By FTA, we may assume that b is a prime. But this contradicts that ak was
eliminated from our list in the b-th step. �

Definition 1.43. Let r ∈ Z≥2 and m1, m2, ..., mr a collection of r integers. We say
that this set is relatively prime if (mi,mj) = 1 for all 1 ≤ i < j ≤ r.

Remark 1.44. The concept introduced above is stronger than the reqirement that

(m1, m2, ..., mr) = 1

as shown by the set consisting of the three integers 2, 3 and 4.

EXERCISES

(1) Show that n ∈ Z>0 is a prime whenever 2n − 1 is.
(2) Prove that there are infinitely many primes of the form 4n + 3, n ∈ Z≥0.



34 1. THE INTEGERS

WORKSHEET #2

(1) (Definition) Remember that a prime number is an integer p > 1 whose only positive
divisors are 1 and p itself. This means that a prime number does not admit a
representation as product of two integers each strictly smaller than p and strictly
bigger than 1.

(2) (Factorization in MAPLE) The computer system MAPLE has a routine that com-
putes the factorization of integers, provided they are not too long. The appropriate
command is ifactor. For example, if one wants to know the factorization of the
number 1743756435671253155121751498513846136, one enters the command

> ifactor(1743756435671253155121751498513846136);

after a few seconds, MAPLE replies
(2)3(41)(960956229634381)(666787244268091)(8297)
this is the factorization of the entered integer into a product of primes.

(3) (Fermat numbers) The French mathematician Pièrre de Fermat considered numbers
of the form 2n + 1 to provide prime numbers.

Using MAPLE, compute the first twenty numbers 2n + 1, and using ifactor

determine which ones are prime.
(4) From the previous computations, we can make an educated guess: only numbers of

the form 22k

+1 (that is, when n = 1, 2, 4, 8, 16, ... ) are prime. Fermat thought that

all the numbers of the form 22k

+ 1 were prime, unfortunately he was wrong.
Using MAPLE, check that the two numbers 232 + 1 and 264 + 1 are not prime.

(5) The above computations lead us to think that if a number of the form 2n + 1 is
prime, then n should be of the form n = 2k for some k ≥ 0. Prove this statement.
(Hint: Assume n is an odd integer ≥ 3 , then the expression xn + 1 factors as
(x + 1)(xn−1 − xn−2 + xn−3 − · · · + 1).)

(6) (Optional) It is also possible to get primes from numbers of the form 2n−1. Repeat
the above steps to guess which numbers of this form are prime.

5. The rationals, algebraic numbers and other beasts

The reader is surely familiar with other number systems. We briefly review some of these
– they will not be used much in this book, except to discuss examples of algebraic structures.

5.1. The rationals, Q. The rationals can be constructed from the integers by use of
equivalence relations. Those unfamiliar with this topic should first study §3 of Chapter 2.
Let S = Z×Z>0. Thus the elements of S are ordered pairs9 (a, b) of integers with b > 0. We
introduce a relation R on S by saying that (a, b)R(a′, b′) if and only if ab′ = ba′. We note
that:
1. R is reflexive since (a, b)R(a, b),
2. R is symmetric since (a, b)R(a′, b′) obviously implies that (a′, b′)R(a, b).
3. R is transitive. To prove this assume that (a, b)R(a′, b′) and (a′, b′)R(a′′, b′′). These two
statements are equivalent to ab′ = ba′ and a′b′′ = b′a′′. We consider cases:
3a. a′ = 0. In this case, also a = 0 = a′′. Thus certainly ab′′ = ba′′ or (a, b)R(a′′, b′′).
3b. a′ 6= 0. We start with a′b′′ = b′a′′ and multiply both sides by a to obtain aa′b′′ = ab′a′′.
After substituting ba′ for ab′ in the right hand side of the last equality we obtain aa′b′′ = ba′a′′.
Since a′ 6= 0, we can cancel it from both sides to obtain ab′′ = ba′′ as required.

9We are thinking, of course, of the ordered pair of integers (a, b) as the fraction a

b
.
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The set of equivalence classes of R, the set of rational numbers, is denoted by Q and
the equivalence class of (a, b) ∈ S is customarily written as a

b
. We define addition and

multiplication in Q by
a

b
+

c

d
=

ad + bc

bd
and

a

b

c

d
=

ac

bd
.

Since b 6= 0 6= d, both ad+bc
bd

and ac
bd

∈ S. We must still verify that these operations are well

defined; that is do not depend on the choice of representatives used. So assume that a
b

= a′

b′

and c
d

= c′

d′
. We must verify that ad+bc

bd
= a′d′+b′c′

b′d′
and that ac

bd
= a′c′

b′d′
. We leave that as an

exercise for the reader. We note that we can think of Z ⊂ Q if we identify n ∈ Z with n
1
∈ Q.

What have we gained? Every non-zero rational number a
b

(thus a 6= 0) has a multiplicative

inverse b
a
. Is this enough for most applications? The answer is a resounding no since what

we think of as simple numbers, for example
√

2, are not in Q; that is, “the rationals have
holes.” To be more precise, we prove

Theorem 1.45. For all r ∈ Q, r2 6= 2.

Proof. Assume that for some a
b

with a and b ∈ Z, b > 0, we have a2

b2
= 2. If d = (a, b),

then we write a = da1 and b = db1 with a1 ∈ Z, b1 ∈ Z 6=0, and (a1, b1) = 1. Then a
b

= a1

b1

and we conclude that a2
1 = 2b2

1. Thus a2
1 is even and so must be a1 (as a consequence of the

fundamental theorem of arithmetic). Thus b2
1 and hence also b1 is even. We conclude that

2|(a1, b1); a contradiction. �

Remark 1.46. The theorem states that the equation x2 − 2 = 0 has no solutions in Q.

5.2. The reals, R. The study of the reals, R, belongs properly to analysis rather than
algebra. We confine ourselves to the briefest of discussions. The construction of the re-
als from the rationals is more sophisticated than the construction of the rationals from the
integers. One method is to identify the reals as the collection of certain subsets of rational-
numbers known as Dedekind cuts. These are subsets α ⊂ Q with the following properties:

• α 6= ∅ and α 6= Q.
• If a ∈ α and b ∈ Q with b < a, then b ∈ α.
• For all a ∈ α there exists a b ∈ α with b > a.

We identify a rational r with the Dedekind cut

{ρ ∈ Q; ρ < r}.
With this identification, Q ⊂ R. One must do some work to properly define addition and
multiplication of real numbers. What have we gained? We certainly filled in some holes in
the rationals since √

2 = Q≤0 ∪ {r ∈ Q; 0 < r and r2 < 2}.
But much more has been acomplished: we have filled in all the holes in the sense that any
set S of reals that is bounded from above, must have a least upper bound10. The proof of this
completeness property is rather simple if one understands what the various concepts mean.
A point s ∈ S is a subset of Q. It hence makes sense to define ∗s = ∪s∈Ss; this is the least
upper bound for the set S.

10For precise definitions consult any book on analysis.
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5.3. The complex numbers, C. Even though the real numbers are analytically com-
plete, they are not algebraically complete in the sense that the equation x2 + 1 = 0 has no
solutions in R. One way to remedy this problem is to artificially introduce a solution to this
equation by defining the operations of addition and multiplication on ordered pairs of real
numbers: (a, b) ∈ R2. If both (a, b) and (a′, b′) ∈ R2, we define

(a, b) + (a′, b′) = (a + a′, b + b′) and (a, b)(a′, b′) = (aa′ − bb′, ab′ + ba′).

With this additive and multiplicative structure, R2 is a model for the complex numbers C.
We will study this system further in §5 of Chapter 2. For the moment, we limit the discussion
to a few observations.

• The reals are a subset of C consisting of the ordered pairs (a, 0) with a ∈ R.
• We define ı = (0, 1). We then observe that ı2 = −1; that is, ±ı solve the equation

x2 + 1 = 0.
• The complex number (a, b) is usually written as a+ bı. The usual laws of arithmetic

(addition and multiplication) for R then apply to C with the convention that ı is a
new quantity (6∈ R) whose square is −1.

• The complex numbers are algebraicaly complete in the sense that every polynomial
equation (here z stands for an inderminate, n ∈ Z>0, ai ∈ C for all intgers i with
0 ≤ i ≤ n)

anzn + an−1z
n−1 + ... + a1z + a0 = 0

has a solution z ∈ C.

5.4. The algebraic numbers.

Definition 1.47. A number α ∈ C is algebraic if it satisfies an equation of the form

a0α
n + a1α

n−1 + an = 0,

where n ∈ Z>0, a0 ∈ Z 6=0, and ai ∈ Z for 1 ≤ i ≤ n. All other numbers are called
transcendental.

Remark 1.48. • A complex number is algebraic if and only if it is a root of a
monic polynomial of positive degree with rational coefficients.

• It is rather obvious that each rational number is algebraic. Thus the rationals are
a subset of the algebraic numbers.

• It is not easy (it requires some preparation) to prove that the algebraic numbers
form a field (as defined in Section 1 of Chapter 5). See Chapter 9.

5.5. The quaternions, H. The number systems discussed so far, Z, Q and R are all
subsets of C. As a matter of fact we have the tower of proper inclusions

Z ⊂ Q ⊂ R ⊂ C.

Are there any number systems that are supersets of C? The answer is yes, many. But in
going to “bigger” systems we now begin to loose rather than gain. One such system, the
quaternions, is described in discussing examples of groups in Chapter 3. In passing from the
complex numbers to the quaternions, we loose the commutativity of multiplication.

EXERCISES
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(1) In our definition of the rationals we used an intermediate set S = Z × Z>0. What
would happen if we had defined this set as S = Z × Z?

(2) Prove that the operations of addition and multiplication on Q are well defined.
(3) Introduce order relations (<, ≤, >, ≥) on Q and show that they are compatible

(agree) with the corresponding order relations on Z.
(4) Show that the set of algebraic numbers is countable. Before doing this problem, you

may want to review some of the material of the next chapter on cardinality.

6. Modular arithmetic

This section deals with what is commonly called “clock arithmetic.” It involves arithmetic
on (for applications, large) finite sets. It will be the basis for our study of coding (in §9).

Definition 1.49. Let n ∈ Z>0 and a and b ∈ Z. We say that a is congruent or equivalent
to b modulo n or (for short) mod n (in symbols a ≡ b mod n)11 provided n|(a − b).

The division algorithm implies the following

Proposition 1.50. Let n ∈ Z>0 and a ∈ Z. There exists a unique r ∈ Z, 0 ≤ r < n
such that a ≡ r mod n.

Definition 1.51. Let n ∈ Z>0 and a ∈ Z. We define the congruence class of a modulo
n,

[a]n = {b ∈ Z; b ≡ a mod n}.
An element of the set

[a]n = {..., a − 3n, a − 2n, a − n, a, a + n, a + 2n, ..., }
is called a representative of the congruence class [a]n. The last proposition showed how to
choose a canonical12 representative for each congruence class; that is, an integer in the set

{0, 1, ..., n − 1},
to be called the standard representative of the class. We denote by Zn the set of congruence
classes of the integers modulo n, and usually represend a congrunence class [a]n ∈ Zn by an
integer a ∈ [a]n, 0 ≤ a < n. When there can be no confusion, we will denote [a]n also by [a]
or just a.

Definition 1.52. Let n ∈ Z>0 and a and b ∈ Z. We define the operations of addition
(+) and multiplication (·)13 on Zn by

[a]n + [b]n = [a + b]n

and

[a]n[b]n = [ab]n.

11Throughout this section n is a positive integer fixed once and for all. The theory developed for the
case n = 1 is completely trivial.

12Meaning involving no choices.
13As usual the · is omitted in most cases.
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We must show the last definitions are well defined (make sense). First let us interpret
what the definitions say. To add (multiply) two congruence classes, say [a]n and [b]n, choose
representatives a and b of these classes. Add (multiply) these representatives to get a+ b (ab
in case of multiplication) and then take their respective congruence classes [a + b]n ([ab]n for
multiplication). What happens if we choose different representatives α and β for the classes
[a]n and [b]n? We use that [a]n = [α]n and [b]n = [β]n to conclude that

α = a + kn and β = b + ln for some k and l ∈ Z.

Thus

α + β = a + b + (k + l)n and αβ = ab + (kb + la)n + kln2 = ab + (kb + la + kln)n

and we conclude that
[α + β]n = [a + b]n and [αβ]n = [ab]n

as required for the operations to make sense.
As a matter of fact the system (Zn, +, ·) (that is, the set Zn with its binary operations

+ and ·) shares many (but not all) properties of the more familiar system (Z, +, ·). The set
Zn contains a zero element [0]n and a (multiplicative) identity [1]n.14 We illustrate with the
addition and multiplication tables for Z6.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

and

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

.

In all our tables on congruence arithmetic a denotes [a]n (with n understood from the
context). In the above two tables, we have listed the elements of Z6 in the first rows and
first columns. In the first (second) of these table the sum (product) a + b (ab) appears in
the intersection of the row indexed by a and the column indexed by b. Notice and explain
the symmetries in the above tables. The addition tables are rather easy to construct. Some
more work is required to produce the multiplication tables. We reproduce here the MAPLE
programs that give in matrix form the multiplication tables for Z17 and Z24. We then print
the resulting matrices in standard format.

MAPLE SESSION #3.

> k := 17;

k := 17
> aa := array(1..k,1..k):

for i to k do for j to k do aa[i,j] := (i-1) * (j-1) mod k end do end
do:
print(aa);

14We will show later in the book that the system (Zn, +, ·) forms a commutative ring. When there can
be no confusion, we will use the symbol Zn to reprersent this set, the commutative group (Zn, +) or the ring
(Zn, +, ·).
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***END OF PROGRAM***

MULTIPLICATION MATRIX FOR Z17



























































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15
0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14
0 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13
0 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12
0 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11
0 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10
0 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9
0 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8
0 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7
0 11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6
0 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5
0 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4
0 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3
0 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2
0 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1



























































MULTIPLICATION MATRIX FOR Z24
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6
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6

6
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6

6

6

6

6

6
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>

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21
0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20
0 5 10 15 20 1 6 11 16 21 2 7 12 17 22 3 8 13 18 23 4 9 14 19
0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
0 7 14 21 4 11 18 1 8 15 22 5 12 19 2 9 16 23 6 13 20 3 10 17
0 8 16 0 8 16 0 8 16 0 8 16 0 8 16 0 8 16 0 8 16 0 8 16

0 9 18 3 12 21 6 15 0 9 18 3 12 21 6 15 0 9 18 3 12 21 6 15
0 10 20 6 16 2 12 22 8 18 4 14 0 10 20 6 16 2 12 22 8 18 4 14
0 11 22 9 20 7 18 5 16 3 14 1 12 23 10 21 8 19 6 17 4 15 2 13
0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12
0 13 2 15 4 17 6 19 8 21 10 23 12 1 14 3 16 5 18 7 20 9 22 11
0 14 4 18 8 22 12 2 16 6 20 10 0 14 4 18 8 22 12 2 16 6 20 10
0 15 6 21 12 3 18 9 0 15 6 21 12 3 18 9 0 15 6 21 12 3 18 9
0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8
0 17 10 3 20 13 6 23 16 9 2 19 12 5 22 15 8 1 18 11 4 21 14 7
0 18 12 6 0 18 12 6 0 18 12 6 0 18 12 6 0 18 12 6 0 18 12 6
0 19 14 9 4 23 18 13 8 3 22 17 12 7 2 21 16 11 6 1 20 15 10 5
0 20 16 12 8 4 0 20 16 12 8 4 0 20 16 12 8 4 0 20 16 12 8 4
0 21 18 15 12 9 6 3 0 21 18 15 12 9 6 3 0 21 18 15 12 9 6 3
0 22 20 18 16 14 12 10 8 6 4 2 0 22 20 18 16 14 12 10 8 6 4 2
0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7
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7

7

7

7

7
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7

7

7

7

7

7

7

7

5

The above program needs no explanatory remarks. In the output, we have omitted the
previously used first column and first row. So the (i, j)-entry of the output matrix is the
standard representative of [(i − 1)(j − 1)]n. The first columns and first rows of the output
matrices are, of course, superfluous.



40 1. THE INTEGERS

Example 1.53. Let us show that 11|(10! + 1) or equivalently that 10! + 1 ≡ 0 mod 11.
We do not do the brute force calculation, but reduce modulo 11. Start with

10! = 10·9·8·7·6·5(4·3·2) ≡ (10·9)8·7·6(5·2) ≡ 2(8·7)6·10 ≡ 2·1·6·10 ≡ (2·6)10 ≡ 10 mod 11.

Hence

10! + 1 ≡ 10 + 1 ≡ 0 mod 11.

Definition 1.54. Let n ∈ Z>1 and a ∈ Z. We say that [a]n is invertible in Zn or has an
inverse (modulo n) if there exists a b ∈ Z such that [a]n[b]n = [1]n. The invertible elements
in Zn are also called units. We say that a non-zero congruence class [a]n is a zero divisor
(modulo n) if there exists an integer b such that [b]n 6= [0]n but [a]n[b]n = [0]n.

Theorem 1.55. Let n ∈ Z>1 and a ∈ Z. Then [a]n has an inverse modulo n if and only
if (a, n) = 1. If in fact r and s ∈ Z satisfy ar + sn = 1, then [r]n is an inverse of [a]n.

Proof. Suppose that [a] is invertible15 with inverse [k] (k ∈ Z). Then ak ≡ 1 mod n;
that is, n|(ak − 1). Therefore there exists a t ∈ Z such that nt = ak − 1. This implies that
(a, n) = 1. Conversely, if (a, n) = 1, then there exists integers r and s such that ar + sn = 1.
Therefore n|(1 − ar) and ar ≡ 1 mod n; the last equation says [a]n[r]n = [1]n. �

Proposition 1.56. Let n ∈ Z>1 and a ∈ Z. If [a]n is invertible modulo n, then its
inverse [b]n is unique and is hence written as [a]−1

n

Proof. If for c ∈ Z, [c]n is also an inverse of [a]n, then [a]([b]− [c]) = [0]. Thus n|a(b−c)
and since (a, n) = 1, n|(b − c). Thus [b] = [c]. �

Example 1.57. Since 1 = −91·507+118·391, [391]−1
507 = [118]507 (and [116]−1

391 = [300]391).

Example 1.58. Since (215, 795) = 5, 215 does not have an inverse modulo 795 and 795
does not have an inverse modulo 215. Note that [795]215 = [150]215.

Example 1.59. It is rather obvious that (73, 23) = 1. So that both [73]−1
23 and [23]−1

73

exist. To find them, we proceed to express (73, 23) as a linear combination of 73 and 23
using the GCD algorithm:

[

1 0
0 1

∣

∣

∣

∣

73
23

]

3→

[

1 −3
0 1

∣

∣

∣

∣

4
23

]

5→
[

1 −3
−5 16

∣

∣

∣

∣

4
3

]

1→

[

6 −19
−5 16

∣

∣

∣

∣

1
3

]

.

Thus 6 · 73 − 19 · 23 = 1, [23]73 = [−19]73 = [54]23 and [73]23 = [6]23.

Corollary 1.60. Let n ∈ Z>1 and a, b and c ∈ Z. If (n, c) = 1 and ac ≡ bc mod n,
then a ≡ b mod n.

Proof. We rewrite the congruence ac ≡ bc mod n as [a]n[c]n = [b]n[c]n. Since n and c
are relatively prime, [c]−1

n exists and the lemma follows by multiplying each side of the last
equality by [c]−1

n . �

Corollary 1.61. Let n ∈ Z>0. Then each non-zero [a]n is either invertible or a zero
divisor, but not both.

15The subscript n is dropped since it fixed throughout the argument. When clear from the context we
will also drop the [ ] from the notation.
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Proof. Let a ∈ Z and assume that [a]n is non-zero and not invertible. Thus d = (n, a) >
1. It follows that a = kd and n = ld for some positive integers k and l > 1. Hence al = kld
is divisible by n. Thus [a]n[l]n = [0]n; that is, [a]n is a zero divisor. �

Corollary 1.62. Let p ∈ Z>0 be a prime. Then every non-zero element in Zp is
invertible.

Definition 1.63. For each n ∈ Z>0, we let Z∗
n be the set of invertible congruence classes

in Zn.

Theorem 1.64. Let n ∈ Z>1. Then Z∗
n is closed under multiplication; that is, if [a] and

[b] ∈ Z∗
n, then so does [a][b].

Proof. Let p be a prime. Since (n, a) = 1, either p does not divide n or p does not
divide a. Similarly (either p does not divide n) or it does not divide b. Hence either p does
not divide n or p does not divide ab. It must be the case that (n, ab) = 1. �

Note that Z∗
8 consists of {[1], [3], [5], [7]} and thus |Z∗

8| = 4. It is easy to construct by
brute force the multiplication table for Z∗

8. It is, of course, a subset of the multiplication table
for Z8 (that the reader should construct and compare to the one below) and is described by

· 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

.

For larger n, we may use MAPLE to construct the multiplication tables. The construction
of the first of these tables for the prime 17 offers no challenges. It can readily be modified
to produce the multiplication table for Z∗

n for any prime n by merely changing the first line
of the program.

MAPLE SESSION #4.

> n := 17;

n := 17

> f:= x -> x;

f := x → x

> aa := array(1..(n-1),1..(n-1)):

> for i to (n-1) do for j to (n-1) do aa[i,j] := f(i) * f(j) mod n end
do end do:

> print(aa);
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15
3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14
4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13
5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12
6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11
7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10
8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9
9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8

10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7
11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6
12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5
13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4
14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3
15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1























































***END OF PROGRAM***

Compare the last output with that of the of the previous MAPLE session for the prime
17. What is the difference? The program for non-primes is more interesting.

MAPLE SESSION #5.

> n := 24:
> zstarn:=select(x->if (gcd(x,n)=1) then true; else false; end if,

{seq(i,i=1..n)});

zstarn := {1, 5, 7, 11, 13, 17, 19, 23}
> with(numtheory):

Warning, the protected name order has been redefined and unprotected

> phi(n);

8

> aa := array(1..phi(n),1..phi(n)):

> for i to (phi(n)) do for j to (phi(n)) do aa[i,j] := zstarn[i] *
zstarn[j] mod n end do end do;

> print(aa);






















1 5 7 11 13 17 19 23
5 1 11 7 17 13 23 19
7 11 1 5 19 23 13 17

11 7 5 1 23 19 17 13
13 17 19 23 1 5 7 11
17 13 23 19 5 1 11 7
19 23 13 17 7 11 1 5
23 19 17 13 11 7 5 1
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***END OF PROGRAM***

The second command of the above program produces the list of ϕ(n)16 positive integers
that are ≤ n and relatively prime to n. The entry phi(n) was included only as very weak
consistency check on our program. By changing 24 to 72 in the first line of the program, we
obtain the multiplication table for Z72. It results in the following table.
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4

1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71
5 25 35 55 65 13 23 43 53 1 11 31 41 61 71 19 29 49 59 7 17 37 47 67
7 35 49 5 19 47 61 17 31 59 1 29 43 71 13 41 55 11 25 53 67 23 37 65

11 55 5 49 71 43 65 37 59 31 53 25 47 19 41 13 35 7 29 1 23 67 17 61
13 65 19 71 25 5 31 11 37 17 43 23 49 29 55 35 61 41 67 47 1 53 7 59
17 13 47 43 5 1 35 31 65 61 23 19 53 49 11 7 41 37 71 67 29 25 59 55
19 23 61 65 31 35 1 5 43 47 13 17 55 59 25 29 67 71 37 41 7 11 49 53
23 43 17 37 11 31 5 25 71 19 65 13 59 7 53 1 47 67 41 61 35 55 29 49
25 53 31 59 37 65 43 71 49 5 55 11 61 17 67 23 1 29 7 35 13 41 19 47
29 1 59 31 17 61 47 19 5 49 35 7 65 37 23 67 53 25 11 55 41 13 71 43
31 11 1 53 43 23 13 65 55 35 25 5 67 47 37 17 7 59 49 29 19 71 61 41
35 31 29 25 23 19 17 13 11 7 5 1 71 67 65 61 59 55 53 49 47 43 41 37
37 41 43 47 49 53 55 59 61 65 67 71 1 5 7 11 13 17 19 23 25 29 31 35
41 61 71 19 29 49 59 7 17 37 47 67 5 25 35 55 65 13 23 43 53 1 11 31

43 71 13 41 55 11 25 53 67 23 37 65 7 35 49 5 19 47 61 17 31 59 1 29
47 19 41 13 35 7 29 1 23 67 17 61 11 55 5 49 71 43 65 37 59 31 53 25
49 29 55 35 61 41 67 47 1 53 7 59 13 65 19 71 25 5 31 11 37 17 43 23
53 49 11 7 41 37 71 67 29 25 59 55 17 13 47 43 5 1 35 31 65 61 23 19
55 59 25 29 67 71 37 41 7 11 49 53 19 23 61 65 31 35 1 5 43 47 13 17
59 7 53 1 47 67 41 61 35 55 29 49 23 43 17 37 11 31 5 25 71 19 65 13
61 17 67 23 1 29 7 35 13 41 19 47 25 53 31 59 37 65 43 71 49 5 55 11
65 37 23 67 53 25 11 55 41 13 71 43 29 1 59 31 17 61 47 19 5 49 35 7
67 47 37 17 7 59 49 29 19 71 61 41 31 11 1 53 43 23 13 65 55 35 25 5
71 67 65 61 59 55 53 49 47 43 41 37 35 31 29 25 23 19 17 13 11 7 5 1
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EXERCISES

(1) Let n and m be positive integers. Consider the set Zn × Zm of ordered pairs (a, b)
with a ∈ Zn and b ∈ Zm. Introduce a multiplication on such pairs by defining
(a, b)(c, d) = (ac, bd).

• Show this multiplication is well defined.
• Construct this multiplication for Z3 × Z5 and compare it to the multiplication

table for Z15.
• Construct the multiplication table for Z4 × Z6 and compare it to the multipli-

cation table for Z24.
(2) Fix a positive integer n. The multiplication table for Z∗

n that we have been using
is a ϕ(n)×ϕ(n) matrix M constructed as follows. Let x1, x2, ..., xϕ(n) be increasing
list of integers j with 1 ≤ j < n and (j, n) = 1. The (i, j)-entry of the matrix M is
the standard representative of [xixj]. Show that M is a symmetric matrix. What
property of multiplication of congruence classes does the symmetry of M reflect?

(3) In this exercise we study simple divisiblity tests for positive integes N .
• Show that N is divisble by 3 if and only if the sum of the digits in N is.
• Devise and establish similar (or simpler) divisibilty tests for 4, 5, 6 and 7.

16The Euler ϕ-function is introduced in Section 8.
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7. Solutions of linear congruences

We are interested in solving linear congruences; that is, equations of the form

(7) ax ≡ b mod n equivalently [a]nX = [b]n,

where n ∈ Z>0, a and b ∈ Z are fixed and we are looking for integers x that satisfy (in
the equivalent formulation we are looking for X, equivalence classes of integers modulo n)
equation (7). If a = 0 or a = 1, we already know the answer, so we may assume from now on
that 1 < a < n. However, we work without this restriction. It pays for us to concentrate on
the formulation in terms of equivalence classes. There are some immediate differences from
ordinary equations:

• The equation [2]3X = [1]3 has a unique solution X = [2]3.
• The equation [2]4X = [1]4 has no solutions.
• The equation [2]4X = [0]4 has two solutions: X = [0]4 and [2]4.

This is more or less the general picture as seen in

Theorem 1.65. Let n ∈ Z>0, a, b ∈ Z. Then (7) has solutions if and only if d = (a, n)|b.
If d|b, there are exactly d congruence classes of solutions modulo n and all these solutions
are congruent modulo n

d
.

Proof. For c ∈ Z, let [c]n be a solution to (7). Then ac ≡ b mod n; that is, [a]n[c]n =
[b]n or ac− nk = b for some k ∈ Z. Thus d|b. Conversely, assume that d|b. We divide (7) by
d and obtain

(8)
a

d
x ≡ b

d
mod

n

d
or equivalently

[a

d

]

n
d

X =

[

b

d

]

n
d

,

where in the last equation X represents a congruence class modulo n
d
. It is easy to see that

as equations for unknown integers x, (7) and (8) are equivalent; an x ∈ Z that solves one
also solves the other. The same is true for equivalence classes X once one understands that
equivalence class X modulo n

d
that solves (8) corresponds to d equivalence classes modulo n

that solve (7). To see this, pick any x ∈ X and let X0 = [x]n. Then X0 ⊂ X and we define
for any integer a,

Xa = X0 + a = {y + a; y ∈ X0} = [x + a]n.

It is easily seen that

X = X0 ∪ Xn
d
∪ X2 n

d
∪ ... ∪ X(d−1) n

d
.

Since
(

a
d
, n

d

)

= 1, (8) has a unique solution X =
[

a
d

]−1
n
d

[

b
d

]

n
d

. �

Remark 1.66. It is useful to consider various special cases.

• n = 1: In this case every x ∈ Z is a solution and X = Z.
• n|a or equivalently [a]n = [0]n: In this case, once again, every x ∈ Z is a solution.

In terms of equivalence classes, every class is a solution (there are n such solutions).
• [a]n is a zero divisor (in particular [a]n 6= [0]n): In this case, we consider two subcases:

(a)
[

b
d

]

n
d

= [0]n
d
: [0]n

d
is the only solution of (8) and thus (7) has d solutions

[0]n,
[n

d

]

n
, ...,

[

(d − 1)
n

d

]

n
;
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all but the first of these are zero divisors, and
(b)

[

b
d

]

n
d

6= [0]n
d
: Let

[

α
d

]

n
d

, with α ∈ Z such that 0 < α < d be the unique solution

of (8), then (7) has d solutions

[α]n,
[

α +
n

d

]

n
, ...,

[

α + (d − 1)
n

d

]

n
;

all are zero divisors.

Corollary 1.67. Equation (7) has a unique equivalence class of solutions if and only
if d = (a, n) = 1; in particular, whenever n is a prime and n does not divide a.

Example 1.68. To solve 6x ≡ 2 mod 17 we note that since 17 is a prime and 6 is not
a multiple of 17, the unique solution is X = [6]−1

17 [2]17 = [3]17[2]17 = [6]17.

Example 1.69. To solve a more substantial looking problem like 432x ≡ 12 mod 546
we need to do some more work. It is easily seen that 432 = 2433 and 546 = 2 · 3 · 7 · 13
and thus 6 = (432, 546). Hence [72]91X = [2]91 has a unique solution. To find it we need to
calculate [72]−1

91 . This is, perhaps, best done by the GCD algorithm:

[

1 0
0 1

∣

∣

∣

∣

91
72

]

1→

[

1 −1
0 1

∣

∣

∣

∣

19
72

]

3→
[

1 −1
−3 4

∣

∣

∣

∣

19
15

]

1→

[

4 −5
−3 4

∣

∣

∣

∣

4
15

]

3→
[

4 −5
−15 19

∣

∣

∣

∣

4
3

]

1→

[

19 −24
−15 19

∣

∣

∣

∣

1
3

]

.

We read of that 19 · 91 − 24 · 72 = 1; which tells us that [72]−1
91 = [−24]91 = [67]91. So that

X = [43]91. In terms of congruence classes modulo 546, we have 6 solution; namely,

[43]546, [134]546, [225]546, [316]546, [407]546, [498]546.

Theorem 1.70 (The Chinese remainder theorem, CRT). Let r ∈ Z>0 and let m1,m2, ...,mr

be relatively prime positive integers. Let a1, a2, ..., ar be any set of integers. Then the system
of congruences

x ≡ ai mod mi, i = 1, ..., r

has a unique solution modulo M = m1...mr.

Proof. The theorem is obviously true for r = 1. So assume that r > 1. Observe however
that the argument that follows holds (with appropriate understanding of symbols) for the
case r = 1. Let Mk = M

mk
= m1...mk−1m̂kmk+1...mr, where m̂k indicates that the mk term is

missing from the product. Then since (mi,mj) = 1 if i 6= j, we conclude that (mk,Mk) = 1.

Thus there exists yk ∈ Z such that [yk]mk
= [Mk]

−1
mk

. We set

x = a1M1y1 + a2M2y2 + ... + arMryr.

Then
[x]mi

= [a1]mi
[M1]mi

[y1]mi
+ [a2]mi

[M2]mi
[y2]mi

+ ... + [ar]mi
[Mr]mi

[yr]mi
.

But [Mj]mi
= 0 if j 6= i. Hence

[x]mi
= [ai]mi

[Mi]mi
[yi]mi

= [ai]mi
.

If y is another solution the system of congruences, then for each i, mi|(y − x) hence lcm
(m1,m2, ...,mr) = M |(y − x). �
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Example 1.71. To solve simultaneously (in Z) the three equations

x ≡ 2 mod 7,

x ≡ 0 mod 9

and
2x ≡ 6 mod 8,

we first solve the last equation to obtain x ≡ 3 or 7 mod 8: which is equivalent to x ≡ 3
mod 4. We can replace our system of equation by the equivalent system

x ≡ 2 mod 7,

x ≡ 0 mod 9

and
x ≡ 3 mod 4,

whose solution is
x ≡ 2 · 36 · 1 + 0 + 3 · 63 · 3 ≡ 135 mod 252.

It is clear that computers should be of use in applications of CRT. We illustrate what
can and cannot be done in MAPLE. Our first example is the solution of the system

x ≡ 12 mod 13,

x ≡ 13 mod 14,

x ≡ 14 mod 23

and
x ≡ 15 mod 25.

It would be quite a time consuming task to rely solely on calculators to solve this problem.
We approach this problem as an algorithm involving a few steps.
1. We first verify that the hypothesis of CRT are satisfied (that is, that the moduli are
relatively prime).
2. We know that the solution is a congruence class a mod M . We compute M as the
product of the moduli.
3. We determine next the smallest positive a. It is in the intersection of several sets that
are easily described; the kth set is a subset of the set of solutions to the kth equation.

MAPLE SESSION #6.

> gcd(13,14);

1

> gcd(13,23);

1

> gcd(13,25);

1

> gcd(14,23);

1

> gcd(14,25);

1
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> gcd(23,25);

1

> 13 * 14 * 23 * 25;

104650
> set1 := {seq( 12 + 13*i,i=0..200)}: set2 := {seq( 13 +

14*i,i=0..200)}: set3 := {seq( 14 + 23*i,i=0..200)}: set4 := {seq(
15 + 25*i,i=0..200)}:

> set1 intersect set2 intersect set3 intersect set4;

{}
> set1 := {seq( 12 + 13*i,i=0..20000)}: set2 := {seq( 13 +

14*i,i=0..20000)}: set3 := {seq( 14 + 23*i,i=0..20000)}: set4 :=
{seq( 15 + 25*i,i=0..20000)}:

> set1 intersect set2 intersect set3 intersect set4;

{34215, 138865, 243515}
> chrem([12,13,14,15],[13,14,23,25]);

34215

***END OF PROGRAM***

• The first 6 lines of the program are just a check on the hypothesis for the Chinese
remainder theorem. They can be combined into a single command as is done in the
next program.

• The 8th line of the program defines the sets whose intersection should yield a solution.
However we have truncated the sets too quickly as is shown by the next line.

• The next to the last section of the program shows that the simultaneous solutions
to the set of four equations is the congruence class

34215 mod 104650

(we use the single calculation 104650 = 138865 − 34215).
• The last section of the program shows the single MAPLE command needed to get

the smallest positive solution.

A slightly different picture emerges in the MAPLE solution to a similar set of congruences
involving bigger numbers

x ≡ 12 mod 993,

x ≡ 13 mod 994,

x ≡ 14 mod 1003

and

x ≡ 15 mod 1007.

MAPLE SESSION #7.
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> [gcd(993,994),
> gcd(993,1003),
> gcd(993,1007),
> gcd(994,1003),
> gcd(994,1007),gcd(1003,1007)];

[1, 1, 1, 1, 1, 1]

> 993 * 994 * 1003 * 1007;

996933147882
> set1 := {seq( 12 + 993*i,i=0..200)}: set2 := {seq( 13 +

994*i,i=0..200)}: set3 := {seq( 14 + 1003*i,i=0..200)}: set4 :=
{seq( 15 + 1007*i,i=0..200)}:

> set1 intersect set2 intersect set3 intersect set4;

{}
> set1 := {seq( 12 + 993*i,i=0..20000)}: set2 := {seq( 13 +

994*i,i=0..20000)}: set3 := {seq( 14 + 1003*i,i=0..20000)}: set4 :=
{seq( 15 + 1007*i,i=0..20000)}:

> set1 intersect set2 intersect set3 intersect set4;

{}
> set1 := {seq( 12 + 993*i,i=0..2000000)}: set2 := {seq( 13 +

994*i,i=0..2000000)}: set3 := {seq( 14 + 1003*i,i=0..2000000)}:
set4 := {seq( 15 + 1007*i,i=0..2000000)}:

Warning, computation interrupted

> chrem([12,13,14,15],[993,994,1003,1007]);

630257901363

***END OF PROGRAM***

Note that the naive calculations that look for a solution as an intersection of four sets
runs into time problems (hence the interruption). However, the chrem MAPLE command
is powerful enough to perform its calculation in a very short period of time. It follows that
MAPLE uses a more sophisticated algorithm in solving simultaneous congruence equations.

Remark 1.72. The hypothesis that (mi,mj) = 1 for i 6= j cannot be replaced by the
weaker hypothesis (m1,m2, ...,mr) = 1 as is easily shown by the example

x ≡ 0 mod 2,

x ≡ 0 mod 3

and
x ≡ 1 mod 4

that has no solutions; since the first of theses three equations says that x must be even and
the last that it must be odd.

We end this section with a brief introduction to non-linear congruences.
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Example 1.73. We start with the equation

x2 − 1 ≡ 0 mod n.

It is equivalent to the equation

(x − 1)(x + 1) ≡ 0 mod n.

So if x is a solution, then x − 1 and x + 1 are either 0 or zero divisors. Thus if n is prime,
the only solutions are x = 1 and x = n − 1 (modulo n, of course). For composite n, x = 1,
x = n− 1 are still solutions. But there may be others (extra solutions) as well. They are to
be found among the x for which both x ± 1 are zero divisors. The zero divisors for n = 6
are 2, 3 and 4. Thus only x = 3 could be an extra solution, but it is not. For n = 8, the
solutions are 1, 3, 5 and 7. The zero divisors in this case are 2, 4 and 6. Each extreme pair
of these accounts for one solution. For n = 25, only 5 is a zero divisor. Hence, only 1 and
24 are solutions.

Example 1.74. We continue with the equation

x2 + 1 ≡ 0 mod n

and try to find its roots. Once again the answer depends on n. For n = 2, 1 is a solution.
There are no solutions for n = 3 and 4. For n = 5, x = 2 and 3 are the solutions. Obviously
this is a place where a symbolic computation program will help. Using MAPLE (a worksheet
is included below), we see that for n = 125, x = 57 and 68 are solutions leading us to the
factorization

x2 + 1 ≡ (x − 57)(x − 68) mod 125.

Perhaps more surprising is the case n = 65 where 8, 18, 47 and 57 are solutions giving us
two factorizations

x2 + 1 ≡ (x − 8)(x − 57) mod 65

and
x2 + 1 ≡ (x − 18)(x − 47) mod 65.

A self-explanatory MAPLE program (reproduced below) facilitates the computations in this
example.

MAPLE SESSION #8.

> msolve({x^2 + 1 = 0}, 2);

{x = 1}
> msolve({x^2 + 1 = 0}, 3);

> msolve({x^2 + 1 = 0}, 4);

> msolve({x^2 + 1 = 0}, 5);

{x = 2}, {x = 3}
> msolve({x^2 + 1 = 0}, 125);

{x = 57}, {x = 68}
> msolve({x^2 + 1 = 0}, 65);

{x = 8}, {x = 18}, {x = 47}, {x = 57}
> msolve({x^2 + 1 = 0}, 13);
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{x = 5}, {x = 8}
> msolve({x^2 + 1 = 0}, 17);

{x = 4}, {x = 13}
> msolve({x^2 + 1 = 0}, 19);

***END OF PROGRAM***

Example 1.75. Our last example of this section is a brief discussion of the polynomial

(9) x3 − x2 + x + 2.

We investigate whether it can have any integral roots. One can learn from more advanced
algebra books (or courses) that the only possible integral roots of the polynomial are ±1 and
±2 and that none of these are in fact roots to conclude that the equation has no integer roots
(see Section 10). Without more advanced results we can come to the same conclusion using
modular arithmetic. If (9) had an integer root, then for every n ∈ Z>1 reducing modulo n,
we would certainly have a root in Zn. Let f(r) = r3 − r2 + r + 2. Then f(0) = 2, f(1) = 3,
f(2) = 8, f(3) = 23 and f(4) = 54. So the equation f(r) ≡ 0 mod 5 has no solutions.
Hence (9) cannot have any integral solutions.

8. Euler

Let us fix a positive integer n. For a ∈ Z, we have determined conditions that guarantee
the existence of [a]−1

n and algorithms for computing it. Two results that give formulae for
this inverse (due to Fermat for n prime and to Euler for the general case) turn out to have
good applications to cryptography.

Definition 1.76. Let n ∈ Z>0 and a ∈ Z. The integer a (or the equivalence class [a]n)
has finite multiplicative order modulo n if there exists a k ∈ Z>0 such that

[a]kn = ([ak]n) = [1]n.

If a has finite multiplicative order modulo n, then the smallest k as above is the (multiplica-
tive) order of a (and of [a]n) modulo n; in symbols ordna (ord [a]n) or ord a (ord [a]) when
the n is clear from the context.

Remark 1.77. Only [1]n has order 1.

Theorem 1.78. Let n ∈ Z>0 and a ∈ Z. The following conditions are equivalent:
(a) The integer a has finite multiplicative order modulo n.
(b) (a, n) = 1.
(c) [a]n is invertible.
(d) [a]n 6= [0]n and [a]n is not a zero divisor.

Proof. The equivalence of conditions (b), (c) and (d) has already been established. If
a has finite multiplicative order, then [a]kn = [a]n[a]k−1

n = [1]n and so [a]n is invertible. Thus
(a) implies (c). To establish the converse (that (c) implies (a)), consider the list of n + 1
elements

[a]n, [a]2n, ..., [a]n+1
n
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in Zn. Since |Zn| = n, two elements in the list must be the same. Thus

[a]kn = [a]tn for some 1 ≤ k < t ≤ n + 1.

If [a]n is invertible, we can multiply both sides of the last equation by [a]−k
n and conclude

that [1]n = [a]t−k
n . �

Theorem 1.79. Suppose that a ∈ Z has order k modulo n. Then

ar ≡ as mod n if and only if r ≡ s mod k.

Proof. The fact that a has order k modulo n means that ak = 1 + nw for some w ∈ Z.
If r ≡ s mod k, then r = s + tk for some t ∈ Z. Then

ar = as+tk = asatk = as(1 + nw)t ≡ as mod n.

Conversely, if ar ≡ as mod n, we may without loss of generality assume that r ≤ s. Since
(a, n) = 1, [a]−1

n exists and we conclude that 1 ≡ as−r mod n. The division algorithm tells
us that s−r = qk+u for some q and u ∈ Z with 0 ≤ u < k. Therefore 1 ≡ as−r ≡ au mod n.
Since k is the smallest positive integer with ak ≡ 1 mod n, we conclude that u = 0. �

Theorem 1.80 (Fermat’s little theorem). Let p be a prime and suppose that a ∈ Z is
not a multiple of p. Then ap−1 ≡ 1 mod p. Hence for all a ∈ Z, ap ≡ a mod p.

Proof. The group17 Z∗
p has p − 1 elements:

[1]p, [2]p, ..., [p − 1]p.

For [a]p ∈ Z∗
p, denote by [a]pZ

∗
p the set of multiples of [a]p in Z∗

p:

[a]pZ
∗
p = {[a]p[b]p; [b]p ∈ Z∗

p} = {[a]p[1]p, [a]p[2]p, ..., [a]p[p − 1]p} ⊆ Z∗
p.

We observe next that
∣

∣[a]pZ
∗
p

∣

∣ = p− 1 because no two elements of Z∗
p are equal. (If [a]p[b]p =

[a]p[c]p, then since [a]p is invertible, [b]p = [c]p.) Hence

[1]p[2]p...[p − 1]p = [a]p[1]p[a]p[2]p...[a]p[p − 1]p = [a]p−1
p [1]p[2]p...[p − 1]p

and it follows (by cancellation) that [a]p−1
p = [1]p. This establishes the first part of the

theorem; also that ap ≡ a mod p whenever p does not divide a. But this last assertion is
trivial for multiples of p. �

Corollary 1.81. Let p be a prime and suppose that a ∈ Z is not divisible by p. Then
the order of a mod p divides (p − 1).

Proof. The theorem shows that [a]p−1
p = [1]p. If k is the order of a mod p, then

[a]kp = [1]p and Theorem 1.79 tells us that p − 1 ≡ k mod k. �

Example 1.82. For all primes p, the order of [1]p is, of course, 1 and the order of [p−1]p
is 2 provided p is odd. All possibilities allowed by the theorem do occur. In Z∗

7, for example,
the orders of the units [1]7, [2]7, [3]7, [4]7, [5]7 and [6]7 are 1, 3, 6, 3, 6 and 2, respectively.

We now come to one of the most important functions in number theory, the Euler ϕ-
function.

Definition 1.83. For each n ∈ Z>0, we let ϕ(n) = |Z∗
n|. Thus ϕ(n) is the number of

positive integers ≤ n that are relatively prime to n. (Note that ϕ(1) = 1.)

17Language to be justified later.



52 1. THE INTEGERS

The reader should check that the entries in the following table are correct.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6

.

It is perhaps surprising that there is an easy formula for ϕ(n). We now begin the journey
toward (1.86).

Proposition 1.84. If p is a prime and n ∈ Z>0, then

ϕ(pn) = pn − pn−1.

Proof. The only integers between 1 and pn (including both ends) that are not relatively
prime to pn are the multiples of p, namely

p, 2p, ...pn−1p.

There are exactly pn−1 such integers. �

Theorem 1.85. If a and b are relatively prime positive integers, then

ϕ(ab) = ϕ(a)ϕ(b).

Proof. Since ϕ(1) = 1, there is nothing to prove if either a or b = 1. So assume that
both are in Z>1. The theorem says that the number of elements in Z∗

ab, |Z∗
ab|, is the product

of |Z∗
a| and |Z∗

b |. We construct a one-to-one surjective map18

f : Z∗
a × Z∗

b → Z∗
ab.

A point in the direct product Z∗
a ×Z∗

b is a pair ([r]a, [s]b), where r and s are positive integers
relatively prime to a and b, respectively. By the Chinese remainder theorem, there is a unique
congruence class [t]ab (the notation is meant to imply that we are choosing a representative
t ∈ Z of this class) such that

t ≡ r mod a and t ≡ s mod b.

Since t = r + ka for some k ∈ Z and (r, a) = 1, we conclude that (t, a) = 1. Similarly
(t, b) = 1. Thus (t, ab) = 1; that is, [t]ab ∈ Z∗

ab. Hence we define f by

f ([r]a, [s]b) = [t]ab.

We need to show that the map is f is an isomorphism (one-to-one and onto). We proceed
indirectly by constructing a map

g : Z∗
ab → Z∗

a × Z∗
b

that is an inverse of f . Let [t]ab ∈ Z∗
ab. Choose the unique r and s ∈ Z such that 0 ≤ r < a,

0 ≤ s < b, [t]a = [r]a and [t]b = [s]b. We define

g ([t]ab) = ([r]a, [s]b) .

We must show that [r]a ∈ Z∗
a; that is, that (a, r) = 1. This is shown as follows. Since

(ab, t) = 1, we must also have that (a, t) = 1. Since t ≡ r mod a it follows from (a, t) = 1
that (a, r) = 1. Similarly we see that [s]b ∈ Z∗

b . It is clear from the uniqueness part of the
Chinese remainder theorem that f ◦ g is the identity self map of Z∗

ab. Hence g is injective
and f is surjective. The fact that g is one-to-one tells us that |Z∗

ab| ≥ |Z∗
a||Z∗

b |. The fact that
f is onto tells us that |Z∗

ab| ≤ |Z∗
a||Z∗

b |. The last two inequalities imply equality. �

18As we shall see later, an isomorphism between groups.
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Theorem 1.86. Let n ∈ Z>1 have prime factorization n =
∏r

i=1 pni

i with the pi distinct
primes and the exponents ni > 0. Then

ϕ(n) =
r
∏

i=1

(

pni

i − pni−1
i

)

= n
r
∏

i=1

(

1 − 1

pi

)

.

Proof. The first formula is proven by induction on r. The base case r = 1 is the
content of Proposition 1.84. So assume that we have the formula for r = k ≥ 1 and proceed
to establish it for r = k + 1. Write

n =
k+1
∏

i=1

pni

i =

(

k
∏

i=1

pni

i

)

p
nk+1

k+1 .

Since
(

∏k
i=1 pni

i , p
nk+1

k+1

)

= 1, we conclude by the induction hypothesis and the last theorem

that

ϕ

(

k+1
∏

i=1

pni

i

)

= ϕ

((

k
∏

i=1

pni

i

)

p
nk+1

k+1

)

=

(

k
∏

i=1

(

pni

i − pni−1
i

)

)

(

p
nk+1

k+1 − p
nk+1−1
k+1

)

=

k+1
∏

i=1

(

pni

i − pni−1
i

)

.

This finishes the proof of the first equality; the second equality is a consequence of an easy
algebraic manipulation. �

Our next result is a generalization of Fermat’s little theorem.

Theorem 1.87 (Euler). Let n ∈ Z≥2 and suppose that a ∈ Z is relatively prime to n.
Then aϕ(n) ≡ 1 mod n.

Proof. The argument here is a generalization of the one used to establish Fermat’s
little theorem. The group Z∗

n has ϕ(n) elements. As before, [a]n ∈ Z∗
n and [a]nZ∗

n denotes
the set of multiples of [a]n in Z∗

n: [a]nZ∗
n = {[a]n[b]n; [b]n ∈ Z∗

n}. As in the earlier proof
|[a]nZ∗

n| = ϕ(n) because no two elements of Z∗
n are equal. Hence

∏

b∈Z∗

n

b =
∏

b∈Z∗

n

ab = aϕ(n)
∏

b∈Z∗

n

b,

and Euler’s theorem follows by cancellation. �

Corollary 1.88. Let n ∈ Z≥2 and suppose that a ∈ Z is relatively prime to n. Then
the order of a mod n divides ϕ(n).

Example 1.89. We determine the congruence class mod 14 of 319. We can, of course
use the MAPLE command > 3^{19} \mod 14; and receive 3 as the answer. But this
problem can be solved and was solved before and without MAPLE. The order of 3 modulo
14 divides ϕ(14) = 6. Hence 318 ≡ 1 mod 14 and thus 319 ≡ 3 mod 14.

Example 1.90. We determine the last two digits of 72962. Again MAPLE readily supplies
the answer; although it (version 7) has trouble obtaining the last two digits of 72962!. The
last two digits of an integer are determined by its congruence class mod 100. The order
of 7 mod 100 divides ϕ(100) = ϕ(2252) = 2 · 20 = 40. Hence 740r ≡ 1 mod 100 for every
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positive integer r. Thus 72962 = 799·40+2 ≡ 49 mod 100 and 72962! ≡ 1 mod 100 because
40|2962!. Can we determine this way the last two digits of 62962? Not exactly as before.
62962 = 2296232962. As before 32962 ≡ 9 mod 100. But at this point we do not have the tools
to conclude (without a brute force calculation using MAPLE, for example) that 22962 ≡ 4
mod 100.

Definition 1.91. Let a ∈ Z with (a, n) = 1. The (multiplicative) inverse of [a]n ∈ Z∗
n is

the unique [b]n ∈ Z∗
n with [a][b] = [ab] = [1]. We have seen that if [a] has order k, then its

inverse exists and [b] = [a]k−1 = [a]ϕ(n)−1.

Remark 1.92. We have been studying three systems. The language will be established
in subsequent chapters:

• (Zn, +, ·) is a commutative ring.
• (Zn, +) is a cyclic abelian group of order n with generator [1].
• (Z∗

n, ·) is an abelian group of order ϕ(n); usually not cyclic.

EXERCISES

(1) Find the orders of
(a) 2 mod 31,
(b) 3 mod 75 and
(c) 4 mod 27.

(2) Show that a ∈ Z has order k modulo n if and only if k ∈ Z>0 is the smallest integer
such that ak − 1 = nw for some w ∈ Z.

(3) Prove that a and a5 have the same last digit for all a ∈ Z>0.
(4) Let a and b ∈ Z. Prove that

ϕ

(

a

gcd(a, b)

)

ϕ

(

b

gcd(a, b)

)

= ϕ

(

lcm(a, b)

gcd(a, b)

)

.

(5) For what positive integers n is ϕ(n) ≤ 8?
(6) In this exercise we study an additive version of the (multiplicative) order function.

• Verify the entries in

Order of elements of Z∗
24

a 1 5 7 11 13 17 19 23
ord a 1 2 2 2 2 2 2 2

.

• Let n ∈ Z>0 and let a ∈ Zn. In analogy with the definition of the multplivative
order of a ∈ Z∗

n, define the additive order of a ∈ Zn.
• Your definition should produce the following:

Order of elements of Z24

a 0 1 2 3 4 5 6 7 8 9 10 11
ord a 1 24 12 8 6 24 4 24 3 12 12 24

.

a 12 13 14 15 16 17 18 19 20 21 22 23
ord a 2 24 12 8 3 24 4 24 12 8 12 24

.
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9. Public key cryptography

Let us assume that we have a large number, N ∈ Z>0, of people who want to communicate
(say on the web) in a more or less secure manner. Electronically, we can only transmit
numbers. So the first task is to translate the letters of our alphabet to numbers. We can
certainly choose a subset of the integers between 1 and 100 to accomplish this. Say we may
set up the following correspondence

A = 03, B = 07, C = 13, D = 17, E = 21, ..., Y = 77, Z = 91,

blank = 93, , = 98, . = 99,

known as a code book or an encryption algorithm. The message 170377 would hence be read
as DAY . We share the code book between our set of N correspondents. We now have no
problem sending messages to each other. If our code is secure (more on this later), only the
N communicators:

Π1, Π2, ..., ΠN

can code (changing the letters to numbers) and decode (changing the numbers back to the
“correct” letters) messages. There is a problem with this scheme. Say that two communica-
tors Π1 and Π2 want to keep the information they exchange from all the other communicators
Πj, j > 2. This can certainly be accomplished if each pair of communicators had their own

code book. But this would require a huge number,

(

N
2

)

= N(N−1)
2

, of code books.

We consider a way to cut down the number of code books. Say that Π1 wants to be
able to receive messages from each Πj, j > 1, in such a way that if j 6= k, j and k > 1,
then neither Πj nor Πk can decode the other’s message. This can be accomplished through
what is known as a public key code. In this system Π1 publishes (for everyone to know)
an encryption algorithm that only s/he can decode. Sounds hard, but it is really easy in
theory. We describe the RSA system, one of several that accomplishes this, named after its
inventors: Rivest, Shamir and Adleman.

We (Π1) start(s) by selecting two very large distinct primes p and q and forming their
product n = pq which is the base for the encryption algorithm. We know that

ϕ(n) = (p − 1)(q − 1);

but a knowledge of n which we publish is insufficient to determine ϕ(n) since in practice it is
very difficult to factor large integers19. Next we choose a number a relatively prime to ϕ(n),
the exponent for the encryption algorithm which we also publish. Assign a positive number
(consisting, for convenience, of a fixed number of digits) to each letter in the alphabet (the
alphabet usually includes, the ordinary (English) letters, the digits 0 through 9, punctuation
marks, and other special symbols) to form a dictionary – also part of the public knowledge.
A message to be transmitted now consists of a large number of positive integers which form
when written sequentially a digited message. Break the digited message into blocks b of
length less than the number of digits20 in p and in q, but larger than the number of symbols
in two letters of the alphabet (so that no block contains only zeros). The block b is a non-zero
integer. By construction 1 ≤ b < p and 1 ≤ b < q. In particular, b cannot divide p nor q and
thus (b, n) = 1. We encode the block b, by computing the standard representative m of ba

mod n. The encoding can be done by anyone who knows the dictionary (the construction of

19This is the key to the method.
20Remember than in practice p, q and b are very large.



56 1. THE INTEGERS

b), the base (n) and the exponent (a). We (Π1) need (needs) to recover b from m. By the
construction we outlined, (b, n) = 1 and hence [b]n is a unit in Zn (thus in Z∗

n). So is [m]n, a
power of [b]n. Raising [m]n to the xth power is the same as raising [b]n to the axth power. An
appropriate power, for example, 1 + αϕ(n) or 1 + β ordna (with α and β arbitrary integers),
of [b]n yields back [b]n

Now Π1 kept p and q (equivalently ϕ(n)) secret. S/he will use this information to choose
the appropriate x. We know that 1 = (a, ϕ(n)); thus 1 can be written as an integral linear
combination

ax + ϕ(n)y

of a and ϕ(n). The integers x and y are computed by the methods at our disposal: namely,
the Euclidean or GCD algorithms. Anyone who knows ϕ(n) can obtain x (and hence decode
the message) – but only Π1 knows this value. Even the sender of the message cannot decode
what s/he sent, if s/he forgot to keep a copy of the message before it was encoded. With
the above value of x, we have

ax = 1 − yϕ(n)

and thus

mx ≡ bax ≡ b mod n.

WORKSHEET #3
On the construction and deconstruction of codes.

(1) In this exercise on the RSA code, you will encode a message for transmission, decode
a transmitted message, and then break an intercepted coded message. All coding
in this exercise assumes that the primes p and q are chosen between 100 and 200.

(2) We use the alphabet

A = 03, B = 07, C = 13, D = 17, E = 21, F = 31, G = 32,

H = 33, I = 34, J = 35, K = 36, L = 37, M = 38, N = 39,

O = 40, P = 41, Q = 43, R = 44,

S = 45, T = 46, U = 47, V = 48, W = 49, X = 50, Y = 77, Z = 91,

blank = 93, , = 98, . = 99.

Assume throughout this exercise that the transmission blocks have length 5. (This
is suggested by the size of n.)

(3) The base n for the encryption algorithm for the SUPERSECRET CODE is publicly
announced to be 23711. The exponent a for the encryption algorithm is chosen as
(and announced to be) 121.

(4) Encode the message
STUDY MATHEMATICS.

(5) The secret part of the SUPERSECRET CODE is the fact that ϕ(n) = 23400.
(6) Decode the intercepted message

13615199172019408040129710095113768201941297101414
186060185917475
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(7) Another SECRET CODE uses the base n = 12091 and exponent a = 121. The
value of ϕ(n) is under continuous lock and key. You will need to discover it to
decode the intercepted message:

01111095650956504835012310990701111089500096604835
099070483508950063380808609907048350160908950009660483511528

(8) What is ϕ(n)? What is the content of the intercepted message?
(9) What in addition to ϕ(n) did you need to know in order to break the code?

(10) Which code is easier to break, the SECRET CODE or the SUPERSECRET CODE?
Why?

10. A collection of beautiful results

In this section we collect some beautiful consequences of the theory developed in this
chapter, especially if the results suggest futher areas and questions for study. We limit the
discussion to results relevant to the high school mathematics curriculum. Some of the proofs
“formally” require material to be developed in subsequent chapters of this book.

Primes cannot be congruent to 0 mod 4. The unique even prime is the only one congruent
to 2 mod 4. An odd prime is hence congruent to 1 or 3 mod 4.

Theorem 1.93. Infinitely many primes are congruent to 3 mod 4.

Proof. The set of primes congruent to 3 mod 4 is certainly not empty, since it contains
3, 7 and 11, for example. Assume that it is a finite set: {3 = p1, p2, ..., pr}. It suffices to
produce a prime p ≡ 3 mod 4 not on this list. Let

Q = 4p2...pr + 3.

Then obviusly Q ≡ 3 mod 4. Consider the prime factorization of Q. Since Q is odd, the
prime 2 does not appear in this factorization, Since 3 does not divide Q, neither does this
prime. If only primes ≡ 1 mod 4 appeared, then Q would also be ≡ 1 mod 4. We conclude
that at least one prime p 6= 3, p ≡ 3 mod 4 must appear in the factoriation. Now p 6= pj

for 2 ≤ j ≤ r since such a pj does not divide Q. We have produced a prime p ≡ 3 mod 4
not on our list. �

Remark 1.94. The theorem suggests many avenues for further exploration.

• There are infinitely many primes ≡ 1 mod 4, but this is harder to establish than
our last result.

• It is a consequence of a theorem of G. Lejeune Dirichlet that there are infinitely
many primes p of the form are an + b, n ∈ Z>0, where a and b are fixed integers
with (a, b) = 1.

• In 2004, Ben Green and Terrence Tao proved, the remarkable result that there are
arbitrarily long arithmetic progressions of primes.

The next two theorems will appear more relevant after, and serve as an inducement for,
the study of polynomials – in the last few chapters of this book.

Theorem 1.95. If α ∈ Q is a root of the monic polynomial

xn + a1x
n−1 + ... an
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with integer coefficients (thus n ∈ Z>0 and aj ∈ Z for 1 ≤ j ≤ n), then α ∈ Z.

Proof. Since α = a
b
, a ∈ Z, b ∈ Z>0, is a root of the above polynomial

(a

b

)n

+ a1

(a

b

)n−1

+ ... an = 0,

it involves no loss of generality to assume that (a, b) = 1. Clearing fractions in the last
equation we obtain

an + a1a
n−1b + ... anbn = 0

equivalently
an = −b

(

a1a
n−1 + ... anbn−1

)

.

Thus b|an. Since (a, b) = 1, the last divisibilty condition guarantees that b = 1 and thus
α = a. �

Theorem 1.96. If α ∈ Z is a root of the monic polynomial

p(x) = xn + a1x
n−1 + ... an,

then α|an.

Proof. The proof is by induction on n, the degree of the monic polynomial. If n = 1,
then the polynomial is of the form x+a and −a is its root. Consider the general case n > 1.
If the polynomial p(x) does not have an integral root, there is nothing to prove. If it has an
integral root α, then by the division algorithm for polynomials

xn + a1x
n−1 + ... an = (xn−1 + b1x

n−2 + ... bn−1)(x − α),

where bj ∈ Z for j = 1, 2, ..., n − 1. Now α|an = −bn−1α. If the polynomial p(x) has
another integral root β, then β must be a root of the polynomial xn−1 + b1x

n−2 + ... bn−1 of
degree n − 1. The induction hypothesis tells us that β|bn−1 and hence also β|an. �



CHAPTER 2

Foundations

This chapter consists of material that should be familiar to most readers (students). It
should be reviewed, as needed, to establish a common notation for the author and reader.
The last section on complex number is needed only for a discussion of examples and the
study of roots of polynomials.

1. Naive set theory

A set is a formally undefined object (informally, a collection of objects) containing (for-
mally undefined) members or elements. The notation x ∈ X (as well as X 3 x) is to denote
that X is a set and that x is an element of X (we will also say that x belongs to X); sim-
ilarly, x 6∈ X is to denote that X is a set and that x is not an element of X. In Chapter
1 we worked with sets of integers and we denoted by expressions enclosed by braces {....}
collections of integers. Typical ways of describing the set of even integers between between
2 and 20 (inclusive) are:

{2, 4, 6, 8, 10, 12, 14, 16, 28, 20},
{2r; r ∈ Z and 1 ≤ r ≤ 10}

and

{r ∈ Z; r is even and 1 ≤ r ≤ 21}.
To avoid logical complications we work in a universal set U and assume that all the

members of all sets under study are in U . Thus all set are subsets (defined below) of U .

Definition 2.1. We reserve the symbol ∅ for the emptyset; the set containing no ele-
ments. For a given set X, Xc denotes its complement consisting of the points in U that are
not in X;

Xc = {x ∈ U ; x 6∈ X}.
Given two sets X and Y , we define several relations between them and operations on them.
We say that X equals Y (in symbols X = Y ), if both sets contain exactly the same elements.
We say that X is a subset of Y (or X is included in Y ) (in symbols X ⊆ Y or Y ⊇ X) if
every element x ∈ X also belongs to Y . (Note that by our conventions, X ⊆ U , X = Y if
and only if X ⊆ Y and Y ⊆ X, and ∅ ⊆ X. ) The set inclusion X ⊆ Y is proper (in symbols
X ⊂ Y ) if X 6= Y . We define the union and intersection of X and Y by

X ∪ Y = {x ∈ U ; x ∈ X or x ∈ Y }
and

X ∩ Y = {x ∈ U ; x ∈ X and x ∈ Y }.
The collection of sets satisfies many basic properties similar to those satisfied by the

integers as illustrated in the following

59
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Proposition 2.2. Let X, Y and Z be three sets (all contained in the same universal set
U). The following properties hold:

(1) (idempotence) X ∩ X = X and X ∪ X = X,
(2) (complementarity) X ∩ X c = ∅ and X ∪ Xc = U ,
(3) (commutativity) X ∩ Y = Y ∩ X and X ∪ Y = Y ∪ X,
(4) (associativity) X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z and X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z,
(5) (de Morgan’s laws) (X ∩ Y )c = Xc ∪ Y c and (X ∪ Y )c = Xc ∩ Y c,
(6) (distributivity) X∩(Y ∪Z) = (X∩Y )∪(X∩Z) and X∪(Y ∩Z) = (X∪Y )∩(X∪Z),
(7) (complementation is an involution) (X c)c = X,
(8) (properties of ∅) X ∩ ∅ = ∅ and X ∪ ∅ = X,
(9) (properties of U) X ∩ U = X and X ∪ U = U , and

(10) (absorption properties) X ∩ (X ∪ Y ) = X and X ∪ (X ∩ Y ) = X.

Proof. We establish only the first equality in (5) and (7) leaving it to the reader to fill
in sequentially the missing proofs. We start with (5). Let x ∈ (X ∩ Y )c. Then x 6∈ X ∩ Y .
So x 6∈ X or x 6∈ Y . In the first possibility, x ∈ Xc; in the second x ∈ Y c. So certainly
x ∈ Xc ∪ Y c and thus (X ∩ Y )c ⊆ Xc ∪ Y c. Conversely, if x ∈ Xc ∪ Y c, then either x ∈ Xc

or x ∈ Y c. So either x 6∈ X or x 6∈ Y . So certainly, x 6∈ X ∩ Y and hence x ∈ (X ∩ Y )c.
Thus we have the inclusion (X ∩ Y )c ⊇ Xc ∪ Y c. The two inclusions we have established
show that the two sets are equal.

To show that (7) holds we note that x ∈ (X c)c if and only if x 6∈ (Xc) if and only if
x ∈ X. �

Definition 2.3. (INFORMAL) If X is a set, we denote by |X|, its cardinality, the
number of elements it contains. Note that |X| ∈ N ∪ {∞}. (The symbol ∞, infinity, is so
far undefined.) See Definition 2.18 for a formal definition of cardinality of a set.

Definition 2.4. The (Cartesian) product of the two sets X and Y is defined as the set
of ordered pairs whose first components are from X and second, from Y :

X × Y = {(x, y); x ∈ X and y ∈ Y }.
The difference of two sets X and Y is defined by

X − Y = X ∩ Y c.

EXERCISES

(1) Prove (6) of Proposition 2.2.
(2) If X is a set with n ∈ Z>0 elements. How many elements are there in P (X), the set

of subsets of X.
(3) Show that |X × Y | = |X| |Y |. Include the possibility that either or both sets are

empty or contain infinitely many elements. What is the appropriate interpretation
of 0 · ∞ in this context?

2. Functions

Perhaps the most important concept in mathematics is that of a function (from one set
to another). The concept alone is not sufficient. We must also have good notation for it.
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Definition 2.5. (INFORMAL) Let X and Y be sets. A function (map or mapping) f
from X to Y is an assignment of an element f(x) ∈ Y , to each element x ∈ X. We use the
self-explanatory notation

f : X → Y and f : X 3 x 7→ f(x) ∈ Y

to give more information on f . The set X is the domain of f , the set Y , its target or codomain
and

f(X) = {y ∈ Y ; y = f(x) for some x ∈ X} ⊆ Y,

its range or image.

Definition 2.6. The graph, Gr(f), of a function f : X → Y is defined by

Gr(f) = {(x, y) ∈ X × Y ; y = f(x)} ⊆ X × Y.

Note that for each x ∈ X, there is precisely one y ∈ Y such that (x, y) ∈ Gr(f). Thus
for a function f : R → R, Gr(f) is a subset of R2 with some additional properties (see two
examples below).

We are now ready for a formal definition of a function.

Definition 2.7. Let X and Y be sets. A function f : X → Y is a subset G ⊆ X × Y
with the properties
(1) for all x ∈ X, there exists a y ∈ Y such that (x, y) ∈ G, and
(2) whenever (x, y1) and (x, y2) ∈ G, then y1 = y2.
For a given x ∈ X, the unique y ∈ Y with (x, y) ∈ G is denoted by f(x) and called the
image of x under f .

Thus for functions f : I → R defined on an interval I ⊆ R, the graph of f intersects
any vertical line at most once. The first of the next two figures illustrates the intersection
of a graph of a function with a vertical line; while in the second, the curved figure is not the
graph of a function.
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Definition 2.8. A function f : X → Y is injective or one-to-one or an injection if
whenever x1 and x2 ∈ X with f(x1) = f(x2), then x1 = x2. The function is surjective or
onto or a surjection if for every y ∈ Y there exists at least one x ∈ X with f(x) = y. Finally,
f is bijective or a bijection if it is both injective and surjective.

Definition 2.9. Let X and Y be sets. The identity function on X, idX , is the function
which takes every element of X onto itself:

idX : X 3 x 7→ x ∈ X.

Whenever the set X is clear from the context, we will denote idX by id. If we choose a
c ∈ Y , then the constant function on X, fc, is the function which takes every element of X
onto c:

fc : X 3 x 7→ c ∈ Y.

Definition 2.10. Let f : X → Y and g : Y → Z be functions. We define the composite
function or composition

g ◦ f : X ∈ x 7→ g(f(x)) ∈ Z.

If f : X → X, the composition f◦f is also denoted by f 2 and f ◦2. Similarly1, the composition
of f with itself n ∈ Z≥0 times is denoted by fn and f ◦n. Note that f 0 = idX .

Proposition 2.11. If f : X → Y , g : Y → Z and h : Z → W are functions, then
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Proof. Both functions send x ∈ X to h(g(f(x))) ∈ W . �

1Under certain circumstances (for example, if Y = R) functions can be multiplied. In such cases fn also
stands for the n-fold product of f . The context usually makes it clear which meaning applies.
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Definition 2.12. Let f : X → Y be a function. A function g : Y → X is an inverse of
f if g ◦ f = idX and f ◦ g = idY .

Proposition 2.13. The inverse function, when it exists, is unique.

Proof. Assume that f : X → Y has inverses g : Y → X and h : Y → X. Then

g = g ◦ idX = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idX ◦ h = h.

�

Notation 2.14. The inverse of the function f : X → Y , when it exists, is denoted by
f−1.

Caution 2.15. If f : X → R − {0} is a function, then the reciprocal function x 7→ 1
f(x)

is also denoted at times by f−1. The context usually makes it clear whether the inverse or
reciprocal is meant.

Proposition 2.16. A function has an inverse if and only if it is a bijection.

Proof. Let f : X → Y be a function. If f−1 : Y → X is its inverse, then for x1 and
x2 ∈ X with f(x1) = f(x2) we have

x1 = f−1(f(x1)) = f−1(f(x2)) = x2.

Thus f is injective. For y ∈ Y , f(f−1(y)) = y. Hence f is surjective. Conversely if f is
bijective, then for each y ∈ Y , there exists a unique x ∈ X such that f(x) = y. Define
f−1(y) = x. �

Corollary 2.17. If f : X → Y and g : Y → Z are bijections. Then
(i) g ◦ f : X → Z is a bijection and (g ◦ f)−1 = f−1 ◦ g−1 and

(ii) f−1 : Y → X is a bijection and (f−1)
−1

= f . Also
(iii) idX : X → X is a bijection and id−1

X = idX .

Proof. Since f and g are bijections, f−1 and g−1 exist. Let x1 and x2 ∈ X and assume
that (g ◦ f)(x1) = (g ◦ f)(x2). Applying g−1 to both sides we conclude that f(x1) = f(x2).
If we now apply f−1 to both sides, we see that x1 = x2. Thus g ◦ f is injective. For this
part of the proof we only need the injectivity of both f and g. The reader should rework
the argument to use only this information. If z ∈ Z, then since g is surjective, there exists
a y ∈ Y such that g(y) = z. The surjectivity of f implies the existence of a x ∈ X with
f(x) = y. Thus g(f(x)) = z and we conclude that g ◦ f is surjective. Now

(g ◦ f) ◦
(

f−1 ◦ g−1
)

= g ◦ idY ◦ g−1 = g ◦ g−1 = idZ .

Similarly,
(

f−1 ◦ g−1
)

◦ (g ◦ f) = idX .

This establishes (i). The proofs of (ii) and (iii) are left to the reader. �

Definition 2.18. We say that two sets X and Y have the same cardinality if there exists a
bijection between them (in symbols |X| = |Y |). Note that we have not (yet formally) defined
the cardinality |X| of a set X.2 We now define |∅| = 0 and for all n ∈ Z>0, |{1, 2, ..., n}| = n.
We say that a set X has finite cardinality (|X| < ∞) or X is a finite set, if it is either the
empty set (|X| = 0 in this case ) or in bijective correspondence with the set consisting of the

2Only what it means for two sets to have the same cardinality.
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first n positive integers for some n ∈ Z>0 (|X| = n). Otherwise, we say that X has infinite
cardinality and write |X| = ∞. Thus |X| denotes the number of elements in X. We say that
an infinite set is countable or has countable cardinality if it is in bijective correspondence
with the set of positive integers.

Proposition 2.19. Suppose X and Y are finite sets, then

|X ∪ Y | + |X ∩ Y | = |X| + |Y |.
Proof. If either X or Y = ∅, we may assume that Y = ∅. In this case X ∪ Y = X

and X ∩ Y = ∅ and the equality of proposition is trivially true. So assume that neither
X nor Y = ∅ and that X ∩ Y = ∅. Assume that |X| = n and |Y | = m. Thus there
exist bijections f : X → {1, 2, ..., n} and g : Y → {1, 2, ...,m}. We set up a bijection
h : X ∪ Y → {1, 2, ..., n + m}, by defining

h(x) =

{

f(x) for x ∈ X
g(x) + n for x ∈ Y

.

We use the fact that X and Y are disjoint to conclude that h is well defined (makes sense).
The map h is clearly both injective and surjective. For the general case we note that that
the sets X and Y − (X ∩ Y ) are disjoint and that

X ∪ Y = X ∪ [Y − (X ∩ Y )].

Thus

|X ∪ Y | = |X ∪ [Y − (X ∩ Y )]| = |X| + |[Y − (X ∩ Y )]| = |X| + |Y | − |X ∩ Y |.
�

Remark 2.20. (1) The sets Z and Q are countable; so are the sets 2Z and Q≥0; the
sets R and C are not.

(2) A countable union of countable sets is countable.

3. Relations

Relations, our next concept, are generalizations of functions. They play a key role in
algebra and almost all branches of mathematics.

Definition 2.21. Let X and Y be sets. A relation R from X to Y is a subset of the
Cartesian product X × Y (R ⊆ X × Y ). It is convenient to write xRy for (x, y) ∈ R. A
relation from X to X is also called a relation on X (these are the most common types).

Remark 2.22. If f : X → Y is a function, then Gr(f) is a relation from X to Y .

Definition 2.23. Let R be a relation on a set X. We say that R is

• reflexive if xRx for all x ∈ X,
• symmetric if for all x and y ∈ X, xRy implies yRx (equivalently, if for all x and

y ∈ X, xRy if and only if yRx),
• weakly antisymmetric if for all x and y ∈ X, xRy and yRx implies that x = y,
• antisymmetric if for all x and y ∈ X, xRy implies that (y, x) 6∈ R, and
• transitive if for all x, y and z ∈ X, xRy and yRz implies that xRz.
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Example 2.24. We examine certain relations on Z.

• Equality (=) is reflexive, symmetric, weakly antisymmetric, not antisymmetric, and
transitive.

• Greater than or equal (≥) is reflexive, not symmetric, weakly antisymmetric, not
antisymmetric, and transitive.

• Greater than (≥) is reflexive, not symmetric, weakly antisymmetric, antisymmetric,
and transitive.

• Congruence of integers modulo n ∈ Z>0 (≡ mod n) is reflexive, symmetric, not
weakly antisymmetric, not antisymmetric, and transitive.

• Let f : Z → Z be a function. We define

R = {(x, f(x)); x ∈ Z}.
Then R is not reflexive, not symmetric, not weakly antisymmetric, not antisymmet-
ric, and not transitive. Nether is

R = {(f(x), x); x ∈ Z}.
Definition 2.25. A graph is a collection of points (called vertices) and lines (called edges

joining some pairs of points. A directed graph or a digraph is a graph where each edge has a
direction (an arrow from its originating vertex to its terminating vertex). We note that two
vertices may be joined by more than one edge.

A useful way to represent pictorially a relation R on a set X is by its digraph Γ(R)
constructed as follows. The vertices of Γ(R) are the points x ∈ X. A directed edge starts at
x and ends at y if and only if xRy.

Example 2.26. Consider the set X4 = {1, 2, 3, 4}. We let R be the relation ≥. Thus

R = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4)}.
Its directed graph is

1 2

3
4

Another useful way to represent a relation R on a set X is by an adjacency matrix M(R)
constructed as follows. We index the rows and columns of M(R) by the points x ∈ X.
Each entry in M(R) is either a zero or a one. We define the entry corresponding to the row
indexed by x and the column indexed by y to be 1 if xRy and to be 0 if (x, y) 6∈ R.



66 2. FOUNDATIONS

Example 2.27. For the relation R of the previous example

M(R) =

1 2 3 4
1 1 0 0 0
2 1 1 0 0
3 1 1 1 0
4 1 1 1 1

.

Note that in general the adjacency matrix of a relation can be infinite. For example, for the
relation = on Z≥0, the adjacency matrix is infinite symmetric with ones along the diagonal
and zeros elsewhere:

0 1 2 3 4 ...
0 1 0 0 0 0 ...
1 0 1 0 0 0 ...
2 0 0 1 0 0 ...
3 0 0 0 1 0 ...
4 0 0 0 0 1 ...
.
.
.

.

Among the most interesting relations are those that satisfy a number of the properties
of Definition 2.23. We give some of these special names.

Definition 2.28. A relation R on a set X is

• a partial order if it is reflexive, weekly antisymmetric and transitive (we also say
that X is partially ordered by R and that X is a partially ordered set),

• a strict partial order if it is antisymmetric and transitive, and
• an equivalence relation if it is reflexive, symmetric and transitive.

Example 2.29. The relations ≤, < and = on Z are a partial order, a strict partial order
and an equivalence relation, respectively.

Definition 2.30. Let R be a strict partial order on a set X. Let x and y ∈ X. We say
that y is an immediate successor of x (and x is an immediate predecessor of y) if xRy, and
if for some z ∈ X, xRz and zRy, then z = y. If R is a partial order (perhaps not strict), we
modify the above definition by requiring that y 6= x.

The concept of successor can be illustrated by a graph. Let R be a partial order on a
set X. The Hasse graph G of R is a graph whose vertices are the points of X and if x and
y ∈ X with y is an immediate successor of x, then G has a directed edge from x to y.

Example 2.31. Fix an integer n ≥ 1. Congruence modulo n is an equivalence relation
on Z.

Definition 2.32. Let X and I be nonempty sets. A partition of X (indexed by I) is a
collection of subsets {Xi; i ∈ I} of X such that

Xi ∩ Xj = ∅ if i 6= j

and
⋃

i∈I

Xi = X.
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We call the Xi, the blocks of the partition.

Partitions and equivalence relations are essentially the same thing as shown by

Theorem 2.33. Let X be a nonempty set. If {Xi; i ∈ I} is a partition of X, we define
a relation R on X by xRy for x and y ∈ X if and only if x and y ∈ Xi for some i ∈ I. This
relation is an equivalence.

Proof. It is of course obvious that R defines a relation on X. Let x ∈ X. Since xRx,
R is reflexive. If x and y ∈ X and xRy, then x and y are in the same block of the partition.
So yRx and R is symmetric. Now let us take x, y and z ∈ X with xRy and yRz. Thus x
and y are in the same block and y and z are in the same block. We conclude that x and z
are in the same block and thus xRz; that is, R is transitive. �

We outline the proof of the converse to the above theorem. Let E be an equivalence
relation on X. For each x ∈ X, we form the set

Ex = {y ∈ X; xEy}.
The collection of subsets of X,

V = {Ex; x ∈ X}
contains many equal elements. We remove from V all but one copy of every collection of
equal elements in this set. The remaining sets in V are the blocks of a partition of X. An
x ∈ X belongs to Ex and since Ex ∈ V, the union of the sets in V is all of X. Let x and
z ∈ X and assume that Ex ∩ Ez contains an element y ∈ X. Thus xEy and yEz and hence
also xEz. But this means that z ∈ Ex. Next, if w ∈ Ez, then wEz. Thus also wEx and
w ∈ Ez. We have shown that Ez ⊆ Ex. By symmetry, also Ex ⊆ Ez and thus Ex = Ez. So
the blocks are disjoint.

4. Order relations on Z and Q

4.1. Orders on Z. Using elementary set theory one constructs the natural numbers
N. From N one proceeds to the construcion of the integers Z (as the disjoint union of N

and N − {0}) and its binary operations of addition + and multiplication ·; resulting in the
commutative ring (Z, +, ·). In this section, as an illustration, we describe one relation on Z.

The most basic relation on Z is that of equality (=). It is an equivalence relation and it
partitions Z into subsets consisting of single elements.

We turn to a study of a second most important relation on Z.

Definition 2.34. Let a and b ∈ Z. We say that b is greater than or equal to a (in
symbols b ≥ a) if and only if b − a ∈ N.

As noted earlier ≥ is reflexive (a ≥ a for all a ∈ Z since a − a = 0 ∈ N), weekly
antisymetric (if a ≥ b and b ≥ a, then a − b and b − a ∈ N which implies that a − b = 0)
and transitive (if a ≥ b and b ≥ c, then a − b and b − c ∈ N which tells us that also that
a − c ∈ N).

An integer is positive if it belongs to N − {0} and negative if it does not belong to N.
The set of positive integers is closed under addition and multiplication; the set of negative
integer under addition, but not multiplication. If a and b ∈ Z and c is a positve integer,
then the cancelation property

b ≥ a iff bc ≥ ac
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holds. All the above properties (propositions) require, of course, formal proofs.

4.2. Orders on Q. Recall that a rational a
b

(here a ∈ Z and b ∈ Z>0) is an equivalence
class of pairs of integers.

Definition 2.35. Let a
b

and c
d

be rational numbers. We say that c
d

is greater than or
equal to a

b
(in symbols c

d
≥ a

b
) if and only if cb ≥ ad.

A first task is to show that the concept of ≥ is well defined on Q. So assume that a
b

= a′

b′

and c
d

= c′

d′
. We have to show here that cb ≥ ad if and only if c′b′ ≥ a′d′. The definition of

rational numbers tells us that ab′ = ba′ and cd′ = dc′. Using the last two equalities and the
cancelation law, we conclude that

cb ≥ ad iff cbb′ ≥ adb′ = ba′d

iff cb′ ≥ a′d iff dc′b′ = cb′d′ ≥ a′dd′ iff c′b′ ≥ a′d′.

5. The complex numbers

Mostly as a source for examples, we study3 the complex numbers (C, +, ·) under the
operations of addition and multiplication. This number system shares many, but not all, of
the properties of the real numbers (R, +, ·). Missing is the canonical ordering (in general one
studies (R, +, ·,≥) rather than just (R, +, ·)). The complex numbers satisfy all the rules of
addition and multiplication satisfied by the real numbers (in the language discussed in §1 of
Chapter 5, they form a field) To construct C we start withth R and introduce a new symbol
ı that satisfies

ı2 = −1.

We can view C as consisting of numbers of the form c = a + bı, with a and b ∈ R. Addition
of such numbers is vector (component) sum; thus

(a1 + b1ı) + (a2 + b2ı) = (a1 + a2) + (b1 + b2)ı.

It agrees with vector addition in R2 if we identify the complex numbers C with the Cartesian
plane R2. In this identification we use 1 and ı as a basis for C over R that corresponds to
the usual basis (1, 0) and (0, 1) for R2. Multiplication seems a bit more complicated:

(a1 + b1ı)(a2 + b2ı) = (a1a2 − b1b2) + (a1b2 + a2b1)ı.

The multiplicative inverse or reciprocal of non-zero complex number is again a complex
number; to describe it, it is convenient to first introduce the conjugate c̄ of the complex
number a + bı as

c̄ = a − bı

and the absolute value or modulus |c| of c as

|c| =
√

a2 + b2 =
√

cc̄.

With these preliminaries out of the way, the reciprocal of the complex number 0 6= c = a+ bı
is easily seen to be

1

a + bı
=

1

a + bı

a − bı

a − bı
=

a − bı

a2 + b2
=

c̄

|c|2 .

3Presumably, a review for most readers.
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Using the last formula it is easy to compute a1+b1ı
a2+b2ı

(we must, of course, assume that a2+b2ı 6=
0).

Let us identify the complex number c = a + bı ∈ C (remember that here both a and
b ∈ R) with the point in the Cartesian plane (a, b) ∈ R2. Thus we think of c as a directed
line segment from the origin in R2 to the point (a, b) ∈ R2; an arrow (direction). For graphic
representations, there is nothing magic about starting at 0. The same vector is obtained
by moving the arrow (while preserving its length and direction) to start at any point in the
Cartesian plane. The graphic interpretation of complex addition (addition of vectors) is now
easily illustrated (see Figure 1).

w z

z+w

−w

−w

z−w

Figure 1. Addition of complex numbers.

To add the points z and w ∈ C, we represent them as directed line segments starting
at the origin in R2. We then move the arrow corresponding to w to start at the end point
of z. The arrow from the origin to the end point of the transported w now represents the
sum z + w. We can also transport z to start at the end point of w. We thus form a closed
parallelogram; its main diagonal (the one starting at 0) represents z + w; its other diagonal
(from w to z) transported to 0 represents z − w. We have used rectangular coordinates on
R2 for a geometric interpretation of complex addition.

Polar coordinates are useful to obtain a geometric interpretation of complex multiplica-
tion. If we represent, the non-zero complex number c = a + bı as the point (a, b) ∈ R2,
then we can associate with it two other real numbers r =

√
a2 + b2 = |c| (note that r, the

absolute value of the non-zero complex number c is positive) and θ = arcsin b
r

= arccos a
r
.

The two equations defining θ specify it uniquely up to an ambiguity of the form 2πn with
n ∈ Z. (Note that either single equation would involve a “bigger” ambiguity.) We call θ,
the argument of the complex number c. For θ ∈ R, it is convenient to denote the complex
number of absolute value 1, cos θ + ı sin θ, by the symbol eıθ. With this convention, the
complex number c is represented in polar coordinates as

c = reıθ.

Note that eı0 = 1 and that we may view the number c = reıθ as the product of 1
and c; this product is obtained by multiplying their moduli and adding their arguments.
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In general multiplication of a vector z by the vector c moves the vector z in the counter-
clockwise direction through an angle θ and adjusts the length of the resulting vector. Thus,
geometrically, the vector (in R2) corresponding to the product of the non-zero complex
numbers c1 = r1e

ıα1 and c2 = r2e
ıα2 is a vector of length r1r2 with argument α1 + α2.

a_ 1
a_

2

a_ 1 + a_ 2

r_ 1

r_ 2

r_ 1 r_

Figure 2. Multiplication of complex numbers.

From the geometric interpretation of multiplication we see that for all θ and ϕ ∈ R,

eıθeıϕ = eı(θ+ϕ).

We now transform the last equation to rectangular coordinates:

(cos θ + ı sin θ)(cosϕ + ı sin ϕ) = cos(θ + ϕ) + ı sin(θ + ϕ).

Equating the respective real and imaginary parts of the complex numbers involved, we obtain
the angle addition formulae

cos θ cosϕ − sin θ sin ϕ = cos(θ + ϕ)

and
cos θ sin ϕ + sin θ cos ϕ = sin(θ + ϕ).

Many other identities can be similarly derived.

Remark 2.36. The complex numbers are complete in the sense of analysis (every Cauchy
sequence converges), and as we shall see later, in the algebraic sense (every polynomial over
C has a root).



CHAPTER 3

Groups

In this chapter we introduce, mostly through examples, the most basic algebraic struc-
tures; that of a group. We have already encountered several families of groups:

(1) (Z, +), (Q, +), (R, +) and (C, +).
(2) ({±1}, ·), (Q∗, ·), (R∗, ·) and (C∗, ·), where R∗ denotes the set of elements in

R that are invertible with respect the mutiplication (usually, but not always, the
non-zero elements in R).

(3) (Zn, +), n ∈ Z>0.
(4) (Z∗

n, ·), n ∈ Z>0.

The first two sections of the chapter are devoted to the study of one new family of groups,
the permutation groups. In a sense to be made precise later (in Chapter 4, Section 6.1), all of
group theory consists of a study of this family. A main difference between permutation groups
and those previously considered groups is that, in general, the product of two permutations
do not commute. In the third and final section of the chapter, we formally define the concept
of a group and study more examples.

1. Permutation groups

This section is devoted to the study of the most basic operations on sets (mostly finite
sets) and their self-maps that lead us very naturally to the concept of a group.

Definition 3.1. Let X be a nonempty set. A permutation of X is a bijection from X
to itself. We will denote the set of permutations of X by the symbol Perm(X).

The case of finite X is of most interest. In this case it is convenient to use for X the set
Xn consisting of the first n positive integers (we assume throughout that n ≥ 2)1:

Xn = {1, 2, ..., n}.
In this case2, we use the symbol S(n) for Perm(Xn) equipped with the operation of composi-
tion of functions (which we regard as a multiplication on S(n)) and call S(n), the symmetric
group3 on n symbols (letters or elements).

An element π ∈ S(n) sends the integer j ∈ Xn to the integer π(j) ∈ Xn. A good way to
represent such a permutation is by a matrix consisting of two rows. The first row lists the

1Because the case n = 1 is completely trivial.
2Also for the case n = 1. Of course, S(1) consists of only one element.
3We will subsequently define the concept of (abstract) group. Of course, these will be prime examples

of the concept.

71
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integers in Xn: 1, 2, ..., n, in any convenient order, and in the second row, the entry under j
is π(j):

π =

(

1 2 ... n
π(1) π(2) ... π(n)

)

.

Theorem 3.2. Fix a positive integer n.

• If π and σ ∈ S(n), then so is their composite π ◦ σ which we denote as πσ.
• The identity self map of Xn, denoted by id or idXn

is an element of S(n).
• If π ∈ S(n), then so does π−1.
• |S(n)| = n!

Proof. Only the last statement needs to be verified. To construct a permutation π ∈
S(n), we may send the integer 1 to any of n integers, the integer 2 to any of the remaining
n − 1 integers, etc ... �

Example 3.3. We illustrate most of the concepts using examples for n = 10. Let

π =

(

1 2 3 4 5 6 7 8 9 10
3 4 5 6 7 2 9 10 1 8

)

and

σ =

(

1 2 3 4 5 6 7 8 9 10
1 3 4 2 6 7 8 9 10 5

)

.

Then

σπ =

(

1 2 3 4 5 6 7 8 9 10
4 2 6 7 8 3 10 5 1 9

)

.

Remember that we are composing permutations as functions, thus for two permutations
σ and π, (σπ)(j) = σ(π(j)). We obtain a convenient way to multiply permutations, by
realizing that reordering the columns of a given representation of a permutation does not
change the permutation. Thus we may use the order of the second row of π to determine
the first row of σ to obtain

π =

(

1 2 3 4 5 6 7 8 9 10
3 4 5 6 7 2 9 10 1 8

)

σ =

(

3 4 5 6 7 2 9 10 1 8
4 2 6 7 8 3 10 5 1 9

) ;

the representation of σπ is now easily read-off; it consists of the first and fourth lines of
the last array (note in the above “algorithm,” we write down first the permutation for the
rightmost map (the one we do first). Using the reordering idea, we obtain the representation
of π−1 from the one for π by interchanging its two rows. Note that

πσ =

(

1 2 3 4 5 6 7 8 9 10
3 5 6 4 2 9 10 1 8 7

)

6= σπ.

The last example showed that the multiplication on S(n) is not commutative. Note that
in order to show that two elements σ and π ∈ S(n) do not commute, it is not necessary to
compute πσ and σπ. All we need to do is to find one j ∈ Xn for which πσ(j) 6= σπ(j). In
our example, there are many such j; in particular, 3 = πσ(1) 6= σπ(1) = 4.

We note that our way of representing permutations is still rather cumbersome. A more
detailed study of S(n) will also suggest better ways to represent elements of this group.
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Definition 3.4. Let us introduce the convention that whenever the integer n + 1 ap-
pears, it is replaced4 by 1. A permutation π ∈ S(n) is cyclic if there is a rearrange-
ment x1, x2, ..., xr, xr+1, ..., xn of the integers 1, 2, ..., n such that π fixes xr+1, ..., xn (that is,
π(xj) = xj for j = r+1, ..., n) and cycles x1, x2, ..., xr (that is, π(xi) = xi+1 for i = 1, ..., r−1
and π(xr) = x1). The integer r is called the length of the cycle, in symbols l(π), and π is
called an r-cycle. A 2-cycle is called a transposition.

Notation 3.5. The cycle defined above is conveniently represented by

π = (x1, x2, ..., xr).

Note that the fixed points xr+1, ..., xn of the cycle do not appear at all in its new symbol.
Whenever appropriate, we will use the symbol (·) to denote the identity cycle. Since cycles
are special cases of permutations, we can multiply them. Note that in the product

(x1, x2, ..., xr)(y1, y2, ..., ys)

we first perform the second permuatation; thus

(1, 2, 4, 5)(1, 3, 6) =

(

1 2 3 4 5 6 7 8 9 10
3 4 6 5 1 2 7 8 9 10

)

.

We read products of cycles from right to left, but each cycle from left to right.

Definition 3.6. Let π ∈ S(n). We say that π moves j (j ∈ Z, 1 ≤ j ≤ n) if π(j) 6= j.
Let π and σ ∈ S(n). We say that π and σ are disjoint if every integer moved by π is fixed
by σ and every integer moved by σ is fixed by π.

Lemma 3.7. Let π ∈ S(n). If j ∈ Z, 1 ≤ j ≤ n, is moved by π, then so are π(j) and
π−1(j).

Proof. If π(j) is not moved by π, then π(π(j)) = π(j) and applying π−1 to both sides
of this equation, we get the contradiction that π(j) = j. If π−1(j) is not moved by π, then
j = π(π−1(j)) = π−1(j) and applying π to the extreme terms of this equation, we get once
again the contradiction that π(j) = j. �

Theorem 3.8. If π and σ ∈ S(n) are disjoint, then they commute.

Proof. Let j ∈ Z, 1 ≤ j ≤ n. There are three possibilities:

• Either j is moved by π and hence j and π(j) are fixed by σ (By definition j is
fixed by σ). If j is moved by π, then so is π(j) by the last lemma and hence the
disjointness of π and σ gurantees that π(j) is fixed by σ.).

• Or j is moved by σ and hence j and σ(j) are fixed by π.
• Or j is fixed by both π and σ.

In the first case
π(σ(j)) = π(j) = σ(π(j)),

in the second,
π(σ(j)) = σ(j) = σ(π(j)),

and in the third
π(σ(j)) = j = σ(π(j)).

4We are thus using arithmetic modulo n; however we modified the standard representation of equivalence
classes in one case only. The equivalence class [0]n is represented by n instead of 0.
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Thus in all cases, π(σ(j)) = σ(π(j)). �

Example 3.9. Non-disjoint cycles need not commute. This already happens for n = 3
since (1, 2)(1, 3) = (1, 3, 2) while (1, 3)(1, 2) = (1, 2, 3). We can, of course, view this example
as taking place in S(10).

Example 3.10. Consider our Example 3.3. To represent π by disjoint cycles, we start
with j = 1 and follow it around under the action of π. Note that

π(1) = 3, π2(1) = π(3) = 5, π3(1) = π(5) = 7, π4(1) = π(7) = 9 and π5(1) = π(9) = 1.

Thus this part of π is represented by the cycle (1, 3, 5, 7, 9). We note that 2 does not appear
in this cycle. So we now start with j = 2 and follow it around under the action of π:

π(2) = 4, π2(2) = π(4) = 6 and π3(2) = π(6) = 2.

Thus this part of π is represented by the cycle (2, 4, 6) and the first two parts of the trans-
formation are represented by the product (1, 3, 5, 7, 9)(2, 4, 6) (we could have reversed the
order). Note that 8 and 10 do not appear in the last product. Continuing the process one
more step, we see that

π = (1, 3, 5, 7, 9)(2, 4, 6)(8, 10).

In the above steps we tacitly assumed that π ∈ S(10). The same representation holds for
π ∈ S(n) with n > 10 provided we view the permutation π as fixing each integer j with
11 ≤ j ≤ n. In decomposing π into a product of disjoint cycles, the order does not matter.
Thus also

π = (1, 3, 5, 7, 9)(8, 10)(2, 4, 6) = (8, 10)(2, 4, 6)(1, 3, 5, 7, 9),

are among the 6 possible ways of writing π as a product of disjoint cycles.

It is not at all surprising that the above construction is quite general. We indeed have

Theorem 3.11. Every π ∈ S(n) can be written as a product, perhaps the empty product,
of disjoint cycles. This decomposition into cycles is unique up to order.

Proof. If π is the identity, it is represented by the empty product. Otherwise π does
not fix every integer. Ignore the integers fixed by π; they do not contribute to any nontrivial
cycle. More precisely we remove these integers from the first and second row of the matrix
representation of the permutation π. We now have a permutation πo of a subset of the
integers 1, 2, ..., n. Start (what we call the process) with the smallest integer k1 in the
domain of this transformation, it is the smallest integer not fixed by π, and follow k1 around
through π or πo to obtain a set of integers k1, k2, ..., such that π(ki) = ki+1. We stop this
process as soon as we get a repetition in the set k1, k2, ..., kr+1. We must get a repetition
since for all i, 1 ≤ ki ≤ n. Note that r > 1. We claim that kr+1 = k1. If kr+1 = ks with
1 < s ≤ r, then

π(ks−1) = ks = kr+1 = π(kr),

and applying π−1 to extreme sides of the last displayed equation we get ks−1 = kr; contra-
dicting the minimality of r + 1. Hence we have

π(k1) = k2, π(k2) = k3, ..., π(kr−1) = kr, π(kr) = k1

for some integer r, 2 ≤ r ≤ n, where the collection k1, k2, ..., kr consists of distinct integers.
Thus this part of the permutation π is represented by the cycle (k1, k2, ..., kr). Add this new
cycle constructed (either on the left or right) to the ones previously constructed. Remove the



1. PERMUTATION GROUPS 75

integers in this cycle from the matrix representation of πo. If we have obtained the empty
set, we are done. Otherwise, call this new permutation π0 and repeat the process on it. It is
clear that we will eventually stop. This yields the desired decomposition; the uniqueness of
the decomposition up to order is obvious from the construction. �

We illustrate with an example.

Example 3.12. We simplify the product

π = (1, 4, 5, 6)(1, 7, 3)(2, 5, 4)(2, 3).

The integers 8, 9 and 10 do not appear in the above product; they are fixed by π. It is
easiest if we work with an alternate representation of the permutation. We readily compute

π =

(

2 3 5 4 6 1 7
4 6 5 2 1 7 3

)

;

from which it follows rather quickly that

π = (2, 4)(1, 7, 3, 6).

As a result of the last theorem, we can easily construct the multiplication table for S(n),
as long as n is not too large. It is an n × n matrix (ignoring headers) where we index the
rows by x ∈ S(n) and the columns by y ∈ S(n). The (x, y) entry in the matrix is then the
product of the permutations x and y (in this order; that is, xy). For small n, the calculation
can be done by hand. We illustrate with the

MULTIPLICATION TABLE FOR S(3).

(·) (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2)

(·) (·) (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2)
(1, 2) (1, 2) (·) (1, 3, 2) (1, 2, 3) (2, 3) (1, 3)
(1, 3) (1, 3) (1, 2, 3) (·) (1, 3, 2) (1, 2) (2, 3)
(2, 3) (2, 3) (1, 3, 2) (1, 2, 3) (·) (1, 3) (1, 2)

(1, 2, 3) (1, 2, 3) (1, 3) (2, 3) (1, 2) (1, 3, 2) (·)
(1, 3, 2) (1, 3, 2) (2, 3) (1, 2) (1, 3) (·) (1, 2, 3)

.

It is quite tedious to produce by hand the multiplication table for S(n) even with rel-
atively small n. For example, for n = 5, the multiplication table is a 120 × 120 matrix.
Computers can, once again, help. We illustrate with a program that computes the multipli-
cation table for S(3) as a check on our work and then computes the multiplication table for
a subset of S(n), n ≥ 4 consisting of 8 permutations.

MAPLE SESSION #9

> with(group):

> f(1) := [[1]]: f(2) := [[1,2]]: f(3) := [[1,3]]: f(4) := [[2,3]]:
f(5) := [[1,2,3]]: f(6) := [[1,3,2]]:

> a := array(1..6,1..6):

> for i to 6 do for j to 6 do a[i,j] := mulperms(f(j),f(i)) end do end
do;
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> print(a);














[] [[1, 2]] [[1, 3]] [[2, 3]] [[1, 2, 3]] [[1, 3, 2]]
[[1, 2]] [] [[1, 3, 2]] [[1, 2, 3]] [[2, 3]] [[1, 3]]
[[1, 3]] [[1, 2, 3]] [] [[1, 3, 2]] [[1, 2]] [[2, 3]]
[[2, 3]] [[1, 3, 2]] [[1, 2, 3]] [] [[1, 3]] [[1, 2]]

[[1, 2, 3]] [[1, 3]] [[2, 3]] [[1, 2]] [[1, 3, 2]] []
[[1, 3, 2]] [[2, 3]] [[1, 2]] [[1, 3]] [] [[1, 2, 3]]















> g(1) := [[1]]: g(2) := [[1,2,3,4]]: g(3) := mulperms(g(2), g(2)):
g(4) := mulperms(g(2), g(3)): g(5) :=[[3,4],[1,2]]: g(6) :=
mulperms(g(2), g(5)): g(7) := mulperms(g(3), g(5)): g(8) :=
mulperms(g(4), g(5)):

> b := array(1..8,1..8):

> for i to 8 do for j to 8 do b[i,j] := mulperms(g(j),g(i)) end do end
do;

> print(b);
2

6

6

6

6

6

6

6

6

6

6

4

[] [[1, 2, 3, 4]] [[1, 3], [2, 4]] [[1, 4, 3, 2]] [[1, 2], [3, 4]] [[2, 4]] [[1, 4], [2, 3]] [[1, 3]]

[[1, 2, 3, 4]] [[1, 3], [2, 4]] [[1, 4, 3, 2]] [] [[1, 3]] [[1, 2], [3, 4]] [[2, 4]] [[1, 4], [2, 3]]
[[1, 3], [2, 4]] [[1, 4, 3, 2]] [] [[1, 2, 3, 4]] [[1, 4], [2, 3]] [[1, 3]] [[1, 2], [3, 4]] [[2, 4]]
[[1, 4, 3, 2]] [] [[1, 2, 3, 4]] [[1, 3], [2, 4]] [[2, 4]] [[1, 4], [2, 3]] [[1, 3]] [[1, 2], [3, 4]]
[[1, 2], [3, 4]] [[2, 4]] [[1, 4], [2, 3]] [[1, 3]] [] [[1, 2, 3, 4]] [[1, 3], [2, 4]] [[1, 4, 3, 2]]

[[2, 4]] [[1, 4], [2, 3]] [[1, 3]] [[1, 2], [3, 4]] [[1, 4, 3, 2]] [] [[1, 2, 3, 4]] [[1, 3], [2, 4]]
[[1, 4], [2, 3]] [[1, 3]] [[1, 2], [3, 4]] [[2, 4]] [[1, 3], [2, 4]] [[1, 4, 3, 2]] [] [[1, 2, 3, 4]]

[[1, 3]] [[1, 2], [3, 4]] [[2, 4]] [[1, 4], [2, 3]] [[1, 2, 3, 4]] [[1, 3], [2, 4]] [[1, 4, 3, 2]] []

3

7

7

7

7

7

7

7

7

7

7

5

***END OF PROGRAM***

(1) MAPLE denotes the identity permutation by [] and the cycle (a, b, c) by [[a,b,c]].
(2) The MAPLE command multperms(a,b) for the product of the permutations a and

b computes the product ba; that is, MAPLE reads products from left to right – not
the way we have been doing.

EXERCISES

(1) In the proof of Theorem 3.8 the case “j is moved by both π and σ” does not occur.
Explain why.

(2) What are necessarry and sufficient c0nditions for two distinct transpositions to com-
mute?

(3) Let n be an integer ≥ 2.
• Let σ be a permutation in S(n). Show that

σ(1, 2)σ−1 = (σ(1), σ(2)).

• Let 1 ≤ k ≤ n and let

τ = (1, 2, ... n).

Show that

τ k(1, 2)τ−k = (k + 1, k + 2).

How should you interpret n+1 and/or n+2 if they appear in the last equation?
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• Let 1 ≤ a < b ≤ n. Show that

(a, b) = (a + 1, a)(a, a − 1)...(b − 2, b − 3)(b − 1, b − 2)(b − 1, b)...(a + 1, a + 2)(a, a + 1).

• Conclude that that any σ ∈ S(n) can be written as product of powers of τ and
(1, 2).

2. The order and sign of a permutation

For this section, we fix once and for all a positive integer n.

Definition 3.13. Let π ∈ S(n). To define the powers πk of π, we set π0 = id and

π1 = π. For k ∈ Z>0, we define inductively πk = ππk−1. We also define π−k = (π−1)
k
. Note

that in the left hand side of the last equality, π−1 represents the minus one power of π; while
in right hand side, it represents the inverse of π. The same symbol is used for these two
objects because they define the same permutation.

Proposition 3.14. Let π and σ ∈ S(n) and r and s ∈ Z. Then

(1) πrπs = πr+s,
(2) (πr)s = πrs,
(3) π−r = (πr)−1,
(4) if π and σ commute, then πσr = σrπ, and
(5) if π and σ commute, then (πσ)r = πrσr.

Proof. We prove only the first and last two assertions, leaving the proofs of the other
two to the reader. To establish the first claim we fix s. We now prove the assertion for r ≥ 0
by induction. The base case r = 0 is trivial. We assume the formula for r ≥ 0 and prove it
for r + 1. Now,

πr+1πs = ππrπs = ππr+s = π1+r+s;

the first equality uses the definition of the r + 1 power of π; the second, the induction step;
and the third, the definition once again. We have established (1) for all s ∈ Z and all
r ∈ Z≥0. So, by symmetry, we know that (1) holds if either r or s is non-negative. The
reader should at this pont establish (3) which is needed for continuing with the proof of (1).
If both r and s are negative, then

πrπs =
(

π−r
)−1 (

π−s
)−1

=
(

π−sπ−r
)−1

=
(

π−s−r
)−1

= πs+r.

This finishes the proof of (1). We show that (4) holds for r ≥ 0 by induction on r. The base
case, r = 0, is a tautology. Assume (4) for r ≥ 0. Then

πσr+1 = πσrσ = σrπσ = σrσπ = σr+1π.

To prove (4) for negative r, we first obseve that if πσ = σπ, then pre-multiplying and post-
multiplying both sides by σ−1, we get σ−1π = πσ−1; that is, if π and σ commute so do π and
σ−1 (thus also π−1 and σ, as will be needed in the next displayed set of equations). Hence
for negative r,

πσr = π(σ−r)−1 = (σ−rπ−1)−1 = (π−1σ−r)−1 = σrπ.

We establish (5) for non-negative r by induction. The base case. r = 0, is again obviously
true. So assume that the formula holds for r ≥ 0. Then

(πσ)r+1 = (πσ)rπσ = πrσrσπ = πrσr+1π = πrπσr+1 = πr+1σr+1.
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If r is negative, then

(πσ)r =
(

(πσ)−r
)−1

=
(

π−rσ−r
)−1

= σrπr = πrσr.

�

Proposition 3.15. Let π ∈ S(n). There exists an m ∈ Z≥1 such that πm = id.

Proof. The group S(n) has n! elements. The successive powers π, π2, π3, ..., all belong
to S(n). Hence there must exist positive integers r < s such that πr = πs. Multiplying both
sides by π−r shows that id = πs−r. �

Definition 3.16. The order of the permutation π ∈ S(n) (in symbols, o(π)) is the
smallest positive integer m such that πm = id.

Example 3.17. We record several elementary facts about orders of permutations.

• The order of the identity is 1 and this is the only permutation of order 1.
• The order of every transposition is 2.
• The successive powers of the cycle (1, 3, 5, 7, 9) ∈ S(10) are

(1, 3, 5, 7, 9), (1, 5, 9, 3, 7), (1, 7, 3, 9, 5), (1, 9, 7, 5, 3) and (·).
Thus the cycle (1, 3, 5, 7, 9) has order 5.

Remark 3.18. The properties of the order function on S(n) should be compared to the
(multiplicative) order function on Z∗

m.

Theorem 3.19. Let r and s ∈ Z. If π ∈ S(n) has order m, then πr = πs if and only if
r ≡ s mod m.

Proof. Assume without loss of generality that r ≥ s. Now πr = πs if and only if
πr−s = id. Thus we establish the theorem by showing that for q ∈ Z, πq = id if and only
if q ≡ 0 mod m. If q = km for some k ∈ Z, then πq = (πm)k = id. Conversely, assume
that πq = id. Using the division algorithm, we write q = km + ρ, with k and ρ ∈ Z and
0 ≤ ρ < m. Thus πρ = πq−mk = πq(πm)−k = id(id)−k = id, and thus by the minimality of
m, ρ = 0. �

Proposition 3.20. The order o(π) of a cycle π ∈ S(n) is its length.

Proof. Let π = (a1, a2, ..., am) be a cycle of length m. This cycle moves an ai to ai+1,
provided that for subscripts we interpret all operations modulo m. Thus πr moves ai to ai+r

and r = m is the first power of π that fixes each ai. �

Proposition 3.21. Let π and σ be disjoint cycles in S(n). Then

(10) o(πσ) = lcm(o(π), o(σ)).

Proof. Let r = o(π), s = o(σ) and d = lcm(r, s). Then d = ra = sb, for some a and
b ∈ Z>0. Thus because π and σ commute, (πσ)d = πraσsb = id. It follows that o(πσ)|d.
Suppose that (πσ)e = πeσe = id for some e ∈ Z>0 (thus e|o(πσ)). Choose an integer k,
1 ≤ k ≤ n. If k is moved by π, then it is fixed by σ (hence also by σe). Thus

k = id(k) = πe(σe(k)) = πe(k).

Thus r = o(π)|e. Similarly, s = o(σ)|e. We conclude that d = lcm(r, s)|e. In particular,
d|o(πσ) and we conclude that d = o(πσ). �



2. THE ORDER AND SIGN OF A PERMUTATION 79

In the last proof we never used the fact that π and σ were cycles; only that they were
disjoint permutations. Hence we also have

Corollary 3.22 (of proof). If π and σ are disjoint permutations in S(n), then (10)
holds.

Example 3.23. We have seen that the permutation

π =

(

1 2 3 4 5 6 7 8 9 10
3 4 5 6 7 2 9 10 1 8

)

is decomposed as (1, 3, 5, 7, 9)(2, 4, 6)(8, 10). Thus (formally the conclusion follows only after
we have established the next theorem)

o(π) = lcm(5, 3, 2) = 30.

Theorem 3.24. Let π = τ1τ2...τk be the decomposition of π ∈ S(n) as a product of
disjoint cycles. Then

o(π) = lcm(o(τ1), o(τ2)..., o(τk)).

Proof. We use induction on k. The base case k = 1 is of course trivial. Assume
that k > 1 and that we have the formula for permutations π which are products of k − 1
disjoint cycles. If π = (τ1τ2...τk−1)τk, where the k cycles are disjoint, then the permutations
τ1τ2...τk−1 and τk are also disjoint. Thus by Corollary 3.22,

o((τ1τ2...τk−1)τk) = lcm(o(τ1τ2...τk−1), o(τk)),

and by the induction assumption,

o(τ1τ2...τk−1) = lcm(o(τ1), o(τ2)..., o(τk − 1)).

Finally,

lcm(o(τ1), o(τ2), ..., o(τk)) = lcm(lcm(o(τ1), o(τ2)..., o(τk−1)), o(τk)).

�

Remark 3.25. The usefulness of the theorem is due to the fact that o(τi) is the length
of τi.

Definition 3.26. Let π = τ1τ2...τk be the decomposition of a non-trivial (meaning π 6=
id) permutation π ∈ S(n) as a product of disjoint cycles. Since the τi commute, it involves
no loss of generality to assume that

o(τ1) ≤ o(τ2) ≤ ... ≤ o(τk).

We call the k-tuple (o(τ1), o(τ2), ..., o(τk)), the shape of π. The identity permutation has the
empty shape. Two permutations π1 and π2 ∈ S(n) are conjugate if there exists a σ ∈ S(n)
such that π2 = σπ1σ

−1.

Conjugation is an equivalence relation on S(n). We verify that it satisfies the three
required properties.

• (Reflexivity) Every π ∈ S(n) is conjugate to itself (π = idπid−1).
• (Symmetry) If for π1 and π2 ∈ S(n), π2 = σπ1σ

−1 for some σ ∈ S(n), then π1 =
σ−1π2σ.
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• (Transitivity) If for π1, π2 and π3 ∈ S(n) there exist σ1 and σ2 ∈ S(n) such that,
π2 = σ1π1σ

−1
1 and π3 = σ2π2σ

−1
2 , then

π3 = σ2π2σ
−1
2 = σ2σ1π1σ

−1
1 σ−1

2 = (σ2σ1)π1(σ2σ1)
−1.

Thus conjugation partitions S(n) into conjugacy classes. The conjugacy class of π ∈ S(n)
is the subset (of S(n))

S(n)π = {σπσ−1; σ ∈ S(n)}.
It is easily seen that the conjugacy class of the identity consists only of one element (namely,
id).

Theorem 3.27. The permutations π1 and π2 ∈ S(n) are conjugate if and only if they
have the same shape.

Proof. It is clear by the above remarks that we may assume that both π1 and π2 6=
id. We begin with some further general remarks about conjugation that help us understand
what this operation means. For any three permutations π1, π2 and σ ∈ S(n),

σ(π1π2)σ
−1 = (σπ1σ

−1)(σπ2σ
−1);

that is, conjugation (by the same permutation) preserves products. Next, if π1 sends i ∈ Xn

to j and π2 = σπ1σ
−1, then π2 sends σ(i) to σ(j); that is, conjugation corresponds to a

relabeling of the elements of Xn. Thus if π1 is the cycle (x1, x2, ..., xr), then

π2 = σπ1σ
−1 = (σ(x1), σ(x2), ..., σ(xr)).

We note that the cycles π1 and π2 have the same length.
We are now ready to prove the theorem. We assume that π1 and π2 ∈ S(n) are conjugate

via the motion σ. Assume that

(11) π1 = τ1τ2...τk

is the decomposition of π1 as a product of disjoint cycles. Then

π2 = σπ1σ
−1 = (στ1σ

−1)(στ2σ
−1)...(στkσ

−1)

is a decomposition of its conjugate as a product of disjoint cycles . Since τi and στiσ
−1 have

the same length, the only if part of the theorem has been established. To prove the if part of
the theorem we assume that π1 and π2 have the same shape. Let (11) be the decomposition
of π1 as a product of disjoint cycles. Since π2 has the same shape as π1, its decomposition
as a product of disjoint cycles is given by

π2 = τ ′
1τ

′
2...τ

′
k,

where we have the same number (k) of disjoint cycles and each of the cycles τ ′
i (of π2) has

the same length as corresponding cycle τi (of π1). Let (x1, x2, ..., xr) be a typical cycle τi

and (x′
1, x

′
2, ..., x

′
r) be the corresponding cycle τ ′

i . We define a permutation σ ∈ S(n) by
σ(xj) = x′

j if xj appears in one of the cycles in the decomposition of π1. This definition
makes sense since a fixed xj appears in at most one such cycle. We set σ(xj) = xj, if xj does
not appear in any of the cycles. It is easy to see that this indeed defines a permutation on
n-letters and that it conjugates π1 to π2. �

We proceed to the definition of another invariant of a permutation, its sign. In the next
definition we use formal expressions in variables (indeterminates) indexed by integers.
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Definition 3.28. For n ∈ Z≥2, we define a polynomial ∆ in the n indeterminates x1,
x2, ..., xn by

∆(x1, x2, ..., xn) =
∏

1≤i<j≤n

(xi − xj),

and for π ∈ S(n), we define the polynomial π∆, by

π∆(x1, x2, ..., xn) = ∆(xπ(1), xπ(2), ..., xπ(n)).

(The polynomial π∆ is obtained from the polynomial ∆ by replacing each appearance of xi

by xπ(i).) The expressions (xi − xj) appearing in the definition of ∆ are called, its factors.
They are transformed to factors (xπ(i) − xπ(j)) in π∆.

Example 3.29. For n = 3 and π = (1, 2, 3) = (1, 3)(1, 2),

∆(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3)

and
π∆(x1, x2, x3) = (x2 − x3)(x2 − x1)(x3 − x1) = (−1)2∆(x1, x2, x3).

Note that for π and σ ∈ S(n),

(πσ)∆ = π(σ∆)

since each side is obtained by replacing xi by xπ(σ(i)). The next lemma is, at least at first
glance, rather surprising. Its proof is also surprising; it is almost trivial.

Lemma 3.30. For each π ∈ S(n), π∆ = ±∆.

Proof. Both ∆ and π∆ have the same number of factors. Consider one of these factors
(xi − xj) in ∆ (thus 1 ≤ i < j ≤ n). The corresponding factor in π∆ is (xπ(i) − xπ(j)).
We can, of course, assert that π(i) 6= π(j) because π is a bijection of Xn. Further, for the
same reason, there exist unequal positive integers k and l, each ≤ n, such that k = π(i) and
l = π(j). Thus either (xπ(i) − xπ(j)) is a factor of ∆ (if k < l) or −(xπ(i) − xπ(j)) is a factor
of ∆ (if k > l). Thus each factor of π∆ is either plus or minus a factor of ∆. The result
follows by collecting (multiplying) all the minus signs. �

Definition 3.31. The sign of the permutation π ∈ S(n), sgn(π), whose value is ±1,
is defined by π∆ = sgn(π)∆. The definition makes sense as a result of the last lemma. A
permutation π is even if sgn(π) = 1 and odd otherwise.

Theorem 3.32. For π and σ ∈ S(n),

sgn(πσ) = sgn(π)sgn(σ).

Proof. From the definitions,

(πσ)∆ = sgn(πσ)∆

and
π(σ∆) = sgn(π)σ∆ = sgn(π)sgn(σ)∆.

�

Proposition 3.33. The sgn function satisfies the following properties.

(1) sgn(id) = 1
(2) For all π ∈ S(n), sgn(π) = sgn(π−1).
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(3) For all π and σ ∈ S(n), sgn(σπσ−1) = sgn(π).
(4) Every transposition has sign −1.

Proof. Since id∆ = ∆, (1) follows. If π ∈ S(n), then by the previous theorem and (1),

sgn(π)sgn(π−1) = sgn(ππ−1) = sgn(id) = 1.

So both sgn(π) and sgn(π−1) are either +1 or −1, establishing (2). By the previous theorem,
for all π and σ ∈ S(n),

sgn(σπσ−1) = sgn(σ)sgn(π)sgn(σ−1)

and since σ and σ−1 have the same sign by (2), (3) follows. The transposition (1, 2) clearly
has sign −1 and since an arbitrary transposition has the same shape as (1, 2), it is conjugate
to (1, 2) by Theorem 3.27 and thus with sign −1 as a consequence of (3); finishing the proof
of (4). �

Example 3.34. Let A(n) denote the set of even permutations in S(n). Then

• id ∈ A(n).
• If π and σ ∈ A(n), then πσ ∈ A(n).
• If π, then π−1 ∈ A(n).
• If π ∈ A(n) and σ ∈ S(n), then σπσ−1 ∈ A(n).
• Since n ≥ 2, (1, 2) 6∈ A(n) and so the inclusion A(n) ⊂ S(n) is proper.
• For n > 1, the map π 7→ (1, 2)π sends even permutations bijectively onto odd

permutations. So that

|A(n)| =
n!

2
for n ≥ 2.

• In language to be subsequently introduced, A(n) is a normal subgroup of index two
of S(n), and that for n ≥ 1,

sgn: S(n) → {±1}
is a surjective homomorphism with kernel A(n).

Lemma 3.35. Every cycle π is a product of transpositions. Further

sgn(π) = (−1)l(π)−1.

Proof. We easily check that

(x1, x2, ..., xr) = (xr, x1)(xr−1, x1) ..., (x3, x1)(x2, x1).

The lemma is an immediate consequence of this identity. �

The lemma and our previous results imply

Theorem 3.36. Every permutation is a product of transpositions. The number of trans-
positions is even if and only if the permutation is.

Example 3.37. We have been studying

π = (1, 3, 5, 7, 9)(2, 4, 6)(8, 10) = (1, 9)(1, 7)(1, 5)(1, 3)(2, 6)(2, 4)(8, 10)

and thus

π−1 = (1, 3)(1, 5)(1, 7)(1, 9)(2, 4)(2, 6)(8, 10).
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Remark 3.38. The last identity is a consequence of the fact that if

π = τ1τ2...τk

is a decomposition of π as a product of transpositions, then

π−1 = τkτk−1...τ1;

which follows immediately from the fact that each 2-cycle is its own inverse.

EXERCISES

(1) What is |A(1)|?
(2) Determine the order and sign of

• (1, 2, 3, 4, 5)(10, 8, 6)(9, 11)
• (1, 2, 3, 4, 5)(10, 5, 6)(9, 11)

(3) Is every permutation of order 2 a transposition?
(4) Let n ≥ 2. Show that every transposition is a product of transpositions of the form

(k, k + 1), 1 ≤ k ≤ n − 1.
(5) Let n ≥ 3.

(a) Show that a product of two transposions in S(n) is also a product of 3-cycles.
(b) Show that the elements of A(n) are products of 3-cycles.
(c) Let π ∈ A(n) be a k-cycle. Write π as a product of l 3-cycles. What is the
minimum such l?

3. Definitions and more examples of groups

Definition 3.39. Let X be a set. A binary operation or product on X is a map ∗ :
X × X → X; thus an assignment x ∗ y ∈ X to each ordered pair (x, y) ∈ X × X. This
property is also called closure of X under ∗.

Definition 3.40. A group (G, ∗) is a set G with a binary operation ∗ on G with the
following properties.

• (Associativity) For all g, h and k ∈ G, (g ∗ h) ∗ k = g ∗ (h ∗ k). (We say that the
binary operation ∗ on G is associative.)

• (Existence of identity). There exists an identity element e ∈ G such that e ∗ g =
g ∗ e = g for all g ∈ G.

• (Existence of inverses) For each g ∈ G, there exists an inverse g−1 ∈ G such that
g−1 ∗ g = g ∗ g−1 = e.

Definition 3.41. A group (G, ∗) is called abelian or commutative if g ∗ h = h ∗ g for all
g and h ∈ G. In this case we say that the binary operation ∗ on G is commutative.

Notation 3.42. Some of the standard conventions are the following.

• We usually identify the group (G, ∗) with the set G, and say the group G when the
corresponding binary operation ∗ is understood from the context.

• The binary operation ∗ is many times written as · and also dropped from the notation
completely. Thus xy, x ∗ y and x · y all stand for the product of x and y (in that
order) in a group G.

• One never uses (interchangeably, for example) two different symbols (for example,
∗ and ·) for the same binary operation.
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• For commutative groups, the binary operation is usually written as + and called a
sum (rather than product), and an inverse of g will be denoted by −g.

The definitions have some immediate consequences. Among them is

Theorem 3.43. The identity and inverses in groups are unique.

Proof. Let e and e′ be identity elements of a group G. Then

e = ee′ = e′.

The first equality uses the fact that e′ is an identity element; the second, that e is. Now let
g ∈ G and assume it has h and k as inverses. Then

h = he = h(gk) = (hg)k = ek = k.

�

Remark 3.44. For groups (G, ·), the identity e is often written as 1; as 0, for abelian
groups (G, +). The identity element e of (G, ∗) will be denoted by eG when we need to
emphasize which identity (group) is needed.

The next worksheet involves ideas from linear algebra and is preparation for an alternate
discussion of Example (22) below.

WORKSHEET #4
Orthogonal affine transformations, a review.

(1) Let n be a positive integer. In this exercise we review affine orthogonal transfor-
mations of Rn; with particular attention to the case n = 2. For this special case,
all claims appearing below should be verified. One of the aims of this work
sheet, is to explore the interplay between calculations and geometric ideas, between
the Cartesian plane R2 and the complex plane C.

(2) Recall that an n × n real matrix A is orthogonal iff AT A = I. An affine orthogonal
transformation is a self-map of Rn defined by sending the column vector v ∈ Rn to
the vector Av + a, where A is a fixed orthogonal n × n matrix and a ∈ Rn is fixed
vector.

(3) Show that the determinant of a real orthogonal n × n matrix A must be either +1
or −1 by using the fact that for n × n matrices A and B,

det AB = det A det B.

(4) Consider the case n = 2 and the real orthogonal matrix A =

[

a b
c d

]

. Conclude

that the four real numbers a, b, c and d satisfy the three equations

a2 + c2 = 1,

b2 + d2 = 1

and

ab + cd = 0.
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(5) The next task is to solve (simultaneously) the last three equations. The first of
these equations tells us that the point (a, c) ∈ R2 lies on the circle with center at
the origin and radius 1; hence a = cos θ and c = sin θ for a unique real number θ
with 0 ≤ θ < 2π.

Similarly the second equation tells us that b = cos ϕ and d = sin ϕ for some
unique real number ϕ with 0 ≤ ϕ < 2π.

Conclude from the third equation that tan θ tan ϕ = −1 and hence that ϕ =
θ ± π

2
. Hence also conclude that

A =

[

cos θ − sin θ
sin θ cos θ

]

or A =

[

cos θ sin θ
sin θ − cos θ

]

.

Note that these two cases correspond to the two different possibilities for the sign
of the determinant of A.

(6) Represent vectors in R2 as columns X =

[

x
y

]

with x and y ∈ R. The orthogonal

matrix A acts on R2 by sending the vector X to AX. In the two cases we have
described we get

AX =

[

x cos θ − y sin θ
x sin θ + y cos θ

]

and AX =

[

x cos θ + y sin θ
x sin θ − y cos θ

]

,

respectively.
(7) A pair of real numbers (x, y) can be represented in rectangular coordinates by the

single complex number z = x + ıy. If z 6= 0, it can also be represented in polar
coordinates by reıθ, where r =

√

x2 + y2 and θ = sin−1 y
r

= cos−1 x
r
. We can in this

context think of eıθ as a short hand form of cos θ + ı sin θ.
(8) In terms of complex numbers, our first map sends z = x + ıy to

(x cos θ − y sin θ) + ı(x sin θ + y cos θ) = (cos θ − ı sin θ)(x + ıy) = e−ıθz

and in the second to

(x cos θ + y sin θ) + ı(x sin θ − y cos θ) = (cos θ + ı sin θ)(x − ıy) = eıθz̄ = e−ıθz.

(9) Geometrically, the first case corresponds to a clockwise rotation of C about the
origin by an angle θ. The second case, to complex conjugation followed by a counter-
clockwise rotation by an angle θ or equivalently, a clockwise rotation by an angle θ
followed by complex conjugation.

(10) The analysis of the case n = 3 is similar, but requires (much) more work.

EXAMPLES OF GROUPS

Example 3.45. We have already encountered several groups. We list these as well
as some new groups and some non-groups. We have grouped the examples under several
categories. The reader should verify the axioms for the various groups and find the reason
why other examples are not groups.

EXAMPLES BASED ON INTEGERS AND OTHER NUMBER SYSTEMS

(1) (Z, +) is an abelian group (and |Z| = ∞).
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(2) So is (nZ, +) for every integer n, where

nZ = {jn; j ∈ Z}

(and |nZ| = ∞). In language to be developed, nZ is a normal subgroup of Z.

(3) (Z≥a, +) is not a group for any a ∈ Z since the set is not closed under inverses.

(4) Neither is (Z, ·).

(5) For every positive integer n, (Zn, +) is an abelian group and |Zn| = n. Its identity
element is [0]n.

(6) ({±1}, ·) is an abelian group with 2 elements. So is (Z2, +). As we shall see later
these are the same groups.

(7) For each n ∈ Z≥1, the nth roots of unity (these are complex numbers of the form

e
2πık

n with k ∈ Z, 0 ≤ k < n), Un, form a commutative group of size n under multi-
plication.

(8) For n ∈ Z>0, (Zn, ·) is not a group, but it has an identity element [1]n. However,
(Z∗

n, ·) is a group with ϕ(n) members.

(9) The rationals (Q), the reals (R) and the complex numbers (C) are each infinite
abelian groups under addition. If we remove the zero element from these (obtaining
Q∗, R∗ and C∗), we obtain infinite abelian groups under multiplication.

(10) Complex numbers of absolute value 1 form an infinite abelian group under multi-
plication.

(11) We can use the complex numbers to construct another finite abelian group Co under
multiplication:

Co = {±1,±ı}

consisting of 4 elements. Its multiplication table is

The multiplication table for Co.
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1 −1 ı −ı

1 1 −1 ı −ı
−1 −1 1 −ı ı

ı ı −ı −1 1
−ı −ı ı 1 −1

.

(12) We now explore a less familiar example: a number system H known as the quater-
nions. We first consider three undefined new symbols ı,  and κ. The set H is to
consist of expressions of the form a+bı+c+dκ with a, b c and d ∈ R. (We are really
considering 4 quantities 1, ı,  and κ. The last formal sum is then a1+ bı+ c+dκ.)
If we view 1, ı,  and κ as basis elements of a real 4-dimensional vector spaces, we
obtain the additive structure on the quaternions (H, +). In this structure

(a11 + b1ı + c1 + d1κ) + (a21 + b2ı + c2 + d2κ)

= (a1 + a2)1 + (b1 + b2)ı + (c1 + c2) + (d1 + d2)κ.

To obtain a product structure for the quaternions, we must merely describe how
to multiply the the 4 basis elements and then let the usual rules of arithmetic take
over. We want 1 to be the identity element under the multiplication. So the 9
products among the other 3 basis elements must be specified. We require that

ı2 = 2 = κ2 = −1, ı = κ, ı = −κ, κ = ı, κ = −ı, κı =  and ıκ = −.

Under these rules

(a11 + b1ı + c1 + d1κ)(a21 + b2ı + c2 + d2κ)

= (a1a2 − b1b2 − c1c2 − d1d2)1 + (a1b2 + b1a2 + c1d2 + d1c2)ı

+(a1c2 − b1d2 + c1a2 + d1b2) + (a1d2 + b1c2 − c1b2 + d1a2)κ.

We leave two questions for the reader to resolve. If we remove the zero element from
H, do we get a group under multiplication? An abelian group? The quaternions H

contain a very interesting finite subset, the quaternion group consisting of 8 elements

Ho = {±1,±ı,±,±κ}.

It is a tedious but routine matter to construct

The multiplication table for Ho.
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The entry in the i-th row, j-th column is the product of the i-th element with
the j-th element (in this order).

1 −1 ı −ı  − κ −κ

1 1 −1 ı −ı  − κ −κ
−1 −1 1 −ı ı −  −κ κ

ı ı −ı −1 1 κ −κ − 
−ı −ı ı 1 −1 −κ κ  −

  − κ −κ 1 −1 ı −ı
− −  −κ κ −1 1 −ı ı
κ κ −κ  − −ı ı −1 1

−κ −κ κ −  ı −ı 1 −1

.

The entries in the above table are enough to convince us that all the group axioms
except possibly associativity are satisfied. We will easily see that associativity holds
too when we study Example (19), below. Is the group we have constructed abelian?

GROUPS OF PERMUTATIONS
(13) We have seen that for every non-empty set X, the set of permutations of X,

Perm(X), forms a group under composition. This group is finite if and only if
|X| is finite and abelian if and only if |X| ≤ 2.

(14) For every positive integer n, the sets S(n) and A(n) form groups under composition.
In language to be established, A(n) is a normal subgroup of S(n). Here |S(n)| = n!
and for n ≥ 2, |A(n)| = n!

2
. If n > 2, S(n) is not commutative; neither is A(n) for

n > 3.

(15) If we choose any π ∈ S(n), then the powers of π

< π >= {πm; m ∈ Z}
form a group with o(π) elements. There are many more groups of permutations.
For example, the four elements of S(n), n ≥ 4,

id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)

form, a group. The easiest way to verify the closure property is to construct

The multiplication table for G.

id (1, 2)(3, 4) (1, 3)(2, 4) (1, 4)(2, 3)

id id (1, 2)(3, 4) (1, 3)(2, 4) (1, 4)(2, 3)
(1, 2)(3, 4) (1, 2)(3, 4) id (1, 4)(2, 3) (1, 3)(2, 4)
(1, 3)(2, 4) (1, 3)(2, 4) (1, 4)(2, 3) id (1, 2)(3, 4)
(1, 4)(2, 3) (1, 4)(2, 3) (1, 3)(2, 4) (1, 2)(3, 4) id

.
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We also note as a result of the last calculation that each element of G is its own
inverse. Why is this not surprising?

GROUPS OF MATRICES
(16) Let n be a positive integer. Recall5 that an n × n matrix is invertible if it has an

inverse with respect to matrix multiplication. The set of invertible n × n matrices
over the integers6 (GL(n, Z)), rationals (GL(n, Q)), reals (GL(n, R)), and complex
numbers (GL(n, C)) form a group under multiplication. The verification of the
group axioms for these sets can be based on two facts from linear algebra. An n×n
matrix with integer entries is invertible if and only if its determinant is ±1; while
in any of the other three cases, if and only if its determinant is 6= 0. Note that we
have the proper inclusions

GL(n, Z) ⊂ GL(n, Q) ⊂ GL(n, R) ⊂ GL(n, C).

The reader unfamiliar with elementary matrix theory should verify the group ax-
ioms for n = 2.

(17) Upper triangular invertible matrices form a group under multiplication. An n × n
matrix A = [aij] is upper triangular if aij = 0 for all i > j.

(18) Diagonal invertible matrices form a group under multiplication. An n × n matrix
A = [aij ] is diagonal if aij = 0 for all i 6= j.

(19) Let us define two 2 × 2 matrices

X =

[

0 −1
1 0

]

and Y =

[

ı 0
0 −ı

]

.

As usual we note by I the 2× 2, in this case, identity matrix: I =

[

1 0
0 1

]

. Simple

calculations show that

X2 = Y 2 = −I and XY = −Y X.

Define
Z = XY,

and calculate (once again) to see that

Z2 = −I, Y Z = X,ZY = −X,ZX = Y and XZ = −Y.

Thus the 8 matrices
{±I,±X,±Y,±Z}

have the same multiplication as the quaternion group Ho (Example (12), above),
with ±1 in H0 corresponding to ±I in this example; ±ı, to ±X; ±, to ±Y and ±κ,

5From linear algebra courses.
6An n × n matrix A with integer entries may be invertible and still not belong to GL(n, Z). It belongs

to GL(n, Z) if and only if so does A−1.



90 3. GROUPS

to ±Z. Since we know that matrix multiplication is associative, we conclude that
so is the multiplication in H0.

(ASIDE TO THOSE WHO REMEMBER THE CONCEPT OF A LINEAR
MAP.) If we send the quaternion a + bı + c + dκ (here a, b, c and d are real num-
bers) to the 2 × 2 matrix aI + bX + cY + dZ, then we have obtained an injective
linear map from the quaternions (viewed as a real vector space) H into the 2 × 2
complex matrices, viewed as a real vector space.

(20) The set SL(2, Z) of 2× 2 matrices with integer coefficient and determinant 1 forms
a group under matrix multiplication. How does SL(2, Z) differ from GL(2, Z)?

(21) Let p be a prime. An example closely related to the last one is the set SL(2, Zp)
of 2× 2 matrices whose entries are mod p congruence classes of integers and whose

determinant is [1]p. Thus an element of SL(2, Zp) is a matrix A =

[

[a]p [b]p
[c]p [d]p

]

with [a]p[d]p − [b]p[c]p = [1]p. A number of routine calculations are needed to verify
that SL(2, Zp) is a group under matrix multiplication. One shows, in particular that

the inverse of the matrix A is A−1 =

[

[d]p [−b]p
[−c]p [a]p

]

. We can view the elements

of SL(2, Zp) as 2 × 2 integral matrices

[

a b
c d

]

with the integers a, b, c and d to

be restricted to the values in {0, 1, ..., p− 1} and replacing all results of calculations
by the mod p equivalent integer from this set. But despite the use of this notation
SL(2, Zp) is NOT a subgroup of SL(2, Z).

GROUPS OF SYMMETRIES
These groups arise as symmetries of a geometric shape F ; meaning orthogonal

affine transformations of the plane R2 or 3-space R3 which leave invariant the fixed
geometric figure F .

(22) (Rigid motions of an equilateral triangle.) We start with an equilateral triangle T
and label its three vertices 1, 2 and 3, say in counter-clockwise order, to enable us
to keep track of the motions we discuss. The three altitudes of T meet in a point O.
Observe that any symmetry of T must maps vertices of T to vertices and sides of
T to sides. Furthermore every symmetry of T is completely described by its action
on the vertices this triangle.

The group of symmetries of T is often called D(3). We proceed to describe
it in detail. We define the first motion ρ as counter-clockwise rotation about O
through an angle of 2π

3
. It is clear that this motion is a symmetry of T. It is

completely described (as a motion preserving T) by its action on the vertices; hence
by the permutation (1, 2, 3) ∈ S(3) of these 3 points. A second motion R that
we introduce is reflection in the perpendicular bisector of the side connecting the
vertices 1 and 2 (this line passes through the mid-point of this side and the vertex
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3). This motion is described by the transposition (1, 2) ∈ S(3). The figure T has, of
course, many other symmetries. All of them will be described in terms of ρ, R and
the identity map (id ∈ S(3)) that we denote by e. We introduce a multiplication on
the set of symmetries of T: if σ and τ are such symmetries, then στ is defined as the
symmetry τ followed by the symmetry σ. (There is a good reason for this choice.
We are viewing symmetries as maps and hence multiplication should correspond to
composition. As a bonus, it also corresponds to multiplication of permutations.)
This multiplication is associative. It is clear that the inverse of a symmetry is
again a symmetry; it undoes what the original symmetry did. Let us observe that
ρ3 = R2 = e and start listing some of the symmetries we have:

{e, ρ, ρ2, R, ρR and ρ2R}.
These six motions are distinct as can be seen by examining their action on the
vertices of T. There can be no other symmetries since there are at most 6 permuta-
tions of the vertices. Thus the last set coincides with D(3) and is hence closed under
multiplication. The construction of the multiplication table of D(3) is simplified by
the relations7

(12) ρ3 = e = R2 and ρ2R = Rρ.

The first two of these relations are obvious from the definitions. A geometric ar-
gument proves the last one. The reader is invited to provide one. The impatient
reader could consult [7, pg. 186] or read the similar argument in the next exam-
ple and adopt it to the current situation. We illustrate the calculation involved by
considering two cases:

(ρR)(ρR) = ρ(Rρ)R = ρ(ρ2R)R = ρ3R2 = e

and

(ρ2R)ρ2 = (Rρ)ρ2 = Rρ3 = R.

The multiplication table for D(3).

e ρ ρ2 R ρR ρ2R

e e ρ ρ2 R ρR ρ2R
ρ ρ ρ2 e ρR ρ2R R

ρ2 ρ2 e ρ ρ2R R ρR
R R ρ2R ρR e ρ2 ρ

ρR ρR R ρ2R ρ e ρ2

ρ2R ρ2R ρR R ρ2 ρ e

.

If we place our triangle T on a coordinate system (a copy of R2 or C) with center
at O such that the base (for definiteness, take the base to be the side joining vertices
1 and 2) of T is parallel to the x-axis (the horizontal axis), then we can realize8 the

7There are, of course, others. But all the relations in D(3) are consequences of these three.
8As a consequence of the material in the last worksheet, for example.
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motions ρ and R as orthogonal 2 × 2 matrices:

ρ =

[

−1
2

−
√

3
2√

3
2

−1
2

]

and R =

[

−1 0
0 1

]

.

It is easier if we think of these as motions of C:

z 7→ e
2πı
3 z and z 7→ −z̄.

Even if we did not know how to derive these motions, we should easily be able
to check that as self-maps of C or R2 they do the right thing. To do so we may
scale our triangle so that its vertices lie on the unit circle and vertex 3 has complex

coordinates ı = e
πı
2 . Thus vertices 1 and 2 must have coordinates −

√
3

2
− 1

2
ı = e

7πı
6

and
√

3
2
− 1

2
ı = e

−πı
6 , respectively. Hence these two motions do act as expected on

the vertices.

(23) (Rigid motions of a square.) Place a square S in the complex plane with vertices at
−1− ı (labeled vertex 1), 1− ı (labeled 2), 1 + ı (labeled 3) and −1 + ı (labeled 4).
Hence the center of S is at the origin O of the plane. We define the rigid motion ρ
as rotation about O through an angle of π

2
(represented by the self map of C z 7→ ız)

and R as reflection in the perpendicular bisector of the edge joining the vertices 1
and 2 (represented by z 7→ −ız̄). The relations among these eight maps

(13) {e, ρ, ρ2, ρ3, R, ρR, ρ2R, ρ3R}
are

(14) ρ4 = e = R2 and ρ3R = Rρ,

as can easily be checked using the geometric interpretation of the symmetries. The
multiplication table for the set of these 8 elements, that we call D(4), is easily
calculated, using only these relations, to be

The multiplication table for D(4).

e ρ ρ2 ρ3 R ρR ρ2R ρ3R

e e ρ ρ2 ρ3 R ρR ρ2R ρ3R
ρ ρ ρ2 ρ3 e ρR ρ2R ρ3R R

ρ2 ρ2 ρ3 e ρ ρ2R ρ3R R ρR
ρ3 ρ3 e ρ ρ2 ρ3R R ρR ρ2R
R R ρ3R ρ2R ρR e ρ3 ρ2 ρ

ρR ρR R ρ3R ρ2R ρ e ρ3 ρ2

ρ2R ρ2R ρR R ρ3R ρ2 ρ e ρ3

ρ3R ρ3R ρ2R ρR R ρ3 ρ2 ρ e

.

The fact that these motions are closed under multiplication, as shown by the above
table, proves that D(4) is a group. As in the case of the triangle, the motions ρ and
R can be represents as 2 × 2 matrices:

ρ =

[

0 −1
1 0

]

and R =

[

−1 0
0 1

]
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and as (described above by the) self- maps of C:

(15) ρ : z 7→ ız and R : z 7→ −z̄.

These rigid motions can also be described as permutations of the vertices of S:

Rigid motion Permutation
e id
ρ (1, 2, 3, 4)

ρ2 (1, 3)(2, 4)
ρ3 (1, 4, 3, 2)
R (1, 2)(3, 4)

Rρ = ρ3R (1, 3)
Rρ2 = ρ2R (1, 4)(2, 3)
Rρ3 = ρR (2, 4)

.

The second and and fifth lines of the above table determine the other six lines, of
course. We see from the above table, that only 8 of the 24 permutations in S(4)
land in the group we have called D(4). We claim that D(4) is the full group of
rigid motions of S. There should be a reason why only 1

3
of the elements of S(4)

correspond to motions of the square. To see why, consider the 6 lines joining the
4 vertices of S. We label the (un-oriented) line joining the vertices a and b by ab.
A rigid motion of S can send 13 to either 13 or 24, while an arbitrary permutation
on 4 symbols can send 13 to any of the six lines. We conclude that D(4) is the full
group of rigid motions of the cube.

(24) (Rigid motions of a regular n-gon, n ≥ 2.) A group can be defined by a set of
generators (ρ (a different one in each case) and R (in some sense, the same in
all cases) as in D(3) and D(4), the examples discussed above) subject to a set of
relations satisfied by the generators (in the above two cases, (12) and (14)). To
be specific, let n ∈ Z>1. We construct a group D(n), the dihedral n-group, on
generators ρ and R subject to the relations

ρn = e = R2 and ρn−1R = Rρ.

These relations are sufficient to construct the multiplication table for the group (it
has 2n elements). Geometrically the group represents the rigid motions of a regular
n-gon (a regular n sided polygon). The definitions for n = 3 and 4 agree, of courses.
with our earlier definitions of the groups D(3) and D(4), respectively.

(25) (Rigid motions of a rectangle.) Let R be a rectangle which is not a square. To
describe the symmetries of R, we note that every element of this group must also
be a symmetry of S. So, we need to determine which of the eight elements of D(4),
fix R. The motion ρ certainly does not. Only a little bit of thought is required to
convince us that only the four motions

e, ρ2, R, ρ2R
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have the required property. The multiplication table for these motions is easily con-
structed. Observe that for each rigid motion r of R, r2 = e.

(26) Groups can also be associated with the study of solutions of equations of algebraic
equations. We will discuss some of these after we describe some additional algebraic
structures in §1 of Chapter 7.

EXERCISES

(1) Let X be a non-empty set. When is the group Perm(X) cyclic (see Definition 4.15
of Chapter 4)?

(2) Two of the rigid motions of the equilateral triangle were described as motions of R2

and then as motions of C. Describe the other 4 as motions of these vector spaces,
and then construct the multiplication table for these 6 motions in the two models.
Show that you obtained (after relabeling) once again the multiplication table for
S(3) and D(3).

(3) Verify that the multiplication (composition) table for the 8 self maps of C given
in (13), where the maps ρ and R are defined by (15) is exactly the same as the
multiplication table for D(4).

(4) Verify that after relabeling of the elements, the multiplication table for D(4) coin-
cides with that for 8 permutations considered in the MAPLE program in §1.

(5) Use MAPLE or MATHEMATICA to construct the multiplication table for D(5).
(6) Discuss the geometric realization of D(2). What is the underlying geometric shape,

the regular 2-gon? Can you identify D(2) with another group?
(7) Identify the group of rigid motions of a rectangle (that is not a square) with a group

encountered before.
(8) Explain why the rotation group of the octahedron is isomorphic to S(4).
(9) What is the rotation group of the icosehedron?



CHAPTER 4

Group homomorphisms and isomorphisms.

The first two sections of the chapter are devoted to basic group theory. In the third
section, we begin the study of homomorphisms, maps between groups that preserve the
group structure. The fourth section is devoted to the study of groups of small order. The
final section continues the study of homomorphisms.

1. Elementary group theory

This section deals with some of the elementary foundational results in group theory. The
discussion parallels and generalizes part of our discussion of permutation groups.

Theorem 4.1. Let a and b be elements in a group G. There exist unique elements x and
y ∈ G such that a = bx and a = yb.

Proof. It is easily seen that x = b−1a and y = ab−1. �

Remark 4.2. If G is abelian, then x = y, of course.

Corollary 4.3 (Cancellation law). If g, h and b belong to a group G and bg = bh, then
g = h. Similarly, if gb = hb, then g = h.

Proof. The first assertion follows from the uniqueness of x in the theorem. But this
seems to be a rather torturous way to obtain the conclusion, which follows by multiplying
each side of bg = bh by b−1 on the left. The proof of the second assertion is similar. �

Corollary 4.4. Let a and b be elements of a group G, then (b−1)−1 = b and (ab)−1 =
b−1a−1.

Proof. Take a = e in the theorem and note that both b and (b−1)−1 solve e = b−1x.
Again this assertion follows from the uniqueness of inverses as does the last claim in the
statement of the corollary. �

The powers of an element g in a group G are defined exactly the way we defined the
powers of a permutation π ∈ S(n). We merely substitute g for each occurrence of π and G
for each occurrence of S(n) in Definition 3.13 of Chapter 3.

Definition 4.5. Let g be an element of a group G. Set g0 = e. For k ∈ Z>0, define
inductively gk = ggk−1. Also define g−k = (g−1)k.

Proposition 4.6. Let g and h be elements in a group G and let r and s be integers.
Then

(1) grgs = gr+s,
(2) (gr)s = grs,
(3) g−r = (gr)−1, and
(4) if g and h commute, then (gh)r = grhr.

95
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Proof. The required argument is identical to the one in the proof of Proposition 3.14
of Chapter 3. �

Definition 4.7. An element g in a group G has finite order if there exists a positive
integer m such that gm = e and the order of g is the smallest such m; we say that g has
infinite order (or its order is ∞) if it does not have finite order. We let o(g) be the order of
g. Thus o(g) is either a positive integer or ∞. The number of elements |G| in a group G is
also called its order, o(G). So, |G| = o(G) ∈ Z>0 ∪ {∞}.

Remark 4.8. 1. If n is a positive integer, then every π ∈ S(n) has finite order in the
above sense and its order as defined above agrees with its order as a permutation as defined
in Chapter 3.

2. If the group G has finitely many elements (we shall say in this case that G is a fi-
nite group), then every one of its members has finite order.

3. The matrix A =

[

1 1
0 1

]

has infinite order in the group SL(2, Z). Since for every

integer n, An =

[

1 n
0 1

]

.

4. As an element of the group SL(2, Zp), with p a prime, the matrix

[

1 1
0 1

]

=

[

[1]p [1]p
[0]p [1]p

]

has finite order p.

We now come to another key idea; the concept of a substructure.

Definition 4.9. A non-empty subset H of a group (G, ∗) is a subgroup (of G) if it is a
group under the binary operation ∗ (restricted to H × H). It is a proper subgroup if it is
6= G.

Remark 4.10. 1. A subgroup H of G always contains the identity e ∈ G. We verify
this elementary fact. Since H is a group, it contains an identity element e′. Since H ⊆ G,
e′ ∈ G. Now ee′ = e′ because e′ ∈ G and e is the identity in G, and e′e′ = e′ because e′ is
the identity of H. Thus by the cancellation law (in G), e = e′.

2. Every group G has at least one subgroup; namely the trivial subgroup with one ele-
ment; the identity element of G. All groups that contain more than one element have a
second subgroup; namely the group G itself.

Example 4.11. We have been discussing subgroups all along.

(1) The set of even integers 2Z is a subgroup of (Z, +).
(2) Each of the following set-theoretic inclusions are subgroup inclusions (in the first

set of inclusions the group operation is addition; multiplication, in the second)

Z ⊂ Q ⊂ R ⊂ C

and
{±1} ⊂ Q∗ ⊂ R∗ ⊂ C∗.

(3) SL(2, Z) is a subgroup of SL(2, R).
(4) But for any prime p, SL(2, Zp) is not a subgroup of SL(2, Z).
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The next proposition gives easy tests for determining when susets of a group G are
subgroups.

Proposition 4.12. Let H be a non-empty subset of a group G. The following conditions
are equivalent:
(a) H is a subgroup of G.
(b) For all x and y ∈ H, x−1 and xy ∈ H.
(c) For all x and y ∈ H, xy−1 ∈ H.

Proof. Assume for the moment that H is closed under the multiplication it inherits
from G. Since the product operation is the same for H and G; the multiplication in H is
certainly associative. So in addition to closure, to show that H is a subgroup of G, we need
to show that H contains the identity e of G and that the inverse of every element in H
belongs to H. We are now ready to show that (a) ⇒ (b) ⇒ (c) ⇒ (a). We start with (a).
Hence (b) follows from the fact that H is a group. Now if (b) holds, then y−1 ∈ H and hence
so is xy−1. So (b) implies (c). Finally if (c) is true, then there exists an x ∈ H (since it is
non-empty) and by taking y = x, we see that e = xx−1 ∈ H. To see that the inverse of every
element y ∈ H belongs to H, take x = e. To see that H is closed under multiplication of x
by y (with both in H), observe that we already know that y−1 ∈ H and thus x(y−1)−1 ∈ H.
But (y−1)−1 = y. We conclude that (c) implies (a), �

The next two propositions provide methods for constructing subgroups of a given group.

Proposition 4.13. If H and K are subgroups of a group G, then so is H ∩ K.

Proof. The set H ∩K is not empty since it contains e. Now if x and y ∈ H ∩K, then
these elements belong to both H and K and because these are subgroups, so does xy−1; that
says xy−1 ∈ H ∩ K. �

Proposition 4.14. Let G be a group and x an element of order n in G. Then the
distinct powers of x,

< x >= {xm; m ∈ Z}
form a commutative subgroup of G containing n elements; called the cyclic subgroup of G
generated by x.

Proof. The set < x > is not empty since it contains e = x0. If r and s ∈ Z and xr and
xs ∈< x >, then so does (xr)(xs)−1 = xr−s. �

To apply the above concept to abstract groups, rather than just subgroups of a given
group, we introduce the next

Definition 4.15. A group G is said to be cyclic with generator g if there exists an
element g ∈ G such that

G = {gm; m ∈ Z}.
In this case we write G =< g > to indicate that the group G is generated by the element g.
In general, we write

G =< g1, g2, ... >

to indicate that G is generated by the elements g1, g2, ..., and

G =< g1, g2, ... ; R1, R2, ... >

to indicate that G is generated by the elements g1, g2, ... subject to the relations R1, R2, ....
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EXERCISES

(1) Let G be a group and g ∈ G. If o(g) = n ∈ Z>0, show that for all r ∈ N, o(gr) = n
(n,r)

.

(2) Is Z a group under subtraction?
(3) Is the intersection of two cyclic subgroups of a group also cyclic?

2. Lagrange’s theorem

A remarkably simple way of decomposing groups will lead us to some surprisingly strong
consequences. The key is a theorem due to Lagrange.

Definition 4.16. Let H be a subgroup of G and let a ∈ G. We define a left coset (of
H in G)

aH = {ah; h ∈ H}.
A right coset Ha is defined similarly.

Remark 4.17. Several observations are in order.

(1) We restrict all remarks, propositions, theorems and examples to left cosets. Similar
statements can of course be made for right cosets.

(2) Since H = eH, H is its own left coset.
(3) Since a = ae, a ∈ aH.
(4) If b ∈ aH, then bH = aH. Assume that b = aho with ho ∈ H. Then for all h ∈ H,

bh = ahoh ∈ H and hence bH ⊆ aH. Conversely, for all h ∈ H, ah = bh−1
o h ∈ bH

showing that aH ⊆ bH.
(5) aH is a subgroup of G if and only if a ∈ H. If a ∈ H, then aH = H and thus aH

is a subgroup. Conversely, if aH is a subgroup, then it contains e and thus e = ah
for some h ∈ H. Thus a = h−1 ∈ H.

(6) If we take H = G, we see that there is only one coset of G in G. If we take H = {e},
then we see that the coset of a{e} of {e} in G consists of the set with one element
{a}.

(7) Since a ∈ aH,
⋃

a∈G

aH = G.

(8) For commutative groups G, left and right cosets agree.

Example 4.18. We have already encountered some cosets and we should examine some
new ones.

(1) Let us fix a positive integer n. We know that nZ is a subgroup of (Z, +). Only a
little thought is required to conclude that for all a ∈ Z,

a + nZ = [a]n.

Why are we using additive notation a + nZ for the left coset? Does it differ from a
right coset nZ + b?

(2) Let G = (Z6, +) and H = {[0]6, [3]6}, then

[1]6 + H = {[1]6, [4]6} = [4]6 + H

and in general

[a]6 + H = [a + 3]6 + H, for all [a]6 ∈ G.

Thus there are 3 left cosets of H in G.
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(3) Let G = S(3) and H = {id, (1, 2, 3), (1, 3, 2)}. Then

(1, 2)H = {(1, 2), (2, 3), (1, 3)},
and there are only 2 left cosets of H in G. See also the next Proposition.

Proposition 4.19. Let a and b be elements of a group G and let H be a subgroup of G.
Then either aH = bH or aH ∩ bH = ∅.

Proof. If aH ∩ bH 6= ∅, then it contains an element, c = ax = by, where x and y ∈ H.
Thus b = axy−1 and it follows that b ∈ aH. By Item 4 of Remark 4.17, aH = bH. �

Remark 4.20. A subgroup H of a group G introduces an equivalence relation R on G,
where for x and y ∈ G, xRy if and only if y−1x ∈ H.

Proposition 4.21. Let H be a subgroup of G and let a ∈ G. Then |H| = |aH|.
Proof. The map which sends h ∈ H to ah ∈ aH is a bijection. �

Theorem 4.22 (Lagrange). If H is a subgroup of a finite group G, then |H| divides |G|.
Proof. The group G can be decomposed as a finite union of disjoint cosets:

G =
m
⋃

i=1

aiH.

Hence |G| = m|H|. �

Corollary 4.23. Let g be an element of a finite group G, then o(g) divides |G|.
Proof. The observation that o(g) = | < g > | reduces the corollary to a special case of

the theorem. �

Definition 4.24. Let H be a subgroup of a finite group G. The index of H in G, [G : H],
is defined as the number of distinct cosets of H in G. In this language, Lagrange’s theorem
may be written as

o(G) = [G : H]o(H).

Remark 4.25. Lagrange’s theorem (its last corollary, in a more strict sense) is a gener-
alization of two of our earlier results. We show that these earlier results follow from our last
corollary.

• (Fermat) If p is a prime and a ∈ Z is not a multiple of p, then ap−1 ≡ 1 mod p.

Proof. We use the group (Z∗
p, ·). It contains p−1 elements and since it contains

[a]p, o([a]p) divides p − 1. �

• (Euler) For every positive integer n and all integers a that are relatively prime to
n, aϕ(n) ≡ 1 mod n.

Proof. We repeat the argument used above to prove Fermat. The group now
is (Z∗

n, ·). It contains ϕ(n) elements and since [a]n has a multiplicative inverse in
Zn, it belongs to Z∗

n. As before, o([a]p) divides the number of elements in the group
Z∗

n: ϕ(n). �

• We see once again that Euler is a generalization of Fermat.
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3. Homomorphisms

Definition 4.26. A map θ : G → H between groups is a homomorphism if

θ(xy) = θ(x)θ(y) for all x and y ∈ G.

(That is, if it preserves the group structure. Multiplication on the left hand side of the
last equation is in the group G; while the multiplication on the right hand side is in H.)
The map θ is an isomorphism if it is also a bijection. In this case, θ−1 : H → G is also an
isomorphism. The groups G and H are isomorphic if there exists an isomorphism θ : G → H
between them and we then write G ∼= H.

Proposition 4.27. If θ : G → H is a homomorphism, then θ(e) = e and for all x ∈ G,
θ(x−1) = (θ(x))−1.

Proof. In the first claim, the first e is the identity eG of G and the second, eH , of H,
of course. To establish it, we note that θ(eG) = θ(eGeG) = θ(eG)θ(eG). If we multiply both
sides of the last equation (ignoring the middle term) by θ(eG)−1 on either the left or the
right, we conclude that eH = θ(eG). For the second claim, we note that

eH = θ(eG) = θ(xx−1) = θ(x)θ(x−1) = θ(x)(θ(x))−1

and
eH = θ(eG) = θ(x−1x) = θ(x−1)θ(x) = (θ(x))−1θ(x).

�

Exercise 4.28. Let n be a positive integer. Reduction mod n is the map

redn : Z → Zn

that sends each an integer m to its congruence class modulo n. It is obviously a surjective
group homomorphism with respect to the respective additive (abelian ) group structures on
Z and Zn.

Proposition 4.29. Let G be a group where every element other than e has order 2.
Then G is abelian .

Proof. The hypothesis guarantees that for all x ∈ G, x−1 = x. Hence for all y and
x ∈ G,

(xy)−1 = xy and (xy)−1 = y−1x−1 = yx.

�

Theorem 4.30. Let n ∈ Z>0. Every cyclic group of order n is isomorphic to (Zn, +).

Proof. If g is the generator of a cyclic group G of order n, the isomporphism of G onto
Zn sends g to 1. �

EXERCISES

(1) Show that the relation R introduced in Remark 4.20 is an equivalence relation and
then verify that for each x ∈ G, the equivalence class

[x] = {y ∈ G; yRx}
is the same as the left coset xH.
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(2) Show that for each positive integer n, (Zn, +) is a cyclic group of order n and that
it is isomorphic to (Un, ·) and to the group of permutations < (1, 2, 3, ..., n) >.

(3) Let n be a positive integer. Show that any two cyclic groups of order n are iso-
morphic. As a result of this fact, we use the symbol Zn or Zn =< 1 > to denote
such a group when we use additive notation and Un or Un =< e

2πı
n > when we use

multiplicative notation; in each case the second form also describes the generator of
the group.

(4) Let (G, ·) be a group.
• Show that the map that sends x ∈ G to its square x2 = x ·x is a homomorphism

of G into itself if and only if the group is abelian.
• Conclude that for abelian groups the elements that are their own inverses and

the elements that are squares are each subgroups of G, H and K, respectively.
• Are either of the last two statements true for non abelian groups?
• What is the intersection of H and K?

4. Groups of small order

Let G be a finite group with n elements. In this section we describe all such groups with
n ≤ 8. We need some preliminary results that we proceed to establish. The first of these is
the beginning of the classification theory of finite groups.

Theorem 4.31. A finite group G of prime order p is cyclic.

Proof. Let e 6= g ∈ G. Then

1 < o(g) | o(G) = p,

and thus o(g) = p. It follows that < g > is a subgroup of G of order p and hence the
inclusion of < g; gp = e > into G is an isomorphism. �

Remark 4.32. (Zp, +) is a good model (representative) for the isomorphism class of
cyclic groups of order p. The convenient generator for (Zp, +) is [1]p although [a]p will do as
long as a ∈ Z − pZ.

Theorem 4.33. Let G be a group and a and b two of its members. Assume that a has
finite order n > 1 and that b2 = a. If n is odd assume further that b /∈< a >. Then
o(b) = 2o(a).

Proof. If n = 2, then b 6∈< a >. For if b ∈< a >, then b = e or b = a. Both of these
possibilities contradict the fact that b2 = a.

Now b4 = a2 = e. Thus o(b)|4 and the only possibilities are o(b) = 1, 2 or 4. The first
of these implies that b = e which is impossible. The second implies that b2 = e; which
is also impossible since it would say that a = e. We conclude that o(b) = 4. We have
established the theorem if n = 2. So assume that n > 2. We show first that if n is even, then
(automatically) b /∈< a >. For if b = ar with 2 ≤ r ≤ (n − 1) (note that as before, b 6= e
and b 6= a), then a = b2 = a2r. Thus e = a2r−1 and n|(2r − 1). Since 3 ≤ 2r − 1 ≤ 2n − 3,
r = n and it cannot be that b2 = a. So in all cases, b /∈< a >. Now b2n = an = e and
thus o(b)|2n. Let s = o(b) (hence bs = e). Thus as = b2s = e and hence n|s. We claim that
s 6= n. This claim would imply that s must be at least 2n and hence = 2n. To verify the
last claim, we assume (for contradiction) that s = n. If n is even (remember it is ≥ 4), then
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a
n
2 = bn = e which contradicts the fact that a has order n. If n is odd (remember it is ≥ 3),

then a
n+1

2 = bn+1 = b which contradicts the fact that b /∈< a >. �

Remark 4.34. If n is odd, then the assumption that b /∈< a > is needed for the conclusion

to hold. For in this case, we can choose b = a
n+1

2 and observe that

b2 = a and o(b) = o(a
n+1

2 ) =
n

(n, n+1
2

)
≤ n.

Definition 4.35. Let (G, ∗1) and (H, ∗2) be groups. We introduce a binary operation ∗
on the direct product, G × H, of G and H by the rule

(g1, h1) ∗ (g2, h2) = (g1 ∗1 g2, h1 ∗2 h2), for g1 and g2 ∈ G, h1 and h2 ∈ H.

Proposition 4.36. If G and H are groups, so is G × H. For finite groups G and H,

|G × H| = |G| |H|.
Proof. The group axioms are easily verified for G × H. For example, the identity for

G × H is (eG, eH) (which will be written as e = (e, e)) and the inverse of (a, b) ∈ G × H is
(a−1, b−1). �

Theorem 4.37. If n and m are relatively prime positive integers, then

Zn × Zm
∼= Znm.

Proof. We make a few observation that should help the reader provide a proof of this
result. Let a be a generator for Zn and b for Zm. Thus o(a) = n and o(b) = m. It follows
that1 nm(a, b) = (m(na), n(bm)) = 0. Thus o(a, b)|nm. Since for every positive integer k,
k(a, b) = (ka, kb) we conclude that o(a, b) is a multiple of o(a) and o(b) and since these are
relatively prime, a multiple of their product. �

Remark 4.38. The above theorem is a special case of the Chinese remainder theorem ;
see 5.40 which contains a proof of the above version.

Example 4.39. The hypothesis in the last theorem that n and m be relatively prime is
necessary. To see this we construct the

ADDITION TABLE FOR Z4 × Z2

which we write additively since the group is abelian

0 (1, 0) (2, 0) (3, 0) (0, 1) (1, 1) (2, 1) (3, 1)

0 0 (1, 0) (2, 0) (3, 0) (0, 1) (1, 1) (2, 1) (3, 1)
(1, 0) (1, 0) (2, 0) (3, 0) 0 (1, 1) (2, 1) (3, 1) (0, 1)
(2, 0) (2, 0) (3, 0) 0 (0, 1) (2, 1) (3, 1) (0, 1) (1, 1)
(3, 0) (3, 0) 0 (1, 0) (2, 0) (3, 1) (0, 1) (1, 1) (2, 1)
(0, 1) (0, 1) (1, 1) (2, 1) (3, 1) 0 (1, 0) (2, 0) (3, 0)
(1, 1) (1, 1) (2, 1) (3, 1) (0, 1) (1, 0) (2, 0) (3, 0) 0
(2, 1) (2, 1) (3, 1) (0, 1) (1, 1) (2, 0) (3, 0) 0 (1, 0)
(3, 1) (3, 1) (0, 1) (1, 1) (2, 1) (3, 0) 0 (1, 0) (2, 0)

.

1We use additive notation because all the groups under consideration in this argument are abelian.
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Using the table, we compute the orders of the elements of the group Z4 × Z2.

element 0 (1, 0) (2, 0) (3, 0) (0, 1) (1, 1) (2, 1) (3, 1)
order 1 4 2 4 2 4 2 4

.

If Z4×Z2 were cyclic, it would have order 8 (thus Z8) and hence contain an element of order
8. But none of its members have this order.

We proceed to describe all groups of order ≤ 8. We should keep in mind that Zn × Zm

has order ≤ 8 as long as nm ≤ 8.

4.1. |G| = 1. In this case G =< e >= {e}.

4.2. |G| = 2, 3, 5, 7 and, in fact, all primes. By Theorem 4.31, for each prime p
there is only one (cyclic) group (up to isomorphisms) of size p (namely, Zp).

4.3. |G| = 4. If G has order 4, then its nontrivial elements can only have orders 4 and
2. If G has an element a of order 4, then it is cyclic and isomorphic to Z4. Otherwise all its
elements, other than e, are of order 2 by Lagrange’s theorem. By Proposition 4.29, G must
be abelian. Choosing two distinct elements a and b in G of order 2, we conclude that

G = {a, b; a2 = e = b2, ab = ba},

and thus isomorphic to Z2 × Z2.

4.4. |G| = 6. If G contains an element of order 6, then it is isomorphic to (Z6, +). By
Lagrange’s theorem, the only other possibility is for all elements of G other that e to have
orders 2 or 3.

So assume that G has no element of order 6. If G were also not to have an element of
order 3, then it would have to be an abelian group by Proposition 4.29. Let a and b be two
distinct elements of G of order 2. Then {a, b; a2 = e = b2, ab = ba} would be a subgroup of
G of order 4, contradicting Lagrange’ theorem.

We conclude that G has an element a of order 3 and thus H = {e, a, a2} is a subgroup of
G. Let b ∈ G − H. We consider the 6 elements of G: {e, a, a2, b, ba, ba2}; the first 4 of these
are certainly distinct. If ba = b, then a = e, and if ba = ar for some r ∈ Z, then b = ar−1.
We conclude that the first 5 elements in our last list are distinct. If ba2 = bas for s = 1 or
0, then a2−s = e which is impossible. Similarly if ba2 = ar for some r ∈ Z, then b = ar−2.
Thus the 6 elements in our list are distinct (hence this is the complete list of members of G)
and we need only establish the multiplication table for these elements. The element b must
have order 2 or 3. Let us try to compute b2. If b2 6= e, it would have to be ar with r = 1 or
2 or bas with s = 0, 1 or 2. If b2 = a, then b has order 6; a contradiction. If b2 = a2 6= e,
then b cannot have order 2. Also b3 = ba2 6= e; that is, b cannot have order 3; the last
two statements yield a contradiction. Thus b2 6= ar. If b2 = bas, then b = as; which is also
impossible. We have reached the conclusion that b has order 2. Let us see what we know at
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this point about the multiplication table for G.

e a a2 b ba ba2

e e a a2 b ba ba2

a a a2 e
a2 a2 e a
b b ba ba2 e a a2

ba ba ba2 b
ba2 ba2 b ba

.

We need to compute ab. There are only three possibilities ab = bar with r = 0, 1 or 2. The
first of these, ab = b, is impossible because it would imply that a = e. The second, ab = ba,
would tell us that (ab)s = asbs for all integers s and we would conclude that ab has order 6
(remember the only possibilities are 2, 3 and 6). Thus ab = ba2. We now easily complete
the multiplication table for G.

e a a2 b ba ba2

e e a a2 b ba ba2

a a a2 e ba2 b ba
a2 a2 e a ba ba2 b
b b ba ba2 e a a2

ba ba ba2 b a2 e a
ba2 ba2 b ba a a2 e

.

A comparison of the above multiplication with the one for S(3) shows that the group G is
isomorphic to S(3). An isomorphism θ : G → S(3) can be chosen to satisfy

θ(a) = (1, 2, 3) and θ(b) = (1, 2).

It follows that

θ(e) = id, θ(a) = (1, 2, 3), θ(a2) = (1, 2, 3)(1, 2, 3) = (1, 3, 2),
θ(b) = (1, 2), θ(ba) = (1, 2)(1, 2, 3) = (2, 3), θ(ba2) = (1, 2)(1, 3, 2) = (1, 3)

.

We have shown that a group of order 6 is isomorphic to either Z6 or S(3).

4.5. |G| = 8. We will see that in this case there are 5 groups up to isomorphisms: 3
abelian groups (Z8, Z4 × Z2 and Z2 × Z2 × Z2) and 2 non-commutative groups (D(4) and
Ho).

Let G be a group of order 8. If G contains an element g of order 8, then G =< g > and
is hence isomorphic to Z8. By Lagrange’s theorem the only other possibility is for all the
nontrivial (6= e) elements of G to have orders 4 or 2.

We now assume that G does not contain an element of order 8 and assume for the moment
that G is abelian . There are two cases to consider.
(a) If G has an element a of order 4, then H =< e, a, a2, a3 > is a subgroup of order 4 of G
and we may choose an element c ∈ G−H. Lagrange’s theorem now tells us that G = H∪cH.
The element c has order 4 or order 2. If o(c) = 2, let b = c. If o(c) = 4, then o(c2) = 2.
If c2 ∈ G − H, then we let b = c2. If c2 ∈ H, then because it has order 2, c2 = a2 and it
follows that o(ca) = 2 and we let b = ca. We have shown that G contains an element b 6∈ H
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of order 2. We thus conclude that G = H ∪ bH. Because the group G is commutative, we
have enough information to complete its multiplication table

e a a2 a3 b ba ba2 ba3

e e a a2 a3 b ba ba2 ba3

a a a2 a3 e ba ba2 ba3 b
a2 a2 a3 e a ba2 ba3 b ba
a3 a3 e a a2 ba3 b ba ba2

b b ba ba2 ba3 e a a2 a3

ba ba ba2 ba3 b a a2 a3 e
ba2 ba2 ba3 b ba a2 a3 e a
ba3 ba3 b ba ba2 a3 e a a2

.

An analysis of the table shows that G is isomorphic to Z4 × Z2; the isomorphism θ may be
chosen to satisfy

θ(a) = (1, 0) and θ(b) = (0, 1).

(b) We are left with the possibility that every nontrivial element of G has order 2. Let
us choose two distinct elements of order 2 in G: a and b. We have already seen that the
subgroup H = {e, a, b, ab} of G of order 4 is isomorphic to Z2 ×Z2 (the case |G| = 4). So G
must contain another element c of order 2 and G = H ∪ cH. It now easy to construct the
multiplication table for the group and conclude that it is isomorphic to Z2 × Z2 × Z2.

It remains to consider non-abelian groups G of order 8. Such groups must contain
elements of order 4 and choosing such an element a, we conclude that H =< e, a, a2, a3 > is
a subgroup of order 4 of G. We next choose an element b ∈ G−H. Then o(b) = 4 or o(b) = 2.
In either case G = H ∪ bH and ab 6= ba; for if ab = ba, then (ar)(as) = (as)(ar) = ar+s,
(ar)(ba)s = (ba)s(ar) = ar+sbs and (ba)r(ba)s = (ba)s(ba)r = ar+sbr+s for all nonnegative
integers r and s and G would be abelian . We consider separately the two cases.
(a) We first study the case where all the elements of G − H have order 4. We need to
compute b2 and ab. Since b2 has order 2 and such elements can be found only in H, we
conclude that b2 = a2. We know that ab 6= ar (for all r ∈ N) and ab 6= ba. Certainly, ab 6= b
Thus ab = bar with r = 2 or 3. We show that r = 2 cannot occur. For if ab = ba2, then
(ab)2 = (ab)(ba2) = a and since ab ∈ H, it must have order 8. This would imply that G is
cyclic. Thus we are left with a group G generated by two elements a and b subject to the
relations

a4 = e, b2 = a2 and ab = ba3.

This suffices to construct the multiplication table for the group.

e a a2 a3 b ba ba2 ba3

e e a a2 a3 b ba ba2 ba3

a a a2 a3 e ba3 b ba ba2

a2 a2 a3 e a ba2 ba3 b ba
a3 a3 e a a2 ba ba2 ba3 b
b b ba ba2 ba3 a2 a3 e a

ba ba ba2 ba3 b a a2 a3 e
ba2 ba2 ba3 b ba e a a2 a3

ba3 ba3 b ba ba2 a3 e a a2

.
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An analysis of the table shows that G is isomorphic to the quaternion group Ho; an isomor-
phism θ being defined by

θ(a) = ı and θ(b) = −.

(b) We are left to consider the possibility of the existence of an element b ∈ G − H with
o(b) = 2. We need only evaluate ab. As before ab = bar with r = 2 or 3. Again, the case
r = 2 is impossible; for if ab = ba2, then (ab)2 = (ab)(ba2) = a3 and we once again would be
able to conclude that G is abelian. So in this case, the group is generated by two elements
a and b subject to the relations

a4 = e, b2 = e and ab = ba3.

This suffices to conclude that the group is isomorphic to the group of symmetries of the
square D(4).

EXERCISES

(1) Construct an isomorphism from S(3) to D(3).
(2) The group Z3 ×Z2 has order 6. Hence it is isomorphic to either Z6 or S(3). Which

is it? Construct the isomorphism.
(3) Let G be the group of order 8 with the property that all its elements other than

e have order 2. Compute its multiplication table and hence show that there is an
isomorphism of G onto Z2 × Z2 × Z2.

(4) Describe all possible groups of order 9.
(5) Describe all the subgroups of S(4). Which of these are isomorphic?
(6) Let n be a positive integer. Describe the set of generators for (Zn, +).
(7) Prove Theorem 4.37.

5. Homomorphisms and quotients

Homomorphisms and isomorphisms between groups θ : G → H were defined (Definition
4.26) previously. An injective homomorphism is also called a monomorphism, and a sur-
jective homomorphism, an epimorphism. Thus a homomorphism is an isomorphism if and
only if it is both a monomorphism and an epimorphism. Homomorphisms preserve much of
group structure; while isomorphisms are essentially relabellings of the “same” groups. An
isomorphism of a group onto itself will be called an automorphism of the group.

Definition 4.40. Let G be a group. A subgroup H ⊂ G is normal if gHg−1 ⊆ H for all
g ∈ G (that is, ghg−1 ∈ H for all g ∈ G and all h ∈ H). Two elements f and f ′ of a group
G are conjugate if there exists a g ∈ G such that f ′ = gfg−1.

Remark 4.41. The condition gHg−1 ⊆ H is, of course equivalent to H ⊆ g−1Hg. Hence
H is a normal subgroup of G if and only if gHg−1 = H for all g ∈ G.

Proposition 4.42. Let θ : G → H be a homomorphism between groups, then θ−1(e) is
a normal subgroup of G called the kernel of θ (in symbols ker(θ)). The image of θ,

Im(θ) = {h ∈ H; h = θ(g) for some g ∈ G}
is a subgroup of H.

Proof. We know that e ∈ ker(θ) and if g1 and g2 ∈ ker(θ), then

θ(g1g
−1
2 ) = θ(g1) (θ(g2))

−1 = e.
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Thus also g1g
−1
2 ∈ ker(θ). Hence ker(θ) is a subgroup of G. If g ∈ G and h ∈ ker(θ), then

θ
(

ghg−1
)

= θ(g)θ(h)θ
(

g−1
)

= θ(g) e (θ(g))−1 = e,

and thus ker(θ) is a normal subgroup of G.
Certainly eH ∈ Im(θ). If h1 and h2 ∈ Im(θ), then for i = 1 and 2, there exist gi ∈ G such

that hi = θ(gi). Hence

h1h
−1
2 = θ(g1)θ(g

−1
2 ) ∈ Im(θ),

and Im(θ) is a subgroup of H. �

Remark 4.43. • In general, for a fixed element g in a group G and a fixed sub-
group H ⊆ G, the map

θg : h 7→ ghg−1

is an isomorphism of H onto the subgroup gHg−1 ⊆ G, called conjugation (by g).

Proof. First we observe that gHg−1 is a subgroup (it certainly is a subset) of
G. We note that for all h1 and h2 ∈ H,

(gh1g
−1)(gh2g

−1)−1 = gh1g
−1gh−1

2 g−1 = g(h1h
−1
2 )g−1 ∈ gHg−1;

thus gHg−1 is a subgroup of G. The map θ preserves multiplication since for h1

and h2 ∈ H,

θ(h1h2) = g(h1h2)g
−1 = gh1g

−1gh2g
−1 = (gh1g

−1)(gh2g
−1) = θ(h1)θ(h2).

If ghg−1 = h′, then h = g−1h′g−1. Thus θ(h) = e implies that h = e. It is clear that
θ(H) = gHg−1. �

• We say that two subgroups H1 and H2 ⊆ G are conjugate if there exists a g ∈ G
such that H2 = gH1g

−1.
• Let H be a subgroup of the group G. Then H is a normal if and only if gH = Hg

for all g ∈ G. Thus for a normal subgroup H, left and right cosets coincide.

Proof. Assume that H is normal in G. Fix g ∈ G. Define a map θ : gH → Hg
by θ(gh) = hg, h ∈ H. This map is injective since h1g = h2g for h1 and h2 ∈ H
implies that gh1gg−1 = gh2gg−1 or gh1 = gh2. It is obviously surjective. Conversely,
if gH = Hg for all g ∈ G, then gHg−1 = H for all g ∈ G and hence H is a normal
subgroup of G. �

• Every non-trivial group has at least two normal subgroups: the group itself and its
trivial subgroup.

• All subgroups of an abelian group are normal.
• Every group of prime order has precisely two distinct subgroups; each is normal.
• The cyclic subgroup < (1, 2) > of S(3) is NOT normal since

(1, 2, 3)(1, 2)(1, 3, 2) = (2, 3).

The reason for introducing the concept of normality is explained by the next proposition
and remark.
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Proposition 4.44. Let H be a normal subgroup of the group G. The set of cosets

G/H = {gH; g ∈ G}
has a natural group structure by defining the product

(g1H)(g2H) = (g1g2)H for g1 and g2 ∈ G.

The coset H = eH is the identity element of this group known as the quotient group G
modulo H. For all g ∈ G, the coset g−1H is the inverse of the coset gH.

Proof. We are using left cosets; we could, of course use right cosets. The only issue
is whether or not the multiplication is well defined. (Convince yourself that all the group
axioms do indeed hold.) So what we have to prove is that if g1H = g′

1H and g2H = g′
2H,

then (g1g2)H = (g′
1g

′
2)H. The facts that g1H = g′

1H and g2H = g′
2H tell us, using only

that H is a subgroup, that g′
1g

−1
1 and g′

2g
−1
2 ∈ H. This alone is not enought to conclude

that (g′
1g

′
2)(g1g2)

−1 = g′
1g

′
2g

−1
2 g−1

1 ∈ H. We must use the fact that H is normal in G. Since
g′
2g

−1
2 ∈ H and g′

1 ∈ G we conclude that g′
1(g

′
2g

−1
2 )g′

1
−1 ∈ H. Next because H is a group (we

do not need normality for this step) and g′
1g

−1
1 ∈ H, we also see that g′

1g
′
2g

−1
2 g′

1
−1g′

1g
−1
1 ∈ H

as required. �

Remark 4.45. Let H be a normal subgroup of the group G.

(1) The map that sends g ∈ G to the coset gH is a surjective homomorphism of G onto
G/H with kernel H. We call it the canonical homomorhism of G onto G/H.

(2) The simplest example shows that the normality assumption is needed. We use
the fact that H =< (1, 2) > is not a normal subgroup of G = S(3) to show
that multiplication on S(3)/ < (1, 2) > is not well defined. We try to multiply
(1, 3)H with (2, 3)H; the result should be (1, 3, 2)H if were to use (1, 3) as the
representative for (1, 3)H and (2, 3) for (2, 3)H, then we do get (1, 3, 2) as the rep-
resentative for (1, 3, 2)H. But we can use (1, 3) as the representative for (1, 3)H
and (2, 3)(1, 2) = (1, 3, 2) as representative for (2, 3)H. If multiplication were well
defined then ((1, 3)H)((1, 3, 2)H) = (2, 3)H = (1, 3, 2)H; from which we would
conclude the false statement that (1, 3, 2)(2, 3) = (1, 3) ∈ H.

(3) For all g ∈ G, the conjugation θg is an automorphism of H.
(4) For commutative groups (G, +) the the multiplicative coset notation gH is replaced

by the additive notation g + H. In this case G/H is also commutative.

Remark 4.46. We discuss several examples fo group homomorphosms.

(1) The map the sends the complex number z to its absolute value |z| is a homomorhism
from (C∗, ·) onto (R>0, ·) whose kernel consists of the complex numbers of absolute
value 1.

(2) The exponential map that sends x ∈ (R, +) to ex ∈ (R>0, ·) is an isomorphism
whose inverse is the logarithm map.

(3) More complicated is the complex exponential map that sends z ∈ (C, +) to (C∗, ·).
It is a surjective homomorphism with kernel 2πıZ ⊂ C.

(4) Let G be any group and a ∈ G. Left translation by a, Ta, is defined by

Ta(x) = ax for x ∈ G.
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Then Ta ∈ Perm (G) and T defines an injective homomorphism from G to Perm
(G). See the next section (Cayley’s theorem) for a more complete discussion.

(5) Specialize the above situation with the two dimensional real vector space G =
(R2, +) = R × R.

(6) We construct one more group of homomorphisms (actually, a group of automor-
phisms). Let G be a group and a ∈ G. Conjugation by a, σa, is defined by

σa(x) = axa−1 for x ∈ G.

Then σa ∈ Perm (G) and since for all a, b and x ∈ G,

σa(σb(x)) = abxb−1a−1,

the map σ that sends a ∈ G to σa ∈ Perm (G) is a group homomorphism. What is
its kernel?

Definition 4.47. An exact sequence of groups is a (perhaps infinite) collection of groups
{Gi} and homomorphisms θi : Gi → Gi+1:

... G−1
θ−1−→ G0

θ0−→ G1
θ1−→ G2

θ2−→ G3
θ3−→ ...,

where
Im (θi) = ker (θi+1), or alternatively
the composite homomorphism θi+1θi : Gi → Gi+2 is the trivial homomorphism (it sends
every element of Gi to the identity element of Gi+2).

Definition 4.48. A short exact sequence of groups is a diagram (a special case of the
last definition that is most useful):

{e} → G1
θ1−→ G2

θ2−→ G3 → {e},
where
the Gi for i = 1, 2, 3 are groups,
θ1 and θ2 are group homomorphisms,
θ1 is a monomorphism (injective),
Im (θ1) = ker (θ2), and
θ2 is an epimorphism (surjective).

We have seen that for every normal subgroup H of a group G,

{e} → H → G → G/H → {e}
is a short exact sequence.

EXERCISES

(1) Let U be the group of complex numbers of absolute value 1 under mutiplication.
Show that θ(x) = e2πıx defines a homomorphism of (R, +) onto U . What is the
kernel of this homomorphism?

(2) Show that R/Z is isomorphic to U .
(3) Do the powers of a three cycle in S(3) form a normal subgroup of S(3)?
(4) Describe the kernel of the homomorphism σ.
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6. Isomorphisms

In the abstract study of groups, a group and its isomorphic image are usually indistin-
guishable. We already saw, for example, that for each positive integer n, there is up to
isomorphisms but one cyclic group Zn of order n, that Zn×Zm

∼= Znm provided (n,m) = 12,
and that D(3) ∼= S(3). One of the principal aims of this section is to properly place this last
isomorphism within a more general theory as is done in the first subsection of this section.

6.1. Every group is a subgroup of a permutation group.

Theorem 4.49. (Cayley) Every group is isomorphic to a group of permutations.

Proof. Let G be a group. We must find a set X and a group G∗ of permutations of X
such that G ∼= G∗ (thus we will have shown that G is isomorphic to a subgroup of Perm(X)).
There is very little besides G to work with. We set X = G. For g ∈ G, we define a self-map
Lg of G by

Lg(x) = gx, x ∈ G

(Lg stands for multiplication on the left by g. It is obvious that Lg is a self-map of the set
G. It is one-to-one since for x1 and x2 ∈ G, gx1 = gx2 implies that x1 = x2. The map
is onto since for all y ∈ G, g−1y ∈ G and Lg (g−1y) = y. Thus Lg ∈ Perm(G). We let
G∗ = {Lg; g ∈ G}. Obviously G∗ ⊆ Perm(G). Since Perm(G) is a group under composition,
composition is a binary operation on G∗, and to show that it is a subgroup of Perm(G), we
must only establish the closure statement: for all g1 and g2 ∈ G, Lg1

◦ (Lg2
)−1 ∈ G∗. This

follows from the obvious identities

Lg1
◦ (Lg2

)−1 = Lg1
◦ Lg−1

2
= Lg1g−1

2
.

These identities are verified in a straight forward manner. As an example we show that for
all g ∈ G, (Lg)

−1 = Lg−1 . This last equality means that Lg ◦ Lg−1 = Lg−1 ◦ Lg = idG; it
follows from

Lg ◦ Lg−1 = Lgg−1 = Le = Lg−1g = Lg−1 ◦ Lg = idG

and Le = idG.
We now have an obvious candidate for a homomorphism θL from G onto G∗: for g ∈ G,

θL(g) = Lg. The map θL is a homomorphism since for g1 and g2 ∈ G,

θL(g1g2) = Lg1g2
= Lg1

◦ Lg2
= θL(g1) ◦ θL(g2).

The map θL is injective, since for g ∈ G, Lg is the identity map if and only if g = e; it is
surjective by definition. �

Definition 4.50. The isomorphism θL : G → G∗ is called the left regular representation
of G.

Remark 4.51. It should be recognized that the map Lg, g ∈ G used in this section
corresponds to (is the same as) the translation map map Ta, a ∈ G, used in the previous
section.

2In the next section we generalize this result.
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6.2. Solvable groups. In the study of the structure of groups, the following concept
turns out to be extremely useful.

Definition 4.52. Let G be a group. We say that G is solvable if there exists a finite
sequence of subgroups {Hi} of G:

(16) G = H0 ⊃ H1 ⊃ H2 ... ⊃ Hr = {e}
such that Hi is normal in Hi−1 and the factor group Hi−1/Hi is abelian for i = 1, ..., r.

All abelian groups are obviously solvable. So are the groups S(n) for n = 2, 3 or 4
(Exercise). We establish that for each n ≥ 5, the permutation group S(n) is not solvable.
We need some preliminaries.

Theorem 4.53. Let H be a normal subgroup of G. Then G/H is abelian if and only if
aba−1b−1 ∈ H for all a and b ∈ G.

Proof. Let θ : G → G/H be the canonical homomorphism. Assume that G/H is
abelian. For all a and b ∈ G,

θ(aba−1b−1) = θ(a)θ(b)θ(a−1)θ(b−1) = eG/H .

Thus aba−1b−1 ∈ H. Conversely, assume that aba−1b−1 ∈ H for all a and b ∈ G. Let A and
B ∈ G/H. Since θ is surjective, there exists a and b ∈ G such that A = θ(a) and B = θ(b).
Thus

eG/H = θ(eG) = θ(aba−1b−1) = ABA−1B−1;

from which it follows readily that BA = AB. �

Proposition 4.54. Let H and N be subgroups of S(n) with n ≥ 5 and N normal in H.
If H contains every 3-cycle and H/N is abelian, then N contains every 3-cycle.

Proof. We take two 3-cycles in S(n) with exactly one element in common, without
loss of generality, σ = (1, 2, 3) and τ = (3, 4, 5). By hypothesis both of these belong to H
and since H/N is abelian, by the previous theorem, (4, 3, 1) = στσ−1τ−1 ∈ N . We have
completed the argument. �

Theorem 4.55. For each n ∈ Z≥5, S(n) is not solvable.

Proof. Using the notation of the definition of solvability, we conclude by induction that
each Hi contains all 3-cycles which contradicts the fact that Hr is the trivial group. �

6.3. MORE sections to be included. Consider what we should have in this section.

EXERCISES

(1) The right regular representation of the group G is defined by the map θR : G → G∗,
where

θR(g) = Rg,

Rg(x) = xg−1 for x ∈ G

and
G∗ = {Rg; g ∈ G}.

Show that G∗ is a subgroup of Perm(G) and that θR is an isomorphism of G onto
G∗.
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(2) Relate θL to θR.
(3) What can you conclude about θR of if we were to define Rg by Rg(x) = xg, g ∈ G?
(4) In this exercise we study the group A(4).

• What are the possible orders of the subgroups of A(4)?
• Write an element π ∈ A(4) as a disjoint product of cycles. Describe the products

that can possibly appear.
• Which of the following appear as isomorphic images of subgroups of A(4):

(Z3, +), Z2, Z4, Z2 × Z2?
(5) Prove that S(n) is solvable for n = 2, 3 and 4.
(6) Is A(n), n ≥ 5, solvable? Proof required.



CHAPTER 5

Algebraic structures

The main structures studied in this chapter are commutative rings and their ideals es-
pecially the ring integers and the ring of complex polynomials. We explore many of the
similarities and some of the differences between these two structures.

1. A collection of algebraic structures

We start with a rather weak structure.

Definition 5.1. A semigroup (S, ∗) is a set S together with an associative binary oper-
ation ∗ on it. It has an identity if there is an element e ∈ S such that e ∗ s = s = s ∗ e for
all s ∈ S.

Example 5.2. We continue with some simple observations.

• Every group is a semigroup.
• The integers with multiplication (Z, ·) form a semigroup with identity element 1,

but not a group.
• Let X be any set. The set F (X) of all functions from X to itself is a semigroup

under composition ◦ with identity id. If |X| > 1, then (F (X), ◦) is not a group.

More interesting are the structures that are stronger than groups.

Definition 5.3. A ring (R, +, ·) is a set R together with two binary operations addition
+ and multiplication · (usually dropped entirely from expressions) such that (R, +) is an
abelian group (thus the (additive) identity element of R is denoted by 0 and called zero) and

• multiplication is associative; that is, for all x, y and z ∈ R,

x(yz) = (xy)z,

and
• the the distributivity laws hold; that is, for all x, y and z ∈ R,

x(y + z) = xy + xz

and
(x + y)z = xy + yz.

• has a multiplicative identity 1; that is, there exists an 1 6= 0 in R such that 1x =
x1 = x for all x ∈ R. 1

The ring (R, +, ·) is usually abbreviated by R. We need to specify various kinds of rings.

Definition 5.4. A non-empty subset S of (R, +, ·) is a subring of R if it a ring with
respect to the ring operations + and · of R.

1CAUTION: this axiom is not always required in the definition of rings.

113
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It is easy to establish the following

Proposition 5.5. A non-empty subset S of (R, +, ·) is a subring if and only if for all a
and b ∈ S
(a) 1 ∈ S,
(b) a − b ∈, and
(c) ab ∈ S.

Definition 5.6. A ring (R, +, ·)
• is commutative if its multiplication is; that is, if xy = yx for all x and y ∈ R.
• is an integral domain if it is a commutative ring without zero divisors. A zero

divisor in the ring R is a non-zero a ∈ R for which there exists a non-zero b ∈ R
such that ab = 0.

• is a field if it is a commutative ring in which every non-zero element has a multi-
plicative inverse; that is, for all 0 6= x ∈ R, there exists a y ∈ R such that xy = 1.

• Let a and b be elements of the commutative ring R. It has been our practice to
denote the additive inverse of b by −b and a + (−b) by a − b. Similarly if b has a
multiplicative inverse b−1, it is customary to denote ab−1 also by a

b

Remark 5.7. In the setting of Proposition 5.5 we shall say that R is an extension of S.
This will be particularly usefull language in our discussions of subfields of C.

Example 5.8. A discussion of various important examples follows.

(1) We studied in great detail the ring (Z, +, ·). It is an integral domain, but not a
field. Under our definitions, (2Z, +, ·) certainly satisfies all the properties to be an
integral domain, but it is not even a subring of Z because it does not contain a
(mutiplicative) identity.

(2) The rationals Q, reals R, and complex numbers C are fields. Do the quaternions
H form an integral domain or a field. Why? Each non-zero element of H has an
inverse (see the exercise below).

(3) The set M2(Z) of 2× 2 matrices with integer entries is a ring under matrix addition

and multiplication with identity I =

[

1 0
0 1

]

, but not an integral domain since

[

1 0
0 0

] [

0 0
0 1

]

=

[

0 0
0 0

]

.

The ring is not commutative since, for example,
[

2 1
0 1

]

=

[

1 1
0 1

] [

2 0
0 1

]

6=
[

2 0
0 1

] [

1 1
0 1

]

=

[

2 2
0 1

]

.

(4) Similar properties hold for the rings M2(Q), M2(R) and M2(C).
(5) For every integer, n ≥ 2, (Zn, +, ·) is a commutative ring with identity. It has zero

divisors if n is composite and it is a field for for n prime (see next set of exercises).
(6) Define

Z[
√

2] = {a + b
√

2; a, b ∈ Z} ⊂ R

and endow it with the usual addition and multiplication it inherits as a subset of
R. Then (Z[

√
2], +, ·) is an integral domain with an identity.
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(7) So is
Z[ı] = {a + bı; a, b ∈ Z} ⊂ C.

(8) The last two integral domains are not fields. We can enlarge them to get fields
Q[

√
2] and Q[ı]:

Z[
√

2] ⊂ Q[
√

2] = {a + b
√

2; a, b ∈ Q} ⊂ R

and
Z[ı] ⊂ Q[ı] = {a + bı; a, b ∈ Q} ⊂ C.

(9) The last set of examples is part of the story of the first appearance of fields in the
study of mathematics – see Chapter 9. Let n be a positive integer and consider a
monic polynomial2 P (x) of degree n

xn + an−1x
n−1 + ... + a1x + a0

with rational coefficients ai. The fundamental theorem of algebra3 tells us that P (x)
has precisely n roots counting multiplicities; thus at most n distinct roots. There
is smallest field F consisting of complex numbers and containing these roots. The
study of the roots of P (x) is facilitated by the field F . For degree one polynomials,
F = Q. For degree two polynomials, there are already infinitely many candidates
for F (these fields can be divided however into finitely many classes). The examples
Q[

√
2] and Q[ı] belong to distinct classes and correspond to the polynomials x2 − 2

and x2 + 1, respectively.

Rings share many properties with the integers. An example is

Proposition 5.9. Let R be a ring. Then x0 = 0 = 0x for all x ∈ R.

Proof. Using the axioms for rings

0x + 0x = (0 + 0)x = 0x.

Thus also
(0x + 0x) + (−0x) = 0x + (−0x) = 0.

But the left-hand side of the last equation is

0x + (0x + (−0x)) = 0x.

The proof that x0 = 0 is similar and left to the reader. �

Definition 5.10. A map θ from a ring R to a ring S is a (ring) homomorphism if

(1) θ(a + b) = θ(a) + θ(b) and
(2) θ(ab) = θ(a)θ(b) for all a and b ∈ R.
(3) θ(1) = 1.
(4) As usual, θ is an isomorphism if it both injective and surjective. An isomorphism

of the ring R onto itself is an automorphism pf R.

We define two more general structures. The first of these should be familiar to most
readers.

2See the next section for more information on polynomials.
3Its “easiest” proof uses complex analysis.
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Definition 5.11. Let K be a field.4 A vector space V (over the field K) is an abelian
group V (written additively) together with a scalar multiplication (of elements of V by
elements of K); that is, an operation5 that assigns to each scalar λ ∈ K and each vector
v ∈ K, a vector (written as) λv ∈ V such that

(1) for all v ∈ V , 1v = v,
(2) for all λ and µ ∈ K and all v ∈ V , (λµ)v = λ(µv),
(3) for all λ and µ ∈ K and all v ∈ V , (λ + µ)v = λv + µv, and6

(4) for all λ ∈ K and all u and v ∈ V , λ(u + v) = λu + λv.

If V is also a ring (thus with a second multiplication operation which maps ordered pairs of
vectors into their product; V = (V, +, ·)), then it is called a (K-)algebra provided the two
multiplications (ring multiplication in V and scalar multiplication) are related by

λ(uv) = (λu)v = u(λv) for all λ ∈ K and all u and v ∈ V.

Example 5.12. Some examples that should be familiar to the reader as well as some
examples that are not so familiar follow.

(1) Most elementary linear algebra courses (books) are devoted to a study of the vector
spaces Rn over R consisting on n-tuples (λ1, ..., λn) of real numbers and the vector
space Cn over C where the n-tuples (λ1, ..., λn) consist of complex numbers.

(2) Every vector space over C is automatically a vector space over R. For (λ1, ..., λn) ∈
Cn, we can use the decomposition

λi = ai + biı

of each component into its real an imaginary part, to construct a canonical identi-
fication

Cn 3 (λ1, ..., λn) 7→ (a1, ..., an, b1, ..., bn) ∈ R2n.

(3) Sets of polynomials form interesting vector spaces. They are studied in the next
section.

(4) Let I be any interval in R. The space CR(I) of continuous real valued functions
on I is an R-algebra with the usual definitions of addition and multiplication of
functions.

(5) The constructions and definitions of the last example also hold with R replaced by
Q or C. We can also replace I by any topological space – a space where the concept
of continuity makes sense.

(6) We fix a prime p. The set M2(Zp) of 2 × 2 matrices with entries from the field Zp

with the usual matrix operations form a Zp-algebra.
(7) The set of 2 × 2 matrices of the form

a

[

1 0
0 1

]

+ b

[

0 −1
1 0

]

,

4For most of the interesting examples K is Q, R or C.
5Thus a map from K × V into V .
6Note that in the last and next equation, the + sign is used in a different sense on the two sides of the

equal sign. The + sign on the left hand-side refers to scalar addition in the field K; while the + sign on the
right hand-side refers to vector addition in V . Similarly the symbol 0 stands for both the additive identity
in the field K and the identity in the group V .
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with a and b ∈ R with the usual matrix operations form another model for the
complex numbers C; the matrices

I =

[

1 0
0 1

]

and Y =

[

0 −1
1 0

]

represent 1 (the identity) and ı, respectively. In particular, a complex number a+bı

can also be considered as the real 2 × 2 matrix

[

a −b
b a

]

.

(8) Fix a positive integer n. The set of n × n matrices Mn(Z), Mn(Q), Mn(R) and
Mn(C), with respectively, integer, rational, real and complex entries are much stud-
ied objects in many branches of theoretical and applicable mathematics.

Remark 5.13. In the rest of this chapter we will use elementary properties of vector
spaces and linear maps between them. In particular, we will use the following properties:
Let X = {X1, X2, ..., Xn} be a finite set of vectors in a vector space V over the field K.

• We say that the set X is a spanning set for V if every vector v ∈ V is a linear com-
bination of vectors in X; that is, there exists constants λi such that v =

∑n
i=1 λiXi.

In this case we say that the vector space is finite dimensional.
• The set X is linearly independent if a relation of the form 0 =

∑n
i=1 λiXi with the

constants λi ∈ K implies that each λi = 0.
• For finite dimensional vector spaces, the dimension of the space can be defined

as the minimum number of spanning vectors or the maximum number of linearly
independent vectors in the space.

SOME MATERIAL ON DETERMINANTS AND DIAGONALIZATION OF MATRI-
CES NEEDED FOR FUTURE CHAPTERS.

EXERCISES

(1) Show that the semigroup (F (X), ◦) has the following weak form of the cancellation
property. Let f , g and h ∈ F (X). If f ◦g = f ◦h and f is injective, then g = h. Show
conversely that if for some fixed f ∈ F (X), we have that for all g and h ∈ F (X)
f ◦ g = f ◦ h implies that g = h, then f is injective.

Similarly show that f ∈ F (X) is surjective if and only if for all g and h ∈ F (X),
g ◦ f = h ◦ g implies that g = h.

(2) Show that every non-zero element in the quaternions H has a (multiplicative) in-
verse.

(3) We have seen that there is a map M that assigns to the complex number c = a+ bı,

with a and b ∈ R, the real 2 × 2 matrix

[

a −b
b a

]

. Call this set of matrices M.

• Show that M is a field with respect to matrix addition and multiplication.
• Show that for two complex numbers c1 and c2,

M(c1 + c2) = M(c1) + M(c2) and M(c1c2) = M(c1)M(c2).

• Show that Thus M is an isomorphism between C and M.
(4) Prove that a finite integral domain must be field.
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Most of our examples on rings will involve two cases: the integers (Z, +, ·) that were
already studied in great detail and spaces of polynomials whose study is begun in the next
section.

2. The algebra of polynomials

We begin with a

Definition 5.14. A (complex) polynomial p(x) is a formal expression in an indeterminate
x and its powers of the form

(17) p(x) = a0 + a1x + ... + anxn,

where n ∈ Z≥0 and ai ∈ C for i = 0, 1, ..., n. For each non-negative integer k we view xk

as the kth power of x and thus x0 = 1. We denote the set of polynomials by C[x]. If we
restrict the domain of coefficients to be respectively the reals, rationals, integers, we get
respectively the sets of real polynomials, rational polynomials and integer polynomials. With
obvious notational conventions, we have the proper set inclusions

C[x] ⊃ R[x] ⊃ Q[x] ⊃ Z[x].

If an 6= 0, then we say the polynomial p(x) has degree n and write deg p(x) = n, and we call
an the leading coefficient of of p(x). The polynomial p(x) is monic if an = 1.

Remark 5.15. (1) The degree has not been defined for the identically zero polyno-
mial (n = 0 = a0). It is covenient to define the degree of that polynomial, which
will be denoted by 0, to be −∞ and to regard −∞ < d for all d ∈ Z≥0.

(2) The constants are a subset of the polynomials: C ⊂ C[x]. The non-zero constants
C 6=0 are precisely the polynomials of degree 0.

(3) We will work mostly with complex polynomials. The reader should decide what
changes, if any, are required for more restrictive classes of polynomials. Because Z

is not a field, the Z[x] theory is significantly different from the C[x] theory.
(4) The complex polynomial p(x) can be regarded both as a formal expresssion in its

own right and as a continuous (it has many more properties) self-map of C. In this
context, it is usually written as

p : C → C,

and p(x) denotes the value of the function p at the point x ∈ C. Real (rational,
integral) polynomials define self maps of R (Q, Z). We can, of course, use results
from calculus when considering element of R[x]. We will use below at least one such
result.

It is convenient to write

p(x) =
n
∑

i=0

aix
i =

∞
∑

i=0

aix
i,

where in the last sum it is understood that ai = 0 for all but finitely many indeces i. With
this convention we introduce several binary operations:

addition of polynomials (on C[x] × C[x])
∞
∑

i=0

aix
i +

∞
∑

i=0

bix
i =

∞
∑

i=0

(ai + bi)x
i,
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multiplication of polynomials by scalars (on C × C[x])

λ

( ∞
∑

i=0

aix
i

)

=
∞
∑

i=0

λaix
i

and multiplication of polynomials (on C[x] × C[x])
( ∞
∑

i=0

aix
i

)( ∞
∑

i=0

bix
i

)

=
∞
∑

i=0

(

i
∑

j=0

ajbi−j

)

xi.

Multiplication of polynomials by scalars is a special case of the binary operation of multi-
plication of polynomials. A tedious checking of the many axioms shows that C[x] with the
above algebraic binary operations is a C-algebra. Its dimension as a vector space over C

is ∞. The reader should check that the above binary operations (especially multiplication
of polynomials) are the ones familiar from high school algebra. As remarked earlier, the
C-algebra C[x] is a subalgebra of CC(C) the space of continuous complex valued functions
of a complex variable. As such its study is also a part of analysis. The reader should be
convinced that the formal operations of addition and multiplication of polynomials, do agree
with the corresponding concepts when the polynomials are viewed as functions.

The function degree is a map

deg : C[x] → Z≥0 ∪ {−∞}.
The most important, for our applications, properties of this map are summarized in

Theorem 5.16. Let a(x) and b(x) ∈ C[x]. Then
(a) deg (a(x) + b(x)) ≤ max{deg (a(x)), deg (b(x))}, and
(b) deg (a(x)b(x)) = deg (a(x)) + deg (b(x)).

Proof. The proof is completely straight forward and hence left to the reader. We
remark that in the arithmetic for (Z≥0 ∪ {−∞}, +.·) that we are using −∞ + a = −∞ for
all a ∈ Z≥0 ∪ {−∞}. �

Remark 5.17. In our study of the integers, the absolute value was a useful tool in
determining the size of an integer (in existence arguments, for example). We shall see that
we can use the degree to assign a size to a polynomial in many arguments.

For each non-negative integer n, we let Cn[x] denote the set of polynomials of degree
≤ n. It is clear that Cn[x] is a vector subspace of C[x] of dimension n + 1 and that for all n
and m ∈ Z≥0, the multiplication map

(18) M : Cn[x] × Cm[x] → Cn+m[x]

which assigns to each ordered pair (p(x), q(x)) ∈ Cn[x] × Cm[x] its product p(x)q(x) ∈
Cn+m[x] is a surjection.

A useful alternate form of writing (17) is

(19) p(x) = λ (x − α1) ... (x − αn),

with λ and the collection of αi ∈ C. It is quite easy to go from (19) to (17):

aj = (−1)n−jλ
∑

i1<i2...in−j

αi1αi2...αin−j
, j = 0, 1, ..., n.
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It is particularly easy to conclude that

a0 = (−1)nλα1α2...αn, an−1 = −λ(α1 + α2 + ...αn), an = λ;

equations that will be used many times in the sequel.
The journey from (17) to (19) is not so quick and requires some very non-trivial mathe-

matics, the Fundamental theorem of algebra discussed in Chapter 7.

EXERCISES

(1) Show that the the map M of (18) is surjective. Let p(x) ∈ Cn+m[x]. Describe
M−1(p(x)).

HINT: You may (and probably should) use the Fundamental theorem of algebra.
(2) Let a(x) and b(x) ∈ C[x]. What happens if you try to divide the polynomial b(x)

by the polynomial a(x)? Is there a different answer if you assume that a(x) and
b(x) ∈ Z[x]?

2.1. The vector space of polynomials of degree n. We are assuming that the
reader has some familiarity with the concepts of linear algebra and use it to study in detail
the vector space Cn[x], here n is an arbitraty non-negative integer. As we already observed
this vector space (over C) has dimension n + 1. A convenient basis for Cn[x] consists of the
n + 1 vectors

1, x, x2, ..., xn.

The polynomial (17) can be represented by the column vector ((n + 1) × 1 matrix) with
entries a0, a1, ..., an, and a linear operator

T : Cn[x] → Cm[x]

can be represented with respect to such bases by the an (m + 1)× (n + 1) matrix MT whose
jth row is the vector (α1, α2, ..., αm+1) provided that the the operator T sends the vector
xj−1 ∈ Cn[x] to the vector

∑m+1
i=1 αix

j−1 ∈ Cm[x]. Thus the vector of coefficients of the image
of the vector of coefficients v ∈ Cn+1 of the vector p(x) ∈ Cn[x] is the vector MT v ∈ Cm+1.
Review linear operator, kernel or null space of an operator and image of an operator as well
as the

Theorem 5.18. Let L be a linear operator from a vector space V to a vector space W .
Then the dimension of V equals the dimension of the kernel of L plus the dimension of its
image (the vector space L(V ) ⊆ W ).

2.2. The Euclidean algorithm (for polynomials). We start with

Definition 5.19. Let a(x) and b(x) ∈ C[x]. We say that a(x) divides b(x) and write
a(x)|b(x) if there exists a q(x) ∈ C[x] such that b(x) = a(x)q(x). We write in this case

q(x) = b(x)
a(x)

.

Theorem 5.20 (The division algorithm). Let a(x) and b(x) be polynomials and assume
that a(x) is not the zero polynomial (thus deg a(x) > −∞). There exist unique polynomials
q(x) and r(x) such that
(a) b(x) = a(x)q(x) + r(x), and
(b) deg r(x) < deg a(x).
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Proof. The reader should note the similarities of the statement and proof to those of
Theorem 1.13 of Chapter 1. In each case we are dividing one quantity by second quantity
to obtain a quotient and a remainder. The remainder should be “smaller” than the second
quantity. The measurement of smallness in the case of integers was obvious; for polynomials,
it is measured by the degree. Just like in the case of integers, the proof has two parts.

Existence: If a(x) divides b(x), set q(x) = b(x)
a(x)

and r(x) = 0.

Assume now that a(x) does not divide b(x). This forces the degree of a(x) to be positive,
Let

D = {deg (b(x) − a(x)k(x)); k(x) ∈ C[x]}.
We claim that D ⊆ Z≥0. For if there existsts a k(x) ∈ C[x] such that b(x) − a(x)k(x) = 0,
then a(x) would divide b(x). Let d be the greatest lower bound for D. Then there exists
a polynomial q(x) ∈ C[x] such that r(x) = b(x) − a(x)q(x) has degree d. If d = 0, then
ceratainly d = deg r(x) < deg a(x). We claim that also if d > 0, then d < deg a(x). So
assume that d > 0. If d ≥ deg a(x), we write

r(x) = α0x
d + α1x

d−1 + ... + αd, α0 6= 0

and
a(x) = β0x

n + β1x
n−1 + ... + βn, β0 6= 0, d ≥ n.

Since

b(x) − a(x)

[

q(x) +
α0

β0

xd−n

]

= r(x) − a(x)

[

α0

β0

xd−n

]

= γ0x
d−1 + ... + γd−1

has non-negative degree ≤ (d− 1), we have reached a contradiction to the fact that d is the
smallest element of D.

Uniqueness: Write b(x) = a(x)q(x) + r(x) = a(x)q1(x) + r1(x), where q(x), q1(x), r(x)
and r1(x) ∈ C[x], and also deg r(x) < deg a(x) > deg r1(x). Then

a(x)[q(x) − q1(x)] = r1(x) − r(x).

If q(x) 6= q1(x), then
deg (a(x)[q(x) − q1(x)]) ≥ deg (a(x))

while
deg (r1(x) − r(x)) ≤ max{deg (r1(x)), deg (r(x))} < deg (a(x));

which is impossible. Thus q(x) = q1(x) and hence also r(x) = r1(x). �

Theorem 5.21. Let a(x) and b(x) be polynomials and assume that not both of these
are the zero polynomial. There exists a unique monic polynomial d(x) = (a(x), b(x)) =
gcd(a(x), b(x)) of degree ≥ 0 such that
(a) d(x)|a(x) and d(x)|b(x), and
(b) whenever c(x) ∈ C[x] divides both a(x) and b(x), it also divides d(x).

Proof. We are again modeling our proof on the corresponding theorem for the integers.
Let

D = {a(x)s(x) + b(x)t(x); s(x) and t(x) ∈ C[x] and a(x)s(x) + b(x)t(x) 6= 0}.
The set D is not empty (it contains either a(x) or b(x)). Let

D = {d ∈ Z; d = deg (p(x)) for some p(x) ∈ D}.
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The set D is not empty because D is not and does not contain −∞ because 0 6∈ D. Hence
D is a non-empty set of integers that is bounded from below (by 0). It hence contains a
smallest (non-negative) element δ. We can thus find a monic polynomial d(x) = a(x)so(x)+
b(x)to(x) ∈ D whose degree is δ (d(x) cannot be the zero polynomial).

The proof of (b) is rather simple. We first note that c(x) 6= 0 as otherwise both a(x) =
0 = b(x). Obviously c(x) divides d(x) = a(x)so(x) + b(x)to(x).

We proceed to the proof of (a). By the division algorithm a(x) = d(x)q(x) + r(x) where
r(x) and q(x) ∈ C[x] with deg (r(x)) < δ = deg (d(x)). Thus

r(x) = a(x) − d(x)q(x) = a(x) − q(x)[a(x)so(x) + b(x)to(x)]

= a(x)[1 − q(x)so(x)] + b(x)[−q(x)to(x)],

and if r(x) were not the zero polynomial, it would certainly belongs to D. Since the degree
of r(x) is smaller than δ (which is the minimum of the degrees of the polynomials in D),
r(x) = 0. This shows of course that d(x) divides a(x). The argument that d(x)|b(x) is
similar. We have established existence.

For uniqueness assume that the monic polynomial d1 also satisfies conditions (a) and (b).
We use (a) for d1(x) to conclude that it divides both a(x) and b(x). Now we use (b) for d(x)
with c(x) = d1(x) to conclude that d1(x)|d(x). Similarly d(x)|d1(x). Since both d(x) and
d1(x) are monic polynomials, we conclude that d(x) = d1(x). �

Definition 5.22. As with integers, we call d(x), the greatest common divisor (gcd) of
a(x) and b(x) and say that a(x) and b(x) are relatively prime if d(x) = 1. As with integers,
we define (0, 0) = 0.

Corollary 5.23 (of proof). For all a(x) and b(x) ∈ C[x], (a(x), b(x)) is a linear com-
bination of a(x) and b(x); that is, there exist s(x) and t(x) ∈ C[x] such that

(a(x), b(x)) = a(x)s(x) + b(x)t(x).

Remark 5.24. The above corollary does not tell us how to compute (a(x), b(x)) as a
linear combination of a(x) and b(x). THE GCD ALGORITHM of section 3 of Chapter 1
works for complex polynomials

Instead of describing the general algorithm, we illustrate (using notation that is a straight
forward translation of the algorithn for integers) with an example of two poynomials a(x) =
x3 − 3x2 + 2x and b(x) = 2x2 − 6x. To give us confidence in our calculation, we use the
fundamental theorem of algebra to factor the polynomials:

a(x) = x(x − 1)(x − 2), b(x) = 2x(x − 3).

The factored forms of the two polynomials tell us immediately that (a(x), b(x)) = x. The
algorithm (without taking advantage of the factorization which is not needed) now reads

[

1 0
0 1

∣

∣

∣

∣

x3 − 3x2 + 2x
2x2 − 6x

]

1

2
x→

[

1 −1
2
x

0 1

∣

∣

∣

∣

2x
2x2 − 6x

]

→
[

1
2

−1
4
x

0 1
2

∣

∣

∣

∣

x
x2 − 3x

]

.

As is the case with the earlier version of this algorithm, the arrows need not alternate
between the rows of matrices; whereas it was convenient to use this alternating convention
when dealing with integers, it may not be when dealing with polynomials – the aim in this
case is to continue reducing the degrees of the polynomials appearing un the last columns of
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the matrices. The meaning of the last arrow should be obvious to the reader. We conclude
from the above calculations that

x = (a(x), b(x)) =
1

2
(x3 − 3x2 + 2x) − 1

4
x(2x2 − 6x);

as can easily be checked. As we have pointed out, we need not the use the fundamental
theorem of algebra to factor the polynomials nor do we need to know what the gcd is in
order to compute it. We compute the gcd of a second set of two polynomials:

a(x) = x3 − 3x2 + 2x, b(x) = x4 − 5x3 + 7x2 − 3x.

It is completely obvious that x|(a(x), b(x)); but of course other monic polynomials of degree
1 may also divide (a(x), b(x)). The algorithm reads

[

1 0
0 1

∣

∣

∣

∣

x4 − 5x3 + 7x2 − 3x
x3 − 3x2 + 2x

]

x→

[

1 −x
0 1

∣

∣

∣

∣

−2x3 + 5x2 − 3x
x3 − 3x2 + 2x

]

−2→

[

1 −x + 2
0 1

∣

∣

∣

∣

−x2 + x
x3 − 3x2 + 2x

]

−x→
[

1 −x + 2
x −x2 + 2x + 1

∣

∣

∣

∣

−x2 + x
−2x2 + 2x

]

.

It is now easily concluded that

x(x − 1) = (a(x), b(x)) = (−1)(x4 − 5x3 + 7x2 − 3x) + (x − 2)(x3 − 3x2 + 2x);

Lemma 5.25. Let a(x) and b(x) ∈ C[x], and assume that b(x) = a(x)q(x)+r(x) for some
q(x) and r(x) ∈ C[x]. Then (a(x), b(x)) = (a(x), r(x)).

Proof. Let d(x) = (a(x), b(x)). If d(x) = 0, then a(x) = 0 = b(x) and there is nothing
to prove. So assume that d(x) 6= 0. In this case, d(x)|r(x) and thus d(x)|(a(x), r(x)). But
also (a(x), r(x))|b(x) and (a(x), r(x))|a(x); hence (a(x), r(x))|d(x) and thus (a(x), r(x)) =
d(x). �

Theorem 5.26 (The Euclidean algorithm). Let a(x) and b(x) ∈ C[x] with a(x) 6=
0. Then there exists a unique n ∈ N, unique r1(x), r2(x), ..., rn(x) ∈ C[x] and unique
q1(x), q2(x), ..., qn(x), qn+1(x) ∈ C[x] such that

b(x) = a(x)q1(x) + r1(x), 0 ≤ deg (r1(x)) < deg (a(x))
a(x) = r1(x)q2(x) + r2(x), 0 ≤ deg (r2(x)) < deg (r1(x))
r1(x) = r2(x)q3(x) + r3(x), 0 ≤ deg (r3(x)) < deg (r2(x))

·
·
·

rn−2(x) = rn−1(x)qn(x) + rn(x), 0 ≤ deg (rn(x)) < deg (rn−1(x))
rn−1(x) = rn(x)qn+1(x)

and (a(x), b(x)) = rn(x).

Proof. The existence and uniqueness of n, and the existence and properties of the
collections of ri(x) and qi(x) follow from the division algorithm. The last lemma tells us that

(b(x), a(x)) = (a(x), r1(x)) = (r1(x), r2(x)) = ... = (rn−2(x), rn−1(x)) = (rn−1(x), rn(x)) = rn(x).

�
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2.3. Differentiation.

Definition 5.27. We define formally the derivative, p′(x) of the polynomial p(x) of (17)
as the polynomial

p′(x) = a1 + 2a2x + ... + nanxn−1.

For each non-negative integer k, the kth derivative p(k)(x) of the polynomial p(x) is defined
inductively by p(0)(x) = p(x) and p(k+1)(x) is the derivative of p(k)(x). Note that the nth

derivative of an nth degree polynomial is a non-zero constant, while for each m > n, its mth

derivative is zero.

Theorem 5.28 (Taylor series). Let p(x) be an nth degree polynonial, then for all zo and
∆ ∈ C

p(zo + ∆) = p(zo) + p′(zo)∆ +
p(2)(zo)

2!
∆2 + .... +

p(n)(zo)

n!
∆n.

Proof. The proof is a long calculation using the binomial theorem that is left to the
reader. Note that we claim here that the proof is formal calculation that does not require
any analysis. �

As an illustration of the power of formal calculations and because it will be needed in
the section on multiple roots, we establish the following

Theorem 5.29. Let p(x), q(x) and r(x) be three polynomials with r(x) = p(x)q(x). Then

r′(x) = p′(x)q(x) + p(x)q′(x).

Proof. In the arguments that follow, we have ignored the indeces of summation, and
coefficients indexed by a negative integer should be taken as zero. Let

p(x) =
∑

i

aix
i, q(x) =

∑

i

bix
i and r(x) =

∑

i

cix
i,

Then
p′(x) =

∑

i

iaix
i−1, q′(x) =

∑

i

ibix
i−1, r′(x) =

∑

i

icix
i−1

and
ci =

∑

j

ajbi−j.

Write
p′(x)q(x) + p(x)q′(x) =

∑

i

dixi.

We compute di. From the last equation, it follows that

(20) di =
∑

j

((j + 1)aj+1bi−j + (i − j + 1)ajbi−j+1) .

We need to establish that

di = (i + 1)ci+1 = (i + 1)
∑

j

ajbi+1−j;

which follows upon rewriting (20) as

di =
∑

j

(j + 1)aj+1bi−j +
∑

j

(i − j)aj+1bi−j =
∑

j

(i + 1)aj+1bi−j = (i + 1)
∑

j

ajbi−(j−1).
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�

EXERCISES

(1) Let n be a positive integer, and let p(x), p1(x), ... pn(x) be a collection of n + 1
polynomials with

p(x) =
n
∏

i=1

pi(x).

Show that

p′(x) =
n
∑

j=1

n
∏

i=1

qij(x),

where

qij(x) =

{

pi(x) for i 6= j
p′i(x) for i = j

.

(2) Let n be a positive integer. We study the differential operator

D : Cn+1[x] → Cn[x]

defined by sending the polynomial p(x) to the polynomial p′(x), and the integral
operator

I : Cn[x] → Cn+1[x]

defined by sending the polynomial anxn + an−1x
n−1 + ... + a0 to the polynomial

an

n+1
xn+1 + an−1

n
xn + ... + a0x.

• Show that D and I are linear operators.
• Show that D is surjective and that I is injective.
• Show that

I ◦ D : Cn[x] → Cn[x]

has a one dimensional kernel. What is the image of this operator?
• Show that

D ◦ I : Cn[x] → Cn[x]

is the identity operator.
• Does there exist a linear operator

T : Cn[x] → Cn+1[x]

such that T ◦ D is the identity?

3. Ideals

3.1. Ideals in commutative rings. Let (R, +, ·) be a commutative ring and I ⊆ R a
subring. We would like to give the additive cosets

R/I = {a + I; a ∈ R}
a quotient ring structure. Let a and b ∈ R. From our work on quotient groups, we know
that R/I is an abelian group; addition is, of course, defined by

(a + I) + (b + I) = (a + b) + I.

We try to define multiplication anologously by

(a + I)(b + I) = (ab) + I.
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We must verify that this is a well defined operation. Toward this end, let a′ and b′ ∈ R be
such that a − a′ and b − b′ ∈ I. We need to verify that a′b′ − ab ∈ I. We try to do so by
observing that

a′b′ − ab = a′b′ − a′b + a′b − ab = a′(b′ − b) + (a′ − a)b.

We know that (b′ − b) and (a′ − a) ∈ I. But since we only know that a′ and b ∈ R (not I),
we are unable to conclude that a′(b′ − b) and (a′ − a)b ∈ I (which would conclude the proof
that multiplication is well defined). Try as one might, there is no way out of this difficulty
without some addtional assumption on I.

Definition 5.30. A non-empty subset I of a commutative ring R is an ideal provided:
(a) for all a and b ∈ I, (a − b) ∈ I, and
(b) for all a ∈ I and all r ∈ R, ar ∈ I.

Remark 5.31. • Every commutative ring R that contains 2 or more elements has
two ideals: the trivial ideal {0} and the unit ideal R. An ideal I ⊂ R is called
proper.

• Ideals need not be subrings since they need not contain 1.
• If an ideal I in R contains an invertible element (then it must also contain 1) of R,

then I = R.
• If I is a proper ideal in the commutative ring R, then R/I is a commutative ring

known as quotient ring .
• For every commutative ring R, R/{0} = {R} and R/R = {0} = {0+R}. The latter

is, of course, not a ring in our definition since it does not contain 1.
• Ideal may also be defined for non-commutative rings. In this case one needs to

distinguish three classes of ideals: left, right and two sided.
• If I1 and I2 are ideals in the commutative ring R, then so is

I1 + I2 = {a ∈ R; a = a1 + a2 with ai ∈ Ii}.
Definition 5.32. Let R be a commutative ring and a ∈ R, the principal ideal generated

by a is defined by
< a >= Ra = {ra; r ∈ R}.

More generally, assume that for some positive integer n, a1, ..., an ∈ R. The ideal generated
by a1, ..., an is

< a1, ..., an >= a1R + ... + anR = {r1a1 + ... + rnan; ri ∈ R for i = 1, ..., n}.
The proof that a1R + ... + anR is an ideal is elementary. Let r1a1 + ... + rnan and

r′1a1 + ... + r′nan ∈ a1R + ... + anR. Then

(r1a1 + ... + rnan) − (r′1a1 + ... + r′nan) = (r1 − r′1)a1 + ... + (rn − r′n)an ∈ a1R + ... + anR

and if r ∈ R, then

r(r1a1 + ... + rnan) = (rr1)a1 + ... + (rrn)an ∈ a1R + ... + an.

Proposition 5.33. Let θ : R → S be a ring homomorphism. Then
(a) ker(θ) = {r ∈ R; θ(r) = 0} is an ideal in R,
(b) Im(θ) is a subring of S,
(c) ker(θ) = {0} if and only if θ is injective, and
(d) θ is injective whenever R is a field.
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Example 5.34. We discuss three important examples.

• (Z, +, ·) is a subring, hence a subgroup, of (Z[x], +·), with respect to the additive
structures. But the two groups are not isomorphic. In this case, we can determine all
group homomorphisms θ : (Z, +) → (Z[x], +). The group Z is cyclic with generator
1. Hence θ(Z) is cyclic with generator θ(1). But Z[x] is certainly not a cyclic group.

• Z is a subring of Z[
√

2], but not an ideal.
• Let p(x) be a monic polynomial in C[x] of degree n > 0. Let I be the principal

ideal (p(x)). Then the quotient ring C[x]/I is isomorphic as a vector space to
Cn−1[x]. Each equivalence class Q(x) + I ∈ C[x]/I has a canonical representative
as a polynomial q(x) of degree ≤ (n − 1). To verify the last claim assume that the
degree of Q(x) = axm + ... is m ≥ n, then Q(x) − axm−np(x) is equivalent to Q(x)
and has degree and most m − 1. If m − 1 < n we are done. Otherwise, we iterate
the procedure and eventually find a plynomial q(x) of degree at most n − 1 that is
equivalent to Q(x). It is clear that two distinct polynomials of degree ≤ (n − 1)
cannot be equivalent modulo the ideal I (their difference cannot belong to I). This
example introduces a multiplication structure on polynomials of degree ≤ (n − 1)
that is very different from the multiplicative stucture on C[x]

• We continue with the last example with p(x) = x3 − 1. Here the multiplication (in
terms of canonical representatives for equivalence classes) yields

(a0+a1x+a2x
2)(b0+b1x+b2x

2) = (a0b0+a1b2a2b1)+(a1b0+a0b1+a2b2)x+(a2b0+a1b1+a0b2)x
2.

3.2. Ideals in Z and C[x].

Proposition 5.35. Every ideal I in Z is principal.

Proof. If I is the trivial ideal (< 0 >) or the unit ideal (< 1 >= Z), it is certainly
principal. Assume now that I is not the trivial ideal. It thus contains an integer a 6= 0.
If a < 0, then I also contains (−1)a > 0. Thus the set of integers S = {b ∈ I; b > 0} is
non-empty and bounded from below and hence contains a smallest element d. We claim that
I =< d >. Because d ∈ I, it follows the < d >= dZ ⊆ I. Conversely, if c ∈ I, then by the
division algorithm c = qd + r for some q and r ∈ Z with 0 ≤ r < d. Hence r ∈ I. If r 6= 0,
then it would also belong to S which would contradict that d was the smallest element of S.
We conclude that c ∈< d > and hence I ⊆< d >. �

Proposition 5.36. Every ideal I in C[x] is principal.

Proof. If I is the trivial ideal (< 0 >) or the unit ideal (< 1 >= C[x]), it is certainly
principal. Assume now that I is not the trivial ideal nor the unit ideal. Let D be the set
of degrees of the non-zero elements of I. It is a non-empty subset of N. It thus contains
a smallest integer d 6= 0. If d = 0, then I would contain a non-zero constant and would
hence be a the unit ideal. Thus there is a polynomial d(x) of degree d in I. We claim that
I =< d(x) >. Because d(x) ∈ I, it follows that < d(x) >= d(x)C[x] ⊆ I. Conversely, if
p(x) ∈ I, then by the division algorithm p(x) = q(x)d(x)+r(x) for some q(x) and r(x) ∈ C[x]
with r(x) = 0 or 0 ≤ deg(r(x)) < d. Now r(x) ∈ I. If r(x) 6= 0, then its degree would belong
to D and would be smaller than d. This contradiction shows that r(x) = 0 and hence that
p(x) ∈< d(x) >. Thus I ⊆< d(x) >. �

Definition 5.37. A proper ideal I in a commutative ring R is a prime ideal if for all a
and b ∈ R, ab ∈ I implies that either a or b ∈ I, and is a maximal ideal if whenever N is
another proper ideal with I ⊆ N ⊂ R, then I = N .
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Remark 5.38. The following assertions are easily established.

• An ideal I in a commutative ring R is maximal if and only if R/I is a field.
• An ideal I in R is prime if and only if R/I is an integral domain.

Proof. As an illustration, we provide a proof of this (and part of the next)
assertion. Say I is a prime ideal . Let a and b ∈ R if (a + I)(b + I) = I, then ab ∈ I
and hence either a or b must be in I and thus either a+I or b+I is the zero element
of R/I. Conversely, if ab ∈ I, then either a + I or b + I is the zero element of R/I
and hence either a or b ∈ I. �

• Every maximal ideal is prime. The converse is false.

Proof. We verify only the first claim. Let I be a maximal ideal in the ring
R. Then R/I is a field, hence certainly an integral domain. Hence I is a prime
ideal. �

Theorem 5.39. (a) An ideal < d > in the integers Z is prime if and only if d or −d is.
(b) An ideal < d(x) >⊂ C[x] is prime if and only if d(x) = αx+β, with α ∈ C 6=0 and β ∈ C.
(c) An ideal I ⊂ Z or ⊂ C[x] is prime if and only if it is maximal .

Proof. (a) Without loss of generality, d is a positive integer. Assume that < d > is a
prime ideal. If d were not a prime integer, we could certainly find integers a and b ∈ Z such
that d divides the product ab, but d does not divide either a or b. But then ab ∈ I =< d >
implies that either a or b ∈ I. Thus d divides either a or b. This contradiction establishes
that d is a prime. We leave the proof of the converse as an exercise.
(b) We use the fundamental theorem of algebra (to be established in Chapter 7) to conclude
that the principal ideal < d(x) > is prime if and only if d(x) is a polynomial of degree one.
(c) This is an imediate consequence of the fact that all ideals in either Z or C[x] are principal.

�

EXERCISES

(1) Let d be a prime integer. Prove that < d > is a prime ideal in Z.
(2) Prove that an ideal in Z or in C[x] is prime if and only if it is maximal.
(3) Exhibit some of the differences between Z[x] and C[x].
(4) Prove that for every positive integer n, the quotient ring Z/nZ is isomorphic to the

ring Zn.
(5) Compute the gcd of the polynomials x4 + 1 and x3 + 1.
(6) Let n be a positive integer. Define the gcd d(x) of n polynomials p1(x), p2(x), ..., pn(x) ∈

C[x] and show the that the ideal generated by these polynomials is the principal
ideal generated by the gcd.

(7) Describe all homomorphisms θ from the integers (Z, +) to an arbitrary group. In
particular, is θ(Z) cyclic and what are the possible orders of such groups?

4. CRT revisited

Theorem 5.40 (The Chinese remainder theorem). Let m1, m2, ..., mr be r > 0 relatively
prime positive integers. The map

θ : Zm1m2...mr
→ Zm1

× Zm2
× ... × Zmr

defined by
θ ([a]m1m2...mr

) = ([a]m1
, [a]m2

, ... [a]mr
)
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is a ring isomorphism.

Proof. We need to show that θ is well defined and a ring isomorphism. The map is
well defined: if for a and b ∈ Z, we have that [a]m1m2...mr

= [b]m1m2...mr
, then for each

i, [a]mi
= [b]mi

. It is clear that θ preserves additive and multiplicative structures of the
respective rings and is thus a ring homomorphism. The map θ is injective: if for a and b ∈ Z

and for each i we have that [a]mi
= [b]mi

, then (a− b)|mi and hence (a− b)|m1m2...mr. The
surjectivity of the map θ is a set theoretic consequence of two facts: (1) the map is injective
and (2) |Zm1m2...mr

| = |Zm1
× Zm2

× ... × Zmr
|. �

Remark 5.41. We discuss some connections to previous results (that such connections
must exist is implied by the name of the theorem, for example).

• Unlike the earlier version of the Chinese remainder theorem (Theorem 1.70), the
above proof produces the existence of the solution, but does not provide an algorithm
for finding it.

• Recall Theorem 4.37.

EXERCISES

(1) Supply the details to show that the map θ of the last theorem preserves both the
additive and multiplicative structures.

(2) Construct an inverse for the map θ.

5. Polynomials over more general fields

Throughout this section K is field that contains Q and is contained in C. All of our work
on C[x], in the previous sections, that does not involve the fundamental theorem of algebra
applies to K[x]. In this section we explore some of the differences, especially concepts needed
in Chapter 9. As usual, we start with a

Definition 5.42. Let p(x) ∈ K[x] have positive degree. We say that the polynomial
p(x) is irreducible over K if given a factorization p(x) = f(x)g(x) with f(x) and g(x) ∈ K[x],
then either f(x) or g(x) ∈ K (that is, at least one of them must have degree 0).

Remark 5.43. The concept of irreducibility depends on the field K.

• Over C, the only polynomials of positive degree that are irreducible are those of
degree one (by the fundamental theorem of algebra).

• The polynomial of degree two x2 + 1 is irreducible over R.

Theorem 5.44. Every polynomial in K[x] of positive degree can be expressed as a product
of a constant λ ∈ K and irreducible monic polynomials p1(x), ..., pr(x) ∈ K[x]. In such a
product, the constant and polynomials are uniquely determined up to rearrangement.

Definition 5.45. A field K is algebraically closed if every polynomial in K[x] of positive
degree has a root in K.

Corollary 5.46. If K is algebraically closed, then every p(x) ∈ K[x] of positive degree
n has a factorization (19). The constant λ ∈ K is unique; so are the roots αi, up to
rearrangement.

Remark 5.47. • The field of complex numbers C is algebraically closed as a result
of the fundamental theorem of algebra (discussed in Chapter 7), but Q and R are
not.
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• Finite dimensional vector spaces over the field with two elements Z2 will be impor-
tant in our study of error correcting codes in Chapter 6.

• For an arbitrary commutative ring R, we can form its polynomial ring R[x]. It is
easy to see that R[x] is an integral domain whenever R is.

6. Fields of quotients and rings of rational functions

In Sub-section 5.1 of Chapter 1 we discussed the construction of the rationals from the
integers. That construction is quite general.

Definition 5.48. Let R be an integral domain. We introduce an equivalence relation
≡ on S = R × R 6=0 by declaring (a, b) to be equivalent to (α, β) provided aβ = bα; we write
a
b

as a representative for the equivalence class of (a, b) ∈ R × R 6=0. We let Q be the set
of equivalence classes so obained and call it the field of quotients of R. Addition + and
multiplication · in Q are defined as in the construction of Q from Z.

Proposition 5.49. (a) (Q, +, ·) is a field.
(b) The map θ that sends a ∈ R to a

1
∈ Q is an injective ring homomorphism. We identify

R with θ(R) and can hence view it as a subring of the field Q.
(c) If a and b ∈ R with b invertible, then a

b
= ab−1.

For an arbitrary commutatine ring R, we have defined a polynomial ring R[x]. We can

also define the ring of rational functions R(x) as the set of formal expressions ρ(x) = p(x)
q(x)

with p(x) and q(x) ∈ R[x] and q(x) 6= 0. We can define the binary operations + and · on
R(x) that extend the corresponding operations on R[x]and turn R(x) into a commutative
ring. We can thus view R[x] as a subring of R(x) and also view ρ as a function from Rq(r)6=0

to R.
In the most interesting cases R is an integral domain and we can form the field of quotients

Q1 of the integral domain R[x] as well as the field of quotients Q2 of the integral domain
R(x). We can also construct the field of quotients Q of R and hence also Q[x] and Q(x).
One checks at this point that the various constructions are related. In particular, the field
of quotients of Q1, Q2 and Q(x) are more or less the same object.



CHAPTER 6

Error correcting codes

We apply the material we have developed to study error detecting and error correcting
codes.

1. ISBN

A code is just a number. We have discussed methods for transmitting codes that can
not be deciphered by un-authorized listeners. We now turn to a different issue. How can the
receiver be sure that the information received is identical with that sent? And if there is a
transmission error, how can it be corrected? To what degree of certainty? We start with a
discussion of

Example 6.1. The International Standard Book Number (ISBN) is a sequence of nine
integers a1a2...a8a9, where 0 ≤ ai ≤ 9, for each i, together with a check digit a (thus
a1a2...a8a9a), where a is either an integer between 0 and 9 (inclusive) or the symbol X which
stands for the integer 10. The inclusion of this 10-th digit gives a check on the other 9. It is
constructed as the representative of the congruence class of

− (10a1 + 9a2 + ... + 3a8 + 2a9) = −
9
∑

i=1

(11 − i)ai mod 11

chosen, as usual (for us), between the integers 0 and 10 (inclusive). If ai is erroneously
transmitted as β instead of its correct value α, and all the other digits, including the check
digit, are transmitted correctly, then the receiver computes as check digit y = a − (11 −
i)(β − α) mod 11 and since 11 is prime and

11 − i 6≡ 0 mod 11 and (β − α) 6≡ 0 mod 11,

we see that also (11 − i)(β − α) 6≡ 0 mod 11. Thus y 6= a and the receiver knows that
there is an error in the transmission. What the receiver does NOT know is which digit is
wrong. It could, of course, be the check digit. Similarly, if the sender interchanges ai with
aj and say that 1 ≤ i, j ≤ 9, then the receiver computes −(11 − i)aj − (11 − j)ai instead
of −(11 − i)ai − (11 − j)aj as the contribution of these two terms to the check digit. The
difference

−(11 − i)(aj − ai) − (11 − j)(ai − aj) = (i − j)(aj − ai)

is congruent to 0 mod 11) if and only ai = aj, and again a single error is detected.

2. Groups and codes

Codes and information, in general, are usually transmitted in binary rather than decimal
mode (notation). Thus a message is a finite set of zeros and ones; for example, 00011 or
10100.

131
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Definition 6.2. We fix a positive integer n. A word of length n is a point in Zn
2 . We

write such a word as a = a1a2...an, where each ai is either 0 or 1.

Remark 6.3. The simplest finite field with two elements (Z2, +, ·) has lots of structure.
We will denote from now on by B. In particular, we fix a positive integer n and study Bn

the abelian group (under addition) of order 2n; it is also a vector space over B of dimension
n. (We will not use this additional structure nor that it is a Boolean algebra1.) The addition
table for the group Bn is rather simple: if the element b ∈ Bn is the n-tuple b1b2...bn, then
a + b is the n-tuple c1c2...cn where, ci = 0 if and only if ai = bi. Thus each element of this
group is its own inverse. The (scalar) product of the scalar λ ∈ B with the vector w ∈ Bn

is also quite simple:

λw =

{

0 if λ = 0
w if λ 6= 0

.

To formalize the concept of check-digits, we consider a word w of positive length m and
transmit instead a code word f(w) of length n which should have redundant information
to enable us to detect and perhaps correct transmission errors. We thus are considering a
coding function

f : Bm → Bn.

Whenever necessary we have at our disposal a list of all possible code words.
In order for the coding function to enable us to recover the original word w from the

code word f(w), it is necessary that f be an injective mapping; in particular, that n ≥ m.
In practice we take n > m. WE ASSUME FROM NOW ON THAT f IS INJECTIVE AND
THAT n > m. In practice there is a necessary trade off; the bigger n is, the more redundancy
we have, the easier it should be to catch errors and correct mistakes, however, it is more
expensive to transmit longer messages.

Example 6.4. We begin by considering prototypes for the two simplest examples of
coding functions.

• We take n = m + 1 and define f(w) = wx, where for w = a1a2...am, x =
∑m

i=1 ai,
where the sum is evaluated in B. Thus the check digit x is 0 if the number of
non-zero digits in the word w is even and 1 otherwise. If exactly one error is made
in transmission, it will certainly be detected. But we cannot correct it, since we do
not know where it is – it might be the check digit (so the message we receive, wx
with x stripped from it) is correct although we cannot be sure of it2. In general this
coding function will detect an odd number of transmission errors – but not an even
number. How bad is this? Assume the probability p of a transmission error in any
single digit is 1 in a 1000 ( .001 or 10−3). (In practice it is much smaller.) If our
word w is of length five (m = 5), then the probability of precisely 2 transmission

errors is

(

6
2

)

(.001)2(.999)4 = .0000149..., much smaller than the probability of

precisely one error 6(.001)(.999)5 = .00597....
• Let us now take n = 3m and define f(w) = www. When we receive a code word

(of length 3m) we break it up into 3 words of length m: abc. If a = b = c we
can be fairly certain but not sure that w = a. Say that one mistake was made

1We have not defined this structure.
2Even if the check digit shows no obvious errors, there may be some.
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in the transmission of a and then the same mistake was made in the transmission
of b and c. What is the probability of this happening. Using the same set of
values for m and p as in the previous example, we evaluate this probability as
5 ((.001)(.999)4)

3
= .0000 0000 49...; quite an unlikely event.

• We will use the next two examples in much of our subsequent development. We will
hence refer to them in the sequel as standard small examples 1 and 2, respectively.
We use m = 4 in the first of these and add a check digit before transmitting the word.
The transition from word to code word in the second example will be explained later.
For these examples, we consider the maps f : B4 → B5 and g : B3 → B6 defined
by the following two tables.

x f(x)
0000 00000
0001 00011
0010 00101
0011 00110
0100 01001
0101 01010
0110 01100
0111 01111
1000 10001
1001 10010
1010 10100
1011 10111
1100 11000
1101 11011
1110 11101
1111 11110

and

x g(x)
000 000000
001 001111
010 010101
011 011010
100 100111
101 101000
110 110010
111 111101

.

The list of elements x ∈ B4 and B3 appearing in the first columns of the above
tables are shown in lexicographic (dictionary) ordering. The reader should check
that the table for f represents the first of our examples with m = 4. We will see
below that these two examples are special cases of a family of codes.

We introduce some preliminaries in order to discuss more efficient codes than the next
to last example.

Definition 6.5. We define the weight of a word w = a1a2...am ∈ Bm as

wt(w) =
m
∑

i=1

ai,

where the sum is in Z; thus the weight of a word is the number of ones in its binary expansion,
and

0 ≤ wt(w) ≤ m

with equality 0 = wt(w) if and only if w = 0. We thus have a map

wt : Bm → Z.
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The distance d(v, w) between words v and w ∈ Bm is

d(v, w) = wt(v − w) = wt(v + w);

thus the distance between these words v = b1b2...bm and w is precisely the number of places
where they differ (that is,

d(v, w) = |{i = 1, 2, ...,m; ai 6= bi}| =
m
∑

i=1

|ai − bi|,

where the last sum is again in Z). As in the case of weights, d(w, v) = 0 if and only if w = v.

Remark 6.6. The distance function provides us with a map

d : Bm × Bm → Z≥0

that satisfies the usual properties of distance functions studied in analysis: For all u, v and
w ∈ Bm,

• d(w, v) = 0 if and only if w = v.
• d(w, v) = d(v, w).
• d(u,w) ≤ d(u, v) + d(v, w).

Its values land in Z≥0, a subset of R≥0, where the “normal” distance functions of analysis
take their values. The distance function d is translation invariant: that is,

d(u − v, w − v) = d(u,w).

Theorem 6.7. Let k be a positive integer. A coding function f : Bm → Bn detects k
or fewer errors if and only if the minimum distance between distinct code words is at least
k + 1.

Proof. Say we have received a message w ∈ Bn, whereas v ∈ Bn was the intended
(correct) message. The code word v is in our list of possible code words. We need to
know, of course, that such a list exists. If there are k or fewer errors in our message, then
d(v, w) ≤ k. So unless v = w, w is not in our list of code words and we have detected an
error if and only if the minimum distance between code words is ≥ (k + 1). �

Theorem 6.8. Let k be a positive integer. A coding function f : Bm → Bn allows the
correction of k or fewer errors if and only if the minimum distance between distinct code
words is at least 2k + 1.

Proof. If the distance between distinct code words is at least 2k + 1, then by the
previous theorem, we can detect up to and including 2k transmission errors. But even if we
had as few as k + 1 transmission errors, there may be two distinct code words in Bn that
are are within distance k + 1 to the erroneous message we received, so we cannot be sure
how to correct the error. However, there is at most one code word within distance k of the
erroneous message. So if the transmission had at most k errors, there is precisely one code
word within distance k of the message. �

Example 6.9. For our standard small example 1, an examination of the differences
between code words shows that the minimum distance between distinct code words is 2.
(This involves computing 15+14+ ...+1 = 120 differences and then checking their weights.)
Hence this coding function can detect one error, but cannot correct it. For small example 2,
the minimum distance between distinct code words is also 2.
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Definition 6.10. Let f : Bm → Bn be a coding function. We say that f is a group or
linear code if f(Bm) is a subgroup of Bn.

Remark 6.11. If f : Bm → Bn is a group homomorphism, then it certainly is a linear
code.

Theorem 6.12. If f : Bm → Bn is a linear code, the minimum distance between distinct
code words is minimum of the weights of non-zero code words.

Proof. Let d and d′ be the minima of the distances between distinct code words and of
the weights of non-zero code words, respectively; that is,

d = min {d(v, w); v and w ∈ f(Bm), v 6= w}
and

d′ = min {wt(v); v ∈ f(Bm), v 6= 0}.
Both d and d′ exist (and belong to Z>0) since they are minima of non-empty (finite3) sets of
positive integers. Since f is a linear code, 0 ∈ f(Bm), and thus we conclude from the fact
that for all v ∈ f(Bm), wt(v) = d(v, 0), that

d ≤ d′.

Also there exist code words u and v ∈ f(Bm) (hence also u + v ∈ f(Bm)) such that u 6= v
and

d = d(u, v) = wt(u − v) = wt(u + v) ≥ d′.

�

Example 6.13. Standard small examples 1 and 2 are linear codes. The first set of
code words is the group generated by the words 00011, 00101, 01001 and 10001; the second
by 001111, 010101 and 100111. For linear codes, the last theorem certainly simplifies the
calculations of the minimal distances between code words. For our standard small example
1, we need to examine only 15 words (instead of 120 differences between words).

We describe a useful method for producing group codes f as group homomorphisms.

Definition 6.14. Let m and n be positive integers with m < n. An m×n matrix (thus
with m rows and n columns) G with entries in B is a generator matrix if its first m columns
form the m×m identity matrix I = Im. Thus G = [Im, A] where A is a m× (n−m) matrix
of zeros and ones.

Example 6.15. Examples of generator matrices with m = 1, 2, 3, 4 and n = m + 1 are

[

1 0
]

,

[

1 0 0
0 1 1

]

,





1 0 0 0
0 1 0 0
0 0 1 1



 and









1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1









.

Another generator matrix is




1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 1 1 1



 .

3This extra fact is not needed.
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Definition 6.16. View the elements of Bm as 1×m matrices (row vectors). An m× n
generator matrix G defines, using matrix multiplication, the group code (homomorphism4)

fG : Bm 3 w 7→ wG ∈ Bn.

We will say that G is the generator matrix for the code fG.

Example 6.17. The last two matrices are generator matrices for our two standard small
examples.

Remark 6.18. A basis (over B) of the vector space Bm consists of the m-row vectors vi,
i = 1, 2, ...,m, consisting of a one in the i-th column and m−1 zeros (in the other columns, of
course). The image fG(vi) of vi under the map fG is the i-th row of the matrix G. The vector
subspace fG(Bm) of Bn is hence spanned by the n rows of the matrix G. We also observe
that for each w ∈ Bm, the first m letters of the code word fG(w) consist of the word w;
thus fG(w) = wv, where v ∈ Bn−m constitutes a set of check digits and fG is injective. The
property of group homomorphisms (or equivalently of linear maps between vector spaces)
that we find most useful is

fG(v + w) = fG(v) + fG(w) for all v and w ∈ Bm.

Theorem 6.19. Let θ : Bm → Bn be an arbitrary homomorphism. Then there exists an
(m × n) generator matrix G such that θ = fG.

Proof. (This theorem is really a standard result from linear algebra.) We may of course
view θ as a B-linear map from the vector space (over B) Bm to the vector space Bn. The
vectors vi form a basis for Bm. The i-th row of the matrix G is then θ(vi) ∈ Bn. �

Example 6.20. The last three matrices in Example 6.15 are the generator matrices for
the codes f and g described in the third set of codes in Example 6.4.

We describe a useful way to proceed with an error detection and correction procedure.
Assume that we are using a group code f : Bm → Bn, not necessarily given as a group
homomorphism. We let W ⊂ Bn be the set of code words; a subgroup of Bn. Let d be the
minimum of the distances between code words in W . Suppose we receive a word v ∈ Bn

with a single error in it. It differs from a word w ∈ W , by a basis element vi ∈ Bn. So
instead of receiving a word w ∈ W , we have received the word vi + w in the coset vi + W .
Similarly, if we receive a word with precisely two errors, then a code word in the group W
has been transformed by mistake into a word in the coset vi + vj + W with i 6= j. In general
a word with precisely k transmission errors involves replacing W by vi1 + vi2 + ... + vik + W ,
where the integers ij may be assumed to satisfy 1 ≤ i1 < i2 < ... < ik ≤ n.

Assume that we receive a word v. If it is a code word, we can be fairly certain that
it is error free. It could of course contain transmission errors, necessarily more than one if
we have check digits, that transforms one code word to another. If the minimum distance5

between code words is (d =) 7, then we would need at least 7 errors to change one code
word to another – a very unlikely possibility. Say v is not a code word. Thus it contains at
least one error. We want to correct the error, without requesting that the word be resent.

4The map fG is also B-linear (a stronger property); that is, a linear map from the vector space B
m to

the vector space B
n.

5We will be making parenthetical remarks about such an example as we go along.
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It turns out that we cannot be absolutely sure that we are correcting the erroneous word to
the correct code word. However, in practice, the probability that we have corrected an error
is very close to 1. We use what is known as the maximum likelihood decoding procedure. We
replace v by a code word closest to it. To do so, we compute the set of distances d(v, w)
for all w ∈ W and choose as our replacement word wo as one that minimizes these set of
distances; if there is more than one such wo, choose one arbitrarily. (In our example, wo is
unique if v has fewer than 4 transmission errors.)

Instead of constructing a wo for each v we receive, we can calculate in advance a decoding
table as follows.

We start with a coding function f : Bm → Bn for which the code words form a subgroup
W of Bn.

• The decoding table T is a 2n−m × 2m matrix (thus consisting of 2n = o(Bn) entries;
each of these entries is a word in Bn).

• We list in a single row the 2m elements in the group W , starting with the identity6

0 = 000...000 of W . This is the first row of the matrix T . It is convenient to label
0 = x1.

• Find a word x2 in Bn − W of minimal weight (there will, in general, be more than
one of these; choose one). Add x2 to (equivalently, subtract x2 from) the entries in
the first row of T to obtain its second row. Observe that above each word in the
second row is the word in the first row that is closest to it. The entries in the second
row of T hence list the elements in the coset x2 + W . Of course, W ∩ (x2 + W ) = ∅.

• Find a word x3 in Bn − W − (x2 + W ) of minimal weight. The third row in the
matrix T is constructed as the coset x3 + W . We now observe that, in addition
to W ∩ (x3 + W ) = ∅, we also have that (x2 + W ) ∩ (x3 + W ) = ∅; for if v ∈
(x2 + W ) ∩ (x3 + W ), then v = x2 + w2 = x3 + w3 for some w2 and w3 ∈ W and it
follows that x3 = x2 + (w2 − w3) ∈ x2 + W ; contrary to our choice of x3.

• We keep repeating the above procedure.
• After r steps, we have used 2mr elements of Bn, arranged into r rows, the r-th row

consisting of the coset xr + W . We observe that

(xj + W ) ∩ (xr + W ) = ∅, for j = 1, ..., r − 1.

We have listed all the elements of Bn after 2n−m steps and at this point we have
completed the construction of the decoding table T .

• We call the words xi, i = 1, ..., 2n−m, the coset leaders of the decoding table; they
are the entries in the first column of the matrix T .

• We receive a word v. It certainly is an element of Bn; hence in our decoding table
T . Say the word v is the (i, j) entry of the matrix T . The code word (in W ) nearest
to v that we use is then the (1, j) entry of T .

We illustrate the above construction for the group code fG : B4 → B7 defined by the
generator matrix

G =









1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 1 1 1









.

6It is convenient but not necessary to do so.
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The lengthy calculations are best performed on a computer. A sample (not simple) MAPLE
program is shown below. We follow the program with some explanatory notes.

MAPLE SESSION #10
> with(linalg): dirprod:=proc(A::{list,set},B::{list,set})

local AxB,Ai, Bi, i,j;
AxB:=[];
for i from 1 to nops(A) do
Ai:=op(A[i]);
for j from 1 to nops(B) do
Bi:=op(B[j]);
AxB := [op(AxB), [ Ai, Bi ]];
od;
od;
end:
selfprod:=proc(S::{list},n::posint)
local A,m;
if (n=1) then
return(S);
fi;
if (modp(n,2)=0) then
return( selfprod(dirprod(S,S),n/2));
else
return( dirprod(S,selfprod(S,n-1)));
fi;
end:

> listA := selfprod([0,1],4):

> listB := selfprod([0,1],7):
> G :=

matrix([[1,0,0,0,0,1,1],[0,1,0,0,1,1,0],[0,0,1,0,1,1,1],[0,0,0,1,1,1,1
]]);

G :=









1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 1 1 1









> g := x -> multiply(x,G): list1 := map(g,listA): mod2 := x ->
modp(x,2): listmod2 := l -> map(mod2,l): gpW := map(listmod2,list1):

> SetMinus:=(A,B)->remove(x->inlist(x,B),A):
> inlist:=proc(x,L)

local i;
for i from 1 to nops(L) do
if (equal(L[i],x)) then return(true) fi;
od;
false;
end:

> list2 := SetMinus(listB,gpW): nops(listB); nops(list2);

128

112

> wt := x -> sum(x[k],k=1..7): listwtgpW := map(wt,gpW);
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listwtgpW := [0, 4, 4, 2, 3, 3, 3, 5, 3, 3, 3, 5, 4, 4, 4, 6]

> lowestwt:=proc(L) local result, i; result := L[1]; for i from 2 to
nops(L) do if (wt(L[i]) < wt(result)) then result := L[i] fi; od;
eval(result); end proc:

> x2 := lowestwt(list2):

> addvect:=proc(x,L) local fcn, preres; fcn := y -> matadd(x,y); preres
:= map(fcn,L); map(listmod2,preres) end proc:

> coset2 := addvect(x2,gpW):

> list3 := SetMinus(list2,coset2):

> x3 := lowestwt(list3):

> coset3 := addvect(x3,gpW):

> list4 := SetMinus(list3,coset3):

> x4 := lowestwt(list4):

> coset4 := addvect(x4,gpW):

> list5 := SetMinus(list4,coset4):

> x5 := lowestwt(list5):

> coset5 := addvect(x5,gpW):

> list6 := SetMinus(list5,coset5):

> x6 := lowestwt(list6):

> coset6 := addvect(x6,gpW):

> list7 := SetMinus(list6,coset6):

> x7 := lowestwt(list7): coset7 := addvect(x7,gpW):

> list8 := SetMinus(list7,coset7): x8 := lowestwt(list8): coset8 :=
addvect(x8,gpW):

> nops(SetMinus(list8,coset8));

0
> decodingmatrix := array(1..8,1..16,[gpW, coset2, coset3,coset4,

coset5, coset6, coset7, coset8]);

2

6

6

6

6

6

6

6

6

6

6

4

0000000 0001111 0010111 0011000 0100110 0101001 0110001 0111110 1000011 1001100 1010100 1011011
0000001 0001110 0010110 0011001 0100111 0101000 0110000 0111111 1000010 1001101 1010101 1011010
0000010 0001101 0010101 0011010 0100100 0101011 0110011 0111100 1000001 1001110 1010110 1011001
0000100 0001011 0010011 0011100 0100010 0101101 0110101 0111010 1000111 1001000 1010000 1011111
0001000 0000111 0011111 0010000 0101110 0100001 0111001 0110110 1001011 1000100 1011100 1010011
0100000 0101111 0110111 0111000 0000110 0001001 0010001 0011110 1100011 1101100 1110100 1111011
1000000 1001111 1010111 1011000 1100110 1101001 1110001 1111110 0000011 0001100 0010100 0011011
0000101 0001010 0010010 0011101 0100011 0101100 0110100 0111011 1000110 1001001 1010001 1011110

3

7

7

7

7

7

7

7

7

7

7

5

> H
:=matrix([[0,1,1],[1,1,0],[1,1,1],[1,1,1],[1,0,0],[0,1,0],[0,0,1]]);
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H :=



















0 1 1
1 1 0
1 1 1
1 1 1
1 0 0
0 1 0
0 0 1



















> result := array(1..8,1..2): for k to 8 do for l to 2 do if (l = 2)
then result[k,l] := eval(decodingmatrix[k,1]) else result[k,l] :=
listmod2(eval(multiply(decodingmatrix[k,1],H))) end if end do end do:
print(result);























000 0000000
001 0000001
010 0000010
100 0000100
111 0001000
110 0100000
011 1000000
101 0000101























***END MAPLE PROGRAM***

• The first item in the program consists of two parts; the first computes the Cartesian
product of two sets or lists and the second uses this procedure to compute the n-th
Cartesian product of a list.

• The second and third commands compute B4 and B7, respectively.
• The next step enters the matrix G.
• The next set of instructions execute the mod 2 multiplication of matrices to obtain

the group W . We have suppressed the printing of W as well as the cosets of W in
B7 in the subsequent commands because they appear as the rows of the decoding
matrix.

• The next two sets of commands compute the relative complement of one list with
respect to another. The standard MAPLE set difference command is inappropriate
for our purposes.

• The computations of the cosets of W in B7 need several preliminaries. One needs to
compute relative differences of sets (the listn entries), minimal weights of sets of
words, and finally the cosets. This is done in the subsequent set of commands. As
a check on our work, we have computed the cardinality of listB and list2 using
the nops command.

• We have displayed the weights of the code words W . Since the lowest non-zero
weight of elements of W is 2, the coding function will detect 1 error, but will correct
none.

• The eight xi are the coset leaders.
• The lists list8 and coset8 contain the same words in a different order; this fact is

verified by the nops(SetMinus(list8,coset8)) command.
• We have shown only 12 of the 16 columns of the decoding matrix.
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• The role of the last two commands should be obvious after we develop a little more
theory.

We now proceed to a discussion of correcting errors with less information than a complete
decoding table.

Definition 6.21. Let G = [Im, A] be an m × n generator matrix. The corresponding

parity-check matrix is the n × (n − m) matrix H =

[

A
In−m

]

. The syndrome of a word

w ∈ Bn is the word wH ∈ Bn−m.

Proposition 6.22. Let H be a parity-check matrix corresponding to the generator matrix
G. Then w ∈ Bn is a code word if and only if wH = 0.

Proof. A word w ∈ Bn is a code word if and only if w = sG = s[Im, A] for some s ∈ Bm

if and only if w = uv with u ∈ Bm and v = uA. We rewrite the last equation as

0 = uA − vIn−m = uA + vIn−m = (uv)H = wH

showing that w is a code word if and only if 0 = wH. �

Corollary 6.23. Two words are in the same row of the coset decoding table if and only
if they have the same syndrome.

Proof. Two words u and v ∈ Bn are in the same row of the decoding table (in the same
coset of the code group W ) if and only if they differ by a code word w ∈ W ; that is, if and
only if w = u − v if and only if 0 = wH = uH − vH or if and only if uH = vH. �

Remark 6.24. A parity-check matrix H defines a linear mapping

H : Bn 3 v 7→ vH ∈ Bn−m.

This linear mapping need not be injective nor surjective. If H is the parity-check matrix
corresponding to the generator matrix G, then we also have the injective (not surjective)
linear mapping (we called it fG before)

G : Bm 3 w 7→ wG ∈ Bn.

The last proposition shows that H ◦ G is the zero map.

We can now expand the decoding table for a group code by adding an extra column, say
at the left, that records the syndrome of each row. Thus the first two entries of the first
row of the expanded decoding table T , which is now a 2n−m × (2m + 1) matrix, start with
0 ∈ Bn−m and 0 ∈ Bn. We can dispense with all but the first two columns of this expanded
decoding table and label the resulting 2n−m × 2 matrix T. If we receive a word v, we first
compute its syndrome vH, which we find in the first of our two column matrix T. In the
next column, in the same row as vH, is the coset leader u of the row in the full decoding
table T where v is found. Adding u to v we obtain u + v, a code word closest to the word
v that we received. Stripping away the last n −m digits from the word u + v we obtain the
maximum likelihood candidate for the word w that we believe was intended.

EXERCISES

(1) If f : Bm → Bn is a linear code, must it also be a group homomorphism?
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(2) Show that wt : Bm → Z is not a group homomorphism but that

red2 ◦ wt : Bm → Z2

is.
(3) In this section words were considered as row vectors of length m and hence the

coding function f for a group code was a map w 7→ wG for some some generator
matrix G. How would you define a generator matrix and the corresponding parity-
check matrix if words were viewed as column vectors of length m?



CHAPTER 7

Roots of polynomials

Among the main purposes of this chapter is to discuss unified approaches (formulae) for
solving polynomial equation of degree ≤ 4. We outline several approaches to establishing
a key result: the fundamental theorem of algebra. Along the way we continue the study
of the ring of polynomials; emphasising once again that it shares many properties with the
ring of integers. For this chapter, we assume that the reader is familiar with some basic
linear algebra; for example, the contents of [2]. THE MATERIAL IN THIS CHAPTER IS
IN PRELIMINARY FORM.

1. Roots of polynomials

The main results of this subsection is the next theorem, the fundamental theorem of
algebra. We present several proofs. Each of them requires some analysis.

Theorem 7.1 (The fundamental theorem of algebra, FTA). For all n ∈ Z>0, an nth

degree complex polynomial p(x) has precisely n complex roots counting multiplicities; thus
there exist constants 0 6= λ and β1, ..., βn ∈ C such that

p(x) = λ(x − β1)...(x − βn).

We start with

Definition 7.2. A zero or root of a polynomial p(x) of positive degree is a complex
number α such that p(α) = 0.

It is an immediate consequence of the Euclidean algorithm that if α is a root of the
polynomial p(x) of degree n > 0, then there exists a unique polynomial q(x) of degree n− 1
such that

p(x) = (x − α)q(x).

1.0.1. A linear algebra approach. We outline a recent argument due to H. Derksen [4],
based mostly on linear algebra. While this approach requires considerable algebraic tools
(which our outlined without proof), it depends on very little analysis (complete details
provided).

Lemma 7.3. Every real polynomial p(x) of odd degree has a real zero.

Proof. This standard fact is proved in most calculus courses. The argument goes as
follows. It involves no loss of generality to assume that p(x) is monic. Thus

lim
x→∞

p(x) = ∞ and lim
x→−∞

p(x) = −∞.

it follows that there exists an R > 0 such that

p(R) > 0 and p(−R) < 0.

By the intermediate value theorem there exists a λ in the open interval (−R,R) such that
p(λ) = 0. �

143
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Lemma 7.4. Every complex number z = α + βı, α and β ∈ R, has a square root.

Proof. Put γ =
√

α2 + β2 = |z|. The existence of square roots of non-negative real
numbers is a basic property of the real number system; a fact from calculus. Then

(

√

γ + α

2
+

√

γ − α

2
ı

)2

= α + βı.

�

We begin an outline the the algebraic tolls needed in this approach.

Definition 7.5. Let K be a field and V a K-vector space. A K-linear self map L of V
is called an endomorphism of V . A scalar λ ∈ K is an eigenvalue of L if there exists a vector
x ∈ V , x 6= 0, called an eigenvector of λ or of L, such that L(x) = λx.

We introduce a statement P(K, d, r) for a field K and positive integers d and r: Any
r commuting endomorphisms of a K-vector space V of dimension n such that d does not
divide n have a common eigenvector.

Lemma 7.6. If P(K, d, 1) holds, then so does P(K, d, r) for all positive integers r.

Lemma 7.7. P(R, 2, r) holds for all positive integers r; that is, any collection A1, A2, ...,
Ar of commuting endomorphisms of an odd dimensional real vector space have a common
eigenvector.

Lemma 7.8. P(C, 2, 1) holds; that is, every endomorphism of an odd dimensional complex
vector has an eigenvector.

Lemma 7.9. P(C, 2k, r) holds for all positive integers k and r.

The above series of technical results lead to a theorem that is of interest in its own right.

Theorem 7.10. Let r be a positive integer. If A1, A2, ..., Ar are commuting endo-
morphisms of non-trivial finite dimensional C-vector space V , then they have a common
eigenvector.

As a consequence (corollary in some sense) of the last theorem, we can now establish the
fundamental theorem of algebra in the following form:

Corollary 7.11 (The fundamental theorem of algebra). If p(x) is a non-constant poly-
nomial with complex coefficients, then there exists a β ∈ C such that p(β) = 0.

Proof. It suffices to assume that p(x) is a monic polynomial of degree n ≥ 1:

(21) p(x) = xn + a1x
n−1 + ... + an.

We claim that p(x) = det(xI − A), where A is the companion matrix of p(x):

A =



















0 0 ... 0 −an

1 0 0 −an−1

0 1 0 −an−2

. .

. .

. .
0 0 ... 1 −a1



















.
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We use induction on n to verify that

xn + a1x
n−1 + ... + an = det























x 0 0 ... 0 0 an

−1 x 0 0 0 an−1

0 −1 x 0 0 an−2

. .

. .

. .
0 0 0 ... −1 x a2

0 0 0 ... 0 −1 x + a1























.

The formula for the base case n = 1 reads

x + a1 = det [x + a1],

which is obviously true. We assume now that n > 1. Expanding in terms of minors, we see
that

det























x 0 0 ... 0 0 an

−1 x 0 0 0 an−1

0 −1 x 0 0 an−2

. .

. .

. .
0 0 0 ... −1 x a2

0 0 0 ... 0 −1 x + a1























= x det



















x 0 0 0 an−1

−1 x 0 0 an−2

. .

. .

. .
0 0 ... −1 x a2

0 0 ... 0 −1 x + a1



















+ det



















0 0 0 0 an

−1 x 0 0 an−2

. .

. .

. .
0 0 ... −1 x a2

0 0 ... 0 −1 x + a1



















.

The induction hypothesis tells us that

det



















x 0 0 0 an−1

−1 x 0 0 an−2

. .

. .

. .
0 0 ... −1 x a2

0 0 ... 0 −1 x + a1



















= xn−1 + a1x
n−2 + ... + an−1;
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while another expansion in terms of minors and the fact that the determinant of an upper
triangular matrix is the product of the diagonal elements yields

det



















0 0 0 0 an

−1 x 0 0 an−2

. .

. .

. .
0 0 ... −1 x a2

0 0 ... 0 −1 x + a1



















= (−1)n−2an det















−1 x 0 0
. .
. .
. .
0 0 ... −1 x
0 0 ... 0 −1















= an.

The last two equalities finish the induction argument. The last theorem tells that A has an
eigenvalue; that is, there exists a β ∈ C such that p(β) = 0. �

Remark 7.12. The above corollary implies Theorem 7.1 by induction on n ∈ Z>0. The
base case n = 1 holds. So if n > 1 and p(x) is a polynomial of degree n, then by our last
corollary, there is a βn ∈ C such that p(βn) = 0. By the division algorithm,

p(x) = (x − βn)q(x) + r(x),

where q(x) is a complex polynomial of degree n−1 and r(x) ∈ C. Since p(βn) = 0, r(x) = 0.
The induction hypothesis tell us that q(x) factors as required.

1.0.2. A topological (real analysis) approach.

Lemma 7.13 (d’Alembert). If p(x) is a non-constant polynomial and p(z0) 6= 0, then any
ball about z0 contains a point z1 with |p(z1)| < |p(z0)|.

Proof. We use the Taylor series (with z0 replacing xo) for the polynomial p(x). Since
the polynomial is not constant, there exists a smallest integer k, 1 ≤ k ≤ n such that
p(k) 6= 0. Thus (as a polynomial in ∆)

p(z0 + ∆) = p(z0) + α∆k + ε∆k+1,

where α is a non-zero complex number and ε is a polynomial in ∆ of degree n − k − 1 (if
n = k, then n − k − 1 should be interpreted as −∞). Now let us think of ∆ as a complex
number of small (certainly much less than 1) absolute value – which can be made even
smaller as our argument proceeds. By choosing ∆ sufficiently small we can certainly make
∣

∣ε∆k+1
∣

∣ < 1
4
|p(z0)|. By making |Delta| even smaller, if necessary, we can also make sure

that |α∆k| < 1
2
|p(z0)|. It readily follows that 0 < |p(z0 + ∆)| < 2|p(z0)|. We would like to

eliminate the 2 from the last equation. We have one more degree of freedom at our disposal:
CHANGING THE ARGUMENT OF THE COMPLEX NUMBER ∆. So let θ0, θ and θ1 be
the initial arguments of p(z0), ∆ and α∆k + ε∆k+1, respectively; chosen to lie in the interval
[0, 2π). As we crank up the argument of ∆ from θ to θ + 2π, the argument of α∆k + ε∆k+1

changes continuously from θ1 to θ1+2πn for some positive integer n. (This is not obvious – an
analysis proof is needed.) By the intermediate value theorem there is a ϕ ∈ [0, 2πn] so that
if we choose ∆ to have argument ϕ, the complex number α∆k + ε∆k+1 will have argument
−θ0. This means that the vectors p(z0) and α∆k + ε∆k+1 point in opposite directions and
hence (TO BE CONTINUED)¿ �

We are once again ready to prove

Theorem 7.14 (FTA). Every non-constant polynomial has a root.



2. CIRCULANT MATRICES 147

Proof. NEED ARGUMENT HERE. �

Remark 7.15. Another proof of FTA using some analytic steps, similar to those used
above, can be found in [9].

1.0.3. A complex analysis approach. By far the most elegant proof of FTA is through
complex analysis. See for example [6].

EXERCISES

(1) Let F1 and F2 be subfields of C that contain Q. Show that F1∩F2 is also a subfield of
C that contains Q. Conclude that if ζ1, ζ2, ..., ζn, is an arbitrary finite collection of
complex numbers, then there exists a unique smallest (by inclusion) subfield F ⊂ C

that contains each ζi, i = 1, 2, ..., n.
(2) Let p(x) be a monic polynomial of degree n ≥ 1. Let ζi, i = 1, 2, ..., n be the roots

of p(x).
(a) Show that there exists a unique field F ⊂ C that contains Q and ζi for i =

1, 2, ..., n.
(b) Does F contain the coefficients of the polynomial p(x)?

(3) Let n be a positive integer and let p(x) of (21) be a monic real polynomial of degree
n. Let

a = |a1| + ... + |an| + 1.

Show that p(a) > 0 and p(−a) < 0. Hence there exists a real number λ ∈ (−a, a)
such that p(λ) = 0.

1.1. Derivatives and multiple roots. SECTION TO BE COMPLETED LATER.

2. Circulant matrices

Fix a positive integer n ≥ 2, and let

v = (v0, v1, . . . , vn−1)

be a row vector in Cn. Define a shift operator T : Cn → Cn by

T (v0, v1, . . . , vn−1) = (vn−1, v0, . . . , vn−2) .

The circulant matrix associated to v is the n × n matrix whose rows are given by iterations
of the shift operator acting on v, that is to say, the matrix whose k-th row is given by T k−1v,
k = 1, . . . , n. Such a matrix will be denoted by

(22) V = circ{v} = circ{v0, v1, . . . , vn−1} .

Theorem 7.16. Let v = (v0, v1, . . . , vn−1) be a vector in Cn, and V = circ{v}. If ε is a
primitive n-th root of unity, then

(23) det V = det













v0 v1 · · · vn−2 vn−1

vn−1 v0 · · · vn−3 vn−2
...

...
. . .

...
...

v2 v3 · · · v0 v1

v1 v2 · · · vn−1 v0













=
n−1
∏

l=0

(

n−1
∑

j=0

εjlvj

)

.
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Proof. We view the matrix V = circ{v0, v1, . . . , vn−1} as a self map (linear operator)
of Cn. For each integer l, 0 ≤ l ≤ n − 1, let xl ∈ Cn be the transpose of the row vector
1√
n
(1, εl, ε2l, . . . , ε(n−1)l) and1

(24) λl = v0 + εlv1 + · · · + ε(n−1)lvn−1.

A calculation shows that












v0 v1 · · · vn−2 vn−1

vn−1 v0 · · · vn−3 vn−2
...

...
. . .

...
...

v2 v3 · · · v0 v1

v1 v2 · · · vn−1 v0

























1
εl

ε2l

...
ε(n−1)l













= λl













1
εl

ε2l

...
ε(n−1)l













.

Thus λl is an eigenvalue of V with normalized eigenvector xl. Since the n vectors x0, x1, . . . , xn−1

are linearly independent, they form a basis for Cn. We conclude, by a standard result from
linear algebra, that the matrix V is diagonalizable and that

det V =
n−1
∏

l=0

λl .

�

Let DV be the diagonal matrix with diagonal entries λ0, λ1, . . ., λn−2, λn−1, respectively.
Then there exists2 an n × n invertible matrix C such that

(25) C−1V C = DV .

Thus the matrices

V = circ{v0, v1, . . . , vn−1} and DV = diag(λ0, λ1, . . . , λn−1)

are conjugate3.

Remark 7.17. It is possible to always use ε = e
2πı
n . The ϕ(n) distinct primitive n-th

roots of unity are then {εk; k ∈ Z, 1 ≤ k ≤ n, (n, k) = 1}.
Definition 7.18. For ε = e

2πı
n , we call the set {λ0, ..., λn−1} defined by (24), the ordered

eigenvalues of the circulant matrix (22).

Corollary 7.19. The characteristic polynomial of V is

pV (x) = det (xI − V ) =
n−1
∏

l=0

(x − λl).

Corollary 7.20. We have
∑n−1

l=0 λl = nv0.

1We reserve the symbols λl and xl for this eigenvalue and eigenvector throughout this chapter. We use
the convention that, unless otherwise specified, all vectors are column matrices. To avoid too many empty
spaces, we will often write them as row matrices without mentioning that we are considering the transpose
of the column vector. This identification should not cause any confusion. In a sense, it was already used
in defining the shift operator T . In line with this convention, matrices, when viewed as linear operators,
multiply column vectors on the left.

2We will describe this matrix shortly.
3The diagonal matrix with entries a1, a2, . . ., an−1, an is denoted by diag(a1, a2, . . . , an−1, an).
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Proof. Since
n−1
∑

l=0

eil =

{

n for i = 0
0 for i = 1, ..., n − 1

,

we see that
n−1
∑

l=0

λl =
n−1
∑

l=0

n−1
∑

i=0

elivi =
n−1
∑

i=0

(

n−1
∑

l=0

eli

)

vi = nv0.

�

Remark 7.21. The trace of a square matrix is the sum of its diagonal entries. Since
the trace is a conjugacy class invariant, the last corollary also follows from the identity
∑n−1

l=0 λl = traceV , since the sum is the trace of DV .

Definition 7.22. Let Circ(n) and Diag(n) be the sets of all n × n complex circulant
and diagonal matrices, respectively, viewed as subsets of Mn(C), the algebra of n × n com-
plex matrices with the usual matrix operations of addition and multiplication and scalar
multiplication (by complex numbers).

Diag(n) is an n-dimensional commutative subalgebra of Mn(C). Furthermore, transposes
of diagonal matrices and inverses of nonsingular (a diagonal matrix is nonsingular if and only
if the product of its diagonal entries (which equals its determinant) is not zero) diagonal
matrices are also diagonal. We record a number of consequences of the last theorem that
show that Circ(n) has many similar properties. As a matter of fact, we will show that
Diag(n) and Circ(n) are isomorphic algebras.

Corollary 7.23. Circ(n) is an n-dimensional commutative subalgebra of Mn(C). Fur-
thermore, complex conjugates and transposes of circulant matrices and inverses of nonsin-
gular circulant matrices are also circulant. All elements of Circ(n) are simultaneously diag-
onalized by the same unitary matrix.

Proof. Our first observation is that Circ(n) is an n-dimensional vector space over the
complex numbers C. Let C be the n × n matrix that represents the linear transformation
sending the l-th unit vector el (this is the vector (0, ..., 0, 1, 0, ..., 0) with the 1 in the l-th
slot) to xl:

(26) C =
1√
n















1 1 · · · 1 1
1 ε · · · εn−2 εn−1

...
...

. . .
...

...

1 εn−2 · · · ε(n−2)2 ε(n−1)(n−2)

1 εn−1 · · · ε(n−2)(n−1) ε(n−1)2















.

Observe that C is symmetric (its own transpose) and that C∗, the transpose of the conjugate
of C, equals C−1, the inverse of C. Thus C is a symmetric unitary matrix. A lengthy but
routine calculation shows that (25) holds. This calculation can be avoided if we use the
definitions and results on eigenvalues at our disposal:

C−1V C(el) = C−1V (xl) = C−1(λlxl) = λlC
−1(xl) = λlel = DV (el).

Thus the unitary matrix C, that depends only on n, diagonalizes each circulant matrix. It
is convenient to fix the matrix C and study the map

C∗ : Circ(n) 3 V 7→ C−1V C ∈ Diag(n).
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For U and V ∈ Mn(C),

(27) C−1V C = U iff V = CUC−1.

Since for all V1 and V2 ∈ Circ(n) and all c ∈ C,

C∗(V1 + cV2) = C∗(V1) + cC∗(V2)

and as a result of (27) for V ∈ Circ(n),

C∗(V ) = O iff V = O,

we conclude that C∗ is a C-linear injection of Circ(n) into Diag(n). Since

dim(Circ(n)) = n = dim(Diag(n)),

we conclude that C∗ is surjective; that is, C∗(Circ(n)) = (Diag(n)) and hence that Circ(n)
and Diag(n) are isomorphic as vector spaces over C and (C∗)−1 = C · C−1 maps Diag(n)
onto Circ(n). Since for two diagonal matrices D1 and D2,

(C∗)−1(D1D2) = CD1D2C
−1 = (CD1C

−1)(CD2C
−1) = (C∗)−1(D1)(C

∗)−1(D2),

we conclude that Circ(n) is closed under matrix multiplication. Since Diag(n) is closed under
complex conjugation, transposes and inverses (of nonsingular matrices that it contains), so is
Circ(n) by an argument similar to the one used to show that Circ(n) is closed under matrix
multiplication. �

Corollary 7.24 (of proof). Circ(n) and Diag(n) are isomorphic subalgebras of Mn(C).

We proceed to describe another algebra that is isomorphic to Circ(n). If we let

W = circ{0, 1, 0, . . . , 0},
then it is easily seen that

circ{v0, v1, . . . , vn−1} =
n−1
∑

i=0

viW
i.

Remark 7.25. With respect to the standard basis of Cn, the shift operator T is repre-
sented by the transpose of the matrix W ; that is, by circ{0, 0, . . . , 0, 1}.

Corollary 7.26. The map that sends W to the indeterminate X establishes an isomor-
phism of algebras between Circ(n) and the algebra C[X]/(Xn − 1).

Definition 7.27. Given a circulant matrix V = circ{v0, v1, . . . , vn−1}, we define its
representer as the polynomial PV (X) =

∑n−1
i=0 viX

i.

Corollary 7.28. For l = 0, . . . , n − 1, we have that λl = PV

(

e
2πı
n

l
)

.

We know that a matrix cannot be recovered from its collection of eigenvalues, not even
from an ordered set of eigenvalues. However, given an ordered set of n eigenvalues: {λl, l =
0, 1, ..., n − 1}, there exists a unique diagonal matrix D with entry λl in the l-th slot. Thus
CDC−1 is the unique circulant matrix with this set of ordered eigenvalues.

EXERCISES

(1) A complex n × n matrix V is Hermetian if and only if V t = V̄ .
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(a) What is the dimension over R of the vector space of n× n complex Hermetian
matrices?

(b) What is the dimension over R of the vector space of n× n complex Hermetian
circulant matrices?

(2) Let v ∈ Cn be the row vector

v = (v0, v1, ..., vn−1).

We have associated with v several other algebraic quantities: a circulant matrix

V = circ{v} ∈ Circ(n),

an ordered set of eigenvalues

λV = {λ0, λ1, ...λn−1} ∈ Cn,

the characteristic polynomial of V

pV(x) = det(xI − V) =

n−1
∏

l=0

(x − λl) = xn +

n−1
∑

k=0

akx
k,

hence also a vector

a = {a0, a1, ...an−1} ∈ Cn with an−1 = −nv0,

and the representer of V

PV(x) =
n−1
∑

k=0

vkx
k.

Let J ∈ Cn and K ∈ Circ(n) be respectively the vector and matrix with all entries
equal to 1 (thus K = circ{J}). Let

v′ = (0, v1 − v0, ..., vn−1 − v0) = v − v0J,

and denote by symbols with primes the associated quantities for v′. Show that
(a) V′ = V − v0K.
(b) λV′ = {λ0 − nv0, λ1, ...λn−1} = {−∑n−1

l=1 λl, λ1, ...λn−1}.
(c) pV′(x) =

(

x +
∑n−1

l=1 λl

)
∏n−1

l=1 (x − λl).
(d) a′ = {a′

0, a
′
1, ...a

′
n−2, 0}

(e) PV′(x) =
∑n−1

k=1(vk − v0)x
k.

(f) PV′

(

e
2πı
n

l
)

=

{

λ0 − nv0 for l = 0
λl for l = 1, 2, ..., n − 1

.

(g) trace(V′) = 0.
(3) Show that the n × n circulant matrices with trace 0 form a (n − 1)-dimensional

subspace of Circ(n).
(4) Let α ∈ C. Show that there exists a

v′′ = (v′′
0 , v

′′
1 , ..., v

′′
n−1) ∈ Cn

such that (with notation as in the first exercise)

λV′′ = {λ0 − α, λ1 − α, ...λn−1 − α} = λV − αJ.

Show that
(a) pV′′(x) = pV(x + α) = det((x + α)I − V).
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(b) trace(V′′) = trace(V) − nα and hence that for α = v0, trace(V′′) = 0.
(c) a′′ = {a′′

0, a
′′
1, ...a

′′
n−2, 0}.

(d) PV′′

(

e
2πı
n

l
)

= λl − α for l = 0, 1, ..., n − 1.

3. Roots of polynomials of small degree

The last corollary and the interplay between the characteristic polynomial pV of a cir-
culant matrix V and its representer PV leads us to a method for finding roots of (monic)
polynomials of degree less than or equal to 4.

The roots of the characteristic polynomial of an arbitrary n× n matrix V (these are the
eigenvalues of the matrix V ) are obtained by solving a monic n-degree polynomial equation.
However, in the case of circulant matrices V , the roots of pV are easily calculated using the
auxiliary companion polynomial PV , the representer of V . Thus if a given polynomial p is
known to be the characteristic polynomial of a KNOWN circulant matrix V , its zeros can be
readily found. This remark is the basis the method we will describe for solving polynomials
of low degree. It is thus of considerable interest to determine which monic polynomials are
characteristic polynomials of circulant matrices. Further, if we are given that p = pV for
some circulant matrix V , can we determine V , or equivalently PV , directly from p?

We can obviously recover V from its representer. If λ = {λ0, . . . , λn−1} is an ordered set
of eigenvalues (viewed in (28) as a column vector in Cn), then there is a unique circulant
matrix V = circ{v} = circ{v0, v1, . . . , vn−1} whose ordered eigenvalues are λ:

(28) v =
√

nC−1λ .

If the eigenvalues are distinct, then there are precisely n! ordered sets of eigenvalues producing
the same characteristic polynomial. In this case, there are n! circulant matrices V with
characteristic polynomial pV . Corollary 7.20 tells us that for each such circulant matrix
V = circ{v0, ..., vn−1}, v0 = 1

n

∑n−1
l=0 λl is independent of the ordering of the eigenvalues;

however, the vi for 1 < i < n do depend on the ordering. If k is the number of distinct
roots of the characteristic polynomial, then there are of course at least k! circulant matrices
with the given characteristic polynomial. In particular, every monic polynomial p is the
characteristic polynomial of some circulant matrix V .

Definition 7.29. Let n be a positive integer, p be a monic n-th degree polynomial, and
V an n × n circulant matrix. We say that V adheres to p or V is the adhering circulant
matrix to p if p = pV (that is if p is the characteristic polynomial of V ).

But the above argument avoids completely the issue of finding the roots of p, as the given
construction of V from p started by assuming we had the roots of the polynomial. So the
more difficult question is the construction of V (or equivalently, it representer PV ) in terms
of the coefficients of the polynomial p.

We are now ready to state and try to solve the problem of interest. Let us consider a
monic n-th degree polynomial p:

(29) p(x) = xn + αn−1x
n−1 + αn−2x

n−2 + ... + α1x + α0,

where αi ∈ C. A basic result in complex analysis (which we now use) tells us that the
polynomial has precisely n roots, counting multiplicities. Thus there exist complex numbers
βi such that

p(x) = (x − β1)(x − β2)...(x − βn).
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The task is to find these roots βi. Since

αn−1 = −
n
∑

i=1

βi,

the substitution y = x + αn−1

n
eliminates the term of degree n− 1; that is, it changes (29) to

(30) q(y) = p
(

y − αn−1

n

)

= yn + γn−2x
n−2 + ... + γ1y + γ0,

where the constants γj are easily computed in terms of the αi. If we can solve equation (30),
then we can certainly also solve (29) since

q(y) =
(

y − β1 −
αn−1

n

)(

y − β2 −
αn−1

n

)

...
(

y − βn − αn−1

n

)

.

In the notation of the last set of exercises, if p = pV, then q = pV′′ , where we use α = αn−1

n
in the definition of V′′.

3.1. Roots of linear and quadratic polynomials. The solution of the linear monic
equation

x + α0

does not present any problems; so we proceed to the quadratic monic equation (still only a
warm-up exercise)

(31) x2 + α1x + α0.

The classical solution of the last equation is based on completing the square; rewriting it as

x2 + α1x +
(α1

2

)2

+ α0 −
α2

1

4
=
(

x +
α1

2

)2

+ α0 −
α2

1

4
;

thus its roots are

x = −α1

2
±
√

α2
1

4
− α0.

As a warm-up exercise we use circulant matrices to solve for the roots of (31). We are looking
for a circulant 2 × 2 matrix

V =

[

a b
b a

]

whose characteristic polynomial

pV (x) = det

[

x − a −b
−b x − a

]

= x2 − 2ax + a2 − b2

equals (31). We are thus required to solve

−2a = α1

a2 − b2 = α0
.

The solution is easily seen to be

a = −α1

2
and b =

√

α2
1

4
− α0.
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There are in general, of course, two square roots of the complex number
α2

1

4
− α0, we choose

one of them. The representer for V is hence the polynomial

PV (x) =

(
√

α2
1

4
− α0

)

x − α1

2
.

Thus the roots of the original quadratic polynomial (31) (which is also pV ) are

PV (1) = −α1

2
+

√

α2
1

4
− α0

and

PV (−1) = −α1

2
−
√

α2
1

4
− α0.

We observe, as expected, that a our choice of the square root of
α2

1

4
− α0 only affected the

order of the roots we found.
We leave it to the reader to recast the above discussion in terms of 2×2 circulant matrices

of trace 0.

3.2. The general case. We are now given the monic n-th degree polynomial p of (29)
and we are trying to find a circulant matrix V = circ{v} = circ{v0, v1, . . . , vn−1} whose
characteristic polynomial

pV (x) = det(xI − V ) = det













x − v0 −v1 · · · −vn−2 −vn−1

−vn−1 x − v0 · · · −vn−3 −vn−2
...

...
. . .

...
...

−v2 −v3 · · · x − v0 −v1

−v1 −v2 · · · −vn−1 x − v0













= xn −
(

n−1
∑

i=0

vi

)

xn−1 + ...

is equal to p, the polynomial whose roots we are trying to find. We are thus attempting to
solve for the n unknown vi in n-equations; the first of these is

αn−1 =
n−1
∑

i=0

vi = trace(V ).

We have already seen that we can make a simple change of variable to eliminate the
term of degree n− 1 in the equation (29) and hence solve for the roots of (30). We are thus
looking for a traceless circulant matrix V ; the first equation to be solved is now

0 =
n−1
∑

i=0

vi = trace(V ).

We will use this reduction in the next two subsections.
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3.3. Roots of cubics. We start with the normalized4 monic cubic

q(y) = y3 + βy + γ

and look for a traceless circulant matrix

C =





0 b c
c 0 b
b c 0





whose characteristic polynomial

det(yI − C) =





y −b −c
−c y −b
−b −c y



 = y3 − 3bcy − (b3 + c3)

equals q(y). The equations to be solved for b and c are

b3 + c3 = −γ and 3bc = −β.

Cubing the last equation we solve for b3 and c3 in

b3 + c3 = −γ and 27b3c3 = −β3.

Replacing, as is permitted by the second equation, for example, c3 by − β3

27b3
in the first of

these equations and then using the quadratic formula we conclude that

b3 =
−γ ±

√

γ2 + 4β3

27

2
.

The same formula holds for c3, however we must choose square roots consistently. Thus
having chosen one square root

b3 =
−γ +

√

γ2 + 4β3

27

2
, c3 =

−γ −
√

γ2 + 4β3

27

2
.

We must use a little care, as suggested by the last displayed equation, because we are working
with complex numbers. We choose one of the six5 possible values of

b =





−γ ±
√

γ2 + 4β3

27

2





1

3

.

We then set

c =
−β

3b
.

To keep track of what is going on, let us write

2b3 = −γ + δ, δ2 = γ2 +
4β3

27
,

4To have 0 as the coefficient of its quadratic term.
5In the generic case.
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and observe that the definition of δ involves a choice of a square root and that the resulting
δ may be replaced by −δ and the resulting two values of b may each be replaced by ωjb with
ω = e

2πı
3 and j = 1 or 2. The values of b and c are described by

b =

(−γ + δ

2

)
1

3

and c =

(−γ − δ

2

)
1

3

;

it follows from these equations that 3bc = −(β3)
1

3 . Having chosen a cube root in the formula
for b, the correct cube root must be chosen in the formula for c so that the last equation
becomes 3bc = −β. With these conventions in mind, the three roots of q can now be written
as P (ωj) with j = 0, 1, 2 where

P (y) = by + cy2.

Thus the roots are

r1 = b + c =

(−γ + δ

2

)
1

3

+

(−γ − δ

2

)
1

3

,

r2 = bω + cω2 = ω

(−γ + δ

2

)
1

3

+ ω2

(−γ − δ

2

)
1

3

and

r3 = bω2 + cω = ω2

(−γ + δ

2

)
1

3

+ ω

(−γ − δ

2

)
1

3

.

We can determine the effect of the various choices made on the values of the roots.
Replacing δ by −δ, certainly interchanges b and c. Hence r1 is fixed while r2 and r3 are
permuted. Keeping δ fixed and replacing a cube root choice, say b by ωb (the only other
possibility is ω2b results in the replacement of say c by ω2c. Thus r1 is replaced by r2, r2

by r3 and hence (without the need of a calculation) r3 by r1. In general, the various choices
made correspond to the action of the symmetric group S(3) on the roots of the monic cubic
polynomial.

If we start with the general monic cubic

p(x) = x3 + α2x
2 + α1x + α0,

then the change of variable y = x − α2

3
reduces us to the normalized case with

β = −1

3
α2

2 + α1 and γ =
2

27
α3

2 −
1

3
α2α1 + α0.

3.4. Roots of quartics. To find the roots of the normalized monic quartic

q(y) = y4 + βy2 + γy + δ

we look for a traceless 4 × 4 circulant matrix

C =









0 b c d
d 0 b c
c d 0 b
b c d 0
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whose characteristic polynomial

det(yI−C) =









y −b −c −d
−d y −b −c
−c −d y −b
−b −c −d y









= y4−(4bd+2c2)y2−4c(b2+d2)y+c4−b4−d4−4bc2d+2b2d2

equals q(y). We thus have to solve for b, c and d the system

(32)
4bd + 2c2 = −β

4c(b2 + d2) = −γ
c4 − b4 − d4 − 4bc2d + 2b2d2 = δ

.

Assume for the moment that c 6= 0. In this case, the first and second equations of (32) can
be rewritten as

(33) bd = −β + 2c2

4
and b2 + d2 = − γ

4c
,

they determine bd and b2 + d2 in terms of c. This suggests that the third equation of (32)
be rewritten as

c4 − 4bdc2 − (b2 + d2)2 + 4(bd)2 = δ.

Substitution of (33) into this equation and clearing fractions leads us to

(34) c6 +
β

2
c4 +

(

β2

16
− δ

4

)

c2 − γ2

64
= 0;

a monic (not normalized) cubic in c2 that can be solved by the methods of the previous
subsection. Choose one non-zero root c of (34). This is possible since 0 is a root of (34) if
and only if γ = 0; while all the roots of this equation are 0 if and only if β = 0 = δ = γ.
Using this value of c, we solve for b and d in (33). The roots of q(x) are then the values at
1, ı, −1 and −ı of the representer

P (y) = by + cy2 + dy3

of the circulant matrix C. If γ = 0, we can of course use c = 0 and solve for b and d in

4bd = −β and b2 − d2 =
√
−δ.

The various choices made lead to an action of S(4) on the roots of q. We illustrate the
various ideas encountered with a MAPLE program to solve the equation

x4 − 10x3 + 35x2 − 50x + 24 = 0.

MAPLE SESSION #xx

> p := x -> x^4 - 10 * x^3 + 35 * x^2 - 50 * x + 24;

p := x → x4 − 10 x3 + 35 x2 − 50 x + 24

> solve(p(x) = 0,x);

1, 2, 3, 4

> q := y -> p(y + 5/2);

q := y → p(y +
5

2
)
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> expand(q(y));

y4 − 5

2
y2 +

9

16
> solve(z^2 - 5/2 * z + 9/16 = 0,z);

9

4
,

1

4
> beta := - 5/2: gama := 0: delta := 9/16:

> solve(t^3 + (beta/2) * t^2 + (beta^2/16 - delta/4) * t - gama^2/64 =
0,t);

0, 1,
1

4
> c := 0;

c := 0

> solve({4 * b * d = -beta, b^2 - d^2 = sqrt(-delta)},{b,d});

{d =
−1

4
+

3

4
I, b =

−1

4
− 3

4
I}, {d =

1

4
− 3

4
I, b =

1

4
+

3

4
I}, {d =

−3

4
+

1

4
I, b =

−3

4
− 1

4
I},

{d =
3

4
− 1

4
I, b =

3

4
+

1

4
I}

> b := -1/4 -3/4 * I: d := -1/4 + 3/4 * I:

> P := t -> b * t + c * t^2 + d * t^3;

P := t → b t + c t2 + d t3

> P(1) + 5/2, P(I) + 5/2, P(-1) + 5/2, P(- I) + 5/2;

2, 4, 3, 1

***END MAPLE PROGRAM***

We describe the various steps of the above program.

(1) The first line of the program introduces the polynomial p(x) to be solved.
(2) The second line uses the internal MAPLE command to solve this equation (as a

check on our work).
(3) The third and fourth lines change the polynomial p(x) to its normal form q(x). We

note that the roots of p(x) are the roots of q(x) plus 5
2
.

(4) The next line (again a check on our work) uses MAPLE to solve the normalized
polynomial q(x) – because it is a quadratic in y2.

(5) Next, the constants defining the q(x) are entered.
(6) We solve for the possible values of c and use c = 0. Thus we will use a circulant

matrix of the form V = circ{0, b, 0, d}.
(7) We proceed to solve for the possible values of b and d, and choose a solution set

(out of the 4 possibilities).
(8) The last two commands calculate the roots of p(x) using the representer P (y) of V .

3.5. Real roots and roots of absolute value 1. We fix throughout this subsection
an n ∈ Z>0, a monic n-th degree polynomial p and an n×n matrix V ∈ Circ(n) that adheres
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to p. We are interested in learning what properties of p are reflected in V . Recall that in
the case under study p is the characteristic polynomial of V .

Theorem 7.30. The monic polynomial p has only real roots if and only if its adhering
circulant matrix V is Hermetian.

Proof. It is easy to see that a monic polynomial p ∈ C[x] with only real roots must
belong to R[x] (that is, it must have real coefficients). A matrix V is Hermetian iff V = V t.
We know from linear algebra that the eigenvalues of a Hermetian matrix are real. Thus if V
is Hermetian, p has real roots. Conversely, if p has real roots, then V has real eigenvalues.
Thus there exists an n×n real diagonal matrix D with V = CDC t and C is defined by (26)
(in particular, C−1 = Ct). We now compute

V t = (CDCt)t = CDCt = CDCt = V ;

thus V is Hermetian. �

Many other properties of p(x) can be read off from V . We record some of these in

Theorem 7.31. Let p be a monic polynomial with adhering circulant matrix V . Then
(a) the roots of p(x) are real if and only if V is Hermetian (V = V t),
(b) the roots of p(x) have absolute value 1 if and only if V is unitary (V −1 = V t), and
(c) the roots of p(x) are purely imaginary if and only if V is skew-Hermetian (V = −V t).

3.6. What goes wrong for polynomials of higher degree? Will the method de-
scribed in subsections 3.3 and 3.4 work on polynomials of degree ≥ 5? The answer to
this question is a resounding NO, but that is a topic for an entirely different chapter of
mathematics.

EXERCISES

(1) Using circulant matrices find the roots of each of the following polynomials.
(a) 1 + 2x + x3.
(b) 1 + 2x + x2 + 3x3.
(c) 1 + x + 2x2 + x4.
(d) 1 + x + 2x2 + 3x3 + x4.

(2) Complete the solution of the example worked out by the MAPLE program by choos-
ing a value c 6= 0. What is the formula for the representer P (y) in this case? What
element of S(4) is represented by permutation that changes the MAPLE solution
to your solution?

(3) (a) Prove parts (b) and (c) of Theorem 7.31 using the ideas in the proof of Theorem
7.30 (part (a) of Theorem 7.30).

(b) Deduce part (c) of Theorem 7.31 from Theorem 7.30 and the observation that
a monic polynomial p(x) of degree n has purely imaginary roots if and only if

the monic polynomial p(ıx)
in

has only real roots. Describe an adhering circulant

matrix V for p(x) in terms of one for p(ıx)
in

.





CHAPTER 8

Moduli for polynomials

Preliminary version of chapter. Written in a form that should be accessible to most high
school mathematics teachers. Certain results from previous chapters are repeated here to
make the presentation more self contained.

1. Polynomials in three guises

Let n be a positive integer. We will be dealing with expressions of the form

(35) p(x) = anxn + an−1x
n−1 + ... + a0,

or alternatively just the expression

(36) anxn + an−1x
n−1 + ... + a0,

where x is an indeterminate or independent variable, each ai is a real number (or more
generally, a complex number) and an 6= 0.

We call (36) an n-th degree polynomial (with real or complex coefficients). Polynomials
with real (complex) coefficients will be referred to as real (complex) polynomials. At times
there are significant differences between the two cases. Polynomials can be manipulated
using the usual rules of arithmetic; for example, replaceing x by αx + β with α 6= 0 and β
real or complex numbers transforms it into another n-th degree polynomial. An algebraist
would say that (36) is an element of the integral domain R[x] or C[x].

It is quite clear that (36) and (35) are more or less the same object. The introduction of
the extra symbol p(x) or p in (35) reminds us that we may also think of a polynomial as a
function

p : R → R or p : C → C,

with p(x) denoting the value of this function at x ∈ R or C, respectively. When viewed as
a function from C to itself a real polynomial has the added feature of assuming real values
at the real points in C. The symbol p is the dependent variable and y is another common
letter used to represent it. Associated to any funnction f : R → R is its graph; the set

{

(x, y) ∈ R2 such that y = f(x)
}

.

This set is often identified with the function f .
When discussing roots of the polynomail (36) or (35) we are looking for those x (usually

in C) that satisfy the equation

0 = anxn + an−1x
n−1 + ... + a0.

161
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2. An example from high school math: the quadratic polynomial

The study of first degree polynomials

l(x) = ax + b

with complex coefficients (a and b are complex numbers and a 6= 0) is certainly trivial for
all high school mathematics teachers. The quadratic polynomial

(37) y(x) = ax2 + bx + c

with complex coefficients (a, b and c are complex numbers and a 6= 0) is only slightly more
challenging. We present a treatment that is much more concise than the one found in many
high school texts (for example in [5]). The graph of the standard form of the real quadratic
polynomial y(x) = x2 (the special case a = 1, b = 0 = c) is certainly familiar to every
reader. By completing squares and applying elementary algebraic manipulations one easily
concludes from (37) that

(38)
y

a
=

(

x +
b

2a

)2

+

(

c

a
− b2

4a2

)

.

This tells the complete story for quadratic polynomials:

• Every quadratic polynomial has two, perhaps complex, roots counting multiplicities.
• The roots of (37) are easily obtained from its equivalent form (38); they are

− b

2a
±

√
b2 − 4ac

2a
.

• For real quadratic polynomials, the roots are real and distinct if the discriminant
b2 − 4ac of the polynomial is positive.

• There is one double real root if the discriminant vanishes.
• There is a pair of conjugate complex roots if the discriminant is negative.
• The linear change of coordinates

X = x +
b

2a
and Y =

y

a
+

b2 − 4ac

4a2

transforms (37) (and (38), of course) to standard form Y = X2.

Up to change of coordinates, this is all there is to quadratic polynomials; that is, the
general quadratic polynomial ax2 + bx + c is obtained from the standard quadratic x2 by
first pre-composing with the affine map x 7→ x+ b

2a
and then post-composing with the affine

map x 7→ ax + c − b2

4a
. We illustrate the concept of change of coordinates in Figure 1 with

an example that hints at the important equivalence relation we are about to introduce.
We do not claim this approach is the way an excellent teacher would present the quadratic

to a high school audience, but rather that every competent high school mathematics teacher
should be aware of this elegant and short treatment.

3. An equivalence relation

If we start, in general, with a polynomial y = y(x) in the independent variable x and use
the linear change of both independent and dependent variables

X = ax + b, Y = cy + d,
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Figure 1. On the left is the graph of y = −2x2 + x + 1. Apply the change of
coordinates X = x− 1

4
, Y = y

2
+ 9

16
to get the standard form Y = X2 graphed

on the right.

where a, b, c and d are complex constants with ac 6= 0, we obtain a polynomial Y = Y (X)
in a new independent variable X. Notice we can write Y (X) = Y (ax + b) = cy(ax + b) + d.
We consider these two polynomials to be equivalent. Of course, equivalent polynomials share
many properties. Most importantly, the real or complex number x = r is a root of y (so
y(r) = 0) if and only if the polynomial Y evaluated at X = ar + b equals d. In particular, if
the dependent variable is not subject to a translation (that is, if d = 0), then r is a root of
y(x) if and only if ar + b is a root of Y (X), or equivalently, r−b

a
is a root of Y (ax + b).

We emphasize that our changes of coordinates allow translations, resizing, and sign
changes in both the independent and dependent variables. We may consider only real poly-
nomials and work only with real affine maps. Let us examine the situation in a more formal
way.

First degree polynomials are also called affine maps of the complex plane C. They form
a group under composition (composing two affine maps generates a third one). We denote
by L−1(x) the inverse of the affine map L(x) in this group1. Our equivalence relation (which
we will denote by the symbol ≡) is actually independent of the dependent variable y: The
polynomial p(x) is equivalent to the polynomial q(x) if q(x) can be obtained from p(x) by
pre-composition and post-composition with affine maps; that is, if and only if there exist
affine maps L1(x) and L2(x) such that

(39) q(x) = L2(p(L1(x))).

We note that every polynomial p(x) is equivalent to itself since the identity map is affine. If
p(x) ≡ q(x), then there existaffine maps L1 and L2 such that (39) holds, and thus

p(x) = L−1
2

(

q
(

L−1
1 (x)

))

;

or q(x) ≡ p(x). Finally, if p1(x) ≡ p2(x) and p2(x) ≡ p3(x), then there exist affine maps Li,
i = 1, 2, 3, 4 such that

p2(x) = L2(p1(L1(x))) and p3(x) = L4(p2(L3(x))).

1The notation is meant to emphasize the fact affine maps are polynomials of degree one.
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Thus
p3(x) = L4(L2(p1(L1(L3(x)))))

or p1(x) ≡ p3(x).

4. An example all high school math teachers should know: the cubic
polynomial

To understand what is going on with quadratic polynomials, one should be able to answer
several questions. How much of the development of §2 carries over to arbitrary real or
complex polynomials (of degree 3 or higher); how much is peculiar to quadratics? What do
these questions mean?

An example more challenging than the quadratic polynomial is the real or complex cubic

(40) p(x) = y = ax3 + bx2 + cx + d,

with a, b, c and d real or complex numbers and a 6= 0.
If p(x) ∈ R[x], then by the intermediate value theorem, p(x) must have at least one real

root r. It follows that
p(x)

x − r
= ax2 + βx + γ

for some real constants β and γ, so that the analysis of the cubic p(x) ∈ R[x] can be reduced
to a study of the quadratic ax2 + βx + γ. We follow a slight variation of this observation;
in prt, because it does not tell us how to find r algebraically. But first, we make a small
digression to observe some facts about

5. Arbitrary real or complex polynomials

Let us return to the arbitrary n-th degree real or complex polynomial (35). A basic fact
is the Fundamental theorem of algebra, whose easiest proof is via complex analysis (see,
for example, [1, page 122]): such a polynomial has precisely n-complex roots2. Because of
the division algorithm, this implies that

p(x) = an(x − r1)(x − r2)....(x − rn),

where each of the ri is a (complex) root of p(x). In case the polynomial has real coefficients,
we find that if r ∈ C is a root of (35), then so is its complex conjugate r̄. The proof of this
assertion is rather easy. The fact that 0 = p(r) tells us that

0 = p(r) =
n
∑

i=0

airi =
n
∑

i=0

air̄
i = p(r̄),

so that r̄ is a root of (35). We claim more: if the complex number r is a root of multiplicity k
of (35) (that is, precisely k of the ri equal r), then so is r̄. The easiest proof of this assertion
is by induction on the degree of the polynomial. We may and do assume that r 6∈ R since
otherwise there is nothing to prove. We may also assume that n ≥ 3 and k ≥ 2 because
otherwise there once again is nothing to prove. Our assertion holds for n = 3, because in this
case we have at least one real root, so k = 1. Now assume n > 3 and the complex number r
is a root of p(x) of multiplicity k. We already know r̄ 6= r is also a root of p(x). Note that

(x − r)(x − r̄) = x2 − (r + r̄)x + rr̄,

2Even for real polunomials, the roots may be complex.
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with both r + r̄ and rr̄ real numbers. Hence

q(x) =
p(x)

x2 − (r + r̄)x + rr̄

is a real polynomial of degree n − 2 having r as a complex root of multiplicity k − 1. By
complete induction r̄ is also a complex root of multiplicity k − 1 of q(x). Hence a root of
multiplicity k of p(x).

6. Back to the cubic polynomial

We begin a leisurely exploration of the real cubic. The study of the real cubic polynomial
(40) does not require the material of the last section, except for the fact that non-real roots
come in pairs (a complex number and its conjugate). We start with the useful, if trivial,
general observation already encountered in §3. Let a and b ∈ R with a 6= 0, then r is a root
of p(x) if and only if r−b

a
is a root of p(ax + b).

As observed earlier, p(x) must have at least one real root. Therefore we have either 1, 2
or 3 distinct real roots. We consider cases:

(1) Exactly one real root.
• This root could have multiplicity three. A good example is the special case

p1(x) = x3 whose graph is shown below.

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

Figure 2. y = x3

The general case p2(x) = a(x−b)3, where a and b are real numbers with a 6= 0, is
reduced to the special case by the change of coordinates P = p2

a
and X = x−b.

• This root could not have multiplicity two. If it did p(x) would have to have 4
roots, counting multiplicities, of course.

• This root could have multiplicity one. In this case, the polynomial must have
a pair of complex roots. A typical example here is p3(x) = x(x2 + 1) whose
graph is shown below.
The general equation here is of the form p4(x) = c(x− r)(x2 + αx + β) with c,
r, α, β real numbers, c 6= 0 and α2 − 4β < 0. If we make the change of variable
x = aX + b with a 6= 0 and b real, we transform the general equation to

p(aX + b) = c(aX + b − r)(a2X2 + (2ab + αa)X + (b2 + αb + β)).
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Figure 3. y = x(x2 + 1)

We now set b = r (thus placing the one real root at the origin) and consider
two cases:

– If α = −2r, we conclude that p4(aX + r) = caX(a2X2 + (β − r2)) and
after further change of variables we reduce the equation to the form

P (X) = X(X2 + d), d > 0.

– If α 6= −2r, we cannot kill the first degree term in the quadratic polyno-
mial a2X2 + (2ab + αa)X + (b2 + αb + β). If p(x) has complex roots at
ρ and ρ̄, then p(aX + r) has complex roots at ρ−r

a
and ρ̄−r

a
. By properly

choosing a, we can ensure that the roots of the polynomial p(aX + r) are
at 0 and e ± ı for some real number e. Thus we conclude, with proper
choices for a and b,

p(aX + b) = dX(X2 − 2eX + (e2 + 1))

for some non-zero real number d. So the standard form of our polynomial
in this case is

P (X) = X(X2 − 2eX + (e2 + 1)) for some e ∈ R.

We graph another example: p5(x) = (x + 2)(x2 − 2x + 3) which will shortly lead
us to reconsider our approach.

(2) Exactly two distinct real roots.
In this case one of the roots must have multiplicity one and the other multiplicity
two. A typical example is p6(x) = x(x − 1)2 whose graph is shown below

The general case is p7(x) = c(x − r1)(x − r2)
2 with c, r1 and r2 real constants,

c 6= 0 and r1 6= r2. The change of variables x = (r2 − r1)X + r1, P = p
c

reduces the
general case to the typical example.

(3) Three distinct real roots.
A typical example is p8(x) = x(x+1)(x−1) whose graph is once again shown below

The general case is p(x) = c(x − r1)(x − r2)(x − r3) with 0 6= c ∈ R and r1, r2

and r3 three distinct real numbers. The change of variables x = (r2 − r1)X + r1,
P = p

c
reduces the general case to the standard form

P (X) = X(X − 1)(X − α), with α ∈ R, 0 6= α 6= 1.



6. BACK TO THE CUBIC POLYNOMIAL 167

0

2

4

6

8

10

12

–2 –1 1 2
x

Figure 4. y = (x + 2)(x2 − 2x + 3)
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Figure 6. y = x(x + 1)(x − 1) = x(x2 − 1)

The reader should notice a striking similarity between the graphs of p5 (Figure 4) and p8

(Figure 6). This is, of course, not a coincidence. As can easily be seen,

p5(x) = p8(x) + 6.
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This suggests that we have not paid sufficient attention to the dependent variable. We
now make a “bold” conjecture: If y is a cubic with 3 distinct real roots, there is a constant
c such that y + c has precisely one simple real root (and thus also a pair of complex roots).
In verifying this claim, we may assume that limx→−∞ y(x) = −∞, since we can replace y by
−y if this is not the case. Let r1 < r2 < r3 be the three roots of the cubic. From calculus we
know that the restriction of y to the closed interval [r2, r3] has a negative minimum −c at
some point xo ∈ (r2, r3). So the function y+2c has precisely one simple real root. Therefore,
in the classification of cubic polynomials up to equivalence, we may ignore the case of three
distinct real roots.

The above analysis on the structure of the roots of the real cubic can also be obtained in
a very straight forward manner. As we have seen, we can think of the general cubic as the
product of a linear term and a quadratic term. The quadratic term can have either no real
roots, one real root of multiplicity two, or two distinct real roots, while the linear term must
have exactly one simple real root. If the quadratic term has no real roots, then the cubic
must have exactly one real root of multiplicity one and two complex conjugate roots. If the
quadratic term has one real root of multiplicity two, then the cubic must have either two real
roots (a simple one from the linear term and the one of multiplicity two from the quadratic
term), or one real root of multiplicity three (if the linear and quadratic roots coincide). If
the quadratic term has two distinct real roots, then the cubic has either three distinct real
roots, or again, one root of multiplicity one, and one root of multiplicity two.

7. Standard forms for cubics

The above analysis does not produce a satisfactory set of standard forms for cubics. To
obtain a more satisfactory set, we start with the arbitrary real cubic polynomial (40) and
describe an algorithm consisting of a series of steps, not all intuitive, which reduces it to
standard form.3 We work only with real affine maps in this reduction process.

(1) By rescaling the dependent variable, replacing y by ay, we may assume a = 1.
(2) Completing the cube, replacing x by x − b

3
, allows us to assume b = 0.

(3) If c = 0 we proceed to the next step. Otherwise, we resize both the dependent

(replacing y by |c| 32 y) and independent variables (replacing x by x
√

|c|), allowing
us to assume c = ±1. (The case +1 occurs when c > 0 and −1 when c < 0.)

(4) A final translation of the dependent variable (replacing y by y + d) reduces the
original equation to standard form

(41) P (x) = x3 + εx, ε = −1, 0 or 1.

We show next that no two of these three polynomials are equivalent. As we have seen,
the family of cubics equivalent to y = x3 can be written c(ax + b)3 + d with a, b, c and d
real and ac 6= 0. But

c(ax + b)3 + d = a3cx3 + 3a2bcx2 + 3ab2cx + b3c + d.

So for x3 + x or x3 − x to be in this family, we would need a2bc = 0 and ab2c 6= 0. Similarly,
the family of cubics equivalent to x3 + x can be written c[(ax + b)3 + (ax + b)] + d. If we
want to reduce this to x3 − x we must have b = 0 = d, which gives the family a3cx3 + acx.
But now we would require a3c = 1 and ac = −1 so a2 = −1 and a could not be real.

3The values of the constants a, b, c and d keep changing during the process.
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It is important to realize that while the development of this section did not rely on the
intermediate value theorem, it has NOT established the existence of a real root for every
cubic.

Much of our discussion of cubics is accessible to bright high school students and it leads us
to several natural questions; some that students can pursue. Every third degree polynomial
belongs to one of three equivalence classes. How do we determine which equivalence class
contains a specific polynomial. Are there common characteristics shared by all polynomials
in an equivalence class? If so, what are they? Note that multiplicities of roots is not constant
over an equivalence class. The polynomials x3 −x and x(x− 1)2 are in the same equivalence
class; the first of these has three simple roots and the second only two distinct roots (precisely
one of these of multiplicity 2).

We have seen that there are only three equivalence classes of cubic equation and that
representatives for these classes are described by the standard forms (41). These three
equations are easily solved. If ε = 0, then 0 is a root of multiplicy 3; if ε = −1, then 0 and
±1 are simple roots, and if ε = 1, then 0 and ±ı are simple roots. Does this information help
us solve the genral cubic p(x) given by (40)? We know that there are four real constants α,
β, γ and δ such that αγ 6= 0 and

(42) ax3 + bx2 + cx + d = α
[

(γx + δ)3 + ε(γx + δ)
]

+ β.

The unknown constants are easily determined. Equating the coefficients of the same powers
of x in (42) leads to four equations:

a = αγ3,

b = 3αγ2δ,

c = αγ
[

3δ2 + ε
]

and

d = αδ
[

δ2 + ε
]

+ β,

and we seem to have replaced solving a single cubic equation with solving four equations in
four unknowns that also involve cubics – not obviously a simpler problem. Again a change
of course is useful. There exist affine maps L1 and L2 such that

L2

[

a(L1(x)3) + b(L1(x)2) + cL1(x) + d
]

= x3 + εx

with ε = 0 or ±1. The algorithm described at the begining of this section tells us how to
compute the two affine maps. We find that

L1(x) = x − b

3a
and L2(x) =

1

a
x −

(

2b3

27a3
− bc

3a2
+

d

a

)

=
1

a
x +

9ad − bc

9a2

when b2 − 3ac = 0 (in this case ε = 0). If b2 − 3ac 6= 0, then

L1(x) =

√

∣

∣

∣

∣

b2 − 3ac

3a

∣

∣

∣

∣

x − b

3a
and L2(x) =

1

a| b2−3ac
3a

|
3

2

x − ( 2b3

27a3 − bc
3a2 + d

a
)

| b2−3ac
3a

|
3

2

with ε = 1 if b2 − 3ac < 0, and ε = −1 if b2 − 3ac > 0.
Inverting L1 and L2, we conclude that if b2 − 3ac = 0 then

α = a, β =
9ad − bc

9a
, γ = 1, δ =

b

3a
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and

α = a

∣

∣

∣

∣

b2 − 3ac

3a

∣

∣

∣

∣

3

2

, β =
2b3

27a2
− bc

3a
+ d, γ =

∣

∣

∣

∣

b2 − 3ac

3a

∣

∣

∣

∣

− 1

2

, δ =
b

3a
∣

∣

b2−3ac
3a

∣

∣

1

2

if b2 − 3ac 6= 0. We are looking for the zeros (roots) of the left hand side of of (42). Using
the right hand side of that equation we need to find the complex numbers r such that for
P (x) = x3 + εx, we have P (γr + δ) = − β

α
. So4 the problem reduces to solving the equation

(43) x3 + εx − 2η = 0, η = − β

2α
∈ R.

The above discussion assumed that we were dealing with a real cubic. What changes
need to be made for a general cubic? In studying the complex cubic, it is natural to consider
complex affine maps in the definition of equivalence of polynomials. One can easily be
convinced that in this setting the two cubics x3 + x and x3 − x are equivalent, but neither
of these is equivalent to the cubic x3 – resulting in two rather than three equivalence classes
of complex cubics.

8. Solving the cubic

We continue with the notation of the previous section and aim to solve (43). Assume,
however, that the two constants ε and η ∈ C∗. We follow a method discovered by the
sixteenth century Italian mathematician Girolama Cardano (and probably many others).
Let us write

x = y + z.

This may seem like an unnecessary complication, but it actually gives us additional freedom,
because we will be able to introduce a convenient side relation between y and z. Algebraic
manipulations transform (43) to

(y3 + z3) + (y + z)(3yz + ε) − 2η = 0.

This last formula reveals the appropriate side condition:

3yz + ε = 0,

and thus leads us to consider the system

y3z3 = − ε3

33
, y3 + z3 = 2η.

But look! This reduces the problem to solving a quadratic equation (in y3)

y3 − 2η − ε3

33y3
.

(We note that y 6= 0 since ε 6= 0.) The solution is

y3 = η ±
√

η2 −
( ε

3

)3

.

Note that this quadratic equation in y3 appears to give six solutions: one “positive” and
one “negative” for each cube root of y3, where “positive” and “negative” denote a choice of
sign in the quadratic formula. As we know, the cubic has at most three distinct roots. We
must appropriately choose three from the six possibilities. Note that the possible 6 values of

4The cases with ε = 0 or β = 0 are of course trivial.
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y are identical to the 6 possible values of z. We must now use the side condition yz = − ε
3
.

Thus each of the possible values of y corresponds to a unique value of z. By symmetry, the
6 possible choices for y result in only 3 possibilities for y + z. In practice, it is not necessary
to find all the possible solutions of the quadratic or cubic equations. Once we have a single
solution to the cubic, chosen arbitrarily, we can factor this out of the original equation,
leaving ourselves with a well understood quadratic term.

Example 8.1. As an example of Cardano’s method we solve the cubic x3 − 3x + 1 = 0.
For this example, using the notation introduced above, ε = −3 and η = − 1

2
. We are lead to

solving the quadratic (in y3) y6 + y3 + 1 = 0. The resulting 6 possible values of y are e
2πı
9 ,

e
8πı
9 , e

14πı
9 , e

4πı
9 , e

10πı
9 and e

16πı
9 . These are also the possible 6 values of z. Since we know

that yz = 1 (leaving us precisely 3 pairs of solutions), athe solutions (y + z) to our cubic are

x = e
2πı
9

(

1 + e
14πı

9

)

, e
8πı
9

(

1 + e
2πı
9

)

and e
14πı

9

(

1 + e−
10πı

9

)

.

The above method solves the general cubic

x3 + b2x
2 + b1x + b0

which reduces to the form
x3 + a1x + a0

after replacing x by x − b2
3
. Observe that finding the solutions involves the usual field

operations (on (C, +, ·)) and the extraction of square and cube roots.

9. Solving the quartic

Our aim is to solve the general quartic

x4 + b3x
3 + b2x

2 + b1x + b0

which reduces to
x4 + a2x

2 + a1x + a0

by replacing x by x− b3
4
. We follow a method discovered by Lodovici Ferrari, who certainly

was familiar with Cardano’s work. To solve the reduced quartic, we factor it into a product
of quadratics

(44) x4 + a2x
2 + a1x + a0 = (x2 + αx + β)(x2 + γx + δ).

As a consequence of the fundamental theorem of algebra, we know that such a factorization
is possible. What is not obvious is that we can find an algorithm for determining the four
constants α, β, γ and δ in terms of given a2, a1 and a0.

Equating the coefficients of the x3 terms in (44), we obtain γ = −α, the first step in
reducing the problem to more manageable size.

The next step is to equate the coefficients of the x2 terms in the two sides of (44) to
obtain

−α2 + β + δ = a2.

At this point we rely on an inspired “guess” – probably reached by Ferrari after a number
of other trials:

β =
1

2
(a2 + α2 + η) and δ =

1

2
(a2 + α2 − η);

thus reducing the task of finding two constants β and δ to the apparently simpler task of
finding one constant η. To complete the algorithm, we need to evaluate α and η.
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Equating the coefficients of the x terms in the two sides of (44), we obtain

1

2
α(a2 + α2 − η) − 1

2
α(a2 + α2 + η) = a1;

from which we easily conclude that

η = −a1

α
;

provided that α 6= 0.5 We are left with the task of evaluating the last unknown constant α.
If we equate the constant terms in the two sides of (44), we obtain

a2
2 + 2a2α

2 + α4 − a2
1

α2
= 4a0;

a cubic in α2 that we know how to solve from the results of the previous section.

Example 8.2. We consider the quartic x4+ıx+ 3
4
. The resulting cubic in α2 is α6−3α2+1.

This equation was solved in the last section.

10. Concluding remarks

We proceed to some remarks about the general case of a real polynomial p(x) of arbitrary
degree n ≥ 3. If n is odd, it must have at least one real root, say at x = r. Dividing p(x) by
x − r we obtain a polynomial of even degree n − 1. A polynomial of even degree may have
a number of real roots and and an even number of complex roots that occur as conjugate
pairs. Thus p(x) has m real roots and n−m

2
pairs of non-real complex conjugate roots. Note

that n and m must have the same parity. This analysis does not reveal how many families
of polynomials of a given degree there are, nor what they look like. It leads to a series of
questions paralleling those posed at the beginning of our discussion of the cubic.

We conclude by returning to the questions which preceded our discussion of the cubic.
We have seen how the root structure of the quadratic is a special case of the root structure
of arbitrary polynomials, while the standard form of a quadratic is very special. For degree
2, there is one standard form. For degree 3, there are three standard forms. What happens
for polynomials of degree n ≥ 4? For quartics an analysis similar to that used for cubics will
work (how many equivalence classes will result?), not quite so for polynomials of degree five
or higher. But this leads to a different fascinating chapter in the study of algebra.

11. A moduli (parameter) count

The general cubic depends on four parameters. Our equivalence relation on polynomials
of degree three also depends on four parameters (two each for pre and post composition). It
thus seems reasonable, as we discovered, that there are only three equivalence classes. The
quartic depends on five parameters and we thus expect that there should one parameter
families of equivalece classes of quartics.

EXERCISES
These exercises are more open ended than those in previous chapters – projects for the

readers requiring thinking as well as readings of literature on the subject.

5The condition α = 0 implies that the reduced quartic is of the form x4 + a2x
2 + a0 – a quadratic in x2

and hence easily solved. Thus we may assume that α 6= 0.
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(1) Let n be a positive integer. On how many parameters does the space of equivalence
classes of n-th degree polynomials depend? Does it make any difference if one
considers polynomials with coefficients in the rings Z, Q, R or C and the affine
maps with coeffiecents in the corresponding rings.

(2) Complete the work needed to compute the 4 roots of Example 8.2.
(3) Find the roots of each of the following polynomials.

(a) 1 + 2x + 2x2 + x3

(b) 1 + 2x + 3x2 + 4x3

(c) 1 + 2x + 2x2 + 2x3 + x4

(d) 1 + 2x + 3x2 + 4x3 + 5x4

(4) Complete the details for the classification of complex cubics into two equivalence
classes.

(5) Determine the set of standard forms for quartics over the reals and complex numbers.
On how many parameters does each of the equivalence classes depend?





CHAPTER 9

Nonsolvability by radicals

The main aim of this chapter is to prove that polynomials of degree greater than 4 cannot
be solved by simple formulae. We follow a path described in Chapter VI of [8]. To avoid
some technical complications, we assume that all fields under discussion are contained in C;
they automatically contain Q. THE MATERIAL IN THIS CHAPTER IN PRELIMINARY
FORM – MANY REVISIONS ARE REQUIRED.

1. Algebraic extensions of fields

We begin with a general

Definition 9.1. Let F ⊆ C be a field. A number α ∈ C is algebraic over F if there
exists a polynomial P (x) ∈ F [x] of positive degree with P (α) = 0. Thus α is a root of P (x)
and P (x) vanishes at α. A number α ∈ C is algebraically independent or transcendental
over F if it is not algebraic. The definitions make perfectly good sense for integral domains
F ⊂ C.

Remark 9.2. If the polynomial P (x) of the last definition has degree 1, then α ∈ F if
the latter is a field.. Hence, for fields, the interesting cases involve polynomials of degree
at least 2. The complex numbers ±

√
2, ±ı are algebraic over Q satisfying the polynomial

equations x2 − 2 = 0 and x2 + 1 = 0, respectively. The reason for allowing polynomials of
degree one to appear in the last definition is to guarantee that all the elements of the field
F are algebraic over F .

Definition 9.3. Let F be a subfield of E. We view E as a F -vector space and call it
an extension of the field F and a finite extension if the dimension of E as an F -vector space
is finite. We say that E is algebraic over F if every e ∈ E is algebraic over F .

Theorem 9.4. If E is a finite extension of the field F , then every element α ∈ E is
algebraic over F .

Proof. If α ∈ E there is nothing to prove. So assume that α 6∈ E. If n is bigger than
or equal to the dimension of E as an F -vector space, then the n + 1 elements 1, α, ..., αn in
E cannot be linearly independent over F . So there exists elements ai ∈ F , not all zero, such
that

(45) a0 + a1α + ... + anαn = 0.

The degree of the last polynomial must be at least two since otherwise α would belong to
E. �

Proposition 9.5. Let α ∈ C be algebraic over the field F . Let J be the ideal of polyno-
mials in F [x] which vanish at α. Let p(x) be the monic polynomial that generates J . Then
p(x) is irreducible.

175
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Proof. Suppose that p(x) = g(x)h(x) is a factorization of the polynomial p(x) and the
degrees of g(x) and h(x) are strictly less than the degree of p(x). Since p(α) = 0, either
g(α) = 0 or h(α) = 0. Since p(x) is a polynomial of minimal degree in J , we have reached a
contradiction. �

Definition 9.6. With the notation of the last theorem, we may assume that p(x) is
monic. It is then uniquely determined by α and F , and we call it the irreducible polynomial
of α over F . Its degree is the degree of α over F .

Remark 9.7. Note that α ∈ F if and only if p(x) = x− α if and only if the degree of α
over F is one.

Theorem 9.8. (a) Let α ∈ C be algebraic over the field F . Let n be the degree of its
irreducible monic polynomial p(x) over F . Then the F -vector space1, F (α), generated by
1, α, ..., αn−1 is a field, and the dimension of F (α) as a F -vector space is n (also denoted
by [F (α) : F ]).
(b) Let α ∈ C be algebraicaly independendent over the field F . Then the F -vector space, E,
generated by 1, α, ..., αn, ... is infinite dimensional, an integral domain, and the map θ
that is the identity on F and sends α to x extends to a ring isomorphism θ : E → F [x].
(c) Under the same assumptions and notation as in the previous part, let F (α) be the smallest
subfield of C containing F and α. Then F (α) is the field of fractions of the integral domain
E and isomorphic to the field of rational functions F (x).

Proof. (a) Let f(x) ∈ F [x]. By the division algorithm, we can find polynomials q(x)
and r(x) ∈ F [x] with

f(x) = q(x)p(x) + r(x) and deg r(x) < deg p(x).

Thus
f(α) = r(α).

Denote by E the F -vector space generated by 1, α, ...αn−1. (We need to show that E is a
field; hence F (α).) Let a and b ∈ E. Then there exist polynomials f1(x) and f2(x) ∈ F [x]
each of degree less than n with f1(α) = a and f2(α) = b. Thus (using f(x) = f1(x)f2(x))

ab = f1(α)f2(α) = r(α) ∈ E.

Now suppose f(x) = f1(x)f2(x) has degree less than n and f(α) 6= 0. Then p(x) does
not divide f(x). Since p(x) is irreducible, we conclude that the polynomials p(x) and f(x)
must be relatively prime and hence there exist polynomials g(x) and h(x) ∈ F [x] such that
g(x)f(x) + h(x)p(x) = 1. Hence g(α)f(α) = 1. Showing that every non-zero element of E
is invertible. This suffices to establish that the ring E is a field.
(b) It is clear that E is a ring. It is an infinite dimensional F -vector space since for every
positive integer n, the vectors 1, α, ..., αn are lineraly independent over F since a relation
of the form (45) would imply that α is algebraic over F . The ring E is an integral domain
since in is contained in C. The F -linear map θ is extended to the vector space E by defining
θ(αn) = xn. It is clearly a ring isomorphism.
(c) It is clear that the field of fractions of E is equal to F (α). The map θ : F (α) → F (x) is
defined as the identity on F and by sending α to the indeterminate x. It is rather obvious
how to extend it to all of F (α) to obtain a ring homomorphism to the space of rational

1The notation implies that we vector space we obtain is a field, as we establish below.
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functions F (x) over F . To show that θ is an isomorphism between fields, all we need to

show that it is surjective. So let p(x) and q(x) ∈ F [x] with q(x) 6= 0. Hence p(x)
q(x)

is an

arbitrary element of F (x). Certainly both p(α) and q(α) ∈ F (α). We claim that q(α) 6= 0

since otherwise α would (once again) be algebraic over F . It is clear θ
(

p(α)
q(α)

)

= p(x)
q(x)

. �

Definition 9.9. In general, if E is a finite dimensional extension of F , we denote by
[E : F ] the dimension of E as an F -vector space.

Theorem 9.10. If E1 is a finite extension of the field F and E2 is a finite extension of
E1, then E2 is a finite extension of F and

[E2 : F ] = [E2 : E1][E1 : F ].

Definition 9.11. Let α1 and α2 ∈ C be algebraic over a field F , then α2 is obviously
algebraic over F (α1) and we can form the field F (α1)(α2). Since any field that contains F ,
α1 and α2 will contain F (α1)(α2) = F (α2)(α1), this is the smallest field that contains F , α1

and α2; we will denote it by F (α1, α2). This field is algebraic over F . In particular, sums
and products of algebraic numbers are algebraic. For if α1 and α2 are algebraic over the field
F , then both α1 + α2 and α1α2 ∈ F (α1, α2). By induction, if α1, α2, ..., αr are algebraic
over F , we obtain the field

F (α1, α2, ..., αr),

by adjoining α1, α2, ..., αr to F .

Remark 9.12. In the notation of the last definition, we have the equality

[F (α1, α2, ..., αr) : F ] = [F (α1, α2, ..., αr) : F (α1, α2, ..., αr−1] [F (α1, α2, ..., αr−1) : F (α1, α2, ..., αr−2] ... [F (α1) : F ] < ∞.

Hence Theorem 9.21 will tell us that F (α1, α2, ..., αr) = F (γ) for some γ ∈ C that is
algebraic over F .

Let F be a field. The discussion of transcendental numbers over F is similar, but not
completely parallel to the discussion of algebraic numbers over F .

Definition 9.13. Let F be a subfield of C and α1, α2, ..., αr ∈ C. Let F0 = F and
define inductively Fi = Fi−1(αi) for i = 1, 2, ..., r. We will say that the r complex numbers
α1, α2, ..., αr are algebraically independent over F if for i = 1, 2, ..., r, αi is algebraically
independent over Fi−1.

Proposition 9.14. Under the notation of the last definition, Fr is independent of the
ordering of the α1, α2, ..., αr and is hence denoted by F (α1, α2, ..., αr).

2. Field embeddings

Definition 9.15. Let F and E be fields. A ring homomorphism σ : F → E is automat-
ically injective and we will hence refer to it also as an embedding of F in E. Since σ(F ) is a
subfield of E, the map σ : F → σ(F ) is an isomorphism and hence invertible. If

p(x) = anxn + ... + a0 ∈ F [x],

then we define the polynomial

σp(x) = σ(an)xn + ... + σ(a0) ∈ E[x].
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Proposition 9.16. Let F and E be fields and σ : F → E an embedding. The induced
map σ : F [x] → σ(F )[x] is an Q-algebra isomorphim. Further, if p(x) ∈ F [x] is irreducible
over F , then σp(x) ∈ σ(F )[x] is irreducible over σ(F ).

Let F and L be fields and f(x) ∈ F [x]. Let α ∈ C, be algebraic over F . If σ : F (α) → L
is an embedding, then

(σf)(σ(α)) = σ(f(α)).

In particular, the embedding σ of F (α) into L is determined by the restriction of σ to F∪{α}.
Definition 9.17. Let σ : F → L and τ : E → L be field embeddings and let E be an

extension of F . We say that τ is an extension of σ to E or that σ is a restriction of τ to F
if τ(f) = σ(f) for all f ∈ F .

Theorem 9.18. Let σ : F → L be a field embedding. Let p(x) ∈ F [x] be irreducile.
Let α ∈ C − F be a root of p(x) and let β be a root of (σp)(x) in L. Then there exists an
embedding τ : F (α) → L which is an extension of σ and satisfies τ(α) = β. Conversely, for
every extension τ of σ to F (α), τ(α) is a root of (σp)(x).

Corollary 9.19. Let p(x) be an irreducible polynomial over the field F and α ∈ C a
root of p(x). Let σ : F → C be an embedding. Then the number of possible embeddings of
F (α) into C that extend σ equals the degree of the polynomial p(x) (which is the same as the
degree of the complex number α over the field F ).

Corollary 9.20. Let E be a finite extension of the field F of degree n. Let σ : F → C

be an embedding. Then the number of extensions of σ to an embedding of E → C equals n.

Theorem 9.21. If E is a finite field extension of F , then there exists an element γ ∈ E
such that E = F (γ).

3. Splitting fields

Definition 9.22. Let E be a finite extension of the field F . Let σ be an embedding of
F (into some field) and τ an extension of σ to an embedding of E. If σ is the identity map,
then it is convenient to say that τ is an embedding of E over F and that τ leaves F fixed.

Proposition 9.23. Let σ be an embedding over F of a finite extension K of a field F .
If σ(K) ⊆ K, then σ(K) = K and is an automorphism of the field K.

Proposition 9.24. (a) The set G of all automorphisms of a field K is a group under
composition.
(b) If G is a group of automorphisms of a field K, then

KG = {a ∈ K; σ(a) = a for all g ∈ G}
is a subfield of K.

Definition 9.25. A finite extension K of a field F is Galois if every embedding of K
over F is an automorphism of K; it is a splitting field of the polynomial p(x) ∈ F [x] if
K = F (α1, ..., αn), where α1, ..., αn are (all) the roots of p(x).

Theorem 9.26. A finite extension of a field F is Galois if and only if it is the splitting
field of a polynomial p(x) ∈ F [x].

Theorem 9.27. Let K be a Galois extension of a field F . If p(x) ∈ F [x] is irreducible
(over F ) and has one root in K, then all its roots are in K.
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4. Galois extensions

Theorem 9.28. Let K be a Galois extension of a field F . If G is the group of automor-
phisms of K over F , then F is the fixed field of G.

Theorem 9.29. Let K be a Galois extension of a field F . To each intermediate field E
(between F snd K) associate the subgroup GK/E of the automorphism group of K consisting
of those automorphisms that leave E fixed. Then K is Galois over E and the map

E 7→ GK/E

is a bijection between the set of intermeddiate fields onto the set of subgroups of G. Further
E is the fixed field of GK/E.

Definition 9.30. If K is a Galois extension of the field F , we call the group of auto-
morphisms GK/F the Galois group of K over F . If K is the splitting field of the polynomial
P (x) ∈ F [x], then we also say that GK/F the Galois group of P (x).

Proposition 9.31. Let F be a field, α1, α2, ..., αn ∈ C and

p(x) = (x − α1)(x − α2)...(x − αn).

Let K = F (α1, α2, ..., αn) and σ ∈ GK/F . Then {σ(α1), σ(α2), ..., σ(αn)} is a permutation
πσ ∈ S(n) of {α1, α2, ..., αn}. The map that sends σ ∈ GK/F to πσ ∈ S(n) is an injective
group homomorphism.

5. Quadratic, cubic and quartic extensions

5.1. Linear extensions. The only irreducible monic polynomial of degree 1 over a field
F is of the form x + b with b ∈ F . Hence the only extension E of F with [E : F ] = 1 is
E = F .

5.2. Quadratic extensions. Let F be a field. An irreducible polynomial p(x) = x2 +
bx + c, b and c ∈ F over F has a splitting field F (α), where

α =
−b ±

√
b2 − 4c

2
.

We conclude that F (α) is Galois over F and GF (α)/F is cyclic of order 2. If we let d = b2−4c

(this is the discriminant of the quadratic polynomial p(x)), then we see that F (α) = F (
√

d).
Conversely, the polynomial x2 − d is irreducible over F if and only d is not a square in F 2.

5.3. Cubic extensions. We start with a field F and a cubic plynomial p(x) ∈ F [x].
We have already seen several times that after completing a square, a monic cubic can be
reduced to the form

p(x) = x3 + bx + c = (x − α1)(x − α2)(x − α3),

where b and c ∈ F , but the complex roots αi may or may not be elements of the field F . If
p(x) has no root in F , then it is irreducible over F , (which we assume for the rest of this
subsection) and simple calculations show that

−(α1 + α2 + α3) = 0, α1α2 + α1α3 + α2α3 = b, −α1α2α3 = c.

2Whenever d is a square in F , F (
√

d) = F , of course.
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It is convenient to define

δ = (α2 − α1)(α3 − α1)(α3 − α2) and D = δ2,

and call D the discriminant of the polynomial p(x).
Let K = F (α1, α2, α3) be the splitting field of p(x) and G its Galois group over F . The

group G is isomorphic to a subgroup of the symmetric group S(3). Since K contains a root
(say α1) of p(x), it follows that the order of G = [K : E] is either 3 or 6 – it cannot be 2. In
the first case G is cyclic of order 3 and K = F (α1). In the second case G is isomorphic to
S(3).

Theorem 9.32. We have two mutually exclusive possibilities:
(a) If D is a square in F , then K has degree 3 over F , or
(b) If D is not a square in F , then the group G is isomorphic to S(3).

Theorem 9.33. K = F (
√

D,α1).

Example 9.34. Consider the polynomial p(x) = x3 − 3x + 1. It has no roots over Z2;
hence no roots in Z. Thus irreducible over Q. Its discriminant is 34, a square in Q. The
Galois group of p(x) is thus cyclic of order 3 and its splitting field is Q(α), where α is a root

of p(x); for example, e
2πı
9

(

1 + e
14πı

9

)

(see Example 8.1).

5.4. Quartic extensions.

6. Nonsolvability

Definition 9.35. A Galois field extension whose Galois group is abelian is called an
abelian extension.

Let K = F (α) is a Galois extension of the field F where α ∈ C − F . If σ and τ are
automorphisms of K over F , then στ = τσ if and only if (στ)(α) = (τσ)(α).

We begin the build-up to our main (nonsolvability) theorem.

Theorem 9.36. Let n be a positive integer and ω be an n-th root of unity. Let F be a
field that does not contain ω. Then K = F (ω) is an abelian extension of F .

Theorem 9.37. Let n be a positive integer and F a field that contains the n-th roots of
unity. Let α ∈ C − F with αn ∈ F . Then K = F (α) is an abelian extension of F .

Definition 9.38. Let F be a field and f(x) ∈ F [x] be a polynomial of degree ≥ 1. We
say that F or f(x) is solvable by radicals if the splitting field of F is contained in a Galois
extension K which has a sequence of subfields {Fi} such that

F = F0 ⊂ F1 ⊂ ... Fr = K

with
(a) F1 = F (ω) for some primitive n-th root of unity ω, and
(b) For 0 < i < r, Fi+1 = Fi(αi) with αi 6∈ Fi, αd ∈ Fi and d|n.

Remark 9.39. • Because the field inclusions in the above definition are proper,
we have to consider the possibility that F already contains an appropriate n-th root
of unity. In this case condition (a) in the above definition is dropped and the indeces
i in condition (b) run from 0 (to r − 1).
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• Degree 1 polynomials are, of course, solvable. For such polynomials (f(x) = ax +
b, a ∈ F ∗, b ∈ F ), r = 0.

We use the notation and cocepts of our last definition. Since d|n, ω
n
d is a primitive d-th

root of unity. Hence Fi+1 is an abelian extension of Fi. Thus the Galois group G of K over
F decomposes into a sequence of abelian extensions and if we let Hi be the Galois group of
K over Fi, we get a sequence of groups that satisfy 16 and that G is a solvable group. We
have thus established

Theorem 9.40. If f(x) is solvable by radicals, then its Galois group is solvable.

We can now state the main theorem of this chapter:

Theorem 9.41. Let α1, α2, ..., αn be algebraically independent over a field F0, and let

f(x) =
n
∏

i=1

(x − αi) = xn + an−1x
n−1 + ... a0 ∈ C[x].

Let F = F0(an−1, ..., a0) and K = F (αn, ..., α1). Then K is a Galois extension of F with
Galois group S(n).

We need to know we can find a set of complex numbers α1, α2, ..., αn that are algebraically
independent over a field F0 ⊂ C; for example, over Q. This will follow from the fact that Q

is countable, while C is not.

Definition 9.42. Let F be a field. We define the algebraic closure F̄ of F to be the set
of complex numbers that are algebraic over F .

Proposition 9.43. If F is a countable field, so are F̄ and F (x).

Corollary 9.44. For every positive integer n, there exists n algebraically independent
complex numbers over Q.

EXERCISES

(1) In our discussion of quadratic extensions, we assumed that the polynomial p(x) =
x2 + bx + c was irreducible over the field F . What happens when the polynomial is
reducible?

(2) Formulate and solve problems similar to the last question for cubic and quartic
extensions.
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