Chapter 2

Compactness etc.

2.4 Compactifications

An application of the Stone-Cech Compactification

The material in this handout is taken from Algebra in the Stone-Čech Compactification by Hindman and Strauss.

I'm going to prove a theorem about arithmetic on \mathbb{N}, using the Stone-Čech compactification. The application is, possibly, rather surprising.

Theorem 2.4.23 (The Finite Sums Theorem) Let \mathbb{N} be divided into finitely many disjoint sets A_{1}, \ldots, A_{n}. Then there is an infinite subset B of \mathbb{N} such that, for some i, not only is $B \subseteq A_{i}$, but, whenever n_{1}, \ldots, n_{k} are distinct elements of B, then their sum $n_{1}+\cdots+n_{k} \in A_{i}$ also.

The first thing we do is embed \mathbb{N} (with the usual discrete topology) into its Stone-Čech compactification $\langle h, \beta \mathbb{N}\rangle$, and then extend the operation of addition to $\beta \mathbb{N}$, using the Stone-Čech property. (Remember that, at the level of intuition, we like to identify \mathbb{N} with its image under h, so pretend that h is the identity. But I will keep on writing h, for the sake of formal correctness.)

Actually, + is a function of two variables, and the Stone-Čech property only talks about functions of one variable. So we split + into two parts: the operation $\rho_{n}: m \mapsto m+n$ of adding a given constant value on the right, and the corresponding operation of adding a given constant value on the left, and extend them one at a time:

Definition 2.4.24 For each $n \in \mathbb{N}$, define ρ_{n} as a function from \mathbb{N} to \mathbb{N} by $\rho_{n}(m)=m+n$. Noticing that $h \circ \rho_{n}: \mathbb{N} \rightarrow \beta \mathbb{N}$ is continuous, we use the Stone-Čech property to define a function $\beta \rho_{n}: \beta \mathbb{N} \rightarrow \beta \mathbb{N}$ so that for all $m \in \mathbb{N}$, $\beta \rho_{n}(h(m))=h\left(\rho_{n}(m)\right)$.
(Intuitively, at this stage $\beta \rho_{n}(p)$, for $p \in \beta \mathbb{N}$, is a sum $p+h(n)$: in other words, we now know how to add a natural number on the right to any element of $\beta \mathbb{N}$.)

Now, for $p \in \beta \mathbb{N}$, and $n \in \mathbb{N}$, define $\lambda_{p}(n)=\beta \rho_{n}(p)$: so $\lambda_{p}: \mathbb{N} \rightarrow \beta \mathbb{N}$. Use the Stone-Čech property to define $\beta \lambda_{p}: \beta \mathbb{N} \rightarrow \beta \mathbb{N}$ so that if $n \in \mathbb{N}$, then $\beta \lambda_{p}(h(n))=\lambda_{p}(n)$.

If $p, q \in \beta \mathbb{N}$, we define $p+q=\lambda_{p}(q)$.
It turns out, rather surprisingly, that + on the Stone-Čech compactification is very unlike + on the natural numbers. For instance, it is not commutative; worse than that, even though $p+q$ is certainly continuous as a function of q, it turns out, bafflingly, not to be continuous as a function of p. (Exercise: why can you not prove that $p+q$ is continuous as a function of p ?) One can, though, show that + is associative on $\beta \mathbb{N}$, and I will assume this without comment.

Another odd property of + on $\beta \mathbb{N}$ is that there are idempotents: elements $p \neq h(0)$ such that $p+p=p$. We will now set out to show that this is so.

Definition 2.4.25 Let $\mathcal{Z}=\{A \subseteq \beta \mathbb{N} \backslash\{h(0)\}: A+A \subseteq A$ and A is compact and non-empty\}.
(By A A I mean, of course, $\{p+q: p, q \in A\}$.)

We notice, first, that \mathcal{Z} is non-empty, since $\beta \mathbb{N} \backslash\{h(0)\}$ is in \mathcal{Z}, for $\{h(0)\}$ is open in $\beta \mathbb{N}$ (why?) and so its complement is closed.

Next, we can prove that any chain in \mathcal{Z} has a lower bound (this is the point where we use compactness, in the form that any family of closed sets with the finite intersection property has a non-empty intersection); and Zorn's Lemma (suitably adapted) allows us to show that \mathcal{Z} then has a minimal element.

Definition 2.4.26 Let A be some minimal element of \mathcal{Z}.
Now in fact, A contains exactly one element, which is an idempotent. But we only need the rather weaker:

Lemma 2.4.27 A contains an idempotent.
Proof. Let $p \in A$. We will show that $p+p=p$.
First, we show that $A+p=A$, which is clearly a step in the right direction. (By $A+p$, of course, we mean $\{q+p: q \in A\}$.)

For, let $B=A+p$.
Then $B+B=A+p+A+p \subseteq A+A+A+p$ (since $p \in A$) and, since $A \in \mathcal{Z}$, we know that $A+A \subseteq A$, so $B+B \subseteq A+p=B$.

Hence $B \in \mathcal{Z}$.
Also $p \in A$, and $A+A \subseteq A$, so $B=A+p \subseteq A+A \subseteq A$. But A is a minimal element of \mathcal{Z}, so $B=A$.

So, indeed, $A+p=A$.
Our next step is to investigate those $y \in A$ such that $y+p=p$, in hopes that p will turn out to be one of them.

So, let $C=\{y \in A: y+p=p\}$; this is non-empty, since $A+p=A$. We will show that $C=A$, so that, indeed, $p \in C$.

Now, if $y, z \in C$, then $y, z \in A$, so, since $A+A \subseteq A$, it follows that $y+z \in A$. Also, $(y+z)+p=y+(z+p)=y+p=p$, using the fact that z, and then y, is in C. Therefore $y+z \in C$.

So $C+C \subseteq C$. Now also, $C=A \cap\left(\beta \lambda_{y}\right)^{-1}\{p\}$ is closed in the compact space $\beta \mathbb{N}$, hence it is compact. So C is an element of \mathcal{Z}. But $C \subseteq A$, so, since A is minimal, $C=A$.

Hence, for all $y \in A, y \in C$, so $y+p=p$.
Hence in particular $p \in A$ implies $p+p=p$, as required.
We now turn to the proof of the Finite Sums Theorem.
Suppose \mathbb{N} is the disjoint union of finitely many sets A_{1}, \ldots, A_{n}.
By a question on the problem sheets, $\beta \mathbb{N}$ is the disjoint union of the sets $\overline{h\left(A_{1}\right)}, \ldots, \overline{h\left(A_{n}\right)}$, which we can then prove are all also open, since each is the complement of a finite union of closed sets.

Let p be an idempotent. Suppose $p \in \overline{h\left(A_{i}\right)}$.
Well, + is continuous on the right, by which I mean that the function $\beta \lambda_{r}$ is continuous for all r.

So, applying continuity of $\beta \lambda_{p}$, we note that whenever $U \ni p$ is open, there exists $V \ni p$ which is also open such that $V \subseteq\left(\beta \lambda_{p}\right)^{-1}(U)$; in other words,
for all $q \in V, \beta \lambda_{p}(q)=p+q \in U$. (Actually, of course, I could have taken $V=\left(\beta \lambda_{p}\right)^{-1}(U)$; but for my purposes I don't care about the reverse inclusion.)

Also, while + is not always continuous on the left, we do know that if $n \in \mathbb{N}$, the function $\beta \rho_{n}$ is continuous. It then follows that if $h(n) \in V \cap h(\mathbb{N})$, by continuity of $\beta \rho_{n}$ at p, there is $W \ni p$ open, depending on n, such that for all $r \in W, \beta \rho_{n}(r)=\lambda_{r}(n)=\beta \lambda_{r}(n)=r+h(n) \in U$.

Now we proceed to the construction of B. We construct it as a sequence n_{0}, n_{1}, \ldots.

Let $U_{0}=\overline{A_{i}}$: recall that this was open. Find V_{0} open such that $p \in V_{0}$, and for all $q \in V_{0}, p+q \in U_{0}$.

Now pick n_{0} such that $h\left(n_{0}\right) \in U_{0} \cap V_{0}$. (Remember that this is possible because $h(\mathbb{N})$ is dense.)

Now find open $W_{0} \ni p$ such that for all $r \in W_{0}, r+h\left(n_{0}\right) \in U_{0}$.
Next, let $U_{1}=U_{0} \cap W_{0}$, noting that U_{1} is open and $p \in U_{1}$. Find $V_{1} \ni p$ open such that for all $q \in V_{1}, p+q \in U_{1}$.

Now pick $n_{1}>n_{0}$ such that $h\left(n_{1}\right) \in U_{1} \cap V_{1}$. (It is possible to choose $n_{1}>n_{0}$, because p is a limit point of $h(\mathbb{N})$, and so each open neighbourhood of it contains infinitely many values of $h(m)$.)

Now find $W_{1} \ni p$ such that for all $r \in W_{1}, r+h\left(n_{1}\right) \in U_{1}$.
Let $U_{2}=U_{1} \cap W_{1} \cap W_{0}$, and continue.
Let $B=\left\{n_{k}: k \in \mathbb{N}\right\}$. We show that any finite sum of distinct elements of B, is in A_{i}.

Suppose $k_{1}<k_{2}<\cdots k_{m}$. We show that $n_{k_{m}}+\cdots+n_{k_{1}}+n_{k_{0}} \in A_{i}$.
Well, $n_{k_{m}}$ was chosen so that $h\left(n_{k_{m}}\right)$ belongs to $U_{k_{m}} \subseteq W_{k_{m-1}}$. This means that, by definition of $W_{k_{m-1}}, h\left(n_{k_{m}}\right)+h\left(n_{k_{m-1}}\right) \in U_{k_{m-1}}$. Now $U_{k_{m-1}}$ is a subset of $W_{k_{m-2}}$. Hence, since $\left(h\left(n_{k_{m}}\right)+h\left(n_{k_{m-1}}\right)\right) \in W_{k_{m-2}},\left(h\left(n_{k_{m}}\right)+h\left(n_{k_{m-1}}\right)\right)+$ $h\left(n_{k_{m-2}}\right) \in U_{k_{m-2}}$.

Continuing in this way, we find that $h\left(n_{k_{m}}\right)+\cdots+h\left(n_{k_{1}}\right)+h\left(n_{k_{0}}\right) \in U_{k_{0}}$. Now $U_{k_{0}} \subseteq U_{k_{0}-1} \subseteq \cdots \subseteq U_{1} \subseteq U_{0}=\overline{h\left(A_{i}\right)}$. So $h\left(n_{k_{m}}\right)+\cdots+h\left(n_{k_{1}}\right)+h\left(n_{k_{0}}\right) \in$ $\overline{h\left(A_{i}\right)}$.

We can now drop all the h 's, pulling back from $\beta \mathbb{N}$ to \mathbb{N}, and see that $n_{k_{m}}+\cdots+n_{k_{1}}+n_{k_{0}} \in A_{i}$, as required.

