C2.1a Lie algebras

Mathematical Institute, University of Oxford

Michaelmas Term 2015

Problem Sheet 0 (not for handing in)

1. Let V be a finite dimensional vector space and let $A \subset \operatorname{End}(V)$ denote a subspace consisting of commuting diagonalisable endomorphisms. Show that we may find a basis of V in which each element of A is represented by a diagonal matrix.

Solution: We induct on the dimension of A, with the case $\operatorname{dim} A=1$ being clear. Choose $0 \neq x \in T$ and write $T=k x \oplus T^{\prime}$ for some subspace $T^{\prime} \subset T$. Now, for all eigenvalues λ of x we set

$$
V_{\lambda}=\operatorname{ker}\left(x-\lambda \operatorname{id}_{V}\right)
$$

to be the λ-eigenspace of x. Then, given any $v \in V_{\lambda}$ and $t \in T$ we have

$$
\left(x-\lambda \mathrm{id}_{V}\right)(t v)=t\left(x-\lambda \mathrm{id}_{V}\right) v=0
$$

because t commutes with x and $\lambda \mathrm{id}_{V}$. Hence T preserves the decomposition of V into eigenspaces. By assumption x acts diagonally on each V_{λ} and we are done, because we can apply induction to T^{\prime} and each V_{λ}.
2. Let k be a field and let V be a k -vector space. If $x \in \operatorname{End}(V)$, and $V=\bigoplus_{\lambda} V_{\lambda}$ is the decomposition of V into a direct sum of generalised eigenspaces of x, we define $x_{s} \in \operatorname{End}(V)$ to be the linear map given by $x_{s}(v)=\lambda . v$ for $v \in V_{\lambda}$. It is called the semisimple part of x. Clearly it is diagonalisable.
i) Show that the element $x_{n}=x-x_{s}$ is nilpotent, and check that x_{s} and x_{n} commute.
ii) Show that if $x, y \in \operatorname{End}(V)$ commute, and y is nilpotent, then the generalised eigenspaces of x and $x+y$ coincide.

Solution: For the first part, note that on each $V_{\lambda}, x-x_{s}$ is nilpotent by the definition of a generalised eigenspace, i.e. x_{n} is certainly nilpotent each V_{λ} and hence is nilpotent on V.

For the second part, consider the generalised eigenspace decomposition $V=\bigoplus_{\lambda} V_{\lambda}(x)$ for x. On each V_{λ} we may write $x=\lambda .1+n$ where n is nilpotent. Since x and y commute, it is clear that y preserves each $V_{\lambda}(x)$, and on $V_{\lambda}(x)$ we have n and y commute. Thus $(n+y)$ is nilpotent on $V_{\lambda}(x)$, and hence $V=\bigoplus_{\lambda} V_{\lambda}(x)$ is the generalised eigenspace decomposition of $x+y$.

To elaborate on this: it's clear (with the obvious notation) that $V_{\lambda}(x) \subseteq V_{\lambda}(x+y)$ from the above, but then the fact that the $V_{\lambda}(x)$ s and the $V_{\lambda}(x+y)$ s both form a direct sum decomposition of V ensures by a dimension count that the containments must all actually be equalities.
3. Let k be an infinite field (not necessarily algebraically closed or of characteristic zero), and suppose that V is a finite dimensional k -vector space. If $U_{1}, U_{2}, \ldots, U_{r}$ are proper subspaces of V, show that $V \neq U_{1} \cup U_{2} \cup \ldots \cup U_{r}$.

Solution: We use induction on r. For $r=1$ the result is immediate. Now suppose that $V=\bigcup_{i=1}^{r+1} U_{i}$. Then by induction we can assume that $V \neq \bigcup_{i=1}^{r} U_{i}$, so we may pick $u \in V$ such that $u \notin \bigcup_{i=1}^{r} U_{i}$. By assumption, we must then have $u \in U_{r+1}$. Similarly, since U_{r+1} is a proper subspace of V we may pick $w \in V$ such that $w \notin U_{r+1}$. But then consider the vectors

$$
v_{\lambda}=w+\lambda . u \in V, \quad \lambda \in \mathrm{k}^{\times}
$$

Clearly $v_{\lambda} \notin U_{r+1}$, since that would imply $w \in U_{r+1}$, thus each v_{λ} lies in some U_{i} for $1 \leq i \leq r$. But then if k^{\times}contains more than n elements there must be two distinct elements λ, μ such that $v_{\lambda}, v_{\mu} \in U_{j}$ for the same $j(1 \leq j \leq r)$. But then it is clear that both w and u lie in U_{j} which contradicts our assumption.

There is an algebraic way to think about the idea of "infinitesimals". The next two questions of the sheet explore this idea a little. Let k be a field and let $D_{\mathrm{k}}=\mathrm{k}[t] /\left(t^{2}\right)$. Write ε for the image of t in D_{k}, so that $\varepsilon^{2}=0$. We want to consider $\operatorname{Mat}_{n}\left(D_{\mathrm{k}}\right)$ the space of $n \times n$ matrices over D_{k}.
4. Show that $\mathrm{GL}_{n}\left(D_{\mathrm{k}}\right)$, the group of invertible matrices over D_{k} is exactly the set:

$$
\left\{A+\varepsilon B: A \in \mathrm{GL}_{n}(\mathrm{k}), B \in \operatorname{Mat}_{n}(\mathrm{k})\right\}
$$

The natural homomorphism e: $D_{\mathrm{k}} \rightarrow \mathrm{k}$ given by $\epsilon \mapsto 0$ induces a homomorphism of groups $\mathrm{e}_{n}: \mathrm{GL}_{n}\left(D_{\mathrm{k}}\right) \rightarrow$ $\mathrm{GL}_{n}(\mathrm{k})$. Deduce that the kernel can be identified with $\operatorname{Mat}_{n}(\mathrm{k})$, i.e. $\mathfrak{g l}_{n}(\mathrm{k})$.
Solution: Clearly any matrix $X \in \operatorname{Mat}_{n}\left(D_{\mathrm{k}}\right)$ can be written uniquely as $A+\varepsilon B$ where $A, B \in \operatorname{Mat}_{n}(\mathrm{k})$. If we write $Y \in \operatorname{Mat}_{n}\left(D_{\mathrm{k}}\right)$ similarly as $C+\varepsilon D$ then we see

$$
X Y=(A+\varepsilon B)(C+\varepsilon D)=A C+\varepsilon(B C+A D)
$$

hence $X Y=I_{n}$ if and only if $A C=I_{n}$ and $B C+A D=0$. Thus it follows that X is invertible if and only if A is invertible with inverse $Y=A^{-1}-\varepsilon A^{-1} B A^{-1}$. The second part of the question is immediate, since the kernel consists of the matrices of the form $I_{n}+\varepsilon B$.
5. i) The determinant is defined for a matrix with entries in any commutative ring. For $X \in$ $\operatorname{Mat}_{n}\left(D_{\mathrm{k}}\right)$ find $\operatorname{det}(X)$ in terms of the column vectors of A, B where $X=A+\varepsilon B, A, B \in \operatorname{Mat}_{n}(\mathrm{k})$. In particular, show that if $X=I+\varepsilon B$ then $\operatorname{det}(X)=1$ if and only if $\operatorname{tr}(B)=0$.
ii) The special orthogonal group is defined to be

$$
\mathrm{SO}_{n}(\mathrm{k})=\left\{A \in \mathrm{GL}_{n}(\mathrm{k}): \operatorname{det}(A)=1, A \cdot A^{t}=I\right\} .
$$

Show that the kernel of the map $\mathrm{SO}_{n}\left(D_{\mathrm{k}}\right) \rightarrow \mathrm{SO}_{n}(\mathrm{k})$ can be identified with

$$
\mathfrak{s o}_{n}(\mathrm{k})=\left\{X \in \mathfrak{g l}_{n}(\mathrm{k}): X+X^{t}=0\right\} .
$$

Solution: Write $A=\left(\mathbf{a}_{1}|\ldots| \mathbf{a}_{n}\right)$ where $\mathbf{a}_{i}(1 \leq i \leq n)$ are the column vectors of A, and similarly let $B=\left(\mathbf{b}_{1}|\ldots| \mathbf{b}_{n}\right)$. Then using the multilinearity of the determinant and the fact that $\varepsilon^{2}=0$ we see that

$$
\begin{aligned}
\operatorname{det}(X) & =\operatorname{det}\left(\mathbf{a}_{1}+\varepsilon \mathbf{b}_{1}|\ldots| \mathbf{a}_{n}+\varepsilon \mathbf{b}_{n}\right) \\
& =\operatorname{det}\left(\mathbf{a}_{1}|\ldots| \mathbf{a}_{n}\right)+\sum_{i=1}^{n} \varepsilon \operatorname{det}\left(\mathbf{a}_{1}|\ldots| \mathbf{b}_{i}|\ldots| a_{n}\right)
\end{aligned}
$$

If $A=I_{n}$, then $\operatorname{det}\left(\mathbf{a}_{1}|\ldots| \mathbf{b}_{i}|\ldots| \mathbf{a}_{n}\right)=B_{i i}$, so that the above formula becomes $\operatorname{det}(I+\varepsilon B)=1+\varepsilon \operatorname{tr}(B)$.
For the second part, we just need to check when $A+\varepsilon B$ lies in $\mathrm{SO}_{n}\left(D_{\mathrm{k}}\right)$, which happens when $\operatorname{tr}(B)=0$ by the first part, and

$$
(A+\varepsilon B)\left(A^{t}+\varepsilon B^{t}\right)=A A^{t}+\varepsilon\left(B A^{t}+a B^{t}\right)
$$

which is equal to I if and only if $A A^{t}=I$ and $B A^{t}+B^{t} A=0$. Thus the kernel consists of the matrices of the form $I+\varepsilon B$ where $B+B^{t}=0$ and $\operatorname{tr}(B)=0$. (This first condition implies the second if the characteristic of k is not 2).

For the last part, note that if $A, B \in \mathfrak{s o}_{n}(\mathrm{k})$ then

$$
[A, B]^{t}=(A B-B A)^{t}=B^{t} A^{t}-A^{t} B^{t}=(-B)(-A)-(-A)(-B)=B A-A B=-[A, B]
$$

so that $[A, B] \in \mathfrak{s o}_{n}(\mathrm{k})$.
6. Read Appendix 1 in the lecture notes for a review of the relevant facts about symmetric bilinear forms needed for this lecture course.

