C2.1a Lie algebras

Mathematical Institute, University of Oxford Michaelmas Term 2015

Problem Sheet 0 (not for handing in)

1. Let V be a finite dimensional vector space and let $A \subset \text{End}(V)$ denote a subspace consisting of commuting diagonalisable endomorphisms. Show that we may find a basis of V in which each element of A is represented by a diagonal matrix.

Solution: We induct on the dimension of A, with the case dim A = 1 being clear. Choose $0 \neq x \in T$ and write $T = kx \oplus T'$ for some subspace $T' \subset T$. Now, for all eigenvalues λ of x we set

$$V_{\lambda} = \ker(x - \lambda \operatorname{id}_V)$$

to be the λ -eigenspace of x. Then, given any $v \in V_{\lambda}$ and $t \in T$ we have

$$(x - \lambda \operatorname{id}_V)(tv) = t(x - \lambda \operatorname{id}_V)v = 0$$

because t commutes with x and $\lambda \operatorname{id}_V$. Hence T preserves the decomposition of V into eigenspaces. By assumption x acts diagonally on each V_{λ} and we are done, because we can apply induction to T' and each V_{λ} .

2. Let k be a field and let V be a k-vector space. If $x \in \text{End}(V)$, and $V = \bigoplus_{\lambda} V_{\lambda}$ is the decomposition of V into a direct sum of generalised eigenspaces of x, we define $x_s \in \text{End}(V)$ to be the linear map given by $x_s(v) = \lambda v$ for $v \in V_{\lambda}$. It is called the *semisimple* part of x. Clearly it is diagonalisable.

- i) Show that the element $x_n = x x_s$ is nilpotent, and check that x_s and x_n commute.
- ii) Show that if $x, y \in \text{End}(V)$ commute, and y is nilpotent, then the generalised eigenspaces of x and x + y coincide.

Solution: For the first part, note that on each V_{λ} , $x - x_s$ is nilpotent by the definition of a generalised eigenspace, *i.e.* x_n is certainly nilpotent each V_{λ} and hence is nilpotent on V.

For the second part, consider the generalised eigenspace decomposition $V = \bigoplus_{\lambda} V_{\lambda}(x)$ for x. On each V_{λ} we may write $x = \lambda . 1 + n$ where n is nilpotent. Since x and y commute, it is clear that ypreserves each $V_{\lambda}(x)$, and on $V_{\lambda}(x)$ we have n and y commute. Thus (n + y) is nilpotent on $V_{\lambda}(x)$, and hence $V = \bigoplus_{\lambda} V_{\lambda}(x)$ is the generalised eigenspace decomposition of x + y.

To elaborate on this: it's clear (with the obvious notation) that $V_{\lambda}(x) \subseteq V_{\lambda}(x+y)$ from the above, but then the fact that the $V_{\lambda}(x)$ s and the $V_{\lambda}(x+y)$ s both form a direct sum decomposition of V ensures by a dimension count that the containments must all actually be equalities.

3. Let k be an infinite field (not necessarily algebraically closed or of characteristic zero), and suppose that V is a finite dimensional k-vector space. If U_1, U_2, \ldots, U_r are proper subspaces of V, show that $V \neq U_1 \cup U_2 \cup \ldots \cup U_r$.

Solution: We use induction on r. For r = 1 the result is immediate. Now suppose that $V = \bigcup_{i=1}^{r+1} U_i$. Then by induction we can assume that $V \neq \bigcup_{i=1}^{r} U_i$, so we may pick $u \in V$ such that $u \notin \bigcup_{i=1}^{r} U_i$. By assumption, we must then have $u \in U_{r+1}$. Similarly, since U_{r+1} is a proper subspace of V we may pick $w \in V$ such that $w \notin U_{r+1}$. But then consider the vectors

$$v_{\lambda} = w + \lambda . u \in V, \quad \lambda \in \mathsf{k}^{\times}$$

Clearly $v_{\lambda} \notin U_{r+1}$, since that would imply $w \in U_{r+1}$, thus each v_{λ} lies in some U_i for $1 \leq i \leq r$. But then if k^{\times} contains more than n elements there must be two distinct elements λ, μ such that $v_{\lambda}, v_{\mu} \in U_j$ for the same j $(1 \leq j \leq r)$. But then it is clear that both w and u lie in U_j which contradicts our assumption.

There is an algebraic way to think about the idea of "infinitesimals". The next two questions of the sheet explore this idea a little. Let k be a field and let $D_{k} = k[t]/(t^{2})$. Write ε for the image of t in D_{k} , so that $\varepsilon^{2} = 0$. We want to consider $Mat_{n}(D_{k})$ the space of $n \times n$ matrices over D_{k} .

4. Show that $\operatorname{GL}_n(D_k)$, the group of invertible matrices over D_k is exactly the set:

$$\{A + \varepsilon B : A \in \operatorname{GL}_n(\mathsf{k}), B \in \operatorname{Mat}_n(\mathsf{k})\}.$$

The natural homomorphism $e: D_k \to k$ given by $\epsilon \mapsto 0$ induces a homomorphism of groups $e_n: \operatorname{GL}_n(D_k) \to \operatorname{GL}_n(k)$. Deduce that the kernel can be identified with $\operatorname{Mat}_n(k)$, *i.e.* $\mathfrak{gl}_n(k)$.

Solution: Clearly any matrix $X \in Mat_n(D_k)$ can be written uniquely as $A + \varepsilon B$ where $A, B \in Mat_n(k)$. If we write $Y \in Mat_n(D_k)$ similarly as $C + \varepsilon D$ then we see

$$XY = (A + \varepsilon B)(C + \varepsilon D) = AC + \varepsilon (BC + AD).$$

hence $XY = I_n$ if and only if $AC = I_n$ and BC + AD = 0. Thus it follows that X is invertible if and only if A is invertible with inverse $Y = A^{-1} - \varepsilon A^{-1}BA^{-1}$. The second part of the question is immediate, since the kernel consists of the matrices of the form $I_n + \varepsilon B$.

- 5. i) The determinant is defined for a matrix with entries in any commutative ring. For $X \in Mat_n(D_k)$ find det(X) in terms of the column vectors of A, B where $X = A + \varepsilon B, A, B \in Mat_n(k)$. In particular, show that if $X = I + \varepsilon B$ then det(X) = 1 if and only if tr(B) = 0.
 - ii) The special orthogonal group is defined to be

$$SO_n(\mathsf{k}) = \{ A \in GL_n(\mathsf{k}) : \det(A) = 1, A A^t = I \}.$$

Show that the kernel of the map $SO_n(D_k) \to SO_n(k)$ can be identified with

$$\mathfrak{so}_n(\mathsf{k}) = \{ X \in \mathfrak{gl}_n(\mathsf{k}) : X + X^t = 0 \}.$$

Solution: Write $A = (\mathbf{a}_1 | \dots | \mathbf{a}_n)$ where $\mathbf{a}_i \ (1 \le i \le n)$ are the column vectors of A, and similarly let $B = (\mathbf{b}_1 | \dots | \mathbf{b}_n)$. Then using the multilinearity of the determinant and the fact that $\varepsilon^2 = 0$ we see that

$$\det(X) = \det(\mathbf{a}_1 + \varepsilon \mathbf{b}_1 | \dots | \mathbf{a}_n + \varepsilon \mathbf{b}_n)$$
$$= \det(\mathbf{a}_1 | \dots | \mathbf{a}_n) + \sum_{i=1}^n \varepsilon \det(\mathbf{a}_1 | \dots | \mathbf{b}_i | \dots | a_n)$$

If $A = I_n$, then $\det(\mathbf{a}_1 | \dots | \mathbf{b}_i | \dots | \mathbf{a}_n) = B_{ii}$, so that the above formula becomes $\det(I + \varepsilon B) = 1 + \varepsilon \operatorname{tr}(B)$.

For the second part, we just need to check when $A + \varepsilon B$ lies in $SO_n(D_k)$, which happens when tr(B) = 0 by the first part, and

$$(A + \varepsilon B)(A^t + \varepsilon B^t) = AA^t + \varepsilon (BA^t + aB^t),$$

which is equal to I if and only if $AA^t = I$ and $BA^t + B^tA = 0$. Thus the kernel consists of the matrices of the form $I + \varepsilon B$ where $B + B^t = 0$ and tr(B) = 0. (This first condition implies the second if the characteristic of k is not 2).

For the last part, note that if $A, B \in \mathfrak{so}_n(\mathsf{k})$ then

$$[A, B]^{t} = (AB - BA)^{t} = B^{t}A^{t} - A^{t}B^{t} = (-B)(-A) - (-A)(-B) = BA - AB = -[A, B],$$

so that $[A, B] \in \mathfrak{so}_n(k)$.

6. Read Appendix 1 in the lecture notes for a review of the relevant facts about symmetric bilinear forms needed for this lecture course.