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1. Let V be a finite dimensional vector space and let A ⊂ End(V ) denote a subspace consisting of
commuting diagonalisable endomorphisms. Show that we may find a basis of V in which each element
of A is represented by a diagonal matrix.

Solution: We induct on the dimension of A, with the case dimA = 1 being clear. Choose 0 6= x ∈ T
and write T = kx⊕ T ′ for some subspace T ′ ⊂ T . Now, for all eigenvalues λ of x we set

Vλ = ker(x− λ idV )

to be the λ-eigenspace of x. Then, given any v ∈ Vλ and t ∈ T we have

(x− λ idV )(tv) = t(x− λ idV )v = 0

because t commutes with x and λ idV . Hence T preserves the decomposition of V into eigenspaces. By
assumption x acts diagonally on each Vλ and we are done, because we can apply induction to T ′ and
each Vλ.

2. Let k be a field and let V be a k-vector space. If x ∈ End(V ), and V =
⊕

λ Vλ is the decomposition
of V into a direct sum of generalised eigenspaces of x, we define xs ∈ End(V ) to be the linear map given
by xs(v) = λ.v for v ∈ Vλ. It is called the semisimple part of x. Clearly it is diagonalisable.

i) Show that the element xn = x− xs is nilpotent, and check that xs and xn commute.

ii) Show that if x, y ∈ End(V ) commute, and y is nilpotent, then the generalised eigenspaces of x and
x+ y coincide.

Solution: For the first part, note that on each Vλ, x− xs is nilpotent by the definition of a generalised
eigenspace, i.e. xn is certainly nilpotent each Vλ and hence is nilpotent on V .

For the second part, consider the generalised eigenspace decomposition V =
⊕

λ Vλ(x) for x. On
each Vλ we may write x = λ.1 + n where n is nilpotent. Since x and y commute, it is clear that y
preserves each Vλ(x), and on Vλ(x) we have n and y commute. Thus (n+ y) is nilpotent on Vλ(x), and
hence V =

⊕
λ Vλ(x) is the generalised eigenspace decomposition of x+ y.

To elaborate on this: it’s clear (with the obvious notation) that Vλ(x) ⊆ Vλ(x+ y) from the above,
but then the fact that the Vλ(x)s and the Vλ(x+y)s both form a direct sum decomposition of V ensures
by a dimension count that the containments must all actually be equalities.

3. Let k be an infinite field (not necessarily algebraically closed or of characteristic zero), and suppose
that V is a finite dimensional k-vector space. If U1, U2, . . . , Ur are proper subspaces of V , show that
V 6= U1 ∪ U2 ∪ . . . ∪ Ur.

Solution: We use induction on r. For r = 1 the result is immediate. Now suppose that V =
⋃r+1

i=1
Ui.

Then by induction we can assume that V 6=
⋃r

i=1
Ui, so we may pick u ∈ V such that u /∈

⋃r

i=1
Ui. By

assumption, we must then have u ∈ Ur+1. Similarly, since Ur+1 is a proper subspace of V we may pick
w ∈ V such that w /∈ Ur+1. But then consider the vectors

vλ = w + λ.u ∈ V, λ ∈ k
×

Clearly vλ /∈ Ur+1, since that would imply w ∈ Ur+1, thus each vλ lies in some Ui for 1 ≤ i ≤ r. But
then if k× contains more than n elements there must be two distinct elements λ, µ such that vλ, vµ ∈ Uj

for the same j (1 ≤ j ≤ r). But then it is clear that both w and u lie in Uj which contradicts our
assumption.
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There is an algebraic way to think about the idea of “infinitesimals”. The next two questions of the
sheet explore this idea a little. Let k be a field and let Dk = k[t]/(t2). Write ε for the image of t in Dk,
so that ε2 = 0. We want to consider Matn(Dk) the space of n× n matrices over Dk.

4. Show that GLn(Dk), the group of invertible matrices over Dk is exactly the set:

{A+ εB : A ∈ GLn(k), B ∈ Matn(k)}.

The natural homomorphism e: Dk → k given by ǫ 7→ 0 induces a homomorphism of groups en : GLn(Dk) →
GLn(k). Deduce that the kernel can be identified with Matn(k), i.e. gln(k).

Solution: Clearly any matrix X ∈ Matn(Dk) can be written uniquely as A+ εB where A,B ∈ Matn(k).
If we write Y ∈ Matn(Dk) similarly as C + εD then we see

XY = (A+ εB)(C + εD) = AC + ε(BC +AD).

hence XY = In if and only if AC = In and BC + AD = 0. Thus it follows that X is invertible if and
only if A is invertible with inverse Y = A−1−εA−1BA−1. The second part of the question is immediate,
since the kernel consists of the matrices of the form In + εB.

5. i) The determinant is defined for a matrix with entries in any commutative ring. For X ∈
Matn(Dk) find det(X) in terms of the column vectors of A,B where X = A+εB, A,B ∈ Matn(k).
In particular, show that if X = I + εB then det(X) = 1 if and only if tr(B) = 0.

ii) The special orthogonal group is defined to be

SOn(k) = {A ∈ GLn(k) : det(A) = 1, A.At = I}.

Show that the kernel of the map SOn(Dk) → SOn(k) can be identified with

son(k) = {X ∈ gln(k) : X +Xt = 0}.

Solution: Write A = (a1| . . . |an) where ai (1 ≤ i ≤ n) are the column vectors of A, and similarly let
B = (b1| . . . |bn). Then using the multilinearity of the determinant and the fact that ε2 = 0 we see that

det(X) = det(a1 + εb1| . . . |an + εbn)

= det(a1| . . . |an) +

n∑

i=1

εdet(a1| . . . |bi| . . . |an)

If A = In, then det(a1| . . . |bi| . . . |an) = Bii, so that the above formula becomes det(I+εB) = 1+εtr(B).
For the second part, we just need to check when A + εB lies in SOn(Dk), which happens when

tr(B) = 0 by the first part, and

(A+ εB)(At + εBt) = AAt + ε(BAt + aBt),

which is equal to I if and only if AAt = I and BAt +BtA = 0. Thus the kernel consists of the matrices
of the form I + εB where B + Bt = 0 and tr(B) = 0. (This first condition implies the second if the
characteristic of k is not 2).

For the last part, note that if A,B ∈ son(k) then

[A,B]t = (AB −BA)t = BtAt −AtBt = (−B)(−A)− (−A)(−B) = BA−AB = −[A,B],

so that [A,B] ∈ son(k).

6. Read Appendix 1 in the lecture notes for a review of the relevant facts about symmetric bilinear
forms needed for this lecture course.
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