

6

Overview	 2

Keywords	 2

Learning Outcomes	3

What is animation?	 3

What are the different types of animation?	 5

Overview	 14

Keywords	 14

Learning Outcomes	14

Introduction to Animation

Introduction to animation
Software (Stop Motion pro)

unit

unit

1

2

Overview	 16

Keywords	 16

Learning Outcomes	16

Overview	 15

Keywords	 15

Learning Outcomes	15

Story board	 15

Overview	 17

Keywords	 17

Learning Outcomes	17

Overview	 18

Keywords	 18

Learning Outcomes	18

More of Frames

Introduction to Frames

Creating Movie

Learning Outcomes

unit

unit

unit

unit

4

3

5

6

Learning Outcomes

1.1.	Exercise creativity and resourcefulness by coming

up with ideas for using simple household materials

to accommodate the Maker’s size and weight in

many different ways

1.2.	Learn how to download programs and move them

to the Maker file to run the Maker

1.3.	Apply their understanding in a creative way by

making a Maker:pet creature

1.4.	Understand that the Maker takes input, and after

processing the input, produces output

1.5.	Learn the variety of different types of information

the Maker takes in as input

1312

Term Definition Image

algorithm
different options available in
a software package

unplugged
software used to make
animations.

input A subject or topic

output A subject or topic

Keyword

Term Definition Image

pseudocode

A program written in plain
English which is very close
to actual code is called
pseudocode. Pseudocode
usually uses programming
words such as input, output,
if, if then else, repeat, etc.

iteration

a process of repeating
something over and over
again

conditional
statement

allows the computer to
choose the correct option
based on a specific input

variables
an empty location in the
memory

Overview
Students will get to know the Ibtikar Maker. They will learn about the
features of Maker, including the buttons, the Maker code interface
– the simulator, the toolbox and the workspace. They will also learn
how to download code to the Maker with a USB. This unit introduces a
framework. This framework is based on how a computing device works.
It is something that uses code to process one or more inputs and send
them to an output(s).

1514

Learning Outcomes

GG Show creativity by coming up with ideas for using simple household
materials to accommodate the Maker’s size and weight in many
different ways

GG Learn how to download programs and move them to the Maker file
to run the Maker

GG Apply their understanding in a creative way by making a Maker:pet
creature

GG Understand that the Maker takes input, and after processing the
input, produces output

GG Learn the variety of different types of information the Maker takes in
as input

Introduction

The Maker is a great way to teach the basics of programming. The
Ibtikar Maker block-based coding environment is a good way to make
the Maker react to all sorts of inputs. You can introduce ideas such as
iteration, conditional statements, and variables using Maker.

Students focus on the 5x5 LED screen for providing output. This is the
easiest way to see some kind of input. There are manyways you can
get your students to see the Maker as a brain that can control physical
creations.

These creations don’t have to be complex. It’s great to have students
building with common household supplies. Because the Maker is so
lightweight and supports so many sensors. It can be easily used into their
design (STEAM) as long as students plan ahead for its size and weight.
One of the first questions you might ask your students is “Where does the
Maker fit in your creation?”

In this first lesson’s project, we makesomething creative that uses the
Maker as its “face.” We start with a lesson on making and the nature of
the Maker. It is important to set the tone for the curriculum. This is about
making, building, crafting, constructing and coding (STEAM).

Some common supplies you will need to gather are:

GG Pizza boxes

GG Scrap cardboard

GG Coloured cardboard paper

GG Duct tape

GG Scissors

GG Pipe cleaners

GG Stickers

GG Feathers

GG String

GG Coloured markers

1716

Designing Maker:pet

Talk to each other about yourperfect pet and take notes. Pair up with
each other. One is student A, and the other is student B. The goal of this
activity is to gather information from your partner that will help you to
design a Maker:pet for your partner.

 Here are some questions to start with:

GG Do you have a pet? What is it?

GG What do you like about your pet? What do you dislike?

GG Is there anything you wish your pet could do? Why?

GG Tell me about your ideal pet.

5 minutes: Student B interviews Student A, as above.

Try to ask open ended questions and ask “why?” As much as possible.
Your partner will tell you about his or her ideal pet, but you are really
finding out more about your partner’s likes and dislikes. When we design,
we create real things for real life people; so, we need to start with
understanding them first.

5 minutes: Student A interviews Student B. The goal is to find out what
Student B wants for their ideal pet. Student A should listen and ask
questions to keep Student B talking for the 5 minutes.

5 minutes: Student A and Student B review their notes, and circle
anything that seems as if it will be important to understanding how to
create the ideal pet for their partner. Circle ideas, advice, anything that
could be helpful when they start building. Then, they should use what
they have discovered about their partner to fill in the blanks:

“My partner needs a ... because .. .

This statement should draw some ideas about your partner’s needs
based on the chat you have had with your partner.

5 minutes: Student A and Student B sketch five ideas of pets that meet
their partner’s needs. Stick figures and diagrams are okay. Students
shouldn’t limit themselves to real animals; unicorns and mashups are
totally fine!

Make sure you keep your notes and sketches! You will use these in the
project for this lesson.

Installing Maker code:

Installing the code onto the Maker.You will learn how to connect the
Maker and will create a simple program using a USB cable. You will need
a Maker, a micro USB cable and a computer.

The first step in coding by design
involves knowing what is wanted . You
can create a prototype that gives you
the best solution

1918

The Maker will hold one program at a time. You do not need to delete
files off the Maker before you copy another onto the Maker; a new file
will just replace the old one.

For the next project, you should attach the battery pack to the Maker
using the white connector. You can build it into your design without
having to connect it to the computer.

Maker:pet

This project is for you to create a Maker:pet for your partner who you
spoke to. You should look atyour notes and try to find what your partner
wants in a pet.Then, you should use the materials that are available to
create a prototype of a pet their partner would like. The purpose of the
prototype is to gather more feedback to help you in the final design.

You will need to build a Maker:pet that:

GG Matches your partner’s need

GG Supports the Maker and its battery pack

GG Allows you to easily access the Maker to turn it on and off

GG Your design should use whatever materials are available to support
the Maker. Make sure it’s face is showing. You can be as creative
and decide how to mount the board and how to decorate your pet.

TEACHER

Make sure each project has the following specifications

Program properly downloaded to the Maker

Maker supported and the face is showing

Maker can be turned on and off with taking pet apart

Notes about pet design included

IMAGE OF EQUIPMENT

IMAGE OF SIMPLE CODE TO INSTALL

Repeating faces on the Maker using the red LEDs

SCREEN GRABS OF HOW TO DO IT

Screen grabs of the software

How to drag code to the device

Event handlers

SCREEN SHOT of the user interface

IMAGES OF MADE UP MODELS

2120

Algorithms

What is a computer

There are 4 main components that make up any computer.

The Processor – this is usually a small chip inside the computer, and
it’s how the computer processes and uses information. Has anyone
heard of the term “CPU”? CPU stands for Central Processing Unit. You
can think of the processor as the brains of the computer - the faster the
processor, the more quickly the computer can think.

The Memory – this is how the computer remembers things. There are two

types of memory:

RAM – (random access memory) - you can think of this as the
computer’s short-term memory.

Storage – (also referred to as the “hard drive”) - this is the computer’s long-

term memory, where it can store information even when power is turned off.

Inputs – this is how a computer takes in information from the world. In

humans, our input comes in through our senses, such as our ears and eyes.

What are some computer inputs? (keyboard, Mouse, Touchscreen, Camera,

Microphone, Game Controller, Scanner)

Outputs – this is how a computer displays or communicates
information. In humans, we communicate information by using our
mouths when we talk. What are some examples of communication
that don’t involve talking? (blushing, sign language) What are some
examples of computer outputs? (monitor/screen, headphones/speakers,
printer)

Now, let’s look at our Maker

GG Use the diagram here as a visual aid.

GG Can you find the Processor?

GG How much memory does the Maker have? (16K, which is smaller
than many files on your computer!)

GG Can you locate the following Inputs? (buttons (on board), pins (at
base), accelerometer / compass)

GG Though not pictured, the light sensor is located on the LED lights.

GG Where are the Outputs? (LED lights, pins)

GG All computers need electricity to power them. There are three ways
to power your Maker:

GG Through the USB port at the top

GG By connecting a battery pack to the battery connector

GG Through the 3V Pin at the bottom (not the recommended way to
power your Maker)

IMAGE OF MAKER – front and back with labels

2322

Input (x) Output (y)

1 2

2 4

3 6

4 8

On the top left corner, you may notice that your Maker has a Bluetooth

antenna. This means your Maker can talk and send information to another

Maker. We will learn more about this feature in the Radio Lesson.

Inprogramming, algorithms are a set of instructions.Algorithms “tell” the

computer how to process input and what, if any, output to produce. An

example of an algorithm you might have seen in maths class is the “function

machine” A function machine takes an input, processes the input, and then

delivers an output. The inputs and the outputs are usually recorded in an input

and output table, where the value of “x” represents the input and the value of

“y” represents the output.

Ask students to write a simple algorithm to make toast in the answer box below

The Maker itself is hardware. It is a piece of technology. In order to make

use of hardware we need to write software, (otherwise known as “code” or

computer programs); the software “tells” the hardware what to do, and in what

order to do it using algorithms. Algorithms are sets of computer instructions.

Explain to the student the simple flow chart for the algorithm in order to
make toast.

Scan the QR code to watch you must get your instructions correct, or the
computer cannot complete the task.

youtube link

2524

Using the guide below, try and write an algorithm, (sequence of instructions), so

that the sandwich bot will make a jam sandwich.

Always start from either right or left hand. Join the words you want to use with a

line. Once you have completed the set of instructions, students to work in pairs

and take turns to sit on chair in front of the teacher and give instructions – if

student fails ask them to go back and try again

right hand spread butter fast

left hand scoop tub repeat

pick up packet bread hard

press down knife slice soft

cut blade plate forward

put down handle turn back

hold jam top put

unscrew jar bottom table

remove lid slow surface

Write your set of instructions here:

Learning Outcomes

2.1.	Explain how Maker can show output by using LED’s

2.2.	Demonstrate skills learnt by writing small programs

2.3.	Apply their knowledge by creating a Maker

program that takes input and produces an output

2928

Term Definition Image

LED
Light Emitting Diode

program

A computer program is a
collection of instructions
that performs a specific
task when executed by a
computer.

compile
convert the program so that
it can be understood by
computer

Keyword

Overview

Students will be able to use conceptual framework for thinking of a
computing device as something that uses code to process one or more
inputs and send them to an output(s) In this activity, we will discover how
to use the Maker buttons as input devices, and write code that will make
something happen on the screen as output. We will also learn about
pseudocode, the MakeCode tool, event handlers, and commenting
code.

Learning Outcomes

GG Explain how Maker can show output by using LEDs.

GG Demonstrate skills learnt by writing small programs.

GG Apply their knowledge by creating a Maker program that takes input
and produces an output.

Happy face, Sad face - using LEDs

When you start a new project, there will be start blocks. This block is an
event handler.

In programming, an evert is an action done by the user, such as pressing
a key or clicking a mouse button.

An event handler is a routine that responds to an event. A programmer
can write code telling the computer what to do when an event occurs.

Go ahead and drag the ‘clear screen’ block onto the ‘start’ block.
As you write your code in the program, the software will automatically
compile and run your code on the simulator. Before doing anything else,
name the program and save it ‘Happy face, sad face’ press the save
button to save it.

Whenever you addnew piece of
code remember to save it. Giving
code a meaningful name will
help you find it faster from a list of
programs and will let others know
what your program does.

3130

To make your program more interesting, we need to add more than
twoevent handlers.

From the input menu, drag two ‘on button A pressed’ blocks to the
coding window. Click the drop-down menu and change ‘A’ to ‘B’

Now we can use our LED lights to display different images, depending on
what button the user presses.

Now create a happy and a sad face.

Now test your code. Press, both button A and B to see the output
produced by your code.

Feel free to play around with turning LEDs on and off in the ‘show LEDs’
blocks until you get the images you want.

Remember to save your code!

Commenting on your code

It is good practice to add comments to your code.

Comments can help you remember what a certain block of code does.

Comments also help others reading your code to understand the same
things.

To comment a block of code:

GG Right-click on the icon that appears before the words on a block.

GG A menu will pop up. Select ‘Add Comment’

GG This will cause a question mark to appear to the left of the previous
icon.

GG Click on the question mark and a small yellow box will appear where
you can write your comment.

3332

GG Click on the question make icon again to close the comment box
when you are done.

GG Click on the question mark icon whenever you want to see your
comment again or to edit it.

In JavaScript, you can add a comment by using two forward slashes,
then typing your comment. The two forward slashes tell JavaScript that
the following text (on the same line) is a comment

// Display a happy face when button A is pressed.

Save and Download

Now that your code is running and showing the happy and sad face in
program, you now need to download it to Maker.

Complete program

// Display a happy face when button A is pressed.

input.onButtonPressed(Button.A, () => {

basic.showLeds(`

.#.#.

.....

#...#

.###.

`)

})

// Display a sad face when button B is pressed.

input.onButtonPressed(Button.B, () => {

basic.showLeds(`

.....

.#.#.

.....

.###.

#...#

`) })

basic.clearScreen()

HappySadFace

3534

Fidget cubes

A fidget cubes is a little cube with something different on each side.

There are buttons, switches, dials and people who like to “fidget” find it
relaxing to push, pull, press and play with it.

In this project, you are going to turn the Maker into your own “fidget
cube.”

Remind students that a computing device has a number of inputs, and a
number of outputs. The code that we write processes input by telling the
Maker what to do when various events occur.

Task: Make a fidget cube out of the Maker. Create a unique output for
each of the following inputs: +

GG on button A pressed +

GG on button B pressed +

GG on button A+B pressed +

GG on shake+

See if you can combine the Maker into something that can hold the
cube securely when you press one of the buttons.

Challenge

Add more inputs and more outputs – use more than four different types
of input. Try to use

other types of outputs (other than the LEDs) such as sound!

4 3 2 1

Inputs

At least four

inputs are

successfully

implemented

At least three

inputs are

successfully

implemented

At least two

inputs are

successfully

implemented

Fewer than

two inputs are

successfully

implemented

Outputs

At least four

outputs are

successfully

implemented

At least three

outputs are

successfully

implemented

At least two

outputs are

successfully

implemented

Fewer than

two outputs

are successfully

implemented

Maker

program

Maker program

usesEvent

handlers in

a way that is

integral to the

program.

Compiles and

runs as intended

Maker program

lacks one of

the required

elements

Maker program

lacks two of

the required

elements

Maker program

lacks all of

the required

elements

3736

End of Unit Quiz

Statement True or False

LED stands for Liquid Crystal Display False

A computer program is a collection of

instructions that performs a specific task

when performed by a computer.
True

When you add new code, you do not need

to save it. False

Comments help you remember what a

certain block of code does True

Commenting code is not good practice. False

Learning Outcomes

3.1.	Understand what variables are and why and when

to use them in a program

3.2.	Learn how to create a variable, set the variable

to an initial value, and change the value of the

variable within the Maker program

3.3.	Understand what conditional statements are, and

why and when to use them in a program

3.4.	Practice using the Logic blocks so different

conditions yield specific outcomes

3.5.	Demonstrate understanding and apply skill by

collaborating with classmates to create a game

that uses Maker and a program that correctly and

effectively uses conditionals

4140

Term Definition Image

variable
temporary storage in a
program to store different
data types

conditional
statement

a decision-making process
in programming is known as
conditional statement

logic blocks
a block which uses decision
making

programmers people who write programs

Overview

Students will be able to learn how to use variables, to store data and the
results of mathematical operations. Students will practice giving variables
original and meaningful names. Students will be introduced to the
basic mathematical operations for adding subtracting, multiplying, and
dividing variables.

This lesson introduces the logic blocks such as ‘If...then’ and ‘If...then...
else’. Students will practice skills of creativity, problem-solving, and
teamwork. This lesson introduces looping and iteration and presents
the ‘While’ block as a combination of an iteration and a conditional
statement.

Keyword

4342

Learning Outcomes

GG Understand what variables are and why and when to use them in a
program.

GG Learn how to create a variable, set the variable to an initial value,
and change the value of the variable within the Maker program.

GG Understand what conditional statements are, and why, and when, to
use them in a program.

GG Practice using the logic blocks so different conditions produce
specific outcomes.

GG Demonstrate understanding and applying skills by working with
classmates to create a game that uses Maker and a program that
correctly and effectively uses conditionals.

Introduction to Variables

Computer programs process information. It stores some information in a
temporary location called variables.

Programmers createvariables to hold the value of information that may
change. In a game program, a variable may be created to hold the
player’s current score, since that value should change during the game.

Ask the students to think of some pieces of information in their daily life
that are constants and other that are variables.

What pieces of information have values that don’t change during a
single day (constants)?

The days of the week, the year, the students’ names and the school
address

What pieces of information have values that do change during a single
day (variables)?

The temperature/weather, the current time, whether they are standing
or sitting

Keeping score: Scorekeeper

You are going to use and work with variables, pair up and play Rock,
Paper and Scissors.

 Ask the students to keep a score on paper, have a third of the students
act asreferees and scorekeepers. After one minute ask the students to
add up their scores and the number of ‘rounds’ they played? How have
the students recorded the results? How have they recorded the ties?
Ask the students what part of the score sheet represents the constants
(players’ names) and what part represents the variables (the players’
number of wins)

This Maker activity shows you howto create a program with three
variables. This will keep the score for your Rock, Paper, Scissors game.

What pieces of information have values that don’t change?

..

..

What pieces of information have values that do change?

..

..

4544

Tell the students that they will be creating a program that will act as a
scorekeeper for their next Rock, Paper, Scissors game. They will need to
create variables for the parts of the scorekeeping that change over the
course of a gaming session.

Q. What variables would these be?

The number of times player 1 wins

The number of times player 2 wins

The number of times there is a tie

Creating and naming variables

 Lead the students to create meaningful names for their variables e.g.
Player A wins = PAW or PlayerAwins.

Explain to the children that the variable names should clearly describe
and what type of information they hold.

In Maker, from the variables menu, make and names the three variables:
PlayerAwins, PlayerBwins, PlayersTie.

Initialising the variable menu

It is important to give your variables astarting value. The starting value is
the value the variable will hold
each time the program starts.
Four your counter program,
you will give each variable the
value 0 (zero) at the start of
the program.

What variables would these be?

1.	 ...

2.	 ...

3.	 ...

4.	 ...

4746

Updating the variable value

In your program, you want to keep track of the number of times each
player wins and the number of times they tie. You can use the buttons A
and B to do this.

GG Press button A to record a win for player A. 

GG Press button B to record a win for player B. 

GG Press both button A and button B together to record a tie. 

We have already set these variables and now need to code and to
update the values at each round of the game.  

GG Each time the scorekeeper presses button A to record a win for
Player A, we want to add 1 to the current value of the variable
‘PlayerAWins.’  

GG Each time the scorekeeper presses button B, to record a win for
Player B, we want to add 1 to the current value of the variable
’PlayerBWins.’  

GG Each time the scorekeeper presses both button A and button B at
the same time to record a tie, we want to add 1 to the current value
of the variable ‘PlayersTie.’ 

From the input menu, drag 3 of the ‘on button A pressed’ event handlers
to your coding window. Leave on block with ‘A’. Use the drop-down
menu in the block to choose ‘B’ for the second block and ‘A+B’ for the
third block.

From the variables menu, drag 3 of the ‘change item by 1’ blocks to your
coding window

Place one change block into each of the button pressed blocks.

Choose and appropriate variable from the pull-down menus in the
change blocks

User feedback

When the scorekeeper presses button A, button B, or both buttons
together, we will give the user feedback showing that the user pressed a
button. We can do this by coding our program to display:

GG An ‘A’ each time the user presses button A to record a win for Player
A

IMAGE OF THE 3 EVENT HANDLERS

IMAGE OF THE 3 CHANGE ITEM BY 1 blocks

IMAGES

4948

GG A ‘B’ for each time the user presses button B to record a win for
Player B

GG A ‘T’ for each time the user presses both button A and button B
together to record a tie

We can display an ‘A’, ‘B’ and ‘T’ using either the ‘show LEDs’ block or
‘show string’ block

An ‘A’ each time the user presses button A to record a win for Player A

A ‘B’ for each time the user presses button B to record a win for Player B

A ‘T’ for each time the user presses both button A and button B together
to record a tie

We can display an ‘A’, ‘B’ and ‘T’ using either the ‘show LEDs’ block or
‘show string’ block

Showing the final values of the variables

To finish our program, we can add code that tell the Maker to display the
final version for the variables. Since we have already used buttons A and
B we can use the ‘on shake’event handler block to trigger this event.
We can use the ‘show string’, ‘show LEDs’, ‘pause’ and ‘show number’
blocks to display these final versions in a clear way

Try it out!

Download the Scorekeeper program to the Maker.Play one last round of
Rock, Paper, Scissors using their Maker to act as the scorekeeper!

Adding on with calculations

Adding, subtracting, division and multiplication is very important in
programming. When playing the game, players want to keep track of
scores and this can be done by using a variable and by adding score in
the variable.

5150

Now add the following code to the code you have already written. You
can find adding, multiplying, subtracting and dividing block in Maths
section of the toolbox.

Save and download the program on Maker and test it.

Once you add the block, replace the zero with the name of the variable
and you can add more than one variable at the same time.

Calculate and display if player wins or lose?

Display the score as a percentage.

Calculate and display number of tied game as a percentage of all
rounds.

What other things can you calculate apart from adding scores?

..

..

..

..

Can you write out one of your answers using code below?

..

..

..

..

5352

Conditional statements

Computer programs are instructions telling the computer how to process
input and deliver output. An important part of programming is telling the
computer “WHEN” to perform a certain task.

For this we us something called conditional statements. In real life, we
make a lot of decisions every day such as when parentssay, ‘if you
complete your work then you can play a video game.’

Think of a situation where you had to make a decision and share your
decision with other students in class.

Students to write a program to demonstrate conditional statements

Step by step guide to conditional statement program

..

..

..

..

End of Unit Quiz

Fill in the Blanks

What other things can you calculate apart from adding scores?

..

..

..

The decision making process in programming is known as?

..

..

..

What other maths calculations you have learned in this unit?

..

..

..

Learning Outcomes

4.1.	 Understand the value of iteration in programming  

4.2.	 Understand looping as a form of iteration

4.3.	 Learn how and when to use the looping block

4.4.	 Apply the above knowledge and skills to create a

unique program that uses iteration and

4.5.	 Understand looping as an integral part of the

program

5756

Term Definition Image

Iteration
process of repeating a piece
of code over and over again

For loop
a type of loop used in
programming

While loop

also known as a conditional
loop to repeat certain
instruction until a condition is
met

Overview

Students will be able to learn concept of looping and iteration. Presents
the ‘While’ block as a combination of an iteration and a conditional
statement. Students will be able to write programs to repeat sequence
of lights. Students will be able to work through plugged and unplugged
activities in order to understand the concept of iteration in programming.

Learning Outcomes

GG Understand the value of iteration in programming.

GG Understand looping as a form of iteration.

GG Learn how and when to use the looping block.

GG Apply the above knowledge and skills to create an original program
that uses iteration and looping as an important part of the program.

=Example:

1) Wet hair 2) Apply shampoo to wet hair

3) Scrub shampoo into hair 4) Rinse shampoo out of hair

Introduction

In computer programming, iterationis the repeating of a sequence of
code. A loop is a form of iteration. A loop repeats code until a certain
condition is met.

Questions for the students:
Do you use shampoo to wash your hair?

Most will say, ‘yes’.

GG Have you ever read the instructions on a bottle of shampoo?

Most will say, ‘no’.

Most of us have never read the instructions on a bottle of shampoo
because we already know how to use shampoo. What algorithm could
you write for shampooing your hair?

Keyword

5958

Unplugged: walk a square

Students will give the teacher instructions to do a simple activity, then
look for places where using iteration could shorten their code and make
it more efficient.

Process

Place a chair in the front of the room.

Stand at the back-right side of the chair facing the students.

Ask the students what instructions they could give you, that when
followed, would lead you
to walk around the chair, ending up just as you started. You may want to
demonstrate
what this would look like by walking around the chair.

Tell the students you can only process one instruction at a time, so their
algorithm needs
to be step-by-step.

As students suggest instructions write them on the board or wherever
everyone can see them.
Their pseudocode will
probably end up looking
something like this:
1) step forward 2) turn left
3) step forward 4) turn left
5) step forward 6) turn left
7) step forward 8) turn left

Go ahead and follow their
algorithm to prove that it works.

That is just eight lines of code. Tell the students that the same lines of
instructions can be written using just three lines of code. If they have not

noticed already, have students look for places where the code repeats.

Tell them that whenever you have code that repeats, you have an
opportunity to use a loop to simplify your code.

Prompts:
What lines are repeated?

 1) Step forward. 2) Turn left.

How many times are they repeated?

Four

So how could we rewrite this code?

Students will suggest a version of the following.

Repeat 4 times:

1) Step forward

2) Turn left

Go ahead and follow the revised algorithm to prove that it works.

Activity loops demo

Maker has three different loop blocks:

GG Repeat block

GG While block

GG For block

There! You have just rewritten eight lines of code as three lines of
code by using a loop. The repeated commands create a loop. The
code within a loop gets repeated a certain number of times until a
condition is met.

6160

Repeat’ block

Step by Step Guide

GG Code a sprite to walk a square. Ask students click on the loops
category in the toolbox, and look at the three choices available.

The very first one is the repeat block. When you drag the repeat block to
the work space, you will notice that this block takes parameter.

A parameteris a type of variable used as input to a function or routine. In
this case, the parameter tells the repeat block how many times we want
the code within the block to repeat.

For now, we will leave the parameter at 4.

To create a sprite that will walk a square:

GG Click on the advanced category in the toolbox. This will open up
more advanced menu of blocks.

GG Click on the game category and drag a create a sprite block to the
coding worksurface.

GG You will need to move blocks from the game menu.

Referring to the walk a square pseudocode, can you find the blocks you
need for moving the sprite and turning the sprites.

GG Drag out the move by block and turn the right by block.

GG You now have these blocks in their work surface.

GG For this project, you can delete the for ever block.

..

..

..

6362

Time to fix those default parameter values!

GG We want your sprite to start in the top left corner of the Maker screen,
so change the
parameters for both x and y to zero.

GG To make your sprite move from one side of the screen to the other
(as though walking
around a chair), change the move by parameter to 4.

To make a sprite turn to walk a square, change the turn right by degree
to 90for now. It’s ok to leave the sprite turning right instead of left, as we
did in our pseudocode.

Your blocks now look like this

Notice that all the blocks are greyed out. This is because we have not
attached them to any event handlers.

GG On start we want our sprite to appear. To make this happen go to
the variable menu and drag the set of item block to the coding
window.

GG Place the set item block into the start item block.

GG Attach the create sprite to the set item block.

You should now see the sprite appear in the top left of the Maker
simulator.

GG To add more control when sprite moves, drag the on button A
pressed block from the input menu

GG Place the repeat block into the on button A pressed block

GG Place the move by block into the repeat block

GG Place the turn right by block into the repeat block just under the
move by block

6564

Go ahead and run the program. Make the sprite move by pressing
button A.

What happened? Did you see the sprite move? No?

Slow-Mo

A helpful feature of Microsoft Make Code is
‘Slow-Mo’, or slow-motion mode. • Click on
the snail icon under the Maker simulator.

This will slow down the execution (running)
of the program, and highlights parts of your
code so you can see step-by-step, which
line of code is being processed.

So, the code is running and the sprite is moving! Sometimes we forget
just how fast computers are, so that we can see the sprite move even in
regular mode. Let’s add a pause to our program, right after each time
the sprite moves. This will give the human eye a chance to see it move.

Step by Step Guide

GG Click the snail icon again to turn off Slow-Mo.

GG From a basic toolbar category, drag a pause block of coding
window and add to our repeat block right after the turn right by
block.

The final block of code should look like:

Now run your program several more times. Do you see the different lines
of your code highlighted as the program runs? Do you see the sprite
move?

..

..

..

..

6766

Run your program again. Now we can see the sprite move. It still moves
pretty quickly, but at least we can see it move.

Now try changing the parameters to see how these changes effect their
program. Write the new parameter you tested and what it does?

‘For’ block: Traveling Light

The for block is useful when you have a variable in your loop that you
want to change by a fixed amount. Let’s look at the example.

Let’s look at the LED light move across the display from left to right, top
row to bottom row.

Our pseudocode for the first row might look like this:

Turn led x:0, y:0 on

Pause

Turn led x:0, y:0 off

Pause

Turn led x:1, y:0 on

Pause

Turn led x:1, y:0 off

Pause

Turn led x:2, y:0 on

Pause
Turn led x:2, y:0 off

Pause

Turn led x:3, y:0 on

Pause

Turn led x:3, y:0 off

Pause

Turn led x:4, y:0 on

Pause

Turn led x:4, y:0 off

Step by Step Guide

GG From the loop toolbar drawer drag a for loop block to the coding
surface.

GG Since we will be changing the value of x coordinates make a new
variable name it as xindex.

GG We will plot and then unplot LEDs to turn them on and off.

GG From the LED toolbar drawer, drag a plot block and unplot block to
the coding surface.

GG From the basic toolbar. Drag two pause blocks to the coding
workspace.

GG Place the following block in to the for block, the plot block, a pause
block, the unplot block, the second pause block.

GG Place the for block inside the forever block.

..

..

6968

GG Let’s look at the parameter

GG Change the index variable to xindex we created

GG Change the value of the x coordinates in the plot and unplot blocks
to the same variable.

You should now see a light moving from left to right along the top row of
the Maker simulator.

Now to make the pattern continue, we need to change the y
coordinates as well. To do this follow the steps below.

GG So that we can change the value of the y coordinate, make a new
variable, named yindex.

GG Drag another for block from the loops toolbox.

GG Place this new for block around the previous for block. All within the
forever block.

GG Change the index in the outer for block to a yindex variable we
made.

GG Change the value of the y coordinates in the plot and unplot blocks
to this same variable.

7170

Now experiment with changing the parameters to see how these
changes effectof program. Write your changes below.

While block

The while block is useful when you want your program to loop until a
certain event happens or a different condition is met.

For example, maybe you want an alarm to sound if someone shakes
your Maker!
In order to turn the alarm off, you press the button A. Until you press the
button, the alarm should continue to sound!

You can use the while block with a nested repeat block like this,

What happens if you switch the positions of the nested loops, so the
outer loop loops through the xindex values and the inner loop loops
through the yindex values?

Can you write out pseudocode that describes what this code does?

Can you read what this code does?

What happens if you remove the unplot block and the pause block
below it?

..

..

..

..

..

..

..

..

..

7372

Example Pseudocode:
When someone shakes the maker, while button A is not pressed, play the
two-tone alarm twice. Keep playing the alarm tones until the user presses
the A button.

Code the above program and test it using speaker.

Project to get the loop to be added. Some example project ideas:

GG Create an animated gif (looping image that changes) and add
music that matches.

GG Create animation that repeats for one of the melodies included in
Make Code (like Happy Birthday).

GG Create different animations that run when different buttons are
pressed.

GG Create an alarm that includes sound and images. What will set the
alarm off? What will make the alarm stop sounding?

GG Use servo motors to create a creature that dances and changes its
expression while a song plays.

End of unit Assessment

What are the three types of loops learned in this unit?

Match the word with the correct definition

1.	 ...

2.	 ...

3.	 ...

Word Definition

Iteration
a type of variable used as input to a function or
routine

For Loop
iteration that is the repetition of a sequence of
code

While Loop

This block is useful when you have a variable in
your loop that you want to change by a fixed
amount.

Parameter

This block is useful when you want your program
to loop until a certain event happens or a
different condition is met.

Word Definition

Parameter
a type of variable used as input to a function or
routine

Iteration
iteration that is the repetition of a sequence of
code

For loop

This block is useful when you have a variable in
your loop that you want to change by a fixed
amount.

While Loop

This block is useful when you want your program
to loop until a certain event happens or a
different condition is met.

Learning Outcomes

5.1.	 Understand what Booleans and Boolean

operators are, and why and when to use them in

a  program 

5.2.	 Learn how to create a Boolean, set the Boolean

to an initial value, and change the value of the

Boolean within a Maker program 

5.3.	 Learn how to use the random true or false block 

5.4.	 Apply the above knowledge and skills to create a

unique program that uses Booleans and Boolean

operators as an integral part of the program 

7776

Term Definition Images

Boolean
a data type which has
two values; true or false

False Block
A block when a certain
condition is not met

True block
A block when a condition
is met

Overview

This lesson introduces the use of the Boolean data type to control the
flow of a program, keep track of a state, and to include or exclude
certain conditions.

This lesson presents the idea of binary digits and base-2 notation.
Students will learn how data is stored digitally and how it can be read
and accessed.

Learning Outcomes

GG Understand what Booleans and Boolean operators are, and why and
when to use them in a  program.

GG Learn how to create a Boolean, set the Boolean to an initial value,
and change the value of  the Boolean within a Maker program.  

GG Learn how to use the random true or false block.

GG Understand what a bit and byte are and how they relate to
computers and the way information is processed and stored.  

GG Learn to count in Base-2 (binary) and translate numbers from binary
to Base-10 (decimal).

Keyword

7978

Introduction to Boolean

There are several different data types used in computer programming.
We have already used two types.

GG Integer

GG String

Boolean is another type of data. A Boolean data type has only two
values: true or false.

Booleans are useful in programming for making decisions. Whenever you
play a computer game you get to choose different options; for example,
one player, two players, different modes, etc. these are all programmed
using Boolean logic.

Think of a game you like the most. Write down some choices you get in
that game.

Example options

Different modes available in games

Different players available in games

Different backgrounds

Playing online

Different themes

Boolean Operators AND, OR and NOT

In programming, if you have worked with conditionals or loops, you have
already worked with this type of logic:  

GG If a certain condition is true, do this, otherwise (if a condition is false),
do something else.

GG While a certain condition is true, do this:  

There are different types of logics used in computer programming: AND,
OR and NOT. All the circuit board are designed using these logics.

AND

For this logic both the conditions have to be true. For example, you
cannot move onto level 2 if you have not collected 10 pieces of fruit
AND jumped over all the obstacles.

Can you give an example of AND logic from the game you play?
Write down what you usually use?

8180

OR

For this type of logic only one condition has to be true; for example, you
can go to level 2 if you have collected 10 pieces of fruit OR jumped over
all the obstacles.

Can you give an example of OR logic from the game you play?

NOT

NOT can be used when checking that a condition is false (or not true).

NOT is also useful when using a loop; for example, while the correct
name is NOT entered, continue to ask for the name.

Activity 1

Working in pairs, make a table or list of the possible outcomes if each
student flipped a coin at the same time. Also write down what type of
Logic will apply.

Coin A Type of Logic Coin B Totals

Head Head

Head Tail

Tails Head

Tail Tail

Coin A Type of Logic Coin B	
	 Totals

Head AND Head 1

Head OR Tail 2

Tails IR Head 2

Tail AND Tail 1

8382

Double coin flip program

In this program students will write a code to flip two coins.

Step by Step Guide

Let’s start by creating following variables.

GG CoinAHeads

GG CoinBHeads

GG PlayerAScore

GG PlayerBScore

Now we need to initialise the variable values. Put a ‘set’ variable block
for each of these four variables inside the ‘on start’ block.

The initial value of a variable is the value the variable will hold each time
the program starts. By default:

GG A string variable is initialised to an empty string “”

GG A number variable is initialised to 0

GG A Boolean variable is initialised to “false”

Notice that we also added an image for the
start screen, so the user knows the program
has started and is ready. Does the image
look like two coins?

8584

Random coin flips

When the player shakes the Maker, we will code the Maker to give each
of our Boolean variables a random true/ false value.

GG From the input toolbox, drag the on-shake block to the coding
surface

GG From variable toolbox, drag 2 set variable bocks

GG Drag the 2 set blocks onto on-shake block

GG Change the default name to CoinAHead and CoinBHead

GG From the Maths toolbox drag 2 random true or false block

GG Attach these ‘pick random’ blocks to the ‘set’ variable blocks in the
‘on shake’ block

Now that the virtual CoinA and CoinB have been virtually flipped, we
need to compare the outcomes to see if they are the same or different.

GG From the Logic Toolbox drawer, drag an ‘if...then...else’ block to the
coding workspace

GG Drag the ‘if...then...else’ block into the ‘on shake’ block under the
‘set’ variable blocks  

8786

GG We can now simply add this to our current code  

GG And provide user feedback by adding some visuals  

Here is the complete program.

8988

Bits, bytes and binary

As we use different units for measuring objects and distance, we use
kilobytes, megabytes, gigabytes and terabytes to measure the size of the
files and hard disks. We also use these units to look at a download and
upload speed, size of an image and other things related to computers.

A bit in binary has only two possible values, zero or one. A power switch is
a good example as it can only be on or off.

A byte is a sequence of binary digits made up of 8 bits. A byte can
represent 256 possible values.

Binary to decimal conversion

Computers can only understand binary. Computers are made up of
thousands of transistors attached to a circuit board. We are going to see
how a denary number can be changed into a binary number.

Example:

1100 is a binary number equitant to 12

8 4 2 1

1 1 0 0

This is converted using a formula. The numbers in row 1 have two rules:

GG Starts from left

GG Doubles each time

The numbers in row two are binary numbers. To convert this binary
number to a denary number we do the following:

Wherever the number 1 is in row 2, we take down the number from row 1;
for example:

GG We will take 8 and 4 from the table above as they both have 1s in

them

GG We will ignore 2 and 1 as they have 0s below them.

GG We will now add 8+4 = 12

Activity 2: {

Convert the following binary numbers in to denary numbers

1111

8 4 2 1

Answer is 15

1010

8 4 2 1

Answer is 10

0011

8 4 2 1

Answer is 3

1000

8 4 2 1

Answer is 8

9190

End of unit Quiz

Statement True or False

Boolean is a data type in
programming?

True

Boolean logic can be True or
False?

True

1 means False and 0 Means True False

For AND logic only one condition
has to be true?

False

Computers understand denary
numbers

False

0001 is 11 in denary? False

1011 is 11 in denary? True

Learning Outcomes

6.1.	 Apply the skills learnt in this unit by creating project

6.2.	 Demonstrate a good understanding of variables,

conditional statements, iteration and Boolean by applying
these skills in the final project

9594

Term Definition Image

Binary 0 and 1 represents off and on

Maker device with LEDs

Overview

The final project is a chance for you to use all the skills you have learned
throughout the semester to create something that is original, and that
solves a problem or serves a purpose.

Binary conversion using maker

Binary converter changes between binary and decimal numbers. Binary
numbers are ‘0’ and ‘1.’ Decimal numbers are base 10 numbers so (0 –
9).

We will be using buttons on maker to get input. Button A will be used for 0
and B will be used for 1. If you press both A and B together, it will give you
the answer in decimal by flashing lights.

We will look at basics of binary conversion. Follow the step-by-step guide
to do basic conversion.

Step -by-step guide

GG We will start by creating variables to hold binary and decimal
numbers.

Keywords

Learning outcomes

GG Analyse the given problem

GG Demonstrate the skills learned to convert binary to decimal

GG Display the conversion using LED lights

9796

GG We will now initialise the variable by giving them a starting value.

	 decimal = 0

	 Binary = “” (empty string)

This also tells the micro:bit what type of variable it is. Use the empty string
value found in the text toolbox drawer, under the advanced menu.

We are going to use a simple method of calculating the decimal
number. Every time the user presses a 1 or a 0, it calculates the current
decimal value of that string. You only need to deal with one 0 or 1 at a
time.

Before we start coding, we are going to start with pseudocode. We have
previously looked at pseudocode, which is instructions in plain English.
Your pseudocode might be different than the one shown below.

Activity 1

Write the pseudocode to convert a binary number to a decimal
number. Use the hints below.

When Button A is pressed

When button B is pressed

When button A+B is pressed

9998

When button A is pressed;

Add “1” to the end of binary string

Show the current value of binary string

Update the current decimal value with the total

When button B is pressed;

Add “0” to the end of binary string

Show the current value of binary string

Update the current decimal value with the total

When button A+B is pressed;

Show the current value of the decimal string.

GG Once you have planned the solution you need to then code it using
Maker. Here are some blocks which can help you.

Once you have completed this, try to add the following features:

GG Add a way to clear the binary and decimal values so that you can
start over again.

GG Add a way to erase the previous value.

GG Create a decimal-binary converter that allows you to enter a
decimal value and see the binary equivalent when you press A+B

Teacher answers:

101100

Self-evaluation

What were the variables that you used to keep track of information?

What mathematical operations did you perform on your variables?

Describe what the physical component of your Maker project was
(e.g., an armband, a wallet, a holder, etc.)

How well did your prototype work? What were you happy with?

What would you change?

What do you think can be improved?

