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CHAPTER 1

Introduction

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Course website: http://www.math.ubc.ca/~lior/teaching/602D_F08/
Office: Math Building 229B
Phone: 604-827-3031
Office Hours: By appointment

1.1. Introduction – Geometric group theory

We study the connection between geometric and algebraic properties of groups and the spaces
they act on.

1.1.1. Example: Groups of polynoimal growth. Let M be a compact Riemannian manifold,
M̃ its universal cover. Riemannian balls will be denoted B(x,r), and vol will denote Riemannian
volume on M and counting measure on Γ = π1(M). We would like to understand the algebraic
structure of Γ.

• Assume M has non-negative Ricci curvature. This local property carries over to M̃.
• Then (“local to global”; Bishop-Gromov inequality) M̃ has polynomial volume growth:

∃C,d : ∀x : volBM̃(x,r)≤Crd .

• Then (“Quasi-isometry”; Milnor-Švarc Lemma) Γ = π1(M) has polynomial volume growth:
with respect to some set of generators,

∃C′ : volBΓ(x,r)≤C′rd .

• Then (geometry to algebra; Gromov’s Theorem) There exists a finite index subgroup
Γ′ ⊂ Γ which is nilpotent.
• Then (topological corollary) M has a finite cover with a nilpotent fundamental group.

1.1.2. Example: Rigidity.

THEOREM 1. (Margulis Superrigidity; special case) Let ϕ : SLn(Z)→ SLm(Z) be a group
homomorphism with Zariski-dense image and n,m≥ 2. Then ϕ extends to a group homomorphism
ϕ : SLn(R)→ SLm(R).

1.2. Additional examples

1.2.1. Examples of Metric spaces. R, R2 and R3, Rn, Hilbert space.
H2, Hn, H∞

Riemannian manifolds
Banach spaces, function spaces
Graphs and trees
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“Outer space”

1.2.2. Examples of Groups. Z and Zd , D∞, Heisenberg groups, upper-triangular group.
SLn(Z), congruence subgroups, lattices in real Lie groups, in p-adic Lie groups.
All these groups are linear (subgps of GLn(F) for some field F).
π1(M2): either Z2 or a lattice in SL2(R) = SO(2,1).
π1(M3): more complicated. Includes lattices in SO(3,1).
π1(M4): any finitely-presented group [5].

1.2.3. Example: Random Groups. We shall consider presentations of the form Γ = 〈S|R〉
where S is fixed and R is chosen at random.

Let S =
{

a±i
}k

i=1, F = 〈S〉 the free group on k generators, and fix a parameter 0 < d < 1
(“density”) and two real numbers 0 < a < b. For an integer l let Sl ⊂ F denote the set of reduced
words of length l. Then #Sl = 2k(2k− 1)l−1 ∼ kl . Choose Nl such that akdl ≤ Nl ≤ bkdl . We
shall make our group by choosing Nl relators at random from Sl . In other words, we setAl =

(Sl
Nl

)
.

Given R ∈ Al we set ΓR =〈S|R〉 and think of it as a “group-valued random variable”.

DEFINITION 2. Let P be a property of groups. We say that ΓR ∈ P asymptotically almost
surely (a.a.s.) if

lim
l→∞

#{R ∈ Al : ΓR ∈ P}
#Al

= 1 .

Note that we have suppressed the dependence on d.

DEFINITION 3. Assume that P passes to quotients. Then if P holds a.a.s. at density d, it also
holds a.a.s. at any density d′ > d and we can set:

d∗(P) = inf
{

d′|P holds a.a.s. at density d′
}

.

Examples:

LEMMA 4. (Birthday paradox) Let N be a large set. If we choose N1/2+ε elements at random
then a.a.s. we have chosen the same element twice.

PROPOSITION 5. Assume d > 1
2 . Then a.a.s. |ΓR| ≤ 2.

PROOF. With high probability R contains many pairs of the form ws,ws′ with distinct s,s′ ∈ S.
Thus with high probability we have s′ = s′ in ΓR. Hence ΓR is a quotient of

〈
a1|a1 = a−1

1
〉
'C2.

If l is even this is the group we get, if l is odd then we get the trivial group. �

THEOREM 6. (Gromov) If d < 1
2 then a.a.s. |ΓR| is infinite.

The proof is based on studying the properties of ΓR as a metric space.

1.2.4. Example: Property (T) [4].

DEFINITION 7. Let G be a localy compact group. We say that G has Kazhdan Property (T) if
any action of G by (affine) isometries on a Hilbert space has a (global) fixed point.

EXAMPLE 8. A compact group has property (T) by averaging. An abelian group has property
(T) iff it is compact by Pontrjagin duality.

THEOREM 9. (Kazhdan et. al.)
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(1) A group with property (T) is compactly generated.
(2) Let Γ < G be a lattice. Then G has property (T) iff Γ has it.
(3) Any simple Lie group of rank≥ 2 has property (T) (both real and p-adic).

COROLLARY 10. Let Γ be a lattice in a Lie group of higher rank. Then Γ is finitely genrated
and has finite abelianization.

THEOREM 11. (Margulis) Let G be a higher-rank center-free Lie group, Γ < G a latice, NCΓ

a normal subgroup. Then Γ/N is finite.
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Part 1

Basic constructions



We will mainly care about“large scale” properties of metric spaces. For this we need a category
where “small-scale” effects don’t matter. For example, on a very large scale ,the strip R× [0,1] and
the cylinder R× S1 look more-or-less the same as the line R. On a very large scale, all bounded
metric spaces are no different from a single point.

In algebraic toopology, it is common to work in the “homotopy category”, where R× [0,1] can
be shunk to R. We would like to do the same in the metric sense. Quasi-isometry is the key word.

1.3. Quasi-isometries

Let (X ,dX), (Y,dY ) be metric spaces.

DEFINITION 12. Let f : X → Y .
(1) Say that f is Lipschitz if ∃L > 0∀x,x′ ∈ X : dY ( f (x), f (x′))≤ LdX(x,x′).
(2) Say that f is bi-Lipschitz if ∃L > 0∀x,x′ ∈X : L−1dX (x,x′)≤ dY ( f (x), f (x′))≤LdX(x,x′).

These are “smooth” notions. They presrve the local structure. We shall be interested in a more
“large scale” version of this notion which completely ignores small-scale information. There is
a strong analogy to the category of homotopy equivalence classes of maps between topological
spaces.

DEFINITION 13. Let f , f ′ : X → Y .
(1) Say that f is a quasi-isometry if ∃L,D > 0 such that for any x,x′ ∈ X ,

1
L

dX(x,x′)−D≤ dY
(

f (x), f (x′)
)
≤ LdX(x,x′)+D .

(2) Say f and f ′ are at finite distance if ∃R > 0∀x ∈ X : dY ( f (x), f ′(x))≤ R. This is clearly
an equivalence relation that wil be denoted f ∼ f ′.

LEMMA 14. Let (Z,dZ) be a third metric space, and let f , f ′, f ′′ : X → Y , g, g′ : Y → Z.
(1) Assume f and g are quasi-isometries. Then so is g◦ f .
(2) Assume, in addition that f ∼ f ′ and g∼ g′. Then f ′ is a quasi-isometry and g◦ f ∼ g′ ◦ f ′.

PROOF. Denote the constants by L f , D f etc. Then for any x,x′ ∈ X we have:

dZ
(
g( f (x)),g( f (x′))

)
≤ LgdY

(
f (x), f (x′)

)
+Dg

≤ LgL f dX
(
x,x′
)
+
(
LgD f +Dg

)
.

dZ
(
g( f (x)),g( f (x′))

)
≥ 1

Lg
dY
(

f (x), f (x′)
)
−Dg

≤ 1
LgL f

dX
(
x,x′
)
−
(

D f

Lg
+Dg

)
.

For the second part, we first estimate

dY
(

f ′(x), f ′(x′))
)
≤ 2R f +dY

(
f (x), f (x′)

)
≤ L f dX

(
x,x′
)
+(2R+Dg)

and in similar fashion dY ( f ′(x), f ′(x′)))≥ L−1
f dX (x,x′)− (2R+Dg).



Finally, for any x ∈ X we have:

dZ
(
g( f (x)),g′( f ′(x))

)
≤ dZ

(
g( f (x)),g′( f (x))

)
+dZ

(
g′( f (x)),g′( f ′(x))

)
≤ Rg +Lg′R f +Dg′ .

�

DEFINITION 15. LetMQI be the category whose objects are all metric spaces, and such that
its arrows are equivalence clase of quasi-isometries.

LEMMA 16. Let f : X → Y be a quasi-isometry and let [ f ] be its equivalence class, though of
as arrow ofMQI.

(1) [ f ] is a monomorphism. In other words, if f ◦g∼ f ◦g′ then g◦g′.
(2) [ f ] is an epimorphism iff for some R > 0, f (X) is R-dense: sup{dY (y, f (X))}y∈Y ≤ R.

DEFINITION 17. In the second case we say f is a quasi-isometric equivalence, and that X and
Y are quasi-isometric.

EXAMPLE 18. Let R have its usual metric. Then the inclusion Z⊂ R is such an equivalence.

Proposition 49 below generalizes this observation.

EXAMPLE 19. Every metric space is quasi-isometric to a discrete one. This is based on the
following useful observation.

DEFINITION 20. Let (X ,d) be a metric space, A ⊂ X . Say that A is ε-separated if d(A,A) ⊂
{0}∪ [ε,∞), ε-dense d(A,X)≤ ε , that is if every point of X is ε-close to A. Say it is an ε-net if it
satisfies both properties.

LEMMA 21. An (inclusion-)maximal ε-separated set is an ε-net. An ε-dense in X is quasi-
isometric to X.

PROOF. If there exists point at distance at least ε from an ε-separated set then it can be added
to the set keeping its separation. Maximal separated sets exist by Zorn’s lemma. An inclusion map
is an isometric embedding, in particular a quasi-isometric embedding. �

1.4. Geodesics & Lengths of curves

Let (X ,dX) be a metric space.

DEFINITION 22. We say (X ,dX)has:
(1) rough midpoints, if for some D > 0 and all x,x′ ∈X there exists m∈X such that d(x,m),d(x′,m)≤

1
2d(x,x′)+D;

(2) approximate midpoints, if for every x,x′ ∈ X and ε > 0 there exists m ∈ X such that
d(x,m),d(x′,m)≤ 1

2d(x,x′)+ ε;
(3) (exact) midpoints, if for every x,x′ ∈ X there exists m ∈ X such that d(x,m) = d(x′,m) =

1
2d(x,x′).

(4) unique midpoints, if for every x,x′ ∈ X there exists a unique exact midpoint m ∈ X .

DEFINITION 23. For a continuous γ : [a,b]→ X we set

l(γ) = sup

{
n

∑
i=1

dX(xi,xi−1) | a = x0 ≤ x1 ≤ ·· · ≤ xn = b

}
.
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If l(γ) < ∞ we say γ is rectifiable and l(γ) is its length.

LEMMA 24. l(γ)≥ dX(γ(a),γ(b)). If γ is a concatenation γ1∨ γ2 then l(γ) = l(γ1)+ l(γ2).

DEFINITION 25. For x,x′ ∈ X set d∗X(x,x′) = inf{l(γ) | γ(a) = x, γ(b) = x′} (inf /0 = ∞ by con-
vention). Call this the length metric associated to dX .

LEMMA 26. d∗X ≥ dX pointwise. Furthermore, curves have the same length under dX and d∗X .
In particular, (d∗X)∗ = d∗X .

PROOF. The first claim follows from the first claim of Lemma 26. It implies ld∗X (γ) ≥ ldX (γ)
for any curve γ , and we need to prove the reverse. For this let γ ∈C([a,b]→ X), and let a≤ t0 ≤
·· · ≤ tn ≤ b be any partition of [a,b]. By definition of d∗X we have d∗X(γ(ti),γ(ti+1))≤ ldX (γ �[ti,ti+1])
(the distance is the infimum over the length of all curves connecting the two points). It follows
that:

n−1

∑
i=0

d∗X(γ(ti),γ(ti+1))≤
n−1

∑
i=0

ldX (γ �[ti,ti+1]) = ldX (γ) .

�

DEFINITION 27. We say dX is a length metric and that (X ,dX) is a length space if d∗X = dX .
We say dX is geodesic and that (X ,dX) is a geodesic space if the infimum is a minimum, that is if
for every x,x′ ∈ X there exists a continuous curve γ connecting them with l(γ) = dX(x,x′). Such a
distance-minimizing curve is called a geodesic curve of simply a geodesic.

REMARK 28. Given a geodesic curve γ : [a,b]→ X connecting x and x′, the function s(t) =
dX(x,γ(t)) is monotone non-decreasing and continuous. It is then easy to check that γ̃(s) =
γ
(
minS−1(s)

)
is also a geodesic connecting x,x′, in fact an isometry [0,dX(x,x′)]→X . We call two

geodesics equivalent if they give rise to the same isometry, and say (X ,dX) is uniquely geodesic
if for every x,x′ ∈ X there exists a unique isometry γ : [0,dX(x,x′)]→ X mapping the endpoints of
the interval to x,x′ respectively.

NOTATION 29. An equivalence class of geodesics contains a unique constant-speed represen-
tative with domain [0,1]. We usually denote it t 7→ [x,x′]t , with [x,x′] denoting both the image and
the function. The notation hides the fact that space may not be uniquely geodesic — [x,x′] will
generally denote the choice of some geodesic connecting x,x′.

LEMMA 30. Let (X ,dX) be a complete metric space.
(1) dX is a length space iff it has approximate midpoints.
(2) dX is geodesic iff it has exact midpoints.
(3) dX is uniquely geodesic iff it has unique midpoints.

One case where midpoints are unique is the case of a convex metric

DEFINITION 31. Call the geodesic metric dX strictly convex if for p,x,y ∈ X with x 6= y every
midpoint m = [x,y] 1

2
satisfies dX(p,m) < max{dX(p,x),dX(p,y)}.

LEMMA 32. A strictly convex metric has unique midpoints and is, in particular, uniquely geo-
desic.

PROOF. Let m1,m2 be distinct midpoints for x,y∈X , where dX(x,y) = 2d. Let m be a midpoint
of m1, m2. Then d(x,m),d(y,m) < d (both x and y are at distance d to m1,m2). This contradicts
our definition of d. �
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DEFINITION 33. (X ,dX) is locally compact if for every x ∈ X some closed ball BX(x,r) is
compact. (X ,dX) is proper if all balls are compact, that is if subsets are compact iff they are closed
and bounded.

REMARK 34. It is usefuly to note that a space where every ball of a fixed radius R is compact
is complete, since every Cauchy sequence is eventually contained in such a ball.

THEOREM 35. (Hopf-Rinow) A complete and locally compact length space is geodesic and
proper.

REMARK 36. It is useful to note that a space where every ball of a fixed radius R is compact is
complete, since every Cauchy sequence is eventually contained in such a ball.

DEFINITION 37. Say that the metric dX is geodesically complete if every geodesic segment is
contained in a two-sided infinite geodesic. In other words, every isometry [a,b]→ X extends to an
isometry R→ X . Note that this extension need not be unique even if X is uniquely geodesic.

LEMMA 38. A Riemannian manifold is complete (in the sense of Riemannian geometry) iff it
is geodesically complete.

12



Problem Set 1

Length spaces and geodesics
1. Prove Lemma 30 in the notes.

Hint: Given x,x′ ∈ X construct your curve first on the dyadic rationals Z
[1

2

]
∩ [0,1]. You will

need the axiom of choice.

LEMMA. Let (X ,dX) be a complete metric space.

(1) dX is a length space iff it has approximate midpoints.
(2) dX is geodesic iff it has exact midpoints.
(3) dX is uniquely geodesic iff it has unique midpoints.

2. Prove Theorem 35 in the notes.

THEOREM. (Hopf-Rinow) A complete and locally compact length space is geodesic and proper.

Vector spaces
3. Let V be a normed space satisfying the CAT(0) inequality: for every p,x,y∈V and m = 1

2x+ 1
2y

one has:

‖m− p‖2 ≤ 1
2
‖x− p‖2 +

1
2
‖y− p‖2− 1

4
‖x− y‖2 .

Prove that V is isometric to a Hilbert space.

The Gromov-Hausdorff Metric
4. Let (X ,d) be a compact metric space. Let CX be the set of non-empty closed subsets of X . The

Hausdorff metric on CX is defined as follows: for A,B ∈ CX we set

dH (A,B) = sup
b∈B

inf
a∈A

d(a,b)+ sup
a∈A

inf
b∈B

d(a,b) .

(a) Show that dH is a metric.
(b) Show that (CX ,dH) is a compact metric space.

5. Fix a compact metric space (K,dK), and let MK be the class of all triples (X ,dX , f ) where
(X ,dX) is a compact metric space and f : K → X is an isometric embedding. We define the
Gromov-Hausdorff metric dGH (X ,Y ) of (X ,dX , fX), (Y,dY , fY ) ∈MK to be the infimum over
all Hausdorff distances dH(F(X),G(Y )) where (Z,dZ, fZ) ∈MK and F : X → Z, G : Y → Z
are isometric embeddings such that F ◦ fX = G◦ fY = fZ .
(a) Show that dGH is a metric onMK , and that dGH(X ,Y )≤ diam(X)+diam(Y ) (the diameter

of a metric space X is sup{d(x,y) | x,y ∈ X}).
(b) {(Xn,dn, fn)}∞

n=1⊂MK converges to (X∞,d∞, f∞)∈MK in the Gromov-Hausdorff metric.
Show that limn→∞ diam(Xn) = diam(X∞).

(c) ((MK,dGH) is complete) Let {(Xn,dn, fn)}∞

n=1 ⊂MK be a Cauchy sequence. Show that
it converges.
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6. ((MK,dGH) is not compact) Let Stn be the n-pointed star, that is the metric realization of the
graph on n+1 vertices {s}∪{vi}n

i=1 with edges [s,vi] of unit length. Let Bn ⊂ Rn be the unit
ball with the induced L2 metric. Think of both as elements ofM /0.
(a) Show that dGH(Stn,Stm) = δn,m.
(b) Show that dGH(Bn,Bm) = δn,m.

REMARK. (Non-compact spaces) Let (X ,dX ,x) and (Y,dY ,y) be two pointed proper metric
spaces. We can set dGH (X ,Y ) = ∑

∞
n=1 2−ndGH ((BX(x,n),dX ,x) ,(BY (y,n),dY ,y)) (the factor 2−n

was simply chosen to make the series converge, using the diameter bound from 4(a) above). Con-
vergence in this metric is equivalent to Gromov-Hausdorff convergence of every ball of finite
radius. This notion of convergence preserves the properties of being a length space or a geodesic
space. This will be proved in the next problem set using ultrafilters.

Hint for 5(c): passing to a rapidly converging subsequence, choose Fn : Xn→ Xn+1 which does not
chance distances additively by more than εn, where ∑n εn < ∞. Use this to define a notion of a
Cauchy sequence for {xn}∞

n=1 with xn ∈ Xn. Define a limiting pseudo-metric on the space of such
sequences. Finally, identify equivalent sequences and show that the resulting space is a limit.

.
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1.5. Vector spaces

1.5.1. Affine geometry.
DEFINITION 39. An affine vector space A over a field F is a principal homogenous space for

a vector space V over F . Note that for any a,b ∈ A there is a well-defined vector b−a ∈V .
An(F) will denote affine n-space over F .

Note that for {ai}n
i=1 ⊂ A and {ti}n

i=1 ⊂ F such that ∑
n
i=1 ti = 1, the element ∑i tiai defined by

identifying A with V by a choice of origin does not depend on the choice of origin. We call this
element an affine combination of the ai.

DEFINITION 40. If char(F) 6= 2 (which we assume henceforth) all this is equivalent to giving
an affine structure on A. That is a map A×A×F → A, denoted (a,b, t) 7→ [a,b]t , such that for
some (equivalently, every) z ∈ A the maps:

t ·z a def= [z,a]t
and

a+z b def= 2 ·z [a,b] 1
2

satisfy the axioms for a vector space over F (translation by z′− z gives an isomorphism of the
vector space structures associate to z,z′).

A map of affine spaces over F is an affine map if it preserves the affine structure.

Fix an affine space A.

LEMMA 41. Let Aff(A) denote the group of invertible affine maps from A to itself. Then
Aff(A)'V oGL(V ) where V , the underlying vector space, acts by translation and GL(V ) acts by
linear maps around a fixed origin. The isomoprhism is given by the choice of that origin.

DEFINITION 42. The affine hull aff(S) of a subset S ⊂ A is the intersection of all affine sub-
spaces containing S. Clearly, an affine map on aff(S) is uniquely defined by its values on S. A
finite set S is said to be in general position if aff(S) is isomorphic to affine (#S−1)-space.

1.5.2. Banach spaces. Let F be R or C, V be a vector space over F. A norm on V is a map
‖·‖ : V →R≥0 such that for v,w ∈V and α ∈ F , ‖αv‖= |α|‖v‖, ‖v‖= 0 iff v = 0, and ‖v+w‖ ≤
‖v‖+ ‖w‖. This defines a metric on any affine space over V by d(x,y) = ‖x− y‖. This metric is
always geodesic since the map t 7→ (1−t)v+tw is a constant-speed geodesic. It is also geodesically
complete.

1.5.3. Euclidean space. Let En denote affine Rn with the metric d(x,y) =
∥∥x− y

∥∥
2.

LEMMA 43. This metr

PROOF. It is clear that the map t 7→ [x,y]t for t ∈ [0,1] is a geodesic connecting x,y. The metric
is convex:

It is clear that any geodesic segment can be extended to an isometry R ↪→En via t 7→ [a,b]t . �

The main pleasant feature of Euclidean space is high degree of symmetry.

LEMMA 44. Let A⊂ En be an affine subspace. Then A is isometric to Ek for some k.

PROOF. We may choose the origin to lie on A. Then the claim amounts to choosing an or-
thonormal basis for A and extending it to En. �
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1.6. Manifolds

DEFINITION 45. A model Riemannian manifold is a connected open subset U ⊂ Rn together
with map g ∈C1(U,Mn(R)) such that for any x ∈U , g(x) is a positive-definite symmetric matrix.
The Riemannian length of a curve γ ∈C1([a,b],U) is

lR(γ) =
∫ b

a

√
〈g(γ(t)) · γ ′(t),γ ′(t)〉dt .

The Riemannian metric dR(x,x′) on (U,g) is given by the infimum of lR(γ) on all continuously
differentiable curves connecting x and x′.

A Riemannian manifold (Y,dY ) is a connected second countable geodesic metric space which
is locally isometric to a model Riemannian manifold.

EXAMPLE 46. The hyperbolic plane is the model Riemannian manifold over the open set H =
{x+ iy|y > 0} with the metric ds2 = dx2+dy2

y2 .

1.7. Groups and Cayley graphs

Let Γ be a discrete group, S⊂ Γ a finite symmetric (S = S−1) generating set. We define a graph
Cay(Γ;S) as folows: its vertex set is Γ, and the edge set is the set of pairs (x,xs) where x ∈ Γ

and s ∈ S. This graph is undirected and connected (a restatement of the fact that S is symmetric
generates Γ). The left regular action of Γ on itself preserves this graph structure.

We let dS denote the graph metric on Cay(Γ;S), thought of as a metric on Γ. This is a left-
invariant metric and we have dS(x,y) = dS(x−1y,1).

LEMMA 47. Let S′ be another such set. Then the identity map is a quasi-isometric equivalence
of dS and dS′ .

PROOF. It suffices to check one side of the inequality, and only for distances from 1. Assume
that any s′ ∈ S′ satisfies dS(s′,1) ≤ L. Writing any x ∈ Γ as a word in the element of S′ of length
dS′(x,1) and expanding each element in terms of S we indeed see that

dS(x,1)≤ L ·dS′(x,1) .

�

EXAMPLE 48. Any Cayley graph has rough midpoints. The geometric realization

PROPOSITION 49. (Milnor-Švarc) Let Y be a proper geodesic metric space, and let Γ act
discretely and co-compactly by isometries on Y . Then:

(1) Γ is finitely generated.
(2) For some (any) generating set S, (Γ,dS) is quasi-isometric to (Y,dY ).

PROOF. Fix a basepoint y0 ∈ Y . First of all, there exists a closed ball B(y0,R) which maps
surjectively on the quotient Ȳ . Otherwise for each n let ȳn not lie in the image of B(y0,Rn) in
Ȳ where Rn → ∞. Passing to a subsequence we may assume ȳn → ȳ∞ in Ȳ , and let y∞ ∈ Y be
any preimage. Then for N large enough, B(y0,RN) contains a neighbourhood of y∞ and hence
its image in Ȳ contains all ȳn for after some point, a contradiction. Fixing R, it follows that Y =
∪γ∈ΓB(γy0,R), that is that for any y′ ∈ Y there exists γ ∈ Γ such that dY (y′,γy0)≤ R.
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Next, let S = {γ ∈ Γ|d(y0,γy0)≤ 10R}. This is a finite set by definition and is symmetric since
d(y0,γ

−1y0) = d(γy0,γγ−1y0). The bound dY (γy0,y0) ≤ 10R · dS(γ,1) follows by induction on
dS(γ,1) using the isometry of the action.

The non-trivial part is the lower bound

dS(γ,1)≤ 1
5R

dY (γy0,y0)+1

which also demonstrates that S generates Γ. For this let c : [0,D]→ Y be the geodesic connecting
y0 and γy0. For 0 ≤ i ≤

⌊ D
5R

⌋
= I let yi = c(5iR) and let γi be such that d(γiy0,yi) ≤ R. Also set

γI+1 = γ . Then d(γiy0,γi+1y0)≤ 7R and hence γi+1 = γisi for some si ∈ S, which gives the desired
bound. It follows that for any γ,γ ′:

1
10R

dY (γy0,γ
′y0)≤ dS(γ,γ ′)≤ 1

5R
dY (γy0,y0)+1 ,

that is that γ 7→ γy0 is a quasi-isometric equivalence. �

1.8. Ultralimits

Fix F ⊂ P(N). Call the elements of F majorities.

DEFINITION 50. Let Y be a topological space, {an}∞

n=1 ⊂ Y . Say that an converges to A ∈ Y
along F (denoted A = limF an). If for every neighbourhood U of A, {n ∈ N | an ∈U} is a majority.

What do we need to assume about F for this to make sense?

DEFINITION 51. Call F ⊂ P(I) a filter on I if it is closed under intersection and the taking of
supersets and does not contain the empty set.

EXAMPLE 52. The co-finite filter is Fc = {I \F |F finite}. A principal filter (or a “dictator-
ship”) is one of the form {M ⊂ I|i ∈M} for some fixed i ∈ I.

PROPOSITION 53. Let F be a filter on an index set I. Let a : I→ Y be a sequence and assume
A = lim F ai.

(1) If Y is Hausdorff then A is unique.
(2) If Y ′ is another Hausdorff space and {bi}i∈I ⊂Y ′ converges to B then {(ai,bi)}i∈I ⊂Y×Y ′

converges to (A,B).
(3) If f : Y → Z is continuous then f (A) = limF f (ai).

PROOF. Let A′ ∈ Y be distinct from A and let U,U ′ ⊂ Y be disjoint neighbourhoods of A,A′

respectively. Then a−1(U),a−1(U ′) are disjoint subsets of I and cannot both belong to F .
Any neighbourhood of (A,B) contains one of the form U ×U ′. Then (a×b)−1 (U ×U ′) =

a−1(U)∩b−1(U ′).
Finally, for any neighbourhood U of f (A), f−1(U) is a neighbourhood of A and hence ( f ◦

a)−1(U) ∈ F . �

COROLLARY 54. (Arithmetic of limits) Let F be a filter, {ai}i∈I ,{bi}i∈I ⊂ R, and assume
A = limF ai, B = limF bi. Then:

(1) −ai converges to −A along F .
(2) ai +bi converges to A+B along F .
(3) If A 6= 0, 1

ai
converges to 1/A along F .
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(4) aibi converges to AB along F .

DEFINITION 55. An ultrafilter is a filter ω such that for any J ⊂ I either J ∈ ω or qJ ∈ ω .

EXAMPLE 56. Every principal filter is an ultrafilter.

LEMMA 57. Let ω be an ultrafilter and let A = ∪K
k=1Ak ⊂ I be a finite union. Then A ∈ ω iff

Ak ∈ ω for some k.
An ultrafilter is non-principal iff it contains the co-finite filter.

PROOF. If none of the Ak belong to ω then qA =∩kqAk ∈ω . If Ak ∈ω then A∈ω by definition
of filter. Every finite set is a finite union of singletons. �

PROPOSITION 58. A filter is an ultrafilter iff it is maximal w.r.t. inclusion. Every filter is
contained in an ultrafilter.

PROOF. For a filter F on I and a set J ∈ P(I) let

F [J] = {(A∩ J)∪B | A ∈ F , B ∈ P(I)} .

This set is closed under intersection and the taking of supersets. It is a filter iff qJ /∈ F , showing
the first claim. The second claim then follows by Zorn’s lemma. �

From now on fix a non-principal ultrafilter ω on N.

PROPOSITION 59. (Bolzano-Weierstraß theorem) Let (K,d) be a compact metric space, {an}∞

n=1⊂
K a sequence. Then limω an exists.

PROOF. For each ε > 0 we can cover K with finitely many balls of radius ε: K =∪m
j=1B(x j,ε).

Let A j =
{

n | an ∈ B(x j,ε)
}

. Then N = ∪m
j=1A j and by Lemma 57 we can find j such that A j ∈ ω .

In that case set Bε = B(x j,ε), Aε = a−1(Bε). Then the set {Bε}ε>0 has the finite intersection
property, since its inverse image {Aε}ε>0 ⊂ ω has it. Let {x} = ∩ε>0Bε . Then for any ε > 0,
a−1(B(x,ε))⊃ a−1(Bε/2) ∈ ω so limω an = x. �

COROLLARY 60. limω defines a bounded linear functional `∞→ C which is an algebra ho-
momorphism.

DEFINITION 61. For each n ∈ N assume we are given a pointed metric space (Xn,dn, pn). We
shall let X̃ denote the space of bounded sequences

X̃ =
{

x ∈∏
n

Xn
∣∣∃R∀n : dn(xn, pn)≤ R

}
.

For x,y ∈ X̃ , the sequence {dn(xn,yn)}∞

n=1 is bounded by the triangle inequality and we set:

d̃ω(x,y) = lim
ω

dn(xn,yn) .

LEMMA 62. The function d̃ω is a pseudometric.

PROOF. Symmetry, non-negativity and the triangle inequality hold pointwise, hence at the
limit. �
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DEFINITION 63. The ultralimit (or limit of (Xn,dn, pn) along ω), denoted

lim
ω

(Xn,dn, pn) ,

is the quotient
(
X̃ , d̃ω , p

)
where points at d̃ω -distance zero are identified. d̃ω descends to a metric

dω on this space.
The completion of this space will be called the completed ultralimit, and will be denoted

ˆlim
ω

(Xn,dn, pn) .

PROPOSITION 64. (ultralimits of functions) Let (Xn,dn, pn), (Yn,d′n, p′n) be two sequences of
metric spaces. Let fn : Xn → Yn be a sequence of (Ln,Dn)-quasi-isometries, where we assume
Ln ≤ L, Dn ≤ D. Assume that f (p) ∈ Ỹ , for the product function

f : ∏
n

Xn→∏
n

Yn .

Then the image f (X̃) lies in Ỹ and f is the pull-back of an (limω Ln, limω Dn)-QI limω f : limω Xn→
limω Yn. When limω Dn = 0, the function limω f is uniquely defined.

PROOF. For each n we have

d′n( fn(xn), p′n))≤ Lndn(xn, pn)+Dn +d′n( fn(pn), p′n) ,

where all terms on the RHS are uniformly bounded. Now for equivalence class [x] ∈ limω Xn
we choose a representative x ∈ X̃ and arbitrarily set limω f ([x]) = [ f (x)]. That limω f is a QI
as advertized is clear. It is also clear that d′ω( f (x), f (z)) ≤ Ldω(x,z)+ limω Dn. In particular, if
limω Dn = 0 then

[
f (x)

]
is independent of the choice of representative x ∈ [x]. �

Examples: The asymptotic cone and the tangent cone. Let (X ,d) be a metric space, and let
p ∈ X .

DEFINITION 65. Let Li→ ∞, and let ω be a non-principal ultrafilter on N.

(1) The trangent cone T ω
p X associated to this data is the ultralimit

lim
ω

(X ,Lid, p) .

(2) The asymptotic cone Cω
p X is the ultralimit

lim
ω

(
X ,

1
Li

d, p
)

.

EXAMPLE 66. Let G be a graph with the graph metric. Then every asymptotic cone of X is
geodesic.
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Problem set 2

Neccessity of Ultrafilters
1. Let L : `∞(N)→ C be positive (map sequence with non-negative elements to non-negative

reals), non-zero, and respect arithmetic of limits. Then L is of the form limω for some ultrafilter
ω .

Ultralimits and Gromov-Hausdorff limits
2. Let {(Xn,dn)}∞

n=1 be a family of metric spaces of uniformly bounded diameters. For a fixed
non-principal ultrafilter ω , show that the isometry class of the ultralimit limω (Xn,dn,xn) is
independent of the choice of basepoints xn.

3. Let {(Xn,dn, fn)}∞

n=1 ⊂ MK be a Cauchy sequence with respect to the Gromov-Hausdorff
metric dGH. Show that for any non-principal ultrafilter ω , the limit limω (Xn,dn) belongs to
MK and is a limit of the sequence. Conclude that (MK,dGH) is complete.

4. Let (Xn,dn,xn) be a sequence of pointed spaces, ω a non-principal ultrafilter.
(a) If every Xn is a length space then so is limω (Xn,dn,xn).
(b) If every Xn is a geodesic space then so is limω (Xn,dn,xn).
(c) Conclude that Gromov-Hausdorff limits also preserve these properties.

Tangent cones
Recall the definition of the tangent cone: T ω

p = limω (Y,n ·dY , p). For a model Riemannian
manifold you may use the following definition of the isometry class of the tangent cone in the
sense of differential geometry: If U ⊂ Rn with metric g then T DG

p U is isometric to Rn with the
L2-norm associated to g(p).

5. (locality) Let U be an neighbourhood of p. Prove that the inclusion map U ↪→ Y gives rise to
an isometry T ω

p U ' T ω
p Y .

6. Let G be a locally finite graph, Y = |G| its geometric realization. Calculate TpY for any p ∈Y .

7. Let (Y,dY ) be a Riemannian manifold, and let p ∈ Y . Prove that the tangent cone T ω
p Y is nat-

urally isometric to T DG
p Y , the tangent space in the sense of differential geometry.

Hint: Local geodesics at p give a map T DG
p Y → T ω

p Y . For the reverse map use the compact-
ness of the sphere Sn−1 ⊂ Rn.

Asymptotic cones
8. Let G be a graph, and let Y be its vertex set with the graph metric. Show that every asymptotic

cone of Y is geodesic.
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Part 2

Groups of polynomial growth



1.9. Group Theory

1.9.1. Free groups.

PROPOSITION 67. Let G be a connected graph. Then:

(1) The geometric realization |G| is homotopic to a join (“bouquet”) of circles.
(2) If G is finite then the number of circles is #E(G)−#V (G)+1.
(3) Every covering space of |G| is of the form |H| where H is a graph.
(4) If the covering is n-sheetd then #E(H) = n ·#E(G), #V (H) = n ·#V (G).

COROLLARY 68. Let G be a connected graph.

(1) π1(G) is free.
(2) If G is finite then π1(G)' Fr wheer r = |E(G)|− |V (G)|+1.
(3) Let Γ < FX . Then Γ is free.
(4) If X is finite and [FX : Γ] = n then rk(Γ) = n(#X−1)+1.

COROLLARY 69. cLet Γ be f.g., Γ1 < Γ a subgroup of finite index. Then Γ1 is finitely generated.

PROPOSITION 70. Let Γ be f.g. Then {Γ1 < Γ | [Γ : Γ1] = n}< ∞.

PROOF. Say S =
{

s±i
}k

i=1 < Γ is a generating set. Let X ⊂ Sk
[n] be the set of ordered sequences

which generate a transitive subgroup. Let X1 < X be the set of sequences {σi}k
i=1 ∈ X such that

the map si 7→ σi extends to group hom. Then the set under consideration injects into X1. �

COROLLARY 71. Let Γ be f.g., Γ1 a subgroup of f.i. Then there exists a characteristic subgroup
of finite index contained in Γ1 (the intersection of all subgroups of the same index).

1.9.2. Finitely generated abelian groups.

LEMMA 72. Every subgroup of Zd is finitely generated.

PROOF. The first claim is easy. For the second, fix A < Zd . Then AQ = A⊗Z Q ⊂ Qd is
a subspace. Choose a basis B for this subspace, and extend it to a basis B′ of Qd . Clearing
denominators, we may assume B′ ⊂ Zd and B ⊂ A. Since B′ spans Zd over Q, there exists N ∈ N
such that Zd ⊂ ⊕b∈B′

1
N Zb. Let A1 = 〈B〉 = ⊕b∈BZb. Then both A1 and A/A1 ↪→ Zd/( 1

N Z)d '
(Z/NZ)d are finitely generated. �

COROLLARY 73. Let A be a finitely generated Abelian group.

(1) Every subgroup of A is finitely generated.
(2) Let Ators ⊂ A be the subgroup of elements of finite order. Then Ators is finite (generated

by finitely many elements of finite order), and is the direct product of its Sylow subgroups.

FACT 74. (Structure theorem for finitely generated Abelian groups) Let A be a finitely gener-
ated Abelian group. Then there exist a finite sequence of prime powers

{
qi = pei

i
}r

i=1 such that

A' Zd
⊕
⊕r

i=1Z/qiZ .

In particular, A is infinite iff d ≥ 1.



1.9.3. Solvable groups. Let Γ be a group. For x,y ∈ Γ set [x,y] = xyx−1y−1. For A,B⊂ Γ let
[A,B] denote the subgroup generated by {[a,b]}a∈A,b∈B.

DEFINITION 75. The derived subgroup Γ(1) = Γ′ is [Γ,Γ].

LEMMA 76. Γ′ is the smallest normal subgroup with an Abelian quotient. In particular it is
characteristic.

DEFINITION 77. The derived series is the series of subgroups given by Γ(0) = Γ and Γ(i+1) =[
Γ(i),Γ(i)

]
. Say Γ is solvable if Γ(i) = {1} for some i. In that case call the smallest such i the

degree of solvability.

LEMMA 78. Γ is solvable iff there exists a chain of subgroups Γ = Γ0 ⊃ Γ1 ⊃ ·· · ⊃ Γn = {1}
such that for 0≤ i≤ n−1, Γi+1CΓi and Γi/Γi+1 is Abelian.

PROOF. Since the derived series is such a chain, necessity is clear. For sufficiency, given such
a chain it follows by induction that Γn ⊃ Γ(n). �

LEMMA 79. Let Γ be solvable. Then so are every subgroup and quotient of Γ. Conversely, if
NCΓ and both N and Γ/N are solvable then so is Γ.

EXAMPLE 80. Let Bn ⊂ GLn be the subgroup of upper-triangular matrices, R a commutative
ring. Then Bn(R) is solvable.

PROOF. Let Nn ⊂ Bn the the subgroup of unipotent matrices. Then Bn(R)/Nn(R) ' (R×)n is
Abelian. We will see below that Nn is solvable. �

1.9.4. Nilpotent groups.

DEFINITION 81. The lower central series is the series of subgroups given by Γ0 = Γ and
Γi+1 = [Γ,Γi]. Say Γ is nilpotent if Γi = {1} for some i. In that case call the smallest such i the
degree of nilpotence.

LEMMA 82. The Γi are clearly characteristic.

EXAMPLE 83. Nn ⊂ GLn is nilpotent.

PROPOSITION 84. Let Γ be nilpotent and finitely generated. The the Γi are all finitely gener-
ated.

PROOF. By induction the degree of nilpotence n, the case n = 1 being clear. Let Γ be a group
of degree n + 1. Then Γn is central. For 1 ≤ i ≤ n− 1 fix Si ⊂ Γi such that their images generate
Γi/Γn = (Γ/Γn)i. If Sn ⊂ Γn is a generating set of Γn, then Si ∪ Sn generate Γi. It thus remains
to show that Γn is finitely generated. We first note that, if a ≡ a′( mod ZΓ), b ≡ b′( mod ZΓ)
then [a,b] = [a′,b′]. It follows that Γn is generated by the commutators [γ,γn−1] where γ ∈ 〈S0〉,
γn−1 ∈ 〈Sn−1〉.

We now use the identities:

[ab,c] = abcb−1a−1c−1 = a[b,c]a−1[a,c],

[a1a2,b1b2] = [a2,b1]
a1 [a2,b2]

a1b1 [a1,b1] [a1,b2]
b1 ,
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which holds in every group (xg def= gxg−1). Returning to our nilpotent group of degree n + 1, if
aα ∈ Γ and bβ ∈ Γn−1 (α,β ∈ {1,2}), we have [aα ,bβ ] ∈ Γn which is central. In that case,

[a1a2,b1b2] =
2

∏
α,β=1

[
aα ,bβ

]
.

Applying this inductively, we see that every element of Γn = [Γ,Γn−1] is a product elements of the
finite set

Sn = {[γ0,γn−1] | γ0 ∈ S0, γn−1 ∈ Sn−1} .

�

COROLLARY 85. Every subgroup of a finitely generated nilpotent group is finitely generated.

PROOF. Again by induction. For n = 0 there’s nothing to prove. Say Γ has degree n+1 and let
∆ < Γ. Then ∆∩Γn is a subgroup of a finitely generated abelian group, hence finitely generated.
Also, ∆/∆∩Γn injects into the group Γ/Γn which is nilpotent of degree n. �

PROPOSITION 86. Let Γ be a f.g. nilpotent group. Then it has polynomial growth.

PROOF. By induction on the degree of nilpotence, the case n = 1 being clear. Say Γ has degree
n + 1, let Si =

{
si j
}
⊂ Γi generate Γi/Γi+1 and let S[k] = ∪n

i=kSi, which generates Γk (also write
S = S[0]). For any s ∈ S and si j ∈ Si, we have [s,si] ∈ Γi+1 by definition. Fix C such that for any
s, i, j this has length at most C in S[i+1]. We shall show that element in BS

Γ
(r) can also be written as

a a word ab, where a = ∏k sek
0kwith ∑k ek ≤ r and a b ∈ Γ(1) has of length O(rk) in S[1].

Let w = ∏α siα jα ∈ BS(r). We now produce a sequence of identities w = atbt where at =

∏k≤K sek(t)
0k , and bt is a word in S[1]∪{s0k}k≥K . Initially set a0 = 1, b0 = w and K = 0. For each t,

if bt /∈ S∗[1], let k′ ≥ K be minimal such that bt contains the letter s0k′Then

bt = xsy

where x = ∏l xl is a word in S[1]∪{s0k}k>k′ , s = sε

0k′ (ε ∈ {±1}), and y a word in S[1]∪{s0k}k≥k′ .
We then set at+1 = ats and bt+1 be the word

bt+1 =

(
∏

l

˜[s−1,xl] · xl

)
y

where the tilde indicates replacing the commutator its shortest representing word in the alphabet
S[i+1] if xl ∈ Si. Note that we chose C so that each such “replacement word” has at most C letters.

To see that the process must terminate after at most r steps, set Ek(0) = 0 for all k, and set Ek(t +

1) =

{
Ek(t)+1 bt = xsy; s = s0k

Ek(t) otherwise
.It is then clear that ∑k Ek(t) is increasing in t and bounded

above by the number of letters of S0 appearing in w, which is at most r. Also, |ek(t)| ≤ Ek(t) for
all t. Say that process terminates after T ≤ r steps. We thus have w = aT bT where aT = ∏k sek(T )

0k ,
bT ∈ S∗[1]. To estimate the word length of bT we consider the directed forest whose vertices are
given by letters of all the words bt and a letter xl in bt is connected to the letters in bt+1 which
replaced [s−1,xl]. A vertex of the forest is a root iff it can be thought of as one of the “original”
letters of b0, and hence there are at most rT ≤ r2 roots. The degree of every vertex is at most C by
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definition, and each path has length at most n. It follows that there are at most Cnr2 leaves in the
tree, and hence that |bT | ≤Cn+1r2.

This construction gives an injective map

BS(r)→ BZ#S0 (r)×BCay(Γ(1);S[1])
(Cn+1r2) .

Now Z#S0 and Γ(1) have polynomial growth (the second by induction) so we are done. �
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Problem Set 3

Measures for non-analysts

NOTATION. For a locally compact Hasudorff space X , we write Cc(X) ⊂ C0(X) ⊂ Cb(X) ⊂
C(X) for the spaces of compactly supported continuous functions on X , the space of continuous
functions decaying at infinity, the space of bounded continuous functions, and the space of all con-
tinuous functions. When X is compact these spaces are all equal to the space C(X) of continuous
functions. Cb(X) is a Banach space w.r.t. the supremum norm in which C0(X) is a closed subspace,
in fact the close of Cc(X). If U is a relatively compact open subset of X there is a natural norm-
preserving embedding C0(U) ↪→ Cc(X) given by extending each f ∈ C0(U) to be zero on X \C
(check this!).

DEFINITION. Let X be a locally compact space. A finite measure on X will mean a bounded
linear functional on C0(X), that is a linear functional µ : C0(X) → C with a constant M such
that for all f ∈ C0(X), |µ( f )| ≤ M ‖ f‖

∞
. A Radon measure on X will mean a linear functional

µ : Cc(X)→ C such that, for each relatively compact open subset U ⊂ X , the restriction of µ to
C0(U) is a finite measure (why can’t we use the restrictions to compact sets instead?). We give
each space of measures the weak-* topology: we say that µ = limn→∞ µn if, for each f ∈Cc(X),
µ( f ) = limn→∞ µn( f ).

For a measure µ and a function f we sometimes write
∫

f dµ for µ( f ). Given a Radon measure
µ on X and 1≤ p < ∞, we let Lp(µ) denote the closure of Cc(X) in the norm (

∫
| f |p dµ)1/p.

1. (a special case of the Banach-Alaoglu Theorem) Let X be a locally compact space. Show that
the spacesM(X) of probability measures on X is compact in the weak-* topology.
Hint: Embed the space of measures in a product of compact balls.

Haar measure
Let G be a first countable locally compact group. In other words, G is a locally compact space

endowed with a continuous map G×G→ G (g,h) 7→ g−1h satisfying the group axioms, and there
is a nested sequence of open sets U1 ⊃U2 · · · ⊃Un ⊃ ·· · such that any open neighbourhood of the
identity contains one of the Un.

2. Let f , f ′ ∈Cc(X) be non-negative, and let U ⊂ G be open. Set

( f : U) = inf

{
n

∑
i=1

αi | αi ≥ 0, f ≤
n

∑
i=1

αi ·1giU

}
.

Show that 0 ≤ ( f : U) < ∞. Assuming f ′ 6= 0 show that ( f : U) ≤ ( f ′ : U)( f : f ′) for an
appropriately defined ( f : f ′) which is independent of U .

3. Fix f0 ∈ Cc(X) which is non-negative and non-zero. For a non-principal ultrafilter ω on the

integers, show that µ( f ) def= limω
( f : Un)
( f0 : Un)

is a G-invariant positive Radon measure on G. Such
µ is called a (left) Haar measure on G.
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4. Let N be the set of open neighbourhood of the identity in G. For any U ∈ N set FU =
{V ∈N |V ⊂U}. Show that F = {S⊂N | ∃U : S⊃ FU} is a filter. Show how to use an
ultrafilter extending this filter to remove the countability assumption.

5. Show that µ extends to a finite measure on G iff G is compact.

FACT. If µ ′ is any other left Haar measure on G then µ ′ = cµ for some c ∈ R>0.

Amenability

DEFINITION. Let G be a topological group, X a topological space. A continuous action of G
on X is a continuous map G×X → X satisfying the usual axioms for a group action.

From now on all group actions will be assumed continuous.

5. Let X be a compact G-space. Show that (g · f )(x) = f (g−1x) defines a continuous linear action
of G on C(X). Conclude that G acts on the space of measures on X .

6. Let G be a locally compact group. Show that the following are equivalent:
(1) G has a left-invariant mean, that is a positive linear map m : Cb(G)→C such that m(1G) =

1 and m(g · f ) = m( f ) for all g ∈ G and f ∈Cb(G).
(2) Whenever G acts on a compact space, G fixes a probability measure on X .

Hint: As in ex. 1 above, the space of bounded positive functionals on Cb(G) is compact.

DEFINITION. Call G amenable if it satisfies these equivalent properties.

7. Show that every compact group is amenable.

8. Let NCG be a closed normal subgroup.
(a) Assume that G is amenable and show that G/N is amenable.
(b) Assume that both N and G/N are amenable and show that G is amenable.

Hint: consider the space of N-invariant measures.

REMARK. We will later show that any closed subgroup of an amenable group is amenable.

9. Let G be discrete, and assume every finitely-generated subgroup of G is amenable. Show that
G is amenable as well.

10. Show that every discrete abelian group is amenable.
Hint: start with Z.

11. Show that every discrete nilpotent group is amenable.
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1.10. Volume growth in groups

Program (Gromov): classification of groups up to quasi-isometry.
We fix a group Γ and a finite symetric genrating set S. Let X = Cay(Γ;S), thought of as a

metric space with the graph metric (the word metric w.r.t. S). This is a transitive metric space.

DEFINITION 87. The (volume) growth of Γ is the function1 N(r) = #BX(1,r). Note that N(r)≤
|S|r and that this depends on the choice of the generating set S.

(1) Say Γ has polynomial growth if N(r)� rd for some d > 0.
(2) Say Γ has exponential growth if N(r)� cr for some c > 1.
(3) Otherwise, say Γ has intermediate growth.

When Γ has polynomial growth, we set d(Γ) = limsup logNΓ(r)
logr be the growth exponent of the

group – this is the infimum of d such that NΓ(r)≤Crd for some C. The results of this Part imply
that if d(Γ) < ∞ it is an integer.

LEMMA 88. Properties (1),(2) are QI-invariant. In fact, the number d(Γ) is a QI-invariant.
In particular they are independent of the choice of S and agree for commensurable groups.

Free groups, as well as non-elementary hyperbolic groups (see the next chapter) have expo-
nential growth. It is a non-trivial fact that there exist groups of intermediate growth. The first
examples, realized as subgroups of the automorphism group of the rooted infinite binary tree, is
due to Grigorchuk [].

1.11. Groups of polynomial growth: Algebra

Let Γ be a f.g. group of polynomial growth. Let X = Cay(Γ;S).

LEMMA 89. Let ϕ : Γ→ Z be surjective. Then kerϕ is finitely generated.

PROOF. Let ∆ = kerϕ and choose a generating set S for Γ of the form s±0 , . . . ,s±k with ϕ(s0) =
1, ϕ(si) = 0 for 1≤ i≤ k. Let

Sm =
{

st
0sis−t

0 | |t| ≤ m, 1≤ i≤ k
}

and set
∆m = 〈Sm〉 ⊂ ∆ .

Assume this sequence does not stabilize. Then for every m we can find αm = stm
0 sims−tm

0 ∈ Sm \
∆m−1. Let

Bm =

{
m

∏
i=1

α
εi
i | ε ∈ {0,1}m

}
.

Then |Bm|= 2m but Bm ⊂ BΓ(m(2m+1)), a contradiction. �

LEMMA 90. Let Γ1 < Γ be finitely generated and of infinite index. Then d(Γ′)≤ d(Γ)+1.

1It’s somewhat better to indentify putative growth functions f1, f2 if c f1(ar) ≤ f2(r) ≤ C f1(br) for some
a,b,c,C > 0 and all r > 0. Among polynomial functions the equivalence classes for this relation are given by the
degree of the polynomial.
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PROOF. Let ē = x0 ∼ x1 ∼ ·· · ∼ x j ∼ ·· ·xr be a path of length r in the connected infinite
graph Γ1\X , and assume the edges are labelled by s j. It then follows that the subsets B0 = BΓ1(r),
B1 = BΓ1(r)s1, Br = BΓ1(r)s1s2 · · ·sr of Γ are all disjoint, where thw balls BΓ1(r) are given in terms
of a fixed a set of generators S1⊂Γ1. It follows that NΓ((R+1)r)≥ rNΓ1(r) where S1⊂BΓ(R). �

LEMMA 91. Let Λ be a free abelian group, α ∈Aut(Λ), thought of as an element of GL(Λ⊗C).
(1) There exists a non-trivial α-stable sublattice Λ′ < Λ such that α � Λ′⊗C is diagonable.
(2) If α is diagonable and all its eigenvalues lie in S1, then α has finite order.
(3) If α has an eigenvalue of absolute value > 1, then we can find x ∈ Λ and e ∈ N such that

the elements {
m

∑
i=0

εiα
ei(x)

∣∣ε ∈ {0,1}m×{1}
}

are all distinct.

PROOF. Let λ j be the spectrum of α . For every 0 ≤ k ≤ rk(Λ) let Pk(α) = ∏ j(α − λ j)k ∈
Z[α] ⊂ End(Λ⊗Q) and let Vk = kerPk(α), Λk = Λ∩Vk. For the maximal k such that Vk 6= {0},
Vk∩Λ works.

If all the eigenvalues are of absolute value 1 then orbits of α on Λ⊗C are all bounded.
Otherwise, choose e such that αe has an eigenvalue λ of absolute value at least 2, let β ∈

Hom(Λ⊗C,C) be non-zero such that β ◦αe = λβ , and let x ∈ Λ be such that β (x) 6= 0. Then

β

(
m

∑
i=0

εiα
ei(x)

)
=

(
m+1

∑
i=0

εiλ
i

)
β (x) .

�

LEMMA 92. (Inductive step) Let ϕ : Γ→ Z be surjective, and assume kerϕ is virtually nilpo-
tent. Then Γ is virtually nilpotent.

PROOF. Let ∆ < kerϕ be a maximal normal nilpotent subgroup, and let z ∈ ϕ−1(1). Then
〈∆,z〉 is of finite index in Γ. Then z normalizes ∆; in particular it normalizes its characteristic
subgroups ∆(i). We can refine this into a z-normalized central series ∆ = ∆0 . ∆1 . · · · . ∆r = {1}
such that every ∆i−1/∆i is either finite or a finitely generated free abelian group on which zi acts
via a semi-simple automorhpism αi. If αi is not of finite order then ∆/∆i does not have polynomial
growth, since the previous Lemma constructs 2m elements in a ball of radius O(m). It follows that
some power zT centralizes each quotient. Then

〈
∆,zT〉 is nilpotent and of finite index in Γ. �

COROLLARY 93. Let Γ be a virtually solvable group. Then either Γ is virtually nilpotent or it
has exponential growth.

THEOREM 94. (Gromov) Let Γ be a group of polynomial growth. Then Γ has a finite index
subgroup that surjects onto Z.

For the proof see Section 1.14.

THEOREM 95. (Gromov) Every group of polynomial growth is virtually nilpotent.

PROOF. By induction on bd(Γ)c, noting that d(Γ) < 1 implies that Γ is finite.
Let Γ be a group of polynomial growth, ϕ : Γ1→ Z be surjective with Γ1 of finite index in Γ.

Let ∆ = kerϕ . By Lemma 89, ∆ is finitely generated. Lemma 90 then shows that d(∆)≤ d(Γ)−1.
By the inductive hypothesis, ∆ is virtually nilpotent. By Lemma 92, so is Γ. �
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1.12. Solvability of amenable linear groups in characteristic zero (following Shalom [11])

LEMMA 96. Let F be a local field, Γ ⊂ GLn(F) be amenable and have semi-simple Zariski
closure. Then its topological closure is compact.

PROOF. We may assume Γ < GLn(C). Let G be its Zariski closure; R = Rad(G) (a solvable
group), H = G/R a semisimple group with finite center. Since Γ∩R is solvable, it suffices to show
that the image ΓR/R⊂ H is finite. Dividing out by the center of H, we may thus assume wlg that
Γ is a Zariski-dense amenable subgroup of the center-free semisimple group H ⊂ GLm(C). Then
for every automorphism ϕ ∈ Gal(C/Q), ϕ(Γ) is an amenable subgroup with semisimple Zariski-
dense closure ϕ(H). Since for every ϕ , the eigenvalues of all elements of ϕ(Γ) are of modulus 1,
it follows that these eigenvalues are all algebraic (in fact, roots of unity).

Now [Zi, 6.1.7] shows that there exists an embedding ρ : H → GLr(C) such that ρ(Γ) ⊂
GLr(K) for a number field K. Let H ⊂ GLr be the K-subgroup which is the Zariski closure of
ρ(Γ). For each place v ∈ |K|, ρ(Γ)⊂ GLr(Kv) is amenable and its Zariski closure is the semisim-
ple group H(Kv). Let Lv be its topological closure, a compact subgroup by the Lemma.

We have thus established that the image of ρ(Γ) in GLr(AK) is contained both in the discrete
subgroup GLr(K) and in the compact subgroup ∏v Lv. It follows that ρ(Γ) is finite. �

1.13. Facts about Lie groups

Let G be a Lie group with finitely many components, Γ < G a finitely generated group.

THEOREM 97. (Jordan) There exists q = q(G) < ∞ such that if Γ is finite then Γ has an abelian
subgroup of index at most q.

THEOREM 98. (Tits alternative) Either Γ contains a free subgroup or it is virtually solvable.

COROLLARY 99. Assume Γ is infinite. Then either Γ has exponential growth, or it has a finite
index subgroup that surjects onto Z.

PROOF. It’s enough to consider the case of virtually solvable Γ, where shall repeatedly use
Corollary 69. First, we may assume w.l.g. that Γ is solvable. Next, as long as Γab is finite and
non-trivial we may replace Γ with Γ′, which is also finitely generated. After finitely many steps we
must have Γab infinite; otherwise Γ would have a composition series consisting of finite groups
and hence be finite. Now Γab is an infinite, finitely generated abelian group. By the classificatio
theorem of such groups (Fact 74), Γab (hence Γ) surjects onto Z. �

1.14. Metric geometry – proof of theorem 94

Fix a group Γ of polynomial growth, S a finite generating set. Let l(r) = logN(r).

DEFINITION 100. Say r is n-regular if for 0≤ j ≤ n, l(2− jr)≥ l(2r)− ( j +1)(d +1) log2.

LEMMA 101. (existence of good scales) For each n we can find arbitrarily large n-regular
scales r.

PROOF. Consider the radii rk = 2k and assume that, from some point onward, they are all not n-
regular. Then for each k large enough we can find 1≤ j≤ n+1 such that N(rk)≥ 2 j(d+1)N(rk− j).
It follows by induction that N(rk)� 2(d+1)k = rd+1

k . �
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From now on we fix an increasing sequence {rn}∞

n=1 such that rn is n-regular, a non-principal
ultrafilter ω on N. We then set:

(Y,dω ,e) = lim
ω

(
X ,

1
rn

dS,e
)

.

PROPOSITION 102. Y has the following properties:

(1) It is transitive.
(2) It is a geodesic
(3) Every ball of radius 1 is compact.
(4) Y is of finite Hausdorff dimension.

PROOF. Let x ∈ Ỹ , and let γn ∈ Γ satisfy γn1 = xn. By Proposition 64 limω γn is an isometry of
Y mapping e to x.

Since X is quasi-isometric with multiplicative distortion 1 to a locally geodesic space, Y is
geodesic.

By transitivity it suffices to check the compactness of BY (1); that would follow if, for each
j ≥ 1, we show that BY (1) may be covered by a finite number of balls of radius 2− j+2. For this let
n≥ j and let Tn ⊂ B(rn) be a maximal subset such that any two points are at distance greater than
2− j+1rn. Then the balls

{
BX(x,2− jrn)

}
x∈Tn

are all disjoint and contained in BX(e,(1 + 2− j)rn).
We thus have:

|Tn|N(2− jrn)≤ N
(
(1+2− j)rn

)
≤ N(2rn) .

By regularity we have

N(2− jrn)≥ 2−( j+1)(d+1)N(2rn) ,

and hence
|Tn| ≤ 2( j+1)(d+1) .

Set I = 2( j+1)(d+1). Repeating points, if necessary, we may assume that Tn =
{

t i
n
}I

i=1 and set

T̃ =
{

t i}T
i=1. Let x ∈ BY (1). By definition this implies that, for a majority of n ∈ N, dS(xn,e) ≤

(1 + 2− j+1)rn. For such n, let x′n ∈ BX(rn) lie on the shortest path connecting e and xn and be as
close as possible to xn. Then dS(xn,x′n)≤ 2− j+1rn. For some i = i(n) we have dS(x′n, t

i
n)≤ 2− j+1rn

(otherwise we could add x′n to Tn), and hence r−1
n dS(xn, t i

n)≤ 2− j+2. Now for some 1≤ i0 ≤ I,{
n ∈ N | dS(xn,e)≤ (1+2− j+1)rn andi(n) = i0

}
∈ ω .

It follows that dω(x, t i0)≤ 2− j+2. In other words, BY (1) is covered by the balls
{

BY (t i,2− j+2)
}I

i=1.
Finally, since we can cover BY (1) by at most 2( j+1)(d+1) balls of radius 2− j+2, it has covering

dimension at most d +1; this also bounds the Hausdorff dimension. �

COROLLARY 103. Y is a proper geodesic metric space of finite Hausdorff dimension.

PROOF. By the transitivity, every ball of radius in Y is compact, and we may apply the Hopf-
Rinow Theorem (Thm. 35). �

THEOREM 104. (Montomery-Zippin, Gleason) Let G = Isom(Y ) with Y as in the Corollary.
Then G is a Lie group with finitely many connected components.
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Proof that Γ virtually surjects on Z.

PROOF. Let Y be the asymptotic cone of X = Cay(Γ;S) constructed above, G = Isom(Y ). The
diagonal action of Γ on ΓN gives a group homomorphism Γ→ G.
Case I Assume first that the image is infinite. It is then a finitely generated subgroup of

polynomial growth in G and by Corollary 99 the image has a finite index subgroup
which surjects onto Z.

Otherwise, the image is finite. Let ∆1 be the kernel of the of the homomorphism, a subgroup of
finite index in Γ. Let ∆2 be the intersection of all subgroups of index at most q of ∆1 (q given
by Jordan’s Theorem 97). Let S1 ⊂ ∆1 be a generating set. For s ∈ S1 and r ∈ R let δr(s) =
max{dS(x,sx) | x ∈ BX(1,r)}, δr(S1) = maxs∈S1 δr(s).
Case IIa Assume that supr>0 δr(S1) < ∞. Since dS(x,sx) = dS(1,x−1sx) it follows in this case

that the conjugacy class of of each s∈ S1 is finite, and hence that the ZΓ(s) are of finite
index in Γ. Their joint intersection with ∆1, the center of ∆1, is then of finite index in
∆1.

Case IIb δr(S1) is unbounded. We consider the action of ∆1 on various asymptotic cones of X
to show that ∆2 has arbitarily large abelian quotients. It will follow that ∆ab

2 is infinite;
since it’s finitely generated it will surject on Z.

Since ∆1 acts trivially, limω r−1
n δrn(S1) = 0. Given ε > 0, there exists a majority A ∈ ω such that

δrn(S1) < εrn for n ∈ A. Now note that δr+m(S1)≤ δr(S1)+2m, while for γ ∈ Γ,

δr(γ−1S1γ)≤ δr+|γ|S(S1)≤ δr(S1)+2 |γ|S .

By symmetry, ∣∣δr(S1)−δr(γ−1S1γ)
∣∣≤ 2 |γ|S .

Since δr(S1) is unbounded as r→∞, so is δr(γ−1S1γ) with r fixed and γ ∈ Γ varying. For each
n ∈ A we can thus find γ such that δrn(γ

−1S1γ) > εrn. Since δrn(γ
−1S1γ) can jump by at most 2 as

we vary γ by one generator, there exists γn ∈ Γ such that∣∣δrn(γ
−1
n S1γn)− εrn

∣∣≤ 2 .

Consider now Yε = limω

(
X , 1

rn
dS,γn · e

)
. For s∈ S1 and xn ∈BX(γne,rn), n∈A we have dS(sxn,xn)≤

εrn +2. By the triangle inequality, every γ ∈ ∆1, though of as an element of Isom(X), satisfies (for
n ∈ A)

1
rn

dS (γ · γne,γne)≤ |γ|S1

(
ε +

2
rn

)
.

Taking the limit we see that ∆1 acts by isometries on Yε . Since X is transitive, Yε is isometric to Y
and we have a homomorphism ρε : ∆1→ G. If ρ(∆1) is infinite we are back in case I so we may
assume the image is finite.

We first check that it is non-trivial. For n ∈ A, δrn(γ
−1S1γn) ≥ εrn− 2. There thus exists

s1 ∈ S1 and a majority A1 ∈ ω contained in A such that for n ∈ A1 there exists xn ∈ BX(γne,rn)
with dS(s1xn,xn) ≥ εrn−2. Taking the limit we see that dω (ρε(s0)x,x) ≥ ε and in particular that
ρε(s0) 6= 1. On the other hand, the same limiting argument shows that ρε(s0) is (ε−BY (1))-
close to the identity of G. Using the exponential map it is clear that ρ(s0) must have order at
least Ω(1/ε). We conclude that if ∆1 only has finite images in Isom(Y ) then these images have
unbounded order.
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Jordan’s theorem implies that in each case ρε(∆2) is abelian. This image has order at least
#ρ(∆1)
[∆1 : ∆2]

= Ω(1/ε) .

�
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Problem Set 4

1. Let Γ be quasi-isometric to Z (such groups are said to be elementary). Show that Γ is virtually
isomorphic to Z.

Growth Exponents
2. Let {an}∞

n=1 ⊂ R≥0 be sub-additive, that is an+m ≤ an + am. Show that limn→∞
an
n exists. Let

Γ be a group generated by the symmetric set S of size 2k, X = Cay(Γ;S).

DEFINITION 105. B(r) will denote the the ball of radius r in X . When r is even we also set
W (r) =

{
w ∈ Sl | w = 1 in Γ

}
, W ′(r) the subset of reduced words (so that W ′(r) is empty iff Γ is

freely generated by S). Note that there need not be any relations of odd length in Γ. We associate
to Γ three exponents (depending on the choice of S, of course):

(1) The growth exponent is the number g(Γ;S) = limr→∞
1
r log2k−1 #B(r).

(2) The gross cogrowth exponent is the number θ(Γ;S) = limeven r→∞
1
r log2k #W (r).

(3) The cogrowth exponent is the number η(Γ;S) = limeven r→∞
1
r log2k−1 #W ′(r), with the

proviso that η = 1
2 for the free group.

3. Show that the limits above exist.

4. In fact, show that for any (resp. even) r, #B(r) ≥ (2k− 1)gr, #W (r) ≥ (2k)θr and #W ′(r) ≥
(2k−1)ηr+2.

5. Show that Γ is freely generated by S iff g(Γ;S) = 1.

6. Let g(Γ;S) = 0. Show that Γ is amenable.
Hint: an invariant mean can be found as a limit of averaging on balls.

Random Walks
Let G = (V,E) be a connected locally finite graph (that is, E is a symmetric Z≥0-valued func-

tion on V ×V which takes even values on the diagonal). For a vertex u ∈ X let dG(u) denote the
degree of u (that is the number of edges leaving u). Let C(V ) denote the space of (C-valued)
functions on V , and let and let M : C(V )→C(V ) be the operator

(M f )(x) =
1

dG(u) ∑
(u,v)∈E

f (v) .

Let νG be the measure on V assigning to u the weight dG(u).
7. Show that ‖M‖L∞(νG) = ‖M‖L1(νG) = 1. Conclude that ‖M‖L2(νG) ≤ 1. Show that M is self-

adjoint on L2(νG).

8. Show that (Mt f )(x) = ∑y pt(x,y) f (y) where pt(x,y) is the standard random walk on X .

Clearly p2t(x,x) = #W (2t)
(2k)2t is the return probability of the random walk. Also, #W ′(2t)

2k(2k−1)2t−1 is the
return probability of the non-backtracking random walk on X .
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9. Let λ (Γ;S) denote the spectral radius of M. Show that λ (Γ;S) = (2m)θ−1.

10. Grigorchuk formula: (2m)θ = (2m− 1)η + (2m− 1)1−η – hence we set η = 1
2 for the free

group.
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Part 3

Hyperbolic groups



1.15. The hyperbolic plane

Let H2 be the model Riemannian manifold with underlying set R×R>0 (we shall denote the
points by z = x+ iy with y > 0) and metric ds2 = dx2+dy2

y2 . This metric is conformal to the Euclidean
metric and hence has the same angles.

The group SL2(R) acts on H2 by fractional linear transformations:(
a b
c d

)
· z def=

az+b
cz+d

.

Indeed, for z = x+ iy ∈H2, a,b,c,d ∈ R we have cz+d 6= 0 unless both c,d = 0, and

ℑ

(
az+b
cz+d

)
=

ℑ(z)
|cz+d|2

> 0 .

It is also easy to check that this is an action and that it preserves the metric. This action is transitive
(use NAK decomposition) and the stabilizer of the identity is K = SO2(R) (including the central
element −1 which acts trivially).

In fact, PSL2(R) acts transitively on pairs at a fixed distance. Also, given three distances
d1,d2,d3 satisfying the triangle inequality fix two points x2,x3 at distance d1 from each other.
Then there exists either one or two points x1 such that d(x1,x2) = d2, d(x1,x3) = d3.

Since the action of PSL2(C) on the Riemann sphere Ĉ preserves the class of lines and circles,
the same holds for the action of PSL2(R). Since the geodesic connecting iy1, iy2 is the imaginary
axis it follows that geodesic rays meet the boundary P1(R) = R∪ {∞} at right angles and are
vertical lines or semicircular arcs with diameter on R.

LEMMA 106. Every triangle in H2 has area at most π .

PROOF. Acting by an isometry we may assume our triangle has vertices iy1, iy2, z where
y2 > y1, ℜ(z) 6= 0, and [iy1, iy2] is the longest side. Then y1 < ℑ(z) < y2. Let x1,x3 ∈ R be such
that [iy1,z] ⊂ [x1,x3]. Then the ideal triangle x1,∞,x3 contains the triangle iy1, iy2,z. Translating
both triangles, we may assume that the ideal triangle has vertices−R,∞,R. Its area is then at most:∫

|x|≤R
dx
∫

x2+y2≥R2

dy
y2 =

∫ R

−R

dx√
R2− x2

= π .

�

1.16. δ -hyperbolic spaces

Let (X ,d) be a proper geodesic metric space.

DEFINITION 107. X is called δ -hyperbolic if it satisfies the slim triangles condition: given
any points x,y,z ∈ X and any three geodesics [x,y], [y,z], [z,x] connecting them, the image of the
geodesic [x,y] is contained in a δ -neighbourhood of the union of the images of the other two.

EXAMPLE 108. Any metric tree is 0-hyperbolic. A metric space is called an R-tree if it is
0-hyperbolic.

PROPOSITION 109. The hyperbolic plane H2
κ is δ -hyperbolic where δ only depends on κ .



PROOF. It clearly suffices to consider the case κ = −1. We shall exhibit a quasi-isometric
equivalence of the hyperbolic plane with T3, the 3-regular tree.

Alternatively, let x,y,z be three points in the hyperbolic plane, and let q ∈ [y,z] be at least δ

away from the union of [x,y] and [x,z]. It follows that the convex hull of the three points contains
the a semicircle of radius δ around q, and hence that 2π exceeds the area of a disk of radius δ . �

From now on assume X is δ -hyperbolic.

LEMMA 110. Let c : [0,1]→X be a continuous rectifiable path in X parametrized proportional
to arclength connecting A = c(0) and B = c(1). If [A,B] is any geodesic segment connecting its
endpoints and x = [A,B]t then d(x,c([0,1]))≤ δ log+

2 l(c)+δ +1.

PROOF. If l2(c) ≤ 1 then d(A,B) ≤ 1 and this is clear. Otherwise, let C = c(1/2) and choose
geodesic segments [A,C] and [C,B]. Since X is δ -hyperbolic, x is within δ of a point x′ on one of
these segments, w.l.g. x′ = [A,C]t ′ . If l(c) < 2 then d(A,C) < 1. By induction it follows that x′ is
within 1 of the image of c, hence x is within

δ +1+δ log+
2 l(c) .

If l(c)≥ 2 it follows by induction that x′ is within δ (log2 l(c)−1)+δ +1 of c([0, 1
2 ]). �

LEMMA 111. Let γ : [a,b]→ X be an L,D-quasi-geodesic. Then there exists an L,(4L+3D)-
quasigeodesic γ ′ : [a,b]→ X with the same endpoints such that:

(1) The Hausdorff distance between the images of γ , γ ′ is at most 2(L+D).
(2) γ ′ is an (L+D)-Lipschitz map. In particular, it is continuous and rectifiable.

PROOF. Let V = {a,b}
⋃

Z∩ [a,b], and let γ ′ be a concatenation of geodesic segements agree-
ing with γ on V . Since every segment has length at most L+D this map is (L+D)-Lipschitz.

Given any [t, t ′] ⊂ [a,b] let btc be the point of V just below t, dt ′e the point above t ′. Then
|t−btc| ≤ 1 and the same for t ′. Then d(γ(t),γ([t]))≤ L+D by assumption, and d(γ ′(t),γ ′([t]))≤
L+D by the Lipschitz property. In particular, d(γ(t),γ ′(t))≤ 2(L+D).

This also implies:

d(γ ′(t),γ ′(t ′)) ≤ d(γ([t]),γ([t ′]))+2(L+D)
≤ L

∣∣[t]− [t ′]
∣∣+D+2(L+D)

≤ L
∣∣t− t ′

∣∣+2L+2L+3D .

On the other side,

d(γ ′(t),γ ′(t ′)) ≥ d(γ([t]),γ([t ′]))−2(L+D)

≥ 1
L

∣∣[t]− [t ′]
∣∣−D−2(L+D)

≥ 1
L

∣∣t− t ′
∣∣−2L−2D .

�

THEOREM 112. Let γ : [a,b]→ X be an L,D-quasigeodesic connecting A,B. Let [A,B] be any
geodesic segment connecting A,B. Then dH(γ([a,b]), [A,B])≤ R(δ ,L,D).
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PROOF. By the Lemma we may assume γ is Lipschitz. Let c parametrize [A,B] according to
arclength, and assume that c(t) is at maximal distance R from the image of γ . Let y = γ(s1),z =
γ(s2) on the image of γ be at distance at most R from A′ = c(t−2R), B′ = c(t +2R). Let γ ′ be the
restriction of γ to [s1,s2]

Since d(y,z)≤ 6R, |s1− s2| ≤ L(6R+2L+2D) and hence l(γ ′)≤ L(L+R)(8L+2D). It follows
that [A′,y]∪ γ ′∪ [z,B′] is a rectifiable curve of length at most k1R + k2 connecting A′,B′ and such
that c(t) lies on a geodesic connecting A′,B′ and is at distance at least R from the curve. By the
previous Lemma, R≤ δ max{log2(k1R+ k2),0}+δ +1 hence R� R0(δ ,L,D).

Let [a′,b′] ⊂ [a,b] be maximal such that γ([a′,b′]) lies outside the R0-neighbourhood of c.
Every point of c is within R0 of the image of γ , so we can find w = c(t) such that s ∈ [a,a′] and
s′ ∈ [b′,b] such that d(w,γ(s))≤ R0 and d(w,γ(s′))≤ R0. Then d(γ(s),γ(s′))≤ 2R0, so the length
of γ([a′,b′]) is bounded in terms of δ ,L,D. �

DEFINITION 113. A path c : [a,b]→ X is a k-local geodesic if d(c(t),c(t ′)) = |t− t ′| for t, t ′ ∈
[a,b] with |t− t ′| ≤ k.

THEOREM 114. Let c be a k-local geodesic with k > 8δ . Let γ be a geodesic conneccting c(a)
and c(b). Then:

(1) c lies in a 2δ -neighbourhood of γ .
(2) γ lies in a 3δ -neighbourhood of c.
(3) c is a quasi-gedoesic.

PROOF. Let x′ = c(t) be at maximal distance from the image of γ . Assume t− a, b− t both
greater than 4δ , and let y′ = c(a′), z′ = c(b′) such that a′ < t < b′ is cenetered at t, of length
between 8δ and k.

Say y,z ∈ γ are closest to y′,z′. Get quadrilateral y,y′,z′,y. Adding a diagonal shows that x′ is
2δ -close to some w on a side other than c. If w ∈ [y,y′], then

d(x′,y)−d(y,y′) ≤ [d(x′,w)+d(w,y)]−d(y,w)+d(w,y′)]
= d(x′,w)−d(y′,w)
≤ d(x′,w)− [d(y′,x′)−d(x′,w)]
≤ 2d(x′,w)−d(x′,y′)
< 4δ −4δ = 0.

Similarly w /∈ [z,z′]. It follows that w ∈ [y,z], that is that any point of c is within 2δ of γ .
Now if p = γ(t), �
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1.17. Problem set 5

The Gromov product
Let (X ,d) be a metric space.

DEFINITION 115. For x,y,z ∈ X set

(y · z)x =
1
2

(d(y,z)+d(z,x)−d(y,z)) .

Say that X is (δ )-hyperbolic if for every x,y,z,w ∈ X :

(1.17.1) (x · y)w ≥min{(x · z)w,(y · z)w}−δ .

This inequality is equivalent to the symmetric condition

d(x,w)+d(y,z)≤max{d(x,y)+d(z,w), d(x,z)+d(y,w)}+2δ .

Note that this makes sense even if X is not geodesic.

1. When X is a tree, verify that (y · z)x is the distance from x to the geodesic segment [y,z]. If
X is geodesic and δ -hyperbolic, verify that |d(x, [y,z]),(y · z)x| ≤ δ . Conclude that every δ -
hyperbolic space is (δ )-hyperbolic.

For the converse see
Thin Triangles

Let X be a geodesic space, and let [x0,x1], [x1,x2], [x2,x0] be a geodesic triangle in X .
2. Show that there exist ai ∈ [xi−1,xi+1] such that d(xi,ai+1) = d(xi,ai−1) (i± 1 calculated in

Z/3Z).
3. Let X be δ -hyperbolic. Show that d(ai,ai+1)≤ 4δ .

Hint: ai must be δ -close to a point p∈ [xi,xi+1]∪ [xi,xi−1]. Say p∈ [xi,xi+1]. Then the distance
from xi+1 to p must be close to the distance between xi+1 and ai−1.

A converse result also holds. See
Exponential divergence of geodesics

Let X be geodesic space.

DEFINITION 116. A map e : N→ R is said to be a divergence function for X if for all R,r ∈
N, x ∈ X , and any two geodesics γi : [0,R + r]→ X (i = 1,2) issuing from x and parameterized
according to length, the following condition holds:

If d(γ1(R),γ2(R)) > e(0) then any path connecting A1 = γ1(R+ r) to A2 = γ2(R+ r) and lying
outside the ball B(x,R+ r) has length at least e(r).

4. Assume X is δ -hyperbolic. Show that max
{

12δ ,2(n−1)/δ

}
is a divergence function.

Hint: Consider a geodesic triangle with two sides given by γi �[0,R+r]. The their endpoints are
A1,A2 with d(A1,A2) = 2l. Let m be the midpoint of the third side.

The Gromov Boundary
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Part 4

Random Groups



1.18. Models for random groups

General scheme.
(1) Few-relators model
(2) Density models
(3) “Temperature” model
(4) Graph model
(5) Zuk’s model

1.19. Local-to-Global

1.19.1. The Gromov-Papasoglu “Cartan-Hadamard” theorem.

DEFINITION 117. Let X be a complex of dimension 2.
(1) A circle drawn in X is a cycle in the 1-skeleton. A disk drawn in X is a cellular map from

a complex isomorphic to a disk to X .
(2) Let f be a face of X . Lc( f ) = |∂ f | will both denote the number of edges on the boundary

of f . We also set the combinatorial area Ac( f ) equal to this number. The Euclidean area
of f is AE( f ) = |∂ f |2 [a regular n-gon in the plane has area ∼ n2

4π
if the sides have length

1].
(3) Let D be a disk drawn in X . |∂D| will denote the combinatorial length of its boundary,

Ac(D) the total combinatorial area of its faces, AE(D) the total Euclidean area, Af(D) will
denote the number of faces.

THEOREM 118. (Short ...) Let Γ = 〈S|R〉 be a finite presentation, C > 0. Suppose that all
minimal van-Kampen diagrams D w.r.t. this presentation satisfy

|∂D| ≥C ·Ac(D) .

Then Γ is hyperbolic. In fact, X = Cay(Γ;S) is 12`/C2-hyperbolic where ` is the longest relation
in R.

The proof is discussed in [8, Prop. 7]

THEOREM 119. [10] Assume that X is simply connected and simplicial. Let P be a property
of disks in X such that any subdisk of a disk having P also has P . Let K be an integer, and assume
that any disk D drawn in X and having P satisfies:

K2

2
≤ Af(D)≤ 240K2 ⇒ Af(D)≤ 1

2 ·104 |∂D|2 .

Then any disk D having P and satisfies:

K2 ≤ Af(D) ⇒ Af(D)≤ K · |∂D| .

PROOF. Let D be a disk of minimal boundary > K2 such that Af(D) > K · |∂D|. Let f be
a triangle in D with exactly one boundary edge. Then D′ = D− f has boundary length at most
|∂D|+1. If Af(D′) = K2 then Af(D) = K2 +1, but then Af(D)≤ 240K2 and by the assumptions of
the Theorem, This implies Af(D) ≤ 1

5000K2, a contradiction. It follows that Ac(D′) > K2 as well,
and hence Ac(D)−1 = Ac(D′)≤ K(|∂D|+1). We conclude that

K |∂D|< Ac(D)≤ K |∂D|+K +1 .



For similar reasons we may assume Lc(D) ≥ 100K: otherwise, Ac(D) ≤ 100K2 + K + 1, and
the same argument would imply Af(D) ≤ 1022

2·104 K2 < K2. Our goal now is to find an arc that will
separate D into two pieces, one of which will violate the assumptions of the Theorem.

Let dG be the graph metric on the 1-skeleton of D, and choose successive vertices {vi}n
i=1 on

the boundary of D such that
d(vi,vi+1) = 20K

and 20K ≤ d(vn,v1) < 40K. Then 20K(n + 1) ≥ LcD. If T is a connected subcomplex, we let
B1(T ) denote the the set of closed cells which intersect T , also a connected subcomplex. For a
point x ∈ D0 let , B0(x) = x, Bt(x) = B1(Bt−1(x)), St(x) = Bt(P)−Bt−1(P).

Case 1: For any i 6= j, B6K(vi)∩B6K(v j) = /0 and for any i, diam(B6K(vi)∩∂D)≤ 20K.
Then let r < K, let Cr(vi) be the closure of the connected component of D− Br(vi) which

contains the other v j (they are connected along the boundary by assumption). Then γr = Cr(vi)∩
Br(vi) is an arc separating D into two simply connected parts, D1 and D2, with vi ∈ D1.

CLAIM 120. Let l = |∂D1∩∂D|. Then Af(D1)≥ Kl−KLc(γ).

PROOF. Af(D1) ≥ Af(D)−Af(D2) > K |∂D| −Af(D2). By assumption, Af(D2) ≤ K |∂D2| =
K (|∂D|− l +Lc(γ)). �

Case 1a: For some 1≤ i≤ n and K ≤ r ≤ 2K, l(γ) < K.
Note that D1 ∩ ∂D has length at least r on each side (when forming Br(vi) we have to add a

boudary edge at each step). It follows that

2K ≤ |∂D1| ≤ 21K .

By the Claim, Af(D1)≥ K2. We thus have Af(D1)≤ K |∂D1| ≤ 21K2. Thus Af(D1) > 1
2·104 |∂D1|2

{but 1
2 ≤ Af(D1)/K2 ≤ 240.

Case 1b: We aren’t in case 1a, and for some i and some 2K ≤ r ≤ 3K, Lc(γ) < 80K.
Then for K ≤ t ≤ 2K−1 we have Lc(γt)≥K. Each such γt contains at least K edges, and every

triangle in St+1(vi) intersects at most two of them. It follows that Ac(D1)≥ K2/2. Also, |∂D1|<
80K +20K = 100K. It follows that Ac(D1) < 100K2. But K2/2 > 1

2·104 |∂D|2, a contradiction.
Case 1c: Otherwise, l(γt)≥ 80K for 2K ≤ t ≤ 3K so Ai = Ac(B3K(vi))≥ 40K2. Thus

Ac(D)≥∑
i

Ai ≥
(
|∂D|
20K

−1
)

40K2 > K |∂D|+K +1 .

Case 2: Either B6K(vi)∩B6K(v j) 6= /0 for some i 6= j or :diam(B6K(vi)∩∂D) > 20K for some i.
In either case, there exists an arc γ in D of length at most 12K which separates it into disks D1, D2
with |∂D1∩∂D| , |∂D2∩∂D| ≥ 20K. We can assume that γ is an arc with this property and such
that |∂D1∩∂D| is as small as possible. Then D1 contains at least |∂D1∩∂D|

20K −3 of the points vi, say
{vi+k}m

k=1. Since γ is shortest possible, these points have B3K(vi+k)∩B3K(vi+ j) = /0, and at most
two of the B3K(vi+k) intersect γ . If B3K(vi+k) does not intersect γ then diam(B3K(vi+k)∩ ∂D) ≤
|∂D1∩∂D| ≤ 20K.

We now split into the same cases as above, but only using vi ∈ D1 such that B3K(vi)∩ γ = /0.
Cases a,b are the same. In case c, we get the inequality

Ac(D1)≥∑
s

Ac(B3K(vi+s))≥
(
|∂D1|
20K

−6
)

40K2 .
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By the minimality assumption, Ac(D1) ≤ K |∂D1| so Lc(D1) ≤ 240K. Then Ac(D1) ≤ 240K2; by
the claim we also have Ac(D1)≥ 8K2. Thus Ac(D1) > 1

2·104 |∂D1|2 which contradicts the assump-
tions. �

ALGORITHM 121. (Papasoglu) To check if Γ = 〈S|R〉 is hyperbolic:

(1) Convert 〈S|R〉 to a triangular presentation: replace the relation ab of length ≥ 4 with the
two generator x and the relations x = a, x−1 = b which are shorter, but of length ≥ 3.

(2) For every K > 0:
(a) Generate all van-Kampen diagrams D such that Af(D) ≤ 240K2. Determine which

of the ones which also satisfy Af(D)≥ K2/2 are minimal.
(b) If all the minimal diagrams satisfy the hypothesis of the Theorem, then terminate.

PROOF. In the Cayley complex Cay(Γ;S), let P be the property of a disk being a minimal
van-Kampen diagram for the boundary relation of the disk.

If the algorithm terminates, then by the Theorem every word has a small diagram, hence Γ is
hyperbolic.

If Γ is hyperbolic then for some C, every word has a diagram which satisfies Af(D) ≤C |w|S.
In particular, for K > 200C every minimal diagram with the appropriate area will satisfy the as-
sumptions of the Theorem. �

COROLLARY 122. [6, Prop. 42]Assume that X is simply connected, and that |∂ f | ≤ ` for every
fact f of X. Let P be a property of disks in X such that any subdisk of a disk having P also has P .

Let K ≥ 1010` be an integer, and assume that any disk D drawn in X and having P satisfies:

K2

103 ≤ AE(D)≤ 106K2 ⇒ |∂D|2 ≥ 2 ·1014AE(D) .

Then any disk D having P satisfies:

|∂D| ≥ 1
104K

AE(D) .

PROOF. Note that a naive triangluation (divide an n-gon into n−2 triangles) won’t work since
we might get triangles with different sizes. Instead, intersect the regular Euclidean n-gon with
edge length 1 (hence Euclidean area about n2/4π) with the periodic triangulation of the plane into
equilateral triangles of side 1. After sorting out the boundary we get a genuine triangulation with
all sides between 1/10 and 10, and area between 1/100 and 100. Thus the distoration between the
triangle metric and the Euclidean metric is at most 10. We have used about n2 triangles.

Let Y be the simplical complex obtained from X by this triangulation, with combinatorial
length Ltr and face-counting area Atr. Let L,A be the metric length and area in Y where every face
of X has the Euclidean metric from above. Then Ltr,Lc,L and Atr,AE,A are respectively uniformly
equivalent by factors of at most 100.

Let B be a disk in Y with property P and area 1/2 ≤ Atr(B)/K2 ≤ 240. We shall verify that
Ltr(B)2 ≥ 2 ·104Atr(B).

If B comes from a disk D in X , then Ltr(B)≥ 10−2 |∂D| while Atr(B)≤ 102AE(D). Otherwise,
one approximates B by a disk from X by adding or removing the faces of X which are partially
included in B, using isoperimetric inequalities for the unit disk of the Euclidean plane. �
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PROPOSITION 123. Assume every face f ∈ X2 has `1 ≤ |∂ f | ≤ `2, and that for some C > 0
and an integer K ≥ 1024(`2/`1)C−2, every disk D ∈ P with Ac(D)≤ K`2 satisfies

C ·Ac(D)≤ |∂D| .

Then every disk in P satisfies
C′ ·Ac(D)≤ |∂D|

where C′ = 10−15C(`1/`2).

PROOF. We have `1 ≤ AE(D)
Ac(D) ≤ `2 for any disk D in X , since this holds face-by-face. Reducing

K if necessary we may assume K ≈ 1024(`2/`1)C−2, and set k2 = K`1`2/106. Then very disk
D ∈ P with 10−3k2 ≤ AE(D) ≤ 106k2 has Ac(D) ≤ K`2 and hence also Ac(D) ≤ C−1 |∂D|. We
now calculate:

|∂D|2 ≥C2Ac(D)2 ≥C2`−2
2 AE(D)2 ≥ 10−3C2`−2

2 k2AE(D)≥ 10−9C2K(`1/`2)AE(D) .

Since 10−9C2K(`1/`2)≥ 2 ·1014 and k ≥ 1010`2 (note that C ≤ 2) we may apply the Corollary, to
see that for any disk D ∈ P ,

|∂D| ≥ 1
104k

AE(D)≥ 103`1

104
√

K`1`2
Ac(D)≈ 10−13(`1/`2) ·C .

�

1.19.2. Boostrapping the isoperimetric constant a-la [9]. We fix a finite presentation 〈S|R〉
where every relator has length between `1 and `2. Let P be a hereditary class of van-Kampen
diagrams for this presentation, and assume that every D ∈ P satisfies

|∂D| ≥C′ ·Ac(D) ,

where we may assume C′ < 1. We then set α =− 1
log(1−C′) ≤

1
C′ .

We assume that small diagrams satsify |∂D| ≥ CAc(D) and would like to extend this to all
diagrams, perhaps with a small loss in the constant. We thus fix 1

4 > ε > 0.

LEMMA 124. [7, Lem. 9-10] Let D ∈ P . Then

(1) D can be written as a disjoint union D1∪D2 where D1is connected and all of its faces are
within α log(Ac(D)/`2) of the boundary, and D2 has area at most `2.

(2) D can be paritioned into two diagrams D′, D′′ by a path of length at most `2+2α`2 log(Ac(D)/`2)
connecting two boundary points, such that each of the two diagrams contains at least one
quarter of the bounary of D.

PROOF. For D (or any disjoint union of simply connected subdiagrams) we have |∂D| ≥
C′Ac(D).

(1) The faces at distance 1 from the boundary have area at least C′Ac(D), the faces at dis-
tance at least 2 are at most (1−C′)Ac(D). Removing the boundary faces and contin-
uing by induction, the faces at distance at least k from the boundary have area at most
(1−C′)kAc(D). Now take k = 1+α log(Ac(D)/`2) (rounded to the nearest integer).
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(2) Let L = |∂D|. Assume first that D2 is empty, and mark x,y,z,w on ∂D at distance L/4
from each other. There then exists a path of length at most 2α log(Ac(D)/`2) connecting
a point of xy to a point of zw or xz and yw. If D2 is non-empty, retracting each of its
components to a point take a path as above. Now the total diameter of all components of
D2 is at most `2.

�

PROPOSITION 125. (Induction step) Let A ≥ 50/(εC′)2 and suppose that every D ∈ P with
boundary length at most A`2 satisfies

|∂D| ≥C ·Ac(D) .

Then every diagram with boundary length at most 7
6A`2 satisfies

|∂D| ≥ (C− ε)Ac(D) .

PROOF. Since α ≤ 1/C′, we have 2+4α log(7A/6C′)≤ εA≤ A/4.
Let D ∈ P be a diagram with A`2 ≤ |∂D| ≤ 7

6A`2. Partition D into D′, D′′ as in the Lemma, in
which case: ∣∣∂D′

∣∣ , ∣∣∂D′′
∣∣≤ 3

4
|∂D|+ `2

(
1+2α log

7A
6C′

)
≤ `2

(
7A
8

+
A
8

)
= A`2 .

We thus have:

|∂D| =
∣∣∂D′

∣∣+ ∣∣∂D′′
∣∣−2

∣∣∂D′∩∂D′′
∣∣

≥
∣∣∂D′

∣∣+ ∣∣∂D′′
∣∣−2`2

(
1+2α log

7A
6C′

)
≥ C

(
Ac(D′)+Ac(D′′)

)
−2εA`2

≥ (C− ε)Ac(D) ,

since A`2 ≤ |∂D| ≤ Ac(D). �

REMARK 126. Note that the assumption on A is independent of C.

THEOREM 127. Let ε0 ∈ (0,1/4), let B ≥ 50/(ε2
0C′3) and assume that any diagram D ∈ P

with area at most B`2 satisfies
|∂D| ≥C0Ac(D) .

Then any diagram in P satisfies

|∂D| ≥ (C0−14ε0)Ac(D) .

PROOF. Let A0 = C′B and, recursively, An+1 = 7
6An, εn+1 =

√
6
7εn and Cn+1 = Cn− εn. Note

that then An ≥ 50/(εnC′)2 for all n.
Let D ∈ P have |∂D| ≤ A0`2. Then Ac(D)≤ (C′)−1 |∂D| ≤ B`2.
Assume now, by induction, that every digram with boundary size at most An`2 satisfies |∂D| ≥

Cn ·Ac(D) (the case n = 0 is the assumption of the Theorem). By the Lemma it follows that every
diagram with boundary size at most An+1`2 satisfies

|∂D| ≥Cn+1Ac(D) .

Finally, note that Cn ≥C0− ε0 ∑
∞
n=0
(7

6

)n/2 ≥C0−14ε0. �
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COROLLARY 128. Let 〈S|R〉 be a finite presentation with every relation having length between
`1 and `2. Let P be a hereditary class of van-Kampen diagrams for this presentation. Let C > 0,
ε ∈ (0,1/4) and suppose that for some K ≥ 1050(`2/`1)3ε−2C−3, any diagram D ∈ P of area at
most K`2 satisfies

|∂D| ≥CAc(D) .
Then every diagram D ∈ P satisfies

|∂D| ≥ (C− ε)Ac(D) .

PROOF. Let C′ = 10−15(`1/`2)C, ε0 = ε/14, B = 50/(ε2
0C′3). By Proposition 123, any D ∈

Psatisfies |∂D| ≥C′Ac(D). Since B < K we can now apply the Theorem. �

1.20. Random Reduced Relators

Let d ∈ (0,1/2), and let Rl be ∼ (2k− 1)dl reduced words of length l chosen uniformly at
random.

THEOREM 129. (Ollivier; Gromov) For every ε > 0 and K ∈ N, a.a.s. every reduced van-
Kampen diagram with at most K faces w.r.t. 〈S|Rl〉 satisfies

|∂D| ≥ (1−2d− ε)lAf(D) .

PROOF. If D is an abstract decorated diagram involving mi relators ri with m1 ≥ m2 ≥ ·· · ,
Let δi defined as before, then

|∂D| ≥ (1−2d)` |D|
�
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Part 5

Fixed Point Properties



1.21. Introduction: Lipschitz Involutions and averaging

Let Y be a Hilbert space, and let σ : Y → Y be a Lipschitz involution. In other words, σ2 = id
and there exists C ≥ 1 such that for all x,y ∈ Y we have ‖σx−σy‖ ≤C‖x− y‖.

PROBLEM 130. Does σ have a fixed point?
If C = 1 this is clearly the case: σ is then an isometry, hence an affine map, and it follows that

y+σy
2 is fixed by σ for all y. When C is close to 1, we can still use the map Ty = 1

2y+ 1
2σy to find

a fixed point.

LEMMA 131. Let Y be a complete convex metric space. If C < 2 then σ fixes a point of Y .

PROOF. For y ∈ Y set δ (y) = d(y,σy), the displacement length. Our goal is to find y such that
δ (y) = 0. Consider δ (Ty). We have:

δ (Ty) = d (σTy,Ty) ≤ 1
2

d (σTy,y)+
1
2

d (σTy,σy)

≤ C
2

d (Ty,σy)+
C
2

d (Ty,y)

=
C
2

d (y,σy) =
C
2

δ (y) .

Fix any y0 ∈ Y and let yn+1 = Tyn. Then δ (yn) ≤
(C

2

)n
δ (y0). Since d (Ty,y) = 1

2δ (y), it follows
that d (yn+1,yn)≤ 1

2

(C
2

)n
δ (y0). When C

2 < 1 this implies d (yn,yn+k)≤ δ (y0)
2−C

(C
2

)n
, in other words

that {yn}∞

n=0 is a Cauchy sequence. Its limit y∞ must satisfy δ (y∞) = 0 by the continuity of δ . �

In a CAT(0) space we can prove a stronger result.

LEMMA 132. Let Y be a complete CAT(0) space. If C <
√

5≈ 2.23 then σ fixes a point of Y .

PROOF. Let E(y) = d2 (y,σy). Applying the CAT(0) inequality to the same triangle as in the
previous Lemma gives:

E(Ty) = d2 (σTy,Ty) ≤ 1
2

d2 (σTy,y)+
1
2

d2 (σTy,σy)− 1
4

d2 (y,σy)

≤ C2

2
d2 (Ty,σy)+

C2

2
d2 (Ty,y)− 1

4
d2 (y,σy)

=
C2−1

4
E(y) .

Again take any y0 and set yn+1 = Tyn, for which we have δ (yn) ≤
√

C2−1
2 δ (y0). If C <

√
5 the

displacements decrease exponentially and the proof proceeds as before. �

PROPOSITION 133. Let Y be a Hilbert space. If C <?? then σ fixes a point of Y .

PROOF. Fix ε > 0. Given y ∈Y and 0≤ t ≤ 1 set Tty = (1− t)y+ tσy, and consider the vector
Vy(t) = σTty−Tty. We have Vy(0) = σy− y and Vy(1) = y−σy = −Vy(0). Assume first that for
all y there exists t = t(y) such that δ (Tty) =

∥∥Vy(t)
∥∥ ≤ (1− ε)δ (y), and set Ty = Tt(y)y. Since

‖y−Tty‖ ≤ δ (y), it follows as before that T ny converge to a fixed point. Otherwise, there exists y
such that the curve t 7→Vy(t) connects Vy(0) to −Vy(0) while remaining outside the disc of radius



(1− ε)R where R =
∥∥Vy(0)

∥∥. It is clear that the length of such a curve is at least (1−O(ε))πR.
On the other hand, ∥∥Vy(t)−Vy(s)

∥∥ ≤ ‖σTty−σTsy‖+‖Tty−Tsy‖
≤ (C +1) |t− s|R .

It follows that the length of the curve is at most (C +1)R, and hence that

C ≥ (1−O(ε))π−1 .

Now for C < π−1 we can choose ε small enough to derive a contradiction. �

LEMMA 134. Let Y be a complete metric space, δ : Y →R>0 a continuous function. Fix a > 2.
Then for each y ∈ Y there exists y′ ∈ B(y,aδ (y)) such that for all z ∈ B(y′, a

2δ (y′)), δ (z)≥ 1
2δ (y′).

PROOF. Assume that, for each y′ ∈ B(y,aδ (y)) there exists z = z(y′) ∈ B(y′, a
2δ (y′)) such that

δ (z) < 1
2δ (y′). Let y0 = y, and by induction assume that d(yn,y) ≤ aδ (y)∑

n
k=1 2−k < aδ (y) and

that δ (yn) < 2−nδ (y). There exists then yn+1 with d(yn+1,yn)≤ a
2δ (yn)≤ a2−(n+1)δ (y) and such

that δ (yn+1) < 1
2δ (yn) < 2−(n+1)δ (y). The bound on d(yn+1,y) follows.

As before, the sequence {yn}∞

n=0 is Cauchy and therefore converges. It follows that δ vanishes
somewhere, a contradiction. �

PROPOSITION 135. Let Γ = 〈S〉 be a finitely generated group, Y a complete metric space,
ρ : Γ→ Lip(Y ). For each y ∈ Y set δ (y) = max{dY (y,sy) | s ∈ S}. Assume that infy∈Y δ (y) = 0

but that Γ does not fix a point on Y . Then there exists an asymptotic cone Yω = limω

(
Y,y′n,

2
δ (y′n)

dY

)
and an action ρω : Γ→ Lip(Yω) such that ‖ρω(γ)‖Lip ≤ ‖ρ(γ)‖Lip for each γ ∈ Γ, and δ (z) ≥ 1
for each z ∈ Yω . The action and the displacement bound extend to the completion Ȳ of Yω .

PROOF. Choose yn ∈ Y such that δ (yn)→ 0. Let an = 2 + 1√
δ (yn)

. By the Lemma, for each n

there exists y′n ∈ B(yn,anδ (yn)) such that for all zn ∈ B(y′n,
an
2 δ (y′n)), δ (zn) ≥ 1

2δ (y′n). Let ω be a
non-principal ultrafilter, and let Yω be as in the statement of the Lemma. First, for each γ ∈ Γ and
y ∈Y , dY (y,γy)≤ |γ|S δ (y). This implies that 2

δ (y′n)
d(y′n,ρ(γ)y′n)≤ 2 |γ|S is bounded independently

of n. Since rescaling the metric does not change Lipschitz constants, it follows that the Γ action
passes to a limiting action ρω and clearly the Lipschitz constant at the limit cannot grow. Finally,
let z = (zn) be a representative for a point in Yω . Since 2

δ (y′n)
d(y′n,zn) is bounded while an → ∞,

from some point onward we have zn ∈ B(y′n,
an
2 δ (y′n)). It follows that δρ(zn)≥ 1

2δ (y′n). Rescaling
the metric and passing to the limit we conclude δρω

(z)≥ 1. The last claim is obvious. �

COROLLARY 136. Let K be the set of Lipschitz constants C ≥ 1 such that every involution
on a Hilbert space with Lipschitz constant at most C has a fixed point. Then K = [1,L) for some
1 < L≤ ∞.

PROOF. Let σn be an involution of the Hilbert space Yn with Lipschitz constant L+ εn without
fixed points, where εn are positive and tend to zero. We would like to show that L /∈ K. By the
Proposition we may assume that, for every zn ∈ Yn, we have d(σnzn,zn) ≥ 1, and rescaling the
metrics we may assume that inf{d(σnzn,zn) | zn ∈ Yn} = 1. We now choose yn ∈ Yn such that
d(σnyn,yn)≤ 2, fix a non-principal ultrafilter ω on the integers and let Yω = limω

(
Yn,yn,‖·‖Yn

)
. It

is clear that the σn induce a limiting action σω on Yω (which is a pre-Hilbert space), an involution
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of Lipschitz constant at most L. It is also clear that this action displaces each z ∈ Yω by at least 1
(this is the case at each co-ordinate). Taking the completion shows that L /∈ K. �

Summary.
• Replace points y ∈ Y with orbits {y,σy}, that is equivariant functions f : Γ→ Y .
• Measure the “energy” of an orbit; E(y) = d2

Y (y,σy) was used here.
• Construct an averaging operator on the orbit; we mostly used Ty = 1

2y+ 1
2σy.

• Show that averaging redues energy exponentially, and that the distance between y and Ty
can be bounded using the energy of y.
• Conclude that iterated averaging converges to a fixed point.

1.22. Expander graphs

Let G = (V,E) be a (possibly infinite) locally finite graph. We allow self-loops and multiple
edges. For x ∈ V the neighbourhood of x is the multiset Nx = {y ∈ V |(x,y) ∈ E}. Let E(A,B) =
|E ∩A×B|, e(A,B) = |E(A,B)|, e(A) = e(A,V ) for A,B ⊆ V . A 7→ e(A) is a measure on V , with
density dx = #Nx w.r.t. counting measure. Note that e(V ) is twice the (usual) number of edges in
the graph, and let νG(A) = 1

2#E e(A) be the associated probability measure. Let µG(u→ v) be the
standard random walk on G:

µG(x→ y) =
e({x} ,{y})

dx
.

This is a reversible Markov chain: we have dνG(x)dµG(x→ y) = dνG(y)dµG(y→ x) as measures
on V ×V .

DEFINITION 137. The “local average” operator AG : L2(V )→ L2(V ) of G is:

(AG f )(x) =
∫

dµG(x→ y) f (v) =
1
dx

∑
y∈Nx

f (y).

The reversibility of the Markov chain is equivalent to the self-adjointness of AG as an operator on
L2(ν). Furthermore,

|〈A f ,g〉| ≤
∫

dνG(x)dµG(x→ y) | f (x)| |g(y)|= 1
2#E ∑

x∈V
| f (x)| ∑

y∈Nx

|g(y)| .

Two applications of Cauchy-Schwarz give:

|〈A f ,g〉| ≤ 1
2#E ∑

x∈V
| f (x)|

(
∑

y∈Nx

1

)1/2(
∑

y∈Nx

|g(y)|2
)1/2

≤

(
∑
x∈V
| f (x)|2 dx

2#E

)1/2(
1

2#E ∑
x∈V

∑
y∈Nx

|g(y)|2
)1/2

= ‖ f‖L2(ν) ‖g‖L2(ν) .

In other words, ‖A‖L2(ν) ≤ 1.

From now on we assume that G has finite connected components. Then by the maximum
principle, A f = f iff f is constant on connected components of G and A f =− f iff f takes opposing
values on the two sides of each bipartite component.
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DEFINITION 138. The discrete Laplacian on V is the opeartor ∆G = I−AG.

By the previous discussion it is self-adjoint, positive definite and of norm at most 2. The kernel
of ∆ is spanned by the characteristic functions of the components (e.g. if G is connected then
zero is a non-degenerate eigenvalue). Its orthogonal complement L2

0(V ) is the space of balanced
functions (i.e. the ones who average to zero on each component of G). The infimum of the positive
eigenvalues of ∆ will be an important parameter, the spectral gap λ1(G). If λ1(G) ≥ λ we call G
a λ -expander. If, furthermore, G is connected, d-regular, and #V = n we say (Alon) that G is an
(n,d,λ )-graph.

DEFINITION 139. Let A ⊂ V . The edge boundary of A is ∂A = E(A,qA). The Cheeger
constant of the graph G is:

h(G) = min
{

e(A,qA)
e(A,V )

∣∣∣A⊆V, e(A∩X)≤ 1
2

e(X) for every component X ⊆V
}

.

PROPOSITION 140. (Buser inequality) h(G)≥ λ1(G)
2 .

PROOF. We may assume that G is connected and take A⊂ X be such that νG(A)≤ 1
2 . Let B =

V \A, and choose α,β so that f (x) = α1A(x)+β1B(x) is balanced. Then we have: λ1(G)≤ 〈∆ f , f 〉
〈 f , f 〉 .

Now,

∆ f (x) =

{
α− |Nx∩A|

|Nx| α− |Nx∩B|
|Nx| β x ∈ A

β − |Nx∩A|
|Nx| α− |Nx∩B|

|Nx| β x ∈ B
=

{ |Nx∩B|
|Nx| (α−β ) x ∈ A
|Nx∩A|
|Nx| (β −α) x ∈ B

,

so that 〈∆ f , f 〉= (α−β )α|∂A|+β (β −α)|∂B|= (α−β )2|∂A| and thus

λ1(G)≤
(1− β

α
)2

e(A)+ e(B)(β/α)2 |∂A|.

〈 f ,1〉= e(A)α + e(B)β , so that the choice β/α =−e(A)/e(B) makes f balanced. This means:

λ1(G)≤ |∂A| (e(B)+ e(A))2

e(A)e(B)2 + e(B)e(A)2 = 2
|∂A|
e(A)

e(B)+ e(A)
2e(B)

.

But 2e(B)≥ e(X) = e(A)+ e(B) and we are done. �

Conversely,

PROPOSITION 141. (Cheeger inequality) h(G)≤
√

2λ1(G).

PROOF. Let f be an eigenfunction of ∆ of e.v. λ ≤ λ1 +ε , w.l.g. supported on a component X
and everywhere real-valued. Let A = {x ∈V | f (x) > 0}, B = X \A. We can assume e(A)≤ 1

2e(X)
by taking − f instead of f if necessary. Let g(x) = 1A(x) f (x). Then for x ∈ A,

∆ f (x) = f (x)− 1
dx

∑
y∈Nx

f (x) = g(x)− 1
dx

∑
y∈Nx∩A

f (x)− 1
dx

∑
y∈Nx∩B

f (x)

= ∆g(x)+
1
dx

∑
y∈Nx∩B

(− f (x))≥ ∆g(x).

Since also (∆ f )(x) = λ f (x) for all x, we have:

λ ∑
x∈A

dxg(x)2 = ∑
x∈A

dx∆ f (x) ·g(x)≥ ∑
x∈A

dx∆g(x) ·g(x),
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or (g�B= 0):

λ1 + ε ≥ λ ≥ 〈∆g,g〉
〈g,g〉

.

we now estimate 〈∆g,g〉 in a different fashion. Motivated by the continuous fact: ∇g2 = 2g∇g, we
evaluate

I = ∑
x∈V

dx
1
dx

∑
y∈Nx

|g(x)2−g(y)2|

in two different ways. On the one hand,

I = ∑
(x,y)∈E

|g(x)+g(y)| · |g(x)−g(y)| ≤

(
∑

(x,y)∈E
(g(x)+g(y))2

)1/2(
∑

(x,y)∈E
(g(x)−g(y))2

)1/2

,

and we note that

∑
(x,y)∈E

(g(x)−g(y))2 = ∑
x∈V

dxg(x)
1
dx

∑
y∈Nx

(g(x)−g(y))−∑
y∈V

dyg(y)
1
dx

∑
x∈Ny

(g(x)−g(y))

= 2〈∆g,g〉
and

∑
(x,y)∈E

(g(x)+g(y))2 ≤ 2 ∑
(x,y)∈E

(g(x)2 +g(y)2) = 4〈g,g〉 ,

so:

(1.22.1) I2 ≤ 8〈∆g,g〉 · 〈g,g〉 ≤ 8λ1 〈g,g〉2 .

On the other hand, let g(x) take the values {βi}r
i=0 where 0 = β0 < β1 < · · ·< βr, and let Li = {x ∈

V |g(x)≥ βi} (e.g. L0 = V ). Then write:

I = 2 ∑
(x,y)∈E

∑
a(x,y)<i≤b(x,y)

(β 2
i −β

2
i−1)

where {βa(x,y),βb(x,y)}= {g(x),g(y)} (i.e. replace β 2
b −β 2

a with (β 2
b −β 2

b−1)+ · · ·+(β 2
a+1−β 2

a )).
Then the difference β 2

i −β 2
i−1 appears for every pair (x,y) ∈ E such that a(x,y) < i ≤ b(x,y) or

such that max{g(x),g(y)} ≥ β 2
i while min{g(x),g(y)}< β 2

i . This exactly means than (x,y) ∈ ∂Li
and

I = 2
r

∑
i=1

(
β

2
i −β

2
i−1
)
|∂Li| .

By definition of h, Li ⊆ A and e(A)≤ E imply |∂Li| ≥ h · e(Li) so:

I ≥ 2h
r

∑
i=1

(
β

2
i −β

2
i−1
)

e(Li) = 2h
r−1

∑
i=1

β
2
i (e(Li)− e(Li+1))+2h · e(Lr)β 2

r .

Also, e(Li)− e(Li+1) = e(Li \Li+1) so:

(1.22.2) I ≥ 2h
r−1

∑
i=1

∑
g(x)=βi

β
2
i dx +2h · ∑

g(x)=βr

β
2
r dx = 2h ∑

x∈V
dxg(x)2 = 2h · 〈g,g〉 .

We now combine Equations 1.22.1 and 1.22.2 to get:

2h〈g,g〉 ≤ I ≤ 2
√

2(λ1 + ε)〈g,g〉
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for all ε > 0, or
h(G)≤

√
2λ1(G).

�

Let us restate the previous two propositions in:
1
2

λ1(G)≤ h(G)≤
√

2λ1(G).

1.22.1. References, examples and applications. The above propositions can be found in [2],
with slightly different conventions. We also modify their definitions to read:

DEFINITION 142. Say that G is an h0-expander if h(G) ≥ h0. Say that G is a λ -expander if
λ1(G)≥ λ .

The previous section showed that both these notions are in some sense equivalent. Being well-
connected, sparse (in particular regular) expanders are very useful. See the survey [3].

The existence of expanders can be easily demonstrated by probabilistic arguments (see [3]).
Infinite families of expanders are not difficult to find, e.g. the incidence graphs of P1(Fq) have
λ = 1−

√
q

q+1 (as computed in [6] and later in [1]). However families of regular expanders are more
difficult. The next section discusses the generalization by Alon and Milman in [1] of a construction
due to Margulis [11]. For a different explicit family of regular expanders which enjoys additional
useful properties see [10].

We remark here that there exists a bound for the asymptotic expansion constant of a family of
expanders:

THEOREM 143. (Alon-Boppana) For every d ≥ 3 and ε > 0 there exists C = C(d,ε) > 0 such
that if G is a connected d-regular graph on n vertices, the number of eigenvalues of A in the interval

[(2− ε)
√

d−1
d

,1]

is at least C ·n.

COROLLARY 144. Let {Gm}∞
m=1 be a family of connected k-regular graphs such that |Vm|→∞.

Then

limsup
m→∞

λ1(Gm)≤ 1− 2
√

d−1
d

.

This leads to the following definition (the terminlogy is justified by [10]):

DEFINITION 145. A d-regular graph G such that |λ | ≤ 2
√

d−1
d for every eigenvalue λ 6=±1 of

AG is called a Ramanujan graph.

THEOREM 146. (??) Let {Gm}∞

m=1 be a family of connected d-regular graphs such that, for
each k, the number of k-cycles in Gm is o(|Gm|). Then the spectral measures of Gm converge to
that of the tree.

Problem Set

1. Concentration of measure on expanders application of expanders.
2. Spectrum of the regular tree.
3. Spectral gap for random graphs.
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