
Section 9

Basic Fluid Mechanics and Aerodynamics

9.1 Basic properties
9.1.1 Basic relationships
Fluids are divided into (a) liquids, which are virtually incom-

pressible and (b) gases, which are compressible. A fluid consists

of a collection of molecules in constant motion. A liquid adopts

the shape of the vessel containing it, while a gas expands to fill

any container in which it is placed. Some basic fluid relation-

ships are given in Table 9.1.

9.1.2 Perfect gas
A perfect, or ‘ideal’, gas is one which follows Boyles/Charles

law pv¼RT where

p ¼ pressure of the gas

v ¼ specific volume

T ¼ absolute temperature

R ¼ the universal gas constant

Although no actual gases follow this law totally, the behaviour

of most gases at temperatures well above their liquification

temperature will approximate to it and so they can be considered

as a perfect gas.

Table 9.1 Basic fluid relationships

Density (r) Mass per unit volume. Units kg/m3 (lb/in3)
Specific gravity (s) Ratio of density to that of water i.e. s¼ r/rwater
Specific volume (v) Reciprocal of density i.e. s¼ 1/r. Units m3/kg

(in3/lb)
Dynamic viscosity (m) A force per unit area or shear stress of a fluid.

Units Ns/m2 (lbf.s/ft2)
Kinematic viscosity (n) A ratio of dynamic viscosity to density

i.e. n¼m/r. Units m2/s (ft2/s)
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9.1.3 Changes of state
When a perfect gas changes state its behaviour approximates to

pvn ¼ Constant

where n is known as the polytropic exponent.

Figure 9.1 shows the four main changes of state relevant to

aeronautics; isothermal, adiabatic, polytropic, and isobaric.

9.1.4 Compressibility
The extent to which a fluid can be compressed in volume is

expressed using the compressibility coefficient b.

b ¼ Dv=v
Dp

¼ 1

K

where

DV ¼ change in volume

v ¼ initial volume

Dp ¼ change in pressure

K ¼ bulk modulus

Figure 9.1
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Also

K ¼ r
Dr
Dr

¼ r
dp

dr

and

a ¼
ffiffiffiffiffi
dp

dr

s
¼

ffiffiffiffi
K

r

s
where

a ¼ the velocity of propagation of a pressure wave in the

fluid.

9.1.5 Fluid statics
Fluid statics is the study of fluids that are at rest (i.e. not flowing)

relative to the vessel containing them. Pressure has four impor-

tant characteristics:

. pressure applied to a fluid in a closed vessel (such as a

hydraulic ram) is transmitted to all parts of the closed vessel

at the same value (Pascal’s law);
. magnitude of pressure force acting at any point in a static fluid

is the same, irrespective of direction;
. pressure force always acts perpendicular to the boundary

containing it;
. the pressure ‘inside’ a liquid increases in proportion to its

depth.

Other important static pressure statements are:

. absolute pressure ¼ gauge pressure þ atmospheric pressure;

. pressure (p) at depth (h) in a liquid is given by p¼ rgh;

. a general equation for a fluid at rest is

pdA� pþ dp

dz
� dz

� �
dA�rg dA dz ¼ 0

This relates to an infinitesimal vertical cylinder of fluid.

9.2 Flow equations
Flow of a fluid may be one dimensional (1-D), two dimensional

(2-D), or three dimensional (3D), depending on the way in

which the flow is constrained.
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9.2.1 One-dimensional flow
One-dimensional flow has a single-direction coordinate x and a

velocity in the direction of v. Flow in a pipe or tube is generally

considered one-dimensional. The equations for 1-D flow are de-

rived by consideringflowalonga straight-stream tube (seeFig. 9.2).

Table 9.2 shows the principles, and their resulting equations.

Figure 9.2
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9.2.2 Two-dimensional flow
Two-dimensional flow (as in the space between two parallel flat

plates) is that in which all velocities are parallel to a given plane.

Either rectangular (x, y) or polar (r, u) coordinates may be used

to describe the characteristics of 2-D flow. Figure 9.3 and

Table 9.3 show the fundamental equations.

Table 9.2 Fluid principles

Law Basis Resulting equations

Conservation
of mass

Matter (in a stream tube
or anywhere else)
cannot be created or
destroyed.

rvA¼ constant

Conservation
of momentum

The rate of change of
momentum in a given
direction¼ algebraic
sum of the forces acting
in that direction
(Newton’s second law
of motion).

ð ffiffiffiffiffi
dp

r

s
þ 1=2 v2 þ gz ¼ constant

This is Bernoulli’s equation.

Conservation
of energy

Energy, heat, and work
are convertible into
each other and are in
balance in a steadily
operating system.

cpT þ v2

2
¼ constant for an

adiabatic (no heat transferred)
flow system.

Equation of
state

Perfect gas state: p/
rT¼R and the first law
of thermodynamics

p¼ krg k¼ constant
y¼ ratio of specific
heat cp/cv
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Figure 9.3
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Table 9.3 Two-dimensional flow: fundamental equations

Basis The equation Explanation

Laplace’s equation q2f
qx2

þ q2f
qy2

¼ 0 ¼ q2c
qx2

þ q2c
qy2

or

r2f ¼ r2c ¼ 0

where

r2 ¼ q2

qx2
þ q2

qy2

A flow described by a
unique velocity potential
is irrational.

Equation of motion in 2-D qu
qt

þ u
qu
qx

þ v
qu
qy

¼ 1

r

�
Y� qp

qx

�

qv
qt

þ u
qy
qx

þ v
qv
qt

¼ 1

r

�
Y� qp

qy

�
The principle of
force¼mass�
acceleration (Newton’s
law of motion) applies to
fluids and fluid particles.

Equation of continuity in 2-D
(incompressible flow)

qu
qx

þ qv
qy

¼ 0 or in polar

qn

r
þ qqn

qr
þ 1

r

qqt
qu

¼ 0

If fluid velocity increases
in the x direction, it must
decrease in the y
direction (see Fig. 9.3)

Equation of vorticity
qv
qx

þ qu
qy

¼ § or, in polar

§ ¼ qt

r
þ qqt

qr
� 1

r

qqn
qu

A rotating or spinning
element of fluid can be
investigated by assuming
it is a solid. (See Fig. 9.4)

Stream function c
(incompressible flow)

Velocity at a point is given by

u ¼ qc
qy

v ¼ � qc
qx

c is the stream function.
Lines of constant c give
the flow pattern of a fluid
stream (See Fig. 9.5)

Velocity potential w
(irrotational 2-D flow)

Velocity at a point is given by

u ¼ qf
qx

v ¼ � qf
qy

w is defined as

f ¼ Ð
op
q cos b ds

(See Fig. 9.6)

Figure 9.4
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Figure 9.5

Figure 9.6
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9.2.3 The navier–stokes equations
The Navier–Stokes equations are written as

r

�
qu
qt

þ u
qu
qx

þ v
qu
qy

�
¼ rX� qp

qx
þ m

�
q2u
qx2

þ q2u
qy2

�

r

�
qv
qt

þ u
qv
qx

|fflfflfflfflffl{zfflfflfflfflffl}
Inertia term

þv
qv
qy

|{z}
Body
Force
Term

�
¼ rY� qp

qy

|fflfflfflffl{zfflfflfflffl}
Pressure
term

þm
�
q2v
qx2

þ q2v
qy2

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous term

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

9.2.4 Sources and sinks
A ‘source’ is an arrangement in which a volume of fluid (þ q)

flows out evenly from an origin toward the periphery of

an (imaginary) circle around it. If q is negative, such a point

is termed a sink (see Fig. 9.7). If a source and sink of

equal strength have their extremities infinitesimally close to

each other, while increasing the strength, this is termed a

‘doublet’.

9.3 Flow regimes
9.3.1 General descriptions
Flow regimes can generally be described as follows (see

Fig. 9.8):

. Steady flow Flow parameters at any point do not vary with

time (even though they may differ between points).
. Unsteady flow Flow parameters at any point vary with time.
. Laminar flow Flow that is generally considered smooth, i.e.

not broken up by eddies.
. Turbulent flow Non-smooth flow in which any small distur-

bance is magnified, causing eddies and turbulence.
. Transition flow The condition lying between laminar and

turbulent flow regimes.
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Figure 9.7
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Figure 9.8
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9.3.2 Reynolds number
Reynolds number is a dimensionless quantity that determines

the nature of flow of fluid over a surface.

Renolds number ðReÞ ¼ Inertia forces

Viscous forces
¼ rVD

m
¼ VD

n

where

r ¼ density

m ¼ dynamic viscosity

n ¼ kinematic viscosity

V ¼ velocity

D ¼ effective diameter

. Low Reynolds numbers (below about 2000) result in laminar

flow.
. High Reynolds numbers (above about 2300) result in turbu-

lent flow.
. Values of Re for 2000 < Re < 2300 are generally considered

to result in transition flow. Exact flow regimes are difficult to

predict in this region.

9.4 Boundary layers
9.4.1 Definitions
. The boundary layer is the region near a surface or wall where

the movement of the fluid flow is governed by frictional

resistance.
. The main flow is the region outside the boundary layer which

is not influenced by frictional resistance and can be assumed

to be ‘ideal’ fluid flow.
. Boundary layer thickness: it is convention to assume that the

edge of the boundary layer lies at a point in the flowwhich has

a velocity equal to 99 per cent of the local mainstream

velocity.

9.4.2 Some boundary layer equations
Figure 9.9 shows boundary layer velocity profiles for dimen-

sional and non-dimensional cases. The non-dimensional case is
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used to allow comparison between boundary layer profiles of

different thickness.

u ¼ velocity parallel to the surface

y ¼ perpendicular distance from the surface

d ¼ boundary layer thickness

U1 ¼ mainstrean velocity

�u ¼ velocity parameters u/U1

Boundary layer equations of turbulent flow:

r �u
q�u
qx

þ q�u
qy

0
@

1
A ¼ � q�p

qx
þ qt

qy

t ¼ m
q�u
qy

�ru
0
v
0

q�p
qx

¼ 0

q�u
qx

þ q�v
qy

¼ 0

Figure 9.9
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9.5 Isentropic flow
For flow in a smooth pipe with no abrupt changes of section:

continuity equation
dr

r
þ du

u
þ dA

A
¼ 0

equation of momentum conservation �dp A ¼ Aruð Þdu
isentropic relationship p ¼ cpk

sonic velocity a2 ¼ dp

dr

These lead to an equation being derived on the basis of mass

continuity i.e.

dr

r
¼ �M2 du

u

or

M2 ¼ � dr

r

�
du

u
Table 9.4 shows equations relating to convergent and conver-

gent–divergent nozzle flow.

9.6 Compressible one-dimensional flow
Basic equations for 1-D compressible flow are given

below.

Table 9.4 Isentropic flows

Pipe flows �dp

r

�
du

u
¼ M2

Convergent nozzle
flows

Flow velocity u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
k

k�1

��
p0

r0

�
1�

r
k�1

k

p0

2
64

3
75

vuuuut
Flow rate m ¼ ruA

Convergent–divergent
nozzle flow

Area ratio
A

A*
¼

2
kþ1

� � 1
ðk�1Þ p0

p

� �1=k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1
k�1

1� p0
ð1�kÞ

k

p

	 
s
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Euler’s equation of motion in the steady state along a

streamline

1

r

dp

ds
þ d

ds

1

2
u2

� �
¼ 0

or ð
dp

r
þ 1

2
u2 ¼ constant

so

k

k�1
RT þ 1

2
u2 ¼ constant

po

p
¼

�
To

T

�k=ðk�1Þ
¼

�
1þ k�1

2
M2

�k=ðk�1Þ

where To¼ total temperature

9.7 Normal shock waves
9.7.1 One-dimensional flow
A shock wave is a pressure front that travels at speed through a

gas. Shock waves cause an increase in pressure, temperature,

density and entropy and a decrease in normal velocity.

Equations of state and equations of conservation applied to a

unit area of shock wave give (see Fig. 9.10).

Figure 9.10
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State p1=r1T1�1 ¼ p2=r2T2

Mass flow _m ¼ r1u1 ¼ r2u2

Momentum p1 þ r1u
2
1 ¼ p2 þ r2u

2
2

Energy cpT1 þ u21
2
¼ cpT2 þ u22

2
¼ cpT0

Pressure and density relationships across the shock are given by

the Rankine–Hugoniot equations

p2

p1
¼

g þ 1

g�1

r2
r1

�1

g þ 1

g�1
� r2
r1

p2

p1
¼

g þ 1

g�1

p2

p1
þ 1

g þ 1

g�1
þ p2

p1

Static pressure ratio across the shock is given by

p2

p1
¼ 2gM2

2� g�1ð Þ
g þ 1

Temperature ratio across the shock is given by

T2

T1
¼ p2

p1

�
r2
r1

T2

T1
¼

�
2gM2

1�ðg�1Þ
g þ 1

��
2þ ðg�1ÞM2

1

ðg þ 1ÞM2
1

�

Velocity ratio across the shock is given by

From continuity

u2=u1 ¼ r1=r2

so

u2

u1
¼ 2þ ðg�1ÞM2

1

ðg þ 1ÞM2
1
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In axisymmetric flow the variables are independent of u so the

continuity equation can be expressed as

1

R2

qðR2qRÞ
qR

þ 1

R sin w

qðsin w qwÞ
qw

¼ 0

Similarly in terms of stream function c

qR ¼ 1

R2 sin w

qc
qw

qw ¼ � 1

R sin w

qc
qR

9.7.2 The pitot tube equation
An important criterion is the Rayleigh supersonic pitot tube

equation (see Fig. 9.11).

Pressure ratio
p02

p1
¼

gþ1
2
M2

1

� �g=ðg�1Þ

2gM2
1
�ðg�1Þ
gþ1

h i1=ðg�1Þ

Figure 9.11
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9.8 Axisymmetric flows
Axisymmetric potential flows occur when bodies such as cones

and spheres are aligned into a fluid flow. Figure 9.12 shows

the layout of spherical coordinates used to analyse these types

of flow.

Relationships between the velocity components and potential

are given by

qR ¼ qf
qR

qu ¼ 1

R sin w

qf
qu

qw ¼ 1

R

qf
qw

9.9 Drag coefficients
Figures 9.13(a) and (b) show drag types and ‘rule of thumb’

coefficient values.

Figure 9.12
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Figure 9.13(a)

Figure 9.13(b)
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9.10 General airfoil theory
When an airfoil is located in an airstream, the flow divides at the

leading edge – the stagnation point. The camber of the airfoil

section means that the air passing over the top surface has further

to travel to reach the trailing edge than that travelling along the

lower surface. In accordancewith Bernoulli’s equation the higher

velocity along the upper airfoil surface results in a lower pressure,

producing a lift force. The net result of the velocity differences

produces an effect equivalent to that of a parallel air stream and a

rotational velocity (‘vortex’), see Figures 9.14 and 9.15.

Figure 9.14
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For the case of a theoretical finite airfoil section, the pressure

on the upper and lower surface, tries to equalize by flowing

around the tips. This rotation persists downstream of the wing

resulting in a long ‘U’-shaped vortex (see Fig. 9.14). The

generation of these vortices needs the input of a continuous

supply of energy, the net result being to increase the drag of the

wing, by the addition of so-called ‘induced’ drag.

9.11 Airfoil coefficients
Lift, drag, and moment (L, D,M) acting on an aircraft wing are

expressed by the equations:

Lift Lð Þ per unit width ¼ CLl
2 rU

2

2

Drag Dð Þ per unit width ¼ CDl
2 rU

2

2

Moment Mð Þ about leading
edge LEð Þ or 1=4 chord ¼ CMl

2 rU
2

2
per unit width:

The lift, drag, and moment coefficients are CL, CD, and CM

respectively. Figure 9.16 shows typical values plotted against the

angle of attack, or incidence a. The value ofCD is small so a value

of 10CD is often used for the characteristic curve.CL rises towards

Figure 9.15
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Figure 9.16
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stall point and then falls off dramatically, as the wing enters the

stalled condition. CD rises gradually, increasing dramatically after

the stall point. Other general relationships are outlined below.

. As a rule of thumb, a Reynolds number of ReD106 is

considered a general flight condition.
. Maximum CL increases steadily for Reynolds numbers be-

tween 105 and 107.
. CD decreases rapidly up to Reynolds numbers of approxi-

mately 106, beyond which the rate of change reduces.
. Thickness and camber both affect the maximum CL that can

be achieved. As a general rule, CL increases with thickness

and then reduces again as the airfoil becomes even thicker. CL

generally increases as camber increases. The minimum CD

achievable increases fairly steadily with section thickness.

9.12 Pressure distributions
The pressure distribution across an airfoil section varies with the

angle of attack a. Figure 9.17 shows the effect as a increases,

and the notation used. The pressure coefficient Cp reduces

towards the trailing edge.

9.13 Aerodynamic centre
The aerodynamic centre (AC) is defined as the point in the

section about which the pitching moment coefficient (CM) is

constant i.e. does not vary with lift coefficient (CL). Its theoreti-

cal positions are indicated in Table 9.5.

Using common approximations, the following equations can

be derived

xAC

c
¼ 9

c
� d

dCL

CMað Þ

where

Table 9.5 Position of aerodynamic centre

Condition Theoretical position of the AC

a<10 degrees At approx 1/4 chord somewhere
near the chord line

Section with high aspect ratio At 50% chord
Flat or curved plate: inviscid,
incompressible flow

At approx 1/4 chord
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CMa ¼ pitching moment coefficient at distance a back

from LE.

xAC ¼ position of AC back from LE.

c ¼ chord length.

9.14 Centre of pressure
The centre of pressure (CP) is defined as the point in the section

about which there is no pitching moment, i.e. the aerodynamic

forces on the entire section can be represented by a lift and drag

force acting at this point. The CP does not have to lie within the

airfoil profile and can change location, dependingon themagnitude

of the lift coefficient CL. The CP is conventionally shown at

distance kCP back from the section leading edge (see Fig. 9.18).

Figure 9.17
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Using the principle of moments the following expression can

be derived for kCP

kCP ¼ xAC

c
� CMAC

CL cos aþ CD sin a

Assuming that cos aD1 and CD sin aD0 gives

kCPD
xAC

c
�CMAC

CL

9.15 Supersonic conditions
As an aircraft is accelerated to approach supersonic, speed the

equations of motion that describe the flow change in character.

In order to predict the behaviour of airfoil sections in upper

subsonic and supersonic regions, compressible flow equations

are required.

9.15.1 Basic definitions

M ¼ Mach number

M¥ ¼ free stream Mach number

Figure 9.18
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Mc ¼ critical Mach number, i.e. the value of M¥ that

results in flow of M¼ 1 at some location on the

airfoil surface.

Figure 9.19 shows approximate forms of the pressure distri-

bution on a two-dimensional airfoil around the critical region.

Owing to the complex non-linear form of the equations of

motion that describe high-speed flow, two popular simplifica-

tions are used: the small perturbation approximation and the so-

called exact approximation.

Figure 9.19
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9.15.2 Supersonic effects on drag
In the supersonic region, induced drag (due to lift) increases in

relation to the parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�1

p
and is a function of the plan

form geometry of the wing.

9.15.3 Supersonic effects on aerodynamic
centre (AC)

Figure 9.20 shows the location of wing AC for several values of

tip chord/root chord ratio (l). These are empirically based

results that can be used as a ‘rule of thumb’.

9.16 Wing loading: semi-ellipse assumption
The simplest general loading condition assumption for sym-

metric flight is that of the semi-ellipse. The equivalent equations

for lift, downwash, and induced drag become:

For lift

L ¼ r
VK0ps

2

replacing L by CL
1/2rV

2S gives

K0 ¼ CLVS

ps

For downwash velocity (w)

w ¼ K0

4S
i:e: it is constant along the span:

For induced drag (vortex)

CDV
¼ C2

L

pAR

where aspect ratio

ARð Þ ¼ span2

area
¼ 4s2

S

Hence, CDv falls (theoretically) to zero as aspect ratio increases.

At zero lift in symmetric flight, CDv¼ 0.
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Figure 9.20
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