Centrifugal Pumps (Newtonian Liquids)

800.0 Appendix

801.0 Nomenclature

Term	Symbol	Customary	S.I. Units		
		Units			
Area	Α	ft ²	m ²		
Impeller Diameter	D	inches	m		
Voltage	E	volts	V		
Pump Efficiency	Eff	%	%		
Local Gravitational Acceleration	g	ft/sec ²	m/sec ²		
Total Head	H	feet of liquid	m of liquid		
Total Discharge Head	h _d	feet of liquid	m of liquid		
Discharge Friction Head	h _{fd}	feet of liquid	m of liquid		
Suction Friction Head	h _{fs}	feet of liquid	m of liquid		
Total Suction Lift	h _{gs}	feet of liquid	m of liquid		
Power	Hp	horsepower	kW		
Pressure Head	h _p	feet of liquid	m of liquid		
Suction Surface Pressure	h _{ps}	feet of liquid	m of liquid		
Suction Surface Pressure Absolute	h _{psa}	psia	kPa		
Total Suction Head	h _s	feet of liquid	m of liquid		
Static Discharge Head	h _{sd}	feet of liquid	m of liquid		
Static Suction Head	h _{ss}	feet of liquid	m of liquid		
Velocity Head	h_{ν}	ft of liquid	m of liquid		
Discharge Velocity Head	h _{vd}	feet of liquid	m of liquid		
Vapor Pressure	h _{vpa}	psia	kPa		
Suction Velocity Head	h _{vs}	feet of liquid	m of liquid		
Current	Ι	amps	Α		
Length	L	ft	m		
Speed of Rotation	n	rpm	rad/sec		
Net Positive Suction Head Available	NPSH _A	ft of liquid	m of liquid		
Net Positive Suction Head Required	NPSH _R	ft of liquid	m of liquid		
Suction Pressure	P ₁	psig	kPa		
Discharge Pressure	P ₂	psig	kPa		
Power Factor	Pf	dimensionless	dimensionless		
Gauge Pressure	P _g	psig	kPg		
Hydraulic Power	Pw	horsepower	kW		
Capacity of Pump	Q	gpm	m ³ /sec		
Specific Gravity	S	dimensionless	dimensionless		
Temperature	Т	°F	°C		
Velocity	v	ft/sec	m/sec		
Work	W	ft lb/ lb	Joules/ Kg		
Datum Correction Discharge	Z _d	feet of liquid	m of liquid		
Datum Correction Suction	Zs	feet of liquid	m of liquid		
Specific Weight (Mass)	γ	lb/ft ³	kg/m3		
Viscosity	μ	centipoise	Pa		

802.0 Sample Test Results

The example problem is shown to demonstrate calculations needed to establish various pump characteristics at a single operating point. When complete performance curves are required, several points must be determined.

802.1 System Configuration See Figure 802.1

Figure 802.1 System Schematic

802.2 Sample Data Log Sheet Figure 802.2.1 is an example of a log sheet used to assemble data, which will be used in the sample calculation. Sample calculation is based on only one flow condition (1000 gpm). All other flow conditions will be taken from Figure 802.2.2.

Figure 802.2.1 Vendor Supplied Pump Curve

802.3 Flow Measurement was determined by measuring the difference in level in the discharge tank over a time period.

802.4 *Power for Sample Problem* The power factor shown in the data was obtained from the motor manufacturer's typical values for the type and size motor. The motor efficiency was obtained in the same manner.

RECORD OF PUMP TEST

1													Mark each pump	o with test n	umber
MANUFACTURER DISCHARGE DIAMETER			SUCTION DIAMETER				IMPELLER DIAMETER			TEST NO.					
BRAN	ND X	3"			4"				12"				1		
MODEL	DEL DESCRIPTION LIQUID TEMP.			BAROMETRIC PRE			SSURE	s	SPECIFIC GRAVITY			DATE			
		100° I				14.7		0.9944			11-17-2001				
MANUF	MANUFACTURER SERIAL NO. G.P.M. AT			FT. TOTAL HEAD		>	VAPOR PRESSURE VISCOSITY		SITY -	TESTED BY					
	1000		o		98			0.947 1 cp							
MOTOR (DRIVER)			MOTOR SPEED							1	LINE VOLTAGE				
40.0	HP MOTOR				175	0 RPM						460 VOLTS			
EFFICIE	EFFICIENCY % POWER FACTOR				CYCLES/HERTZ PHAS			ASE							
90		0.8	75		60			3							
]		1		T	r		1	1	T		· · · · · · · · · · · · · · · · · · ·		I	1	
RATE	P1	P ₂	Zd	ĺ	Z _s	;	[[1		ĺ	
OF	SUCTION	DISCHARGE	DISCHARGE	iA.	SUCTIO	NGA.	TOTAL	POWER	BRAKE	PUMP	CORRECTED	CORRECTED	CORRECTED	WATER	PUMP
FLOW	PRESSURE GA.	PRESSURE GA.	CORRECTIO	N	CORREC	CTION	HEAD	INPUT	H.P.	SPEED	FLOW	HEAD	B.H.P.	H.P.	EFF.
GPM	PSIA	PSIA	FEET		FEE	T	FEET	AMPS	HP	RPM	GPH	FEET	HP	WHP	%
0	11	68	3.0		1.0		135	18	15	1750	None	None	None	0	0
500	10.5	63			I		125	26.2	21.6	1745				15.8	73
800	10	57					112	31	27.6	1749				22.6	82
1000*	9.0	49	ļ				96	36	30	1750				24.9	83
1100	8.5	46					90	37	30.8	1747				25	81
1200	8	42					80	37.3	31.1	1752				24.3	78
1400	7						55	39	32.4	1750				19.4	60
1500	6.3	22			\checkmark		40	41.5	34.4	1753				15.1	44

REMARKS: Piping:

Suction — 6" SCH 40 STEEL Discarge — 6" SCH 40 STEEL

* Condition used in sample calculation, Sec. 803.0

Figure 802.2.2 Recording Sheet for Pump Test

803.0 Sample Calculations (Dual Units)

U.S. Customary Units Pressure Head

$$h_{p} = \frac{P_{g} \frac{lb_{f}}{ft^{2}} 32.2 \frac{lb_{m}ft}{lb_{f} \sec^{2}}}{\gamma \frac{lb_{m}}{ft^{3}} g \frac{ft}{\sec^{2}}}$$

(144)
$$P_g$$
 (PSIA) = P_g (lb_f / ft²)
(62.4) s = γ (lb_m / ft³)
g = 32.2 (ft / sec²)
 $h_p = 2.31 \frac{P_g$ (PSIA)}{s} ft

Flow Rate

Q = 1000 gal / min

Static Suction Head, h_{ss} P₁ = 9 PSIA $h_{ss} = 2.31 \frac{P_1(\text{PSIA})}{\text{s}} \text{ft}$ s = 0.9944 $h_{ss} = 2.31 (9) / (0.9944)$ = 20.91 feet Static Discharge Head, h_{sd} $P_2 = 49.3 \text{ PSIA}$

$$h_{sd} = 2.31 \frac{P_2(\text{PSIA})}{\text{s}} \text{ft}$$

 $h_{sd} = 2.31 (49.3) / (0.9944)$ = 114.52 ft

<u>S.I. Units</u> Pressure Head

$$h_p = \frac{P_g \frac{N}{m^2} 1 \frac{kg m}{N \sec^2}}{\gamma \frac{kg}{m^3} g \frac{m}{\sec^2}}$$

(1000)
$$P_{g}$$
 (kPa) = P_{g} (N / m²)
(1000) s = γ (kg / m³)
g = 9.807 (m / sec²)
 $h_{p} = 0.102 \frac{P_{g}$ (kPa)}{s} meters

Flow Rate

$$Q = 1000 \frac{\text{gal}}{\text{min}} \frac{0.003785 \text{ m}^3}{\text{gal}} \frac{60 \text{ min}}{\text{hr}}$$
$$= 227.1 \text{ m}^3 / \text{hr}$$
Static Suction Head, h_{ss}

$$P_{1} = 9 \text{ PSIA} \frac{}{\text{PSIA}}$$

$$= 62.05 \text{ kPa}$$

$$h_{ss} = 0.102 \frac{P_{1}(\text{kPa})}{\text{s}} \text{ meters}$$

$$s = 0.9944$$

$$h_{ss} = 0.102 (62.05) / (0.9944)$$

= 6.36 meters
Static Discharge Head, h_{sd}

$$P_{2} = 49.3 \text{ PSIA} \frac{6.894 \text{ kPa}}{\text{PSIA}}$$
$$= 339.87 \text{ kPA}$$
$$h_{sd} = 0.102 \frac{P_{2}(\text{kPa})}{\text{s}} \text{ meters}$$

 $h_{sd} = 0.102 (339.87) / (0.9944)$ = 34.86 meters

U.S. Customary Units

Suction Velocity Head, h_{vs}

$$h_{vs} = \frac{V^2}{2g}$$
 for 6" line
V = 11.1 ft / sec

$$h_{vs} = \frac{(11.1 \text{ ft / sec})^2}{2 (32.17 \text{ ft / sec}^2)}$$

= 1.91 ft

Discharge Velocity Head, h_{VS}

$$h_{vd} = \frac{V^2}{2g} \text{ for 6" line}$$
$$V = 11.1 \text{ ft / sec}$$

$$h_{vd} = \frac{(11.1 \text{ ft / sec})^2}{2 (32.17 \text{ ft / sec}^2)}$$
$$= 1.91 \text{ ft}$$

Datum Correction Suction, Z_s

 $Z_{s=1 \text{ ft}}$

Datum Correction Discharge, Z_d

 $Z_{d=3 \text{ ft}}$ Vapor Pressure, h_{vpa}

$$h_{vpa} = 0.947 \text{ PSIA}$$

$$h_{vp} = 2.31 \frac{P_{vpa}(\text{PSIA})}{\text{s}} \text{ft}$$

 $h_{vp} = 2.31 (0.947) / (0.9944)$ = 2.199 ft

Total Suction Head, h_s

 $h_{s} = h_{ss} + Z_{s} + h_{vs}$ = 20.91 + 1.0 + 1.91 = 23.82 ft

<u>S.I. Units</u>

Suction Velocity Head, h_{vs}

$$h_{vs} = \frac{V^2}{2g}$$

 $V = 11.1 \text{ (ft / sec) } (0.3048 \text{ m / ft})$
 $= 3.38 \text{ m / sec}$
 $h_{vs} = \frac{(3.38 \text{ m / sec})^2}{2 (9.807 \text{ m / sec}^2)}$
 $= 0.584 \text{ m}$

Discharge Velocity Head, h_{VS}

 $h_{vd} = \frac{V^2}{2g}$ V = 11.1 (ft / sec) (0.3048 m / ft) = 3.38 m / sec

$$h_{vd} = \frac{(3.38 \,\mathrm{m \,/ \, sec})^2}{2 \ (9.807 \,\mathrm{m \,/ \, sec}^2)}$$

= 0.584 mDatum Correction Suction, Z_s

 $Z_s = 1$ ft (0.3048 m / ft) = 0.3048 m Datum Correction Discharge, Z_d

 $Z_d = 3 \text{ ft } (0.3048 \text{ m / ft}) = 0.91 \text{ m}$ Vapor Pressure, h_{vpa}

 $h_{vpa} = 0.947 \text{ PSIA} (6.894 \text{ kPa/PSIA})$ = 6.529 kPa

$$h_{vp} = 0.102 \frac{P_{vpa}(\text{kPa})}{\text{s}}$$
 meters

 $h_{vp} = 0.102 (6.529) / (0.9944)$ = 0.670 m

Total Suction Head, h_s

 $h_s = h_{ss} + Z_s + h_{vs}$ = 6.36 + 0.3048 + 0.548 = 7.248 m

U.S. Customary Units

Total Disharge Head, h_d

$$h_d = h_{sd} + Z_d + h_{vd}$$

= 114.52 + 3 + 1.91
= 119.43 ft

Total Head, H

$$H = h_d - h_s$$

= 119.43 - 23.82
= 95.61 ft

Driven Horsepower

$$Hp = \frac{\sqrt{3} \text{ E I Pf Eff}}{746 \text{ W hp}}$$
$$= \frac{\sqrt{3}(460)(36)(0.875)(0.90)}{746 \text{ W hp}}$$

$$P_{w} = Q H \gamma$$

$$Q = 1000 \text{ gal / min (ft3 / 7.48 \text{ gal})}$$

$$= 133.7 \text{ ft}^{3} / \text{min}$$

$$= 2.228 \text{ ft}^{3} / \text{sec}$$

$$H = 95.51 \text{ ft}$$

$$\gamma = 0.9944 (62.4 \text{ lb / ft}^{3})$$

$$=$$
 62.05 lb / ft³

$$P_{w} = (2.228)(95.51)(62.05)$$
$$= \frac{13204 \text{ ft lb / sec}}{550 (\text{ft lb / sec}) / \text{hp}}$$
$$= 24.01 \text{ hp}$$

S.I. Units

Total Disharge Head, h_s

 $h_d = h_{sd} + Z_d + h_{vd}$ = 34.86 + 0.91 + 0.584 = 36.36 m

Total Head, H

$$H = h_d - h_s$$

= 36.36 - 7.248
= 29.11 m

Driven Horsepower

Hp = $\sqrt{3}$ E I Pf Eff = $\sqrt{3}(460)(36)(0.875)(0.90)$ = 22588 W = 22.59 kW

Hydraulic Power

$$P_{w} = Q H \gamma g$$

$$Q = 227.1 \text{ m}^{3} / \text{ hr (hr / 3600 sec)}$$

$$= 0.06308 \text{ m}^{3} / \text{ sec}$$

$$H = 29.10 \text{ m}$$

$$\gamma = 0.9944 (1000 \text{ kg / m}^{3})$$

$$= 994.4 \text{ kg m}^{3}$$

$$g = 9.807 \text{ m / s}^{2}$$

$$P_{w} = (0.06308) (29.10) (994.4) (9.807)$$

$$= 17901 \text{ kg m}^{2} \text{ s}^{3}$$

$$= 17.90 \text{ k W}$$

U.S. Customary Units

Efficiency

$$Eff = \frac{P_w}{H_p} (100\%)$$
$$= \frac{24.01 \text{ hp}}{30.28 \text{ hp}} (100\%)$$
$$79.3\%$$

S.I. Units

Efficiency

$$Eff = \frac{P_{w}}{H_{p}} (100\%)$$
$$= \frac{17.90 \text{ kw}}{22.59 \text{ kw}} (100\%)$$
$$79.3\%$$

NPSH_A

NPSH_A

NPSH _A =	$h_{ss} + Z_s - h_{vp}$	$NPSH_A =$	$h_{ss} + Z_s - h_{vp}$
=	20.91 + 1 - 2.199	-	6.36 + 0.3048 - 0.670
=	19.7 ft	=	5.99 m

804.0 Related Calculations

The following calculations can be used to determine conditions, which affect pump performance.

804.1 Net Positive Suction Head Available, $NPSH_A$ should be compared with Net Positive Suction Head Required. $NPSH_R$ from the pump manufacturer's curve or data. Insufficient head can cause pumping problems.

804.2 *Effects of Speed and Impeller Diameter* The effects of minor changes in speed or impeller diameter can be computed when test conditions vary from published data.

804.2.1 Constant Speed Capacity varies in direct proportion to the impeller diameter:

$$Q_2 = Q_l \left(\frac{D_2}{D_1}\right)$$

Total Head varies as the square of the ratio of the impeller diameters:

$$H_2 = H_1 \left(\frac{D_2}{D_1}\right)^2$$

Horsepower varies as the cube of the impeller diameter ratio:

$$Hp_2 = Hp_1 \left(\frac{D_2}{D_1}\right)^3$$

804.2.2 Constant Impeller Diameter Capacity varies in direct proportion to the speed:

$$Q_2 = Q_1 \left(\frac{n_2}{n_1}\right)$$

Total Head varies as the square of the ratio of the speeds:

$$H_2 = H_l \left(\frac{n_2}{n_1}\right)^2$$

Horsepower varies as the cube of the speed ratio:

$$Hp_2 = Hp_1 \left(\frac{n_2}{n_1}\right)^3$$

804.2.3 Where:

 $D = Impeller \ Diameter$ H = HeadQ = Capacity $n = Rotational \ Speed$ Hp = Power

805.0 References

- 805.1 Hydraulic Institute Standards available from Hydraulic Institute, 9 Sylvan Way, Parsippany, NJ 07054-3802
- 805.2 Cameron Hydraulic Data, 18th Edition: Copyright 1996, Available from Ingersoll-Rand Co., Woodcliff Lake, NJ 07675.
- 805.3 American National Standards ASME Centrifugal Pumps Performance Test Code. PTC 8.2. available from American Society of Mechanical Engineers, United Engineering Center, 3 Park Avenue, New York, NY 10016-5901.
- 805.4 American National Standards ASME Centrifugal/ Vertical Pumps; Allowable Operating Region 9.6.3. Available from American Society of Mechanical Engineers, United Engineering Center, 3 Park Avenue, New York, NY 10016-5901.