Handbook of Electrical Engineering

Handbook of Electrical Engineering: For Practitioners in the Oil, Gas and Petrochemical Industry. Alan L. Sheldrake © 2003 John Wiley & Sons, Ltd ISBN: 0-471-49631-6

Handbook of Electrical Engineering

For Practitioners in the Oil, Gas and Petrochemical Industry

Alan L. Sheldrake Consulting Electrical Engineer, Bangalore, India

Copyright © 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Sheldrake, Alan L.
Handbook of electrical engineering : for practitioners in the oil, gas, and petrochemical industry / Alan L. Sheldrake.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-49631-6 (alk. paper)
1. Electric machinery–Handbooks, manuals, etc. 2. Petroleum engineering–Equipment and supplies–Handbooks, manuals, etc. I. Title.
TK2000.S52 2003

621.31'042-dc21

2002192434

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-49631-6

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. This book is dedicated to my dear wife Ilse who with great patience encouraged me to persevere with the completion of this work.

Contents

Fo	Foreword			
Pr	eface			xxi
A	Acknowledgements About the Author			xxiii
Al				XXV
1 Estimation of Plant Electrical Load				1
	1.1		Single-Line Diagrams	1
	1.2	Load Schee		2
			orked example	5
	1.3		ion of Power Supply Capacity	8
	1.4	•	pacity of Plain Cable Feeders and Transformer Feeders	12
	1.5	•	Generators in Relation to their Prime Movers	13
			eration at low ambient temperatures	13
			grading of prime movers	13
	1.6		Autors in Relation to their Driven Machines	13
	1.7		nt of Single-Line Diagrams	14
			e key single line diagram	15
	1.0		lividual switchboards and motor control centres	15
	1.8		on with other Disciplines	16
			ocess engineers	16
			echanical engineers	17
			trument engineers	17
			mmunication and safety engineers	18
		1.8.5 Fac Reference	cilities and operations engineers	18
		Reference		18
2	Gas	Turbine Driv	ven Generators	19
	2.1	Classification	on of Gas Turbine Engines	19
		2.1.1 Ae	ro-derivative gas turbines	19
		2.1.2 Lig	ght industrial gas turbines	20
		2.1.3 He	avy industrial gas turbines	20
			ngle and two-shaft gas turbines	20
			el for gas turbines	23
	2.2		ained from a Gas Turbine	23
			fect of an inefficient compressor and turbine	29
		2.2.2 Ma	aximum work done on the generator	30

		2.2.3	Variation of specific heat	31
		2.2.4	Effect of ducting pressure drop and combustion chamber	
			pressure drop	32
		2.2.5	Heat rate and fuel consumption	35
	2.3		Output from a Gas Turbine	36
		2.3.1	Mechanical and electrical power losses	37
		2.3.2	Factors to be considered at the design stage of a power plant	37
	2.4		g Methods for Gas Turbines	39
	2.5	-	Governing of Gas Turbines	39
		2.5.1	Open-loop speed-torque characteristic	39
		2.5.2		41
		2.5.3	e , e	43
		2.5.4	Load sharing between droop-governed gas turbines	44
	• •	2.5.5	Load sharing controllers	50
	2.6		matical Modelling of Gas Turbine Speed Governing Systems	52
		2.6.1	Modern practice	52
		2.6.2	Typical parameter values for speed governing systems	59
		Refere		59
		Furthe	r Reading	59
3	Sync		s Generators and Motors	61
	3.1		on Aspects Between Generators and Motors	61
	3.2	-	fied Theory of Operation of a Generator	61
		3.2.1	Steady state armature reaction	62
		3.2.2		63
		3.2.3	Sub-transient state armature reaction	63
	3.3		Diagram of Voltages and Currents	64
	3.4		erived Reactances	65
		3.4.1	Sensitivity of x_{md} , x_a , x_f and x_{kd} to changes in physical	
	~ -		dimensions	67
	3.5		and Reactive Power Delivered from a Generator	68
		3.5.1	A general case	68
		3.5.2	1 1 0	70
	2.6	3.5.3	A simpler case of a salient pole generator	71
	3.6		ower Versus Angle Chart of a Salient Pole Generator	72
	3.7		e of Voltages for Generators	73
	3.8		l Parameters of Generators	73
	3.9		uction Features of High Voltage Generators and Induction Motors	78
		3.9.1	Enclosure	78
		3.9.2	Reactances	79 70
		3.9.3	Stator windings	79
		3.9.4	Terminal boxes	80
		3.9.5	Cooling methods	80
		3.9.6	Bearings	80
		Refere	nces	81

4			tage Regulation	83
	4.1	Modern		83
			Measurement circuits	83
			Error sensing circuit	84
			Power amplifier	84
			Main exciter	88
	4.2		andard AVR Models	89
			Worked example	92
			Worked example	92
			Determining of saturation constants	93
			Typical parameter values for AVR systems	97
		Reference	ce	97
5	Indu	ction Mot		99
	5.1		e of Operation of the Three-Phase Motor	99
	5.2	Essential	l Characteristics	100
			Motor torque versus speed characteristic	100
			Motor starting current versus speed characteristic	107
			Load torque versus speed characteristic	108
			Sensitivity of characteristics to changes in resistances and reactances	109
			Worked example	109
			Typical impedance data for two-pole and four-pole induction motors	114
			Representing the deep-bar effect by two parallel branches	114
	5.3	Construction of Induction Motors		
	5.4	Derating Factors		
	5.5		g the Motor Rating to the Driven Machine Rating	121
	5.6		f the Supply Voltage on Ratings	122
	5.7		f the System Fault Level	123
	5.8		olt-drop Considerations	123
	5.9		Times for Motors	125
	5.10		of Starting Induction Motors	125
		5.10.1	Star-delta method	126
			Korndorfer auto-transformer method	126
		5.10.3	Soft-start power electronics method	127
			Series reactor method	128
			Part winding method	129
		Reference	ces	129
6	Tran	sformers		131
	6.1		g Principles	131
	6.2		cy of a Transformer	134
	6.3	Regulati	on of a Transformer	135
	6.4		nase Transformer Winding Arrangements	136
	6.5	Construc	ction of Transformers	137
		6.5.1	Conservator and sealed type tanks	139

ix

	6.6	Transformer Inrush Current	140
		References	142
7	Swit	tchgear and Motor Control Centres	143
•	7.1	Terminology in Common Use	143
	7.2	Construction	144
		7.2.1 Main busbars	144
		7.2.2 Earthing busbars	146
		7.2.3 Incoming and busbar section switching device	146
		7.2.4 Forms of separation	147
		7.2.5 Ambient temperature derating factor	149
		7.2.6 Rated normal current	149
		7.2.7 Fault making peak current	149
		7.2.8 Fundamental AC part	150
		7.2.9 DC part	150
		7.2.10 Double frequency AC part	150
		7.2.11 Fault breaking current	152
		7.2.12 Fault withstand duty	153
	7.3	Switching Devices	154
		7.3.1 Outgoing switching device for switchgear	154
		7.3.2 Outgoing switching device for motor control centres	155
	7.4	Fuses for Motor Control Centre Outgoing Circuits	156
	7.5	Safety Interlocking Devices	157
	7.6	Control and Indication Devices	158
		7.6.1 Restarting and reaccelerating of motors	158
		7.6.2 Micro-computer based systems	159
	7.7	Moulded Case Circuit Breakers	162
		7.7.1 Comparison with fuses	162
		7.7.2 Operating characteristics	163
		7.7.3 Cut-off current versus prospective current	164
		7.7.4 <i>i</i> -squared- <i>t</i> characteristic	164
		7.7.5 Complete and partial coordination of cascaded circuit breakers	165
		7.7.6 Worked example for coordination of cascaded circuit breakers 7.7.7 Cost and economics	167
			172
		References	172
8	Fuse	es	173
	8.1	General Comments	173
	8.2	Operation of a Fuse	174
	8.3	Influence of the Circuit X-to-R Ratio	174
	8.4	The I^2t Characteristic	176
		8.4.1 Worked example	179
		References	181

x

9	Cabl	es, Wire	es and Cable Installation Practices	183
	9.1	Electri	cally Conducting Materials used in the Construction of Cables	183
		9.1.1	Copper and aluminium	184
		9.1.2	Tin	184
		9.1.3	Phosphor bronze	185
		9.1.4	Galvanised steel	185
		9.1.5	Lead	186
	9.2	Electri	cally Non-Conducting Materials used in the Construction of	
		Cables		187
		9.2.1	Definition of basic terminology	187
	9.3	Compo	osition of Power and Control Cables	191
		9.3.1	Compositional notation	192
		9.3.2	Conductor	192
		9.3.3	Conductor semiconducting screen	196
		9.3.4	Insulation	196
		9.3.5	Insulation semiconductor screen	197
		9.3.6	Inner sheath	197
		9.3.7	Lead sheathing	197
		9.3.8	Armouring	198
		9.3.9	Outer sheath	198
	9.4	Curren	t Ratings of Power Cables	198
		9.4.1	Continuous load current	198
		9.4.2	Continuous rated current of a cable	199
		9.4.3	Volt-drop within a cable	209
		9.4.4	Protection against overloading current	242
	9.5	Cables	with Enhanced Performance	19 193 193 193 193 193 193 209 24 24 24
		9.5.1	Fire retardance	244
		9.5.2	Fire resistance	245
		9.5.3	Emission of toxic gases and smoke	245
		9.5.4	Application of fire retardant and fire resistant cables	246
		Refere	nce	247
10	Haza	rdous A	Area Classification and the Selection of Equipment	249

0	Haza	rdous Area Classification and the Selection of Equipment	249
	10.1	Historical Developments	249
	10.2	Present Situation	249
	10.3	Elements of Hazardous Area Classification	251
		10.3.1 Mixtures of gases, vapours and air	251
	10.4	Hazardous Area Zones	253
		10.4.1 Non-hazardous area	253
		10.4.2 Zone 2 hazardous area	253
		10.4.3 Zone 1 hazardous area	253
		10.4.4 Zone 0 hazardous area	254
		10.4.5 Adjacent hazardous zones	254

10.5	Types of Protection for Hazardous Areas	254
	10.5.1 Type of protection 'd'	255
	10.5.2 Type of protection 'e'	256
	10.5.3 Type of protection 'i'	256
	10.5.4 Type of protection 'm'	257
	10.5.5 Type of protection 'n' and 'n'	257
	10.5.6 Type of protection 'o'	258
	10.5.7 Type of protection 'p'	258
	10.5.8 Type of protection 'q'	259
	10.5.9 Type of protection 's'	259
	10.5.10 Type of protection 'de'	259
10.6	Types of Protection for Ingress of Water and Solid Particles	260
	10.6.1 European practice	260
	10.6.2 American practice	261
10.7	Certification of Hazardous Area Equipment	265
10.8	Marking of Equipment Nameplates	266
	References	266
	Further Reading	266

11	Fault	Calculations and Stability Studies	269
	11.1	Introduction	269
	11.2	Constant Voltage Source – High Voltage	269
	11.3	Constant Voltage Source – Low Voltage	271
	11.4	Non-Constant Voltage Sources – All Voltage Levels	273
	11.5	Calculation of Fault Current due to Faults at the Terminals of a Generator	274
		11.5.1 Pre-fault or initial conditions	274
		11.5.2 Calculation of fault current – rms symmetrical values	276
	11.6	Calculate the Sub-Transient symmetrical RMS Fault Current Contributions	279
		11.6.1 Calculate the sub-transient peak fault current contributions	281
	11.7	Application of the Doubling Factor to Fault Current I''_{frms} found in 11.6	287
		11.7.1 Worked example	288
		11.7.2 Breaking duty current	291
	11.8	Computer Programs for Calculating Fault Currents	292
		11.8.1 Calculation of fault current – rms and peak asymmetrical values	292
		11.8.2 Simplest case	293
		11.8.3 The circuit x-to-r ratio is known	293
		11.8.4 Detailed generator data is available	293
		11.8.5 Motor contribution to fault currents	293
	11.9	The use of Reactors	294
		11.9.1 Worked example	297
	11.10	Some Comments on the Application of IEC60363 and IEC60909	300
	11.11	Stability Studies	300
		11.11.1 Steady state stability	301
		11.11.2 Transient stability	303

		References Further Reading	308 309
12	Prote	ective Relay Coordination	311
	12.1	Introduction to Overcurrent Coordination	311
		12.1.1 Relay notation	313
	12.2	Generator Protection	313
		12.2.1 Main generators	313
		12.2.2 Overcurrent	314
		12.2.3 Differential stator current relay	318
		12.2.4 Field failure relay	319
		12.2.5 Reverse active power relay	321
		12.2.6 Negative phase sequence relay	322
		12.2.7 Stator earth fault relays	322
		12.2.8 Over terminal voltage	324
		12.2.9 Under terminal voltage	324
		12.2.10 Under- and overfrequency	325
		Emergency Diesel Generators	325
	12.4	Feeder Transformer Protection	326
		12.4.1 Overcurrent	329
		12.4.2 High-set or instantaneous current	330
		12.4.3 Characteristics of the upstream source	332
	12.5	Feeder Cable Protection	332
		12.5.1 Overcurrent protection	332
		12.5.2 Short-circuit protection	333
		12.5.3 Earth fault protection	333
	12.6	Busbar Protection in Switchboards	334
		12.6.1 Busbar zone protection	334
		12.6.2 Overcurrent protection	335
	10.7	12.6.3 Undervoltage protection	335
	12.7	High Voltage Induction Motor Protection	336
		12.7.1 Overloading or thermal image	337 339
		12.7.2 Instantaneous or high-set overcurrent12.7.3 Negative phase sequence	339
		12.7.4 Core balance earth fault	339
		12.7.5 Differential stator current	340
		12.7.6 Stalling current	340
		12.7.7 Limitation to the number of successive starts	340
		12.7.7 Emiliation to the number of successive starts 12.7.8 Undercurrent	341
		12.7.9 High winding temperature	342
		12.7.9 High bearing temperature	342
		12.7.11 Excessive vibration	342
	12.8	Low Voltage Induction Motor Protection	342
		12.8.1 Overloading or thermal image	343
		12.8.2 Instantaneous or high-set overcurrent	344

xiii

•	
VI	37
л	v

		12.8.3 Negative phase sequence	344
		12.8.4 Core balance earth fault	345
		12.8.5 Stalling current	345
		12.8.6 Limitation to the number of successive starts	345
	12.9	Low Voltage Static Load Protection	345
		12.9.1 Time-delayed overcurrent	346
		12.9.2 Instantaneous or high-set overcurrent	346
		12.9.3 Core balance earth fault	346
	12.10	Mathematical Equations for Representing Standard, Very and Extremely	
		Inverse Relays	346
		References	349
13		ing and Screening	351
	13.1	Purpose of Earthing	351
		13.1.1 Electric shock	351
		13.1.2 Damage to equipment	353
		13.1.3 Zero reference potential	353
	13.2	Site Locations	353
		13.2.1 Steel structures	354
		13.2.2 Land-based plants	354
		13.2.3 Concrete and brick-built structures	356
	13.3	Design of Earthing Systems	356
		13.3.1 High voltage systems	356
		13.3.2 Low voltage three-phase systems	357
		13.3.3 IEC types of earthing systems	360
		13.3.4 Earth loop impedance	365
		13.3.5 Earthing rods and grids	367
	13.4	Construction Details Relating to Earthing	371
		13.4.1 Frames, casings and cubicle steelwork	371
		13.4.2 Screwed and clearance hole entries	371
		13.4.3 Earthing only one end of a cable	372
	13.5	Screening and Earthing of Cables used in Electronic Circuits	373
		13.5.1 Capacitance and inductance mechanisms	373
		13.5.2 Screening against external interference	374
		13.5.3 Earthing of screens	379
		13.5.4 Screening of high frequencies	380
		13.5.5 Power earths, cubicle and clean earths	381
		References	383
14	Varia	ble Speed Electrical Drivers	385
14	14.1	Introduction	385
	1-1-1	14.1.1 Environment	386
		14.1.2 Power supply	386
		14.1.2 Fower suppry 14.1.3 Economics	380
	14.2	Group 1 Methods	388
	17,4	14.2.1 Simple variable voltage supplies	388
		14.2.1 Simple variable voltage supplies 14.2.2 Pole-changing of the stator winding	389
		17.2.2 TOR-Changing of the stator willding	309

	14.2.3 Pole amplitude modulated motors	390
	14.2.4 Wound rotor induction motors	391
14.3	Group 2 Methods	392
	14.3.1 Variable voltage constant frequency supply	392
	14.3.2 Variable frequency variable voltage supply	392
14.4	Variable Speed DC Motors	394
	Electrical Submersible Pumps	394
	14.5.1 Introduction	394
	14.5.2 Electrical submersible pump construction	395
14.6	Control Systems for AC Motors	397
	References	400
	nonic Voltages and Currents	401
15.1	Introduction	401
15.2	Rectifiers	402
	15.2.1 Diode bridges	402
	15.2.2 Thyristor bridges	404
	15.2.3 Power transistor bridges	407
	15.2.4 DC motors	407
15.3	Harmonic Content of the Supply Side Currents	413
	15.3.1 Simplified waveform of a six-pulse bridge	413
	15.3.2 Simplified commutation delay	414
	15.3.3 Fourier coefficients of the line current waveform	414
	15.3.4 Simplified waveform of a 12-pulse bridge	417
15.4	Inverters	421
	15.4.1 Basic method of operation	421
	15.4.2 Three-phase power inversion	422
	15.4.3 Induction motor fed from a voltage source inverter	423
	Filtering of Power Line Harmonics	429
15.6	Protection, Alarms and Indication	433
	References	433
	puter Based Power Management Systems	435
	Introduction	435
	Typical Configurations	435
16.3		436
	16.3.1 High-speed load shedding	436
	16.3.2 Load shedding priority table	439
	16.3.3 Low-speed load shedding	440
	16.3.4 Inhibiting the starting of large motors	441
	16.3.5 VDU display of one-line diagrams	442
	16.3.6 Active power sharing for generators	443 443
	16.3.7 Isochronous control of system frequency16.3.8 Reactive power sharing for generators	443
	16.3.8 Reactive power sharing for generators16.3.9 Isochronous control of busbar voltage	444
	16.3.10 Condition monitoring of the gas turbines	444
	16.3.11 Scheduling the starting up and shutting down of the main generators	444
	10.5.11 Seneduling the starting up and shutting down of the main generators	775

XV

		16.3.12	Control of the reacceleration of motor loads	446	
		16.3.13	Auto-synchronising of the main generators	447	
		16.3.14	Data logging, archiving, trending display, alarms, messages and		
			status reporting	448	
17	Unint		ole Power Supplies	449	
	17.1	AC Uni	interruptible Power Supplies	449	
		17.1.1	The inverter	449	
		17.1.2	Coordination of the sub-circuit rated current with the inverter		
			rated current	450	
			Earth fault leakage detection	451	
	17.2		interruptible Power Supplies	451	
			UPS battery chargers	452	
			Batteries	455	
	17.3		ancy Configurations	457	
		Referen	ces	458	
18		scellaneous Subjects			
	18.1		g Systems	459	
			Types of lighting fittings	461	
			Levels of illumination	461	
	18.2		ion Aids	463	
			Flashing marker lights	463	
			White and red flashing lights	464	
			Navigation buoys	465	
			Identification panels	465	
			Aircraft hazard lighting	465	
			Helicopter landing facilities	466	
		18.2.7		466	
			Radio direction-finder	466	
	10.2		Sonar devices	467	
	18.3	Cathodic Protection References		467	
		Referen	ces	468	
19	-		uipment Specifications	469	
	19.1		rpose of Specifications	469	
	19.2	• •	cal Format for a Specification	470	
			Introduction	471 471	
		19.2.2 19.2.3	Scope of supply Service and environmental conditions		
		19.2.5	Compliant international standards	471 471	
		19.2.4	Definition of technical and non-technical terms	471	
		19.2.5	Performance or functional requirements	471	
		19.2.0	Design and construction requirements	472	
		19.2.7	Inspection and testing	473	
		19.2.8	Spare parts	474	
			Documentation	475	
			Appendices	477	
		1/1/1	· · PP ·······························	.,,	

20 Summ	ary of tl	he Generalised Theory of Electrical Machines				
as Apj	as Applied to Synchronous Generators and Induction Motors					
		ntroduction				
		nous Generator	480 483			
		2.1 Basic mathematical transformations				
		me Notes on Induction Motors				
		3.1 Derived reactances				
		Application of three-phase short circuit	491 493 495			
		Derived reactances and time constants for an induction motor				
		Derivation of an equivalent circuit				
		'Re-iteration or recapitulation'	496			
		Contribution of three-phase short-circuit current from	501			
		induction motor	501 504			
References Further Reading						
	runner	keading	505			
Appendix	A Abb	reviations Commonly used in Electrical Documents	507			
Appendix	B A L	ist of Standards Often Used for Designing Electrical Systems and				
		Specifying Equipment	517			
		International Electro-technical Commission (Europe)	517			
		Institute of Petroleum (UK)	525			
		International Standards Organisation (Worldwide)	526			
		British Standards Institution (UK)	526			
		American Petroleum Institute (USA)	530			
		Counseil International des Grands Reseaux Electriques (France)	530			
		Engineering Equipment and Materials Users Association (UK)	530			
		Electricity Council (UK)	531			
		Verband Deutscher Electrechniker (Germany)	531 531			
		Institute of Electronic and Electrical Engineers Inc. (USA) Miscellaneous References from the UK	532			
Annendix	C Num	bering System for Protective Devices, Control and Indication				
pponum		ices for Power Systems	533			
	C.1	•				
		for Power System Circuits	533			
		C.1.1 Notes to sub-section C.1	535			
	C.2	Electrical Power System Device Numbers and Functions	536			
Appendix	D Und	er-Frequency and Over-Temperature Protection of Gas-Turbine				
	Driv	ven Generators	539			
Appendix	E List	of Document Types to be Produced During a Project	545			
	E.1	Contractors Documents	546			
		E.1.1 Feasibility studies	546			
		E.1.2 Conceptual design	546			
		E.1.3 Detail design	547			

xvii

xviii

	E.2	Manufacturers Documents	549			
		E.2.1 Feasibility studies	549			
		E.2.2 Conceptual design	549			
		E.2.3 Detail design	549			
Appendix F	Wor	ked Example for Calculating the Performance of a Gas Turbine	551			
	F.1	The Requirements and Data Given	551			
	F.2	Basic Requirements	551			
	F.3	Detailed Requirements	552			
	F.4	Basic Solutions	552			
	F.5	Detailed Solutions	553			
Appendix G	G Worked Example for the Calculation of Volt-drop in a Circuit					
	Cont	aining an Induction Motor	559			
	G.1	Introduction	559			
Appendix H		ked Example for the Calculation of Earthing Current and Electric				
	Shoc	k Hazard Potential Difference in a Rod and Grid Earthing System	585			
	H.1	Worked Example	585			
Appendix I	Conv	version Factors for the SI System of Units	597			
	I.1	Fundamental SI Units	597			
	I.2	Derived Non-electrical Units	597			
	I.3	Derived Electrical Units	598			
	I.4	Conversions	598			
		I.4.1 Length	598			
		I.4.2 Area	599			
		I.4.3 Volume	599			
		I.4.4 Mass and density	600			
		I.4.5 Velocity and acceleration	600			
	I.4.6	Force	601			
		I.4.7 Torque	601			
		I.4.8 Power	601			
		I.4.9 Energy and work	601			
		I.4.10 Pressure	602			
		I.4.11 Moment of inertia and momentum	603			
		I.4.12 Illumination	603			
		I.4.13 Electricity and magnetism	604			
		I.4.14 Miscellaneous quantities	604			
	I.5	International Standards Organisation (ISO) Conditions	605			
	I.6	Standard Temperature and Pressure (STP) Conditions	605			
	I.7	Regularly Used Constants	605			
	I.8	Regularly Used Prefixes	606			
	I.9	References	606			

Index

607

Foreword

The oil, gas and petrochemical industries depend for safe and efficient operation on their electrical supply and equipment. There have been huge advances in electrical engineering in the last 50 years and thus a need for a comprehensive book on a very sophisticated and complex subject.

When an experienced engineer is considering retirement it is very sad if all his carefully acquired knowledge disappears. I am therefore delighted that Dr Alan Sheldrake has taken the trouble to record his knowledge in this book. He covers both the design of the electrical supply and the specification of the equipment needed in modern oil, gas and petrochemical plants. The book covers generation, supply, protection, utilisation and safety for a site which is brimming with potential hazards and reliability requirements. As a consulting engineer I experienced many of the design problems that are explained here, I only wish this book had been available then for reference with its detailed explanations and specifications.

This is a book that every electrical engineer working in the petrochemical industry should have on his desk. In my time I have read many books on this subject but never one as comprehensive as this. It should be read by every young engineer and dipped into by the more experienced engineer who wants to check their designs. Students will find the theory section useful in their studies.

This book is well laid out for easy reference, contains many worked examples and has a good index for those who do not have not the time to read it from cover to cover.

Dr David A. Jones FREng FIEE FRSA MRI Past President, Institution of Electrical Engineers Former Consulting Engineer

Preface

This book can be used as a general handbook for applying electrical engineering to the oil, gas and petrochemical industries. The contents have been developed from a series of lectures on electrical power systems, given to oil company staff and university students, in various countries. The author has condensed many years of his knowledge and practical experience into the book.

The book includes summaries of the necessary theories behind the design of systems together with practical guidance on selecting most types of electrical equipment and systems that are normally encountered with offshore production platforms, drilling rigs, onshore gas plants, pipelines, liquefied natural gas plants, pipeline pumping stations, refineries and chemical plants.

The intention has been to achieve a balance between sufficient mathematical analysis and as much practical material as possible. An emphasis has been put on the 'users' point of view because the user needs to know, or be able to find out quickly, the information that is of immediate application in the design of a plant. The subjects described are those most frequently encountered by electrical engineers in the oil industry. References are frequently made to other texts, published papers and international standards for guidance and as sources of further reading material.

Power systems used in these industries have characteristics significantly different from those found in large-scale power generation and long-distance transmission systems operated by public utility industries. One important difference is the common use of self-contained generating facilities, with little or no reliance upon connections to the public utility. This necessitates special consideration being given to installing spare and reserve equipment and to their interconnection configurations. These systems often have very large induction motors that require being started direct-on-line. Their large size would not be permitted if they were to be supplied from a public utility network. Therefore the system design must ensure that they can be started without unduly disturbing other consumers.

Rule-of-thumb examples are given so that engineers can make quick and practical estimates, before embarking upon the more detailed methods and the use of computer programs. Detailed worked examples are also given to demonstrate the subject with practical parameters and data. Some of these examples may at first seem rather lengthy, but the reasoning behind such detail is explained. In most cases they have been based on actual situations. These worked examples can easily be programmed into a personal computer, and the step-by-step results could be used to check the coding of the programs. Once programmed it is an easy exercise to change the input data to suit the particular problem at hand, and thereby obtain a useful result in a very short period of time.

The chapters have been set out in a sequence that generally represents the approach to engineering and designing a project. The first step is to estimate a total power consumption or load for a plant. Then it is necessary to decide how this load is to be supplied. For example the supply could be from a utility intake, by captive generators or by a combination of both supplies.

Thereafter the problem is to develop a suitable distribution system that will contain a wide variety of equipment and machinery. These equipments and machinery are subsequently covered in the later chapters.

The appendices contain comprehensive listings of abbreviations in common use, international standards that are most relevant, conversion factors for units of measure, detailed worked examples of calculations, the IEEE numbering system for protective and control devices with a commentary pertaining to its use in the oil industry.

All the diagrams and graphs were drawn from a graphics package that was driven by Fortran 77 programs, which were specifically written by the author for this book.

This edition of the book is the first, and the author will be most encouraged to receive any comments, suggestions or additions that could be added to future editions.

Acknowledgements

My grateful thanks go to Mrs Roselie Printer who kindly found the time to type the drafts of the book, to Miss N. Sumalatha for patiently carrying out the various editing cycles, and to Mr Diva Kumar for sorting out a number of problems that arose with the various computers that were used for the task and for his assistance in preparing the diagrams in particular.

Thanks are also due to the company of Switchgear & Instrumentation Ltd in the UK for kindly allowing me to use some of their material pertaining to computerised management systems for switchboards and motor control centers.

Permission to use material in the block diagrams of the speed-governing control systems for the single-shaft and two-shaft gas turbines was given courtesy of ALSTOM Power UK Ltd.

Acknowledgement is also given to Anixter Wire & Cable in the UK for permission to use data from their publication, 'The Cable Handbook, Issue 3', as referenced in Chapter 9.

Over the last 10 years my former colleagues have given much encouragement, especially in recent times those at Qatar General Petroleum Corporation and Maersk Olie og Gas A/S in Denmark; and my many associates and friends in the manufacturing companies that I have had the pleasure of interfacing with over many years.

The concept of writing this book came from the experience of providing lectures in the mid 1980's, whilst being employed by Mr Spencer Landes in his company in London. Mr Landes has also encouraged me to complete the task.

I also acknowledge the greatest opportunity given to me in my life by the late Professor Eric Laithwaite and the late Dr Bernard Adkins when I applied to Imperial College to join their MSc course in 1968. The circumstances were unusual; they made an exception to the established practices, and gave their time and patience to interview me. Their confidence was imparted to me, and I have not looked backwards since then.

About the Author

The author began his career in the electrical power generating industry in 1960 as an apprentice with UK Central Electricity Generating Board (CEGB), in a coal-burning steam power station. He gained six years' experience in all aspects of the maintenance and operation of the station. He remained with the CEGB until 1975, during which time he worked in the commission, research and development, and planning departments of the CEGB.

Since 1975 he has worked in the oil, gas and petrochemical industries on projects located in many different parts of the world. He has been employed by a series of well-known engineering companies. Most of this work has been in the detailed design and conceptual design of power generating plants for offshore platforms, gas plants, LNG plants, fertiliser plants and refineries. He has held positions as Lead Electrical Engineer and Senior Electrical Engineer, Project Manager of multi-discipline projects, Consultant and Company Director. During these projects he has given lectures on various subjects of power generation and distribution, instrumentation and control and safety to groups of the younger engineers at several oil companies. He has been involved in a conference on hazardous area equipment and postgraduate university seminars.

He gained an MSc degree in power systems in 1968 at Imperial College, London, and a PhD in 1976 on a part-time basis also from Imperial College. He is a Fellow of the Institution of Electrical Engineers in UK, a Senior Member of the Institute of Electronic and Electrical Engineers in the USA, and a Fellow of the Institute of Directors in the UK.