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Gas Turbine Driven Generators

2.1 CLASSIFICATION OF GAS TURBINE ENGINES

For an individual generator that is rated above 1000 kW, and is to be used in the oil industry, it
is usual practice to use a gas turbine as the driving machine (also called the prime mover). Below
1000 kW a diesel engine is normally preferred, usually because it is an emergency generator running
on diesel oil fuel.

Gas turbines can be classified in several ways, common forms are:-

• Aero-derivative gas turbines.

• Light industrial gas turbines.

• Heavy industrial gas turbines.

2.1.1 Aero-derivative Gas Turbines

Aircraft engines are used as ‘gas generators’, i.e. as a source of hot, high velocity gas. This gas is
then directed into a power turbine, which is placed close up to the exhaust of the gas generator. The
power turbine drives the generator. The benefits of this arrangement are:-

• Easy maintenance since the gas generator can be removed as a single, simple module. This can be
achieved very quickly when compared with other systems.

• High power-to-weight ratio, which is very beneficial in an offshore situation.

• Can be easily designed for single lift modular installations.

• Easy to operate.

• They use the minimum of floor area.

The main disadvantages are:-

• Relatively high costs of maintenance due to short running times between overhauls.

• Fuel economy is usually lower than other types of gas turbines.

• The gas generators are expensive to replace.
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Aero-derivative generators are available in single unit form for power outputs from about
8 MW up to about 25 MW. These outputs fall conveniently into the typical power outputs required
in the oil and gas production industry, such as those on offshore platforms.

2.1.2 Light Industrial Gas Turbines

Some manufacturers utilize certain of the advantages of the aero-derivative machines, i.e. high power-
to-weight ratio and easy maintenance. The high power-to-weight ratios are achieved by running
the machines with high combustion and exhaust temperatures and by operating the primary air
compressors at reasonably high compression ratios i.e. above 7. A minimum of metal is used and so
a more frequent maintenance programme is needed. Easier maintenance is achieved by designing the
combustion chambers, the gas generator and compressor turbine section to be easily removable as a
single modular type of unit. The ratings of machines in this category are limited to about 10 MW.

2.1.3 Heavy Industrial Gas Turbines

Heavy industrial gas turbines are usually to be found in refineries, chemical plants and power utilities.
They are chosen mainly because of their long and reliable running times between major maintenance
overhauls. They are also capable of burning most types of liquid and gaseous fuel, even the heavier
crude oils. They also tend to tolerate a higher level of impurities in the fuels. Heavy industrial
machines are unsuitable for offshore applications because:-

• Their poor power-to-weight ratio means that the structures supporting them would need to be much
larger and stronger.

• Maintenance shutdown time is usually much longer and is inconvenient because the machine must
be disassembled into many separate components. A modular concept is not possible in the design
of these heavy industrial machines.

• The thermodynamic performance is usually poorer than that of the light and medium machines.
This is partly due to the need for low compression ratios in the compressor.

They do, however, lend themselves to various methods of heat energy recovery e.g. exhaust
heat exchangers, recuperators on the inlet air.

Figures 2.1 and 2.2 show the relative costs and weights for these types of machines.

2.1.4 Single and Two-shaft Gas Turbines

There are basically two gas turbine driving methods, known as ‘single-shaft’ and ‘two (or twin) shaft’
drives. In a single-shaft gas turbine, all the rotating elements share a common shaft. The common
elements are the air compressor, the compressor turbine and the power turbine. The power turbine
drives the generator.

In some gas turbines, the compressor turbine and the power turbine are an integral component.
This tends to be the case with heavy-duty machines.

The basic arrangement is shown in Figure 2.3.
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Figure 2.1 Relative cost of gas turbo-generators versus power rating.

Figure 2.2 Weight of gas turbo-generators versus power rating.
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Figure 2.3 Single-shaft gas turbine.

Figure 2.4 Two-shaft gas turbine.

In a two-shaft gas turbine the compressor is driven by a high pressure turbine called the
compressor turbine, and the generator is driven separately by a low pressure turbine called the
power turbine.

The basic arrangement is shown in Figure 2.4.

Two-shaft systems are generally those which use aero-derivative engines as ‘gas generators’,
i.e. they produce hot, high velocity, high pressure gas which is directed into the power turbine. Some
light industrial gas turbines have been designed for either type of drive. This is achieved by fitting a
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removable coupling shaft between the two turbines. Some points to consider with regard to the two
types of driver are:-

a) High speed of rotation tends to improve the compressor and turbine efficiency. Hence, with
two separate shafts, the best thermodynamic performance from both turbines and the compressor
is obtainable.

b) Using aero-derivative machines means that a simple ‘add on’ power turbine can be fitted in the
exhaust streams of the aero engine. This enables many manufacturers to design a simple power
turbine and to use a particular aero engine.

c) Two-shaft machines are often criticised as electrical generators because of their slower response
to power demands in comparison with the single-shaft machines. This can be a problem when a
two-shaft machine may have to operate in synchronism with other single-shaft machines or steam
turbine generators. Sometimes the slower response may affect the power system performance
during the starting period of large motors. A power system computerised stability study should
be carried out to investigate these types of problem.

Some of the recent aero engines could be called ‘three-shaft’ arrangements because within the
gas generator there are two compressor turbines and two compressors.

2.1.5 Fuel for Gas Turbines

The fuels usually consumed in gas turbines are either in liquid or dry gas forms and, in most cases,
are hydrocarbons. In special cases non-hydrocarbon fuels may be used, but the machines may then
need to be specially modified to handle the combustion temperatures and the chemical composition
of the fuel and its combustion products.

Gas turbine internal components such as blades, vanes, combustors, seals and fuel gas valves
are sensitive to corrosive components present in the fuel or its combustion products such as carbon
dioxide, sulphur, sodium or alkali contaminants, see also sub-section 2.2.5.

The fuel can generally be divided into several classifications:-

• Low heating value gas.

• Natural gas.

• High heating value gas.

• Distillate oils.
• Crude oil.
• Residual oil.

2.2 ENERGY OBTAINED FROM A GAS TURBINE

A gas turbine functions as a heat engine using the thermodynamic Joule cycle, as explained in many
textbooks, see for example References 1 to 5. Most gas turbines used in the oil industry use the
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Figure 2.5 Gas turbine thermodynamic cycle. Simple-cycle gas turbine.

‘simple-cycle’ version of the Joule cycle. The main components of the gas turbine are shown in
Figure 2.5.

The thermodynamic relationships used to describe the operation of the gas turbine are the
pressure (P ) versus volume (V ) characteristic in Figure 2.6 and the temperature (T ) versus entropy
(S) characteristic in Figure 2.7. These figures also show the effect of practical inefficiencies that
occur both in the air compressor and the turbine.

Air is drawn into the compressor at atmospheric pressure P1 (in practice slightly lower due to
the inlet silencer, filter and ducting) and atmospheric temperature T1, and compressed adiabatically
to a higher pressure P2 to reduce its volume to V2 and raise its temperature to T2. The adiabatic
compression is given by the following equations; see standard textbooks e.g. References 1 to 5.

P2V2

T2
= P1V1

T1
= constant (2.1)

P2V2
γ = P1V1

γ = constant (2.2)

The work done in the compressor per kg of fluid Uc is,

Uc = γ

γ − 1
(P2V2 − P1V1) (2.3)

The following standard relationships apply,

P1V1 = RT1 (2.4)

P2V2 = RT2 (2.5)

Cp − Cv = R (2.6)

Cp

Cv

= γ (2.7)
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Figure 2.6 Pressure versus volume in the thermodynamic cycle.

Figure 2.7 Temperature versus entropy in the thermodynamic cycle.
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Where, Cp is the specific heat of the air at constant pressure, kcal/kg K � 1.005
Cv is the specific heat of the air at constant volume, kcal/kg K � 0.718
R is the particular gas constant for air, kJ/kg K � 0.287
γ is the ratio of specific heats � 1.4

From (2.3) and (2.7),
γ

γ − 1
= Cp

R
(2.8)

Substitute (2.4, 2.5 and 2.8) into (2.1),

Uc = Cp(T2 − T1) kJ/kg (2.9)

The air leaving the compressor at pressure P2 passes into the combustion chamber where its
temperature is raised to T3, at constant pressure.

The hot air–fuel mixture burns and the gaseous products of combustion pass into the turbine
where the pressure falls to the atmospheric pressure P4 = P1 (in practice slightly higher due to the
resistance or ‘back pressure’ of the exhaust silencer and ducting). The exhaust gas temperature is
T4 and is lower than the combustion temperature T3. (The ducting systems should be arranged so
that the exhaust gas is discharged at a point far enough away from the inlet ducting entrance that no
interaction occurs i.e. T4 does not influence T1.)

The turbine expansion process can be described by similar equations to (2.1) through (2.7),
with T3 replacing T2 and T4 replacing T1. Hence the work done by the turbine (Ut ) is,

Ut = Cp(T3 − T4) kJ/kg (2.10)

The heat supplied by the fuel is Cp (T3 − T2).

In a conventional gas turbine the turbine supplies power to drive its compressor and so the
power available to drive a generator is the net power available from the turbine. Neglecting ineffi-
ciencies in the compressor and the turbine, the work done on the generator at the coupling of the gas
turbine is Uout,

Uout = Ut − Uc = Cp(T3 − T4 − T2 + T1) kJ/kg (2.11)

The ideal cycle efficiency ηi of the gas turbine is:

ηi = Cp(T3 − T4 − T2 + T1)

Cp(T3 − T2)
= 1 −

(
T4 − T1

T3 − T2

)

= 1 − Rejection temperature difference

Combustion temperature difference
(2.12)

From (2.1), raise to the power γ , (
P2V2

T2

)γ

=
(

P1V1

T1

)γ

(2.13)
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From here onwards the following substitutions will be used in order to keep the presentation
of the equations in a simpler format.

β = γ − 1

γ
, βc = γc − 1

γc

, βt = γt − 1

γt

δ = 1 − γ

γ
, δc = 1 − γc

γc

, δt = 1 − γt

γt

Where subscript ‘c’ refers to the compressor and ‘t’ to the turbine, the absence of a subscript
means a general case.

Divide (2.2) by (2.13) to obtain an expression for the compressor,

(
P2

P1

)δ

= T1

T2
(2.14)

Similarly for the turbine, (
P3

P4

)δ

= T4

T3
(2.15)

It is of interest to determine the work done on the generator in terms of the ambient temperature
T1 and the combustion temperature T3.

From (2.14),

T2 = T1rp
β

And from (2.15),

T4 = T3rp
δ

Therefore (2.11) becomes,

Uout = Cp(T3 − T3rp
δ − T1rp

β + T1)

= CpT3(1 − rp
δ) − CpT1(rp

β − 1) (2.16)

The ideal cycle efficiency ηi can also be expressed in terms of T1 and T3.

ηi = 1 −
(

T3rp
δ − T1

T3 − T1rp
β

)
(2.17)

The specific heat Cp is assumed to be constant and equal for both compression and expansion.
In practice these assumptions are not valid because the specific heat Cp is a function of temperature.
The average temperature in the turbine is about twice that in the compressor. Also the products
of combustion i.e. water vapour and carbon dioxide, slightly increase the specific heat of air–gas
mixture in the turbine. Figures 2.8 and 2.9 show the spread of values for the pressure ratio and
exhaust temperature for a range of gas turbines from 1 MW to approximately 75 MW.
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Figure 2.8 Per-unit pressure ratio versus power rating.

Figure 2.9 Exhaust temperature versus pressure ratio.
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2.2.1 Effect of an Inefficient Compressor and Turbine

Frictional losses in the compressor raise the output temperature. Similarly the losses in the turbine
raise the exhaust temperature. These losses are quantified by modifying the temperatures T2 and T4

to account for their increases.

The compression ratio (P2/P1) of the compressor is usually given by the manufacturer and
therefore the temperature of the air leaving the compressor is easily found from (2.13). If the efficiency
of compression ηc is known e.g. 90% and that of the turbine ηt is known e.g. 85% then a better
estimate of the output energy can be calculated. In this situation T2 becomes T2e and T4 becomes
T4e, as follows:-

T2e = T2

ηc

+
(

1 − 1

ηc

)
T1 and T4e = T4ηt + (1 − ηt )T3 (2.18)

These would be the temperatures measurable in practice. In (2.14) and (2.15) the pressure
ratios are theoretically equal, and in practice nearly equal, hence:

T2

T1
= T3

T4
= rp

β (2.19)

Where rp is the pressure ratio
P2

P1
or

P3

P4

In practice the temperatures T1 and T3 are known from the manufacturer or from measuring
instruments installed on the machine. The pressure ratio rp is also known. The ratio of specific heats
is also known or can be taken as 1.4 for air. If the compressor and turbine efficiencies are taken into
account then the practical cycle efficiency ηp of the gas turbine can be expressed as:

ηp = T3(1 − rp
δ)ηcηt − T1(rp

β − 1)

T3ηc − T1(rp − 1 + ηc)
(2.20)

which has a similar form to (2.17) for comparison.

2.2.1.1 Worked example

A light industrial gas turbine operates at an ambient temperature T1 of 25◦C and the combustion
temperature T3 is 950◦C. The pressure ratio rp is 10.

If the overall efficiency is 32% find the efficiency of the compressor assuming the turbine
efficiency to be 86%.

From (2.20),

T1 = 273 + 25 = 298◦K

T3 = 273 + 950 = 1223◦K

rp
δ = 10−0.2857 = 0.51796 and rp

β = 10+0.2857 = 1.93063
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Therefore,

ηp = 0.32 = 1223(1.0 − 0.51796)ηc(0.86) − 298(1.93063 − 1.0)

1223ηc − 298(1.93063 − 1.0 + ηc)

Transposing for ηc results in ηc = 0.894. Hence the compressor efficiency would be 89.4%.

2.2.2 Maximum Work Done on the Generator

If the temperatures T2e and T4e are used in (2.11) to compensate for the efficiencies of the compressor
and turbine, then it is possible to determine the maximum power output that can be obtained as a
function of the pressure ratio rp.

The revised turbine work done Ute is,

Ute = Cp(T3 − T4)ηt kJ/kg (2.21)

The revised compressor work done Uce is,

Uce = Cp(T2 − T1)
1

ηc

kJ/kg (2.22)

The revised heat input from the fuel Uf e is,

Uf e = Cp(T3 − T2e) kJ/kg (2.23)

where,

T2e = T1

(
rp

β − 1 + ηc

ηc

)

From (2.19),
T4 = T3rp

δ (2.24)

and
T2 = T1rp

β (2.25)

Substituting for T2, T2e and T4 gives the resulting output work done Uoute to be,

Uoute = Ute − Uce = Cp(T3 − T3rp
δ)ηt − Cp

(
T1rp

β − T1

ηc

)

= Cp

[
T3(1 − rδ)ηt − T1

ηc

(rp
β − 1)

]
kJ/kg (2.26)

To find the maximum value of Uoute differentiate Uoute with respect to γp and equate the result
to zero. The optimum value of γp to give the maximum value of Uoute is,

rpmax =
(

T1

T3ηcηt

)d

(2.27)
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Where

d = 1

2δ

which when substituted in (2.26) gives the maximum work done Uoutemax.

2.2.2.1 Worked example

Find rpmax for the worked example in sub-section 2.2.1.1.

Given that,

T1 = 298 K, T3 = 1223◦C,

r = 1.4, ηt = 0.86 and ηc = 0.894

d = γ

2(1 − γ )
= 1.4

2(1.0 − 1.4)
= −1.75

rpmax =
[

298

1223(0.894)(0.86)

]−1.75

= 0.3169−1.75 = 7.4

2.2.3 Variation of Specific Heat

As mentioned in sub-section 2.2 the specific heat Cp changes with temperature. From Reference 4,
Figure 4.4, an approximate cubic equation can be used to describe Cp in the range of temperature
300 K to 1300 K when the fuel-to-air ratio by mass is 0.01, and for the air alone for compression, as
shown in Table 2.1. The specific heat for the compressor can be denoted as Cpc and for the turbine
Cpt . The appropriate values of Cpc and Cpt can be found iteratively from the cubic expression and
equations (2.24) and (2.25). At each iteration the average of T1 and T2 can be used to recalculate Cpc,
and T3 and T4 to recalculate Cpt . The initial value of γ can be taken as 1.4 in both cases, and Cv

can be assumed constant at 0.24/1.4 = 0.171 kcal/kg K. The pressure ratio is constant. Having found
suitable values of Cpc and Cpt it is now possible to revise the equations for thermal efficiency ηpa

and output energy Uoutea, where the suffix ‘a’ is added to note the inclusion of variations in specific
heat Cp.

Table 2.1. Specific heat Cp as a cubic function of absolute temper-
ature K in the range 373 K to 1273 K Cp = a + bT + cT 2 + dT 3

Fuel-air Cubic equation constants
ratio

a × 100 b × 10−4 c × 10−7 d × 10−10

0.0 0.99653 −1.6117 +5.4984 −2.4164
0.01 1.0011 −1.4117 +5.4973 −2.4691
0.02 1.0057 −1.2117 +5.4962 −2.5218
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The energy equations for the compressor and turbine become,

Ucea = Cpc(T2 − T1)

(
1

ηc

)
kJ/kg (2.28)

and

Utea = Cpt (T3 − T4)

(
1

ηt

)
kJ/kg (2.29)

Also assume that the specific heat Cpf of the fuel–air mixture is the value corresponding to
the average value of T2 and T3, see Reference 4, sub-section 4.7.1, (2.23).

Hence the fuel energy equation becomes, from (2.23),

Uf ea = Cpf (T3 − T2ea) kJ/kg (2.30)

Where

T2ea = T1(rp
βc − 1 + ηc)

ηc

(2.31)

Where rc and rt apply to the compressor and turbine and are found from Cpc, Cpt and Cv .

The work done on the generator is now,

Uoutea = Cpt T3(1 − rp
δt )ηt − CpcT1

ηc

(rp
βt − 1) (2.32)

and
T4ea = T3(ηt rp

δc + 1 − ηt)

From Uf ea and Uoutea the thermal efficiency ηpa can be found as,

ηpa = Uoutea

Uf ea

(2.33)

2.2.4 Effect of Ducting Pressure Drop and Combustion Chamber Pressure Drop

Practical gas turbines are fitted with inlet and exhaust silencing and ducting systems to enable the
incoming air to be taken from a convenient source and the outgoing gas to be discharged to a second
convenient location. These systems can be long enough to create significant pressure drops at the
inlet and outlet of the gas turbine itself. The inlet system reduces the pressure at the entry to the
compressor, by an amount �P1. The exhaust system increases the pressure at the exit of the power
turbine, by an amount �P4.

Between the outlet of the compressor and the inlet to the turbine there is a small pressure
drop caused by the presence of the combustion chamber and the throttling effect of its casing. Let
this pressure drop be �P23.
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The effects of �P1,�P23 and �P4 can be found by modifying their corresponding pressure
ratios, rpc for the compressor and rpt for the turbine, and using the binomial theorem to simplify the
results. �P23 and �P4 apply to the turbine pressure ratio.

After a gas turbine has been operating for a long time the inlet filter pressure drop may become
high enough to indicate that the filter needs cleaning. The drop in pressure across silencers will remain
almost constant; the effect of ingress of particles or development of soot can be neglected.

The pressure ratio terms in (2.31) and (2.32) are of the general form,

y + �y =
(

x + �x

w + �w

)n

(2.34)

and,

y =
( x

w

)n

(2.35)

which upon expanding becomes,

ywn + nywn−1�w + wn�y = xn + nxn−1�x (2.36)

Where the second and higher orders of � are neglected. If the initial values are deducted then
the expression relating the small changes becomes,

nywn−1�w + wn�y = nxn−1�x (2.37)

Hence the change in y becomes,

�y = nxn−1

wn
�x − ny

w
�w (2.38)

For the compressor it is assumed that the inlet pressure is increased by �P1. The pressure
ratio remains unchanged and so the change in output pressure is,

�P2 = rp�P1

Since the pressure ratio is unchanged the output temperature will be unchanged at T2.

The heat from the fuel is a function of T2 and therefore it will also be unchanged.

For the turbine there are three pressure drops to consider. One for the compressor discharge
�P2, one for the practical throttling effect in the combustion chamber �P23 and one for the turbine
exhaust pressure due to ducting �P4. The two pressure drops at the inlet to the turbine can be
combined as,

�P223 = �P2 + �P23 (2.39)

In (2.34) �x is �P223 and �w is �P4. Hence their effect on the turbine pressure ratio is
�rpt

nt ,

�rpt
nt = ntP3

nt−1

P4
nt �P223 − ntrpt

nt

P4
�P4 (2.40)
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The turbine energy changes from Utea to Utea + �Utea . Substitute (2.40) into (2.29),

Utea + �Utea = CptT3(1 − (rpt + �rpt )
nt )ηt

= CptT3ηt

[
1 −

(
rpt

n + ntP3
nt−1

P4
nt �P223 − ntrpt

nt

P4
�P4

)]

from which,

�Utea = +ntηtCptT3rpt
nt−1

[
rpt�P4 − rpt�P1 − �P23

P4

]
(2.41)

The change in efficiency ηpa in (2.33) is,

ηpa + �ηpa = Utea + �Utea − Ucea − �Ucea

Uf ea + �Ufea

(2.42)

from which, by substituting for �Utea, �Ucea = 0.0 and �Ufea = 0.0 and deducting the initial con-
ditions gives,

�ηpa = �Utea

Ufea

(2.43)

The change in work done on the generator

�Uoutea = �Utea kJ/kg (2.44)

Note that in the above analysis the signs of the practical changes are,

�P1 is negative

�P23 is negative

and �P4 is positive

The pressure drops �P1 and �P4 are dependent upon the layout of the gas turbine generator,
the dimensions of the ducting systems and the specification of silencers and filters. �P23 is fixed by the
design of the combustion system and cannot be changed by external factors such as ducting systems.

2.2.4.1 Typical values of pressure drop losses

A newly installed gas turbine generator can be taken to have the typical losses given in Table 2.2.

Table 2.2. Typical pressure drop losses in gas turbine

Inlet or Pressure drop % change in
exhaust

Bar Inches
of water

Power
output

Heat
rate

Inlet 0.01245 5.0 −2.00 +0.75
Exhaust 0.006227 2.5 −0.50 +0.40
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2.2.5 Heat Rate and Fuel Consumption

The heat rate is the ratio of heat given up by the fuel, in terms of its lower calorific or heating value
(LHV), to the power available at the gas turbine coupling to its generator. It has the SI units of
kJ/kWh. The lower heating value of typical fuels is given in Table 2.3.

The heat rate for a particular gas turbine will be given by its manufacturer at ISO conditions,
and at various ambient temperatures. The typical variation of heat rate and power output, in relation to
their ISO values, are shown in Figure 2.10. For a definition of ISO conditions see sub-section 2.3.2.

Table 2.3. Lower heating values of fuels

Fuel Lower heating value (LHV)
MJ/m3 for gases
MJ/kg for liquids

Btu/ft3 for gases
Btu/lb for liquids

GASES
Natural gas 35.40 to 39.12 950 to 1050
Methane 33.94 911
Ethane 60.77 1,631
Propane 87.67 2,353
Butane 115.54 3,101
Hydrogen 10.17 273
Hydrogen sulphide 23.14 621

LIQUIDS
Diesel oil 45.36 19,500
Kerosene 41.87 18,000
Distillate 44.89 19,300
Crude oil 44.66 19,200

Figure 2.10 Power output and heat rate versus ambient air temperature.



36 HANDBOOK OF ELECTRICAL ENGINEERING

Figure 2.11 Heat rate and efficiency versus power rating.

The reduction in output power is typically 0.5 to 0.8%/◦C.

The fuel consumption can be calculated approximately from,

Fuel consumption = Power output × Heat rate

Fuel LHV
m3/h (or kg/h)

For situations where there is a mixture of gases it is advisable to consult the manufacturer
of the gas turbine, since he will have a data bank containing all kinds of fuel compositions and
heating values.

The heat rate and overall thermal efficiencies for typical modern gas turbines in the range
of ISO power ratings 1 MW to 200 MW are shown in Figure 2.11. The data were derived from
Reference 6.

2.3 POWER OUTPUT FROM A GAS TURBINE
In sub-section 2.2 the performance of a gas turbine was determined as the energy obtainable at the
output shaft coupling. The energy equations are based on a unit of mass flow, 1.0 kg/s, of the fluid
passing through the gas turbine i.e. from the air intake to the exhaust aperture.

The mass flow through the turbine is about 1% higher than that through the compressor because
of the presence of the burnt fuel. Hence the mass flow rate (m) to produce the output power is,

m = Output power to the generator

Output energy per unit mass
kg/s

= Wout

Uout

(
kW kg

kj
= kg/s

)
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Therefore it is a simple matter to predetermine the required output power and divide this by
the specific energy available to the generator. The result is then the mass flow rate.

2.3.1 Mechanical and Electrical Power Losses

The power and specific energy available to drive the generator determined in the previous sub-section are
those at the output shaft of the gas turbine. In most situations in the oil industry, where these machines
seldom are rated above 40 MW, a speed-reducing gearbox is placed between the turbine and the generator.
The generators are usually 4-pole machines that operate at 1500 or 1800 rev/min. The power loss in a
typical gearbox is about 1.5% of the rated output power. Let the gearbox efficiency be ηgb.

The efficiency (ηgen) of electromechanical conversion in the generator can be defined as,

ηgen = Power output at the terminals

Power input to the shaft coupling
pu

Most rotating electrical machines above about 500 kW have efficiencies above 95%, which
increases to about 98% for large machines in the hundreds of megawatts range. Their losses are
due to windage between the rotor and the stator, friction in the bearings and seals, iron and copper
electrical losses.

In some situations, such as ‘packaged’ gas turbine generators, all the necessary auxiliary
electrical power consumers are supplied from the terminals of the generator through a transformer
and a small motor control centre (or switchboard). These auxiliaries include lubricating oil pumps,
fuel pumps, filter drive motors, cooling fans, purging air fans, local lighting, and sump heaters. Some
of these operate continuously while others are intermittent. A rule-of-thumb estimate of the consumed
power of these auxiliaries is between 1% and 5% of the rated power of the generator.

Care needs to be taken when referring to the efficiency of a gas-turbine generator set. See
the worked example in Appendix F. The power system engineer is concerned with the power output
from the terminals of the generator that is obtainable from the fuel consumed. Hence he considers
the practical efficiency ηpa of the gas turbine, and the conversion efficiency through the gearbox ηgb

and generator ηgen. Hence the Overall Thermal Efficiency ηpao would be:-

ηpao = ηpa × ηg × ηgen

2.3.2 Factors to be Considered at the Design Stage of a Power Plant

The electrical engineer should take full account of the site location and environmental conditions that
a gas turbine generator will need to endure. These conditions can seriously effect the electrical power
output that will be achievable from the machine. The starting point when considering the possible
output is the ISO rating. This is the declared rating of the machine for the following conditions:-

• Sea level elevation.
• 15◦C (59◦F) ambient temperature.
• Basic engine, no losses for inlet or exhaust systems, no losses for gearbox and mechanical transmission.
• Clean engine, as delivered from the factory.

The gas turbine manufacturer provides a standardised mechanical output power versus ambient
temperature characteristic, e.g., Figure 2.10. (Some manufacturers also give the electrical output
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power versus ambient temperature characteristic. Therefore care must be exercised to be sure exactly
which data are to be given and used.)

The following derating factors should be used in the estimation of the continuous site rating
for the complete machine:

• ISO to a higher site ambient temperature, typically 0.5 to 0.8% per ◦C.

• Altitude, usually not necessary for most oil industry plants since they are near sea level.

• Dirty engine losses and the ageing of the gas turbine, assume 5%.

• Fuel composition and heating value losses, discuss with the manufacturer.

• Silencer, filter and ducting losses, assume 2 to 5%.

• Gearbox loss, typically 1 to 2%.

• Generator electromechanical inefficiency, typically 2 to 4%.

• Auxiliary loads connected to the generator, typically 1 to 5%.

2.3.2.1 Dirty engine losses

Consideration should be given to the fact that engines become contaminated with the combustion
deposits, the lubrication oil becomes less efficient, blades erode and lose their thermodynamic efficiency
and air filters become less efficient due to the presence of filtered particles. These effects combine to
reduce the output of the machine. A rule-of-thumb figure for derating a gas turbine for dirty engine
operation is 5%. This depends upon the type of fuel, the type of engine, the environment and how
long the engine operates between clean-up maintenance periods. Individual manufacturers can advise
suitable data for their engines operating in particular conditions. Dirty engine conditions should be
considered, otherwise embarrassment will follow later once the machine is in regular service.

2.3.2.2 Fuel composition and heating value losses

The chemical composition and quality of the fuel will to some extent influence the power output.
However, it is usually the case that more or less fuel has to be supplied by the fuel control valve for a
given throughput of combustion air. Hence it is usually possible to obtain the declared normal rating
from the machine, but attention has to be given to the supply of the fuel. In extreme cases the profile of
the fuel control valve may require modification so that adequate feedback control is maintained over
the full range of power output. The appropriate derating factor is usually 100%, i.e. no derating.

2.3.2.3 Silencer, filter and ducting losses

The amount of silencing and filtering of the inlet combustion air depends upon the site environment
and the operational considerations.

Site environmental conditions may be particularly bad, e.g. deserts where sand storms are
frequent; offshore where rain storms are frequent and long lasting. The more filtering that is required,
the more will be the pressure lost across the filters, both during clean and dirty operation. This
pressure drop causes a loss of power output from the machine.

The amount of inlet and exhaust noise silencing will depend upon, the location of machine
with respect to people in say offices or control rooms, how many machines will be in one group since
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this affects the maintenance staff and total noise level permitted by international or national standards.
The effects of a silencer are similar to a filter since the silencing elements cause a pressure drop.

With offshore platforms it is not always practical to locate the main generators in a good
place regarding the position and routing of the inlet and exhaust ducting. Long runs of ducting are
sometimes unavoidable. It is then necessary to allow a derating factor for the pressure drop that
will occur. The manufacturer should be consulted for advice on this aspect. For a typical offshore
or onshore situation with a reasonable degree of silencing a rule-of-thumb derating factor would be
98%. In a poor location assume 95%.

2.4 STARTING METHODS FOR GAS TURBINES

Gas turbines are usually started by a DC motor or an air motor. Either system is available for
most turbines up to about 20 MW. Occasionally AC motors are used. Beyond 20 MW, when heavy
industrial machines tend to be used, it becomes more practical to use air motors or even diesel engine
starters. DC motors require a powerful battery system. The DC motor and battery systems tend to
be more reliable and less space consuming, which is important for offshore systems. Air motors
require air receivers and compressors. The compressors require AC motors or diesel engines. Air
start and diesel start systems are more popular for onshore plants especially remote plants, e.g. in
the desert. This is partly due to the fact that batteries tend to suffer from poor maintenance in hot,
dry locations. Air systems require regular maintenance and must be kept fully charged in readiness
for a quick start. Air system receivers can become very large if more than three successive starting
attempts are required. More starts can probably be obtained by a battery system that occupies the
same physical space.

Occasionally process gas can be used instead of air to drive the air/gas starter motor. This
eliminates the need for receivers and compressors. However, there should always be a reliable source
of gas available. The exhaust gas from the starter motor should be safely discharged e.g. into a
ventilating pipeline.

2.5 SPEED GOVERNING OF GAS TURBINES

2.5.1 Open-loop Speed-torque Characteristic

The ungoverned or open-loop speed-torque characteristic of a gas turbine has a very steep negative
slope and is unsuitable for regulating the power output of the generator. The open-loop characteristic
is explicitly determined by the thermodynamic design of the gas turbine, together with the mechani-
cal inertial and frictional characteristics of the rotating masses. Without closed-loop feedback control
action the initial decline in speed in response to an increase in shaft torque would be mainly deter-
mined by the shaft inertia. Let T , ω and P be the torque, speed and shaft power respectively in
per-unit terms. The expression relating these variables is,

P = T ω (2.45)

The open-loop speed-torque function may be expressed as,

ω = f (T ) (2.46)
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which may be represented by a simple linear function,

ω = ωo − kT (2.47)

where k is a positive number in the order of 1.0 pu equal to the open-loop slope, and ωo is the shaft
speed at no-load.

Reference 7 discusses the slope k in Chapter 2, Section 2.3.1.

Assume that the turbine is designed to deliver unit torque at unit speed, therefore,

1.0 = ωo − k(1.0) = ωo − k (2.48)

From which ωo = 1 + k and so (2.47) becomes,

ω = 1 + k − kT or T = 1 + k − ω

k
(2.49)

The speed can now be related to the shaft power rather than the torque,

P =
(

1 + k − ω

k

)
ω (2.50)

Or in the form of a quadratic equation,

0 = ω2 − (1 + k)ω + kP (2.51)

The two roots of which are,

ω1,2 = 1 + k

2
±

(
(1 + k)2 − 4kP

2

)1/2

(2.52)

The positive root applies to the stable operating region, whilst the negative root applies to the
unstable region after stalling occurs.

For example assume k = 1.5. Table 2.4 shows the values of the two roots for an increase in
shaft power.

Table 2.4. Open-loop steady state speed-power char-
acteristic of a gas turbine (k = 1.5)

Shaft power Shaft speed ω (per unit)
P (per unit)

Positive root Negative root

0.0 2.5 0.0
0.5 2.151 0.349
0.75 1.911 0.589
1.00 1.500 1.000
1.04 1.250 1.250
1.04 + (unstable)
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Table 2.5. Open-loop steady state speed-power
characteristic of a gas turbine (k = 0.1)

Shaft power Shaft speed ω (per unit)
P (per unit)

Positive root Negative root

0.0 1.10 0.0
0.5 1.0525 0.0475
0.75 1.027 0.073
1.00 1.000 0.100
1.04 0.9955 0.1045
1.50 0.9405 0.1550
2.00 0.8700 0.2300
3.00 0.6000 0.5000
3.025 0.5500 0.0

At P = 1.0 the torque corresponding to the positive root is T = 0.667 pu, whilst that for the
negative root is T = 1.00 pu. Hence the torque at full-load power is less than unity (due to the
speed being higher than unity). The above example illustrates the impractical nature of the open-loop
speed-torque and speed-power characteristics.

Suppose the design of the engine could be substantially improved such that k could be reduced
to say 0.1 (approaching a value for a typical closed-loop feedback controlled system). Table 2.5 shows
comparable results to those given in Table 2.4.

It can be seen that unit power is obtained at unit speed in the stable region, and that the stalling
point is at a power much greater than unity. The above illustrates more desirable open-loop speed-
torque and speed-power characteristics. Unfortunately reducing k to values between say 0.01 and
0.1 by thermodynamic design is not practical. Consequently a closed-loop feedback control system
is necessary. Figure 2.12 shows the open-loop speed-power responses for different values of k. The
transient response of the gas turbine just after a disturbance in the shaft power is of interest when
underfrequency protective relays are to be used to protect the power system from overloading, see
sub-section 12.2.10.

2.5.2 Closed-loop Speed-power Characteristic

All prime-moves used for driving electrical generators are equipped with closed-loop speed governors.
Their main purpose is to reduce the variation in shaft speed to a small amount over the full range of
shaft power. Deviations in speed are measured and amplified. The amplified signal is used to operate
the fuel value in such a manner as to reduce the deviation in speed. It may be assumed that a linear
relationship exists between the amplified signal received at the value and the shaft power created by
the fuel passed through the valve orifice. The fuel valve may be regarded as a regulating device for
power available at the shaft. It may therefore be assumed that the output of the valve is the shaft
power P , whilst its inputs are a reference power Pref and the amplified speed error Pe.

Therefore,
P = Pref − Pe (2.53)
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Figure 2.12 Open-loop speed regulation of a gas turbine.

where
Pe = F(ωo − ω) (2.54)

and ωo is the nominal shaft speed, and F is the feedback gain.

Hence the closed-loop control system for steady state conditions may be described by the
forward transfer function of (2.52), using the positive root, and the feedback transfer function of
(2.54). In order to establish suitable relationships between k and F it is necessary to consider small
changes in the variables and by so doing linearise the equations using a two-term Taylor’s series.
Transpose and square the positive root of (2.52).

(
ω − 1 + k

2

)2

= 1

4

(
(1 + k)2 − 4 kP

)
(2.55)

Let ω be increased by �ω as the power P is increased by �P .

Equation (2.55) becomes,

2ω�ω − �ω(1 + k) + ω2 − ω(1 + k) +
(

1 + k

4

)2

=
(

1 + k

4

)2

− kP − k�P (2.56)

Subtract the predisturbance state,
�ω

�P
= −k

4(2ω − 1 − k)
(2.57)
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In (2.53) and (2.54) let ω be increased by �ω and P by �P, and subtract the predistur-
bance state,

Hence, �Pe = F�ω

or
�ω

�Pe

= 1

F
(2.58)

and �P = �Pref − �Pe (2.59)

A change in the demand for shaft power �Pd may be added to the summing point of �Pref

and �Pe, and �Pref assumed to be zero. Hence the overall closed-loop transfer function gain Gc at
the speed ω is found to be,

Gc = �ω

�Pd

= Forward gain

1 + (Forward gain)(Feedback gain)

=
−k

4(2ω − 1 − k)

1 − kF

4(2ω − 1 − k)

= k

kF − 4(2ω − 1 − k)
(2.60)

For typical power system applications the transfer function gain has the per-unit value of 0.04,
and the operating shaft speed ω is within a small range centred around the rated speed. The rated
speed corresponds to the nominal frequency of the power system. Hence the term 4(2ω − 1 − k) may
be neglected since k is typically in the range of 1.0 to 2.0.

The transfer function simplifies to become,

Gc = 1

F
where F is typically 25 per unit (2.61)

The transfer function gain is also called the ‘droop’ characteristic of the gas turbine.

2.5.3 Governing Systems for Gas Turbines

The following discussions outline the important principles behind the governing of gas turbines. In
all power systems the requirement is that the steady state speed deviation, and hence frequency,
is kept small for incremental changes in power demand, even if these power increments are quite
large – 20%, for example.

There are two main methods used for speed governing gas turbines,

a) Droop governing.

b) Isochronous governing.



44 HANDBOOK OF ELECTRICAL ENGINEERING

Droop governing requires a steady state error in speed to create the necessary feedback control
of the fuel value. ‘Droop’ means that a fall in shaft speed (and hence generator electrical frequency)
will occur as load is increased. It is customary that a droop of about 4% should occur when 100%
load is applied. Droop governing provides the simplest method of sharing load between a group of
generators connected to the same power system.

In control theory terminology this action is called ‘proportional control’. This method of
governing is the one most commonly used in power systems because it provides a reasonably accurate
load sharing capability between groups of generators.

Isochronous governing causes the steady state speed error to become zero, thereby producing
a constant speed at the shaft and a constant frequency for the power system. Isochronous governing
is also a form of ‘integral control’. This method is best suited to a power system that is supplied by
one generator. This type of power system has very limited application. However, there are situations
where one isochronously governed generator can operate in parallel with one or more droop-governed
generators. The droop-governed generators will each have a fixed amount of power assigned to them
for the particular system frequency. This is achieved by adjusting their set points. As the demand on
the whole system changes, positively or negatively, the isochronously governed generator will take
up or reject these changes, and the steady state frequency will remain constant. This hybrid type of
load sharing is seldom used in the oil industry.

Accurate power sharing and constant speed control can be obtained by using a specially
designed controller. This controller incorporates load measurement of each generator, measurement
of common system frequency and a sub-system to reduce the power mismatches of each generator to
zero. The controller regularly or even continuously trims the speed set points of each gas turbine to
maintain zero mismatches. A slowly operating integrator can be superimposed onto these set points
to adjust them simultaneously so that the frequency is kept constant. This is a form of ‘proportional-
integral’ control. See also Chapter 16 for a further discussion of these subjects.

The basic control system of most gas turbine generator systems is shown in Figure 2.13.

Where ω = shaft speed
ωref = reference speed
Pe = electrical power at the generator shaft
Pm = mechanical output power of the gas turbine
Pa = accelerating power
Pf = friction and windage power

2.5.4 Load Sharing between Droop-governed Gas Turbines

Consider a number of generators connected to the same busbars. For the purpose of generality it will
be assumed that each of the generators has a different power rating, and that each governor has a
different droop. The droop characteristic for the ith gas turbine is,

f = fzi − DiPifo

Gi

(2.62)

Where fo = the nominal system frequency in Hz

f = the actual system frequency in Hz
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Figure 2.13 Basic control system block diagram of a gas turbine. The diagram represents the main elements
of the equation of motion.

fzi = frequency set-point of the ith governor in Hz

Di = governor droop in per unit of the ith governor

Pi = electrical load of the ith generator in kW

Gi = electrical power rating of the ith generator in kW

Transpose (2.62) to find Pi ,

Pi = (fzi − f )
Gi

Difo

(2.63)

The total power demand P for n generators is,

P =
i=n∑
i=1

Pi (2.64)

= 1

fo

i=n∑
i=1

fziGi

Di

− f

fo

i=n∑
i=1

Gi

DI

(2.65)

Which is of the simple form,

P = a − bf (2.66)

where

a = 1

fo

i=n∑
i=1

fziGi

Di

is a constant (2.67)
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and

b = 1

fo

i=n∑
i=1

Gi

Di

is also a constant (2.68)

(2.65) and (2.66) represent the overall droop characteristic of the power system.

The application of (2.63) and (2.64) can be demonstrated graphically for a system in which
two generators are sharing a common load.

Consider two gas turbine generators, called Gen.1 and Gen.2, of the same size are sharing a
common load. Assume Gen.1 takes 60% and Gen.2 the remaining 40%. Let the system frequency be
60 Hz at full load and the droop of each machine be 4%.

The speed (frequency) versus load sharing situations can be shown graphically as in Figure 2.14
where point ‘A’ is the initial situation.

Now, supposing it is necessary to equalise the load shared by the two machines, then one
or both of the speed settings will need to be adjusted depending upon the final common speed
(frequency) required by the machines. It can be seen that unless the speed settings are changed, the
load taken by each machine cannot change. There are several methods by which this may be done,
by changing the speed setting of Gen.1 or Gen.2 or both.

Method 1. Change the speed setting of Gen.1 only:

The droop characteristic line 1A-A must be lowered to the new position ID-D so that
it crosses the line 2A-D of Gen.2 at point ‘D’ for 50% sharing of load. Thus the speed

Figure 2.14 Frequency droop governing and load sharing of two gas turbines.
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setting must be reduced from 102.4% (61.44 Hz) to 101.6% (60.96 Hz) i.e. the same as
that of Gen.2. The common new frequency will be at point ‘D’ as 99.6% (59.76 Hz).

Method 2. Change the speed setting of Gen.2 only:

The droop characteristic line 2A-A must be raised to the new position 2B-B so that it
crosses the line 1A-B of Gen.1 at point ‘B’ for 50% sharing of load. Thus the speed
setting must be raised from 101.6% (60.96 Hz) to 102.4% (61.44 Hz) i.e. the same as
that of Gen.1. The new frequency will be at point ‘B’ as 100.4% (60.24 Hz).

Method 3. Change the speed setting of Gen.1 and Gen.2.

In order to recover the frequency to 100% (60 Hz) both speed settings will need to
be changed.

Gen.1 speed setting will be reduced to 102% (61.2 Hz).

Gen.2 speed setting will be raised to 102%.

The operating point will be ‘C’.

The droop lines will be 1C-C and 2C-C.

2.5.4.1 Worked example

Three generators have different ratings and operate in a power system that has a nominal frequency
of 60 Hz. Each generator is partially loaded and the total load is 25 MW.

a) Find the loading of each generator and the system frequency if the total load increases to 40.5 MW,
whilst their set points remain unchanged.

b) Also find the changes required for the set points that will cause the system frequency to be restored
to 60 Hz. The initial loads on each generator and their droop values are, shown in Table 2.6.

c) Find the changes in the set points that will enable the generators to be equally loaded at the new
total load, with the system frequency found in a).

d) Find the additional changes in the set points that will enable the frequency to be recovered to
60 Hz.

Step 1. Find the initial set points fzi before the load is increased. Transpose (2.62) to find fzi

fzi = f + DiPifo

Gi

(2.69)

For generator No. 1,

fz1 = 60.0 + 0.03 × 60.0 × 10.0

20
= 60.9 Hz

Table 2.6. Data and initial conditions of three generators

Generator rating
(MW)

Initial loading
(MW)

Drop in per unit

20 10 0.03
15 10 0.04
10 5 0.05
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Similarly for generators Nos. 2 and 3,

fz2 = 61.6 Hz and fz3 = 61.5 Hz

Step 2. The common system frequency after the load increases is found from (2.66), (2.67) and (2.68).

a = 1

60.0

(
60.9 × 20.0

0.03
+ 61.6 × 15.0

0.04
+ 61.5 × 10.0

0.05

)
= 1266.67

b = 1

60

(
20.0

0.03
+ 15.0

0.04
+ 10.0

0.05

)
= 20.6945

f = a − P

b
= 1266.67 − 40.5

20.6945
= 59.25101 Hz

Step 3. Find the new load on each generator

P1 = (fz1 − f )
G1

D1fo

= (60.9 − 59.25101)
20.0

0.03 × 60.0

= 18.3221 MW (91.61%)

Similarly for generators Nos. 2 and 3,

P2 = 14.6819 MW (97.88%) and P3 = 7.4966 MW (74.97%)

Note,

Pnew = P1 + P2 + P3 = 18.3221 + 14.6819 + 7.4966

= 40.5 MW as required.

Step 4. Find the new set points that will recover the frequency to 60 Hz.

If a change �Pi in Pi is added to the (2.69) then the change in the set point will be,

�fzi = Di�Pifo

GI

(or 60.0 − f )

For generator No. 1,

�fz1 = 0.03 × (18.3221 − 10.0)60.0

20
= 0.74899

And so the new set-point is fz1 + �fz1 = 61.6489 Hz

Similarly for generators Nos. 2 and 3

fz2 + �fz2 = 62.3491 Hz, and fz3 + �fz3 = 62.2489 Hz

Step 5. Find the set points that will enable the generators to be equally loaded.
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For generator No. 1, the ratio K1 of its new load to its rating is,

P1 + �P1

G1
= K1

Similarly for generators Nos. 2 and 3,

P2 + �P2

G2
= K2 and

P3 + �P3

G3
= K3

For the generators to be equally loaded K1 = K2 = K3 =K.

In addition the ratio of the total load to the total of the generator ratings must be the same as
for each generator,

Hence,

K = P1 + �P1 + P2 + �P2 + P3 + �P3

G1 + G2 + G3

K = 40.5

20 + 15 + 10
= 0.9

Therefore since

P1 + �P1

G1
= 0.9

�P1 = (0.9 × 20) − 10.0 = 8.00 MW

so that
P1 + �P1 = 18.00 MW (90%)

and
�P2 = (0.9 × 15) − 10.0 = 3.5 MW

so that
P2 + �P2 = 10.0 + 3.5 = 13.5 MW (90%)

and
�P3 = (0.9 × 10) − 5.0 = 4.0 MW

so that
P3 + �P3 = 5.0 + 4.0 = 9.0 MW (90%)

Step 6. Find the new set points.

From (2.62), for generator No. 1, using the original frequency of 59.25101 Hz, found in Step 2,

fz1 = 59.25101 + 0.03 × 18.00 × 60.0

20.0
= 60.871 Hz



50 HANDBOOK OF ELECTRICAL ENGINEERING

Similarly for generators Nos. 2 and 3,

fz2 = 61.411 Hz and fz3 = 61.951 Hz

Step 7. Find the new set points that will recover the frequency to 60 Hz whilst maintaining equally
loaded generators.

Let the desired frequency of 60 Hz be denoted at fd . In order to reach this frequency all the
set points need to be increased by the difference between fd and f , which is,

�f = fd − f = 60.0 − 59.25101 = 0.749 Hz

Therefore,

fz1 = 60.871 + 0.749 = 61.62 Hz

fz2 = 61.411 + 0.749 = 62.16 Hz

and
fz3 = 61.951 + 0.749 = 62.70 Hz

Check that f has now the correct value, by using (2.62),

f = fz1 − D1P1fo

G1
= 61.62 − 0.03 × 18.0 × 60

20

= 61.62 − 1.62 = 60.0 Hz

f = fz2 − D2P2fo

G2
= 62.16 − 0.04 × 13.5 × 60

15

= 62.16 − 2.16 = 60.0 Hz

and,

f = fz3 − D3P3fo

G3
= 62.70 − 0.05 × 9.0 × 60

10

= 62.70 − 2.70 = 60.0 Hz

2.5.5 Load Sharing Controllers

The above worked example illustrates the combination of droop governing with an overall isochronous
control function. In a practical control scheme the following variables can be easily measured by
suitable transducers,

f = the system frequency.
Pi = the electrical power at the terminals of the generator (the generator losses and

gearbox losses can be ignored).
fzi = the governor set point within the controller that drives the fuel valve. A suitable

potentiometer can be used to derive the signal.
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The constants Di , Gi and fo can be incorporated into the controller as potentiometer adjust-
ments, or in a program if a programmable computing type of controller is used.

The control action can be made continuous or intermittent, i.e. control signals dispatched at
regular intervals.

2.5.5.1 Simulation of gas turbine generators

As described in sub-section 2.1.4 there are two main methods of transferring power from the gas
turbine to the generator, i.e., single-shaft and two-shaft driving systems. Established practice has a
preference for single-shaft machines for generator duty, but only where the ratings are available.
There is a reluctance to have both types on a common self-contained power system, such as those
used with offshore platforms or isolated land-based plants. It is generally considered that a single-
shaft machine has a superior speed performance when sudden changes in electrical power occur.
The deviation in shaft speed and frequency are lower and the recovery time is faster. In a two-shaft
machine there is a finite delay caused by the fact that the compressor responds before the power
turbine can respond.

The block diagrams for these two driving arrangements are different, the two-shaft arrange-
ment being slightly more complicated. Figure 2.13 can be rearranged as Figure 2.15 to show the
reference speed signal on the left-hand side as the main input to the system. The main output of
interest is the shaft speed. The rotational friction and windage block can be ignored since its influence
on the performance of the control system is very small. The complexity of these diagrams depends
upon what data are available from the manufacturer and the nature of the study being performed.
The diagrams from manufacturers sometimes show features, which are not usually needed for stabil-
ity studies, for example overspeed safety loops. Therefore some reasonable simplification is usually
acceptable.

Figure 2.15 Simplified equation of motion of a gas turbine.
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Block 1 in Figure 2.15 contains most of the main control and turbine functions, such as,

a) Governor gain.

b) Governor lead and lag compensating dynamics.

c) Derivative damping term for the speed signal.

d) Fuel valve gain, limits and dynamic terms.

e) Combustion system lag dynamic term.

f) Combustion system limits.

g) Power turbine dynamics.

h) Compressor dynamics.

i) Compressor protection system.

j) Turbine temperature measurement dynamics and limit or reference level.

The functions h), i) and j) are used when a two-shaft drive system needs to be simulated.
When applied they usually require a special signal selection block to be incorporated just before the
fuel valve or governor. The purpose of this signal selector is to automatically choose the lowest value
or its two input signals, so that the least fuel is passed to the combustion system. This contributes to
the slower response of a two-shaft machine.

The data supplied by the manufacturer is often given in physical units such as, the position of
the fuel valve in angular degrees, shaft speed in revolutions per minute, power output in kilowatts,
combustion temperature in degrees Kelvin. In most power system computer programs these data
need to be converted into a compatible per-unit form. This can be a little difficult to achieve and a
source of numerical errors, which can lead to incorrect results from the program. Manufacturers may
also provide a per-unit form of the block diagram, if requested to do so. The time constants used in
these diagrams vary significantly from one type and rating of gas turbine to another. It is difficult to
generalise their values. The rotor inertia of the turbine should include the inertia of the gearbox and
the rotor of the generator. The speed measurement block usually contains the governing lead and lag
compensation time constants. These time constants and the derivative damping gain have a strong
influence on the speed response to a change in electrical power, and should therefore be chosen or
calculated carefully.

2.6 MATHEMATICAL MODELLING OF GAS TURBINE SPEED
GOVERNING SYSTEMS

2.6.1 Modern Practice

Control systems used for the speed governing of gas turbines have become highly involved in
electronic circuitry. Electromechanical fuel value control has largely replaced methods based on
hydraulic control. The reliability of electronic and electrical devices has improved to such a level
that they are generally preferred to hydraulic and mechanical devices, where their use is appropriate.

Most computer programs used for dynamic studies of power systems are capable of represent-
ing control systems and machinery dynamics to a reasonably high level of detail. Manufacturers of
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Figure 2.16 Control system for the speed governing of a single-shaft gas turbine.

Figure 2.17 Control system for the speed governing of a two-shaft gas turbine.

gas turbines are normally able to provide detailed mathematical models of the machines and their
control systems.

The modelling of the complete gas turbine including its control system and its interaction with
the driven generator can be divided into several main functions. See Figures 2.16 and 2.17. Figure 2.16
represents a single-shaft gas turbine whilst Figure 2.17 represents a two-shaft machine.
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The main functions are:-

• Summation of electrical and mechanical power.

• Acceleration of the rotating mass.

• Speed error sensing circuit to compare the shaft speed with a set or reference value.

• A power amplifier to amplify the error signal and to provide sufficient power to supply the fuel
valve actuator.

• Fuel value limits and dynamics.

• Division of power between the power turbine and the compressor turbine.

Often the data to be used in a computer program are provided in actual physical units based on
the SI or English thermodynamic systems of measurement. Most programs require the data in a per
unit format. Care needs to be taken in converting the data into a suitable per unit format, especially
the constants, scaling factors and controller limits. Figures 2.16 and 2.17 have therefore been drawn
using per unit quantities.

2.6.1.1 Summation of electrical and mechanical power

The electrical power Pe input comes from the generator equations, which are usually presented in
their two-axis form. This power is the power demand at the shaft coupling of the generator. This is
derived from the transient or sub-transient equations of the generator, as described in sub-section 3.4.
The choice depends upon the mathematical model used for the generator. For studies using practical
data that are subject to tolerances of typically ±15%, and often approximations, the differences in
the results obtained from a sub-transient or a transient model are small enough to ignore.

The mechanical output power Pm is the net power produced by the turbines of the gas turbine.
This is the total power converted to mechanical power less the amount consumed by the compressor.
In some models factors are given that show the proportion of power consumed by the compressor
to that delivered to the power output turbine, as shown in Figure 2.17. The sum of two factors
equals unity.

2.6.1.2 Acceleration of the rotating mass

The rotating mass considered in this part of the model is the total of the masses that form parts
of the power turbine, its couplings, the gearbox rotating elements and the rotor of the generator
(complete with its attachments such as the main exciter). It is customary to convert all the rotating
polar moments of inertia into their ‘inertia constants’ and to use their total value in the model. Usually
the turbine manufacturer will be able to advise the total polar inertia of the turbine plus the generator.
However, the units used may be given in for example, SI (kgm2), TM (kgfm2) or English (Ibft2)
units. The TM system of units is commonly used in Europe, especially in Germany although it is
being superseded by the SI system. A discussion of this aspect can be found in Chapter 1, Table 22
of Reference 8. If the polar moment of inertia is given in TM units of kgfm2 then the equivalent
quantity in SI units is 0.25 kgm2, due to a fundamental difference in the definition of the radius
of gyration. A possible source of error by a factor of four could result from simply ignoring the
subscript ‘f ’ in kgfm2 and assuming it is the same as kgm2.
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The ‘inertia constant H ’ is a constant used in electrical engineering to relate the actual moment
of inertia of mechanical rotating components to a base of electrical volt-amperes. It was developed
specifically for use in solving differential equations that describe the transient speed changes of
generator shafts. Subsequently it has been used more widely in motor dynamic analysis. Two early
references to the definitions of inertia constants are a report by Evans in 1937 (Reference 9), and a
paper by Wagner and Evans in 1928 (Reference 10). The inertia constant H is defined as the energy
stored in the rotating mass divided by the volt-ampere rating of the generator (or motor), which gives.

H = kilo-joules

kVA
or

kWsec

kVA

= 2Jωo
2

Sp2
seconds

where J is the polar moment of inertia
ωo is the synchronous speed
S is the VA rating of the machine
p is the number of poles of the machine

In English units,

H = 0.231JN2 × 10−6

S
seconds

with J in Lbft2

N in revs/min
S in kVA

In SI units,

H = Jπ2N2 × 10−3

1800S
seconds

with J in kgm2

N in revs/min
S in kVA

It should be noted that H is a function of the synchronous speed of the machine. If the speed should
vary over a wide range then the variation of H with speed should be included in the mathematical
simulation. For small excursions in speed about the synchronous speed, the error in using a constant
value of H is negligible. This point is discussed in Reference 11.

2.6.1.3 Speed error sensing circuit

The output from the inertia block is the speed change eω due to integration of the mismatch in power
between Pe and Pm.

The governor responds to the actual speed of the shaft and so the speed change needs to be
added to the 1.0 pu base speed Cω. The actual shaft speed is compared to the reference or set-point
speed resulting in the error eω2.
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2.6.1.4 Power amplifier

Power amplification is necessary in order to develop sufficient power to drive the fuel value open or
closed. The amplifier incorporates,

• The droop constant Kd1.

• The lag term time constants Tg1 and Tg2 which are inherently present in the electronic circuits.

• The derivative damping gain Kg2 which is often made adjustable.

2.6.1.5 Governor compensation

In order to improve the speed of response a lag-lead compensation circuit is employed in some
governor control systems. It contains a gain term Kg3, a lag time constant Tg4 and a lead time constant
Tg3. If data are not available for these they may be assumed to be Kg3 = 1.0 and Tg3 = Tg4 = 0.

2.6.1.6 Fuel valve mechanism lag

The fuel valve actuator and its mechanism may have sufficient inductance or inertia to introduce a
perceptible lag in the valve stem response to its input signal. The equivalent time constant is Tf 1.

2.6.1.7 Fuel valve limits

The fuel valve naturally has an upper and lower physical limit of the ‘hard’ type, i.e. a limit that is
suddenly reached by the moving part. (A ‘soft’ limit is one in which the moving part reaches a region
of increasing resistance before it eventually comes to rest. An electrical analogy would be magnetic
saturation in an exciter, see sub-section 4.2.) The two hard limits are fmin and fmax where fmin is
usually set at zero. Occasionally fmin has a negative value to artificially account for the no-load
turbine power needed to drive the compressor. Hence at no load on the gas-turbine coupling the
valve would be represented as having its position set to zero, whereas in practice it would open to
about 15% of its travel.

Some fuel valves are driven by constant speed servomechanisms such as stepper motors.
When they move the stem from one position to another the initial acceleration to constant speed is
rapid, and likewise when the final position is reached. Feedback is applied in the valve controller to
accurately relate the stem position to the magnitude of the control signal. Often this type of device is
not modelled in computer programs, and so some form of approximation should be used to account
for the lag in time between the receipt of the signal and the valve stem reaching its correct position.
The constant speed motion of the valve actuator is also called ‘slewing’ and the ‘slewing rate’ is the
measure of the rate of change of position during the constant speed motion.

An exponential approximation of slewing is now considered. Assume that the valve can move
from its zero position to its 100% position in T100 seconds, at a constant rate, when a step input signal
is applied at t = 0 seconds. Assume that an equivalent exponential lag term responds to the same
step input over the same period of T100 seconds. Figure 2.18 shows the two responses referred to a
common base of time. A good ‘measure of fit’ can be made by choosing the time constant Tf a such
that the area represented by the lower part (A) equals that represented by the upper area (B). This
is determined by equating these two areas. The areas are found by integration. Area (A) is found by
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Figure 2.18 Simulation of slewing of the fuel valve by using an exponential approximation.

integrating between t1 = 0 and t2 = Te, whilst area (B) is found by integrating between t1 = Te and
t2 = T100. If R is the slewing rate in per unit movement per second, then the solution for the best
measure of fit is,

1

2R
= (1 − e−f )Tf a seconds

Where,

f = −1

RTf a

Hence a unique value of Tf a can be found for each value of slewing rate R. The ratio of
1.0/Tf a to R that satisfies the above equation for all non-zero R is,

1

RTf a

= 1.5932, which may be rounded up to 1.6

If for example the slewing rate is 3 per-unit travel/second then 1.0/R = 0.333 and Tf a =
0.333/1.6 = 0.208 seconds.

If this approximation is made then an additional lag term should be inserted in the denominator
of the ‘fuel valve lag’ block described in sub section 2.6.1.7 and the hard limits simply applied to
the output of the block.
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2.6.1.8 Combustion and turbine dynamics

After the fuel valve moves from one position to another the flow rate of the fuel delivered to the
combustors changes, but a delay due to the inertia of the fuel occurs. The fuel enters the combustor
and burns along its length at a finite burning rate. Completion of the combustion takes time and
adds a further delay to the energy conversion process. A finite time is required for the burnt gas to
pass through the power turbine and transfer part of its energy to the turbine. The ‘turbine lead-lag’
block approximates these conversion processes. The number of lead and lag terms varies from one
gas turbine type to another.

In a single-shaft gas turbine the turbine lead-lag block represents the amount of energy or power
that is convertible to mechanical power for accelerating the output shaft masses and to balance the
electrical power demand.

In a two-shaft gas turbine the situation is slightly more complicated. Part of the convertible
power is required to drive the separate compressor. The compressor has its own dynamic response
and is shown as a parallel branch in Figure 2.17. This illustrates the fact that the resulting mechanical

Table 2.7. Typical data for simulating gas-turbine control systems

Parameter Low Values Typical High

H note i) 1.2 1.5 2.0
Gh 0.25 0.33 0.42
Cw 1.0 1.0 1.0
Kg1 1.0 1.0 1.0
Tg1 0.05 0.01 0.015
Kg2 note ii) 10.0 20.0 40.0
Tg2 0.02 0.04 0.15
Kdg 0.02 0.04 0.08
Tg3 0.25 0.50 0.75
Tg4 1.0 1.50 1.75
Tf 1 0.01 0.02 0.05
fmax 1.2 1.35 1.5
fmin −0.2 −0.15 0
Kt1 1.0 1.0 1.0
Tt1 0.3 0.6 0.9
Tt2 1.2 1.4 2.0
Kt2 0.4 (1.0) 0.5 (1.0) 06 (1.0)
Kc1 0.4 (0) 0.5 (0) 0.6 (0)
Tc1 Tt2 (0) Tt2 (0) Tt2 (0)
Cmax 1.1 (0) 1.2 (0) 1.3 (0)
Cmin 0 0 0
Ka1 2.0 (0) 2.5 (0) 3.0 (0)
Ca2 0.38 (0) 0.4 (0) 0.42 (0)
Cz1 0.38 (0) 0.4 (0) 0.42 (0)
Cz2 0.48 (0) 0.5 (0) 0.52 (0)

Notes:

i) Gh = 1.0

2H
ii) Kg1xKg2 � a constant value

iii) Data in brackets ( ) apply to the single-shaft mathematical model.
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power has a part that is delayed when a disturbance occurs. It is generally considered that two-shaft
gas turbines have a slower response characteristic to disturbances in electrical power, and that this
gives rise to greater excursion in shaft speed. The delay due to the compressor being on a separate
shaft accounts for this inferior performance.

With a two-shaft system the compressor is free to accelerate since it is not constrained by
the heavy mass of the driven generator. In order to avoid excessive acceleration of the compressor
a suitable signal is derived and passed through a safety control loop, often called the load schedule
or acceleration control. The signal is compared with the output of the governor power amplifier and
the least of these two signals is selected and sent to the fuel valve. The ‘least signal selector’ block
carries out this comparison, as shown in Figure 2.17. Where the compressor loop is given with a
slewing block, with upper and lower limits, the approximation of the slewing may be considered in
the same manner as for the fuel valve actuator and its limits.

2.6.2 Typical Parameter Values for Speed Governing Systems

Table 2.7 shows typical per-unit values for the gains, limits and time constants used in the speed
governing control systems for gas turbines having ratings up to approximately 25 MW.
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