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27.1 INTRODUCTION

In this increasingly demanding pharmaceutical market,

chemical engineers face major challenges in maintaining

a competitive advantage in process development: (1) driving

speed and efficiency into the active pharmaceutical ingredi-

ent (API) process development workflow, (2) managing

information flow throughout the process development stages

to improve collaboration, and (3) enabling improved process

design that delivers quality assured product and lower cost

of goods in commercial-scale manufacturing operations. In

addition, U.S. FDA and other agencies are increasing their

emphasis on process understanding.Quality by design (QbD)

is an evolving initiative from FDA emphasizing that quality

should be built into a product, with a thorough understanding

of the product and the process by which it is developed and

manufactured, along with a knowledge of the risks involved

in manufacturing the product and how best to mitigate those

risks. As part of QbD, first-principles modeling, statistically

designed experiments, and scale-up correlations will all be

considered in determining the approved design space of

acceptable manufacturing conditions. To meet these chal-

lenges, chemical engineers must strive to apply modern-day

first-principles modeling and simulation technology and

advance science-based, mechanistic understanding of

pharmaceutical manufacturing processes. Without such

understanding, pharmaceutical process development would

remain ‘‘lagging behind potato chip and laundry detergent

makers in the use of modern manufacturing systems [1].’’

However, to date, the use of first-principles modeling

and simulation technology in the pharmaceutical industry

remains very limited, if any.

27.2 PROCESS SIMULATION AND MOLECULAR

THERMODYNAMICS

Process simulation, which emerged in the 1960s, has be-

come one of the great success stories in the use of computing

in the chemical industry. For instance, steady-state simula-

tion has largely replaced experimentation and pilot plant

testing in process development for commodity chemicals,

except in the case of reactions having new mechanisms or

requiring new separation technologies. Tools for steady-

state process simulation are nowadays universally available

to aid in the decisions for design, operation, and debot-

tlenecking; they are part of every process engineer’s toolkit.

Their accuracy and predictive ability for decision-making is

widely accepted to make routine plant trials and most

experimental scale-up obsolete in the commodity chemicals

industry [2].

While the foundation of quality by design is the

availability of intrinsic (kinetic and mechanistic) process

knowledge collected through the use of the various (model-

ing) tools [1], the scientific foundation of process

modeling and simulation technology are the molecular

thermodynamic models that provide thermodynamically

consistent descriptions of thermophysical properties and
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phase behavior of chemical systems that are being

investigated.

Indeed, the development of process modeling technologies

and software tools follows and evolves around the devel-

opment of molecular thermodynamics. For example, ad-

vances in equations-of-state and activity coefficient models

since the 1970s set the stage for widespread applications of

process modeling tools in the oil and gas industry and the

petrochemical industry. For example, recent advances in

molecular thermodynamics have made it possible to devel-

op and apply process modeling technologies for complex

chemical systems, i.e., processes involving synthetic fuels,

aqueous electrolytes, polymer manufacturing processes,

etc. Without these advances in molecular thermodynamics,

chemical engineers would not have been able to develop

first-principles-based, high-fidelity process models that

are instrumental for process and product design and

optimization [3].

The key technical barrier to the successful application of

process modeling and simulation technology in the pharma-

ceutical industry has been the lack of accurate and robust

molecular thermodynamic models that meet the unique

challenges of the pharmaceutical industry. The process

modeling and simulation challenges faced by the pharma-

ceutical industry are not so much with the mathematical

formulation or simulation software of various unit opera-

tions, batch or continuous. Such mathematical formulation

and simulation software have been well advanced and

widely applied in the petrochemical, chemical, and specialty

chemical industries and they are ready to be used in the

pharmaceutical industry. Rather, without robust molecular

thermodynamic models that can accurately describe the

thermophysical properties and phase behavior of systems

with drug molecules, process modeling and simulation

technology will not provide the accuracy and predictive

capability required to simulate real performance of

pharmaceutical manufacturing processes and little process

knowledge and few benefits, if any, could ever be derived

from it.

27.2.1 Activity Coefficient as Key Thermophysical

Property

Models for wide varieties of thermophysical properties and

phase behavior are required in process modeling and simu-

lation. Among the various thermophysical properties of

concern to pharmaceutical process modeling and simulation,

activity coefficient stands out clearly as the single most

critical property. Activity coefficient plays the central

role in determining the solubility and related phase behavior

of pharmaceutical molecules in major pharmaceutical unit

operations, for example, crystallization, chromatography,

extraction, distillation, reaction, and so on.

As summarized by Lipinski et al. [4], ‘‘the knowledge of

the thermodynamic solubility of drug candidates is of par-

amount importance in assisting the discovery, as well as the

development, of new drug entities at later stages.’’ Given

a solid polymorph and a fixed temperature, equation 27.1

shows that the solubility of drug candidate is only a function

of its activity coefficient in solution as the solvent compo-

sition changes.

ln xsatI g satI ¼ DHfus

R

1

Tm
� 1

T

� �
ð27:1Þ

where xsatI is the mole fraction of solute I at saturation, DHfus

is the enthalpy of fusion for the solid polymorph,R is the ideal

gas constant, T is the temperature, Tm is the melting point,

and g satI is the activity coefficient of solute I at saturation.

DHfus and Tm vary with polymorphic forms of the solute.

Equation 27.2 shows that the magnitude of solute reten-

tion in chromatography under isocratic condition (i.e., con-

stant mobile-phase solvent composition) is also related to

solute activity coefficients in the mobile phase and the

stationary phase.

kI ¼ xsVs

xmVm

¼ KIF ¼ g1m
g1s

F ð27:2Þ

where kI is the retention factor for solute I;KI is the partition

coefficient;F is the phase ratio, that is, the ratio of the volume

of the stationary phase Vs to that of the mobile phase Vm; xs
and xm are the solute concentrations in the stationary phase

and the mobile phase; and g1s and g1m are the solute infinite

dilution activity coefficients in the stationary phase and the

mobile phase, respectively.

Equation 27.3 shows the isoactivity relationship for ex-

traction:

xL1I gL1I ¼ xL2I gL2I ð27:3Þ
where xL1I and xL2I are the concentrations for solute I in the

first liquid phase and the second liquid phase, respectively.

gL1I and gL2I are the solute activity coefficients in the two

liquid phases.

Equation 27.4 shows the isofugacity relationship for

distillation:

xIg Ip
o
I ¼ yIf

V
I P ð27:4Þ

wherexI and yI are the concentrations for solute I in the liquid

phase and the vapor phase, respectively, g I is the solute

liquid-phase activity coefficient, fV
I is the vapor-phase

fugacity coefficient, poI is the solute vapor pressure, and P

is the system pressure.

As seen by the inclusion of activity coefficients in the

above equations, a prerequisite to executing meaningful

process modeling and simulation of any pharmaceutical

manufacturing processes is having robust and thermodynam-

ically consistent models that can accurately describe activity
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coefficients of various components in the system of interest.

Availability of such activity coefficient models is a prereq-

uisite to meaningful first-principles process modeling and

simulation in the pharmaceutical industry.

27.2.2 Thermodynamic Activity Coefficient Models

Numerous molecular thermodynamic models have been

proposed in the literature to correlate or predict activity

coefficients [5]. Many of them have been incorporated into

process simulators [6]. Popular semiempirical correlative

models, such as NRTL and UNIQUAC, are the gold standard

activity coefficient models for process modeling and simu-

lation of the petrochemical and chemical industries. How-

ever, these correlativemodels require identification of binary

interaction parameters from phase equilibrium data for each

of the solvent–solvent, solvent–solute, and solute–solute

binarymixtures.While such solvent–solvent, solvent–solute,

and solute–solute binary phase equilibrium data are often

available for commodity chemicals, they are rarely available

for new chemical entities and reaction intermediates encoun-

tered in the pharmaceutical industry. Consequently, these

correlative models find very limited use in pharmaceutical

process modeling, simulation, and design except in very

limited solvent recovery applications.

The predictive, group contribution-based UNIFAC activ-

ity coefficient model requires only chemical structure

information for the solvents and solutes [7]. Unfortunately,

UNIFAC fails for complex pharmaceutical molecules for

which either the UNIFAC functional groups are undefined

or the functional group additivity rule becomes invalid for

rigid molecular structure [8]. Recent developments in

computational chemistry yielded the COSMO-RS [9] and

COSMO-SAC [10] predictive models that represent prom-

ising alternatives to UNIFAC. However, the predictive

powers of UNIFAC- and COSMO-based models are still

inadequate [11] and their usability has been limited to

nonelectrolytes.

The Hansen solubility parameter model has been the most

widely used activity coefficient model in the pharmaceutical

industry [12]. Incorporating the ‘‘like dissolves like’’ con-

cept, the model is useful as a guide to help chemists and

engineers explain API solubility behavior. However, due to

its oversimplistic assumptions, the model has very limited

practical use in the quantitative estimation of drug molecule

solubility [11].

27.2.3 NRTL Segment Activity Coefficient

(NRTL-SAC) Model

Designed to overcome the gap between molecular thermo-

dynamics and process modeling and simulation technology

for the pharmaceutical industry, the NRTL-SAC model is

a very interesting and promising new development [11]. As

an extension of the NRTL model [13] and the polymer

NRTL [14] model for systems with solvents, solutes,

oligomers, and polymers, NRTL-SAC computes activity

coefficients from a combinatorial term and a residual term.

ln g I ¼ ln gCI þ ln gRI ð27:5Þ
The combinatorial term gCI is calculated from the

Flory–Huggins approximation for the combinatorial entropy

of mixing. The residual term gRI is calculated from the local

composition (lc) contribution g lcI of the polymer NRTL

model. Incorporating the segment interaction concept, the

equation computes the activity coefficient for component I

in solution by summing up contributions to the activity

coefficient from all segments that make up component I.

ln gRI ¼ ln g lcI ¼
X
i

ri;I lnGlc
i �lnGlc

i;I

h i
ð27:6Þ

lnGlc
i ¼

P
jxjGjitjiP
kxkGki

þ
X
m

xmGimP
kxkGkm

tim�
P

jxjGjmtjmP
kxkGkm

� �

ð27:7Þ

lnGlc
i;I ¼

P
jxj;IGjitjiP
kxk;IGki

þ
X
m

xm;IGimP
kxk;IGkm

tim�
P

jxj;IGjmtjmP
kxk;IGkm

� �

ð27:8Þ
where I is the component index, i; j;k;m are the segment

species index, ri;I is the number of segment species i con-

tained only in component I, xj is the segment-based mole

fraction of segment species j, xj;I is the segment-based

mole fraction of segment species j in component I, Glc
i is

the activity coefficient of segment species i, and Glc
i;I is the

activity coefficient of segment species i contained only in

component I. G and t in equations 27.7 and 27.8 are binary

quantities related to each other by a
�
i:e:;G¼ expð�atÞ�.

a and t are the nonrandomness factor parameter and the

segment–segment binary interaction energy parameter,

respectively.

Chen and Song identified four unique ‘‘conceptual’’ seg-

ments that broadly characterize surface interaction charac-

teristics of molecules, solvents, or solutes [11]. These four

conceptual segments, together with their corresponding non-

randomness factor and segment–segment binary interaction

parameters (i.e., a and t), are capable of qualitatively

describing the various solvent–solvent, solvent–solute, and

solute–solute molecular interactions and the resulting phase

behavior of mixtures of solvents and solutes. Specifically,

Chen and Song proposed to describe the molecular surface

interactions of all solvents and solutes in solution with four

types of conceptual segments: hydrophobic segment, elec-

trostatic solvation segment, electrostatic polar segment,

and hydrophilic segment. The conceptual segment numbers

for each molecule, solvents or solutes, are measures of the
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effective molecular surface areas that exhibit surface inter-

action characteristics of hydrophobicity, solvation, polarity,

and hydrophilicity. The hydrophilic segment simulates mo-

lecular surfaces that are ‘‘hydrogen bond donor or acceptor.’’

The hydrophobic segment simulates molecular surfaces that

show aversion to forming a hydrogen bond. The polar and

solvation segments simulate molecular surfaces that are

‘‘electron pair donor or acceptor.’’ The solvation segment is

attractive to the hydrophilic segment while the polar segment

is repulsive to the hydrophilic segment. The molecule-

specific conceptual segment numbers correspond to ri;I in

equation 27.6.

Also proposed are ‘‘reference compounds’’ for the con-

ceptual segments. They are used to identify the segment–-

segment nonrandomness factor and binary interaction energy

parameters for the conceptual segments from regression of

available experimental vapor–liquid and liquid–liquid equi-

librium data associated with these reference compounds.

Chen and Song further identified the conceptual segment

numbers for solvents commonly used in the pharmaceutical

industry.

To determine the conceptual segment numbers of a solute

molecule, solubility data or equivalent activity coefficient

data in at least four solvents of varied surface interaction

characteristics are needed. The parameterization is improved

if a range of hydrophilic solvents, polar solvents, solvation

solvents, and hydrophobic solvents are used. Once the

segment numbers of the solute molecule are determined, the

NRTL-SAC model can then provide robust, qualitative

prediction for the solute activity coefficient and the corre-

sponding solubility in pure solvents and solvent mixtures.

It is estimated that half of all the drug molecules used in

medicinal therapy are administered as salts [15]. This con-

ceptual segment methodology has also been successfully

extended for activity coefficient modeling of organic

salts [16, 17].

27.2.4 Acetaminophen: An Example

Figure 27.1 shows NRTL-SAC predictions versus experi-

mental data for acetaminophen solubility in 23 pure solvents

at 303.15K [18]. As representatives of hydrophilic (water and

ethanol), solvation (DMSO), polar (acetone, acetonitrile, and

THF), and hydrophobic (chloroform and toluene) solvents,

eight pure solvent solubility data points (shown as solid

squares) were used to identify the acetaminophen para-

meters. Empty diamonds represent the predictions for the

remaining 15 pure solvents.

Figures 27.2–27.5 show robust predictions (as solid lines)

versus experimental data (as solid squares) for acetamino-

phen solubility in mixed solvents at 298.15K [18].

Figure 27.2 shows the prediction for a mixed solvent of

two hydrophilic solvents, for example, ethanol–water binary.

The acetaminophen solubility in this binary is nonideal but

without significant peak solubility. Figure 27.3 shows the

prediction for a mixed solvent of one polar solvent and one

hydrophilic solvent, for example, acetone–water binary.

The solubility behavior of acetaminophen in this binary is

extremely nonideal, with ‘‘bell’’-shaped solubility behavior

as a function of solvent composition and a four- to fivefold

solubility increase. Figure 27.4 shows the prediction for
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FIGURE 27.1 Model prediction versus experimental data for

acetaminophen solubility in pure solvents at 303.15K (solid squares

represent the eight pure solvent solubility data points that were used

to identify the solute parameters; empty diamonds represent pure

solvent solubility data, excluding the eight pure solvents). Reprinted

with permission fromRef. 18. Copyright 2006, American Chemical

Society.
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FIGURE 27.2 Model prediction versus experimental data for

acetaminophen solubility in ethanol–water binary solvents at

298.15K (solid squares are experimental data and solid line

represents model predictions). Reprinted with permission from

Ref. 18. Copyright 2006, American Chemical Society.
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a mixed solvent of one polar solvent and one hydrophobic

solvent, for example, acetone–toluene binary. The acetamin-

ophen solubility in this binary is relatively ideal. Figure 27.5

shows the prediction for a mixed solvent of one hydrophilic

solvent and one hydrophobic solvent, for example,

ethanol–ethyl acetate binary. Again, the model predicts

nonideal acetaminophen solubility in the binary, consistent

with the trend exhibited by the experimental data.

While the quality of the NRTL-SAC model predictions

depends on the quality of the experimental data used to

identify the solute parameters and there is no guarantee that

the model will always yield correct, quantitative predictions,

the predictive capability of NRTL-SAC has been success-

fully demonstrated with hundreds of drug molecules. For

example, in a study with six Merck compounds [19], Merck

researchers showed that NRTL-SAC offers solubility

prediction accuracy within the range of �50% and meets

the needs of solvent selection and API process design. In

contrast, the prediction accuracies from UNIFAC are in the

range of �500%, while the correlation accuracies with the

Hansen model are in the range of �200%. In a subsequent

study [20], Merck researchers reported application of

NRTL-SAC and COSMO-SAC in the solubility estimation

of fourMerck compounds: lovastatin, simvastatin, rofecoxib,

and etoricoxib. They concluded that NRTL-SAC offered

superior performance over COSMO-SAC. The maximum

average log square error for NRTL-SAC was 0.10 (i.e.,

prediction accuracy of �30%) while the maximum average

log square error for COSMO-SAC was 0.32 (i.e., prediction

accuracy of �100%).

A very recent evaluation of NRTL-SAC also found a

satisfactory agreement between experimental and calculated

values for four drugs: paracetamol, allopurinol, furosemide,

and budesonide [21]. The solubility data in pure organic

solvents were used to regress the solute model parameters

that were used afterward for the prediction of solubility of

these compounds in water and in mixed solvent systems.

The absolute average deviation was 68% for the correlation

in the organic solvents and 38% for the prediction in water.

The model was shown to be an appropriate tool to represent

and predict the solubility of these compounds.
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FIGURE 27.3 Model prediction versus experimental data for

acetaminophen solubility in acetone–water binary solvents at

298.15K (solid squares are experimental data and solid line repre-

sents model predictions). Reprinted with permission from Ref. 18.

Copyright 2006, American Chemical Society.
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FIGURE 27.4 Model prediction versus experimental data for

acetaminophen solubility in acetone–toluene binary solvents at

298.15K (solid squares are experimental data and solid line

represents model predictions). Reprinted with permission from

Ref. 18. Copyright 2006, American Chemical Society.
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FIGURE 27.5 Model prediction versus experimental data for

acetaminophen solubility in ethanol–ethyl acetate binary solvents

at 298.15K (solid squares are experimental data and solid line

represents model predictions). Reprinted with permission from

Ref. 18. Copyright 2006, American Chemical Society.
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27.2.5 Applications

The ability to predict drug molecule activity coefficients and

solubility in a reliable and efficient manner is invaluable to

the tasks of solvent selection, API process design and opti-

mization, and process modeling and simulation. NRTL-SAC

represents a quantum leap forward in the ability to first

correlate a limited number of experimental data and then

predict drug molecule activity coefficients and resulting

phase behavior in pure solvents and mixed solvents. When

integrated with Microsoft� Excel and process simulators,

NRTL-SAC offers a rigorous and practical thermodynamic

framework that provides robust predictions of API activity

coefficients across all unit operation models and enables

chemical engineers design and optimize pharmaceutical

manufacturing processes that deliver required drug purity

and yield, minimize solvent usage, reduce hazardous solvent

waste, consume less energy, and lower overall cost.

Some successful industrial applications of NRTL-SAC

have started to emerge in the public domain. A few examples

are summarized here:

Design of crystallization processes for the manufacture of

API is a significant technical challenge to process research

and development groups. AstraZeneca researchers examined

the role of activity coefficient modeling and its application

within the crystallization process design framework [22].

NRTL-SAC has been demonstrated, through the case study

on cimetidine, to be a valuable aid in solubility data assess-

ment and targeted solvent selection for crystallization

process design.

Eli Lilly scientists applied NRTL-SAC to screen solvents

for a crystallization medium with the goal to maximize API

solubility and to minimize solvent usage [23].

The NRTL-SAC model parameters for the molecule in

development are first identified from a minimal set of sol-

ubility experiments in selected solvents. We then perform

numerous in silico virtual experiments to explore the solu-

bility behavior of the molecule in other pure solvents and

mixed solvents. The modeling results suggested optimal

solvent systems for the crystallization medium which are

validated in physical laboratories and chosen for process

scale-up. This study demonstrated the effectiveness of the

NRTL-SAC model and supports its use as a tool in drug

development.

Using models, Bristol-Myers Squibb researchers

demonstrated an efficient approach to identify optimal

solvent compositions during conceptual design of an API

process [24].

A ternary solvent system was considered for a reaction,

extraction, distillation, and crystallization sequence. Two

thermodynamic models, NRTL-SAC and NRTL, as well

as Aspen modeling tools, were employed to predict the

liquid-liquid, vapor-liquid, and solid-liquid phase behaviors.

We used these modeling tools to identify a solvent composi-

tion space for the reaction that allows for reasonable reaction

volume while continuously removing a byproduct into a

second aqueous phase. This composition also reduces API

loss during subsequent aqueous extractions. Furthermore, the

composition of the organic phase allows for an efficient

azeotropic distillation during solvent exchange, resulting in

a shorter cycle time needed to achieve the desired composition

for final crystallization. Overall solvent usage for the process

is also significantly reduced. This approach was applied

retrospectively to a late-stageAPI process under experimental

development and was validated with the production of API of

excellent quality at the pilot scalewith solvent compositions of

the process in agreement with those predicted by the models.

27.2.6 Benefits

At the highest level, and for any R&D centric industry, the

sooner improvements to new products (or the quality of

decisions surrounding them) can be made, the greater the

overall value potential. Value potential here is measured not

only by value delivered to a product or a process, but also

by ‘‘redundant cost avoidance.’’ It is this that hits pharma’s

‘‘value sweet spot’’ square on because pharmaceutical

research is fundamentally much more ‘‘selection’’ than ‘‘in-

struction’’ in its nature, and so the biggest value impact may

be felt in cost avoidance. This is where process modeling and

simulation comes into its own and can yield millions of

dollars of accrued value in the course of subsequent R&Dand

throughout the life cycle of the new drug thereafter. This is

illustrated in Figure 27.6: a value plot against timeline to

launch a new drug. Here, areas of application for modeling

and simulation include lead optimization, API process

development, and Drug Product (DP) process development.

Given the recent development of the NRTL-SAC model,

and the long timelines for product development required for

a new drug, value benefit can only be a qualitative estimation,

based on current applications and anticipated capabilities.

Notwithstanding the inevitably ‘‘estimated’’ nature of value

benefit, any potential benefit should also be seen against the

backdrop of apparently ever-increasing R&D costs.

In the 1980s and 1990s, relative R&D spending repre-

sented approximately 15–17% of revenue for the average

drug company. Today, that average is approaching 20%, and

for some companies may exceed that level. Estimates have

placed the cost of bringing a new chemical entity (NCE)

successfully to market to be anywhere from $700 to $1200

million over the course of 9–12 years of R&D. Some

companies estimate that getting as far as completion of

lead optimization requires spending some $300 million over

the first 4 or 5 years of research. With the discovery and

development of high-value medicines becoming harder and

harder, and new drug application (NDA) annual submissions

on the decline, the time is fast approaching where dramatic
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operational efficiency improvements in R&Dwill be asmuch

a central plank for competitive advantage in pharmaceutical

industry as it already is for manufacturing operations.

With the above in mind, the application of process

modeling and simulation should add value in four major

ways across any pharmaceutical R&D organization:

1. Efficiency Improvement: by driving up the efficiency

with which NCE solubility can be fully characterized,

and all the potentially advantageous effects that this

can confer in the lead optimization space. Literally

hundreds of ‘‘experimental hours’’ could be reduced to

just a few through the use of modeling and prediction

software. This value may manifest as a reduction in

cost through headcount reduction or an increase in

throughput rate of NCEs in late discovery/early

development. The latter is the likelier benefit route

for companies with healthy pipelines of NCEs.

2. Risk Management/Better Decision Making: by

exploiting the predictive power of the model to drive

more informed and earlier decisions relating to select-

ing the candidate drug to best progress with respect to

its ‘‘processability’’ downstream in API and DP man-

ufacture. This ultimately enables a more informed

and better investment focus. Delaying or dropping

candidate drugs exhibiting very significant process

challenges could save time, money, and resource or

direct attention to solving ‘‘knockout’’ issues first,

before devoting more investment. In addition, this

should augment an ‘‘eyes open’’ approach to portfolio

management of NCEs in early development with

respect to their risk profile for manufacturability.

3. Speed to Market Launch/Continuity of Supply After

Launch: by enabling aspects of process development

activity (often delayed owing to insufficient NCE

material) to proceed earlier. This can be achieved by

using the modeling and predictive power of the soft-

ware to sidestep this common cause of delay by using

prediction to replace what would otherwise be exper-

imentally derived process design data. This may trans-

late into earlier clinical trials, and just possibly faster to

market. Further value may manifest by avoiding or

reducing the emergence of unforeseen disasters down-

stream that may severely compromise launch times or

continuity of supply after launch. (Late emerging

crystal polymorphs are a good example here, in which

solubility characteristic of the active drug are perma-

nently changed and can impact dose form stability, and

even bioavailability.)

4. API and Drug Product Manufacturing Process

Performance and Cost Profiles: by enabling the in-

formed design of many aspects of the API and DP

manufacturing processes, such that the final developed

process is better characterized, optimized, greener, and

higher in yield, thereby reducing cost of goods from the

outset of launch.

27.3 FUTURE DEVELOPMENTS

NRTL-SAC represents one recent successful molecular

thermodynamic model that makes it possible to carry out

meaningful first-principles process modeling and simulation

for pharmaceutical manufacturing processes. While the

development of NRTL-SAC is new, further developments
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of NRTL-SAC and other new activity coefficient models will

certainly emerge as chemical engineers explore and expand

use of process modeling and simulation in the pharmaceu-

tical industry. It should be noted that development of NRTL-

SAC and other new models requires extensive, high-quality

experimental data sets for model developers to advance

physical insights and to validate models. The scarcity and

the often questionable quality of public literature data with

drug-like molecules, especially regarding exact solid poly-

morphs, indeed makes such new developments in molecular

thermodynamics extremely challenging.

The ability to predict activity coefficients and the corre-

sponding solubility of drug molecules is important not only

for API manufacturing processes, but also for formulation

design and delivery of a drug to its site of action in the human

body [4]. While the development of NRTL-SAC has focused

on applications in process modeling and simulation for API

manufacturing processes, the conceptual segment method-

ology of describing molecular surface interaction character-

istics is equally applicable to surfactants and polymers that

are often used as excipients in drug formulation. Another

example of particular interest, although not obvious and

under investigation, is solubility modeling and prediction

of biologically derived or engineered macromolecules, such

as monoclonal antibodies and genetically engineered pro-

teins. This could be particularly exciting if further research

shows that the segmentation nature of the NRTL-SACmodel

lends itself well to more and more complex chemical/

biochemical entities. With further experimentation, it may

also be possible to characterize human organs, body fluids,

and tissues in a similar manner to study drug bioavailability,

pharmacokinetics, and toxicity. Application of NRTL-SAC

in drug formulation and other pertinent areas should be

actively pursued.

27.4 ASPEN TECHNOLOGY’S PROCESS

DEVELOPMENT SOLUTION

aspenONE Engineering, AspenTech’s model-based process

development solution for the pharmaceutical industry, deli-

vers ‘‘design for manufacture’’ (DfM) capability by enabling

people to model, simulate, design, and optimize API

manufacturing processes. The solution is designed to trans-

form the pharmaceutical process development workflow into

a productive and efficient process by

. Enabling development of robust and thermodynamical-

ly consistent thermophysical propertymodels including

NRTL-SAC

. Providing the modeling and simulation framework for

first-principles-based process models, both batch and

continuous

. Improving collaboration across the development work-

flow, from route selection to scale-up to completion of

technology transfer

. Facilitating efficient and successful technology transfer

to first sites of commercial manufacture

. Enabling the workflow to capture learning and apply

improvements iteratively

Underlying AspenTech’s process development solution

are process modeling and simulation tools that enable

engineers to develop first-principles-based process models

to achieve mechanistic understanding of the pharmaceutical

manufacturing processes. The same process models devel-

oped during the design phase can be used to support

continuous improvement initiatives in commercial-scale API

manufacture—helping engineers eliminate bottlenecks,

increase throughput, or achieve better operational efficiency.

Table 27.1 shows the aspenONE Engineering suite of pro-

ducts comprised of independently deployable components

with specific modeling functionalities.

Clearly, one cannot overemphasize the importance of

applying exactly the same thermophysical propertymethods,

models, and data across all process modeling and simulation

tools and activities to ensure rigor and consistency of

results. Therefore, a key common requirement for the

various process modeling and simulation products is the

library of rigorous, thermodynamically consistent models

for thermophysical properties and phase behavior. Aspen

TABLE 27.1 aspenONE Engineering suite of products

Product Name Description

Aspen Properties Physical property modeling system with

comprehensive chemical database and

estimation capability

Aspen Solubility

Modeler

Modeling solubility of drug molecules and

predicting drug molecule solubilities in

solvents and solvent mixtures

Aspen Plus First-principles rigorous modeling for

continuous steady-state processes (in-

cluding single and multistage separations

such as distillation and extraction, reac-

tors, heat exchangers, pumps, compres-

sors, etc.)

Aspen Batch

Distillation

First-principles rigorous modeling for batch

distillation processes

Aspen Reaction

Modeler

First-principles rigorous reaction modeling,

including kinetic data fitting

Aspen Custom

Modeler

Custom environment for detailed modeling

of other unit operations

Aspen Batch

Process

Developer

Recipe-based process modeling designed

for route selection, recipe development,

process scale-up, scheduling, and tech-

nology transfer
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Properties provides such a common technology component

and delivers best-in-class thermophysical property methods,

models, and data. It includes extensive databases of pure

component and phase equilibrium data and libraries of

estimationmethods. Also included are the activity coefficient

models such as NRTL, electrolyte NRTL, UNIQUAC,

UNIFAC, Hansen, COSMO-SAC, NRTL-SAC, electrolyte

NRTL-SAC, and so on. Ongoing collaboration with the

U.S. National Institute of Standards and Technology (NIST)

ensures continuing access to the newly available methods,

models, and data.

There are three modeling tools in Table 27.1 that deserve

special attention due to their particular pertinence to the

process modeling and simulation of pharmaceutical

manufacturing processes: Aspen Solubility Modeler (ASM),

AspenBatchDistillation, andAspenReactionModeler. Brief

summaries are given below.

Aspen Solubility Modeler is a tool with an Excel-based

front-end that provides users with the capability to define

drug properties and identify NRTL-SAC parameters for drug

molecules by regressing user-specified experimental solu-

bility data in pure solvents or mixed solvents. Also available

is the NRTL-SAC databank that provides NRTL-SAC para-

meters for over 150 solvents and excipients commonly

used in the pharmaceutical industry. TheDataAnalysis Excel

package allows users to predict phase equilibria (vapor–

liquid equilibrium and vapor–liquid–liquid equilibrium) and

solubility behavior of drugs under various operating condi-

tions and solvent compositions.AppendixA showshow to set

up Aspen Solubility Modeler, how to use ASM to regress

solubility data to identify NRTL-SAC parameters for drug

molecules (i.e., caffeine), and how to use ASM to perform

solubility calculations based on the regressed NRTL-SAC

parameters.

Aspen Batch Distillation is a comprehensive simulation

tool for conceptual design, analysis, and optimization of

batch distillation processes. Key features include the

following:

. Intuitive interface designed specifically for simulating

batch distillation

. Interoperability of Aspen Batch Distillation models

inside the industry-leading Aspen Plus process simu-

lation environment

. Optimization tool enabling rigorous identification of

optimum operating steps to minimize cycle time while

maintaining operating and performance constraints

. Equation-oriented architecture allowing timely and

robust dynamic simulation of complex columns

. Rigorous equipment modeling including flexible, con-

figurable controller models; pressure drop correlations;

multiphase, azeotropic, and reactive distillation; and

options to start from dry or total reflux conditions

Aspen Reaction Modeler enables users to identify reac-

tion kinetics models using experimental measurements from

reaction calorimeters. Key features include the following:

. Easy to use user interface that fully supports the model

identification workflow and enables easy copying of

experimental data from Excel

. Powerful numerical solvers for finding the best fit to

experimental data

. Comprehensive kinetics include power law and Lang-

muir–Hinshelwood reaction kinetics, reversible reac-

tions, and mass transfer effects

. Kinetic models consistent with other AspenTech pro-

ducts such as Aspen Plus, Aspen Plus Dynamics, and

Aspen Batch Distillation, enabling users to apply the

fitted parameters directly within these products

. Use of Aspen Properties for estimating physical prop-

erties required for the model identification process

27.5 CONCLUSIONS

Modern-day first-principles process modeling and simula-

tion is the enabling technology to advance science-based,

mechanistic understanding of pharmaceuticalmanufacturing

processes and to succeed in quality by design. Molecular

thermodynamics provides the scientific foundation for pro-

cess modeling and simulation technology, and the lack of

suitable molecular thermodynamic models for systems with

complex pharmaceutical molecules has been the primary

technical barrier for productive practice of process modeling

and simulation in the pharmaceutical industry. The recent

development of the NRTL-SAC activity coefficient model

brought about a long-awaited breakthrough in molecular

thermodynamics and it opened the door for meaningful

application of process modeling and simulation technology

in the pharmaceutical industry. Incorporating NRTL-SAC

and other pertinent molecular thermodynamic models,

AspenTech’s model-based process development solution for

the pharmaceutical industry ensures thermodynamic consis-

tency in modeling of thermophysical properties and phase

behavior and enables development of intrinsic process

knowledge through the use of first-principles process model-

ing and simulation technology.
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APPENDIX A SOLUBILITY MODELING WITH

ASPEN SOLUBILITY MODELER

I. Setting Up Aspen Solubility Modeler

Objective
This workshop shows how to set up Aspen Solubility Mod-

eler on your computer.

Description
Task 1: Set up the Aspen Properties Add-Ins in Excel

q Start Excel

q Go to the Tools menu, Add-Ins. . . (Figure 27.7)

q Click the Browse button (Figure 27.8)

q Navigate to C:\Program Files\AspenTech\Aspen Prop-

erties v7.1\Engine\Xeq

q Select the file Aspen Properties.xla, and then click OK

(Figure 27.9)

Click OK on any message box that may be displayed.

Click the OK button back on the Add-ins window.

Task 2: Allow Macros

q In Tools, Macros, Security, select the ‘‘High’’ security

level (or Medium or Low)

q Close Excel

q Go to the Start menu of Windows, Programs,

AspenTech, Process Development v7.1, Aspen Solu-

bility Modeler

q Open the spreadsheet ‘‘Regression.xls’’

q When prompted to allow macros signed by AspenTech

Inc., click ‘‘Enable macros’’

q Close Excel

Note: This procedure needs to be done only once.

II. Caffeine Solubility Data Regression

Objective
This workshop shows how to regress solubility data.

FIGURE 27.7 Tools pull-down menu.

FIGURE 27.8 Add-Ins menu.

FIGURE 27.9 Browse file.
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Description
The solubility of caffeine in different solvents is given in the

following table.

Solvent

T

(�C)

x (Solubility)

(g Drug/g

Solvent)

Standard

Deviation

(%)

N-HEXANE 25 8.8802E–06 40

2-ETHOXYETHANOL 25 1.4707E–02 10

1-OCTANOL 30 3.6693E–03 10

1,4-DIOXANE 25 1.8241E–02 10

1,4-DIOXANE 25 1.8873E–02 10

N,N-DIMETHYLFORMAMIDE 25 3.3787E–02 10

WATER 25 2.4274E–02 10

WATER 25 2.4741E–02 10

WATER 25 2.1667E–02 10

WATER 25 2.3316E–02 10

WATER 30 2.0436E–02 10

The caffeine pure properties are given in the following table:

Property Value

MW 194.19 kg/kmol

Melting point 512.15K

Enthalpy of fusion 21600 kJ/kmol

Source: Ref. 25.

Task 1: Copy the NRTL-SAC Folder

q From the Windows Start menu, go to Programs,

AspenTech, Process Development v7.1, Aspen Solu-

bility Modeler

q Select the folder NRTL-SAC, and then copy it into any

location that is convenient for you (e.g., the Desktop)

Note:We recommend copying theNRTL-SAC folder instead

of working on the original files. This is because some data

specific to your project will be stored in the physical property

package, that is, the regressed parameters.

Task 2: Specify the Property Package

q Open the file Regression.xls with Excel

q On the worksheet, make sure the option ‘‘Pure Sol-

vents’’ is selected, and then click the OK button

q On the ‘‘Pure Solvent‘‘ sheet, click the ‘‘Execute

Step 1’’ button (Figure 27.10)

q Select the file shown, and then click Select

(Figure 27.11)

This will launch Aspen Properties as a hidden application, so

there will be a delay before you can continue.

Task 3: Define the Drug Parameters

q Change the name to ‘‘Caffeine’’ (this is only for report-

ing purposes)

q Set the MW to 194.19

q Set the melting point to 512.15K

q Set the enthalpy of fusion to 21600 kJ/kmol

q Clear the entropy of fusion value

q Click the button ‘‘Execute Step 2’’ (Figure 27.12)

The entropy of fusion is now calculated (enthalpy of fusion

divided by melting point).

Task 4: Enter NRTL-SAC Model Parameter

q Click the button ‘‘Calculate Ksp A & Ksp B’’

(Figure 27.13)

You should see the values of Ksp A and B are updated. The

values of Ksp A and Ksp B can be calculated from the

enthalpy and entropy of fusion (Ksp A¼ entropy of fusion/

FIGURE 27.10 Properties file.

FIGURE 27.11 Open Aspen Properties template file.
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gas constant; Ksp B¼�enthalpy of fusion/gas constant).

The other parameters (X, Y�, Yþ, Z)may be left at the value

of 1 or specified to a positive value (e.g., X¼ 0 if you believe

the component does notmanifest any hydrophobic behavior).

q Click the Execute Step 3 button (Figure 27.13)

This will copy the parameters from Excel to the Aspen

Properties file.

Task 5: Enter the Experimental Data

q Enter the experimental data

q For each data row, select the solvent using the pull-

down list and enter the temperature, the solubility, and

the standard deviation

q Delete the data on the rows you are not using

Note: You can copy and paste the data from the spreadsheet

‘‘Solubility Data.xls.’’

q For the parameter Ksp B, select the option

‘‘EXCLUDE’’

Note: We exclude the parameter Ksp B because the exper-

imental temperature range is not very large.

See Figure 27.14 for how the spreadsheet should look.

Task 6: Run the Regression and Review the Results

q Click the button ‘‘Execute Step 4’’

The following window will be displayed. Click the OK

button (Figure 27.15).The Aspen Properties application will

be made visible.

q Click the OK button when this window is displayed

(Figure 27.16)

FIGURE 27.12 Enter data for caffeine.

FIGURE 27.13 Select parameters.

FIGURE 27.14 Perform data degression.
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Aspen Properties is now processing the data regression.

When the calculations are complete, you will see the fol-

lowing window (Figure 27.17).

Click the ‘‘Yes to all’’ button

Back in Excel you can now inspect the regression results.

Solution

The following results are obtained.

Value Standard Deviation

Parameter X 0.012959095 0.013825285

Parameter Y� 0.509289197 0.06132528

Parameter Yþ 0.920405633 0.060143778

Parameter Z 0.422110828 0.050881132

Ksp A 3.90390191 0.056377518

Ksp B �2597.902434 0

Ksp C 0 0

SSQ 22.5715669

R2 0.915104372

R2 (log) 0.988690968

RMSE 0.0026638

RMSE (log) 0.104301944

The regression looks good: the values of the parameters are

reasonable, the standard deviations are smaller than the

regressed parameter, and the parity plot shows a good

correlation.

III. Caffeine Solubility Calculation

Objective
This workshop shows how to use the calculation spreadsheet.

Description
Task 1: Open Calculation Spreadsheet

q Navigate to the folder where the workshop files are

stored, in the folder asm-calc-caffeine

q Open the spreadsheet ‘‘Calculation.xls’’

Note:WhenExcel displays awarningwindow aboutActiveX

controls, click the ‘‘Yes’’ button to allow them. These are

required for the ternary diagram plots used on some calcu-

lation sheets.

Task 2: Pure Solvent Solubility

q Select the option ‘‘Solubility in Solvents’’

q On the ‘‘Solubility in Solvents’’ sheet, select the fol-

lowing solvents and enter the experimental solubility

(Figures 27.18 and 27.19)

Temperature: 25�C
Pressure: 1 bar

Solvent

Solubility

(g/100 g

Solvent)

Calculated

Solubility (g/100 g

Solvent)

N-HEXANE 8.88E�4

2-ETHOXYETHANOL 1.47

1-OCTANOL 0.366

WATER 2.42

FIGURE 27.15 Dialog box.

FIGURE 27.16 Dialog box.

FIGURE 27.17 Dialog box.
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Task 3: Find the Solubility in Acetonitrile

Using the same sheet, change one solvent to Acetonitrile.

This will report the solubility of caffeine in acetonitrile.

Answer: 2.79 g/100 g solvent.

Task 4: Find the Solubility in Binary Mixture

q Click the ‘‘Back to Welcome page’’ button

q Select ‘‘Solubility in binary solvent mixture’’

q Select ACETONITRILE and WATER as the solvents

q Set the temperature to 25�C

Answer: We can see that the solubility is about five times

larger for the mixture 60wt% acetonitrile/40wt% water. We

can confirm the mixture of solvents is a single phase by

checking the value of BETA reported on the spreadsheet

(1¼ single liquid, <1¼ two liquid phases) (Figure 27.20).

Task 5: Use the ‘‘High Throughput’’ Sheet

q Click the ‘‘Back to Welcome page’’ button

q Select ‘‘High Throughput Prediction’’ option

q Select the following solvents:

T WATER

T ACETONE

T ACETONITRILE

T METHYL-ACETATE

T 1,4-DIOXANE

T 1-CHLOROBUTANE

T TETRAHYDROFURAN

T ETHYL-ACETATE

FIGURE 27.18 Output data.

Calculated versus experimental solubility (g 
solute/100 g solvent)
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FIGURE 27.20 Graphical answer to Task 4.
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T ETHANOL

T METHANOL

Note: When prompted ‘‘Do you want to continue,’’ click

‘‘No’’ except when selecting the last solvent. This will

prevent Excel recalculating the sheet while you are still

setting up the list of solvents.

Is there another binary mixture in which the caffeine solu-

bility becomes larger than in the pure solvents?

Answer: Yes, essentially all binary mixtures with water,

especially water/ethanol where the solubility is even higher

than that in water/acetonitrile.
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