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32.1 INTRODUCTION

In the pharmaceutical industry and in today’s regulatory

environment, process understanding in terms of characteri-

zation or optimization is critical in developing and manu-

facturing new medicines that ensure patient safety and drug

efficacy. Experimentation is the key component in building

that knowledge base, whether those activities are physical

experiments or trials run in silico. This understanding comes

from relating changes in observed response(s) back to

changes, both intended and observational, in independent

factors. If the factor changes are deliberate, then the scientist

is testing hypotheses about factor effects and qualifying

or quantifying their impact. However, what can be often

neglected is how important the quality of the experimental

plan is, and how that connects to making inferences from

those data. This chapter focuses on both of these aspects, the

experimental design and the data modeling.

For engineers characterizing a chemical reaction, exper-

imental inputs span catalyst load, reaction concentration,

jacket temperature, reagent amount, and other factors that

are continuous in nature, as well as types of solvents, bases,

catalysts, and other factors that are discrete in nature. These

are examples of controllable factors and are represented as

x1, x2, . . . ,xp. Additional elements that can influence reac-

tion outputs, such as analysts, instruments, and laboratory

humidity, are examples of uncontrollable factors and are

represented as z1, z2, . . . , zq. Figure 32.1, as shown by

Montgomery [1], depicts a general process where both

factors types impact the output.

The set of trials to develop relationships between factors

and responses plus the structure of how the trials are executed,

comprise the experimental design. What follows are strate-

gies for sound statistical design and analysis.

As a motivating example, consider a process where the

output is yield (g) and is expected to be a function of two

controllable factors, reaction time (min) and reaction tem-

perature (�C). That is, yield ¼ f ðtime; temperatureÞ. As a

first step in understanding and optimizing this process,

experiments were executed by fixing time at 30min and

observing yield across a range of reaction temperatures.

Figure 32.2 shows the data and it is concluded that 35�C is

a reasonable choice as an optimal temperature. For the

second step, experiments were executed by now fixing

temperature at 35�C and observing yield across a range of

reaction times. Figure 32.3 shows the data and it is concluded

that the optimal time is about 40min. The combined infor-

mation from the totality of experiments produces an optimal

setting of (temperature, time)¼ (35�C, 40min) with a pre-

dicted yield around 70 g.

This experiment was conducted using a one factor at a

time (OFAAT) approach—while easy to implement and

instinctively sensible, there are a few shortcomings when

compared to a statistically designed experiment. In general,

OFAAT studies (1) are not as precise in estimating individual

factor effects, (2) cannot estimate multivariate factor effects,

such as linear� linear interactions, and (3) as a by-product

are not as efficient at locating an optimum. Figure 32.4

illustrates the experimental path (. � � � .), the chosen optimum

(‘‘XX’’), and the actual underlying relationship between time
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and temperature on yield. Since the joint relationship be-

tween time and temperature was not fully investigated, the

true optimum around (temperature, time)� (60�C, 60min)

was missed.

This example illustrates that evenwith only two variables,

the underlying mechanistic relationship between the factors

and response(s) can be complex enough to easily misjudge.

This is especially true of many pharmaceutical processes,

where functional relationships are dynamic and nonlinear.

Because of this complexity, experiments that produce

the most complete information in the least amount of re-

source (time, material, and cost) are vital. This is a

major aspect of statistical experimental design, which is an

efficient method for evaluating process inputs in a systematic

andmultivariateway. The integration of experimental design

and model building is generally known as response surface

methodology, first introduced by Box and Wilson [2].

Data resulting from such a structured experimental plan

coupled with regression analysis easily lend to deeper un-

derstanding of where process sensitivities exist, as well as

how to improve process performance in terms of speed,

quality, or optimality.

The experimental design and analysis procedure is

straightforward and intuitive, but is described below for

completeness to ensure that all information is collected and

effectively used.

1. Formulate a research plan with purpose and scope

2. Brainstorm explanatory factors denotedX1,X2,X3, . . . ,

that could impact the response(s). Discuss ranges and

omit factors that have little scientific value.

3. Determine the responses to be measured, denoted

Y1, Y2, Y3, . . ., and consider resource implications.

4. Select appropriate experimental design in conjunction

with purpose and scope. Consider the randomization

sequence. Hypothesize process models.

5. Execute the experiment. Measurement systems should

be accurate and precise. The randomization sequence

is key to balancing effects of random influences and

propagation of error.

6. Appropriately analyze the data

7. Draw inference and formulate next steps

The statistical experimental designs discussed in this

chapter are used to help estimate approximating response

functions for chemical process modeling. To begin, the
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FIGURE 32.4 Contour plot of underlying mechanistic relation-

ship of temperature and time on yield, along with experimental path

(. � � � .) and chosen optimum (XX).
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FIGURE 32.3 Scatterplot of yield versus time with empirical fit.
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functional relationship between the response, y, and input

variables, x1, x2, . . ., xk, is expressed as

y ¼ f ðx1; x2; . . . ; xkÞþ e

which is unknown and potentially intricate. The inputs,

x1, x2, . . ., xk, are called the natural variables, as they

represent the actual values and units of each input factor.

The e term represents the variability not explicitly accounted

for in the model, which could include the analytical

component, the laboratory environment, and other natural

sources of noise. For mathematical convenience, the natural

variables are centered and scaled so that coded variables,

x1, x2, . . ., xk have mean zero and standard deviation one.

This does not change the response function, but it is now

expressed as

y ¼ f ðx1; x2; . . . ; xkÞþ e

If the experimental region is small enough, f(�) can be

empirically estimated by lower order polynomials. The

motivation comes from Taylor’s theorem that asserts any

sufficiently smooth function can locally be approximated

by polynomials. In particular, first-order and second-order

polynomials are heavily utilized in response modeling from

designed experiments.

A first-order polynomial is referred to as a main effects

model, due to containing only the primary factors in the

model. A two-factor main effects model is expressed as

y ¼ b0 þb1x1 þb2x2 þ e

where b1 and b2 are coefficients for each factor and b0 is the

overall intercept, and represents a plane through the (x1, x2)

space. As an example consider an estimated model

ŷ ¼ 100� 10x1 þ 5x2

Figure 32.5 shows a 3Dviewof that planar response function,

also called a surface plot. Figure 32.6 represents the 2D

analogue called a contour plot. The contour plots are often

easier to read and interpret since the response function height

is projected down onto the (x1, x2) space. If there is an

interaction between the factors, it is easily added to themodel

as follows:

y ¼ b0 þb1x1 þb2x2 þb12x1x2 þ e

This is called a first-order model with interaction. To

continue with the example, let the estimated model be

ŷ ¼ 100� 10x1 þ 5x2 � 5x1x2

The additional term �5x1x2 introduces curvature in the

response function, which is displayed on the surface plot

in Figure 32.7 and the corresponding contour plot in

Figure 32.8. Occasionally, the curvature in the true under-

lying response function is strong enough that a first-order

plus interaction model is inadequate for prediction. In this

case, a second-order (quadratic) model would be useful to

approximate f(�) and takes the form

y ¼ b0 þb1x1 þb2x2 þb12x1x2 þb11x
2
1 þb22x

2
2 þ e
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FIGURE 32.5 Surface plot of ŷ ¼ 100�10x1 þ 5x2.
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FIGURE 32.7 Surface plot of ŷ ¼ 100�10x1 þ 5x2�5x1x2.
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FIGURE 32.6 Contour plot of ŷ ¼ 100�10x1 þ 5x2.
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To finish the example, let the estimated model be

ŷ ¼ 100� 10x1 þ 5x2�5x1x2 � 4x21 � 10x22

Figure 32.9 shows a parabolic relationship between y and x1,

x2, while Figure 32.10 displays the typical elliptical contours

generated by this model.

There is an iterative, sequential nature to understanding

and optimizing the performance of chemical processes. If the

goal is to first identify the most important factors for further

study, a screening design may be carried out. This is some-

times referred to as phase zero of the study. Once this is

complete, the next objective is to determine if the optimum

lies within current experimental region, or if the factors need

adjustment to locate a more desirable one, say by using

methods of steepest ascent/descent. This is referred to as

phase one of the study, also known as region seeking. Finally,

once the region of desirable response is established,

the goal becomes to precisely model that area and identify

optimal factor settings. For this case, higher order models are

employed to capture likely curvature about the optimum

point.

32.2 THE TWO-LEVEL FACTORIAL DESIGN

Factorial designs are experimental plans that consist of all

possible combinations of factor settings. As an example, a

factorial design with three different catalysts, two different

solvents, and four different temperatures produces a design

with 3� 2� 4¼ 24 unique experimental conditions. The

advantage of these designs is that all joint effects of factors

can be investigated. The disadvantage is that these designs

become prohibitively large and impractical when factors

contain more than just a few levels or the number of factors

under investigation is extensive.

The simplest and most widely used factorial designs for

industrial experiments are those that contain two levels per

factor, called 2k factorial designs, where k is the number of

factors under investigation. The two levels for each factor are

usually chosen to span a practical range to investigate. These

designs can be augmented into fuller designs and are very

effective in terms of time, resource, and interpretability. The

class of 2k factorial designs can be used as building blocks

in process modeling by:

. Screening the most important variables from a set of

many;

. Fitting a first-order equation used for steepest ascent/

descent;

. Identifying synergistic/antagonistic multifactor effects;

and

. Forming a base for an optimization design, such as a

central composite (to be introduced).
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FIGURE 32.10 Contour plot of ŷ ¼ 100�10x1 þ 5x2�5x1x2�
4x21�10x22.
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FIGURE 32.8 Contour plot of ŷ ¼ 100�10x1 þ 5x2�5x1x2.
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FIGURE 32.9 Surface plot of ŷ ¼ 100�10x1 þ 5x2�5x1x2�
4x21�10x22.
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Factors can either be continuous in nature or discrete. For

the rest of the chapter it is assumed that the factors are

continuous. This allows for predictive model building and

regression analysis that includes the linear and interaction

terms, and subsequently the quadratic/second-order terms.

To illustrate a two-level factorial design, consider the

previous case where there are k¼ 2 factors, temperature

(Factor A) and time (Factor B), each having an initial

range under investigation. In coded units, the low level of

the range for each factor is scaled to�1, and the high level of

the range is scaled to þ 1. The 22 experimental design with

all four treatment combinations is shown in Table 32.1 and

graphically depicted via circles in Figure 32.11. Notice that

each treatment condition occurs at a vertex of the experi-

mental space. For notation, the four treatment combinations

are usually represented by lowercase letters. Specifically,

a represents the combination of factor levels with A at the

high level and B at the low level, b represents A at the low

level and B at the high level and ab represents both factors

being run at the high level. By convention, (1) is used to

denote A and B each run at the low level.

Two-level designs are used to estimate two types of

effects, main effects and interaction effects, and these are

estimated by a single degree of freedom contrast that

partitions the design points into two groups: the low level

(�1) and the high level (þ 1). The contrast coefficients are

shown in Table 32.1 for each of the main factors of temper-

ature and time, as well as the temperature� time interaction

obtained through pairwise multiplication of the main factor

contrast coefficients.

A main effect of a factor is defined as the average change

in response over the range of that factor and is calculated

from the average difference between data collected at the

high level (þ 1) and data collected at the low level (�1). For

the 22 design above and using the contrast coefficients in

Table 32.1, the temperature (A) main effect is estimated as

A¼�yTempþ��yTemp�¼
abþa

2n
�bþð1Þ

2n
¼ 1

2n
abþa�b�ð1Þ½ �

where (1), a, b, and ab are the respective sum total of

responses across the n replicates at each design point (n¼ 2

in Table 32.1). Geometrically this is a comparison of data on

average from the right side to the left side of the experimental

space in Figure 32.11. If the estimated effect is positive,

the interpretation is that average response increases as the

factor level increases. Similarly, the time (B) main effect is

estimated as

B¼ �yTimeþ��yTime� ¼ abþb

2n
�aþð1Þ

2n
¼ 1

2n
abþb�a�ð1Þ½ �

which is a comparison of data on average from the top side to

the bottom side in Figure 32.11.

An interaction between factors implies that the individual

factor effects are not additive and that the effect of one factor

depends on the level of another factor(s). As with the main

effects, the interaction is estimated by partitioning the data

into two groups and comparing the average difference. The

contrast coefficients in Table 32.1 show that the temperature

� time (AB) interaction effect is estimated as

AB ¼ �yTemp�Timeþ��yTemp�Time� ¼ abþð1Þ
2n

� aþ b

2n

¼ 1

2n
abþð1Þ�a�b½ �

which is a comparison on average of data on the right

diagonal against the left diagonal in Figure 32.11.

The sum of squares for each effect are mathematically

related to their corresponding contrast. Specifically, the sum

of squares for an effect is calculated by the squared contrast

divided by the total number of observations in that contrast.

For the example above, the sums of squares for temperature,

time, and the temperature� time interaction are

SSTemp ¼ ½aþ ab� b�ð1Þ�2
4n

SSTime ¼ ½bþ ab� a�ð1Þ�2
4n

b
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FIGURE 32.11 Factor space of 22 experimental design.

TABLE 32.1 Example 22 Experimental Design with n¼ 2

Replicates Per Design Point

Design Temperature�
Time (AB)

Response

Treatment

Temperature

(A)

Time

(B) Rep 1 Rep 2

(1) �1 �1 1 y11 y12
a 1 �1 �1 y21 y22
b �1 1 �1 y31 y32
ab 1 1 1 y41 y42
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SSTemp�Time ¼ ½abþð1Þ�a�b�2
4n

In 2k designs, the contrasts are orthogonal, thus additive.

The total sum of squares, SST, is the usual sum of squared

deviations of each observation from the overall mean of the

data set. Because the contrasts are orthogonal, the error sum

of squares, denoted SSE, can be calculated as the difference

between the total sum of squares, SST, and the sums of

squares of all effects. For the 22 example, SSE¼ SST�
SSTemp� SSTime� SSTemp�Time. With this information, the

analysis of variance (ANOVA) table is constructed, as shown

in Table 32.2.

The ANOVA table contains all numerical information in

determining which factor effects are important in modeling

the response. The hypothesis test on individual factor effects

is conducted through theF-ratio ofMSFactor againstMSError. If

this ratio of ‘‘signal’’ against ‘‘noise’’ is large, this implies that

the factor explains some of the observed variation in response

across the experimental design region and should be included

in the processmodel. If the ratio is not large, then the inference

is that the factor is unimportant and should be deleted from the

model. All statistical evidence of model inclusion comes via

the p-value.LargeF-ratios imply low p-values, and a common

cutoff formodel inclusion of a factor is p� 0.05, although this

should be appropriately tailoredwith experimental objectives,

such as factor screeningwhere the critical p-value is normally

a little higher. Another interpretation of the p-value is in terms

of the confidence level, equal to (1� p)� 100%. Thus, a

factor with a p-value less than 0.05 implies there is greater

than 95%confidence that the observed factor effect is real and

not due to noise.

Clearly it is important to identify all significant factors for

modeling change in response back to change in factor level.

An underspecified model, one that does not contain all the

important variables, could lead to bias in regression coeffi-

cients and bias in prediction. One approach to mitigate this

issue is to not model edit but rather incorporate all factor

terms in the process model, including those that contribute

very little or nothing of value in predicting. However, an

overspecified model, one that contains insignificant terms,

produces results that lead to higher variances in coefficients

and in prediction. Thus, a propermodel will be a compromise

of the two. This can be completed manually, say, by

investigating the full model ANOVA and then deleting

insignificant effects one at a time, all while updating the

ANOVA after every step. Yet for models that could contain

many effects, this exercise becomes cumbersome. There are

several variable selection procedures that can aid in helping

identify smaller sized candidate models. The most common

algorithms used in standard software packages entail either

sequentially bringing in significant factors to build the model

up (called forward selection), sequentially eliminating re-

gressors from a full model (called backward elimination), or

a hybrid of the two (called stepwise regression). The proce-

dures typically involve defining a critical p-value for factor

inclusion/exclusion in the model building process. Once a

term enters or leaves, factor significance is recalculated and

the process is repeated for the next step. The engineer should

use these tools not as a panacea to themodel building process,

but rather as an exercise to see how various models perform.

For more information on the process and issues of model

selection, the reader is instructed to see Myers [3].

Once the significant factors are selected, the estimated

regression coefficients in the linear predictive model are

functionally derived from the factor’s effect size. To estimate

the regression coefficientbi for factor i, its effect is divided by

two. The rationale being that by definition the regression

coefficient represents the change in y per unit change in x.

Since each factor effect is calculated as a change in response

over a span two coded units (�1 to 1), division by 2 is needed

to obtain the per-unit basis. Finally, the model intercept, b0,

is calculated as the grand average of all the data.

EXAMPLE 32.1 23 FACTORIAL DESIGN

A factorial experiment is carried out to investigate the effect

of three factors on percent reaction conversion, catalyst load

(Factor A), ligand load (Factor B), and temperature (Factor

C). Each experimental condition is completely randomized

and independently replicated (n¼ 2). The design in coded

units, full model, and data are listed in Table 32.3, and

depicted in Figure 32.12. Note that the run sequence in

Table 32.3 is in standard order, as opposed to a randomized

order for the actual experiment.

As previously remarked, the estimated effects and asso-

ciated sums of squares are functions of their respective

TABLE 32.2 ANOVA Table for Completely Randomized 22 Design with n Replicates Per Design Point

Source SS DF MS F p-value

Temp SSTemp 1 MSTemp MSTemp/MSE pTemp

Time SSTime 1 MSTime MSTime/MSE pTime

Temp�Time SSTemp�Time 1 MSTemp�Time MSTemp�Time/MSE pTemp�Time

Error SSE 4(n� 1) MSE
Total SST 4n� 1
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contrasts. Using catalyst load (A) as an example, the contrast

coefficients shown in Table 32.3 represent the comparison

between data on the right side of the cube (þ ) in Figure 32.12

to the data on the left side of the cube (�). The data where

catalyst load is high sum to

aþ abþ acþ abc ¼ 76:4þ 74:9þ 76:3þ 76:0þ 77:6

þ 80:4þ 79:0þ 77:2 ¼ 617:8

while the data where catalyst load is low sum to

bþ cþ bcþð1Þ ¼ 66:5þ 63:7þ 78:7þ 77:7þ 78:0

þ 81:3þ 63:8þ 64:1 ¼ 573:8

The estimated effect of catalyst load is calculated as

A ¼ �yCatþ��yCat� ¼ aþ abþ acþ abc

4n
� bþ cþ bcþð1Þ

4n

¼ 617:8

4� 2
� 573:8

4� 2
¼ 5:5

The interpretation is that the average yield increases by 5.5%

as the catalyst load increases from low to high. The corre-

sponding sum of squares for the catalyst load effect is

calculated as

SSA ¼ ½aþ abþ acþ abc�b�c�bc�ð1Þ�2
8n

¼ ð617:8�573:8Þ2
8� 2

¼ 121

The other estimated factor effects and sums of squares follow

the same logic as above and are trivial to calculate. The full

model ANOVA table is shown in Table 32.4. Based on

the information, there are three highly significant effects

(p< 0.0001): catalyst load, temperature, and their corre-

sponding interaction. All other effects are insignificant at

the 95% confidence level (p> 0.05). The final model and

ANOVA table after sequential model editing are shown in

Table 32.5.

This model accounts for 	96.3% of the observed vari-

ability in reaction completion, as determined by the coeffi-

cient of determination, R2.

TABLE 32.4 Reaction Conversion Experiment ANOVA

Table with Full Model

Source SS DF MS F p-value

A (catalyst) 121.00 1 121.00 58.24 <0.0001

B (ligand) 1.21 1 1.21 0.58 0.4673

C (temperature) 290.70 1 290.70 139.93 <0.0001

AB 2.25 1 2.25 1.08 0.3284

AC 138.06 1 138.06 66.46 <0.0001

BC 0.30 1 0.30 0.15 0.7127

ABC 0.72 1 0.72 0.35 0.5717

Error 16.62 8 2.08

Total 570.87 15–

+
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FIGURE 32.12 23 reaction conversion experimental space and

corresponding data.

TABLE 32.3 23 Reaction Conversion Experimental Design, Model, and Data

Treatment
Design

AB AC BC ABC
Data

Catalyst Ligand Temperature
Conversion

A B C Rep 1 Rep 2

(1) �1 �1 �1 1 1 1 �1 63.8 64.1

a 1 �1 �1 �1 �1 1 1 76.4 74.9

b �1 1 �1 �1 1 �1 1 66.5 63.7

ab 1 1 �1 1 �1 �1 �1 76 76.3

c �1 �1 1 1 �1 �1 1 78.7 77.7

ac 1 �1 1 �1 1 �1 �1 77.6 80.4

bc �1 1 1 �1 �1 1 �1 78 81.3

abc 1 1 1 1 1 1 1 79 77.2
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R2 ¼ SSModel

SSTotal
¼ SSA þ SSC þ SSAC

SSTotal
¼ 549:76

570:87
¼ 0:9630

The final regression model expressed in coded units is

estimated as

ŷ¼ 74:48þ
�
5:5

2

�
x1 þ

�
8:26

2

�
x3 þ

��5:87

2

�
x1x3

) ŷ ¼ 74:48þ 2:75x1 þ 4:26x3�2:94x1x3

where x1 and x3 represent catalyst load and temperature,

respectively.

Because the factors are all centered and scaled and all the

effects are orthogonal, one can compare which effects are

the most dominant by the size of the coefficient. Using

the reaction conversion model, temperature has the largest

effect, followed by the catalyst� temperature interaction and

then catalyst. However, because of the interaction between

catalyst and temperature, the main effects of those individual

factors have lost some interpretability. Specifically, the con-

clusion from the temperature effect is that for every unit

change in temperature, the conversion increases 4.26% via

the coefficient on the temperature term. But this estimate is

a pooled average over the other factors. That is, it smoothes

over the significant joint effect between temperature and

catalyst. The information contained in the interaction will

need to be visually explored in greater detail.

After obtaining the final equation, residual analysis and

othermodel diagnostics are carried out. This is critical step in

validating the process model and having trust in its ability to

accurately predict over the experimental region. Standard

residual analyses consist of inspecting the normality assump-

tion, checking for constant variance, identifying outliers

relative to the model, and observing patterns in residuals

over time. There are many flavors of model diagnostic

information, both numerical and graphical. With the aid of

Design Expert [4] software package, highlighted below are

two visuals that, in this author’s view, capture a significant

snapshot of model performance. First, the normal probability

plot is an effective graphical tool to verify the normality

assumption of the errors as well as for outlier detection.

Figure 32.13 shows this plot for the reaction conversion

residuals using the final regression model. If the residuals

fall along a straight line, then the normality assumption is

valid. Any large errors or outliers from the fittedmodelwould

be visually apparent by significantly falling off the line. The

interpretation of Figure 32.13 is that there is no severe

problem with the normality assumption.

Second, another very effective plot is the model-based

predictions against the observed data, often referred to as

‘‘Predicted versus Actual.’’ This reveals how well the model

predicts back the original data and is a graphical depiction of

the calculatedR2 value. Additionally, it will aid in identifying

(sets of) data that are not well captured by the model, as well

as indicate any trends of nonconstant variance across the

prediction range. Figure 32.14 is an example using the

reaction conversion data and final model. The interpretation

from this graph is that the regression model is performing

well and the spread of about the 45� line is relatively constant
across the range.

Once the engineer is satisfied with the diagnostics

information, visualizing the change in response across the

TABLE 32.5 Reaction Conversion Experiment ANOVA

Table After Model Editing

Source SS DF MS F p-value

A (catalyst) 121.00 1 121.00 68.80 <0.0001

C (temperature) 290.70 1 290.70 165.29 <0.0001

AC 138.06 1 138.06 78.50 <0.0001

Error 21.10 12 1.76

Total 570.87 15
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FIGURE 32.13 Normal probability plot of residuals from reaction conversion model.
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subspace of significant factors is the next step. This is usually

accomplished by main effect and interaction plots. If factors

are continuous, then contour and surface plots are very

informative and more descriptive in illustrating bivariate

factor effects on response. As previously shown with the

reaction conversion example, the interaction between cata-

lyst and temperature is significant and therefore the syner-

gistic relationship between these two factors needs further

inspection. Figure 32.15 displays an interaction plot for these

two factors. Notice that when temperature is at the high (þ 1)

level, there is no observed effect of catalyst load on the

reaction conversion. That is, it is robust to changes in catalyst.

However, when temperature is at the low (�1) level, reaction

conversion is now a function of catalyst load, and higher load

leads to higher predicted conversion. Figure 32.16 shows the

corresponding contour plot that also illustrates the predicted

change in conversion across the temperature and catalyst

levels, but takes advantage of the continuous nature of the

factors. Regardless, the inference is the same: At high

temperatures, the prediction is virtually constant across

catalyst (	78% conversion), while at lower temperatures,

the catalyst effect is present.

Two-level designs are very intuitive, comprehensive, and

powerful in identifying main and interaction effects on

responses of interest. However, even at two levels they can

become impractically large as the number of factors

increases. For example, if k¼ 6 factors are under investiga-

tion, then a full factorial experiment with no replication

would consist of 26¼ 64 runs, which is not a cost-effective

experiment. If this design were executed, the full regression

model with all possible main effects and interactions would

leave zero degrees of freedom to estimate variability for

statistical inferences on factor effects. There are strategies

and tools that combat the issues of unreplicated designs and

variance estimation. One such strategy takes advantage of

the sparsity-of-effects principle (or similarly, the Pareto

principle) that states that a process is usually dominated

by only the vital few effects, such as main effects and

two-factor interactions, from the trivially many. More

specifically, observing effects from higher order terms such
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FIGURE 32.15 Interaction plot of catalyst and temperature on reaction conversion.
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as three-factor interactions and beyond is rare in practice. If it

is reasonable to assume that effects from higher order inter-

actions are negligible, then those terms can be pooled to

estimate variability through the mean squared error. Another

approach is to use a normal probability plot or half-normal

probability plot to determine the significant effects. Proposed

by Daniel [5], these are effective graphical tools that use the

estimated effects to highlight which factors are important in

explaining response variation relative to those that do not.

Negligible effects are assumed to be normally distributed

with mean zero and variance s2, while significant effects are

assumed normally distributed at their true effect size differ-

ent from zero with variance s2. Normal and half-normal

effect plots are standard inmost statistical software packages.

32.3 BLOCKING

There are situations that call for the design to be run in groups

or clusters of experiments. This often occurs when the

number of factors is large, in which case the design would

be broken down into smaller blocks of more homogeneous

experimental units. These are referred to as incomplete

blocks, as not all treatment combinations occur in these

smaller sets. This situation also occurs with equipment set

up or limitations, where groups of experiments are executed

at the same time. As one example, consider a replicated

22 design that investigates temperature and solvent concen-

tration on reaction completion. The equipment chosen for the

experiment is a conventional process chemistry workstation

that has four independent reactors. A natural and appropriate

way to execute this design is to run each replicate of the

22 design on the workstation with random assignment of

the reactor vessels to each treatment combination. By doing

this, any block-to-block variability is accounted for and does

not influence the analysis on factor effects. As another

example, consider a 23 design using the same four-reactor

workstation that investigates temperature, solvent concen-

tration, and catalyst loading on reaction completion. To

execute this study, the design should be split into two groups

of four, since it is not possible to execute all experiments in

one block and impractical to execute the experiments one at a

time.

Both of these examples result in observations within the

same block to be more homogeneous than those in another

block. For situations where the experiment is subdivided,

appropriate blocking can help in optimally constructing a

design based on the assumption or knowledge that certain

(higher order) interactions are negligible. This design tech-

nique is called confounding or aliasing, where information

on treatment effects is indistinguishable from information

on block effects. The number of blocks for the two-level

design is usually a multiple of two, implying designs are run

in blocks of two, four, eight, and so on.

To illustrate, recall the previous 23 design with temper-

ature (A), solvent concentration (B), and catalyst loading (C)

as the factors, with the design executed in two blocks of four

on the workstation. The design and full model with associ-

ated contrast coefficients are shown in Table 32.6.

One candidate design partitioned into two blocks of four is

to group all combinations where ABC is at the low level (�1)

into one block, and all combinations whereABC is at the high

TABLE 32.6 23 Design Full Model Contrast Coefficients

Treatment A B C AB AC BC ABC

(1) �1 �1 �1 1 1 1 �1

a 1 �1 �1 �1 �1 1 1

b �1 1 �1 �1 1 �1 1

ab 1 1 �1 1 �1 �1 �1

c �1 �1 1 1 �1 �1 1

ac 1 �1 1 �1 1 �1 �1

bc �1 1 1 �1 �1 1 �1

abc 1 1 1 1 1 1 1
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FIGURE 32.16 Contour plot of predicted reaction conversion across catalyst and temperature

levels.
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level (þ 1) into the other block. Schematically, each block

would appear as in Figure 32.17.

The contrast to estimate the effect of A (temperature)

assuming n=1 replicate is written as

A ¼ 1
4
aþ abþ acþ abc�ð1Þ�b�c�bc½ �

Any block effect between experiments conducted in Block 1

and those conducted in Block 2 is canceled out in this

contrast, as the overall effect of A is actually a pooled sum

of the simple within-block effects of A. That is, let A1 be the

comparison of A at the high level versus A at the low level

within Block 1, and A2 be the corresponding comparison

within Block 2. The overall effect of A is calculated as

A1 ¼ ½abþ ac�ð1Þ�bc�
A2 ¼ ½aþ abc�b�c�

) A ¼ 1
4
A1 þA2½ �

This holds for all other effects except the ABC effect, where

its corresponding contrast from Table 32.6 is

ABC ¼ 1
4
aþ bþ cþ abc�ð1Þ�ab�ac�bc½ �

By design, the difference in those treatment combinations

corresponds exactly to the design partition into Blocks 1 and

2. That is, the effect of ABC is not estimable; it is confounded

with blocks. Assuming the ABC effect is negligible, this is an

optimally constructed design, as the ABC effect was inten-

tionally confounded to preserve inferences on lower order

effects in the presence of any block-to-block variation.

The last example showed that for a design partitioned into

two blocks, one effect (ABC) is chosen to be confoundedwith

the block effect. Another way of stating this is that the block

effect and the ABC effect share a degree of freedom in the

analysis. For the case of four blocks that use three degrees of

freedom in the analysis, the general procedure is to inde-

pendently select two effects to be confounded with blocks,

and then a third confounded effect is determined by the

generalized interaction. This will be described in a more

detail with fractional factorial designs. For more information

on constructing blocks in 2k designs, see Ref. 6.

32.4 FRACTIONAL FACTORIALS

The unreplicated 26 design contains 64 unique treatment

combinations of the 6 factors and therefore 63 degrees of

freedom for effects. Of those 63 degrees of freedom, only 6

are used for main effects (FactorsA,B, . . .,F) and 15 for two-

factor interactions (AB, AC, . . ., EF). Assuming the sparsity-

of-effects principle holds, only a subset of the total degrees of

freedom are used for the vital few effects that should ade-

quately model the process. This discrepancy gets bigger as k

gets larger, making full factorial designs an inefficient choice

for experimentation. As with blocking, it is possible to

optimally construct designs based on the assumption or

knowledge that higher order interactions are negligible,

which are smaller in size yet preserve critical information

about likely effects of interest. These are called fractional

factorial designs and they are widely utilized for any study

involving, say, five or more factors. In particular, these are

highly effective plans for factor screening, the exercise to

whittle down to only the crucial process factors to be

subsequently studied in greater detail. As with the full

factorial designs, the fractional factorials are balanced and

the estimated effects are orthogonal. Two-level fractional

factorial designs are denoted 2k�p, where k still represents

the number factors in the study, and p represents fraction

level. A 2k�1 design is called a one-half fraction of the 2k, a

2k�2 design is called a one-quarter fraction of the 2k, and so

on. A 2k�p design is a study in k factors, but executed with

2k�p unique treatment combinations.

Consider the 23 design, but due to limited resources only

four of the eight treatment combinations can be studied.

The candidate design is a one-half fraction of a 23 factorial,

denoted 23�1. The primary questions in design construction

are similar to those encountered in blocking, which center on

how the four treatment combinations should be chosen and

what information is contained in those experiments. Under

the sparsity-of-effects principle, the ABC effect is negligible.

Thus, one choice of design is to choose those treatment

combinations that are all positive in the ABC contrast

coefficients. Equivalently one could choose the set that are

all negative in ABC. Table 32.7 shows the experimental

design for those coefficients positive in ABC.

(1)

ab

ac

bc

a

b

c

abc

Block 2Block 1

FIGURE 32.17 Schematic of 23 factorial divided into two blocks

of size four.

TABLE32.7 One-Half Fraction of the 23 Full Factorial Design

Treatment A B C AB AC BC ABC

a 1 �1 �1 �1 �1 1 1

b �1 1 �1 �1 1 �1 1

c �1 �1 1 1 �1 �1 1

abc 1 1 1 1 1 1 1
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It should be clear to the reader from the contrast coeffi-

cients in Table 32.7 that (1) all information for the ABC term

is sacrificed in creating this design and (2) the contrast

coefficients that estimate one effect exactly match those for

another. For instance, the contrast to estimate the A effect

simultaneously estimates the BC effect. That is,

1
2
aþ abc� b� c½ � ¼ AþBC

Aspreviously discussedwith the blocks, the effect ofA is said

to be confounded (aliased) with BC. Similarly, the B effect is

confounded with the AC effect, and the C effect is confound-

ed with the AB effect. There is no way to individually

estimate those effects, only their linear combinations. This

pooling of effect information is a by-product of fractional

factorial designs.

In the previous example, the ABC term was assumed

the least important effect and used as the basis for construct-

ing the 23�1 experimental design. Formally, ABC is called

the design generator and is algebraically expressed in the

relation

I ¼ ABC

This is known as the defining relation, where I stands for

identity, and implies that the ABC effect is confounded with

the overall mean. Knowing this relationship helps determine

details about the alias structure. This is accomplished by

multiplying each side of the defining relation by an effect of

interest and deleting any letter raised to the power 2 (i.e., via

modulo 2 arithmetic). Any effect multiplied by I gives the

effect back. Below demonstrates how to determine which

effects are confounded with the main effect of A.

A � I ¼ A �ABC
) A ¼ A2BC

) A ¼ BC

The interpretation is that the estimatedA effect is confounded

with the BC effect (A¼BC), which was previously observed

via the contrast coefficients in Table 32.7. Likewise it is

trivial to show B¼AC and C¼AB.

The defining relation for the chosen fraction above ismore

descriptively expressed as I¼ þABC, since all contrast

coefficients were positive in ABC. This is called the principle

fraction, and will always contain the treatment combination

with all levels at their high setting. Alternatively, the com-

plementary fraction could have been selected such that the

defining relation would be expressed as I¼�ABC. As a

consequence, the linear contrasts would estimate A�BC,

B�AC, and C�AB. Irrespective of sign, both fractions are

statistically equivalent as main effects are confounded with

two-factor interactions, although there may be a practical

difference between the two.

Appropriately, one-half fraction designs are always con-

structed with the highest order interaction in the defining

relation. For instance, a 25�1 experiment uses I¼ABCDE

to create the fraction and to investigate the alias structure, as

this interaction is assumed the least likely effect to signif-

icantly explaining response variation. However, the one-half

fraction may still be too large to feasibly execute and

therefore fractions of higher degrees should be considered.

The quarter-fraction design, denoted 2k�2, is the next highest

degree fraction from the half-factorials and comprises of a

fourth of the original 2k factorial runs. These designs require

two defining relations, call them I¼E1 and I¼E2, where the

first designates the half-fraction based on the ‘‘þ ’’ or ‘‘�’’

sign on the E1 interaction, and the second divides it further

into a quarter fraction based on the ‘‘þ ’’ or ‘‘�’’ sign on the

E2 interaction. Note that all four possible fractions using
E1

and 
E2 are statistically equivalent, with the principle

fraction corresponding to choosing I¼ þE1 and I¼ þE2

in the defining relation. In addition, the generalized inter-

actionE3¼E1�E2 usingmodulo 2 arithmetic is also included.

To investigate the alias structure for a 2k�2 fractional facto-

rial design, the complete defining relation is written as

I¼E1¼E2¼E3. These interactions need to be chosen care-

fully to obtain a reasonable alias structure.

As an example, consider the 26�2 design for factors A

through F, and let E1¼ABCE and E2¼BCDF. The gener-

alized interaction, E3, is computed by multiplying the two

interactions together and deleting any letter with a power

of 2. That is,

E3 ¼ ðABCEÞ � ðBCDFÞ ¼ AB2C2DEF ¼ ADEF

and hence the complete defining relation is expressed as

I ¼ ABCE ¼ BCDF ¼ ADEF

It is easy to show for this design that main effects are

confounded with three-factor interactions and higher (e.g.,

A¼BCE¼ABCDF¼DEF) and that two-factor interactions

are confounded with two-factor interactions and higher

(AB¼CE¼ACDF¼BDEF). Again, individual effects are

not estimable, only linear combinations.

To succinctly describe the alias structure of fractional

factorials, design resolution is introduced. The resolution of a

fractional factorial design is summarized by the length of the

shortest effect (often referred to as the shortest word) in the

defining relation and is represented by a Roman numeral

subscript. The one-half fraction of a 25 factorial with defining

relation I¼ABCDE is called a resolution V design and is

formally denoted 25�1
V . Similarly, the one-quarter fraction of

a 26 factorial with defining relation I¼ABCE¼BCDF¼
ADEF is a resolution IV design and is denoted 26�2

IV . The

design resolutions of greatest interest are described below.

. Resolution III: There exist main effects aliased with

two-factor interactions. These designs are primarily

used for screening many factors to identify which are

the most influential in process modeling.
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. Resolution IV: There exist main effects confounded

with three-factor interactions and two-factor interac-

tions confounded with each other. Assuming the spar-

sity-of-effects principle, main effects are said to be

estimated free and clear, since three-factor interactions

and higher are considered negligible.

. Resolution V: There exist main effects confounded

with four-factor interaction and two-factor interactions

confounded with three-factor interactions. Assuming

the sparsity-of-effects principle, main effects and two-

factor interactions are said to be estimated free and

clear, since three-factor interactions and higher are

considered negligible.

32.5 DESIGN PROJECTION

One of themajor benefits to using the two-level factorials and

fractional factorials is to take advantage of the design pro-

jection property. This states that factorial and fractional

factorial designs can be projected into stronger designs in

a subset of the significant factors. In the case of unreplicated

full factorials, those designs project into full factorials with

replicates. For example, by disregarding one insignificant

factor from a 24 full factorial the design becomes a full

24�1¼ 23 factorial with 21 replicates at each point. In the case

of fractional factorial designs of resolution R, those designs

project into full factorials in any of theR� 1 factors, possibly

with replicates. It may be possible to project to a fuller design

with more parameters than the R� 1 rule dictates, but this is

not guaranteed.

As a specific example, consider the 23�1
III fractional fac-

torial design with defining relation I¼ þABC that investi-

gates catalyst equivalents (A), ligand equivalents (B), and

solvent volume (C). The four treatment combinations are

depicted on the cube in the middle of Figure 32.18. As this is

a resolution III design, it projects into a full factorial in any

two of the three factors, also displayed in Figure 32.18. The

projection property of two-level designs is very important,

simply due to its usefulness in obtaining full modeling

information on a subset of factors, and its implicit use in

sequential experimentation.

32.6 STEEPEST ASCENT

The content so far has focused on employing experimental

designs with the sole purpose of identifying magnitude of

effects plus two-parameter synergies. Often though, the

process models are used for optimization or improvement.

The combination of experimental design, model building,

and sequential experimentation used in searching for a
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FIGURE 32.18 Illustration of projecting a 23 fraction onto a full 22 factorial in a subspace of the

experimental region.
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region of improved response is called the method of steepest

ascent (or ‘‘descent’’ if the goal is to explicitly minimize).

The goal is to effectively and efficiently move from one

region in the factor space to another. Thus, model simplicity

as well as design economy are very important. The general

algorithm consists of the following:

. Fitting a first-order (main effects) model with an effi-

cient two-level design.

. Computing the path of steepest ascent (descent), where

there is an expected maximum increase (decrease) in

response.

. Conduct experiments along the path. Eventually re-

sponse improvement will slow or start to decline.

. Carry out another factorial/fractional design.

. Recompute new path, or augment into optimization

design.

Constructing the path of steepest ascent is straightfor-

ward. Consider all points that are a fixed distance from the

design region center (i.e., radius r) with the desire to seek

the parameter combination that maximizes the response.

Mathematically, one uses themethod ofLagrangemultipliers

to find where the maximum response lies, constrained to

the radius r. Intuitively, the path of steepest ascent is pro-

portional to the size and sign of the coefficients for the first-

order model in coded units. For example, let fitted equation

be 2þ 3x1�1:5x2. As shown in Figure 32.19, the path of

steepest ascent will have x1 moving in a positive direction

and x2 in a negative direction. More specifically, the path is

such that for every 3.0 units of increase in x1, there will

correspondingly be 1.5 units of decrease in x2. For steepest

decent, the path is chosen using the opposite sign of the

coefficients.

The success of the steepest ascentmethod rests onwhether

the regionwhere the path is constructed ismain-effect driven.

Steepest ascent should still be successful in the presence of

curvature (interaction or quadratic), as long as it is small

relative to size of the main effects. If curvature is large, then

this exercise is self-defeating. In addition, the success of the

path is dependent on the overall process model. Models that

are poor and have high uncertainty lead to paths with high

uncertainty. Finally, modifying the steepest ascent path with

linear constraints are both mathematically and practically

easy to incorporate. For more information on process im-

provement with steepest ascent, see Ref. 6.

32.7 CENTER RUNS

One of the model assumptions in using a two-level design is

linearity across the experimental region. If the region is small

enough, this is a fair assumption. If the region spans a

somewhat broader space and/or the region contains the

optimal process condition, then it would not be surprising

if nonlinearity exists. Unfortunately, two-level designs by

themselves cannot even detect any curvilinear relationship

across the design region, much less model it. A cost-effective

strategy to initially identify curvature and also have an

independent estimate of variance is to add center runs to

the experimental design. This second point is critical as in

practice most 2k designs are unreplicated. Using the standard


1 scaling of factor levels, center runs are replicated nc times

at the design point xi¼ 0, i¼ 1, 2, . . ., k. Note that adding

center runs produces no impact on the usual effect estimates

in the 2k design. The pure error variance is estimated with

nc� 1 degrees of freedom and the test for nonlinearity is via a

single degree of freedom contrast that compares the average

response at the center to the average response from

the factorial points. If nonlinearity is nonexistent across the

design region, these averages should be comparable. Spe-

cifically, let �yc be the average of the nc center points and let

�yf be the average of the nf factorial points. The formal

hypothesis test of nonlinearity is conducted by comparing

the sum of squares for curvature,

SSC ¼ nf ncð�yf��ycÞ2
nf þ nc

against the mean square error. This test does not give any

information on which factors contribute the sources of

curvature, only whether curvature exists or not. If �yf ��yc is
large, then curvature is present across the design region. The

implication is that the linear model with main effects and

interactions is inadequate for prediction and additional de-

sign points or amore advanced design is necessary to identify

which specific factors are contributing to the nonlinearity in

order to accurately predict across the experimental region.

X2

X1

FIGURE 32.19 Path of steepest ascent for the model

ŷ ¼ 2þ 3x1�1:5x2.
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32.8 RESPONSE SURFACE DESIGNS

Previous discussion has centered on fitting first-order and

first-order plus interaction models. However, a higher order

model is necessary when in the neighborhood of optimal

response. In this case, second-order models are very good

approximations to the true underlying functional relationship

when curvature exists. These take the form

y ¼ b0 þb1x1 þb2x2 þ � � � þbkxk

þb12x1x2 þb13x1x3 þ � � � þbk�1;kxk�1xk

þb11x
2
1 þb22x

2
2 þ � � � þbkkx

2
k þ e

To estimate the second-order model each factor must have

at least three levels. Implicitly there has to be at least as

many unique design points as model terms. Many efficient

designs are available that accommodate the above model.

The most common is the central composite design, abbre-

viated CCD [2]. The k-factor CCD is comprised of three

components, (1) a full 2k factorial or resolution V fraction,

(2) center runs, and (3) 2�k axial points. One compelling

feature of CCD designs is that the axial points are a natural

augmentation to the standard 2k or 2
k�p
V plus center run

designs.

As the name suggests, the axial points lie on the axes of

each factor in the experimental space. In coded units they are

set at a distance
a from the center of the design region. The

axial value, a, can take on any value, which speaks to the

flexibility of these designs. In practice they are usually taken

at either a ¼ 1 for a face-centered design, a ¼ ffiffiffi
k

p
for a

spherical design, or a ¼ f 1=4 for a rotatable design, where f

is the size of factorial or fractional used in the CCD.

Table 32.8 is an example of a two-factor CCD, and

Figure 32.20 displays the experimental region.

Referring to Figure 32.20, if the axial value is set at

a ¼ 1, then all of the experimental conditions except the

center runs lie on the surface of the cube. Similarly, if the

axial value is set at a ¼ ffiffiffi
k

p
, all of the experimental con-

ditions except the center runs lie on the surface of a sphere.

For rotatable designs, the precision on the model prediction

is a function of only the distance from the design center and

the error variance, s2. This is illustrated through the two-

factor CCD in Table 32.8. The number of factorial points is

nf¼ 4, which yields a ¼ 41=4 ¼ ffiffiffi
2

p
as the axial value for

rotatability. Assume the design contains nc ¼ 3 center runs.

Using this experimental plan, Figure 32.21 displays how the

scaled standard error of prediction, a quantity proportional

to the size of the confidence interval on the model predic-

tion, varies across the design region. First, the prediction

error increases toward the boundary of the design region,

a behavior typically seen with confidence bands about a

simple linear regression fit. Second, as the design is rotat-

able, the standard error of prediction is constant on spheres

of radius r. Consider two model predictions in Figure 32.21,

ŷðx1Þ and ŷðx2Þ, that are at different coordinates in the

experimental region. While the model-based predictions

should be different, the precision of ŷðx1Þ and ŷðx2Þ is the
same as both are equidistant from the center of the design

region.

An alternative to the class of central composite designs are

the Box–Behnken [7] designs (BBD). These experimental

plans are very efficient in fitting second-order models, are

nearly rotatable, and have a potentially practical advantage

of experimenting with three equally spaced levels over

the experimental region. These designs are constructed by

incorporating 22 or 23 factorial arrays in a balanced incom-

plete block fashion, with the other factors set at their center

value. Table 32.9 is an example of a three-factor BBD and

Figure 32.22 displays the design in graphical form. The

BBDs are spherical designs and there are no factorial ‘‘corner

points’’ or face points. For the k¼ 3 design shown in

Figure 32.22, all conditions except the center runs are atffiffiffi
2

p
distance from the center. This should not deter the

engineer from using this design, especially if predicting at

the corners is not of interest, potentially due to cost, imprac-

ticality, feasibility, or other issues.

TABLE 32.8 General Two-Factor Central Composite Design

X1 X2

�1 �1

1 �1

)
Factorial runs�1 1

1 1

0 0 } Center runs (�1)

�a 0

a 0

)
Axial runs

0 �a
0 a

Axial points

–1
–1

+1

+1

+α

FIGURE 32.20 Illustration of general two-factor central com-

posite design.
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32.9 COMPUTER GENERATED DESIGNS

Classical experimental designs such as those discussed so far,

may not be appropriate for a practical situation, due to one or

more constraints. These could include:

. Sample size limitations due to time, budget, or material,

which may yield a nonstandard number of runs, say 11

or 13;

. Nonviable factor settings, thereby impacting the exper-

imental region’s geometry. Examples include solubility

limitations, safety concerns, and small-scale mixing

sensitivities;

. Desired factor levels are nonstandard, say 4 or 6;

. Factors are both qualitative and quantitative;

. Proposed model may be more complicated than first- or

second-order polynomial, either higher in order or

nonlinear.

For such cases, experimental designs should be tailored

to accommodate any constraints, yet still preserve properties

that themoreclassical designs typicallypossess, suchas those

based on model precision and prediction precision. The

design construction is accomplished with computer assis-

tanceandfallsunder theclassofcomputer-generateddesigns.

The computer is a vital tool to construct appropriate designs

that meet certain objectives, but unfortunately can be viewed

as a black box and misused because of gaps in understanding

exactly what the computer algorithms are doing.

Computer-generated designs, and the area of optimal

design theory, can be attributed to Kiefer [8, 9], and

–1

1

1–1

1

X3

–1

X2

X1

FIGURE 32.22 Illustration of three-factor Box–Behnken design.

TABLE 32.9 Three-factor Box–Behnken Design

X1 X2 X3

�1 �1 0

1 �1 0

�1 1 0

1 1 0

�1 0 �1

1 0 �1

�1 0 1

1 0 1

0 �1 �1

0 1 �1

0 �1 1

0 1 1

0 0 0

1.500.750.00–0.75–1.50

–1.50

–0.75

0.00

0.75

1.50

X1

X
2

0.550

0.550

0.600
0.7000.800

)ˆ 1y(x

)ˆ 2y(x

FIGURE 32.21 Illustration of rotatability using the standard error of prediction across factor space.
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Kiefer andWolfowitz [10]. The general algorithm consists of

the engineer providing an objective function that reflects the

design property of interest, a hypothesizedmodel, the sample

size for the study, and other design elements potentially

corresponding to blocks, center runs, and lack-of-fit. The

algorithm then uses a fine grid of candidate experimental

conditions and searches for the design that optimizes the

objective function.

There are several objective functions that speak to design

properties of interest and are referred to as alphabetic opti-

mality criteria. As background to the objective functions,

consider the linear model

y ¼ Xbþ e

where y is the (N� 1) vector of observations, X is the (N� p)

model matrix, b is the (p� 1) vector of model coefficients,

and e is the (N� 1) vector of errors assumed to be inde-

pendent and normally distributed with mean zero and var-

iance s2. The ordinary least squares estimate of model

coefficients is

b̂ ¼ ðX0XÞ�1
X0y

and the covariance matrix of those estimates is given by

Varðb̂Þ ¼ ðX0XÞ�1s2 ð32:1Þ

In addition, the variance of a predicted mean response,

ŷ0, at coordinates x0 is given by

Var ŷ0ð Þ ¼ x00ðX0XÞ�1
x0s

2 ð32:2Þ

It should be apparent to the reader from (32.1) and (32.2) the

importance of good experimental design on the model and

prediction precision, as demonstrated through the (X0X)�1

matrix embedded in both of those quantities.

The most common optimality criterion is D-optimality,

which minimizes the joint confidence region on the regres-

sion model coefficients. A-optimality is a similar and

common criterion that minimizes the average size of a

confidence interval on the regression coefficients. Both

D- and A-optimality use functions of (32.1) to obtain the

appropriate design, and are defined by the scaled moment

matrix, M, expressed as

M ¼ X0X
N

for completely randomized designs. The scaling takes

away any dependence on s2, a constant independent of the

design, and the sample size,N, which allows for comparisons

across designs of different size. The algorithm finds that set

of design points that maximizes the determinant of M

for D-optimality, and minimizes the trace of M�1 for

A-optimality.

Two other criteria are G-optimality and IV-optimality,

which use functions of the prediction variance in (32.2) to

obtain a candidate design. A G-optimal design minimizes

the maximum size of a confidence interval on a prediction

over the entire experimental region, whereas IV-optimality

minimizes the average size of a confidence interval on a

prediction over the entire experimental region. Similar to

the scaling done with the D-criterion above, these criteria

are defined by the scaled prediction variance given by

uðxÞ ¼ Nx0 ðX0XÞ�1
x

Research and software application in the area of optimal

design theory has grown immensely over the recent past.

Clearly the flexibility is appealing and at times invaluable. It

allows the engineer to generate an experimental design for

any sample size, number of factors (both discrete and con-

tinuous), type of model (linear or nonlinear), and random-

ization restrictions. Here are some additional notes and

cautions regarding computer-generated designs:

. They are model-dependent optimal. Occasionally, the

engineer will proposed a mechanistic model that repre-

sents the true relationship between y and x. Often

though, empirical models are proposed and inevitably

edited after collecting data. Optimal designs con-

structed for one model could be fairly suboptimal with

respect to an edited model, thereby impacting process

modeling performance. There are strategies and graph-

ical tools available to help generate and assess model

robustness, such as those proposed by Heredia-

Langner [11].

. The optimal design for one criterion is usually robust/

near optimal across other criteria [12]. This is not overly

surprising due to the importance of the (X0X)�1 matrix.

However, this is not guaranteed as it is possible to

generate a D-optimal design that has poor prediction

variance.

. Slight variations in algorithms and software packages

could lead to generated designs that are statistically

equivalent but different experimentally. As a matter of

good scientific practice, the engineer needs to scrutinize

the design for merit and practicality.

. Two-level designs for main effects only and main

effects plus two-factor interaction models are all A-,

D-, G-, and IV-optimal.

. Classical CCD and BBD designs for second-order

models are near optimal. That is, they are highly

efficient relative to the most optimal designs.

32.10 MULTIPLE RESPONSES

Up until now any discussion involving effect identification

and regression analysis has focused on a single response, and

the process model for that response can be used to hone in
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on a region of desirability in the factor space, as defined by

the engineer. However, rarely in practice are experiments

conducted when only a single response is collected. With

chemical reaction trials, natural outputs could include var-

ious impurities levels, completion time, and yield, just to

name a few. Standard analysis practice would involve (1)

modeling each of those outcomes separately, (2) defining

their respective region of acceptable response over the factor

space, and (3) identifying the intersection of individual

regions where all responses are deemed acceptable. Some

software packages include this feature of overlaying contour

plots, which is an effective approach in locating an optimal

process-operating region. However, when the number of

responses and/or factors gets somewhat large, this exercise

can become quite cumbersome. In addition, it is not surpris-

ing to have competing responses, meaning the optimal region

for one response is suboptimal for one or more of the other

responses. This commonly occurs with crystallization pro-

cesses, where maximum impurity purge is often at the

sacrifice of higher yield, due to similar solubility properties

of the chemical species. The question then becomes how to

effectively merge process model information to identify

conditions that are optimally balanced across multiple

criteria.

The idea of desirability functions introduced byDerringer

and Suich [13] addresses this problem. This is a formula

scaled between [0,1] inclusively, where the researchers own

priorities and requirements are built into the optimization

procedure. To illustrate, consider minimizing the total im-

purity level (%) from a chemical reaction and assume that any

reaction that produces �0.5% is highly desirable. On the

other hand, assume a reactionwith>3% is unacceptable. The

desirability function, d, for that response is expressed as

d ¼

1; ŷ � 0:5

3:0�ŷ

3:0�0:5

0
@

1
A

S

; 0:5 < ŷ < 3:0

0; ŷ � 3:0

8>>>><
>>>>:

Model predictions less than 0.5% get the highest desirability

score of 1, whereas model predictions higher than 3.0% get

the lowest desirability score of 0. For cases in between those

levels, there exist a gradient of desirability scores that are a

function of both the model prediction and a weight, S.

This weight is chosen by the engineer and it determines

the severity of not achieving the most desirable goal, which

in this case is 0.5% or less. Figure 32.23 gives a visual

of how that desirability function behaves for various values

of S.

For a given factor setting, each of the m responses has its

own desirability score. That is, response i gets desirability,

di, i¼ 1, 2, . . .,m. To obtain the overall desirability acrossm

responses at any experimental condition, the overall desir-

ability score, D, is calculated as the geometric mean of each

individual di, expressed as D ¼ d1; d2; . . . ; dmf g1=m. This
overall score is easily modified when responses vary in

importance. For example, impurity responses that affect drug

product quality (and therefore affect the patient) are consid-

eredmore important versus, say, yield that affects a sponsor’s

bottom line. The final objective is to locate parameter con-

ditions that make D largest. This is normally accomplished

via response surface modeling of D across experimental

space and/or numerical techniques. Many software packages

include this functionality as part of optimization. Note

that any identified conditions should be confirmed for

acceptability.

43210
Impurity (%)

0.0

0.2

0.4

0.6

0.8

1.0

d

S = 0.2

S = 10

S = 2

S= 1

S = 0.4

FIGURE 32.23 Example total impurity desirability function across various weights of S.
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EXAMPLE 32.2 THREE-FACTOR CENTRAL
COMPOSITE DESIGN

A three-factor face-centered central composite design is

carried out to identify factor combinations that simultaneous-

ly minimize total impurities (%) andmaximize yield (g). The

three factors are catalyst (FactorA), concentration (FactorB),

and temperature (Factor C). Each experimental condition is

completely randomized and the center runs are replicated

three times (nc¼ 3). Total size of the study is 17 runs. The

randomized design in coded units and data are listed in

Table 32.10, and depicted in Figure 32.24. A full second-

order model was fit to each response. The final ANOVA, fit

statistics, predicted model equation, and relevant plots are

presented below.

Figure 32.25 gives an example snapshot of all relevant

information in modeling total impurities. The table shows

that total impurities are jointly impacted by concentration

and temperature, as shown by the significant p-value on the

interaction term, and independent of catalyst level. The

model explains approximately 90.7% of the variation in

the data as calculated by the R2 value, and the final predicted

model equation in coded units is embedded as well. Two

previously highlighted diagnostic plots are included in this

snapshot, although there could be others of interest that

highlight or confirm aspects of the data/model. The normal

probability plot of residuals shows no deviation from the

normality assumption, and the predicted versus actual plot

indicates that the model is performing well with constant

variability across the range of prediction. Finally, a model-

based contour plot of predicted total impurities across con-

centration and temperature is shown along with its 3D

analogue surface plot. From this graphs, total impurities are

minimized at the combination lower concentration and

higher temperatures levels, independent of catalyst. That is,

(concentration, temperature)¼ (�1, 1).

Figure 32.26 shows all relevant information in modeling

yield. The embedded table shows that yield is impacted by all

three factors, including second-order catalyst and tempera-

ture effects. Notice also that the main effect of catalyst is

included even though the p-value is insignificant. This is to

preserve model hierarchy, as catalyst does explain some of

thevariation in response, but in conjunctionwith higher order

terms (either interactions and/or as a second-order effect).

The model explains approximately 97.4% of the variation in

the data as calculated by the R2 value, and the final predicted

model equation in coded units is shown. The normal prob-

ability plot of residuals demonstrates that the residuals can be

assumed normally distributed, and the predicted versus

actual plot indicates that the model is performing quite well

with no departures from the constant variability assumption.

And again, a model-based contour plot of predicted yield

across catalyst and temperature levels at the high concen-

tration is displayed along with its corresponding surface plot.

The concentration level is set to high because that

factor comes in the model only as a positive main effect,

implying higher concentration predicts higher yield. There-

fore setting concentration at its high level is in the optimal

direction. From this information, yield is maximized at

(catalyst, concentration, temperature)� (0.25, 1.0, 0.25) in

coded units.

In identifying a candidate process-operating region that is

optimal over both responses, criteria that define acceptable

performance are established. For this example, assume that

the process is acceptable if the predicted total impurities are

below 10% and the yield is above 40 g. Figure 32.27 displays

TABLE 32.10 Three-Factor CCD Design to Optimize Total

Impurities and Yield

Design Data

Catalyst Concentration Temperature

Total

Impurities Yield

�1 1 �1 23.54 33.95

�1 �1 �1 10.57 15.27

0 0 0 12.20 35.10

1 1 �1 19.74 15.43

�1 1 1 5.20 18.68

1 �1 �1 8.61 2.50

0 0 0 11.10 37.20

1 �1 1 0.79 24.00

0 0 1 8.63 33.40

�1 �1 1 2.59 8.30

0 0 0 10.10 42.20

1 0 0 11.96 32.16

1 1 1 4.40 42.10

0 �1 0 5.47 31.90

0 0 �1 15.98 21.60

0 1 0 17.07 47.80

�1 0 0 12.82 31.17

–1

1

1–1

1

Temp

(C)

–1

Conc

(B)

Catalyst
(A)

FIGURE 32.24 Illustration of three-factor face-centered CCD

design.
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at the high (þ 1) concentration level the subspace (in white)

of catalyst–temperature combinations where simultaneously

both responses meet the specified process performance cri-

teria. Similarly, one solution from using the desirability

function predicts a candidate optimal setting at (catalyst,

concentration, temperature)� (0.67, 1, 1). This is denoted in

the upper part of the white area by (.). This condition would
be verified experimentally.

32.11 ADVANCED TOPICS

32.11.1 Industrial Split-Plot Designs

One assumption made throughout the chapter is that all

experimental designs have complete randomization of

the treatment combinations, which are generally called

completely randomized designs. However, for experiments

run at larger scale and/or with equipment limitations,

complete randomization of the experiments is arduous.

This happens with factors that are difficult to independently

change for each design run, or impractical when certain

factors can and should be held constant for some duration of

the experiment due to resource or budget constraints. Tem-

perature and pressure are examples that immediately come

to mind of hard-to-change factors. When this situation

occurs, part of the design is executed in ‘‘batch-mode.’’

That is, certain treatment combinations are fixed across

a sequence of experiments, without resetting the actual

treatment combination. This type of execution results in

nested sources of variation and is called a split-plot design.

These designs were originally developed for agronomic

experiments, but its applicability easily spans all fields of

science, even as the agricultural naming conventions have

endured.

The basic split-plot experiment can be viewed as two

experiments that are superimposed on each other. The first

corresponds to a randomization of hard-to-change factors to

FMSDFSSSource p-value
< 0.000141.46175.731175.7286Conc-B
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FIGURE 32.25 Summary of total impurities modeling.
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experimental units called whole plots, while the second

corresponds to a separate randomization of the easy-to-

change factors within each whole plot, called subplots. This

is different than completely randomized designs that have

unrestricted randomization factor combinations across all

experimental units. The blocking of the hard-to-change

factors along with the two separate randomization sequences

creates a correlation structure among data collected within

the same whole plot. Inferentially, the associated ANOVA

needs to reflect that the experiment was executed in a split-

plot fashion. If data from a split-plot structure were analyzed

as if the experiments were completely randomized, then it is

possible to erroneously conclude significance of hard-to-

change effects when they are not, while conclude insignif-

icance of easy-to-change effects when they are. A good

discussion on classical split-plot designs can be found in

Hinkelmann and Kempthorne [14], as well as in Box and

Jones [15] regarding response surface methodology.

In the recent past considerable attention has been given

to constructing and evaluating optimal split-plot designs,

especially with the computational horsepower of today’s

computers. Topics span algorithms for D-optimal split-plot

designs [16, 17], to comparing the performance between

classical response surface designs in a split-plot struc-

ture [18], to graphical techniques for comparing competing

split-plot designs [19]. This is an important area of re-

search as many industrial experiments are conducted with

restricted randomization, whether deliberately planned or

not. For those cases when it is planned, more software

tools are becoming widely available so that the split-plot

experiment are both powered sufficiently and analyzed

appropriately.
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FIGURE 32.26 Summary of yield modeling.
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32.11.2 Nonstandard Conditions

Model diagnostics and the analysis of residuals are a crucial

part of any model building exercise and are standard with

any software package with a regression component. The

information can numerically or visually identify any con-

ditions from the standard assumption of normal and inde-

pendent residuals with mean zero and common variance s2.

Examples of nonstandard conditions are heterogeneous

variance, data transformations, outliers, and nonnormal

errors.

In practice, the assumption of homogeneous variance is

most likely violated. For many scientific applications, it is

natural that variability increases with either response or

regressor. From a theoretical perspective, this is simple to

accommodate as the ordinary least squares estimate of

regression coefficients, b̂, is slightly altered to a weighted

least squares estimate, where the weights are the inverse of

the variances. The implication is that residuals with large

variances (small weights) should not count as much in the

model fit as those with small variances (large weights). For a

given matrix of weights, W, the expression for the weighted

least squares estimate of b is given by

b̂
WLS

¼ ðX0WXÞ�1
X0Wy

The immediate practical issue is how to obtain the weights.

One approach is to collect multiple data at each experimental

condition and use the corresponding estimate of variance.

However, this is problematic if the sample variances are

based on a small number of data, and therefore potentially

unreliable as a solution. A loose rule of thumb is that any

estimatedweights should be based on no less than a sample of

nine [20]. Less than that can result in very poor performance

of the weighted least squares solution, and ignoring the

weights would be the better course of action.

One effective approach to the issue of increasing variance

relative to increasing response is through a response trans-

formation. As a by-product, the reexpression of data also

helps with error normality assumption, as well as with both

model prediction and model selection. The most common

data transformation is the log transformation (y* ¼ lnðyÞ or
y* ¼ log10ðyÞ), where the mechanism of change in y across x

is exponential. Other less common transformations include

the square root (y* ¼ ffiffiffi
y

p
) and reciprocal (y* ¼ y�1). All of

these examples fall under the class of power transformations,

where y* ¼ yl. The Box–Cox method [21] is one particular

and powerful technique that aids in properly transforming y

into y� and takes the form

y*ðlÞ ¼
yl � 1

l _yl�1
l 6¼ 0

_y lnðyÞ l ¼ 0

8>><
>>:

where _y is the geometric mean of the original data. The

assignment of ln(y) when l¼ 0 comes from the limit of

(yl� 1)/l as l approaches zero, which allows for continuity

in l. The use of _y rescales the response to the same units so

that the error sum of squares can be comparable across

different values of l. As mentioned, common power trans-

formation values of l are �1, 0, 0.5, and 1, the last corre-

sponding to no response transformation. In practice, after an

appropriate model is fit to the data, an estimate of l that

minimizes the error sum of squares is estimated. If this value

is significantly different than 1.0, a transformation on the

data is recommended to produce a better fit, with potentially

a different model. Most software packages that contain

the Box–Cox procedure as part of model diagnostics provide

a confidence interval on l that simultaneously tests the
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FIGURE32.27 Overlay plot of catalyst–temperature combinations thatmeet specifiedperformance

criteria for total impurities and yield, with candidate optimal setting (.).
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hypothesis of no response transformation needed and puts a

bound on a recommended one.

32.11.3 Designs for Nonlinear Models

Except for a brief mention in the section on computer

generated designs, all the discussion and examples in this

chapter have only considered models that are linear in their

parameters, which are then (successfully) used to approxi-

mate underlying nonlinear behavior over a small region. By

definition, a linear model is one where the partial derivatives

with respect to each model parameter are only a function

of the factor/regressor. A simple example is the two-factor

interaction model

y ¼ b0 þb1x1 þb2x2 þb12x1x2

It is trivial to show that qy/qbi (i¼ 0, 1, 2, and 12), does not

depend on bi. Conversely, a nonlinear model is defined as

one where at least one of the partial derivatives is a function

of a model parameter. An example of a nonlinear model

would be

y ¼ b0 e
�b1x

where both qy/qb0 and qy/qb1 are still functions of the

unknown b parameters. Of course, chemical engineers are

fully aware that the majority of kinetic models are non-

linear and not even closed form but expressed as

differentials.

As opposed to linear models, in most cases classical

experimental designs are not appropriate or optimal for

nonlinear models. (The notable exception is in some applica-

tions of generalized linear models, as discussed by Myers

et al. [22].) Thus, practitioners typically rely on computer

generated designs that are optimal in some respect, such as by

D- or G-optimality criteria previously described. However,

this is problematic and circular in terms of design construc-

tion, since the optimal design for a nonlinear model is a

function of the unknown parameters. To circumvent that

issue, initial parameter estimates are used that are often the

results of previous studies and/or scientific knowledge. These

designs are called locally optimal, and Box and Lucas [23]

discuss locally D-optimal designs for nonlinear models.

Intuitively, if the initial model parameter estimates are poor,

then the locally optimal design will suffer in performance.

One avenue that does not rely on initial parameter point-

estimates is to use Bayesian approach to experimental

design [24], where the scientist would postulate a prior

distribution on the parameters plus specify a utility function,

which is similar in spirit to the objective functions discussed

in classical alphabetic optimal criteria. Regardless, optimal

designs for nonlinear models are inherently sequential,

whichmay be an obstacle in adoption. In addition, commonly

available technology has not caught up to the contemporary

thinking in this field, adding another very tangible barrier.

Nevertheless, independent of model-type it should be appar-

ent that the process model fit is only as good as the design

behind the data.
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