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44.1 INTRODUCTION

The goal of any industry (be it chemical, pharmaceutical,

steel, pulp, and paper) is to produce a product satisfactory to

the customer (i.e., within prescribed quality specifications)

under safety and environmental regulations and at a mini-

mum cost. Quality control and regulatory specifications

(safety, environmental) will help the manufacturer achieve

the first three objectives but sometimes at the expense of cost.

Understanding the process and monitoring and controlling

process performance will help meet all four targets (quality

product, safety constraints, environment constraints, mini-

mum cost) simultaneously.

Process analysis and understanding, monitoring, and

control have been practiced by several industries (notably

petrochemical) for several decades. These industries adopted

the above practices gradually. First, they saw the need for

real-time quality measurements and developed real-time

analyzers; as an example, the first analytical and control

instrument group of UOP (Universal Oil Products) was

formed in 1959 with the mission to develop online analyzers

for internal pilot plant applications. This first step made the

industry capable of collecting real-time measurements of

quality properties and other process variables. The second

step was the development of automatic process control

techniques. This required some form of modeling. Attempts

were made to understand the fundamental mechanisms of

processes and built sophisticated mechanistic (first-princi-

ples) or empirical (data-driven) models. Later, in the 1990s

the industry made a third step, which was the use of mul-

tivariate statistical analysis methods. With these multivariate

approaches, it became possible to analyze and understand the

process by looking at historical data containing hundreds

of variables, detect abnormal situations, diagnose the sources

of the abnormalities, and make appropriate modifications.

Furthermore, by utilizing multivariate statistical process

control (MSPC), it became possible to monitor the wellness

of the process and product in real time, by looking simul-

taneously at hundreds of variables as they are collected.

As a result, several industries managed not only to assure

acceptable end-product quality, but also to improve process

performance and maintenance, and to significantly reduce

cost. The quick adoption of the methodologies and the

benefits becomes evident from a very impressive set of

applications presented by industry in 2003 in the symposium

of “abnormal situation detection and projection methods—

industrial applications [1].”

However, the picture of the pharmaceutical industry was

different. At 2003, an article in the Wall Street Journal [2]

proclaimed that “The pharmaceutical industry has a little

secret: Even as it invents futuristic new drugs, itsmanufactur-

ing techniques lag far behind those of potato-chip and

laundry-soap makers.” The article went on to explain that

“in other industries, manufacturers constantly fiddle with

their production lines to find improvements” but “regulations

leave drug-manufacturing processes virtually frozen in
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time.” Applications from the snack food industry (potato

chip) that were published the same year [3, 4] were illus-

trating the use of inferential sensors based on a digital

imaging system that had been developed for monitoring

and control of the amount of coating applied to the base

food product and the distribution of the coating among

the individual product pieces, with real-time results from

the implementation of such imaging system on snack food

production lines. The imaging system was used to monitor

product quality variables and to detect and diagnose oper-

ational problems in the plants. It was also used to implement

closed loop feedback control over coating concentration.

It was based on multivariate image analysis. Figure 44.1

shows the setup for feedback control based on Image Ana-

lysis. Images are collected by cameras from the process or

from a stream exiting the process. This information then can

be used in a feedback control loop.

The situation depicted in Figure 44.1 is the desired state in

the pharmaceutical industry. That is, it is desired that we have

the ability to measure or infer quality in real time, to assess

the deviation from expected quality value, and to calculate

a real-time control action for correction. Such ability stems

from good models that provide process understanding, (dif-

ferent) models that convert spectral or other sensor data to

quality, and (different) models that calculate the required

control action. Theword “different” was added on purpose in

the previous phrase to indicate that in this endeavor different

types and classes of models are employed and that there are

several modeling activities required. Themodels required for

all these classes of modeling may be first principles/mech-

anistic, data based/empirical, or hybrid. Multivariate projec-

tion methods or latent variable methods play an integral

part in empirical and hybrid modeling. Such models can be

developed to relate final quality properties to raw material

attributes and process parameters and can be used for process

understanding, process monitoring, and troubleshooting.

Multivariate models can also be developed and utilized

for process control, scale-up, and site transfer. There is

a wealth of literature describing the theoretical foundation

of the latent variable or projection methods [5–7], as well as

the experiences from practitioners in industry [1, 8].

A lot of changes have happened since 2003 in the

pharmaceutical industry that has entered a new era. The

introduction of concepts such as quality by design, design

space, and control strategy are also examples of such changes

(Table 44.1). Multivariate methods are most suitable to

address the requirements associated with these concepts.

The pharmaceutical industry can learn from existing meth-

odologies and from experiences from other industries and

utilize multivariate technologies for fast process and product

improvements.

In this chapter, the fundamentals behind latent variables

modeling will be presented briefly together with references

for in-depth presentations of methodologies and their use

for process understanding, troubleshooting, monitoring,

and control. Case studies are shown for such applications

or are referenced. The chapter should be used by the reader as

guidance for the types of problems that can be solved

utilizing the methodology; the reader will use the detailed

references to seek in-depth analysis and detailed solutions to

specific problems.

FIGURE 44.1 Monitoring and feedback control based on image

and vibrational analysis. Example from snack food industry

[3, 4].

TABLE 44.1 Terms Related to Quality by Design

Quality by design (QbD) is defined as a systematic approach to

development that begins with predefined objectives and

emphasizes product and process understanding and process

control based on sound science and quality risk management

Design space is the multidimensional combination and interaction

of input variables (e.g., material attributes) and process

parameters that have been demonstrated to provide assurance

of quality

Control strategy is a planned set of controls derived from current

product and process understanding that ensures (good) process

performance and product quality. The controls can include

parameters and attributes related to drug substance and drug

product materials and components, facility and equipment

operating conditions, in-process controls, finished product

specifications, and the associated methods and frequency of

monitoring and control

Note: These terms are defined by the International Conference on

Harmonisation of Technical Requirements for Registration of

Pharmaceuticals forHumanUse (ICH is a unique project that brings together

the regulatory authorities of Europe, Japan, and theUnited States and experts

from the pharmaceutical industry in the three regions to discuss scientific and

technical aspects of product registration).
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44.2 THE NATURE OF PROCESS AND QUALITY
DATA

44.2.1 Multivariate Nature of Quality

Understanding the multivariate nature of quality is of great

importance. Product quality is defined by the simultaneously

correct values of all the measured properties; that is, product

quality is a multivariate property. Most of the time, the

property variables are not independent of one another, and

none of them adequately defines product quality by itself;

therefore, it is not a good practice to separately monitor key

properties of the final product using univariate control charts.

Figure 44.2 is a classic illustration of the problem with

using separate control charts for two quality variables (y1, y2).

In this figure, the two variables are plotted against each other

(upper left of the figure). The same observations are also

plotted as individual (univariate) charts for y1 (the horizontal

plot) and y2 (the vertical plot) with their corresponding upper

and lower control limits. Suppose that when only common

cause variation is present, y1 and y2 follow a multivariate

normal distribution; the dots in the joint plot represent a set of

observations from this distribution. Notice that y1 and y2 are

correlated. The ellipse represents a (1�a)% joint confidence

limit of the distribution (i.e., when the process is in control,

a% of the points will fall outside the ellipse).

The point indicated by the� symbol is clearly outside the

joint confidence region, and it is different from the normal in-

control population of the product. However, neither of the

univariate charts gives any indication of a problem for point

�; it is within limits in both of the charts. The individual

univariate charts effectively create a joint acceptance region

shaped like a square (shownwith the ellipse). Thiswill lead to

accepting wrong products as good (point �), but also reject-

ing a good product as bad (point}). The problem worsens as

the number of variables increases. It is clear that an efficient

fault detection scheme should look at the variables together.

Multivariate charts are required to test quality [9] when it is

described by many variables.

Recognizing the multivariate nature of quality should

guide the procedures that will be used for the following cases:

. Raw material evaluation

. Intermediate quality evaluation

. Final quality evaluation

. Process control for quality

. Product transfer and scale-up (themultivariate nature of

quality should be preserved for raw materials, interme-

diate qualities, and final qualities). This is a minimum

requirement. Later, we will discuss the requirements on

the multivariate space of the process variable trajecto-

ries as well.

44.2.2 Real-Time Monitoring and Process Signature:

The Need to Utilize Information from Process Data

There is a widespread belief that the use of real-time quality

measurements will help maintain the process “in control.”

Several practitioners are using real-time qualitymeasurements

to determine the “end point.” The questions are the following:

. Does real-time “in-control” quality guarantee “in-con-

trol” process ?

. Is one or two final quality properties a sufficient

“metric” of whether or not the process was in control?

Consider the example of Figure 44.3, where the trajecto-

ries of each one of the three process variables are plotted

for three different batch runs, A, B, C. The final product at
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FIGURE 44.2 The multivariate nature of quality.
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FIGURE 44.3 Different paths to the end point may result in

similar values for some quality properties but may affect others in

a different way. Consistent paths will assure that overall quality is

consistent.
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time t (end point quality) is determined from properties y1,t
and y2,t. These properties are plotted for each product pro-

duced by runs A, B, and C against the desired confidence

limits of acceptable multivariate quality defined by the

ellipse. Suppose that for all three runs the two “end proper-

ties” are on target in the multivariate control chart (points fall

within the ellipse). However, the process trajectories follow

different paths for each run. Are these runs equivalent?

It iswell known in industry that the samemeasured quality

properties can be achieved by taking different process

paths. However, very frequently the few properties measured

on a product are insufficient to define entirely the product

quality. In polymer industry, for example, if only theviscosity

of a polymer is measured and kept within specifications, any

variation in end-use application (downstream processability)

that arises due to variation in chemical structure (branching,

composition, end-group concentration) will not be captured.

To achieve consistency in all the product properties (mea-

sured quality and ability to process down the stream), the

process conditions (path to end point) must also be kept in

statistical control. When this is not the case, although the

measured product properties may be on target, the properties

that determined the processability of the product may not be

within acceptable limits. Therefore, monitoring process data

(temperatures, pressures, etc.,) together with real-time ana-

lyzers will give valuable information about events with

special causes that may not only affect the final quality, but

also give early warnings for potential equipment failure.

Another example that further corroborates this argument

has been reported from the pharmaceutical industry [10]:

“Conventional process control of drying of granulate in

a fluidized bed drier would be to measure the loss on drying

of a sample of powder, to determine water content. An

advance on this may be to determine water content using

an online NIR technology. However, true Process Under-

standing requires that the route by which you get to this end

point be known and controlled. For example if the drying

process is too vigorous, attrition may cause the granulate to

generate an unacceptably high level of fine particles, which

may cause downstream processing problems or dissolution

issues; equally if drying is too slow, the potential for deg-

radation of the drug molecule may exist.”

This “process path to the end point” is also discussed in the

European Regulatory Perspective [11], where it is reported

that “during discussions within the industry, the term process

signature has been mentioned regularly.” To get a common

understanding of this, the EU PAT Team had invited public

comments on the following definition: “A collection of batch

specific information that shows that a batch has been pro-

duced within a design space of the product.” The EU PAT

teammentions as examples of process signatures the amount

of water added in relation to time (wetmassing), air flow rate,

and bed temperature during fall rate drying (fluidized bed

drying). They concluded that their understanding is that there

is no unique process signature, but instead a family of process

signatures with common characteristics (salient features).

The above observations point to the importance of mon-

itoring the process together with the product quality. By

monitoring only the quality variables (in a univariate or

multivariate chart), one performs statistical quality control

(SQC). Real-time measurements on temperatures, pressure,

pH, RPM, and so on combined with real-time measurements

from analytical technology (spectroscopy, ultrasound, etc)

will lead to online processmonitoring andmakeMSPC, fault

detection, and isolation possible. Combining information

from the process measurements with the information from

the analytical tools gives a very powerful tool to monitor the

process. These two sets ofmeasurements are not independent

from one another but interrelated. As a matter of fact, these

measurements “confirm” each other. This is the reason that

process variables are sometimes used to assess the reliability

of real-time analyzers. It will also be pointed out later that

sometimes real-time process measurements may eliminate

the need of some real-time analyzers. Information about the

process may also include the vessels used for a specific run,

the operators that were on shift, suppliers of rawmaterial, and

so on. Another advantage to using process measurements is

that any abnormal events that occur will also have their

fingerprints in the process data. Thus, once an abnormal

situation is detected, it is easier to diagnose the source of the

problem, as we are dealing directly with the process vari-

ables. For example, a pending equipment failure means that

our production is not in control. However, there are situations

that while there may be a pending equipment failure, real-

time quality measurements may still be acceptable. By

monitoring process variables,we have avery high probability

to detect a pending problem.

Process data can be utilized together with appropriate

models to

. Infer final product quality from process conditions

during production

. Ease process understanding and troubleshooting

. Infer a quality in real time (soft sensors)

. Establish an overall “process signature” and monitor it

. Monitor analyzer reliability

. Check that the process is in a state of statistical process

control (SPC)

. Decide on midcourse correction of variable trajectories

to control final quality

. Establish operational knowledge that can be used for

product transfer and scale-up

It should be emphasized here that although some rela-

tions between process operating conditions and final quality

are known from the initial design of experiments (DOE),

oncewe are in production, these relationsmay be influenced
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by other factors and may change locally. By investigating

production data, we can uncover the true relationships

between process conditions and quality under the closed

loop operations.

Finally, it is very frequently stated that critical process

parameters should be identified and monitored together

with critical quality attributes utilizing SPC. It should be

emphasized here that the parameters that appear to be

critical in the DOE are not necessarily the ones that will

give information about the “wellness of the process” in SPC

charts. The reason for this is that the parameters that are

identified as important in DOE will be tightly controlled

during production. SPC charts on routine data are noncaus-

al; therefore, things that were important in DOE will not be

important in SPC, unless something goes really wrong (i.e.,

the controller fails and cannot keep the desired target). As an

example, suppose that temperature is important to the yield,

as determined by DOE. This means that during production

the desired temperature profile will be regulated by the

controllers; in SPC monitoring, what is important (and in

some types of processes will indicate the presence of excess

impurities and other disturbances) is how much effort the

controller is putting to maintain the temperature; that is,

how much the valve to the cooling agent opened or closed

during the reaction. Therefore, monitoring the controller

action will provide much more information about abnormal

situations than monitoring the temperature, although tem-

perature was identified as critical process parameter by

DOE.

44.2.3 Multivariate Nature, Structure, and Other

Characteristics of Process Data

Databases containing measurements collected during pro-

duction may become very large in size. The data are

noncausal in nature (unless they come from designed

experiments). They consist of highly correlated variables

with many missing measurements and low content of

information in any one variable (due to the low signal-

to-noise ratios).

Multivariate Structure of Data: The convention that

will be used throughout this chapter in expressing data is

that of Table 44.2. Other formats that may appear in specific

sections only will be defined in their corresponding

sections.

44.2.4 Process Analysis and Process Understanding

Unfortunately, sometimes the term “process analysis” is

wrongly being used as an equivalent term to process analyt-

ical chemistry. Collecting real-time measurements on

a specific property may or may not reflect what is happening

in the rest of process or the state of the process, unless the

state of the process is completely observable in that quality,

as discussed in Section 44.2.2; therefore, collecting a real-

time quality measurement is not process analysis.

A process can be defined as a series of physical and/or

chemical operations that converts input to output. Process

analysis is a systematic examination of a process to under-

stand it in order to develop ideas to improve it. Improvement

could translate to better quality, lower cost, more efficient

energy consumption, less pollutants to environment, and

safer operation. One can perform process analysis utilizing

both off-line and real-time measurements.

Process analysis leads to process understanding. Again,

there may be several definitions of process understanding.

There is a widespread belief that one gains process under-

standing only when they can describe the process by first

principles, that is, by a theoretical or mechanistic model.

However, one can gain tremendous insight into the process

from empirical models derived from databases. These em-

pirical models can lead to fast improvements that in several

situations would have been impossible if people had been

waiting for the development of theoretical first-principles

models. Empirical models based on process data can be

extremely valuable to diagnose abnormal operations such

as pending equipment failure.

So while process understanding may by some definitions

mean uncovering the mechanisms and path of a chemical

reaction, or modeling a fermentation process, it may also

TABLE 44.2 Some Multivariate Process Data Formats

Matrix

Symbol Dimensions Explanation

X (n� k); two-way matrix; n observations in time,

or n batches; k process variable measurements

Data from a continuous process, at given instant in time, or summary

data from a batch (max T, min T, length of batch run, etc.)

Y (n�m); two-way matrix; n observations in time,

or n batches; m product quality values

Quality data from a continuous process corresponding to the process

measurements in X, properly lagged, or quality data at the end of a

batch.

X (I� J�K); three-way matrix; I batches; J process

variables measured at K time intervals for each batch

Data collected from batch process at several time intervals during

production.

Z (n� r); two-way matrix; n observations in time,

or n batches; r other variable measurements

Raw material, total cycle times, length between processes,

preprocessing information
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mean uncovering production problems such as the examples

reported by practitioners in several industries:

. Diagnosing that the production of abnormal batches

followed a specific pattern and as a result uncovering an

incorrect operator practice that led to an abnormal batch

every time a routine maintenance task was taking place.

. Understanding why recent process data projected on

a latent variable space seem to form two clusters

indicating different operation practices and hence

solving an important operation problem as a result.

Examination revealed that the cooling agent valve was

not capable of meeting the demands in hot days and the

reactor temperature could not be controlled properly.

The valve was resized.

. Assessing that an operational problem caused the read-

ings of a specific thermocouple to be erroneous and

appear as outliers; thermocouple was too close to

entrance of cool reactant; erroneous readings fed to the

controller inappropriately alter the reactor temperature.

. Understanding where is the maximum process variabil-

ity; is this variability noise or is it assignable to a

cause—can we reduce it?

Understanding the way the process behaves in real scale

production is a tremendous asset to the effort of product

quality improvement and sometimes it weighs equally

importantly to understanding the detail mechanisms of the

reaction that takes place during production.

44.3 LATENT VARIABLE METHODS FOR TWO-

WAY MATRICES

Latent variables exploit the main characteristic of process

databases, namely, that althoughtheyconsist ofmeasurements

on a large number of variables (hundreds), these variables are

highly correlated and the effective dimension of the space in

which theymove isverysmall (usually less than10andoftenas

low as 2). Typically, only a few process disturbances or

independent process changes routinely occur, and the hun-

dreds of measurements on the process variables are only

different reflections of these few underlying events. For a

historical process data set consisting of a (n� k) matrix of

processvariablemeasurementsXandacorresponding (n�m)

matrix of product quality data Y, for linear spaces, latent

variablemodels have the following common framework [12]:

X ¼ TPT þE ð44:1Þ

Y ¼ TQT þF ð44:2Þ
whereE andF are error terms,T is an (n�A) matrix of latent

variable scores, and P (k�A) and Q (m�A) are loading

matrices that show how the latent variables are related to the

original X and Y variables. The dimension A of the latent

variable space is often quite small and determined by cross-

validation or some other procedure.

Latent variable models assume that the data spaces (X,Y)

are effectively of very low dimension (i.e., nonfull rank) and

are observed with error. The dimension of the problem is

reduced by these models through a projection of the high-

dimensionalX andY spaces onto the low-dimensional latent

variable space T, which contains most of the important

information. By working in this low-dimensional space of

the latent variables (t1, t2, . . ., tA), the problems of process

analysis,monitoring, and optimization are greatly simplified.

There are several latent variable methods. Principal compo-

nent analysis (PCA) models only a single space (X or Y) by

finding the latent variables that explain the maximum var-

iance. Principal components can then be used in regression

(PCR). In PCR, there appears to be a misconception that the

principal components (PC) with small eigenvalues will very

rarely be of any use in regression. The author’s personal

experience is that these components can be as important as

those with large variance. Projection to latent structures or

partial least squares (PLS) maximizes the covariance of X

and Y (i.e., the variance of X and Y explained, plus corre-

lation between X and Y). Reduced rank regression (RRR)

maximizes the variance of Y and the correlation between X

and Y. Canonical variate analysis (CVA), or canonical

correlation regression (CCR), maximizes only the correla-

tion between X and Y. A discussion of these latent variable

models can be found elsewhere [12]. The choice of method

depends on the objectives of the problem; however, all

of them lead to a great reduction in the dimension of the

problem. Some of them (PCR and PLS) model the variation

both in theX space and in theY space. This point is crucial in

most of the applications related to PAT that are discussed in

the following sections, as well as for the problem of treating

missing data. The properties of PCA and PLS are discussed

briefly below.

44.3.1 Principal Component Analysis

For a sample ofmean centered and scaledmeasurementswith

n observations on k variables, X, the principal components

are derived as linear combinations ti¼Xpi in such a way that

subject to |pi|¼ 1, the first PC has the maximum variance,

the second PC has the next greatest variance and is subject to

the condition that it is uncorrelated with (orthogonal to) the

first PC, and so on. Up to k, PCs are similarly defined.

The sample principal component loading vectors pi are the

eigenvectors of the covariance matrix of X (in practice, for

mean centered data, the covariance matrix is estimated

by (n� 1)�1XTX). The corresponding eigenvalues give the

variance of the PCs (i.e., var(ti)¼ li). In practice, one rarely
needs to compute all k eigenvectors, since most of the
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predictable variability in the data is captured in the first few

PCs. By retaining only the first A PCs, the X matrix is

approximated by equation 44.1.

44.3.2 Partial Least Squares

PLS can extract latent variables that explain the high vari-

ation in the process data, X, which is most predictive of the

product quality data,Y. In the most common version of PLS,

the first PLS latent variable t1¼Xw1 is the linear combina-

tion of thex variables thatmaximizes the covariance between

t1 and the Y space. The first PLS weight vectorw1 is the first

eigenvector of the sample covariance matrixXTYYTX. Once

the scores for the first component have been computed, the

columns of X are regressed on t1 to give a regression vector,

p1 ¼ Xt1=t
T
1 t1; the X matrix is then deflated (the X̂ values

predicted by the model formed by p1, t1, and w1 are sub-

tracted from the original X values) to give residuals

X2 ¼ X�t1p
T
1 . Q are the loadings in the Y space. In the so

called NIPALS algorithm, q1 is obtained by regressing t1 on

Y, and then Y is deflated Y2 ¼ Y�t1q
T
1 . The second latent

variable is then computed from the residuals as t2¼X2w2,

where w2 is the first eigenvector of XT
2Y2Y

T
2X2, and so on.

The new latent vectors or scores (t1, t2, . . .) and the weight

vectors (w1, w2, . . .) are orthogonal. The final models for X

and Y are given by equations 44.1 and 44.2 [13, 14].

44.3.3 Latent Variables for Process Understanding

Latent variable methods are excellent tools for data explo-

ration to identify periods of unusual/abnormal process

behavior and to diagnose possible causes for such behavior

(troubleshooting). The scores and loadings calculated by

PCA and PLS and the weights by PLS can be utilized for

this purpose. By plotting the latent variables (t1, t2, . . ., tA)
against each other, the behavior of the original data set (be it

process X, or quality data Y) can be observed on the

projection space. By examining the behavior in the projec-

tion spaces, regions of stable operation, sudden changes, or

slow process drifts may be readily observed. Outlier and

cluster detection also becomes easy, both for the process and

for the quality space. An interpretation of the process move-

ments in this reduced space can be found by examining the

loading vectors (p1,p2, . . .,pA) or (w1,w2, . . .,wA) in the case

of PLS and the contribution plots. For a PCA analysis onX or

a PLS analysis onX andY, each point on a t1 versus t2 plot is

the summary of measurements on k variables.

Figure 44.4a gives a simplified schematic interpretation

of the methods. Suppose that we have measurements from

five variables in a process (here, we plot the variable devia-

tions from their nominal trajectories) during a time period.

Suppose that variables x1, x3, and x4 are correlated with each

other, while variable x2 is correlated with x5. With the

multivariate projection methods, new variables (latent

variables) are calculated. In PCA, the first principal compo-

nent t1 is a weighted average of x1, x3, and x4, while the

second component, t2, is a weighted average of x2 and x5.

PCA can be seen as a classification of the main events that

affect a process. The first principal component corresponds to

the event that affects the largest number of variables, the

second to the event that affects the next number of variables,

and so on. The description here is a simplified explanation.

It may be the case that two or more events affect the same

variable, in which case this variable will contribute to the

values of more than one component. We have reduced the

number of the initial five raw variables to two principal

components; we have reduced the dimensionality of the

system. We can now plot these components against each

other, as shown in Figure 44.4b. Each point on the plot

summarizes the behavior of five raw variables. When the

process is in statistical control, the points will be within the

control limits, shown with an ellipse that is determined by

statistical criteria (discussed later). If there is a problem in the

x1

x4

x5

x2

x3

t1    from (x1, x3 , x4)

t2    from (x2, x5)

Principal components (PCA)

(b)

(a)

t2

t1

ObservationsO
bservations

8

8

8

99

9

FIGURE 44.4 (a) Simple interpretation of PCA and dimension-

ality reduction. The principal components t1 and t2 use the corre-

lation of five variables and break the process in two orthogonal

events. The first principal component corresponds to the event that

affects the largest number of variables, the second to the event that

affects the next number of variables, and so on. (b) These compo-

nents can be plotted against each other. A five-variable system is

projected onto a two-dimensional plane.
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FIGURE44.5 Representation utilizing projectionmethods. Rawmaterial properties,micronization

properties, and filling performance are projected on a latent variable space. Product batches produced

from similar raw material (circled by the small ellipse) have similar filling performance.

process, the points will plot out of the ellipse. Notice that by

using the latent variables, a five-variable system is projected

onto a two-dimensional plane. This is why these methods are

also called projectionmethods. Plotting principal components

against each other is a good way to visualize process behavior

and detect outliers and clusters. Typically, a small number of

components are required to describe the main events in a unit

(usually less than 10, and sometimes only 3 to 4).

44.3.3.1 Process Understanding Example 1: Relating
Issues Across Unit Operations The power of projection

methods in exploring large databases is demonstrated with

the following example, shown in Figure 44.5, where we plot

projections of the raw material quality, micronized material

quality, and final quality. More than 25 measurements of

physical and chemical properties are collected per lot of raw

material. These variables are projected on a space defined by

latent variables that allow us to visualize better the process

behavior. In the particular example, rawmaterial is produced

at three supplier locations. The raw material properties are

within univariate specifications at all locations. Projected on

amultivariate space t1 vs t2, however, they form three clusters ;

one cluster projects at the low part of the t1 vs t2 plot

(negative values of t2) while the other two clusters at the

upper part of the plot (positive values of t2). One of these two

clusters is marked by a small ellipse. This indicates that in a

multivariate sense the material possesses slightly different

characteristics depending on the location it was produced

(covariance structure changes with location). A few of the

batches of this raw material were subsequently used for a

specific product, and we show its behaviour after microniza-

tion and filling. The material properties after micronization

are also projected on principal components and it could be

observed that the material corresponding to the batches of the

small ellipse projects on a different location from the rest of

the batches. The filling performance of the material originat-

ing from the batches of the small ellipse is different from the

rest of thematerial. The conclusion for this example is that the

raw material differences propagate in the final quality. Given

the large number of variables involved, it is clear that the

projection methods provided a very quick diagnostic of the

problem. This could have not been possible by dealing with

univariate charts. The reader may note here that although the

control ellipses shown are set by default in the vendor

software, they are not interpretable when there is clustering;

the assumptions for the calculation of these ellipses are for

process monitoring and not for process exploration where

there is intentional variation such as that introduced by design

of experiments.

44.3.3.2 Process Understanding Example 2: Quick Diag-
nosis of Effect of Raw Material Variability to Granule
Characteristics The advantage of PLS is that many highly

correlated quality responses can be analyzed simultaneously.

The Y matrix can contain several parameters related to

quality. In this example, we wanted to see the correlation

between certain API physical properties and the granule

properties. We chose to use as Y the entire tapped density

profile and the entire PSD profile. As seven variables corre-

sponded to each property profile, we did not have to use any

special scaling discussed in the multiblock section. First we

use asXmatrix the API properties and used PLS, betweenY

andX to relate API variability to the variability of the granule

properties. Figure 44.6 shows the variability explained for

each variable in the tapped density profile, and granule size

profile, in a cross-validated model. Light grey is the direct
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FIGURE 44.6 PLS is a powerful tool to help visualize multiple responses. Here, we study the effect

of API physical property characteristics on the tap density profile and the granule size distribution.

fitting variability and dark the cross-validated variability.

One can very clearly visualize that the tapped granule

density is very highly correlated to the specific API physical

property variability (as a high % of variability of the tapped

density profile is explained by the variability of the API

property values).

44.4 MULTIVARIATE STATISTICAL PROCESS
CONTROL

From routine operation, we can establish acceptable limits of

good process behavior. On a t1 versus t2 plane, such limits

will take the form of an ellipse. When the process is in

statistical control, the pointswill bewithin the ellipse. If there

is a problem in the process, the points will plot out of the

ellipse. In Figure 44.4b, the ellipse is calculated based on

PCA on the data from good operation. Notice that while for

raw correlated data the ellipse is tilted, indicating correlation

(Figure 44.2), this is not the case when it is calculated for the

principal components that are orthogonal.

To monitor the process in real time, however, it would

have become cumbersome to have to plot all combinations of

principal components (even if we had four components,

we would need six charts). A statistic (Hotelling’s T2) can

be calculated and the overall variability of the main events of

the system can be monitored with a single chart, such as the

one shown at the upper left corner of Figure 44.7. The line

corresponds to acceptable performance. For the case of two

components, this solid line corresponds to the perimeter of

the ellipse of Figure 44.4b. For three components, it would

correspond to the surface of an ellipsoid, and for four

components the surface of a hyperellipsoid.

Hotelling’s T2 for scores is calculated as

T2
A ¼

XA
i¼1

t2i
li

¼
XA
i¼1

t2i
s2ti

ð44:3Þ

where s2ti is the estimated variance of the corresponding latent

variable ti. This chart essentially checks if a new observation

vector of measurements on k process variables projects on

the hyperplane within the limits determined by the reference

data.

As mentioned above, the A principal components explain

the main variability of the system. The variability that cannot

be explained forms the residuals (squared prediction error

(SPE)). This residual variability is also monitored and

a control limit for typical operation is being established. By

monitoring the residuals (Figure 44.7, bottom left), we test

that the unexplained disturbances of the system remain

similar to the ones observed when we derived the model.

For example, a model derived with data collected in the

summer may not be valid in the winter when different
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disturbances affect the system (cooling water temperatures

different, equipment walls colder, valves may reach limits in

capacity of providing heating agent, etc). It is therefore

important to check the validity of the model by checking

the type of disturbances affecting the system. When the

residual variability is out of limit, it is usually an indication

that a new set of disturbances have entered the system; it is

necessary to identify the reason for the deviation and it may

become necessary to change the model.

SPEX is calculated as

SPEX ¼
Xk
i¼1

ðxnew;i�x̂new;iÞ2 ð44:4Þ

where x̂new is computed from the reference PLS or PCA

model. Notice that SPEX is the sumover the squared elements

of a row in matrix E in equation 44.1. This latter plot will

detect the occurrence of any new events that cause the

process to move away from the hyperplane defined by the

reference model.

44.4.1 Calculation of Chart Control Limits

For a Hotelling’s T2 chart (either for PCA or PLS), an upper

control limit based on the A first PCs and derived from n

observations is obtained using theF distribution and given by

T2
A;UCL ¼ ðn2�1ÞA

nðn�AÞ FaðA;n�AÞ ð44:5Þ

where FaðA;n�AÞ is the upper 100a% critical point of the F

distribution with (A, n�A) degrees of freedom.

For the SPEX chart, limits can be computed using approx-

imate results from the distribution of quadratic forms. The

critical upper 100(1�a)% confidence interval on SPE is

given as

u1
za

ffiffiffiffiffiffiffiffiffiffiffiffi
2u2h

2
0

p
u1

þ u2h0ðh0�1Þ
u21

þ 1

" #1=h0

ð44:6Þ

where za is the unit normal deviate corresponding to the

upper 100(1�a)%, and a is the chance taken to incorrectly

declare a fault because of the type I error,

ui ¼
Xm

j¼Aþ 1

lij ¼ TrðEiÞ for i ¼ 1; 2; 3 ð44:7Þ

where li is the ith eigenvalue referring to the covariance

matrix and h0 ¼ 1�ð2u1u3=3u22Þ.
Nomikos and MacGregor [15] used an approximation

based on theweighted chi-square distribution (gx2ðhÞ). They
suggested a simple and fast way to estimate the g and h that is

based on matching moments between a gx2ðhÞ distribution
and the reference distribution of SPE at any time interval. The

mean [m ¼ gh] and the variance [s2 ¼ g2ð2hÞ] of the distri-
bution are equated to the sample mean (b) and variance (v) at

each time interval. Therefore, g and h are estimated from the

equations ĝ ¼ v=2b and ĥ ¼ 2b2=v.
Hence, the upper control limit on the SPE at significance

level a is given by

v

2b
x2
a

2b2

v

� �
ð44:8Þ

It should be emphasized that the models built for process

monitoring model only common cause variation and not

causal variation. The main concepts behind the development

and use of these multivariate SPC charts based on latent

variables for monitoring continuous processes were laid out

in early 1990s [9].

These two charts (T2 and SPE) are two complementary

indices; together they give a picture of the wellness of the

system at a glance. With this methodology, the hundreds of

measurements collected from the process variables at each

instant in real time are translated into one point for the T2

chart and one point for the SPE chart (these two points

summarize the process at that instant). As long as the points

arewithin their respective limits, everything is in order. Once

a point is detected out of limit, then the so-called contribution

plots can be utilized that give us a list of all the process

variables that mainly contribute to the out of limit point and

hence allow us to diagnose the process problem immediately.

Contribution plots can be derived for out of limit points in

both charts.

Contributions to SPE: When an out of control situation is

detected on the SPE plot, the contribution of each variable of

the original data set is simply given by ðxnew;j�x̂new;jÞ2.
Variables with high contributions are investigated.

Variable contribution

Process at a glance

SPEx

T2

Observations

Observations

FIGURE 44.7 Two charts (T2 and SPE) are required to give

a picture of the wellness of the process at a glance. The hundreds

ofmeasurements collected from the process variables at each instant

in real time are translated into one point for the T2 chart and one

point for the SPE chart.
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Contributions to Hotelling’s T2: Contributions to an out of

limit value in Hotelling’s T2 chart are obtained as follows: a

bar plot of the normalized scores (ti/sti)
2 is plotted and scores

with high normalized values are further investigated by

calculating variable contributions. A variable contribution

plot indicates how each variable involved in the calculation

of that score contributes to it. The contribution of each

variable of the original data set to the score of component

q is given by the following equation:

cj ¼ pq;jðxj��xjÞ for PCA

cj ¼ wq;jðxj��xjÞ for PLS ð44:9Þ

where cj is the contribution of the jth variable at the given

observation, pq;j is the loading, and wq;j is the weight of this

variable to the score of the principal component q and �xj is its
mean value (which is zero from mean centered data). Vari-

ables on this plot that appear to have not only the largest

contributions to it, but also the same sign as the score should

be investigated (contributions of the opposite sign will make

the score only smaller). When there are K scores with high

values, an “overall average contribution” per variable is

calculated over all the K scores [6].

As an example, consider Figure 44.4b that illustrates that

two clusters of points were observed on a t1 versus t2 plot.

The use of contribution plots may help to investigate which

variables have contributed to the move from point 8 to 9. So

equation 44.9 would give the contribution of variable j to

the move of the score values between two observations (say,

8 and 9) for component q calculated as [14]

pjq � ðxj;9�xj;8Þ for PCA
Utilizing contribution plots, when an abnormal situation is

detected, the source of the problem can be diagnosed such that

corrective action is taken. Some actions can be taken imme-

diately, in real time. Others may require interventions to the

process. One such example of an abnormal situation appeared

in a reactor, in which the reactor temperature should be

controlled in an exothermic reaction to 50�C. On a very hot

day, the charts indicated abnormalities. Contribution plots

pointed to a break in the correlation of cooling water flow and

reactor temperature. It turned out that although the cooling

water valvewas fully open, it could not copewith the demand,

as the cooling water was warmer. The valve had to be resized.

MSPC pointed to a problem that had to be corrected. There-

fore, the contribution plots are very important tools in under-

standing factors influencing the process during production

and help in an “ongoing process understanding” philosophy.

44.4.2 How to Utilize the Control Charts

Since latent variable-based control charts were introduced,

their use in industry is increasing. The charts answer the need

of process industries for a tool that allows them to utilize the

massive amounts of data being collected on hundreds of

process variables, as well as the spectral data collected from

modern analyzers.

Latent variable control charts can be constructed to mon-

itor either a group of response variables Y (e.g., product

quality variables) or a group of predictor variablesX (process

variables). For example, multivariate charts can be con-

structed to assess the consistency of the multivariate quality

of raw materials, Z, and to test the final product Y for

consistent quality. If there is spectral analysis on some of

the materials, then multiblock concepts, discussed later, can

be used.

Avery important advantage of latent variables is that they

can be used tomonitor predictor variables taking into account

their effect on the response variables. A model is built to

relate X and Y using available historical or specially col-

lected data. Monitoring charts are then constructed for future

values of X. This approach means that the process perfor-

mance can be monitored even at times when the product

quality measurements, Y, are not available.

The main approach of SQC methods developed through-

out the statistical literature has been to monitor only product

quality data (Y) and, in some cases, a few key process

variables (X). However, often hundreds of process variables
are measured much more frequently (and usually more

accurately) than the product quality data. So monitoring the

process data is expected to supply much more information

on the state of the process and supply this information

more frequently. Furthermore, any special events that occur

will also have their fingerprints in the process data. So, once

a special event is detected, it is easier to diagnose the source

of the problem as we are dealing directly with the process

variables. On the contrary, control charts on the product

variables only indicate that the product properties are no

longer consistent with specification and they do not point to

the process variables responsible for this.

Control charts on process variables are useful in multistep

operations when quality data are not available between

successive steps. For example, if a catalyst is conditioned

in a batch process before being used for polymer production,

the quality of the catalyst (success of conditioning) is

assessed by its performance in the subsequent polymer

production. It would be useful to know if the catalyst will

produce good product before using it; monitoring the batch

process variables with a latent variable chart would give early

detection of poor quality product. Similarly, the few prop-

erties measured on a product are sometimes not sufficient to

define product performance for several different customers.

For example, if only viscosity of a polymer is measured,

end-use applications that depend on chemical structure

(e.g. branching, composition, end-group concentration) are

unlikely to receive good material. In these cases, the process

data may contain much more information about events
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with special causes that affect the hidden product quality

variables.

The philosophy applied in developing multivariate SPC

procedures based on projection methods is the same as that

used for the univariate or multivariate Shewhart charts. An

appropriate reference set is chosen that defines the normal

operating conditions for a particular process. Future values

are compared against this set. A PCA or PLS model is built

based on data collected from periods of plant operation when

performance was good. Periods containing variations due to

special events are omitted at this stage. The choice and

quality of this reference set is critical to the successful

application of the procedure.

44.5 BATCH PROCESS MONITORING

Figure 44.3 shows schematically the nature of batch process

trajectories that are nonlinear and dynamic. Modeling batch

operations requires taking into account their nonlinear

dynamic nature. The methodology for developing multi-

variate control charts based on latent variables for batch

process monitoring was initially presented by Nomikos and

MacGregor [15–17] in a series of landmark papers. Any

operation of finite duration, such as batch granulation,

batch drying, blending/mixing additives for a finite time,

fermentation, batch distillation, drying, and so on, can be

modeled by the same methodology. This section will present

the main issues that need be addressed in batch empirical

modeling and will also give references to publications where

these issues are discussed in detail.

44.5.1 Modeling of Batch Process Data

Most of the processes in the pharmaceutical industry are

batch processes. Collecting real-time data during a batch

process generates very large data sets. The top of Figure 44.8

gives the possible measurements that could be collected for

a batch process. Information may be collected, at different

time intervals for the duration of the batch, for several process

variables such as agitation rate (RPM), pH, cooling agent

flow (F), temperatures in different locations in the reactor

(T1, T2, T3). Data may also be collected in the form of spectra

from real-time analyzers such as NIR. Finally, information

may be available on raw material analysis, recipe, other

preprocessing data, and even information on who was the

operator on shift and which vessel was used.

Historical data collected from a batch process had

traditionally been represented by a three-dimensional data

array Xwhere a matrix X (I� J�K) indicates that J process

variables are measured at K time intervals, or K aligned

observation numbers (A.O.N.), for each one of I batches.

FIGURE44.8 Data generated during batch runs are projected on a lower dimensional space, defined

by two principal components t1 and t2. Each point on the plane corresponds to one batch run; that is,

each point is the summary of the hundreds of measurements taken during the run.
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Kourti [18,19] discussed that, in practice, it is not necessary

that the same number of measurements are available for all

the variables for the duration of the batch process. Some

variables may not be present or measured for the full duration

of the batch. Furthermore, the frequency of measurements

may be different due to several reasons: (1) some variables

may be measured more frequently than others (i.e., some

every minute and others every 15min); (2) certain phases

in the process may be sampled more frequently to catch

important phenomena (in emulsion polymerization, particle

nucleation occurring at the very first few minutes in

the reaction determines the number of particles and the

particle size distribution; one may need to capture this with

more frequent sampling at those stages). Therefore, Kourti

argued the data set in such situations does not form a complete

cube, but rather a cube where some columns are missing

(Figure 44.9). Consequently, themethods used tomodel batch

processes should be capable of modeling the structure of this

incomplete cube. There are several methods for modeling

three-way data. The choice of the method depends on the use

of the model (i.e., prediction of final quality, monitoring,

process control) and the types of the data sets available.

Critical discussions on modeling procedures in batch pro-

cesses for robust process monitoring, fault detection, and

control can be found in selected publications [15–22].

Themethod presented byNomikos andMacGregor [15] is

termed in the literature as “batchwise unfolding” and is

capable of modeling the incomplete cube structure. Further-

more, it is capable of modeling three-way structures

generated when formulating the control problem of batch

processes using latent variables that is discussed later.

The method unfolds the three-dimensional structure into

a two-dimensional array. In this new array, different time

slices are arranged next to each other; variables observed at

a given time interval are grouped in one time slice; the

number of variables in each time slice may vary. Figure 44.9

shows an example of an unfolded matrix where variable x4 is

not measured at time t¼ 1, and variable x2 is not measured

at times t¼ 3–4. Once the three-way structure is unfolded to

a two-way matrix X, equations 44.1 and 44.2 can be used to

model X using PCA, or X and Y using PLS.

Multivariate control charts (Hotelling’sT2 andSPE) canbe

constructed for batch processes in a straightforward manner.

Multivariate charts have superior detection capabilities to

univariate charts for batch processes. In the words of

a colleague from industry: “Inmost cases in practice, changes

in the covariance structure precede detectable deviations from

nominal trajectories. This was the problem that univariate

monitoring approaches for batch processes could not address.

In most process upsets it is the correlation among

the monitored variables that changes first, and later, when the

problem becomes more pronounced, the monitored variables

deviate significantly from their nominal trajectories.There are

cases where a process upset will change dramatically only the

correlation among the variables without causing any of the

variables involved to deviate significantly from its nominal

trajectory. These particular cases, although rare, can result to

significant cost to a company since they can go unnoticed for

longperiodsof time (usually theyaredetected fromacustomer

complaint).” (P. Nomikos, personal communication, 2002).

44.5.2 Alignment of Batch Processes of Different Time

Duration

Sometimes batches have different time duration. In other

words, using the same recipe, it may take different time to

achieve the same conversion. This is due to the fact that time

is not the deciding factor for the completion of the batch.
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FIGURE 44.9 The structure of data in batch processes.
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Sometimes the deciding factor may be the rate at which

a certain reactant is added. One important stage before

modeling batch process data is the alignment or synchroni-

zation of the data, such that they are expressed against the

correct aligning factor (which may not be time). With align-

ment or synchronization, we must achieve the following: (1)

Establish common start points at different phases of the run.

For example, we could define that the first observation in all

the runs for phase one of the reaction will correspond to the

start of the monomer feed, for the second phase to the

initiator injection, and so on; (2) match the shape of the

trajectories of key variables. Once the shapesmatch, it is not

necessary that the length of the batches match [19].

A critical discussion of the various synchronization

approaches can be found in Kourti [19]. Attempts for batch

data alignment involved the use of the cumulative amount of

reactant added to the reactor as an indicator variable, where

the variable trajectories were expressed as a function of the

indicator variable, rather than time. The extent of the reaction

was also used as an indicator variable later [23]. Dynamic

timewarping, based on speech recognitionmethods,was also

suggested as well as the use of total time as a variable in theZ

matrix, as extra information to describe the batch [24].

Taylor [25] suggested to include the cumulative warping,

up to a given warped observation, as a new variable trajec-

tory; his argument was that this would provide much richer

information on the state of the batch by comparing it to the

“typical batch” and would provide it in real time, rather than

waiting for the batch to finish so thatwe can calculate the total

time; the cumulative time spent could be used as extra

trajectory in the case of alignment with an indicator variable.

This suggestion was later used with excellent results and

also provided the basis for designing batches with desired

duration. The cumulative warp can be used as an extra

variable to take into account time effects on batch quality

when batches were synchronized by dynamic time warping,

while Garc�ıa-Muñoz et al. [26] used the cumulative time

when batches were synchronized by the indicator variable

approach. Provided that an indicator variable exists (or can be

constructed by nonlinear transformations from other vari-

ables and/or process knowledge), the indicator variable

approach is usually chosen as the simplest and most conve-

nient way for industrial applications.

44.5.3 Mean Centering and Scaling the Incomplete

Cube

Mean centering the two-way matrix, formed by batchwise

unfolding the three-way data, is equivalent to subtracting

from each variable trajectory its average trajectory over the I

batches, and thus converting a nonlinear problem to one

that can be tackledwith linearmethods such as PCAand PLS.

When the three-way data form a full cube, that is an X

(I� J�K) matrix, it is common practice to autoscale the

two-way matrix formed by unfolding X (i.e., divide each

column by its standard deviation). This accomplishes two

things: (1) gives an equal weight to all periods and conse-

quently does not give high weights to noisy phases, or

underweight a variable in tight control; after all, a variable

is in tight control either because it is important to the product

quality or because of safety and/or environmental concerns.

(2) For the case of complete cube, it gives an equal weight to

all the variables considered. However, in the case where

variables are sampled less frequently, or are not present

for the full run, the weights have to be adjusted accordingly,

depending on the objective. To give equal weight to all

variables, for example, after autoscaling, each column cor-

responding to variable jmust be divided by
ffiffiffiffiffi
Kj

p
, where Kj is

the number of times that variable jwas sampled in the run. In

the example of Figure 44.9, after autoscaling the two-way

matrix, all columns corresponding to x1 and x3 must be

divided by
ffiffiffi
4

p
, to x2 by

ffiffiffi
2

p
and to x4 by

ffiffiffi
3

p
.

44.5.4 Online Monitoring of Batch Processes

Each batch run has a finite duration and the process variables

exhibit a dynamic behavior during the run. This means that

not only the autocorrelation structure of each variable

changes during the run but also the cross-correlation of the

variables changes. Models utilizing batchwise unfolding

take into account this changing covariance structure of

variables and time for the batch duration. For online mon-

itoring, it is the structure of each evolving batch that it is

compared against the typical behavior, as modeled by the

training set of batches. The procedure for online monitoring

of batch processes is slightly more complicated than that

for continuous process because of the following reasons:

. For the online monitoring of continuous processes, at

every time instant, we have a vector of new observations

xTnew that has a length equal to the number of columns in

the model matrix X (and occasionally some measure-

ments may be missing due to sensor failure, etc).

. In batch process monitoring, we have a vector with

a length equal to the number of columns in the unfolded

X, only when the batch run has finished. At any other

time, data are missing from this vector, simply because

they have not yet been collected. In Figure 44.9, the new

vector batch_new is shown for different time intervals;

gray areas have not been collected yet. Of course, the

part with the collected data may also have missing data

due to sensor failure, and so on.

Therefore, the score calculations and the limits for the

multivariate control charts have to be developed in such

away that they take these “incomplete”measurement vectors

into account. The procedure for the development of the

multivariate control charts for the duration of the batch was
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outlined by Nomikos and MacGregor [15]. To deal with the

incomplete measurement vector, several approaches have

been suggested. Garc�ıa-Muñoz et al. [27] recently investi-

gated these approaches and demonstrated that using the

missing data option and solving the score estimation problem

with an appropriate method is equivalent to the use of an

accurate forecast for the future samples over the shrinking

horizon of the remainder of the batch. As PCA can model the

covariance structure of the process variables, it facilitates

handling of missing data. In batch processes, a PCA model

describes the variance–covariance structure between vari-

ables over the entire batch; in other words, there exists

information over all combinations of xjk, j being the variable

number and k the time interval (e.g., one can find how

variable 4 at time 6 is related to itself at time 15 and also

to variable 8 at time 35). Because of the tremendous struc-

tural information built into these multivariate PCA models

for batch processes, themissing data option for predicting the

future trajectory is shown to yield the best performance by all

measures, even from the beginning of the batch.

Provided that there are no faults for the prediction of the

future process variable trajectories, the final scores, and

the product quality, these missing data estimation methods

are very powerful. They have also been proven critical to the

success of the control methods using latent variables. How-

ever, for process monitoring and online detection of process

faults, all the alternative “filling in” methods give similar

results. When a fault occurs, the model structure is not valid

anymore. In that case, the differences among the trajectory

estimation methods appear to be much less critical since the

control charts used in each case are tailored to the filling in

mechanism employed. All the approaches appear to provide

powerful charting methods for monitoring the progress

of batch processes.

The calculation of monitoring charts and their limits for

batch processes, discussed in Ref. 15, where Hotelling’s T2

statistic for the analysis of batch process data (called D

statistic) is calculated as

D ¼ tTRS
�1tRI=ðI�1Þ2 ð44:10Þ

where tR is the vector containing the R retained components

of themodel, and S represents the covariancematrix of theR

retained score vectors. It is mentioned that S is a diagonal

matrix due to the orthogonality of the scores, which is true

for the final score estimate (i.e., when the batch run is

complete). When computing this statistic for the online

monitoring of batches, one should consider that the covari-

ance of the scores changes with time and the scores might

become nonorthogonal; therefore, Hotelling’s statistic

should be computed using the correct and complete var-

iance–covariance matrix that corresponds to each time

sample. This time-varying variance–covariance is comput-

ed using the reference set of batches. Therefore, the estimate

of the Hotelling statistic at time k for batch i (Dki) is a

function of the estimate of the score vector for theR retained

components at time k (t̂Rki) for batch i and the covariance

matrix of the scores at time k (Sk). Notice that Dki will

change depending on the method used to solve the missing

data problem (or the option selected to “fill in”), since it is a

function of t̂Rki that has been shown [27] to differ from

method tomethod and option to option. Using this corrected

version of Hotelling’s statistic dramatically improves ab-

normality detection.

44.5.5 Industrial Practice

Industrial applications for batch analysis, monitoring, and

fault diagnosis have been reported [26–31]. It should be

noted here that several companies choose to use the meth-

odology not for real-time monitoring but as a tool to real-

time release of the batch product in the following way: the

batch is not monitored as it evolves, but rather immediately

after the batch finishes, the process data are passed through

the model and the scores for the complete batch are inves-

tigated. If they are within control limits, the product is

released. If there is a problem, the product is sent for analysis

in the laboratory. This procedure saves the company time and

money. The batch run may last 2–3 h but the product analysis

may take manymore hours. That means that they do not have

to waste batches while they are waiting for the results from

the laboratory. By checking the process data as soon as the

batch is complete, they can detect problems before starting a

new batch. Other applications of multiway methods to batch

analysis, optimization, and control have been reported and

will be discussed later in the corresponding sections. Multi-

way methods and design of experiments can be used [32] to

determine optimal process variable trajectories in a batch

process in order to obtain a desired quality property.

There is a great potential for applications of multivariate

batch analysis in the pharmaceutical industry. It is a superb

tool for achieving process understanding. Using it to analyze

past historical data will provide the user with summaries of

the process history such as the one shown in Figure 44.8. The

figure shows the projection of several batch runs on a plane,

defined by two principal components t1 and t2. Each point

corresponds to one batch run; that is, each point is the

summary of the hundreds of measurements taken during the

run. For example, for a batch run that lasts 16 h and where

5min averages are collected on six process variable trajec-

tories, each point is the summary of 1152 process measure-

ments plus all the spectra scans at all time intervals plus other

information on recipe, and so on. In the figure, one can

immediately detect not only the cluster of good operation, but

also clusters corresponding to specific product problems.

Notice that the problems in product quality are observable by

the projection of the process data and the measurements

taken by real-time analyzers; that is, the problem in the
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quality is observable without laboratory information. Utiliz-

ing contribution plots one can interrogate the multivariate

model and determine combinations of variables and periods

of operation that will drive a process away from producing

a good product to producing defect A. Such an example is

discussed in the literature [20] where information from

the process and the raw materials was incorporated in the

analysis. Based on this analysis, it was possible to determine

raw material combinations and processing conditions that

will result in a bad product.

An industrial example whereby monitoring the batch

process variables a pending equipment failure was detected

is reported in Ref. 31. A critical discussion on other batch

processes modeling and monitoring procedures and other

issues related to batch process analysis can be found in

two recent studies [18, 19]. A discussion of the various

approaches to synchronize runs of different durations can

be found in Refs [13, 18, 19].

44.6 MULTISTAGE OPERATIONS: MULTIBLOCK

ANALYSIS

There are multiple steps in pharmaceutical manufacturing

and each step may involve multiple unit operations. Having

a control chart for each unit rather than one for the whole

process could be helpful to operators. However, building a

model for each unit operation separately, does not consider

interactions between unit operations. Such cases can also be

addressed with latent variable models. Rather than building a

model for each unit, one can build amodel for the full process

that will take into account the interactions between units

and their relative importance to the final product quality by

weighting them differently. Then, from this model, individ-

ual charts per unit operation can be derived. This way,

interactions between unit operations are preserved. This is

the approach of multiblock PLS (MB-PLS).

In the MB-PLS approach, large sets of process variables

(X) are broken into meaningful blocks, with each block

usually corresponding to a process unit or a section of a

unit. MB-PLS is not simply a PLS between each blockX and

Y. The blocks are weighted in such a way that their com-

bination is most predictive of Y. Several algorithms have

been reported formultiblockmodeling and for a good review,

it is suggested that the reader consult Refs [33–35].

Multivariate monitoring charts for important subsections

of the process, as well as for the entire process, can then be

constructed, and contribution plots are used for fault diag-

nosis as before. In a multiblock analysis of a batch process,

for example, one could have the combination of three blocks

(Z, X, and Y); block Z could include information available

on recipes, preprocessing times, hold times, as well as

information of the shifts (which operator was in charge) or

the vessels used (i.e. which reactor was utilized); X would

include process variable trajectories; andYwould be quality.

Analysis of this type of data could even point to different

ways the operators operate the units and relate product

quality to operator, or different process behavior of vessels

and identify faulty vessels, and so on. The reader is referred to

the work of Garc�ıa-Muñoz et al. [20] for detailed examples

where the multiblock analysis is utilized in batch processes

for troubleshooting.

Several alternative ways to perform multiblock appear in

commercial software. One approach that is being frequently

used to deal with a data structure of several blocks involves

two stages: PCA is performed for each one of the Z and X

blocks and then the scores and/or residuals derived from

these initial models are related to Y with a PLS. In an

alternative version, PLS is performed between Z and Y and

X and Y, and the resulting scores are related to Y. The users

should exercise caution because these approaches may fail to

take into account combinations of variables from different

blocks that are most predictive of Y. For example, in situa-

tions where process parameters in X are modified to account

for variability of raw material properties in Z (i.e., when X

settings are calculated as a feedforward control to deviations

of Z), a PLS between Z and Y will show that Z is not

predictive ofY variability; similarly, a PLS betweenX andY

will show that X is not predictive of Y; a MB-PLS of [Z, X]
and Y will identify the correct model. Finally, MB-PLS

handles missing data in a very effective way.

As might be expected in multistage continuous processes,

there can be significant time delays between the moment an

event occurs in one unit (and therefore affects the variables

of that unit) and themoment its effectwill become obvious on

a product variable at the end of the process. These delays

significantly affect the interaction and correlation structures

of the process variables and need to be handled by lagged

variables created from the original process variables. Data

can be time shifted to accommodate time delays between

process units.

In some multistage operations, the path of the product

through the various process units can be easily traced, and

eventually one can relate a specific lot number to several

process stages (via a multiblock PLS). In such cases, the

process conditions of these units can be used to predict

the quality of the product. There are situations, however,

where a product (or the composition of the effluent stream

of a process) is a result of a multistage operation but its path

cannot be traced clearly due to mixing of streams from

several parallel units in one vessel and then splitting to

a number of other vessels. A discussion on monitoring

difficult multistage operations can be found in Ref. 19. In

those cases, the best alternative to achieve consistent

operation is to monitor each unit, separately, by a PCA

model. By assuring a consistent operation per unit, one

hopes for a consistent product. Once an unusual event is

detected in one unit, one may decide not to mix the product
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further, or investigate lab quality before proceeding to the

next stage.

44.7 PROCESS CONTROL TO ACHIEVE DESIRED

PRODUCT QUALITY

The term “control” currently appears in the pharmaceutical

literature to describe a variety of concepts, such as end point

determination, feedback control, statistical process control,

or simply monitoring. Process control refers to a system of

measurements and actions within a process intended to

ensure that the output of the process conforms with pertinent

specifications.

In this chapter, we use some terms related to process

control with the following definition:

. Feedback Control: to indicate that we are reactive; that

is, the corrective action is taken on the process based on

information from the process output (e.g., measure-

ments on product quality, at given time.)

. Feedforward Control: to indicate that we are proac-

tive; that is, the process conditions are adjusted based

on measured deviations of the input to the process (e.g.,

information on raw material)

44.7.1 Feedforward Estimation of Process Conditions

The concept of adjusting the process conditions of a unit

based on measured disturbances (feedforward control) is

a concept well known to the process systems engineering

community for several decades. The methodology is also

used in multistep (multiunit) processes where the process

conditions of a unit are adjusted based on information of the

intermediate quality achieved by the previous unit (or based

on raw material information).

An example of a feedforward control scheme in the

pharmaceutical industry, where multivariate analysis was

involved, is described by Westerhuis et al. [36] The authors

related crushing strength, disintegration time, and ejection

force of the tablets with process variables from both the wet

granulation and tableting steps and the compositionvariables

of the powder mixture. They also included physical proper-

ties of the intermediate granules. The granule properties may

differ from batch to batch due to uncontrolled sources such as

humidity temperature, and so on. This model is then used for

each new granulation batch. A feedforward control scheme

was devised that can adjust the variables of the tableting step

of the process based on the intermediate properties to achieve

desirable final properties of the tablets.

To the author’s knowledge, there are several unpublished

examples in the chemical and other industries where infor-

mation on the raw data Z is used to determine the process

conditions X or X in order to achieve the desired quality Y,
utilizing projection methods. Sometimes such information

fromZmay simply be used to determine the length of the run,

while in other cases, it may be a multivariate sophisticated

scheme that determines a multivariate combination of tra-

jectories for the manipulated variables. To achieve this,

historical databases can be used to develop multiblock

models Z, X (or X), and Y.

44.7.2 End Point Determination

There have been reports in the literature where real-time

analyzers are used for “end point detection” or “end point

control.” In most of these situations, a desired target

concentration is sought, for example, % moisture in drying

operations.

An example is described by Findlay et al. [37], where NIR

spectroscopy is used to determine granulation end point. The

moisture content and the particle size determined by the near-

infraredmonitor correlatewell with off-linemoisture content

and particle size measurements. Given a known formulation,

with predefined parameters for peak moisture content, final

moisture content, and final granule size, the near-infrared

monitoring system can be used to control a fluidized bed

granulation by determining when binder addition should be

stopped and when drying of the granules is complete.

44.7.3 Multivariate Manipulation of Process Variables

It was discussed in Section 44.2.2 that regulating only the

final value of a property (or even several properties) is not

sufficient. In other words, end point control may not be

sufficient. The process signatures are equally important.

These process signatures should be regulated in a correct,

multivariate way, not simply on a univariate basis. It is

possible that two batch runs produce products with different

quality, even if the trajectory (path to end point) of one quality

variable follows the same desired path in both the runs. This

will happen if the covariance structure of the trajectory of

this variable with the trajectories of the rest of the process

variables (temperatures, agitation rate, reactant addition)

is different for these two batches. This concept is very

important both in control and in scale-up. Latent variable

methodology allows taking into consideration the process

variable trajectories in a multivariate way.

Control of batch product quality requires the online

adjustment of several manipulated variable trajectories.

Traditional approaches based on detailed theoretical models

are based on either nonlinear differential geometric control or

online optimization. Many of the schemes suggested in

the ‘literature require substantial model knowledge or are

computationally intensive and therefore difficult to imple-

ment in practice. Empirical modeling offers the advantage of

easy model building.
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Lately, latent variable methods have found their way to

control batch product quality and have been applied in

industrial problems. Latent variable methodology allows

taking into consideration the process signatures in a multi-

variate way for end point detection problems. Marjanovic

et al. [38] describe a preliminary investigation into the

development of a real-time monitoring system for a batch

process. The process shares many similarities with other

batch processes in that cycle times can vary considerably,

instrumentation is limited, and inefficient laboratory assays

are required to determine the end point of each batch. The aim

of the work conducted in this study was to develop a data-

based system able to accurately identify the end point of the

batch. This information can then be used to reduce the overall

cycle time of the process. Novel approaches based upon

multivariate statistical techniques are shown to provide a soft

sensor able to estimate the product quality throughout the

batch and a prediction model able to provide a long-term

estimate of the likely cycle time. This system has been

implemented online and initial results indicate that it offers

the potential to reduce operating costs.

In another application [39], latent variable methodology

was used for soft sensor development that could be used to

provide fault detection and isolation capabilities and can be

integrated within a standard model predictive control frame-

work to regulate the growth of biomass within a fermenter.

This model predictive controller is shown to provide its own

monitoring capabilities that can be used to identify faults

within the process and also within the controller itself.

Finally, it is demonstrated that the performance of the

controller can be maintained in the presence of fault condi-

tions within the process.

Work has also been reported for complicated control

problems where adjustments are required for the full

manipulated variable trajectories [40]. Control through

complete trajectory manipulation using empirical models is

possiblebycontrolling theprocess in the reduce space (scores)

of a latent variable model rather than in the real space of the

manipulated variables. Model inversion and trajectory recon-

structionare achievedbyexploiting thecorrelation structure in

the manipulated variable trajectories. Novel multivariate

empirical model predictive control strategy (LV-MPC) for

trajectory tracking and disturbance rejection for batch

processes, based on dynamic PCA models of the batch

processes, has been presented. The method presented by

Nomikos andMacGregor [15] is capable of modeling three-

way structures generated when formulating the control

problem of batch processes using latent variables.

44.7.4 Setting Raw Material Multivariate
Specifications as a Means to Control Quality

Dushesne and MacGregor [41] presented a methodology

for establishing multivariate specification regions on

raw/incomingmaterials or components. The thought process

here is that if the process remains fixed, we should control

the incoming material variability. PLS is used to extract

information from databases and to relate the properties of

the raw materials supplied to the plant and the process

variables at the plant to the quality measures of the product

exiting the plant. The specification regions are multivariate

in nature and are defined in the latent variable space of the

PLS model. The authors emphasize that although it is

usually assumed that the raw material quality can be as-

sessed univariately, that is, by setting specification limits on

each variable separately, this is valid only when the raw

material properties of interest are independent of one an-

other. However, most of the times the properties of products

are highly correlated. In other words, treating the raw

material properties in a univariate way, for two properties,

it would mean that (referring to Figure 44.1) while we can

process onlymaterial that falls in the ellipse, we agree to buy

material from the supplier with the specifications set in the

square; that is, we agree to use material that we know in

advance it will not perform well.

To develop models to address the problem, multiblock

PLS is used for Z,X, andY; Z contains measurements on N

lots of raw material data from the past; X contains the

steady-state processing conditions used to process each one

of the N lots; Y contains final product quality for these N

lots. The methodology could be easily extended to batch

process X.

It should become one of the priorities in industries to

express the raw material orders as a multivariate request to

the supplier.

44.8 OTHER APPLICATIONS OF LATENT

VARIABLE METHODS

44.8.1 Exploiting Databases for Causal Information

Recently, there has been a lot of interest in exploiting

historical databases to derive empirical models (using tools

such as Neural Networks regression or PLS) and use them for

process optimization. The idea is to use already available

data rather than collecting new through a design of experi-

ments. The problem is that for process optimization causal

informationmust be extracted from the data, so that a change

in the operating variables can be made that will lead to a

better quality product, or higher productivity and profit.

However, databases obtained from routine operation contain

mostly noncausal information. Inconsistent data, range of

variables limited by control, noncausal relations, spurious

relations due to feedback control, and dynamic relations are

some of the problems the user will face using such happen-

stance data. These are discussed in detail in the section

“Hazards of fitting regression equations to happenstance
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data” inRef. 42where the advantage of experimental designs

as a means of obtaining causal information is emphasized.

In fact, in a humorous way, the authors warn the young

scientists that they need a strong character to resist

the suggestion of their boss to use data from past plant

operation every time they suggest performing designed

experiments to collect data.

In spite of this, several authors have proposed approaches

to optimization and control based on interpolating historical

bases. However, in all these cases, their success was based

on making strong assumptions that allowed the database to

be reorganized and causal information to be extracted. One

approach was referred to as “similarity optimization” that

combined multivariate statistical methods for reconstructing

unmeasured disturbances with nearest neighbor methods for

finding similar conditionswith better performance.However,

it too was shown to fail for many of the same reasons. In

general, it was concluded that one can optimize only the

process if there exist manipulated variables that change

independently of the disturbances and if disturbances are

piecewise constant, a situation that would be rare in historical

process operations.

The reader should therefore exercise caution about how

historical databases are used when it comes to retrieving

causal information. However, databases obtained from

routine operation are great a source of data for building

monitoring schemes.

44.8.2 Product Design

Given the reservations about the use of historical databases,

one area where some success has been achieved is in

identifying a range of process operating conditions for a

new grade of product with a desired set of quality properties

and in matching two different production plants to produce

the same grade of product. If fundamental models of the

process exist, then these problems are easily handled as

constrained optimization problems. If not, optimization

procedures based on response surface methodology can be

used. However, even before one performs experiments,

there exists information within the historical database on

past operating conditions for a range of existing product

grades.

In this case, the historical data used are selected from

different grades and therefore contain information on

variables for several levels of past operation (i.e., there

is intentional variation in them, and they are not happen-

stance data). The key element in this empirical model

approach is the use of latent variable models that both

reduce the space of X and Y to a lower dimensional

orthogonal set of latent variables and provide a model for

both X and Y. This is essential in providing solutions that

are consistent with past operating policies. In this sense,

principal component regression and PLS are acceptable

approaches, while MLR, neural networks, and reduced

rank regression are not.

The major limitation of this approach is that one is

restricted to finding solutions within the space and bounds

of the process space X defined by previously produced

grades. There may indeed be equivalent or better conditions

in other regions where the process has never been operated

before, and hence where no data exist. Fundamental models

ormore experimentationwould be needed if one hopes to find

such novel conditions.

A very good discussion on these issues can be found in

Garcı́a-Muñoz et al. [26]. The authors illustrate a method-

ology with an industrial batch emulsion polymerization

process where the batch trajectories are designed to satisfy

certain customer requirements in the final properties of the

polymer while using the minimal amount of time for the

batch run. The cumulative time, or used time, is added as

an extra variable trajectory after the alignment of the

batches.

44.8.3 Site Transfer and Scale-Up

Product transfer to different sites and scale-up falls into the

same class of problems: one needs to estimate the process

operating conditions of plant B to produce the same product

that is currently produced in plant A.

Attempts have been made to solve such problems with

latent variable methods, utilizing historical data from both

locations for transferring other products.

The main points to keep in mind when addressing such

a problem are as follows:

. The quality properties of the product should always be

checked within a multivariate context because univar-

iate charts may be deceiving. The multivariate quality

space for both the sites should be the same. Correct

product transfer cannot be achieved by comparing end

point quality on univariate charts from the two sites (or

from pilot scale and manufacturing). The product qual-

ity has to be mapped from site to site in a multivariate

way (the products in both sites have to project on the

same multivariate space).

. The end point quality may not be sufficient to char-

acterize a product. The path to end product is impor-

tant. Whenever full mechanistic models exist, these

models describe the phenomena that are important for

the process and therefore determine this path. When

changing sites, the full mechanistic model will de-

scribe the desired path in the new site taking into

account size, mass, and energy balances and/or other

phenomena related to the process. When mechanistic

models do not exist, this mapping of the “desired

process paths” or “process signatures” has to happen

with empirical data.
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A methodology has been developed for product transfer

and scale-up based on latent variables [43]. The method-

ology utilizes databases with information on previous pro-

ducts and their corresponding process conditions from both

sites. The two sites may differ in equipment, number of

process variables, locations of sensors, and history of

products produced.

44.9 QUALITY BY DESIGN

44.9.1 Design Space: Expressing Quality as a Function

of Input Material Attributes and Process Parameters

Several regulatory agencies participating in the International

Conference of Harmonization have adopted the concept of

design space. The definition of design space as “the multi-

dimensional combination and interaction of input variables

(e.g., material attributes) and process parameters that have

been demonstrated to provide assurance of quality” [44]

stems from a well known fact that if the variability in the

raw material is not compensated by the process, it will be

transferred to quality.

The effect of the raw material attributes on the process

performance, if the process operating conditions remain

fixed, is clear in the example depicted in Figure 44.5. Recall

that in that example the rawmaterial is characterized bymore

than 25 physical and chemical properties and that these

variables are projected on a space defined by latent variables

that allow us to visualize better the process behavior. Raw

material is produced at three supplier locations. Although the

raw material properties are within univariate specifications,

at all locations, the projection in three clusters indicates that

in a multivariate sense the material possesses slightly dif-

ferent characteristics depending on the location it was pro-

duced (covariance structure changes with location). Some

batches of that raw material was used for a specific product.

The material properties after micronization are projected on

principal components. It can be observed that after micro-

nization, the batches from a specific supplier location (circled

by the small ellipse) project on a different location from the

rest. The filling performance of the material originating from

this location is also different from the rest of thematerial. The

raw material variability propagates to quality if the process

remains fixed. A note here that although the control ellipses

(large ellipses) shown are set by default in the vendor

software, they are not interpretable when there is clustering;

the assumptions for the calculation of these ellipses are for

process monitoring and not for process exploration where

there is intentional variation such as that introduced by

design of experiments.

The concept of the design space can be easily understood

with the example below, depicted in Figures 44.10 and 44.11.

In the figures, we have a process where the raw material is

described by two attributes z1 and z2, quality is described by

q1 and q2, and unit operations described by process para-

meters x1 and x2 for unit 1 and xx1 and xx2 for unit N. Two

attributes, two quality, and two process parameters per unit

are used for illustration purposes, but this does not affect

generalization of the following discussion. Each circle re-

presents the values of these parameters for one batch. Fig-

ure 44.10 shows what happens when a fixed process is

considered, depicted by the Grey circles. Suppose that we

run the traditional three batches at a selected range of z1–z2
and selected range of process parameters, and we achieve the

target quality (all grey circles fall on a multivariate target).

The Dark circles represent rawmaterial from, say, a different

manufacturer, with attribute values different from the range

initially examined. If we process the Dark material on the

fixed process conditions (e.g., in the range of the grey circle

values), chances are that the final quality will differ from that

produced by the grey raw material. Figure 44.11 illustrates

that if we carefully choose to operate at appropriate different

process conditions for each different material then we can

have quality on target. In other words, there is a multidi-

mensional combination of raw material and process para-

meters that assures quality.

These appropriate process conditions (depicted by the

paths that relate raw material and process parameters with

quality) are the solutions to the equations of the model that

relates raw material and process conditions to quality, and

these solutions are obtained when we solve for the values of

process conditions given the values of the raw material

properties, such that quality falls in a desirable range.

Raw Unit 1 Unit N Quality

z1

z2

q1xx1x1

xx2 q2x2

FIGURE 44.11 By taking a feedforward approach where the

process conditions are flexible to account for raw material variabil-

ity, we can maintain quality on target.

Raw Unit 1 Unit N Quality

z1

z2

q1xx1x1

xx2 q2x2

FIGURE 44.10 By maintaining fixed process conditions, we

propagate raw material variability to quality.
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Sometimes optimization can be used to introduce constraints,

such that the solution takes into account cost, duration of a

process, and so on. The model may be theoretical, empirical,

or hybrid.

44.9.2 Design Space Modeling

The design space can be established as a model that relates

input material and process parameters to quality. The model

may be theoretical (based on first principles), or empirical,

derived from design of experiments, or a hybrid. Together

with themodel, one has to specify the range of parameters for

which the model has been verified. Themodel may cover one

unit operation or a series of unit operations.

The model will express quality as a function of the raw

material attributes and process parameters

Quality ¼ f ðraw material; process parametersÞ
or, more specifically, as

½q1; q2; . . . ; qN � ¼ f ðz1; z2; . . . ; zK ; x1; x2; . . . ; xM; . . . ;
xx1; xx2; . . . ; xxPÞ

and then solve for the combination of process parameters

that will result in a desired q1, q2, qN given the values of z1,

z2, zN. The function may be linear or nonlinear, and more

than one models will in general be required to describe the

behavior of a multiunit plant if we wish to be able to predict

intermediate quality as well (i.e., granule properties). Mul-

tivariate projection methods can be used for empirical

modeling. That is, the design space is a collection of models

that relate (1) the final quality to all previous units, raw

material, and intermediate quality; (2) intermediate quality

to previous unit operations and raw material. The design

space consists of models (relationships/paths) plus the

range of parameters for which the models have been ver-

ified. Random combinations in the range of parameters will

not work in general (i.e., in Figure 44.11, dark raw material

operated in grey conditions may not result in acceptable

quality). Therefore, the range without the paths or multi-

dimensional combinations (the model) cannot describe the

design space, unless it is the range selected with traditional

approaches that describe a fixed process. This range (in this

case, grey circle path) may however be only one of the

acceptable solutions and therefore restricts our flexibility in

dealing with a wide variety of raw materials and/or dealing

with disturbances that affect the process.

The above function uses more than two attributes and

process parameters in the multidimensional relationships to

reflect a general case. Multivariate projection methods or

latent variables are proven very useful to describe and solve

for these relationships where many variables are present.

The effect of raw material on the quality as it propagates

through different unit operations is shown for a tableting

process in Figure 44.12. When the raw material properties

have certain characteristics (markedwith a small ellipse), the

material projects on a different area. The properties of

granules produced from raw material with such character-

istics (black) are different from the rest, and the final quality

also shows differences. The difference in the quality can be

theoretically explained based on the physical phenomena

that govern thewhole process. The idea of the design space is

to express these phenomena by a model.

Recognizing the continuum in drug production that spans

from the drug substance to the drug product will help create

a more versatile and robust design space. The final product

that delivers the active pharmaceutical ingredient to a patient

is indeed the result of amultidimensional combination of raw

material attributes and process parameters that span several

unit operations including those of the drug substance pro-

duction (such as reaction and crystallization), the ones from

drug product production (such as granulation and compres-

sion), and also packaging. Each one of themhas an impact not

Raw 
material                

Granulation 
PPG results Quality  
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-1
0
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-1
0
1
2
3
4
5
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2
]

-2

-1

0

1

2
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t[1]

Tablet   product 

t[1]

FIGURE 44.12 Projection space representation for a tablet product. Batches produced from raw

material with similar characteristics have similar final quality.
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only on one or more final quality characteristics, but also on

stability.

Incorporating stability into the quality by design frame-

work has been discussed; it involves including stability time

profiles in the model for the design space [45].

Therefore, if the design space is addressed in a holistic

form, then the quality of the final product, including its

stability, should be expressed as a function of raw material

characteristics and process parameters. Also, by treating the

design space in a holistic way, it would provide the manu-

facturer with the most cost-efficient operation and guarantee

high yield and low operating costs because problems at later

unit operations will be anticipated and corrected in earlier

operations. In other words, the control strategywill be part of

the design, such that it can be implemented in the most cost-

effective way.

A model that describes the design space for the entire

tableting process can be derived by relating quality to both

the rawmaterial properties and the process parameters of the

unit operations (Figure 44.13). One row in the database

depicted in Figure 44.13 would include the process condi-

tions and quality experienced by the product as it is processed

through the units. The empirical models derived are causal

and based on carefully designed experiments (DOE). Some

DOEs will also be necessary to estimate parameters even if

mechanistic models are used.

The level of detail in the models varies depending on the

objective of the model and the depth of process understand-

ing one wishes to achieve. For example, the variable trajec-

tories of a granulationmay be described by carefully selected

summary data or by the full variable trajectories aligned

against time or another indicator variable.

44.9.3 Control Strategy

Based on the process understanding gained from the design

space modeling, the control strategy can be derived to

assure final quality. There are several ways of controlling

a process, as discussed in Section 44.7. If we decide to keep

the process fixed, we may apply a control strategy for the

incoming material to reduce raw material variability (see

Section 44.7.4).

If wewish to apply the principles depicted in Figure 44.11,

then feedforward control should be applied (Section 44.7.1).

Figure 44.14 depicts action in feedforward control that

would apply in the case of Figure 44.12.When a different raw

material enters the process, we have the choice to adjust

granulation conditions in a feedforward manner. However,

we also have the choice to adjust compression, that is, to apply

the feedforward action at a later stage.When a deviation in the

granules is detected that may result in quality different from

that typically observed if the compression operates at certain

conditions, we may bring the quality on target by altering the

compression settings. The choice of the process conditions at

unit operation at which we will perform the action will be

dictated by a model that takes into account the value of the

properties of the input to that unit and calculates process

conditions such that quality is on target. When the model is

empirical, multivariate analysis can be used.
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FIGURE44.13 Both quality and stability profiles can bemodeled

as a function of input material, process variables, and intermediate

attributes.
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FIGURE44.14 Feedforward control.When a deviation in the granules is detected that may result in

quality different from that typically observed if the next process operates at given conditions, we may

bring the quality on target by altering the process conditions.
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Figure 44.15 illustrates such a case. The example here

illustrates a feedforward control scheme for unit N based on

input information on the “state of the intermediate product”

from unit N�1. The settings are calculated and adjusted

such that the target value for quality Y is met.

A multivariate model was built (from batch data) to relate

product quality to the process parameters of unit N and the

state of the intermediate product from unit N�1, (i.e input

to unit N). From this model, a quantitative understanding

was developed showing how process parameters in N and

the state of the intermediate product from N�1 interact to

affect quality. Using multivariate analysis assures that the

multivariate nature of quality is respected. In this case, the

input to unit N is such that, the five batches that project in

an area within the small circle (two dark batches and three

grey) have the same state of intermediate product—mean-

ing that up to that time the five batches experienced same

raw material and processing conditions. The grey batches

when processed with typical operating conditions in unit N,

marked grey, resulted in quality below average. By taking a

feedforward action and processing the dark batches with

different operating conditions, in unit N, the quality im-

proves with values above average.

For real-time monitoring and control of an individual unit

operation, for example, batch granulation, the principles

described in batch process monitoring (Section 44.5.4) and

process control by manipulating multivariate trajectories

(Section 44.7.3) apply.

44.9.4 Design Space Management

It is accepted that the design space will evolve after the

initial submission, and therefore design space management

is very important in the product life cycle. There are

several issues to consider with design space management,

beyond the obvious ones (i.e., beyond managing the design

space at the current site to address issues not considered

because of limited data available by the initial submission).

These include situations where a larger scale is considered

at the same site, as well as when there is site transfer.

Other issues would be situations where there are different

suppliers of API or excipients and when the raw material

characteristics are altered slightly within the same supplier.

Production changes, such as opportunities to use soft

sensors instead of real-time analyzers or to expand the

current process analytical technology capabilities, should

also be considered. Solutions to such problems can be

addressed under the framework of design space

management.
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FIGURE 44.15 Control strategy using projection space.
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44.10 FUTURE DIRECTIONS

44.10.1 Integration of Clinical Trials

As more complex structures of data are being generated, the

multivariate analysis offers great opportunities for informa-

tion integration and analysis. Both manufacturing data and

patient histories can be integrated and then the clinical trial

responses incorporated into design space.

Figure 44.16 shows an example of the possibilities that

can be explored. Quality in product Y can be related to past

information of raw materials, preprocessing and holding

times, the type of the vessel used, the operator that run the

process, and other recipe information, as well as process

measurement trajectories and analyzer information. The

quality Y (and details of manufacturing), as well as the

patient medical histories and clinical responses, can be used

to establish a better understanding of the design space.

44.10.2 Quality by Design in Analytical Methods

The methodology described for design space can be applied

in analytical methods. Chromatography is not only a labo-

ratory method but also a unit operation in biopharmaceuti-

cals. Process transfer ideas can be also applied in method

transfer ideas; in other words, method transfer and site

transfer could be treated with similar principles.

MSPC for analytical methods has been reported. Multi-

variate monitoring of a chromatographic system has been

carried out using a check sample containing five analytes to

test column performance (Nijhuis et al. [46]). A T2 chart and

an SPEX chart were used tomonitor analyte peak area percent

of the five analytes. The results indicated that false alarms

that would have occurredwith univariate charts were avoided

and points out of control due to change in correlation could be

detected (impossible with univariate charts).
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21. Camacho J, Picó J, Ferrer A. Bilinear modelling of batch

processes. Part I: theoretical discussion. J. Chemom.

2008;22(5):299–308.
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