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2
On the Classification of Models

The advances in basic knowledge and model-based process engineering methodol-
ogies will certainly result in an increasing demand for models. In addition, com-
puter assistance to support the development and implementation of adequate and
clear models will be increasingly used, especially in order to minimize the finan-
cial support for industrial production by optimizing global production processes.
The classification of models depending on their methodology, mathematical devel-
opment, objectives etc. will be a useful tool for beginners in modelling in order to
help them in their search for the particular model able to solve the different and
variable products synthesis.

Highly-diversified models are used in chemical engineering, consequently, it is
not simple to propose a class grouping for models. The different grouping
attempts given here are strongly related to the modeled phenomena. In the case
of a device model or plant model, the assembly of the model parts creates an
important number of cases that do not present any interest for class grouping pur-
poses. In accordance with the qualitative process theory to produce the class
grouping of one phenomenon or event, it is important to select a clear character-
ization criterion which can assist the grouping procedure. When this criterion is
represented by the theoretical base used for the development of models, the fol-
lowing classification is obtained:
. mathematical models based on the laws of transport phenomena
. mathematical models based on the stochastic evolution laws
. mathematical models based on statistical regression theory
. mathematical models resulting from the particularization of simi-

litude and dimensional analysis.

When the grouping criterion is given by the mathematical complexity of the pro-
cess model (models), we can distinguish:
. mathematical models expressed by systems of equations with

complex derivatives
. mathematical models containing one equation with complex

derivatives and one (or more) ordinary system(s) of differential
equations
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. mathematical models promoted by a group of ordinary systems
of differential equations

. mathematical models with one set of ordinary differential
equations complete with algebraic parameters and relationships
between variables

. mathematical models given by algebraic equations relating the
variables of the process.

For the mathematical models based on transport phenomena as well as for the
stochastic mathematical models, we can introduce new grouping criteria. When
the basic process variables (species conversion, species concentration, tempera-
ture, pressure and some non-process parameters) modify their values, with the
time and spatial position inside their evolution space, the models that describe
the process are recognized as models with distributed parameters. From a mathema-
tical viewpoint, these models are represented by an assembly of relations which
contain partial differential equations The models, in which the basic process vari-
ables evolve either with time or in one particular spatial direction, are called mod-
els with concentrated parameters.

When one or more input process variable and some process and non-process
parameters are characterized by means of a random distribution (frequently nor-
mal distributions), the class of non-deterministic models or of models with random
parameters is introduced. Many models with distributed parameters present the
state of models with random parameters at the same time.

The models associated to a process with no randomly distributed input variables
or parameters are called rigid models. If we consider only the mean values of the
parameters and variables of one model with randomly distributed parameters or
input variables, then we transform a non-deterministic model into a rigid model.

The stochastic process models can be transformed by the use of specific theo-
rems as well as various stochastic deformed models, more commonly called diffu-
sion models (for more details see Chapter 4). In the case of statistical models, we
can introduce other grouping criteria. We have a detailed discussion of this prob-
lem in Chapter 5.

In our opinion, one important grouping criterion is the chemical engineering
domain that promotes the model. In the next section, modeling and simulation
have been coupled and a summary of this classification is given.

2.1
Fields of Modelling and Simulation in Chemical Engineering

Some important chemical engineering modelling and simulation fields as well as
related activities are briefly presented here. First, we can see that the traditional
modelling procedures or computer-aided process engineering cover a much narrower
range of modelling tools than those mentioned here. A broader spectrum of
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chemical engineering modelling and simulation fields is developed and illustrated
elsewhere in this book.

2.1.1
Steady-state Flowsheet Modelling and Simulation

Process design for continuous processes is carried out mostly using steady-state
simulators. In steady-state process simulation, individual process units or entire
flowsheets are calculated, such that there are no time deviations of variables and
parameters. Most of the steady-state flowsheet simulators use a sequential modu-
lar approach in which the flowsheet is broken into small units. Since each unit is
solved separately, the flowsheet is worked through sequentially and iteration is
continued until the entire flowsheet is converged. Another way to solve the flow-
sheet is to use the equation oriented approach, where the flowsheet is handled as
a large set of equations, which are solved simultaneously.

Flowsheet simulators consist of unit operation models, physical and thermody-
namic calculation models and databanks. Consequently, the simulation results
are only as good as the underlying physical properties and engineering models.
Many steady-state commercial simulators [2.1, 2.2] have some dynamic (batch)
models included, which can be used in steady-state simulations with intermediate
storage buffer tanks.

2.1.2
Unsteady-state Process Modelling and Simulation

Unsteady-state or dynamic simulation accounts for process transients, from an
initial state to a final state. Dynamic models for complex chemical processes typi-
cally consist of large systems of ordinary differential equations and algebraic equa-
tions. Therefore, dynamic process simulation is computationally intensive.
Dynamic simulators typically contain three units: (i) thermodynamic and physical
properties packages, (ii) unit operation models, (iii) numerical solvers. Dynamic
simulation is used for: batch process design and development, control strategy de-
velopment, control system check-out, the optimization of plant operations, pro-
cess reliability/availability/safety studies, process improvement, process start-up
and shutdown. There are countless dynamic process simulators available on the
market. One of them has the commercial name Hysis [2.3].

2.1.3
Molecular Modelling and Computational Chemistry

Molecular modelling is mainly devoted to the study of molecular structure. Com-
putational chemistry is the application of all kinds of calculations, mainly numer-
ical, to the study of molecular structure. It can be considered as a subset of the
more general field of molecular modelling because its computations occur as a
result of the application of the models.

252.1 Fields of Modelling and Simulation in Chemical Engineering
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In contrast to computational chemistry, molecular modelling in the sense of
spatial molecular arrangement may not involve any computations [2.4]. Today mo-
lecular modelling is being used in an increasingly broad range of chemical sys-
tems and by an increasing number of scientists. This is due to the progress made
in computer hardware and software, which now allows fundamental and complex
calculations on a desktop computer. Computational chemistry is rapidly becoming
an essential tool in all branches of chemistry as well as related fields such as bio-
chemistry, biology, pharmacology, chemical engineering and materials science. In
some cases, computational chemistry can be used to calculate such compound
properties as: shapes – structure and geometry; binding energies – strengths of
bonds; charge distributions – dipole, quadrapole, octapole moments; spectra –
UV, IR, NMR; thermodynamic properties – energy, entropy, radial distribution
functions, structural and dynamic properties – viscosity, surface tension, potential
energy surfaces; reaction pathways and energy barriers; product energy distribu-
tions and reaction probabilities.

2.1.4
Computational Fluid Dynamics

Computational fluid dynamics (CFD) is the science of determining a numerical
solution to governing equations of fluid flow while the solution through space or
time is under progress. This solution allows one to obtain a numerical description
of the complete flow field of interest. Computational fluid dynamics obtains solu-
tions for the governing Navier–Stokes equations and, depending upon the particu-
lar application under study, it solves additional equations involving multiphase,
turbulence, heat transfer and other relevant processes [2.5, 2.6]. The partial differ-
ential Navier–Stokes and associated equations are converted into algebraic form
(numerically solvable by computing) on a mesh that defines the geometry and
flow domain of interest. Appropriate boundary and initial conditions are applied
to the mesh, and the distributions of quantities such as velocity, pressure, turbu-
lence, temperature and concentration are determined iteratively at every point in
space and time within the domain. CFD analysis typically requires the use of com-
puters with a high capacity to perform the mathematical calculations. CFD has
shown capability in predicting the detailed flow behaviour for a wide-range of
engineering applications, typically leading to improved equipment or process
design. CFD is used for the early conceptual studies of new designs, detailed
equipment design, scaling-up, troubleshooting and retrofitting systems. Examples
in chemical and process engineering include separators, mixers, reactors, pumps,
pipes, fans, seals, valves, fluidised beds, bubble columns, furnaces, filters and
heat exchangers [2.7, 2.8].

26



2.1 Fields of Modelling and Simulation in Chemical Engineering

2.1.5
Optimisation and Some Associated Algorithms and Methods

In an optimisation problem, the researcher tries to minimise or maximise a global
characteristic of a decision process such as elapsed time or cost, by exploiting cer-
tain available degrees of freedom under a set of constraints. Optimisation prob-
lems arise in almost all branches of industrial activity: product and process design,
production, logistics, short planning and strategic planning. Other areas in the
process industry suitable for optimisation are process integration, process synthe-
sis and multi-component blended-flow problems.

Optimisation modelling is a branch of mathematical modelling, which is con-
cerned with finding the best solution to a problem. First, the problem must be
represented as a series of mathematical relationships. The best solution to a math-
ematical model is then found using appropriate optimisation software (solver). If
the model has been built correctly, the solution can be applied back to the actual
problem. A mathematical model in optimisation usually consists of four key
objects [2.9]: data (costs or demands, fixed operation conditions of a reactor or of a
fundamental unit, capacities etc.); variables (continuous, semi-continuous, and
non-frequently binary and integer); constraints (equalities, inequalities); objective
function. The process of building mathematical models for optimisation usually
leads to structured problems such as: linear programming, mixed integer linear
programming, nonlinear programming and mixed integer nonlinear program-
ming [2.10]. In addition, a solver, i.e. a software including a set of algorithms capa-
ble of solving problems, is needed to build a model as well as to categorize the
problem. To this end, a specific software can be created but some commercial
ones also exist.

Heuristic methods are able to find feasible points of optimisation problems.
However, the optimisation of these points can only be proved when used in com-
bination with exact mathematical optimisation methods. For this reason, these
methods could not be considered as optimisation methods in the strict meaning
of the term. Such heuristic methods include simulated annealing, evolution strat-
egy, constraint programming, neural networks and genetic algorithms. The
hybrid approaches combine elements from mathematical optimisation and heur-
istic methods. They should have great impact on supply chain and scheduling
problems in the future.

2.1.6
Artificial Intelligence and Neural Networks

Artificial intelligence is a field of study concerned with the development and use
of computer systems that bear some resemblance to human intelligence, includ-
ing such operations as natural-language recognition and use, problem solving,
selection from alternatives, pattern recognition, generalisation based on experi-
ence and analysis of novel situations, whereas human intelligence also involves
knowledge, deductive reasoning and learning from experience. Engineering and
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industrial applications of artificial intelligence include [2.11]: the development of
more effective control strategies, better design, the explanation of past decisions,
the identification of future risks as well as the manufacturing response to changes
in demands and supplies. Neural networks are a rather new and advanced artifi-
cial intelligence technology that mimic the brain’s learning and decision-making
process. A neural network consists of a number of connected nodes which include
neurons. When a training process is being conducted, the neural network learns
from the input data and gradually adjusts its neurons to reflect the desired out-
puts.

Fuzzy logic is used to deal with concepts that are vague. Many real-world prob-
lems are better handled by fuzzy logic than by systems requiring definite true/
false distinctions. In the chemical and process industry, the main application of
fuzzy logic is the automatic control of complex systems. Neural networks, fuzzy
logic and genetic algorithms are also called soft computing methods when used
in artificial intelligence.

2.1.7
Environment, Health, Safety and Quality Models

Special models and programs are developed for such purposes as health and
safety management and assessment, risk analysis and assessment, emission con-
trol and detection and quality control. Such a program may, for example, help the
user to keep records regarding training, chemical inventories, emergency
response plans, material safety data, sheet expiry dates and so on.

2.1.8
Detailed Design Models and Programs

Certain models and programs are available for the detailed design of processes
and process equipment. For example, the process equipment manufacturers often
have detailed design and performance models for their products. Engineering
design involves a lot of detailed design models.

2.1.9
Process Control

Process control is a general term used to describe many methods of regulating
industrial processes. The process being controlled is monitored for changes by
means of sensor devices. These sensor devices provide information about the state
of the system. The information provided by the sensor devices is used to calculate
some type of feedback to manipulate control valves or other control devices. This
provides the process with computerized automatic regulation. The essential
operations are measurement, evaluation and adjustment, which form the process
control loop. Process control systems operate in real-time since they must quickly
respond to the changes occurring in the process they are monitoring.
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2.1.10
Estimation of Parameters

Parameter estimation for a given model deals with optimising some parameters
or their evaluation from experimental data. It is based on setting the best values
for the parameters using experimental data. Parameter estimation is the calcula-
tion of the non-process parameters, i.e. the parameters that are not specific to the
process. Physical and chemical properties are examples of such non-process pa-
rameters. Typical stages of the parameter estimation procedure are: (i) the choice
of the experimental points, (ii) the experimental work, i.e. the measurement of
the values, (iii) the estimation of the parameters and analysis of the accuracy of
the results, (iv) if the results are not accurate enough, additional experiments are
carried out and the procedure is restarted from stage (i).

In parameter estimation, the parameters are optimised, and the variables are
given fixed values. Optimality in parameter estimation consists in establishing the
best match between the experimental data and the values calculated by the model.
All the procedures for the identification of parameters comply with the optimality
requirements [2.12].

2.1.11
Experimental Design

Experimental design (also called “optimal design of experiments” or “experimental
planning”) consists in finding the optimal set of experiments and measured pa-
rameters. A poorly planned experiment cannot be rescued by a more sophisticated
analysis of the data. Experimental design is used to maximize the likelihood of
finding the effects that are wanted. Experimental design is used to identify or
scan the important factors affecting a process and to develop empirical models of
processes. These techniques enable one to obtain a maximum amount of informa-
tion by running a series of experiments in a minimum number of runs. In experi-
mental design, the variables (measurement points) are optimised with fixed pa-
rameters.

2.1.12
Process Integration

Process integration is the common term used for the application of system-orient-
ed methodologies and integrated approaches to industrial process plant design for
both new and retrofit applications. Such methodologies can be mathematical,
thermodynamic and economic models, methods and techniques. Examples of
these methods include artificial intelligence, hierarchical analysis, pinch analysis
and mathematical programming. Process integration refers to optimal design;
examples of these aspects are capital investment, energy efficiency, emissions
levels, operability, flexibility, controllability, safety, sustainable development and
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yields. Process integration also refers to some aspects of operation and mainte-
nance.

Process integration combines processes or units in order to minimise, for exam-
ple, total energy consumption (pinch analysis). Pinch analysis has been success-
fully used worldwide for the integrated design of chemical production processes
for over ten years. More recent techniques address efficient use of raw materials,
waste minimisation, design of advanced separation processes, automated design
techniques, effluent minimisation, power plant design and refinery processing
[2.13, 2.14]. Responding to their basic principles, the classification of the process
integration methods can be given as follows: artificial intelligence / knowledge-
based systems; hierarchical analysis / heuristic rules; thermodynamic methods
(pinch analysis and energy analysis); optimisation (mathematical programming,
simulated annealing, genetic algorithms).

2.1.13
Process Synthesis

Process synthesis tries to find the flowsheet and equipment for specified feed and
product streams. We define process synthesis as the activity allowing one to
assume which process units should be used, how those units will be intercon-
nected and what temperatures, pressures and flow rates will be required [2.15,
2.16].

Process flowsheet generation is an important part of process synthesis. The fol-
lowing tasks have been established for process flowsheet generation [2.17]: (i) the
generation of alternative processing routes, {ii) the identification of the necessary
unit operations, (iii) the sequencing of unit operations into an optimal flowsheet.

2.1.14
Data Reconciliation

The main assumption in data reconciliation is that measurement values corre-
spond to the steady state. However, process plants are rarely at steady state. Data
reconciliation is used to “manipulate” the measured plant data to satisfy the
steady-state assumption. Data reconciliation is used to detect instrument errors
and leaks and to get “smoother” data for design calculations.

2.1.15
Mathematical Computing Software

They are the mathematical computing programs that offer tools for symbolic and/
or numeric computation, advanced graphics and visualisation with easy-to-use
programming language. These programs can be used, for example, in data analy-
sis and visualisation, numeric and symbolic computation, engineering and scien-
tific graphics, modelling and simulation. Examples are Matlab� and Mathema-
tica�.
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2.1.16
Chemometrics

Chemometrics is the discipline concerned with the application of statistical and
mathematical methods to chemical data [2.18]. Multiple linear regression, partial
least squares regression and the analysis of the main components are the meth-
ods that can be used to design or select optimal measurement procedures and
experiments, or to provide maximum relevant chemical information from chemi-
cal data analysis. Common areas addressed by chemometrics include multivariate
calibration, visualisation of data and pattern recognition. Biometrics is concerned
with the application of statistical and mathematical methods to biological or bio-
chemical data.

2.2
Some Observations on the Practical Use of Modelling and Simulation

The observations given here are in fact commentaries and considerations about
some aspects from the following topics:
. reliability of models and simulations
. role of the industry as final user of modelling and simulation

research
. role of modelling and simulation in innovations
. role of modelling in technology transfer and knowledge manage-

ment
. role of the universities in modelling and simulation development

2.2.1
Reliability of Models and Simulations

Correctness, reliability and applicability of models are very important. For most
engineering purposes, the models must have a broad range of applicability and
they must be validated. If the models are not based on these principles, their
range of applicability is usually very narrow, and they cannot be extrapolated. In
many modelling and simulation applications in the process industry, kinetic data
and thermodynamic property methods are the most likely sources of error. Errors
often occur when and because the models are used outside the scope of their
applicability. With the advent and availability of cheap computer power, process
modelling has increased in sophistication, and has, at the same time, come within
the reach of people who previously were deterred by complex mathematics and
computer programming. Simulators are usually made of a huge number of mod-
els, and the user has to choose the right ones for the desired purpose. Making
correct calculations is not usually trivial and requires a certain amount of exper-
tise, training, process engineering background and knowledge of sometimes very
complex phenomena.

31



2 On the Classification of Models

The problem with commercial simulators is that, since the simulations can be
carried out fairly easily, choosing the wrong models can also be quite easy. Choos-
ing a bad model can result in totally incorrect results. Moreover, with commercial
simulators, there is no access to the source code and the user cannot be sure that
the calculations are made correctly. The existing commercial flowsheeting
packages are very comprehensive and efficient, but the possibility of misuse and
misinterpretation of simulation results is high. In CFD and molecular modelling,
the results are often only qualitative. The methods can still be useful, since the
results are applied to pre-screen the possible experiments, the synthesis routes
and to visualise a particular phenomenon.

2.2.2
The Role of Industry as Final User of Modelling and Simulation

This role is not clear, except in the cases of big companies which have their own
research and development divisions. In this case, the R&D company division has
specialized teams for modelling and simulation implementation. The properly de-
veloped models and simulators are then frequently used, as we have already
shown, during the life-cycle of all the particular processes or fabrications that give
the company its profile. At the same time, each big company’s R&D division can
be an important vendor of professional software. The small companies that are
highly specialized in modelling and simulation, operate as independent software
creators and vendors for one or more company’s R&D division. The use of model-
ling and simulation in small and medium size manufacturing companies is quite
limited. Since small manufacturing companies and university researchers do not
cooperate much, awareness and knowledge about modern Computer Aided Pro-
cess Engineering tools are also limited. There are of course exceptions among
manufacturing companies. Some small and medium size engineering and con-
sulting companies are active users of modelling and simulation tools, which
allows them to better justify the solutions they propose to their clients.

2.2.3
Modelling and Simulation in Innovations

Modelling and simulation are usually regarded as support tools in innovative
work. They allow fast and easy testing of innovations. The use of simulators also
builds a good basis for understanding complex phenomena and their interactions.
In addition, it also builds a good basis for innovative thinking. It is indeed quite
important to understand what the simulators really do and what the limitations of
the models are. As a consequence, access to source codes is the key to the innova-
tive use of models and simulators.

Many commercial programs are usually stuck in old thinking and well-estab-
lished models, and then, the in-house-made simulators are quite often better
innovative tools. Molecular modelling can be used, for example, in screening
potential drug molecules or synthesis methods in order to reduce their number.
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The existing molecular modelling technology is already so good that there are real
benefits in using it. Molecular modelling can be a very efficient and invaluable
innovative tool for the industry. The terms “artificial intelligence” and “expert sys-
tems” are based on existing knowledge. The computers are not creative, which
means that these tools cannot be innovative. However, they can be used as tools in
innovative development work. While most of the modelling and simulation meth-
ods are just tools, in innovative work, process synthesis can be regarded as an
innovation generator, i.e. it can find novel solutions by itself.

2.2.4
Role of Modelling in Technology Transfer and Knowledge Management

Models are not only made for specific problem solving. They are also important as
databases and knowledge management or technology transfer tools. For example,
an in-house-made flowsheet simulator is typically a huge set of models containing
the most important unit operation models, reactor models, physical property
models, thermodynamics models and solver models from the literature as well as
the models developed in the company over the years or even decades. Ideally, a in-
house-made simulator is a well-organized and well-documented historical data-
base of models and data. A model is also a technology transfer tool through pro-
cess development and process life cycle (see for instance Fig. 1.5, in Chapter 1).
The problem is that the models developed in earlier stages are no longer used in
manufacturing. The people in charge of control write simple models for control
purposes and the useful models from earlier stages are simply forgotten. Ideally,
the models developed in earlier stages should be used and evaluated in manufac-
toring, and they should provide information to the research stage conceptual
design stage and detailed design stage. One reason for “forgetting” the model dur-
ing the process life cycle is that the simulators are not integrated. Different tools
are used in each process life cycle stage. However, simulators with integrated
steady-state simulation, dynamic simulation and control and operator-training
tools are already being developed. The problem is that the manufactoring people
are not always willing to use the models, even though the advantages are clear
and the models are made very easy to use.

2.2.5
Role of the Universities in Modelling and Simulation Development

The importance of modelling and simulation for industrial use is generally pro-
moted, in each factory, by the youngest engineers. The importance of computer-
aided tools to the factory level is best understood when the application of model-
ling and simulation has a history. The importance of modelling and simulation is
not understood so well in the sectors that do not using computer-aided tools.

Technical universities have a key role in the education of engineers (so that they
can work on modelling and simulation) as well as in research and development.
In fact, the universities’ education role is absolutely fundamental for the future
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development of the industry. Indeed, in the future, the work of a process engineer
will be more and more concerned with modelling and computation. Moreover, the
work will be all the more demanding so that process engineers will need to have
an enormous amount of knowledge not only of physics and chemistry, but also of
numerical computation, modelling and programming.
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