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4
Stochastic Mathematical Modelling

Stochastic mathematical modelling is, together with transfer phenomena and
statistical approaches, a powerful technique, which can be used in order to have a
good knowledge of a process without much tedious experimental work. The prin-
ciples for establishing models, which were described in the preceding chapter, are
still valuable. However, they will be particularized for each example presented
below.

4.1
Introduction to Stochastic Modelling

As analyzed in the preceding chapters concerning the description of a process evo-
lution, stochastic modelling follows the identification of principles or laws related
to the process evolution as well as the establishment of the best mathematical
equations to characterize it.

The first approaches to compare stochastic models and chemical engineering
were made in 1950, with the Higbie [4.1] and Dankwerts transfer models [4.2].
Until today, the development of stochastic modelling in chemical engineering has
been remarkable. If we made an inventory of the chemical engineering modelling
studies we could see that a stochastic solution exists or complements all the cases
[4.3–4.8].

In many modelling studies, the model establishment is made in relation to the
transfer and balance of a property (for instance see Chapter 3, Section 3.1). Never-
theless, a property evolution from the initial to the final state can vary randomly
as a result of the stochastic combination of different elementary processes. This
statement is in good agreement with the unitary concept of transfer phenomena
[4.9–4.11] and was reported by Bratu [4.11] in the following assertion:

“Each transformation or phenomenon results from one or many
elementary steps or processes. The equilibrium state results from
similar but contrary transport fluxes.”

This statement can also be obtained when a transport process evolution is ana-
lyzed by the concept of Markov chains or completely connected chains. The math-
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ematical theory of completely connected chains [4.12–4.16] can be described with
this condensed statement:

“The state of a system at time n is a random variable An with
values in a finite space (A A) (measurable). The state evolution
at time n+1 results from the arrival of a Bnþ1 result, which is also
a random variable with values in a finite space (B B) (measur-
able). The arrival of a result signaling the state evolution can be
represented considering a u application of A ·B in A and
introducing the following statement: Anþ1 = uðAn;Bnþ1Þ for
all n ‡ 0. The Bnþ1 probability distribution is conditioned by
Bn;An;Bn�1;An�1; :::::::B1;A1;A0, and symbolized as
ðPðBnþ1=Bn;An; :::ÞÞ, it depends only on state An. The group
½ðA,AÞ; ðB;BÞ;u:A ·B fi A;P� defines a random system with
complete connections.”

Some of the examples shown in the following paragraphs present the characteris-
tics of a random system with complete connections. However, other examples do
not concern a completely connected system but present only some Markov unitary
processes [4.6, 4.17].

The stochastic modelling of the phenomena studied here can be described by
one standard physical model (descriptive model) which can be defined by the fol-
lowing statement:

“The property carriers, such as elementary particles of fluids or
molecules, evolve during their displacement through one or more
elementary processes (called process components), their passage
from one process to another is made by one stochastic process
called connection or connection process.”

It is important to notice the similitude of this descriptive model to the complete
definition of connections of a system given before. For chemical engineering pro-
cesses, the model needs to be particularized and then the assertions written below
have to be taken into account [4.4–4.7]:
. If one elementary particle is participating in a process of trans-

port phenomena within a medium with random characteristics
(granular medium, porous solid, etc.), the medium will be
responsible for the random velocity changes of the particle. In
this case, the transport process concerning the local velocity is the
so-called “process component”, whereas the transport process
changes given by the random properties of the medium are called
“connection process”.

. The transport phenomenon occurs when the displacement of the
carriers through different media (“process components”) and the
passage from one medium to another are realized by a random
commutation process (“connection process”).

4 Stochastic Mathematical Modelling192



. During their displacement, elementary particles are constantly
encountering obstacles, other moving elements, oscillation states
etc. The particle evolution is randomly chosen among the differ-
ent presented possibilities (“process components”).

. A particle (molecule, group of molecules, turbulent group etc.)
evolves in a medium which produces its own transformation.
This means that the process exchange characterizes the particle
evolution. The process occurring before and after the transforma-
tion is called the “process component”, whereas the transforma-
tion itself which represents the stochastic evolution is called the
“connection process”.

. The elementary particles randomly pass from one compartment
to another; the process of swapping compartments forms the
“connection process” whereas the transformation realized in each
compartment represents the “process components”.

. When phenomena result in the formation of various structures,
the passage from one structure to another occurs randomly, in
this case the structure formation is the “process component” and
the transitory steps correspond to the “connection process”.

When a stochastic process takes place, the passage from one elementary process
to another is caused by external effects. These effects are related to the medium
by the process evolution itself. We can assert that a process can be adapted to
stochastic modelling if we can identify the elementary “process components”. In
addition, for the “connection process” the number of states has to be same as the
“process components”. This very abstract introduction will be better explained in
the next paragraph by including a practical example.

4.1.1
Mechanical Stirring of a Liquid

Studies of the mixing effectiveness of stirring devices are quite numerous; they
generally analyze the effects produced by:
. the turn rate or frequency of the stirrer,
. the configuration and the distribution of the stirring paddles in

the apparatus,
. the physicochemical properties of the medium,
. the position of the input and the output of the currents in the

apparatus tank.

It has been very difficult to develop a general model able to describe the influence
of all the different parameters on the mixing effectiveness [4.18–4.20]. However,
many researchers have tried to develop models as complete as possible, among
them a special mention has to be given to the research team who developed the
first commercial program called Visimix 1999 [4.21, 4.22].

1934.1 Introduction to Stochastic Modelling
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As an example, we analyze here, step by step, a continuous mixing apparatus
provided with stirring paddles. The first step is to uniformly express the state of
the currents, which characterize the different flow patterns inside the apparatus
(see Section 3.3). The second step concerns the development of a stochastic model
for characterizing the mixing. For this purpose, we will use the procedure of anal-
ysis initially developed by Kafarov [4.4], which has been completed and modified
since by other authors [4.5, 4.6, 4.23]. The apparatus considered here is shown in
Fig. 4.1. In this apparatus provided with stirring paddles, the main current of flow
is radial and it separates into two different currents closed the walls. The size of
these flow currents depends on the stirrer position, the number of turns of the
stirrer and the medium properties. Indeed, we can consider that the stirrer divides
the apparatus into two regions (the higher region and the lower region with
respect to the paddles) with different and independent currents.

upper current

upper region

lower region

mixing region

H 

h 

E1 

E2 

E3 

S1 

S2 

S3 

Va 

Vi 

Vm 

Figure 4.1 Schematic illustration of a stirring apparatus for liquid mixing.

According to this topology, the flow in the apparatus is described by two circuits
(the upper and the lower region), each of which contains a variable number of
ideal mixed cells but meets in the mixing region (near the paddles). This region
constitutes a cell with ideal mixing.

Figure 4.1 also shows the position of the input flow (E1, E2, E3) which has to be
coupled with the positions of the output flow (positions S1, S2, S3) and the general
current of circulation inside the vessel. We can observe from Fig. 4.1 that the vol-
umes placed in the higher and lower regions depend on H and h (thus on the
position of the stirrer paddle in the apparatus) as well as on the size of the stirring
region. Indeed, the corresponding volumes can be described as follows:

Va ¼
pD2

4
ðH� hÞ � Vm

2
(4.1)
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4.1 Introduction to Stochastic Modelling

Va ¼
pD2

4
h� Vm

2
¼ Vu � Vs �

Vm

2
(4.2)

We can expect the volume in the pumping region to depend on the dimensions of
the stirrer paddle (diameter d, height of the pallet b) and on the dimensions of the
tank:

Vm ¼
pb
60

D2 þ Dd
5
þ d2

5

� �
(4.3)

According to the topological description, we can consider a cell with ideal mixing
in the stirring region; other cells can be considered in the upper region (with
number: na) and in the lower region (with number: ni). The respective number of
cells in the regions can be calculated by the following algorithm:

1. The starting conditions are established.
2. Va, Vm, Vi are calculated with Eqs. (4.1)–(4.3).
3. If Va>Vi then r = Va/Vi ; for the reverse case r = Vi/Va .
4. The number of cells is chosen in the smaller region; (this

consideration is frequently used) then, ni = nch = 1 if the
lower region is the smaller one, when the upper region is the
smaller one we have na = nch = 1.

5. If h/H = 0.5 we can consider ni = na = nch ; if h/H>0.5, which
is equivalent to Vi>Va we can write na = nch and ni = r*nch;
however, if h/H<0.5 and Va>Vi we can consider ni = nch and
na = r*nch

Once the topology has been established, it must be supplemented with the flows
of the currents, which convey between the cells. Many solutions have been sug-
gested to solve this problem. They differ by the mode of calculation of the main
current produced by the stirrer. It is a function of the geometry, the number of the
turns of the stirrer and the properties of the medium (density, viscosity). For the
stirrer considered here, the flow rate of the main current and the flows in the
higher and lower regions are calculated with the assistance of relations (4.4) and
(4.5). Here f (q, g) expresses a function depending on the density and viscosity of
the mixed medium:

Q ¼ Q1 þQ2 ¼ 10:5d2b:n:f ðr;gÞ (4.4)

Q1

Q2
¼ h

H� h
for h=H > 0:5 or h=H ¼ 0:5 (4.5)

Now, the system contains N – 1 cells with ideal mixing, each one with a known
volume; the cells are connected by the different currents. Here, N corresponds to
the system exit, Vk is the volume of a k cell and Qkj is the current (flow rate) from
the k cell to the j cell.

If we consider a marked particle placed inside of our cellular system, then we
can define this by the vector E(n) = [e0 (n), e1 (n);e2 (n)... ek (n)... eN–1 (n),eN (n)]
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4 Stochastic Mathematical Modelling

where ek (n) expresses the probability of occurrence of the marked particle in the
k cell after time n. Because the incidence of the marked particle inside a system is
an undoubted event, we can write:

PN
k¼1

ekðnÞ ¼ 1 8 n ¼ 0; 1; 2; ::: (4.6)

In the elementary processes (components), we establish that, in the small interval
of time Ds, the particle can either pass to another cell or remain within its cell.
The Ds interval must be chosen in such a way that the particle can pass into a
close cell during this interval, but not through it. Moreover, this passage can be
regarded as instantaneous.

As far as the behaviour of the particle in such a system respects the rules of the
Markov process, it will be controlled by a Markov connection. This means that the
probability of the particle occurrence within the k cell after n + 1 time (i.e. s = n.Ds)
is given only by its probability of occurrence in the j cell after time n and by its
probability of transfer from the j cell to the k cell denoted pjk. Now we can write:

ekðnþ 1Þ ¼
PN
j¼1

ejðnÞpjk (4.7)

For j = 1,N and k = 1,N the probability pjk is denoted as a matrix P which is called
the stochastic matrix of the process, the matrix of passing or “the stochastic one”:

P ¼

p11 p12 p13 : p1N

p21 p22 p23 : p2N

: : : : :
pN�11 pN�12 : : pN�1N

pN1 pN2 pN3 : pNN

2
66664

3
77775 (4.8)

During the building of the stochastic matrix, it is necessary to make sure that

PN
j¼1

pij ¼ 1 (the total of the probabilities according to one line equals one) and if

PN
i¼1

pij ¼ 1 (the total of the probabilities according to a column equals one). How-

ever, it should be specified that
PN
i¼1

pij is not always one. Before going any further,

it should be specified that:

. pii represents the probability for the marked particle to be and to
remain in cell i in the interval Ds

. pij represents the probability for the marked particle to be in cell i
and to go into cell j in the time interval Ds.

Concerning the last line of matrix P, if pNN ¼ 1 (the particle that leaves the system
cannot come back), all other probabilities (pNk where k „ N) have to be considered
as zero.
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4.1 Introduction to Stochastic Modelling

If the initial state of the system is E(0), then, by means of matrix P we can write:

Eð1Þ ¼ Eð0Þ � P (4.9)

By analogy:

Eð2Þ ¼ Eð1Þ � P Eð3Þ ¼ Eð2Þ � P...Eðnþ 1Þ ¼ EðnÞ � P (4.10)

The last equations prove that the Markov chains [4.6] are able to predict the evolu-
tion of a system with only the data of the current state (without taking into
account the system history). In this case, where the system presents perfect mix-
ing cells, probabilities pii and pij are described with the same equations as those
applied to describe a unique perfectly stirred cell. Here, the exponential function
of the residence time distribution (pii in this case, see Section 3.3) defines the
probability of exit from this cell. In addition, the computation of this probability is
coupled with the knowledge of the flows conveyed between the cells. For the time
interval Ds and for i = 1,2,3, ...N and j = 1,2,3,......N – 1 we can write:

pii ¼ exp �

PN
i¼1;i „ j

Qji

Vi
Ds

0
BBB@

1
CCCA (4.11)

pij ¼
Qji

PN
i¼1;i „ j

Qji

1� exp �

PN
i¼1;i„ j

Qji

Vi
Ds

0
BBB@

1
CCCA

2
66664

3
77775 (4.12)

When matrix P is filled, vector E(0) is known, the calculation for E(1), E(2), E(3)...
E(n)... can be easily carried out. At this time, we can formulate the following ques-
tion which is also valid in almost all chemical engineering cases: What information
is produced with the assistance of this stochastic model? The answer to this question
shows that the model is frequently used for:

1. calculating the system reaction to one disturbance impulse:

FðsÞ ¼ eNðnÞ ¼
P¥
n¼0

eN�1ðnÞDn ; s ¼ nDs (4.13)

2. precisely estimating the mean residence time and the resi-
dence time variance around the mean residence time:

sm ¼
P¥
n¼0
ð1� eNðsÞÞDs (4.14)

r2 ¼ 2
P¥
n¼0
ð1� eNðsÞÞnDs�

P¥
n¼0
ð1� eNðnÞÞDs

����
����
2

(4.15)
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4 Stochastic Mathematical Modelling

3. appreciating the evolution with time of the function (k) that
shows the stirring intensity for our topological cell assembly:

kðnÞ ¼ eN�1ðnÞ
1� eNðsÞ

(4.16)

We can observe that, with the help of simulation software, we can produce the
numerical results which give the effect of the stirrer’s number of turns, the posi-
tion of the stirrer in the tank, the effect of the dimension of the stirring paddles,
etc., on the model exits mentioned above.

4.1.2
Numerical Application

An elliptic-based cylindrical apparatus (D = 1 m, H = 1 m) contains a solution
stirred with a 6-paddled stirrer (d = 0.4 m and b = 0.1 m). The stirrer is placed in
the tank in such a position as to get the ratio h/H = 0.2 (see Fig. 4.1) and to work
at n = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 revolutions/s. A compound with the same
physical properties as the solution is fed close to the liquid surface. The obtained
mixture is flushed out through a pipe placed near the base of the apparatus. The
entry and the exit flows are identical (Qex = 0.0048 m3/s). Now the question is to
obtain the dependences of the parameters characterizing this mixing case accord-
ing to the number of revolutions of the stirrer.

Before developing the algorithm of calculation, we have to deduce the mixture

topology. Then: r ¼ h=H
1� h=H

¼ 0:2=0:8 ¼ 1=4; because h/H<0.5, we can assert

that the stirrer is placed in the lower part of the tank and then with nch = 1 we
have ni = 1, na = nch / r = 4. So the tank contains six elemental mixing cells: one in
the lower region, one in the mixing region and four in the higher region; If Q1

+Q2 = Q and Q2 / Q1 = h/(H – h); then Q1 = 4/5 Q and Q2 = 1/5 Q. With these
simple calculations, we can establish the flow topology shown in Fig. 4.2.

V1 V2 V3 V4

V5 

V6 

Qex

Q+Qex

Q2+Qex

Q2

Qex

Q1 

Q1+Qex

Q+Qex

Figure 4.2 Topology of the numerical application 4.1.2.
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4.1 Introduction to Stochastic Modelling

According to Eqs. (4.11) and (4.12) and in agreement with Fig. 4.2 we can con-
clude that among the 49 probabilities only the following ones are not null:

p11 ¼ exp �Q1 þQex

V1
Ds

� �
, p22 ¼ exp �Q1 þQex

V2
Ds

� �
,

p33 ¼ exp �Q1 þQex

V3
Ds

� �
, p44 ¼ exp � Q1þQex

V4
Ds

� �
,

p55 ¼ exp �QþQex

V5
Ds

� �
, p66 ¼ exp �Q2 þQex

V6
Ds

� �
,

p77 = 1, p12 ¼ 1� exp �Q1 þQex

V1
Ds

� �
, p23 ¼ 1� exp �Q1 þQex

V2
Ds

� �
,

p34 ¼ 1� exp �Q1 þ Qex

V3
Ds

� �
, p45 ¼ 1� exp �Q1 þQex

V4
Ds

� �

p51 ¼
Q1

QþQex
1� exp �QþQex

V5
Ds

� �� �
,

p56 ¼
Q2 þQex

QþQex
1� exp �QþQex

V5
Ds

� �� �

p65 ¼
Q2

Q2 þQex
1� exp �Q2 þQex

V6
Ds

� �� �
,

p67 ¼
Qex

Q2 þQex
1� exp �Q2 þQex

V6
Ds

� �� �

With these probabilities, the passing matrix can be written. For brevity, we use the
following notations: ak = (Q1 + Qex)/Vk for k = 1,....4; ak = (Q + Qex)/Vk for k = 5;
ak = (Q2 + Qex)/Vk for k = 6; b = Q1/(Q + Qex); c = Q2/(Q + Qex); d = Q2/(Q2 + Qex);
e = Qex/(Q2 + Qex). The macro-relation (4.17) expresses our matrix of the transition
probabilities:

P =

e�a1Ds 1 – e�a1Ds 0 0 0 0

0 0 e�a2Ds 1 – e�a2Ds 0 0

0 0 0 0 e�a3Ds 1 – e�a3Ds

0 0 0 0 0 0

e�a4Ds 1 e�a4Ds 0 0 b(1 – e�a5Ds) 0

0 0 e�a5Ds
c(1 – e�a5Ds) 0 0

0 0 0 d(1 – e�a6Ds) e�a6Ds e(1e�a6Ds)

0 0 0 0 0 1

(4.17)
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4 Stochastic Mathematical Modelling

The numerical text of the calculation, shown in Fig. 4.3, leads to the program giv-
en in Fig. 4.4 and has the graphic interface (Fig. 4.5) associated with this program.
A description of the graphic interface is given below:
. the first window (SMM1) is used for the introduction of the set of

values which will be used for the simulation considered in the
last window (SMM3) where the parameters are fixed in such a
way as to have constant values by pair.

. in the second window (SMM2) with keys “^” and “_”, the user
moves among the values of vectors considered in the first
window (Qex, d, h, ni). Each press on the key leads to the calcula-
tion of the chosen situation. If the user supplements the fields
with values that are not among those previously fixed, then
pressing the button “Refresh” leads to the calculation of
FðsÞ vs s ; kðsÞ vs s; r2ðsÞ vs s; smvs s. The matrix of the
passing probability is also established. All the charts considered
in this window show the evolution of the mixture state towards
the stationary state.

. the third window (SMM3) is used to show the effect of the stirring
velocity and of the feed flow on the average residence time. It
works with the values of the parameters selected in the first
window.

Initial data /H=1,h=0.2 ,ni=0.1 ,0.3,0.5,0.7,0.9,1.1,1.3,1.5 ,D=1 ,d=0.4,f(ρ,η)=1;
b=0.1, etc
Initial state/ vector E(0)=[1 ,0,0,0,0,0,0] // Qex=0.0048//ni=n1//Vectors volumes..
  Preliminary computations/Vm rel. (4.3) ,Va rel (4.2) , Vi rel (4.1) // Q rel (4.4)
//System for Q1 and Q2 by: Q1+Q2=Q and Q1/Q2=(H-h)/h // The cells volumes :  
V5=Vm ,V1=V2=V3=V4=Va/4 V6=Vi//Values for : αk=(Q1+Qex)/Vk with k=1,..4 ; 
αk=(Q+Qex)/Vk with k=5; αk=(Q2+Qex)/Vk with k=6 ;β=Q1/(Q+Qex) ;  
γ=Q2/(Q+Qex) ; δ=Q2/(Q2+Qex) ;ε=Qex/(Q2+Qex) 
Matrix of transitions// Matrix volume P: 7x7 / matrix elements with  (4.17)  
Choose of ∆τ// τapr=(0.786D*D*H)/Qex ; ∆τ= τapr/15 
n=1

  E(n)=P*E(n-1)/ τm(n) rel (4.14) sum until  n and with  N=7 ,σ2(n) rel. (4.15) 
  sum until n  and with N=7 , F(n) rel. (4.13) sum until n and with N=7 , λ(n) rel.
 (4.16)  with N=7 / τ=n*∆τ/ Extraction E(n) 
If ττm(n)> τm(n-1)+error then

   n=n+1 , Return to  6 

If τm(n)<= τm(n)+error then shows the figures F(n)  and λ(n) and  gives the
values of σ2(n) and  τm(n) 
  For ni<=8 then ni=ni+1, Return at the step 3 

End

1

2

3

4

5

6

7

Figure 4.3 Scheme of the computation algorithm.
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unit d1;
interface 
uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls; 

type
 TForm1 = class(TForm)  Button1: TButton;

 procedure Button1Click(Sender: TObject); 
 private  { Private declarations } public { Public declarations } 
end;
 const nc=8;error=1; 

var e:array[0..10000,1..7] of real;
taum,lambda:array[0..10000] of real;
repeta:boolean; 
V,alfa:array[1..6] of real;P:array[1..7,1..7] of real; 
D,dm,b,h,hm,Q,Qex,Q1,Q2,Vm,Va,Vi,f,gamma,delta,epsilon:real;
tauapr,deltatau,tex,tau,suma,suma1,sigmap:real; 
i,j,k,n,n1:integer;ni,dt:real;
var

 Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject);
begin  taum[0]:=0;taum[1]:=21;
for i:=1 to 7 do for j:=1 to 7 do P[i,j]:=0;P[7,7]:=1;
 n:=1; D:=1; dm:=0.4; b:=0.1; e[0,1]:=1;
for i:=2 to 7 do e[0,i]:=0;
h:=0.2;
HM:=1; Qex:=0.0048;
ni:=0.1;n:=1;
{3} repeat
n:=1;

Vm:=pi*b/60*(sqr(D)+D*dm/5+dm*dm/5); {rel 4.3} Va:=pi*D*h/4-Vm/2; {rel 4.3}
Vi:=pi*D*h/4*(HM-h); {rel. 4.1} f:=1;
Q:=10.5*dm*dm*b*ni*f; {f=1 } Q1:=Q/(1+1/((HM-h)*h)); Q2:=Q-Q1;  Q1:=Q*4/5; Q2:=Q-Q1; 
for i:=1 to 4 do V[i]:=Va/4; V[5]:=Vm; V[6]:=Vi; 

for k:=1 to 4 do alfa[k]:=(Q1+qex)/V[k]; 
alfa[5]:=(Q+Qex)/V[5]; alfa[6]:=(Q2+Qex)/V[6]; gamma:=Q2/(Q+Qex); delta:=Q2/(Q+Qex); 
epsilon:=Qex/(Q2+Qex); tauapr:=(0.768*D*D*HM)/Qex; deltatau:=tauapr/15; 
for k:=1 to 4 do P[k,k]:=exp(-(Q1+Qex)/V[k]*deltatau); P[5,5]:=exp(-(Q+Qex)/V[5]*deltatau); 

P[6,6]:=exp(-(Q2+Qex)/V[6]*deltatau); {P[7,7]:=1;  }
for k:=1 to 4 do P[k,k+1]:=1-exp(-(Q1+Qex)/V[k]*deltatau); tex:=1-exp(-(Q+Qex)/V[5]*deltatau);
P[5,1]:=Q1/(Q+Qex)*tex; P[5,6]:=(Q2+Qex)/(Q+Qex)*tex; tex:=1-exp(-(Q2+Qex)/V[6]*deltatau); 
P[6,5]:=Q2/(Q2+Qex)*tex; P[6,7]:=Qex/(Q2+Qex)*tex; {n:=1;} tau:=n*deltatau; repeta:=true; 
{6} while repeta do begin repeta:=false; for i:=1 to 7 do begin suma:=0;
for j:=1 to 7 do suma:=suma+P[i,j]*E[n-1,j]; E[n,i]:=suma; end;
suma:=0;suma1:=0; for i:=0 to n do begin suma:=suma+(1-e[i,7])*n*deltatau;
suma1:=suma1+(1-e[i,7])*deltatau; end;
sigmap:=2*suma-suma1*suma1; taum[n]:=suma/n; dt:=taum[n]-taum[n-1]; lambda[n]:=E[n,6]/(1-
E[n,7]);
suma:=0; {for i:=1 to n do suma:=suma+E[n,6]*deltatau; taum[n]:=suma;suma:=0;}
if taum[n]>taum[n-1]+error then begin repeta:=true;inc(n);end ;if n=1000 then repeta:=false;

end;   beep; if taum[n]<=taum[n-1]+error then {grafice}; if ni<=1.5 then ni:=ni+0.2
until ni>1.5;
end; end.

Figure 4.4 Calculation program written in Matlab� language.
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a)

b)

Figure 4.5 Graphic interface for application 4.1.2. (a) First window, (b) second window.

Figures 4.6 and 4.7 show other examples of simulations. For the case consid-
ered in the simulation given in Fig. 4.5(b), if, for example at time s ¼ 0, we start
the introduction of a constant signal into the system, the signal obtained at the
exit after 500 s becomes stationary according to this value. It should be noticed
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4.1 Introduction to Stochastic Modelling

that the displacement towards the stationary state of mixing is dependent on all
the external parameters that characterize this process of liquid mixing with a me-
chanical stirrer.

It is necessary to notice the very interesting aspect of the evolution of the func-
tion that characterizes the mixing intensity. As is observable when the stationary
state of mixing is reached, the dispersion of the average residence time quickly
moves towards a very small value, this behaviour is characteristic of the combina-
tion of the external parameters with the chosen topology.

In all situations, the estimated average residence time according to the ratio of
the apparatus volume of liquid and of the flow passing through the apparatus
gives smaller values compared to those calculated with the stochastic procedure.

The data presented in Figs. 4.5–4.7 show many interesting aspects with respect
to the effect of the external parameters on the state of the mixing process with
this type of mechanical stirrer. The most significant conclusions of this example
are summarized below:
. The solution to the problem of the mechanical stirring of a liquid

medium begins with the identification of the process compo-
nents. This step is carried out using an identification particle
which is placed in the elementary volumes V1, V2.........V6 . The
connection process is characterized by the probability showing
that the identification particle moves from one volume of the
topological space to another.
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4 Stochastic Mathematical Modelling

. A calculation procedure has been used for the individual states of
volumes and the flows circulating in the selected topology, in
order to develop a simulation and calculation program of the me-
chanical stirring in a liquid medium.

. A graphic interface is suggested in order to make rapid simula-
tions about a particular state of the system with the external pa-
rameters considered as significant by the researcher.

. The developed simulator allows the calculation of the displace-
ment of the state of the mixing towards the stationary state as
well as the characterization of this stationary state.

To end this section we can make some general observations about stochastic mod-
elling:
. The jump from the description of the phenomenological process

to its stochastic variant, which shows the process’s elementary
states and its connection procedure, is strongly dependent on the
process cognition in terms of chemical engineering as well as on
the researcher’s ability and experience.
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. The mathematical description of the modelled process uses a
combination of one or more stochastic cores and phenomenologi-
cal parts related to non-stochastic process components.

. The building of the mathematical model of a process with sto-
chastic core and its transpositions as simulator, follows the steps
considered in Fig. 3.4.

. The range of the values of the process factors considered by the
simulator and the process exits considered by the graphic inter-
face of the simulator requires very careful selection.

At this point in this chapter, it is easy to understand that, using the methodology
above, the modelling of a chemical transformation presents no important diffi-
culty if the chemical reaction is fitted in the general framework of the concepts of
probability theory. Indeed, the discrete molecular population characterizing a
chemical system can be described in terms of the joint probability of the random
variables representing the groups of entities in the total population.

Until now, the use of stochastic mathematics to describe flow systems and, in
particular, the residence time distribution, has been well developed. However, the
models of processes based upon these principles have generally been less popular
than those based upon the fundamental equations of motion and continuity (see
Section 3.3). A random selection of 20 papers concerning the residence time dis-
tribution models shows that 12 of them are based on the stochastic motion of par-
ticles. Early stochastic modelling efforts in chemical engineering seem to be con-
centrated on a variety of generic systems with continuous flow, on processes with
simultaneous chemical reaction and dispersion, on processes with internal reflux
as well as on processes operating at unsteady state. So, in this domain, many
papers and books aim at demonstrating the applicability of stochastic mathe-
matics to the solution of fundamental chemical engineering problems, and in par-
ticular to the calculation of residence time and of the state of systems inside this
residence time.

Stochastic models present a number of advantages over CFD models as far as
the modelling of the residence time distribution of a complex flow system is con-
cerned. These advantages are:

1. stochastic models are simple to develop,
2. they are computationally light,
3. they are simple to adapt to new systems, and
4. they are much simpler to solve than the full mathematical

description.

The term “Markov chain” frequently appears in this chapter. This term is named
after the Russian mathematician Andre Markov (1856–1922). The Markov theory
is widely applied in many fields, including the analysis of stock-markets, traffic
flows, queuing theories (e.g. modelling a telephone customer service hotline),
reliability theories (e.g. modelling the time for a component to wear out) and
many other systems involving random processes.
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4.2
Stochastic Models by Probability Balance

The prediction of the results obtained with an industrial process is one of the fun-
damental objectives of modelling. This process prediction is necessary to obtain
good information about the process management as well as a better knowledge of
the process itself. If the process is rather complicated or if its laws of evolution are
unknown, the application of a deterministic model is very difficult. However, if
the elementary process components of the process are identified, then the applica-
tion of a stochastic model can be realized, often with spectacular success. In this
case, modelling begins with a complete descriptive model of the process where
the identification of the participant elementary processes, their connections and
the space topology where the process develops will be attentively examined.
Thanks to this description, we can identify the factors that, all together, determine
the process state.

The establishment of stochastic equations frequently results from the evolution
of the analyzed process. In this case, it is necessary to make a local balance (space
and time) for the probability of existence of a process state. This balance is similar
to the balance of one property. It means that the probability that one event occurs
can be considered as a kind of property. Some specific rules come from the fact
that the field of existence, the domains of values and the calculation rules for the
probability of the individual states of processes are placed together in one or more
systems with complete connections or in Markov chains.

In the development of stochastic models, there are six successive steps:
1. The objective of the description of a process evolution,

considering mainly the specific internal phenomena, is to
precede the elementary processes (elementary states)
components.

2. The identification of the elementary steps according to which
the evolution of the investigated process (phenomena) is held.

3. The determination or the division of the transition probabil-
ities from one state to another and the identification with
respect to the connections if the stochastic process accepts a
continuous or a discrete way.

4. The establishment of the balance equations of the probabil-
ities. They show the probability of the process to exist in a
given state, at a considered time in a formal geometry (sys-
tem of selected coordinates).

5. The coupling of the univocity conditions to the problem
established at the end of the probability balance.

6. The model resolution and its evaluation in order to give the
models the requested exits in their relations with the entries.

In the following example, we show a more explicit explanation of the stochastic
model genesis, particularization and evaluation.
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4.2.1
Solid Motion in a Liquid Fluidized Bed

It is well known that fluidization with liquids is characterized by a very good
homogeneity. However, when a liquid–solid suspension is mixed by fluidization
and the size or density of the solid are not homogeneous, segregation is observed.
To carry out the analysis of this problem, we can consider a two-dimensional flui-
dization system composed of pure water and 1 mm diameter glass balls. This sys-
tem operates in the vicinity of a minimum fluidization state. One of these glass
balls is coloured and thrown to the centre of the base of the bed [4.24]. The ball
displacement will give qualitative and quantitative appreciation of the solid mixing
during the fluidization process [4.5, 4.24]. The coloured ball displacement is
recorded with a high-speed camera, which makes it possible to identify the trajec-
tory and the displacement mechanism, allowing the identification of forward and
backward displacements. The result of such an experiment is shown in Fig. 4.8.
We can note that the global particle displacement results in a unique direction, in
spite of the forward-and- backward displacements. If we decompose the particle
displacement (different steps in Fig. 4.8), we can note that one “evolution of the
state” is given by a forward or backward displacement.

water in

water out

thrower 

displacement band

f % 

30

60 

100 

forward back

displacement probability

z

1 

2 

3 4 

5 

6 displacement
steps 

in  z axis

6 

Figure 4.8 Particle displacement in a fluidized bed.

From the analysis of the decomposition of the images, we can observe that the
movement ahead is dominant and controls the whole displacement. In the exam-
ple given in Fig. 4.8, we can observe that the movement ahead (elementary state
or process component) presents approximately the same frequency as the back-
ward displacement. A radial movement is also possible but can be neglected if we
consider only a very thin band in the centre of the bed. The same has been consid-
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ered for stagnation. The description given above, shows that the first steps of the
stochastic modelling are similar to those of the establishment of the model of
transfer phenomena (stage of the descriptive model). The stochastic model here
can be described as the mathematical solution given for a problem of forward-
and- backward displacement [4.3, 4.4, 4.17] where the elementary processes con-
sidered are:
. elementary process of type I – displacement in the direction of

the z-axis with velocity vz.
. elementary process of type II – displacement in the opposite

direction to axis z with a mean velocity –vz.

In this case, the elements of the passage matrix of the particularized problem
present very clear physical meanings:
. p11 is the probability for the coloured particle, which is displaced

by a standard process I, to keep on being displaced by the same
process (a positive displacement with speed vz is followed by the
same displacement).

. p22 is the probability for the coloured particle, which is displaced
by a standard process II, to keep on being displaced by the same
process (the same consideration as above but with speed –vz).

. p12 is the probability for the coloured particle which is displaced
by a standard process I, to skip to a standard process II (i.e. a neg-
ative displacement with respect to axis z occurs after a positive
displacement with a speed vz).

. p21 is the probability for the coloured particle which moves due to
a standard process II, to skip to standard process I (i.e. a positive
displacement with respect to axis z occurs after a negative dis-
placement with speed –vz).

If P1 represents the probability for the process that evolved in state I to remains in
this state after the interval of time Ds, then, because all the states are characterized
by independent probabilities, we can write:

P1 ¼ 1�
PN
j¼2

p1jaDs (4.18)

Here N is the number of the independent states of the process (N = 2 in the ana-
lyzed case) and “a” is the frequency of exchange of an individual state. We can
notice that the dimension for “a” is time–1 (T–1). The same consideration as above
can be used for the probability of the process evolving in state II. Then P2 is writ-
ten:

P2 ¼ 1�
PN

j¼1;j „ 2
p2jaDs (4.19)

If we consider that the element is the coloured ball, the following relation writes
the equations of the probability balance according to the model:
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The probability
that the element
is in the z position
at s + Ds and in
state I

=

The probability that
the element from
z–Dz position at s

with state I evolves,
in the next Ds, with
the same state

+

The probability that
the element from z
position at s with
state II evolves, in
the following Ds,
towards state I

(4.20)

With relations (4.19) and (4.20), we can establish that P1(z, s + Ds) is given by
Eq.(4.21). Equation (4.22), which gives P2(z, s + Ds), is written by the same proce-
dure:

P1ðz; sþ DsÞ ¼ P1ðz� vzDsÞð1� p12aDsÞ þ P2ðz; sÞp21aDs (4.21)

P2ðz; sþ DsÞ ¼ P2ðzþ vzDsÞð1� p21aDsÞ þ P1ðz; sÞp12aDs (4.22)

If we consider that Dsfi 0 in relations (4.21) and (4.22), we can write a two equa-
tion system with partial derivates in P1(z,s) and P2(z,s), as follows:

lim
Dsfi 0

P1ðz; sþ DsÞ � P1ðz� vzDs; sÞ
Ds

¼ �p12aP1ðz� vzDs; sÞ þ p21aP2ðz; sÞ (4.23)

lim
Dsfi 0

P2ðz; sþ DsÞ � P2ðzþ vzDs; sÞ
Ds

¼ �p21aP2ðzþ vzDs; sÞ þ p12aP1ðz; sÞ (4.24)

¶P1ðz; sÞ
¶s

þ vz
¶P1ðz; sÞ

¶z
¼ �ap12P1ðz; sÞ þ ap21P2ðz; sÞ

¶P2ðz; sÞ
¶s

� vz
¶P2ðz; sÞ

¶z
¼ �ap21P2ðz; sÞ þ ap12P1ðz; sÞ

8>><
>>:

(4.25)

(4.26)

In this system, we can take into account that P1(z,s) and P2(z,s) are the probabil-
ities or probability densities, or can be considered as the concentrations which
describe the type I or type II elementary action intensity.

To solve the model obtained, it is necessary to link it with the univocity condi-
tions. They are obtained from the physical meanings of the problem:

1. The only way for the coloured ball to get into the layer is by a
type I elementary action.

2. After the input, it is impossible for the coloured ball to exit
the layer.

3. The only way for the coloured ball to exit the layer is by a
type I elementary action (assuming that the marked particle
has reached the end of the layer and cannot flow back)

These conditions can also be applied for cases where an impulse or signal is intro-
duced in a continuous flow (for instance see Section 3.3):
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z ¼ 0 s ¼ 0 P1ð0; 0Þ ¼ 1 P2ð0:0Þ ¼ 0 (4.27)

z ¼ H s ¼ 0 P1ðH; 0Þ ¼ 0 P2ðH:0Þ ¼ 0 (4.28)

z ¼ 0 s � 0 P1ð0; sÞ ¼ 0 P2ð0:sÞ „ 0 (4.29)

z ¼ H s � 0 P1ðH; sÞ „ 0 P2ðH:sÞ ¼ 0 (4.30)

In this example, two main situations can be considered:
Under the condition that p12 = p21 = 1�2, the system formed by Eqs. (4.25) and

(4.26) takes the form:

¶P1ðz; sÞ
¶s

þ vz
¶P1ðz; sÞ

¶z
¼ �aP1ðz; sÞ þ aP2ðz; sÞ (4.31)

¶P2ðz; sÞ
¶s

� vz
¶P2ðz; sÞ

¶z
¼ �aP2ðz; sÞ þ aP1ðz; sÞ (4.32)

where a corresponds to ap12 = ap21 = a/2.
From a practical point of view, the main interest may be given to the sum P(z,s)

= P1(z,s) + P2(z,s). It describes the density of probability when the particle reaches
position z, at time s, no matter what elementary action (type I or II), it has been
subjected to. The derivation of Eqs.(4.31) and (4.32) with respect to s and z,
coupled to an algebraic calculation for P1(z,s) and with the elimination of P2(z,s)
gives the following relation:

¶Pðz; sÞ
¶s

þ 1
2a

¶2Pðz; sÞ
¶s2

¼ v2
z

2a

¶2Pðz; sÞ
¶z2

(4.33)

In the resulting equation, we have the derivatives of the known transport equation
as well as the second order derivative of the variable of the process with respect to
the time. The type of model considered here is known as the hyperbolic model.
Scheidegger [4.25] obtained a similar result and called it: correlated random dis-
placement.

The hyperbolic model is easily reduced to a parabolic model if the value of the

parameter a is large enough to reduce the expression
1

2a

¶2Pðz; sÞ
¶s2

as much as pos-

sible. We have already noticed that “a” and then a correspond to the measurement
of the passage frequency.

We can easily imagine the case of a group of very small particles (molecules for
example), which quickly change positions; this produces the image describing the
diffusion movement. Equation (4.34) describes the diffusion model or the model
with a parabolic equation:

¶Pðz; sÞ
¶s

¼ v2
z

2a

¶2Pðz; sÞ
¶z2

(4.34)
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If we consider now that the condition (4.29) changes in order to obtain P2 (0, s) = 0
then according to the sum of Eqs.(4.27) and (4.29) we obtain the initial condition
of a Dirac’s pulse:

Pðz; 0Þ ¼ dðzÞ ¼ 1 z ¼ 0
0 z „ 0

���� (4.35)

The coloured particle is displaced in the fluidized bed according to the model and
the laws of diffusion. Indeed, the solution to the diffusion model described by Eq.
(4.34) and by the initial condition (4.35) is the following [4.26, 4.27]:

Pðz; sÞ ¼
ffiffiffiffiffiffiffiffiffi

a

2v2
zs

r
exp � az2

2vzs

� �
(4.36)

The elliptic model given by Eq. (4.33) and the initial condition (4.35) gives the so-
lution obtained with the relation (4.37) [4.5]:

Pðz; sÞ ¼aexpð�asÞ
2vz

I0 as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

2v2
zs2

s !
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2

v2
zs2

s I1 as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

2v2
zs2

s !2
6664

3
7775
;

zj j � vzs

Pðz; sÞ ¼ 0: zj j � vzs (4.37)

I0(x) and I1(x), in Eq. (4.37), are the Bessel functions with imaginary arguments
and they can be written as follows:

I0ðxÞ ¼
P¥
k¼0

x
2

� �2k

ðk!Þ2
; I1ðxÞ ¼

X¥
k¼0

x
2

� �2kþ1

ðk!Þðkþ 1Þ!: (4.38)

The graphical representations of solutions (4.36) and (4.38) are given in Fig. 4.9.

The dimensionless variables za = z/H and ta =
v2

H2

s

2a

� �
have been used here. The

curves considered in this figure were drawn taking into account the values of
vz = 0.1 m/s, a = 10 s–1 and H = 0.2 m. In Fig. 4.9, we can observe that:

1. Both models represent the same phenomenon because the
curves P(z,s) versus za and ta (for the same conditions) are
almost identical. The only difference is observed in the fields
of very small times which are not of interest in this analysis.

2. The low values of P(z, s), which are presented for za > 0.15,
show that the marked particle has a strong conservative ten-
dency because it keeps its position near the injection point
where za is small.

3. In this particular case, the values considered for a and vz are
chosen without any deep experimental appreciation. How-
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ever, in other situations, intensive experimental work would
be necessary.

4. The mixing process is axial and the particle displacement is
well represented by both models. However, the elliptic model
seems to be a little more illustrative because it considers
small values of za and ta.

P(z, τ) 

v2 τ/(2aH2) = 

0   0.1    0.2  0.3 za

1/2

1/5 

1/20 

0.3

0.6

0.9

Figure 4.9 The space–time evolution of P (z, s) by the elliptic
model (dashed line) and hyperbolic model (continuous line).

In this problem of axial mixing, it should be specified that the calculated value

of
v2

z

2a
was approximately 10–3 m2/s; this is comparable with the typical experimen-

tal values of the axial dispersion coefficient in fluidized beds with liquids.

Another stochastic model (4.27)–(4.32) treatment can be made when the aim is
to calculate the average time of residence and the axial dispersion coefficient. In
this problem, we use the properties of the characteristic function, which is asso-
ciated with the distribution function of the average time of residence [4.28, 4.29].
For this analysis we start with the Laplace transformation of the stochastic model
when the system (4.31)–(4.32) is considered:

sP1ðz; sÞ � P1ðz; 0Þ þ vz
dP1ðz; sÞ

dz
¼ �p12aP1ðz; sÞ þ p21aP2ðz; sÞ

sP2ðz; sÞ � P2ðz; 0Þ � vz
dP2ðz; sÞ

dz
¼ �p21aP2ðz; sÞ þ p12aP1ðz; sÞ

8>><
>>:

(4.39)

(4.40)

Taking into account the univocity conditions (for instance, look at relations (4.27)–
(4.30)), P1(z, 0) = P2(z,0) = 0), the equations above can be written:
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vz
dP1ðz; sÞ

dz
¼ �ðsþ p12aÞP1ðz; sÞ þ p21aP2ðz; sÞ

vz
dP2ðz; sÞ

dz
¼ ðsþ p21aÞP2ðz; sÞ � p12aP1ðz; sÞ

8>><
>>:

(4.41)

(4.42)

Now, if Eq.(4.41) is derived according to s and in the obtained result, we make two
replacements (dP2(z,s)/dz by its value given in Eq. (4.42) and P2(z,s) by its value
from Eq. (4.41)), then both equations combine to give:

vz
d2P1ðz; sÞ

dz2
þ aðp12 � p21Þ

dP1ðz; sÞ
dz

� ðap12Þ2 � ðsþ ap12Þ2

vz

" #
P1ðz; sÞ ¼ 0 (4.43)

After the group of relations (4.27) to (4.30) we can consider that the conditions
that have to be coupled with Eq. (4.43) are:

P1ð0; 0Þ ¼ 1 ; P1ð0; sÞ ¼ 0 ; P1ðH; 0Þ ¼ 0 (4.44)

These conditions introduce a complication with respect to the solution to the prob-
lem: dP1(0,0)/dz is absent and the top condition is opposed to the integration
(z = H). This problem can be circumvented if we consider that the pulse at the
input of the fluidized layer can be coupled or not with a particular condition on
the output. To simplify the problem, we can choose in Eq.(4.43) vz = 1 as the con-
ventional unit/second. This selection implies that the z dimension (and thus H)
would be measured in a conventional unit. When p12 = p21 = p11 = p12 = 0.5, Eq.
(4.43) is simplified to Eq. (4.45), which has the general solution (4.46). Here, k is
given by relation (4.47):

d2P1ðz; sÞ
dz2

� 2sþ a
2

� �2

� a
2

� �2
" #

P1ðz; sÞ ¼ 0 (4.45)

P1ðz; sÞ ¼ C1e�kz þ C2eþkx (4.46)

k2 ¼ 2sþ a
2

� �2

� a
2

� �2
" #

(4.47)

The solution of the system has to check the value of constants C1 and C2 (4.46).
The relations (4.48) are thus obtained and lead to the solution (4.49):

C1 ¼
ð1þ kÞ2

ð1þ kÞ2 � ð1� kÞ2e�2kH
C2 ¼

ð1� kÞ2e�2kH

ð1þ kÞ2 � ð1� kÞ2e�2kH
(4.48)

P1ðz; sÞ ¼
ð1þ kÞ2e�kz � ð1� kÞ2e�2kðH�zÞ

ð1þ kÞ2 � ð1� kÞ2e�2kH
(4.49)
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Once Eq. (4.41) is adapted to the modifications carried out above, it can be used to
give an expression for P2 (z,s), then we can write:

P2ðz; sÞ ¼
ð1� kÞ2e�kz � ð1� kÞ2e�2kðH�zÞ

ð1þ kÞ2 � ð1� kÞ2e�2kH
(4.50)

The function of the distribution of the residence time from 0 up to H can be
obtained by the sum of the probabilities of the exit from the way. This is possible
at z = H with an elementary action of type I and at z = 0 with a standard elemen-
tary action II. Thus, for the function of residence time distribution, the following
equation can be written:

f ðsÞ ¼ P1ðH; sÞ þ P2ð0; sÞ (4.51)

The characteristic function for a distribution law of a random variable is the
Laplace transform of the expression of the distribution law. For the analysis of the
properties of the distribution of a random variable, the characteristic function is
good for the rapid calculation of the centred or not, momentum of various orders.
Here below, we have the definition of the characteristic function usðsÞ and its par-
ticularization with the case under discussion:

usðsÞ ¼
R¥
0

f ðsÞe�ssds ¼
R¥
0

P1ðH; sÞ þ P2ðH; sÞð Þe�ssds ¼ P1ðH; sÞ þ P2ð0; sÞ (4.52)

Relations (4.49) and (4.50) rapidly show what P1 (H, s) and P2 (0,s) are known and
thus, in this case, Eq. (4.52) is written as follows:

usðsÞ ¼
ChðkHsÞ þ 1� k2

2k
ShðkHÞ � 1þ k2

2k
ShðkHsÞ

1þ k2

2k
ShðkHÞ þ ChðkHÞ

Here, the sine and cosine hyperbolic functions (Sh and Ch) are well-known
expressions. The average value of the residence time in the way 0–H can be
described with the assistance of the characteristic function:

sm ¼
R¥
0

sf ðsÞds ¼ �us ¢ð0Þ (4.53)

The calculation of an analytical derivative for usðsÞ by using relation (4.52) is very
difficult and tedious. Here below, we make the numerical calculation for the deriv-
ative at s = 0. To do so, we use the relation that defines the derivative of a function
in a point. We then obtain:
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us ¢ð0Þ ¼ lim
sfi 0

usðsÞ � usð0Þ
s� 0

¼ lim
sfi 0

usðsÞ � 1
s

¼ lim
sfi 0

ChðkHsÞ � kShðkHÞ � ChðkHÞ � 1þ k2

2k
ShðkHsÞ

1þ k2

2k
sShðkHÞ þ sChðkHÞ

¼
lim
sfi 0
½ðk¢Hsþ kHÞShðkHsÞ � k¢HShðkHÞ� � lim

sfi 0

k2H
s

ShðkHÞ
kH

� lim
sfi 0

ð1þ k2ÞH
2

ShðkHsÞ
kHs :::

l lim
sfi 0
½1þ k2

2k
ShðkHÞ þ ChðkHÞ

¼ � aH2 þ aHþH
2

� �
=

H
2
þ 1

� �
¼ � 2aH2 þ 2aHþHÞ

Hþ 2

(4.54)

Consequently, the expressions of the mean residence time in the way 0–H and
those of the linear distance traversed during motion can be written as follows:

sm ¼
2aH2 þ 2aHþHÞ

Hþ 2
; lm ¼ vZsm ¼

ð2aH2 þ 2aHþHÞ � 1
Hþ 2

(4.55)

It is necessary to pay careful attention to these last two expressions where H is
considered in conventional length units, which corresponds to a vz = 1. For exam-
ple if vz = 1 cm/s, then the conventional unit (cu) is cm, therefore, in the relations,
H would be expressed in cm. Another example shows that vz = 0.02 m/s; so a
value of the conventional length unit of 1 cu = 0.02 m is requested to make
vz = 1 cu/s. If, in this case, the trajectory is 0.2 m, for example, then, for H,
H = 0.2/0.02 = 10 is used which corresponds to a dimensionless value. For
very large H values, relation (4.55) can be simplified as follows:
sm ¼ 2aðHþ 1Þ » 2aH. This simplification can guide us towards various specula-
tive conclusions with respect to the covered linear distance. Categorically, the
result obtained can be explained by the perfect similarity of the final relationships
with the well-known formulas used in mechanics.

The problem of theoretical calculation of an axial dispersion coefficient for this
example of displacement of the coloured ball is solved in an way identical to the
stochastic problem with three equal probable elementary actions (for instance
look at the example of axial mixing in a mobile bed column).

If we consider that p12 „ p21. From a phenomenological point of view, it is easier
to accept a difference between p12 and p21. This is typical for a case where a direc-
tional internal force acts on a marked particle. As an example, we can consider a
particle displacement given by a difference between the weight and the Archi-
medes force. In this case, the model to be analyzed is described by relations (4.43)
and (4.44). For vz = 1 u.c/s, Eq. (4.43) is written as below:

d2P1ðz; sÞ
dz2

þ aðp12 � p21Þ
dP1ðz; sÞ

dz
� ðap12Þ2 � ðsþ ap12Þ2
h i

P1ðz; sÞ ¼ 0 (4.56)
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If a ¼ ap12,b ¼ ap21 and k2 ¼ sðsþ 2aÞ, then Eq. (4.56) becomes:

d2P1ðz; sÞ
dz2

þ ða� bÞ dP1ðz; sÞ
dz

��k2P1ðz; sÞ ¼ 0 (4.57)

The discriminant associated with the characteristic equation connected to Eq.
(4.57) is always positive (D ¼ ða� bÞ2 þ 4k2) and the solution of the differential
equation (4.57) is written like a sum of the exponential terms. In addition, the so-
lution for a ¼ b must find the former case presented. According to the example
already discussed, we have new expressions for P1ðz; sÞ and P2ðz; sÞ:

P1ðz; sÞ ¼
ð1þ kÞ2e�

½ða�bÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�bÞ2þ4k2
p

2 z � ð1� kÞ2e�2 ða�bÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�bÞ2þ4k2
p	 


ðH�zÞ

ð1þ kÞ2 � ð1� kÞ2e�2kH

P2ðz; sÞ ¼
ð1� kÞ2e�

½ða�bÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�bÞ2þ4k2
p

2 z � ð1� kÞ2e�2 ða�bÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�bÞ2þ4k

2
p	 


ðH�zÞ

ð1þ kÞ2 � ð1� kÞ2e�2kH

Now there is no obstacle to continuing with the estimation of the characteristic
function, average residence time etc.

The last two applications, where the genesis, particularization and evaluation of
a stochastic model were improved, undoubtedly show the capacity and the force of
stochastic modelling.

4.3
Mathematical Models of Continuous and Discrete Polystochastic Processes

Polystochastic models are used to characterize processes with numerous elemen-
tary states. The examples mentioned in the previous section have already shown
that, in the establishment of a stochastic model, the strategy starts with identify-
ing the random chains (Markov chains) or the systems with complete connections
which provide the necessary basis for the process to evolve. The mathematical
description can be made in different forms such as: (i) a probability balance, (ii) by
modelling the random evolution, (iii) by using models based on the stochastic dif-
ferential equations, (iv) by deterministic models of the process where the parame-
ters also come from a stochastic base because the random chains are present in
the process evolution.

As was described in the section concerning modelling based on transfer phe-
nomena, a general model can generate many particular cases. The same situation
occurs in stochastic modelling processes. The particularization of some stochastic
models results in a new image of chemical engineering processes. It is called the
stochastic or polystochastic image. It is actually well accepted that almost all
chemical engineering processes have a stochastic description [4.5–4.7, 4.30, 4.31].

Some ideas and rather simple concepts, which are fundamental for the alphabet
of stochastic modelling, will be described here for some particular cases. It is
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obvious that knowledge of the alphabet of stochastic methods is only one area of
knowledge necessary to become an expert in stochastic modelling. To this aim, a
major study of the literature and especially a great personal experience in solving
problems, together with a clear knowledge of the corresponding theory are neces-
sary. Some of the aspects presented below will show how to apply polystochastic
modelling in chemical engineering.

4.3.1
Polystochastic Chains and Their Models

In the problem of polystochastic chains, different situations can be considered. A
first case is expressed by one or several stochastic chains, which keep their individ-
ual character. A second case can be defined when one or several random chains
are complementary and form a completely connected system. In the first case, it
is necessary to have a method for connecting the elementary states which define a
chain.

4.3.1.1 Random Chains and Systems with Complete Connections
If we consider the example described at the beginning of this chapter, the element
of study in stochastic modelling is the particle which moves in a trajectory where
the local state of displacement is randomly chosen. The description for this dis-
crete displacement and its associated general model, takes into consideration the
fact that the particle can take one of the positions i = 0,–1,–2,–3 ..... where i is a
number contained in Z. The particle displacement is carried out step by step and
randomly according to the type of component process (elementary state). The type
of motion (of the process component) followed by the particle is denoted k. Here,
k ˛ K, K is a field of the finite values and pek is the probability of passage from e
to k. In addition, e is a random variable, which gives the length of displacement
for each process component; thus ek represents the length of displacement for the
k-type motion. The distribution function of this random variable (e) is written:
pk(a), a ˛ Z. It represents the probability to have a step with length �a’ for a k-type
displacement.

The process described above is thus repeated with constant time intervals. So,
we have a discrete time s ¼ nDs where n is the number of displacement steps. By
the rules of probability balance and by the prescriptions of the Markov chain the-
ory, the probability that shows a particle in position �i’ after n motion steps and
having a k-type motion is written as follows:

Pkðn; iÞ ¼
P
e˛K

P
a˛Z

Pkðn� 1; i� aÞpekpkðaÞ (4.58)

In order to begin the calculations, we need to know some parameters such as
the process components (k = 2 or k = 3, etc.), the trajectory matrix (pek in the
model), and the equation that describes the distribution function of the
path length for displacement k and for the initial state of the process
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Pkð0; i� aÞ ; 8i˛Z and k˛K. In our example, when the particle displacement is
realized by unitary steps and in a positive direction (type I) or in a negative direc-
tion (type II) and where the path length distribution is uniform with a unitary val-
ue for both component processes, we have:

k ¼ 1; 2 ; p1ðaÞ ¼
1 for a ¼ 1
0 for a „ 1

�
; p2ðaÞ ¼

1 for a ¼ �1
0 for a „ � 1

�

For this case, the particularization of the relation (4.58) gives the following sys-
tem:

P1ðn; iÞ ¼ P1ðn� 1; i� 1Þp11 þ P2ðn� 1; i� 1Þp21

P21ðn; iÞ ¼ P1ðn� 1; iþ 1Þp12 þ P2ðn� 1; iþ 1Þp22

(
(4.59)

If, in addition to the standard process components (type I and II), we introduce a
third one (position or displacement k = 3), which considers that the particle can
keep a rest position, then the general model produces the following particulariza-
tion:

P1ðn; iÞ ¼ P1ðn� 1; i� 1Þp11 þ P2ðn� 1; i� 1Þp21 þ P3ðn� 1; i� 1Þp31

P2ðn; iÞ ¼ P1ðn� 1; iþ 1Þp12 þ P2ðn� 1; iþ 1Þp22 þ P3ðn� 1; iþ 1Þp32

P3ðn; iÞ ¼ P1ðn� 1; iÞp13 þ P2ðn� 1; iÞp23 þ P3ðn� 1; iÞp33

(4.60)

8><
>:

pkðaÞ ¼
1 for ðk ¼ 1; a ¼ 1Þ; ðk ¼ 2; a ¼ �1Þ; ðk ¼ 3; a ¼ 0Þ

0 for other cases

�
(4.61)

Schmaltzer and Hoelscher [4.32] had suggested this model for the description of
the axial mixing and the mass transfer in a packed column. Another particulariza-
tion can be made in the case when the types of trajectory are chains corresponding
to the completely random displacement (for example in the steps k = 1, which rep-
resent a displacement ahead, it is possible to have a small step towards the right
or the left. In a k-type chain, the probability to realize a step towards the right is
noted pk whereas qk represents the probability for the particle to realize a step
towards the left (then, the probability pk(a) is expressed according to relation
(4.63)).

The model which is obtained can be described by relations (4.62) and (4.63).

Pkðn; iÞ ¼
P
e˛K

pkPeðn� 1; i� akÞ þ qkPeðn� 1; iþ aKÞ
	 


pek (4.62)

pkðaÞ ¼
pk for a ¼ ak

qk for a ¼ �ak

0 for a „ akand a „ � ak

8<
: (4.63)

For the mathematical characterization of polystochastic chains, we often use the
theory of systems with complete connections. According to the definition given in
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Section 4.1, the group [(A,A) ,(B,B) ,u,P] defines a random system with complete
connections. For each one of these systems two chains of the random variables
are associated: Sn with values in A and En with values in B; the causal dependence
between both chains is given by the function u as is shown here below:

S0 
P(S0 ,α) E1 

S1=u(S0,E1) P(S1,α) E2 

S2=u(S1,E2) P(S2,α) E3……

(4.64)

In system (4.64), P(S0,a), P(S1,a), etc., represent the conditioned probabilities of
temporary transition from (A,A) to (B,B). The probability P(Sn,a) is given accord-
ing to the following statement: “P(Sn,a) is the probability that the phenomenon pro-
duced at time n+1 (En+1) belongs to a (with a�A) with the condition that, at time n,
the Sn state has already occurred”. The chain Sn with values in A, gives a Markov
chain En (with values in B) which is in fact a complete connections chain. Before
particularizing the model given in relation (4.58) into a case with two random vari-
ables, we need to explain the case of a particle displacement in a random system
with complete connections [4.33]. As shown here, the jumps of a particle are ran-
domly dimensioned by a˛Z; if we have a conditioned probability pk(a) in state
k˛K, then the component elements characterized by k˛K are different according
to their nature (trajectory velocity, medium conditions, etc.). If the particle is posi-
tioned at j˛Z and k is its temporary state, the passage probability to a new process
e˛K is pkeðjÞ.

At the beginning of the process with j˛Z, where the state is a k-type process,
the particle jumps distance a and, at the same time, evolves towards process e
with the probability pe(a)pke(j). Consequently, it reaches j + a in state e. Now, the
new beginning is in j + a and in the e state and it jumps a¢ distance and realizes a
state commutation towards e¢ (e¢˛K) with pe¢(a)pee¢(j + a) probability.

The system keeps evolving considering that it is a random system with complete
connections [(A,A) ,(B,B) ,u,P] and with the following particularizations: A = B =
ZxK, u(Sn,En+1) = u((j,k),(a,e)) = (j+a,e) and P(Sn,...E1S1,S0) = P((j,k);(a,e)) = pe(a)pke(j)
(please look at the definition of a random system with complete connections). The
statement above is supported by the fact that P(Sn,...E1,S1,S0) = P((j,k);(a,e)) with
values in K is a real probability (we can observe that

P
k˛K

peðaÞpkeðjÞ ¼ 1 becauseP
a˛Z

peðaÞ ¼ 1 and
P
e˛Z

pkeðjÞ ¼ 1). The particle displacement, described above, is

represented by relation (4.64), which is particularized as follows:
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(j,k) pk(a)pke(j) (a,e)

(j+a,e) pe(a)pee'(j+a) (a',e')

(j+a+a' ,e') ……

(4.65)

A complete particularization can be made in order to show more precisely that the
case considered is a random system with complete connections. In this case, Sn is
the first random vector:

Sn ¼
Sn ¢
Sn†

����
���� ¼ particle position at time n

process component at time n

����
����

whereas En+1 is the second random vector:

Enþ1 ¼
Enþ1 ¢
Enþ1†

����
���� ¼ jump distance at time n

process component at time n

����
����

The function u is given by Sn+1 = u(Sn,En+1) and the probability P(Sn,....E1,S1,S0)
can be expressed as:

P E1 ¼
a
e

��� ���=S0 ¼
j
k

����
����

� �
¼ Pððj; kÞ; ða; eÞÞ

P Enþ1 ¼
a
e

��� ���=Sn;En; :::S1;E1; S0

� �
¼ PðSn; ða; eÞÞ (4.66)

Obviously, Sn is a homogeneous Markov chain with a passage probability given by
PðSnþ1 ¼ ðj; eÞ=Sn ¼ ði; kÞÞ ¼ peðj� iÞpkeðiÞ, whereas, En is a complete connec-
tion chain. In this case, the stochastic model (4.58) is known as the Chapman–
Kolmogoraov model; it can be generalized by the Eq. (4.67):

Pkðn; iÞ ¼
P
e˛K

P
a˛Z

Pkðn� 1; i� aÞpekði� aÞpkðaÞ (4.67)

In the case when the transition probabilities do not depend on the position, noted
here by i, they are constant and therefore the chain En is a Markov chain.

4.3.2
Continuous Polystochastic Process

The stochastic models can present discrete or continuous forms. The former dis-
cussion was centred on discrete models. The continuous models are developed
according to the same base as the discrete ones. Example 4.3.1 has already shown
this method, which leads to a continuous stochastic model. This case can be gen-
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eralized as follows: a particle in the z position moves in a medium with velocity vk

k = 1,2,3,......n, where n is a finite number; in the interval of time Ds, the probabil-
ity to pass from speed vk to vj is pkj = akj Ds. This corresponds to a connection
process of the Markov type. If Pk(z,s + Ds) is the probability that the particle
reaches z at s + Ds with velocity vk, then we can write:

Pkðz; sþ DsÞ ¼
Pn
j¼1

Pjðx� vkDs; sÞpjk ; 1 < = j, k < = n (4.68)

We can notice that relation (4.68) describes the evolution of the particles having
reached position z in time s + Ds which were originally positioned among the par-
ticles at the distance vkDs with respect to z. In the interval of time Ds, their veloci-
ty changes to vk. In the majority of the displacement processes with vk velocity, a
complete system of events appears and, consequently, the matrix of passage from
one velocity to another is of the stochastic type. This means that the addition of

the probabilities according to the unit value limit is:
Pn
j¼1

pkj ¼ 1 ; 8k ¼ 1;n. If, in

relation (4.68), we replace pkk ¼ 1�
Pn

j¼1;j„ k
pkj then, we can write:

Pkðz; sþ DsÞ ¼ Pkðz� vkDs; sÞ �
Xn

j¼1;j „ k

pkj

0
@

1
APkðz� vkDs; sÞ

þ
Xn

j¼1

pjkPjðz� vjDs; sÞ

(4.69)

In the equation system (4.69), the subscripts j, k are limited by the number of ele-
mentary states. Thus, we always have 0 < = j, k < = n. Now, if we use a develop-
ment around the point (x, s) for the first term of Eq. (4.69) we have:

Pkðz� vkDs; sÞ ¼ Pkðz; sÞ � vk
DPkðz; sÞ

Dz
þ :::::: (4.70)

The development described above transforms system (4.69) into the following sys-
tem of n equations (k = 1, n) with partial derivatives:

¶Pkðz; sÞ
¶s

þ vk
¶Pkðz; sÞ

¶z
¼ �

Xn

j¼;j „ k

akj

0
@

1
APkðz; sÞ þ

Xn

j¼1;j „ k

ajkPjðz; sÞ (4.71)

If the parameters akj have constant values, then the model described by system
(4.71) corresponds to a Markov connection linking the process components. In
this case, as in general, the process components represent the individual displace-
ments which can be characterized globally through the convective mixing of their
spectra of speeds ( vk, k = 1,N).

The model developed in Section 4.3.1 is a particular case of the model (4.71)
where k = 2,v1 = vz, v2 = –vz (for instance see relations (4.25), (4.26)):
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¶P1ðz; sÞ
¶s

þ vz
¶P1ðz; sÞ

¶z
¼ �a12P1ðz; sÞ þ a21P2ðz; sÞ (4.72)

¶P2ðz; sÞ
¶s

� vz
¶P21ðz; sÞ

¶z
¼ �a21P2ðz; sÞ þ a12P2ðz; sÞ (4.73)

For k = 3 , v1 = vz ,v2 = –vz v3 = 0 (at v3 = 0 the particle keeps a stationary position)
we have the model (4.74)–(4.76) which has been successfully used in the analysis
of axial mixing for a fluid that flows in a packed bed column [4.28]:

¶P1ðz; sÞ
¶s

þ vz
¶P1ðz; sÞ

¶z
¼ �ða12 þ a13ÞP1ðz; sÞ þ a21P2ðz; sÞ þ a31P3ðz; sÞ (4.74)

¶P2ðz; sÞ
¶s

� vz
¶P21ðz; sÞ

¶z
¼ �ða21 þ a23ÞP2ðz; sÞ þ a12P1ðz; sÞ þ a32P3ðz; sÞ (4.75)

¶P1ðz; sÞ
¶s

¼ �ða31 þ a32ÞP3ðz; sÞ þ a13P1ðz; sÞ þ a23P2ðz; sÞ (4.76)

A second continuous polystochastic model can be obtained from the transforma-
tion of the discrete model. As an example, we consider the case of the model
described by Eqs. (4.62) and (4.63). If Pk(z,s) is the probability (or, more correctly,
the probability density which shows that the particle is in the z position at time s

with a k-type process) then, pkj is the probability that measures the possibility for
the process to swap, in the interval of time Ds, the elementary process k with a
new elementary process (component) j. During the evolution with the k-type pro-
cess state, the particle moves to the left with probability bk and to the right with
probability ck (it is evident that we take into account the fact that bk + ck = 1). For
this evolution, the balance of probabilities gives relation (4.77), which is written in
a more general form in Eq. (4.78):

Pkðz; sþ DsÞ ¼
Pn
j¼1

pjk½bkPjðz� Dz; sÞ þ ckPjðzþ Dz; sÞ� ; 1 < = j, k < = n (4.77)

Pkðz; sþ DsÞ ¼
P
m

Pn
j¼1

Pkðz� Dzm; sÞpjkðz� DzmÞpiðDzmÞ (4.78)

Equation (4.78) is developed with the assistance of relation (4.77). To do so, it is
necessary to consider the values of pjk(z – Dzm) = pjk as constant and the following
relation for piðDzmÞ:

piðDzmÞ ¼
bk for Dzm ¼ Dzk

ck for Dzm ¼ �Dzk

0 for other cases

8<
:

Now, we have to take into account the following considerations for relation (4.77):
. the passage matrix is stochastic, it results in:

Pn
j¼1

pkj ¼ 1; :pkk ¼ 1�
Pn

j¼1;j „ k
pkj.
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. the connection process is of Markov type and then: pkj ¼ akjDs.

. the probabilities Pk(z – Dz,s) and Pk(z + Dz,s) are continuous
functions and can be developed around (z,s):

Pkðz� Dz; sÞ ¼ Pkðz; sÞ � Dzi
DPkðz; sÞ

Dzi
þ Dz2

i

2
D2Pk

ðDziÞ2
� ::::.

. the displacements to the left and to the right by means of an ele-
mentary k-process have the same probability and then
bk ¼ ck ¼ 1=2.

These considerations result in the following equation:

¶Pkðz; sÞ
¶s

¼ Dk
¶2Pkðz; sÞ

¶z2
�

Xn

j¼1;j„ k

akj

0
@

1
APkðz; sÞ þ

Xn

j¼1;j„ k

ajkPjðz; sÞ ;

1< = j, k < = n (4.79)

In Eq. (4.79), Dk represents the limit Dk ¼ lim
Dsfi 0

Dz2
k

Ds
, which has a finite value, and

the dimension of a diffusion coefficient. It is called: diffusion coefficient of the ele-
mentary k-process.

If the displacement velocity of the particle is described by +vx and –vx in the x
axis, +vy and –vy in the y axis and finally +vz and –vz in the z axis, we can consider
the following diffusion coefficients:

Dxx = lim
Dsfi 0

Dx2

Ds
, Dyy = lim

Dsfi 0

Dy2

Ds
,Dzz = lim

Dsfi 0

Dz2

Ds
, Dxy = lim

Dsfi 0

DxDy
Ds

, etc.

This definition of diffusion coefficients considers the non-isotropic diffusion
behaviour in some materials. So, this stochastic modelling can easily be applied
for the analysis of the oriented diffusion phenomena occurring in materials with
designed properties for directional transport.

Model (4.79) describes an evolutionary process, which results from the coupling
of a Markov chain assistance with some individual diffusion processes. This
model is well known in the study of the coupling of a chemical reaction with dif-
fusion phenomena [4.5, 4.6, 4.34, 4.35]. The models described by relations (4.63)
and (4.79) can still be particularized or generalized. As an example, we can notice
that other types of models can be suggested if we consider that the values of akj

are functions of z or s or Pk(z,s) in Eq.(4.79). However, it is important to observe
that the properties of the Markov type connections cannot be considered when
akj ¼ f ðPKðz; sÞÞ.

Using stochastic differential equations can also represent the stochastic models. A
stochastic differential equation keeps the deterministic mathematical model but
accepts a random behaviour for the model coefficients. In these cases, the prob-
lems of integration are the main difficulties encountered. The integration of sto-
chastic differential equations is known to be carried out through working methods
that are completely different from those used for the normal differential equations
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[4.36, 4.37]. We can overcome this difficulty if, instead of using the stochastic dif-
ferential equations of the process, we use the analysis of the equations with partial
derivatives that become characteristic for the passage probabilities (Kolmogorov-
type equations).

The following practical example will illustrate this problem: a mobile device
passes through an arbitrary space with a variable velocity. By means of the classic

dynamics analysis, we can write that
dXðsÞ

ds
¼ kvðsÞ. In the stochastic language,

this equation can be written as follows:

dXðsÞ
ds
¼ FðXðsÞ; vðsÞÞ, X(0) = X0 (4.80)

where F(X,v) is an operator (F(X,v) = kv for example), defined for RnxRm with val-
ues in Rn. It is able to be derivate in X, keeping the continuity in v.
. v(s) is a Markov diffusion process (for instance, look at the model

described by Eq. (4.79)). The following relations give the variances
and the average (mean) values of this diffusion process:

. the variances:

rij ¼ lim
Dsfi 0

E ½viðsþ DsÞ � viðsÞ�½vjðsþ DsÞ � vjðsÞ�=vðsÞ � v
n o

(4.81)

. the mean values

mjðvÞ ¼ lim
Dsfi 0

E ½ðvjðsÞ � vðsÞ�=vðsÞ
n o

¼ v (4.82)

Here, i, j = 1, 2,...m are subscripts which indicate the individual states of the
device speed. The coupled process (X(s),v(s)) is a Markov process with values in
Rn+m and with mean value and variances (X,v), (X,X) given by the following rela-
tions:

lim
Dsfi 0

1
Ds

E
n
ðXiðsþ DsÞ � XðsÞÞ=ðXðsÞ; vðsÞÞ

o
¼ FiðXðsÞ; vðsÞÞ (4.83)

lim
Dsfi 0

1
Ds

E ½Xiðsþ DsÞ � XðsÞ�½vjðsþ DsÞ � vjðsÞ�=ðXðsÞ; vðsÞÞ
n o

¼ 0 (4.84)

lim
Dsfi 0

1
Ds

E ½Xiðsþ DsÞ � XðsÞ�½Xjðsþ DsÞ � XjðsÞ�=ðXðsÞ; vðsÞÞ
n o

¼ 0 (4.85)

If F(X,v) = v or if v is the device speed, then the stochastic differential equation
(4.80) shows that the state of the device is a function which depends on position
and speed. The device passes from one speed to another with the rules defined by
a diffusion process and with an average value mj(v) and a variance ri j, 1 < = i, j <
= n. It is important to note that the passage probability densities of the coupled
Markov process (X(s),v(s)) – written: p = p(s,X,v,X0,v0) – should verify the following
equation:
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¶p
¶s
¼ 1

2

Xm
i;j¼1

¶2½riiðvÞp�
¶vi¶vj

�
Xm
j¼1

¶½mjðvÞ�
¶vj

�
Xn

i¼1

¶½Fjp�
¶xj

(4.86)

The initial condition used with Eq. (4.86) shows that, at time s = 0, the stochastic
evolution begins according to a signal impulse:

pð0;X; v;X0; v0Þ ¼ dðX� X0Þdðv� v0Þ (4.87)

In Eq. (4.86), Fj is the average value for the coupled Markov process (see Eq.
(4.83)). In Eq. (4.87) p = p(s,X,v,X0,v0) corresponds to the probability density of the
coupled process (X(s),v(s)). To calculate this density of probability at a predefined
time (p(s,X,v)), we use the initial condition:

pð0;X; vÞ ¼ rvð0; vÞdðX� X0Þ (4.88)

where rvð0; vÞ is the probability density of the process v(s) at the start.
With solution p(s,X,v), we can calculate the distribution process X(s) after the

integration for all the possible speeds:

pðs;XÞ ¼
R¥
�¥

pðs;X; vÞdv (4.89)

This method to solve stochastic differential equations has also been suggested to
calculate the solutions of the stochastic models originated from the theory of ran-
dom evolution [4.38, 4.39].

In the following paragraph, we will explain how this method is particularized
for two examples. A random evolution is described with the assistance of a model,
which is based on a dynamic system with operation equations called state equa-
tions, which have to undergo random variations. The first example is given by the
evolution of a bacterial population that develops in a medium with a randomly
changing chemical composition. A second example can be represented by the at-
mospheric distribution for polluting fumes produced by a power station when at-
mospheric turbulences change randomly. Many other examples illustrate these
typical situations where a system in evolution changes its mode of evolution
according to the random changes of the medium or according to the changing
conditions of the process development. In these systems the process can evolve
(move) into a stochastic or deterministic way at time “t” and, suddenly, at time “s”,
the process undergoes another random descriptive evolution.

From a mathematical point of view, a random evolution is an operator O(s,t)
that is improved at both t and s times. The linear differential equation is Eq. (4.90):

dOðs; tÞ
ds

¼ �VðXðsÞÞOðs; tÞ or
dOðs; tÞ

dt
¼ Oðs; tÞVðXðtÞÞ (4.90)

V(X(s) (or V(X(t)) is the expression of an operator which depends on parameter X
(or X(t)), which is the stochastic parameter characterizing the process. It is impor-
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tant to note that the correct expression of X(t) is X(t, e), where e˛X. Here, X is
the region where the elementary steps characterizing the process occur.

If we consider that V(X(t)) is a first order linear differential operator like V(X) =

v(X)
d
dz

with v(X) in R, then for each X value (1 ,2 ,...n, ) v(X) will be a constant that

multiplies the operator
d
dz

out. With this type of random evolution operator, we

can describe the behaviour of a particle that at present moves in the z-axis with a
random speed. This velocity is included in the speed spectrum of the integral pro-
cess.

The concept of infinitesimal operator is frequently used when the random evo-
lutions are the generators of stochastic models from a mathematical point of view.
This operator can be defined with the help of a homogeneous Markov process X(t)
where the random change occurs with the following transition probabilities:

pðt� s;X;AÞ ¼ PðXðtÞ˛A=XðsÞ ¼ XÞ (4.91)

We have to notice that, for different X(t) values, we associate different values for
the elements of the matrix of transition probabilities. When the movement ran-
domly changes the value of X into a value around A, Eq. (4.91) is formulated with
expressions giving the probability of process X(t) at different states. The infinitesi-
mal operator ½Qf � ([Qf ] = Q by function f) is defined as the temporary derivative of
the mean value of the stochastic process for the case when the process evolves
randomly:

½Qf � ¼ � d
ds s¼t

ð
R

f ðyÞpðt� s;XÞdyÞ ¼ � d
ds s¼t

Ex=s

����
���� ðf ðXðtÞÞÞ (4.92)

If the Markov process, considered in Eq. (4.91), is characterized by n states, then
the infinitesimal operator Q corresponds to a matrix (n, n) where the qij elements
are:

qij ¼ lim
tfi s

1
t� s

½pijðt� sÞ � dij�

In the case where XðtÞ or Xðt; eÞ corresponds to a diffusion process (the stochastic
process is continuous), it can be demonstrated that Q is a second order elliptic
operator [4.39– 4.42]. The solution of the equation, which defines the random evo-
lution, is given by a formula that yields O(s,t). In this case, if we can consider that
emðt;XÞ is the mean value of XðtÞ(which depends on the initial value of X0), then,
we can write the following equation:

emðt;XÞ ¼ EX0 Oð0; tÞf ðXðtÞÞgf (4.93)

Here, emðt;XÞ gives the solution for Eq. (4.94) where the operators V(X) and Q
work together:

demðt;XÞ
dt

¼ VðXÞeðt;XÞ þQemðt;XÞ where emð0;XÞ ¼ f ðXÞ (4.94)
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The condition emð0;XÞ ¼ f ðXÞ in the previous equation is a result of O(t,t) = I
where I is the identity operator.

Two examples, which show the methodology to be used in order to establish the
random evolution operator, are developed below:

1. When XðtÞ or, more correctly, Xðt; eÞ is a Brownian motion
process (a displacement with multiple direction changes)
and V(X) is a function of real values, Eq. (4.90) gives the fol-
lowing solution:

Oðs; tÞ ¼ exp
Rt
s

VðXðaÞdaÞ (4.95)

Here, emðt;XÞ is given to the computation with the relation
(4.93). We obtain formula (4.96) where we can observe that
EX = EX0 is a Wiener integral.

emðt;XÞ ¼ EX0 exp
Rt
0

VðXðaÞdaÞf ðXðtÞÞ
� �� �

(4.96)

As far as the infinitesimal operator is elliptic Q ¼ 1
2

d
dX2

� �
,

Eq. (4.94) gives, for emðt;XÞ, the following equation of partial
derivatives:

¶em

¶t
¼ VðXÞem þ

1
2
¶2em

¶X2
where emð0;XÞ ¼ f ðXÞ (4.97)

2. When Xðt; eÞ is a “n states” process with the infinitesimal
generator Q and when V(X) with X = 1,2,3,...n are first order
differential generators, the particularization of relation (4.94)
is given by a system of hyperbolic equations with constant

coefficients. So when V(X) = v(X)
d
dz

and v(X) is in R, this sys-

tem is described by Eq. (4.98). Here qxy are the elements of
the infinitesimal generator:

¶emðt;X; zÞ
¶t

¼ vðXÞ ¶emðt;X; zÞ
¶z

þ
Xn

y¼1

qxyemðt;X;zÞ 1<X<n (4.98)

For relation (4.98), the initial condition emð0;X; zÞ ¼ f ðX; zÞ
can be established according to the form considered for v(X).
This condition shows that, at the beginning of the random
evolution and at each z position, we have different X states
for the process. The examples described above show the diffi-
culty of an analysis when the required process passes ran-
domly from one stochastic evolution to another.

As was stated previously, the method of analysis for the stochastic differential
equations, which gives the probability density p(s,X,v) as a model solution, can be
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applied to build and analyze the models developed from the random evolution
theory. At the same time, from the mathematical point of view, we have shown
that a model solution for a process with random exchanges from one stochastic
evolution to another can be carried out as emðs;X; vÞ mean values. With reference
to this model solution form, Gikham and Shorod [4.43] show that, in a stochastic
process (X,v), the mean values for the process trajectories (emðs;X; vÞ) are given by:

em ¼ emðs;X; vÞ ¼ EXv f ðXðsÞ; vðsÞÞgf (4.99)

otherwise these mean values satisfy the indirect equations of Kolmogorov:

¶em

¶s
¼ 1

2

Xm
i;j¼1

rijðvÞ
¶2em

¶vj¶vi
þ
Xm
j¼1

mjðvÞ
¶em

¶vj
þ
Xn

j¼1

FjðX; vÞ
¶em

¶Xj
;

emð0;X; vÞ ¼ f ðX; vÞ (4.100)

The practical example given below illustrates this type of process evolution and its
solution. Here, we consider a displacement process such as diffusion with v(s).
The process presents a variance r(v) and a mean value m(v) whereas X(s) is an
associated process which takes scalar values given by:

dXðsÞ
ds
¼ hðvðsÞÞXðsÞ ; Xð0Þ ¼ X (4.101)

It is evident that we must have real values for hðvðsÞÞ so, hðvÞ: RfiR where R is
the domain of real numbers. The solution to Eq. (4.101) is:

XðsÞ ¼ Xexp½
Rs
0

hðvðaÞda� and its average value, calculated by the Kolmogorov

relation ((4.100)), corresponds to one of the possible solutions of Eq. (4.102). In
this example relation (4.102) represents the particularization of Eq. (4.100).

¶em

¶s
¼ 1

2
rðvÞ ¶

2em

¶v2
þmðvÞ ¶em

¶v
þ hðvÞX ¶em

¶X
; emð0;X; vÞ ¼ f ðX; vÞ (4.102)

If the function f(X,v), which gives the mean value, is particularized as f(X,v) =
Xg(v), where the derivative of g(v) can be calculated, then the expression for em

becomes: em ¼ emðt;X; vÞ ¼ EXv f ðXðsÞ; vðsÞÞgf = XH(v,s). It is observable that it is

easy to write that Hðv; sÞ ¼ Ev½exp½
Rs
0

hðvðaÞdaÞ�gðvðtÞÞ�. At the same time, H(v,s)

verifies the partial derivative equation (4.103) which is developed from the replace-
ment of the average value em and the function f(X,v) inside Eq. (4.102):

¶H
¶s
¼ 1

2
rðvÞ ¶

2H
¶v2
þmðvÞ ¶H

¶v
þ hðvÞV ; Hð0; vÞ ¼ gðvÞ (4.103)

These equations and the example shown in Section 4.3.1 can be related if we
consider that, when v(s) is a Markov process with discrete valuesi = 1,.......n and

228



4.3 Mathematical Models of Continuous and Discrete Polystochastic Processes

with the infinitesimal generator Q, then, the emi mean values (emi =
emiðt;XÞ ¼ EXi fif ðXðsÞÞg) are the solutions to the following differential equation:

¶emi

¶s
¼
Xm
j¼1

qijemi þ
Xn

k¼1

FkðX; viÞ
¶emi

¶Xk
; emið0;XÞ ¼ fiðXÞ (4.104)

A discussion concerning the equations assembly (4.104) can be carried out divid-
ing it into its different component terms. If we consider the first term alone, we
can observe that it represents a connection for the elementary processes with the
passage matrix eQs The second term corresponds to the transport or convection
process at different speeds. Indeed, v(s) is a two-states process with the infinitesi-
mal generator Q and the function F(X,v) given by the following formula:

Q ¼ �a a

a � a

��� ��� , FðX; –vÞ ¼ –v (4.105)

The particularization of the equations assembly (4.104) results in system (4.106):

¶em1

¶s
� v

¶em1

¶X
¼ �aem1 þ aem2

¶em2

¶s
þ v

¶em2

¶X
¼ �aem2 þ aem1

8>><
>>:
em1ð0;XÞ ¼ f1ðXÞ ; em2ð0;XÞ ¼ f2ðXÞ (4.106)

If the process takes place along the z-axis, then we can write that X = z. Consider-
ing now that em1 and em2 are the average or mean probabilities for the process
evolution with +v or –v states at the z position, we can observe a similitude be-
tween system (4.106) and Eqs. (4.31) and (4.32) that describe the model explained
in the preceding paragraphs. The solution of the system (4.106) [4.5] is given in
Eq. (4.107). It shows that the process evolution after a random movement depends
not only on the system state when the change occurs but also on the movement
dynamics:

em1;2ðX; tÞ ¼ E f1;2ðXÞðXþ
Rt
0

vðsÞdsÞ
� �

(4.107)

4.3.3
The Similarity between the Fokker–Plank–Kolmogorov Equation and the Property
Transport Equation

In Chapter 3, it was established that the local concentration CA characterizes the
state of one property (momentum, heat, mass of species, etc.) in a given system.
In terms of the CA concentration field, the differential form for the conservation
of the property can be written as follows:

¶CA

¶s
þ divðw!CAÞ ¼ divðDCAgrad

!
CAÞ þ divð J

!
SAÞ þ JVC
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This equation shows that the conservation of a property depends on the fortuitous
or natural displacement of the property produced by vector w!, when that is gener-
ated through a volume (JVC) or/and by a surface process (vector JSA). The men-
tioned displacement is supplemented by a diffusion movement (DCA in the right
part of the conservation equation). This movement is characterized by steps of
small dimension occurring with a significant frequency in all directions. When
the diffusion movement takes place against the vector w! it is often called counter-
diffusion. In the case of a medium, which does not generate the property, the rela-
tion can be written as follows:

¶CAðs; xÞ
¶s

þ ¶
¶x

wðs; xÞCAðs; xÞð Þ ¼ ¶
¶x

DCA
¶
¶x
ðCAðs; xÞ

� �
(4.108)

where s represents the time, x is a vector with n dimensions which represents the
coordinates, wðs; xÞ is also an n dimension vector and gives the speed which is
bound to the position,DCA is an n � n matrix that contains the diffusion coeffi-
cients of the property with the local concentration CA. If we assume that the com-
ponent values of the diffusion matrix depend on the concentration values of the
local property then Eq. (4.108), can be written as:

¶CAðs; xÞ
¶s

¼� ¶
¶x

wðs; xÞ þ ¶DCAðs; xÞ
¶CA

¶CA

¶x

� �
CAðs; xÞ

 !
þ

¶
¶x

¶
¶x

DCAðs; xÞCAðs; xÞð Þ

(4.109)

The vectors and the matrix described by relations (4.108) and (4.109) are given in
Table 4.1. It should be specified that only the axial anisotropy in the case of an
anisotropic medium was considered. However, if we want to take into account the
anisotropy through the plane or the surface, we have to consider the terms of type
DCAxy in the DCAðs; xÞmatrix.

Table 4.1 Vectors of Eqs. (4.108) and (4.109).

Case Mono-dimensional Tri-dimensional n � n dimensions

vector

x x ¼ x x ¼
x
y
z

0
@

1
A x ¼

x1

x2

x3
�
xn

0
BBBB@

1
CCCCA

wðs; xÞ wðx; sÞ
wxðx; y; z; sÞ
wyðx; y; z; sÞ
wzðx; y; z; sÞ

0
@

1
A

wx1ðx1; x2; xn; sÞ
wx2ðx1; x2; xn; sÞ
wx3ðx1; x2; xn; sÞ

�
wxnðx1; x2; xn; sÞ

0
BBBB@

1
CCCCA
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Case Mono-dimensional Tri-dimensional n � n dimensions

DCAðs; xÞ DCA

DCA 0 0
0 DCA 0
0 0 DCA

0
@

1
A

isotropic medium

DCx 0 0
0 DCy 0
0 0 DCz

0
@

1
A

anisotropic medium

DCA 0 � 0
0 DCA � 0
� � � 0
0 0 � DCA

0
BB@

1
CCA

isotropic medium

DCx1 0 � 0
0 DCx2 � 0
� � � 0
0 0 � DCxn

0
BB@

1
CCA

anisotropic medium

¶DCA

¶CA

¶CA

¶x
¶DCA

¶CA

¶CA

¶x

¶DCA

¶CA

¶CA

¶x
¶DCA

¶CA

¶CA

¶y
¶DCA

¶CA

¶CA

¶z

0
BBBBBB@

1
CCCCCCA

¶DCA

¶CA

¶CA

¶x1
¶DCA

¶CA

¶CA

¶x2
¶DCA

¶CA

¶CA

¶xn

0
BBBBBB@

1
CCCCCCA

If , in Eq. (4.109), we use the following notation:

Aðs; xÞ ¼ wðs; xÞ þ ¶DCA

¶CA

¶CA

¶x

� �
then, we can write:

¶CAðs; xÞ
¶s

¼ � ¶
¶x

Aðs; xÞCAðs; xÞð Þ þ ¶
¶x

¶
¶x

DCAðs; xÞCAðs; xÞð Þ (4.110)

A careful observation of Eqs. (4.79), (4.80), (4.100) and their respective theoretical
basis [4.44, 4.45], allows one to conclude that the probability density distribution
that describes the fact that the particle is in position x at s time, when the medium
is moving according to one stochastic diffusion process (see relation (4.62) for the
analogous discontinuous process), is given by Eq. (4.111). This relation is known
as the Fokker–Planck–Kolmogorov equation.

¶Pðs; xÞ
¶s

¼ � ¶
¶x

Aðs; xÞPðs; xÞð Þ þ ¶
¶x

¶
¶x

Dðs; xÞPðs; xÞð Þ (4.111)

There is an important analogy between the Fokker–Planck–Kolmogorov equation
and the property transport equation. Indeed, the term which contains A(s; xÞ
describes the particle displacement by individual processes and the term which
contains D(s; xÞ describes the left and right movement in each individual displace-
ment or diffusion. We can notice the very good similarity between the transport
and the Kolmogorov equation. In addition, many scientific works show that both
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equations give the same result for a particular problem. However, large and
important differences persist between both equations. The greatest difference is
given by the presence of the speed vector in the A(s; xÞ expression in Eq. (4.110).

Undeniably, the speed vector, by its size and directional character, masks the
effect of small displacements of the particle. Another difference comes from the
different definition of the diffusion coefficient, which, in the case of the property
transport, is attached to a concentration gradient of the property; it means that
there is a difference in speed between the mobile species of the medium. A sec-
ond difference comes from the dimensional point of view because the property
concentration is dimensional. When both equations are used in the investigation
of a process, it is absolutely necessary to transform them into dimensionless
forms [4.6, 4.7, 4.37, 4.44].

Both equations give good results for the description of mass and heat transport
without forced flow. Here, it is important to notice that the Fokker–Plank–Kolmo-
gorov equation corresponds to a Markov process for a stochastic connection. Con-
sequently, it can be observed as a solution to the stochastic equations written
below:

dXs ¼ Aðs;XsÞdsþ Bðs;XsÞdWs (4.112)

Here, Xs is the stochastic state vector, B(s,Xs) is a vector describing the contribu-
tion of the diffusion to the stochastic process and Ws is a vector with the same
dimensions as Xs and B(s,Xs). After Eqs. (4.94) and (4.95), the Ws vector is a
Wiener process (we recall that this process is stochastic with a mean value equal
to zero and a gaussian probability distribution) with the same dimensions as
Dðs;XsÞ:

Dðs; xÞ ¼ Bðs; xÞBTðs; xÞ ; Dðs;XsÞ ¼ Bðs;XsÞBTðs;XsÞ (4.113)

By comparision with the property transport equation the advantage of a stochastic
system of equations (SDE) is the capacity for a better adaptation for the numerical
integration.

4.3.3.1 Stochastic Differential Equation Systems for Heat and Mass
Molecular Transport
A good agreement is generally obtained between the models based on transport
equations and the SDE for mass and heat molecular transport. However, as
explained above, the SDE can only be applied when convective flow does not take
place. This restrictive condition limits the application of SDE to the transport in a
porous solid medium where there is no convective flow by a concentration gradi-
ent. The starting point for the transformation of a molecular transport equation
into a SDE system is Eq. (4.108). Indeed, we can consider the absence of convec-
tive flow in a non-steady state one-directional transport, together with a diffusion
coefficient depending on the concentration of the transported property:
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¶CA

¶s
¼ ¶

¶x
DCAðCAÞ

¶CA

¶x

� �
(4.114)

By introducing the stochastic Markov type connection process through the follow-
ing equation:

¶2

¶x2
DCAðCAÞCAð Þ ¼ ¶

¶x
DCA

¶CA

¶x
þ dDCA

dCA

¶CA

¶x
CA

� �
(4.115)

the right term of Eq. (4.114) can be written as:

¶
¶x

DCAðCAÞ
¶CA

¶x

� �
¼ � ¶

¶x
dDCA

dCA

¶CA

¶x
CA

� �
þ ¶2

¶x2
DCAðCAÞCAð Þ (4.116)

If we replace Eq. (4.116) by Eq. (4.114) we have:

¶CA

¶s
¼ � ¶

¶x
dDCA

dCA

¶CA

¶x
CA

� �
þ ¶2

¶x2
DCAðCAÞCAð Þ (4.117)

A simultaneous comparison between Eqs. (4.114), (4.117) and (4.113) results in
the following identifications:

Aðs; xÞ ¼ dDCA

dCA

¶CA

¶x
, Dðs; xÞ ¼ DCAðCAÞ , Bðs; xÞ ¼ ðDCAðCAÞÞ1=2

Then, the SDE system can be written in the form:

dXðsÞ ¼ dDCA

dCA

¶CA

¶x
dsþ DCAðCAÞð Þ1=2dWðsÞ (4.118)

The SDE and transport equation can be used with the same univocity conditions.
For simple univocity conditions and functions such as DCAðCAÞ, the transport
equations have analytical solutions. Comparison with the numerical solutions of
stochastic models allows one to verify whether the stochastic model works prop-
erly. The numerical solution of SDE is carried out by space and time discretization
into space subdivisions called bins. In the bins j of the space division i, the dimen-
sionless concentration of the property (C ¼ CA=CA0) takes the Cj value. Taking
into consideration these previous statements allows one to write the numerical
version of relation (4.118):

Xiðsþ DsÞ ¼ XiðsÞ þ
Cjþ1 � Cj�1

2Dx

� �
dDCA

dCj

 !
Cj

Dsþ ð2DCAjðCjÞDsÞ1=2
ui (4.119)

Here, ui is a random number for the calculation step “i”. It is given by a standard
procedure for the normal distribution values with a mean value of zero where
DCAj and Cj are the corresponding DCA and C values for the j bin and the particle
position “i”. The only limitation of the numerical method is concentrated in the
fact that Ds must have very small values in order to eliminate all the problems of
non-convergence caused by the second term on the right half of the equation
(4.119).
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The approximated master equation, such as Eq. (4.111) with its associate
(4.112), has computational advantages besides its obvious similarity to the convec-
tive-diffusion form. Even when this equation cannot be solved exactly, the numer-
ical techniques for computing such equations are well established. More impor-
tantly, the derivation of this equation gives a clue to the identification of the terms
of the vectors Aðs;XsÞ and Bðs;XsÞ, which can be found independently without
knowing the details of the transition probabilities required in the master equation
(see assemblies (4.25)–(4.26) or (4.74)–(4.79)) and this is a great advantage. The
set up of the Fokker–Planck–Kolmogorov equation into the form of Eq. (4.112)
needs to take a time interval so small that Xs does not change significantly but the
Markovian assumption is still valid.

The Fokker–Planck–Kolmogorov approximation of the master equation is based
on the assumption that all the terms greater than second order, which are
extracted from the Taylor expansion of Pkðz–Dz; sÞ, vanish. This is rarely true in
practice, however, and a more rational way of approximating the master equation
is to systematically expand it in powers of a small parameter, which can be chosen
approximately. This parameter is usually chosen in order to have the same size as
the system.

4.4
Methods for Solving Stochastic Models

Once the stochastic model has been established, it is fed with data which charac-
terize the inputs and consequently, if the model works correctly it produces data
which represent the process output. The model solution is obtained:
. By an analytical solution given by a relation or by an assembly of

relations and their exploitation algorithm showing how the out-
put solutions are developed when the inputs are selected.

. By a numerical solution and the corresponding software.

. By another model, obtained by the transformation of the original
model towards one of its boundaries and which can also be solved
by an analytical or numerical solution. These models are called
“limit stochastic models” or “asymptotic stochastic models”.

The numerical as well as the asymptotic model solutions are estimated solutions,
which often produce characteristic outputs of the model in different forms when
compared to the natural state of the exits. Both stochastic and transfer phenome-
non models present the same type of resolution process. The analysis developed
in the paragraphs below can be applied equally to both types of models.
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4.4.1
The Resolution of Stochastic Models by Means of Asymptotic Models

It is well-known that, from a practical view point, it is always interesting to be
aware of the behaviour of a process near the boundaries of validity. The same
statement can be applied to the stochastic model of a process for small stochastic
disturbances which occur at large intervals of time. In this situation, we can
expect the real process and its model not to be appreciably modified for a fixed
time called “system answer time” or “constant time of the system”. This statement
can also be taken into account in the case of random disturbances with measure-
ments realized at small intervals of time.

At the same time, it is known that, during exploitation of stochastic models,
cases that show great difficulty concerning the selection and the choice of some
parameters of the models frequently appear. As a consequence, the original mod-
els become unattractive for research by simulation. In these cases, the models can
be transformed to equivalent models which are distorted but exploitable. The use
of stochastic distorted models is also recommended for the models based on sto-
chastic chains or polystocastic processes where an asymptotic behaviour is identi-
fied with respect to a process transition matrix of probabilities, process chains evo-
lution, process states connection, etc. The distorted models are also of interest
when the stochastic process is not time dependent, as, for example, in the stochas-
tic movement of a marked particle occurring with a constant velocity vector, like
in diffusion processes.

The diffusion model can usually be used for the description of many stochastic
distorted models. The equivalent transformation of a stochastic model to its asso-
ciated diffusion model is fashioned by means of some limit theorems. The first
class of limit theorems show the asymptotic transformation of stochastic models
based on polystochastic chains; the second class is oriented for the transformation
of stochastic models based on a polystochastic process and the third class is car-
ried out for models based on differential stochastic equations.

4.4.1.1 Stochastic Models Based on Asymptotic Polystochastic Chains
We begin the discussion by referring to the stochastic model given by relation
(4.58), which is rewritten here as shown in relation (4.120). Here for a finite Mar-
kov connection process we must consider the constant time values for all the ele-
ments of the matrix P ¼ pik½ � i;k ˛K.

Pkðn; iÞ ¼
P
e˛K

P
a˛Z

Pkðn� 1; i� aÞpekpkðaÞ (4.120)

The interest is to produce a model for the computation of the probability to have
the particle at the i position after n passages. This probability, which is denoted as
Pðn; iÞ, can be calculated by summing up all Pkðn; iÞ. So, Pðn; iÞ ¼

P
k

Pkðn; iÞ.

Now, if we consider that the connection in our stochastic model is given by a Mar-
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kov chain, which presents the quality to be a regular chain, then we can show that
there exists a n0 value, where the matrix P contains values which are constant and
positive. Indeed we can write: Pn0 � 0. In this case, for the matrix connections, we
reach the situation of lim

nfi¥
Pn ¼ P, where P is a stable stochastic matrix having

identical lines. It is not difficult to observe that the elements of the stable matrix
P result from the product of the unity matrix I and the vector VP ¢, which is a
transposition of the vector that contains the unchangeable transition probabilities
from one state to another (VP). At the same time, vector VP has the quality to be
the proper vector of the matrix of probabilities P and, consequently, its elements
are the solution of the linear algebraic equation system:

P
e˛K

pepek ¼ pk; k˛K. The

pk substitution by pek in Eq. (4.120) gives the asymptotic model (4.121). Relation
(4.122), where Pasðn; iÞ is the result of the addition of probabilities PðasÞ

k ðn; iÞ,
allows the calculation of the probability to have the particle in state i after n time
sequences.

Pas
k ðn; iÞ ¼

P
e˛K

P
a˛Z

Pas
k ðn� 1; i� aÞpkpkðaÞ (4.121)

Pasðn; iÞ ¼
P
k˛K

pk
P
a˛Z

Pasðn� 1; i� aÞpekpkðaÞ (4.122)

The model described by Eq. (4.122) is known as the generalized random displace-
ment or generalized random walk.

Relation (4.123) is obtained when the model relation (4.122) is written for the
case of a stochastic process with two states and constant length of the particle dis-
placement (this model was previously introduced with relation (4.59)).

Pasðn; iÞ ¼ p1Pasðn� 1; i� 1Þ þ p2Pasðn� 1; iþ 1Þ (4.123)

With p1 ¼ p2 ¼ 1=2 we observe that relation (4.123) has the same form as the rela-
tion used for the numerical solving of the unsteady state diffusion of one species
or the famous Schmidt relation. The model described by Eq. (4.123) is known as
the random walk with unitary time evolution.

In order to identify the conditions that allow an asymptotic transformation, we
show a short analysis particularized to the case of the model given by the assem-
bly of relations (4.59). To this aim, we focus the observations on one property of a
generator function which is defined as a function which gives the following equa-
tion for the probabilities of the distribution with the general discrete values
Pkðn; iÞ:

Gkðn; zÞ ¼
P
i˛Z

Pkðn; iÞzi ; k ¼ 1; 2; ::: ; z ¼ ei (4.123)

If we particularize this last relation for the stochastic model given by the assembly
of equations (4.59), we obtain the following relation for the vector Gðn:zÞ:
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Gðn; zÞ ¼ ½G1ðn; zÞ;G2ðn; zÞ� ¼ Gð0; zÞ P
z 0
0 1=z

� �� �n

(4.123)

Here P ¼ pek½ �e;k˛K¼ð1;2Þ represents the matrix of the transition probabilities be-
tween both states of the process.

If we accept that the lim
nfi¥

Pn ¼ P, then, using relation (4.123) we derive the

equation of the asymptotic generator function:

Gasðn; zÞ ¼ Gð0; zÞ p1zþ p2

z

� �n
(4.124)

By computing the values of the generator function for hfi 0 (relations (4.123) and
(4.124)), we can observe similarities (identities) between both relations. Indeed,
we corroborate that these functions come from a process with identical behaviour
and we have a correct asymptotic transformation of the original model. We can
conclude that in the case when the transition matrix of probabilities has a regular
state, the generator function of the polystochastic chain process when nfi¥ goes
from one generator function to a Markov chain related with the model that is, for
the present discussion, characterized by relation (4.123)

All other discrete stochastic models, obtained from polystochastic chains,
attached to an investigated process, present the capacity to be transformed into an
asymptotic model. When the original and its asymptotic model are calculated
numerically, we can rapidly observe if they converge by direct simulation. In this
case, the comparison between the behaviour of the original model and the genera-
tor function of the asymptotic stochastic model is not necessary.

4.4.1.2 Stochastic Models Based on Asymptotic Polystochastic Processes
For the derivation of one asymptotic variant of a given polystochastic model of a
process, we can use the perturbation method. For this transformation, a new time
variable is introduced into the stochastic model and then we analyze its behaviour.
The new time variable is s¢ ¼ ert, which includes the time evolution t and an
arbitrary parameter e, which allows the observation of the model behaviour when
its values become very small (efi 0). Here, we study the changes in the operator
Oðs; tÞ when efi 0 whilst paying attention to having stable values for t=e or t=e2.

Two different types of asymptotic transformation methods can be used depend-
ing on the ratio of t=e used: in the first type we operate with fixed values of t=e

whereas in the second type we consider t=e2.
As an example, we show the equation that characterizes a random evolution

(see relation (4.90)) written without the arguments for the operator Oðs; tÞ, but de-
veloped with the operator VðXðsÞÞ. We also consider that, when the random pro-
cess changes, the operator Oðs; tÞ will be represented by an identity operator
(I ¼ Iðs; tÞ):

dO
ds
¼ VO ¼ ðeV1ðsÞ þ e2V2ðsÞ þ e3V3ðX; sÞO ; Oðs; sÞ ¼ I (4.125)
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Each operator considered in the total operator VðXðsÞ; sÞ keeps its own mean
action when it is applied to one parameter (for example the mean action of
operator V1 on the parameter (function) f will be written as follows:

V1f ¼ lim
ufi¥

1
u

Rtþu

t
E V1ðf ðtÞÞdtf g.

The introduction of terms of higer order in Eq. (4.125) is not necessary as far
as, in the characterization of chemical engineering processes, the differential
equations are limited to equations of order two.

Some restrictions are imposed when we start the application of limit theorems
to the transformation of a stochastic model into its asymptotic form. The most
important restriction is given by the rule where the past and future of the stochas-
tic processes are mixed. In this rule it is considered that the probability that a fact
or event C occurs will depend on the difference between the current process
(P(C) = P(X(s)˛A=VðXðsÞÞ) and the preceding process (PsðC=eÞ). Indeed, if, for
the values of the group ðs; eÞ, we compute ps ¼ max PsðC=eÞ � PðCÞ½ �, then we
have a measure of the influence of the process history on the future of the process
evolution. Here, s defines the beginning of a new random process evolution and
ps gives the combination between the past and the future of the investigated pro-
cess. If a Markov connection process is homogenous with respect to time, we have
ps ¼ 1 or ps fi 0 after an exponential evolution. If ps fi 0 when s increases, the
influence of the history on the process evolution decreases rapidly and then we
can apply the first type limit theorems to transform the model into an asymptotic

model. On the contrary, if I ¼
R¥
0

p
1=2
s ds, the asymptotic transformation of an origi-

nal stochastic model can be carried out by a second-type limit theorem.

For the example considered above (Eq. (4.125)), the mean value of the random
evolution at time t is em ¼ emðt;XÞ ¼ EX Oð0;XÞ½ � and this process parameter
verifies Eq. (4.126). Here, Q is the infinitesimal generator that characterizes the
connection processes of the stochastic model of the process. This property of
em ¼ emðt;XÞ ¼ EX Oð0;XÞ½ � is a consequence of relation (4.94). So we can write:

dem

ds
¼ ðeV1ðtÞ þ e2V2ðtÞ þ e3V3ðt;XÞem þQem (4.126)

In Eq. (4.126) we can change variable s ¼ t=e in order to obtain a limit transfor-
mation after the first type theorem. The result is:

dem

ds
¼ ðV1ðs=eÞ þ eV2ðs=eÞ þ e2V3ðs=e;XÞem þ

1
e

Qem (4.127)

If the stochastic evolution X(s,e) complies with the mixing condition ( lim
sfi¥

ps ¼ 0)

then, if efi 0 ; Oð0; s=eÞ becomes sV1 through a probabilistic way. This shows
that em, which is the solution of the differential equation (4.126), becomes eas

m

when efi 0 for a fixed s=e:

deas
m

ds
¼ V1eas

m ; eas
mð0;XÞ ¼ I (4.128)
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Considering this last mathematical derivation, we observe that the stochastic pro-
cess has been distorted by another one with a similar behaviour. In order to
explain the meaning of V1 we consider the case of a connection between the two
states of a stochastic process with the following infinitesimal generator:

Q ¼ �q1 q1

q2 �q2

� �

The invariable measure for the infinitesimal generator is a stable matrix that com-
plies with Eq. (4.17) and the following conditions: PQs = QsP = Os ,OQs = QsO = 0,
Qs

2 = Qs. Here, P is the matrix of transition probabilities. For our considered

case (stochastic process with two states) we obtain Qs ¼
q2

q1 þ q2

q1

q1 þ q2

� �
;

consequently, V1 can be written as: V1 ¼
q2V1ð1Þ þ q1V1ð2Þ

q1 þ q2
.

If we continue with the particularization of the two-state stochastic process, by
considering that the first state is the diffusion type and the second state concerns
convection (for instance see relations (4.72), (4.73), (4.79), (4.98) and (4.100)),
then the equation system (4.127) can be written as follows:

dem1

ds
¼ d2em1

dz2
� q1em1

e
þ q1em2

e

dem1

ds
¼ dem1

dz
� q2em1

e
� q2em2

e

em1ð0; zÞ ¼ em2ð0; zÞ ¼ f ðzÞ (4.129)

Looking at this assembly of equations and relation (4.127) simultaneously, we can
easily identify that V1(1) = d2/dz2 (i.e. is an elliptic operator), V1(2) = d/dz, V2 = 0,
V3 = 0. With these identifications and in accordance with the transformation theo-
rem of the first type (Eq. (4.128)) when efi 0, em1 and em2 will be solution of fol-
lowing equation:

dv
ds
¼ q2

q1 þ q2

d2v
dz2
þ q1

q1 þ q2

dv
dz

; vð0; zÞ ¼ f ðzÞ (4.130)

The condition vð0; zÞ ¼ f ðzÞ(see relation (4.130)) corresponds to the situation
when we have em1ð0; zÞ ¼ em2ð0; zÞ ¼ f ðzÞ; otherwise, we use vð0; zÞ as:

vð0; zÞ ¼ q2f1ðzÞ þ q1f2ðzÞ
q1 þ q2

.

This shows that the invariable measure determining the mixing procedures of sto-
chastic process states is extended over the initial conditions of the process.

If we obtain V1 ¼
q2V1ð1Þ þ q1V1ð2Þ

q1 þ q2
= 0 for an experiment, we can conclude

that the use of the theorems for the first type transformation is not satisfactory.
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Then we have to apply the asymptotic model transformation by using the second
type theorems. To do so, we choose the new time variable s ¼ e2t and the relation
(4.127) becomes:

dem

ds
¼ ð1

e
V1ðs=e2Þ þ V2ðs=e2Þ þ eV3ðs=e2;XÞem þ

1
e2

Qem (4.131)

The theorems for the two-type transformation are based on the observation that,

for efi 0 and fixed s/e2, we have the operator O 0;
s

e2

� �
fi expðsVÞ, where

V ¼ V2 þ V11. Indeed, the mean value of the stochastic process from relation
(4.131), noted as em, becomes v, which is the solution of the differential equation
dv
ds
¼ Vv ; vð0Þ ¼ I. For a stochastic process with connections between two states

the infinitesimal generator of connection is Qs ¼
q2

q1 þ q2

q1

q1 þ q2

� �
, here V2

and V1 (and then V) are given by the following equations:

V2 ¼
q2V2ð1Þ þ q1V2ð2Þ

q1 þ q2
, V1 ¼

�2Vð1ÞV2ð2Þ1
q1 þ q2

.

Now, we have to identify V2 and V11. To do so, we consider the case of two con-
nected stochastic processes where each process is a diffusion type with two states.
The example concerns one marked particle that is subjected to a two-state diffu-
sion displacement. The particle can be considered as a molecular species (so the
particle movement describes a mass transport process) and we can also take into
account the total enthalpy of the process (heat transport process). This particular
case of stochastic model, can be described with the assembly of relations (4.79). In
the model, the mean probability of the existence of local species (em1) and the
mean probability of the existence of local enthalpy (em2) are given by the assembly
of relations (4.132):

¶em1

¶s
¼ gðzÞ

e

¶em1

¶z
þ a1ðzÞ ¶

2em1

¶z2
� q

2
em1 þ

q
2

em2

¶em2

¶s
¼ gðzÞ

e

¶em2

¶z
þ a2ðzÞ ¶

2em2

¶z2
� q

2
em2 þ

q
2

em1

em1ð0; zÞ ¼ f1ðzÞ ; em2ð0; zÞ ¼ f2ðzÞ (4.132)

If, in the assembly of equations, we consider q1 = q2 = q in the equation of
the infinitesimal generator then, we can identify V1(1) = –V1(2) =

gðzÞ ¶
¶z

; V2ð1Þ ¼ a1ðzÞ ¶
2

¶z2
; V2ð2Þ ¼ a2ðzÞ ¶

2

¶z2
; V3 ¼ 0. After the theorem

of the two-type transformation, the solutions for em1 and em2 will tend towards
the solution of the following particularization of the asymptotic model
dv
ds
¼ Vv ; vð0Þ ¼ I :
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¶v
¶s
¼ 1

2
¶
¶z

gðzÞ ¶v
¶z

� �
þ a1ðzÞ þ a2ðzÞ

2
¶2v
¶z2
¼ V11vþ V2v (4.133)

vð0; zÞ ¼ f1ðzÞ
2
þ f2ðzÞ

2
(4.134)

To complete this short analysis, we can conclude that, for the asymptotic trans-
formation of a stochastic model, we must identify: (i) the infinitesimal generator;
(ii) what type of theorem will be used for the transformation procedure.

4.4.1.3 Asymptotic Models Derived from Stochastic Models with
Differential Equations
Studies of the transformation of a stochastic model characterized by an assembly
of differential equations to its corresponding asymptotic form, show that the use
of a perturbation method, where we replace the variable t by: t ¼ ers, can be
recommended without any restrictions [4.47, 4.48].

If we consider a process where the elementary states v1; v2; ::::vN work with a
Markov connection, this connection presents an associated generator of probabil-

ity ðp1; p2; :::pNÞ that verifies the invariable measure
PN
i¼1

pivi ¼ 0. Now, if the ele-

mentary states are represented by displacements with constant speed, then XðsÞ
can take scalar values and, consequently, FðX; viÞ ¼ vi. For this case, we consider
that the mean values of XðsÞ, determined by their X0 initial values and noted as
emi; i ¼ 1;N, verify relations (4.135) (see for instance Eq. (4.98)). The equations
(4.135) consider that the displacement associated with space X occurs after the z
direction; consequently we have:

¶emi

¶s
¼
XN

j¼1

qijemj þ vi
¶emi

¶z
; emið0;XÞ ¼ fiðzÞ ; i ¼ 1:::N (4.135)

Here, we use the classical perturbation procedure (efi 0 when sfi¥) for the anal-
ysis of the asymptotic behaviour of mean values emiðs;XÞ ¼ emiðs; zÞ. The follow-
ing expression can be written for emiðs;XÞ, when we use the perturbation t ¼ se2:

e�mi ¼ e�miðs;XÞ ¼ Ei ðfvðs=e2ÞðXþ e
Rs=e2

0
vðaÞdaÞ

( )
(4.136)

For the expected mean values e�miðs;XÞ, as a result of the application of the time
perturbation to the system (4.135), we derive the following differential equations
system:

¶e�mi

¶s
¼ 1

e2

XN

j¼1

qije
�
mi þ

1
e2

vi
¶e�mi

¶z
; e�mið0;XÞ ¼ e�mið0; zÞ ¼ fiðzÞ ; i ¼ 1:::N (4.137)

241



4 Stochastic Mathematical Modelling

Now, we can write Eq. ( 4.136) as:

e�mi ¼ e�miðs;XÞ ¼ Ei ðfvðs=e2ÞðXþ
ffiffiffi
s
p 1ffiffiffi

s
p
Rs
0

vðaÞdaÞ
� �

(4.138)

For our considered process, where the states v1; v2; ::::vN are Markov connected,

the variable term for this last relation 1ffiffi
s
p
Rs
0

vðaÞda

� �
tends [4.5] towards a normal

random variable with a zero mean value and variance

r ¼ 1
s

Rs
0

Rs
0

E vðaÞv¢ða¢Þf gdada¢. Coupling this observation with relation (4.138)

results in:

lim
sfi¥

e�miðs;XÞ ¼
R¥
�¥

PN
i¼1

pifiðzþ
ffiffiffi
s
p
Þ

� �
e�n2=2s2ffiffiffiffiffiffiffiffi

2pr
p dn (4.139)

Indeed, for efi 0 and 0 < s < s0, the solution of the system (4.137) with respect
to e�miðs;XÞ will be uniformly displaced with respect to X (or z when the move-
ment occurs along this direction) and the solution can be written as:

¶vo

¶s
¼ 1

2
r2 ¶

2v0

¶z2
; vOð0;XÞ ¼ vOð0; zÞ ¼

XN

i¼1

pifiðzÞ (4.140)

This last equation has a form similar to the famous equation of the single direc-
tion diffusion of a property in an unsteady state, the property here being the local
concentration v0. The diffusion coefficient is represented by the variance of the
elementary speeds which are given by their individual states v1; v2; :::; vN. It is
important to notice the consistency of the definition of the diffusion coefficient.

Very difficult problems occur with the asymptotic transformation of original sto-
chastic models based on stochastic differential equations where the elementary
states are not Markov connected. This fact will be discussed later in this chapter
(for instance see the discussion of Eq. (4.180)).

4.4.2
Numerical Methods for Solving Stochastic Models

In Section 4.2 we have shown that stochastic models present a good adaptability
to numerical solving. In the opening line we asserted that it is not difficult to
observe the simplicity of the numerical transposition of the models based on poly-
stochastic chains (see Section 4.1.1). As far as recursion equations describe the
model, the numerical transposition of these equations can be written directly,
without any special preparatives.

When a stochastic model is described by a continuous polystochastic process,
the numerical transposition can be derived by the classical procedure that change
the derivates to their discrete numerical expressions related with a space discreti-
sation of the variables. An indirect method can be used with the recursion equa-
tions, which give the links between the elementary states of the process.

The following examples detail the numerical transposition of some stochastic
models. The numerical state of a stochastic model allows the process simulation.
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Indeed, we can easily produce the evolution of the outputs of the process when
the univocity conditions and parameters of the process are correctly chosen.

The first example concerns a stochastic model which is known as the Chap-
mann–Kolmogorov model and is mathematically characterized by Eq. (4.67). This
model accepts a numerical solution that is developed using implicit methods and
then computation begins with the corresponding initial and boundary conditions.
If we particularize the Chapmann–Kolmogorov model to the situation where we
have two elementary states of the process with constant displacement steps and
without an i position dependence of the transition probabilities (a = 1, pk(a) = 1
and pek(i–a) = pek) then, we obtain the model (4.59). Figure 4.10 presents its
numerical structure. Many researchers have been using programs of this type to
characterize the transport of species through various zeolites [4.49–4.52].

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18

Definition :matrix P1(N,M) ,matrix P2(N,M)/ N-passages ,M-positions/
Data: p11= , p21=  p12= p22= N=   M=
Univocity: P1(1,1)=1 ;P1(I+1 ,1)=0 for I=1,N-1;P2(I,1)=0 for I=1,N-1
Start 
I=2
J=2 
P1(I,J)=p11P1(I-1,J-1)+p21P2(I-1,J-1)
P2 (I,J)=p12P1(I-1,J-1)+p22P2(I-1,J-1)
for J<M
Write:P1(I,J) ,P2(I,J) 
J=J+1 
Back to 7 
for J>M and I<N 
Write:P1(I,J) ,P2(I,J) 
I=I+1
Back to 6 
Data treatment: P1(I,J) ,P2(I,J)/ Graphiques;other calculations..:

Stop

Figure 4.10 Numerical text of the stochastic model given in Eq. (4.59).

The second example discusses the numerical transposition of the asymptotic
models based on polystochastic chains (see Section 4.4.1.1) where to compute the
limit transition probabilities, we must solve the system

P
e˛K

pepek ¼ pk

k ¼ 0; 1; ::N. If the number of process components, here noted as k, is greater
than two, then we can use a successive approximation method for the estimation
of the column vector P. More precisely, we use the iteration chain PPðmþ1Þ ¼
PðmÞ with the stop condition PðmÞ �Pðmþ1Þ�� �� £Mk2. The determinant value k2

from the stop condition represents the second decreasing proper value of the tran-
sition probabilities matrix (P). In the stop condition, M is considered as an arbi-
trary constant value.

The third example presents the problem of numerical transposition of continu-
ous stochastic models, which is introduced by the following general equation:

¶P
¶s
þ A

¶P
¶z
¼ BPþ F (4.141)

where P is the vector that contains the probabilities Piðz; sÞ i ¼ 1; 2; :::N;
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A is the quadratic N�N matrix where the elements are constant numerical val-
ues; B the quadratic N�N matrix that contain functions of z and s arguments;
F the vector with elements defined by functions of z and s arguments.

Before carrying out the discretization of the equations, we have to make a care-
ful mathematical analysis of the problem in order to establish what its most con-
venient rewriting in order to facilitate the numerical solution. First we observe
that between the matrix A, the proper values kj and the (left) proper vectors zj, we
have the equality zjA ¼ kjzj. Consequently, as a result, the multiplication of Eq.
(4.141) by zj gives:

zj
¶P
¶s
þ zjA

¶P
¶z
¼ zjBPþ zjF (4.142)

zj
¶P
¶s
þ kj

¶P
¶z
� BP� F

� �
¼ 0 (4.143)

If the value of zj is not zero, then relation (4.144) becomes:

¶P
¶s
þ kj

¶P
¶z
¼ BPþ F (4.144)

The left term of this last equation represents the differential state of vector P with
respect to time for the family of curves dz=ds ¼ k�1

j ; j ¼ 1; 2; ::::N. So we can write
relation (4.144) as:

dP
ds

� �
kj

¼ BPþ F (4.145)

where, for
dP
ds

� �
kj

, we define the differential state of P after the normal curves

dz=ds ¼ k�1
j . The transformation given above, is still valid when all values

kj; j ¼ 1; :::N are real and strictly different. However, if the A matrix gives complex
values for some kj, then we can assert that our original model (described by Eq.
(4.141)) is not a hyperbolic model. At the same time, the proper values of the
matrix Aðkj; j ¼ 1; :::NÞ give important information for fixing univocity conditions
and solving the model. The following situations are frequently presented:
. when all kj verify that kj � 0 ; j ¼ 1; :::N, we can specify the initial

values PðzÞ; z � 0 and the boundary values at each time:
Pðzf ; sÞ; s � 0. The values Pð0; sÞ and Pðze; sÞ will be specified
when the boundaries of the process are z ¼ 0 and z ¼ ze;

. when all kj verify that kj � 0 ; j ¼ 1; :::N and when values P(zf,s)
at the boundary line zf ¼ 0 are needed, we must specify the initial
values of the probabilities for z £ 0;

. for positive and negative values kj ; j ¼ 1; :::N, we separate two
domains with their respective univocity problems; when we have
the following specifications 0 � z � ze, kj � 0 ; j ¼ 1; :::l with
l � N and Pðz; 0Þ ¼ f ðzÞ simultaneously, we must complete the

244



4.4 Methods for Solving Stochastic Models

univocity problem with functions or data for P(z,0), P(0,s) and
P(ze,s), respectively.

After the establishment of the univocity conditions, we can begin the numerical
treatment of the model. For this purpose, we can use the simplified model form
(see relations (4.145)) or its original form (4.141)).

The change of a continuous polystochastic model into its numerical form is car-
ried out using the model described by Eq. (4.71) rewritten in Eq. (4.146). The solu-
tion of this model must cover the variable domain 0 � z � ze; 0 � s � T. In
accordance with the previous discussion, the following univocity conditions must
be attached to this stochastic model. Here, fkðzÞ; gkðsÞ and hðsÞ are functions that
must be specified.

¶Pkðz; sÞ
¶s

þ vk
¶Pkðz; sÞ

¶z
þ

X
j¼1;j „ k

akj

0
@

1
APkðz; sÞ �

X
j¼1;j „ k

ajkPjðz; kÞ ; k ¼ 1;N
(4.146)

s ¼ 0 ; 0 < z < ze; Pkðz; 0Þ ¼ fkðzÞ

s > 0 ; z ¼ 0 ;

Pkð0; sÞ ¼ gkðsÞ for vkð0; sÞ > 0

dPkð0; sÞ
dz

¼ 0 for vkð0; sÞ < 0

8><
>:

s > 0 ; z ¼ ze ;

Pkðze; sÞ ¼ hkðsÞ for vkð0; sÞ < 0

dPkðze; sÞ
dz

¼ 0 for vkð0; sÞ > 0

8><
>: (4.147)

Concerning the boundary conditions of this problem, we can have various situa-
tions: (i) in the first situation, the probabilities are null but not the probability gra-
dients at z ¼ 0 zero. For example, for a negative speed vkð0; sÞ, the particle is not
in the stochastic space of displacement. However, at z = 0, we have a maximum
probability for the output of the particle from the stochastic displacement space.
Indeed, the flux of the characteristic probability must be a maximum and, conse-
quently, dPkð0; sÞ=dz ¼ 0; (ii) we have a similar situation at z ¼ ze; (iii) in other
situations we can have uniformly distributed probabilities at the input in the sto-
chastic displacement space; then we can write the following expression:

gkðsÞ ¼ Pkð0; sÞ ¼ pk for k ¼ 1;N� 1 ; gNðsÞ ¼ PNð0; sÞ ¼ 1�
PN�1

k¼1
pk .

It is important to notice that the univocity conditions must adequately correspond
to the process reality. Concerning the numerical discretisation of each variable
space, model (4.146) gives the following assembly of numerical relations:

z ¼ i � Dz ; s ¼ g � Ds ; i ¼ 0; r ; g ¼ 0; s (4.148)
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. For vk(z,s) > 0

Pkðz; sþ DsÞ � Pkðz; sÞ
Ds

þ vkðz; sÞ
Pkðzþ Dz; sÞ � Pkðz; sÞ

Dz
þ

X
j¼1;j „ k

akj

0
@

1
APkðz; sÞ �

X
j¼1;j„n

ajkPjðz; sÞ ¼ 0

. For vk(z,s) < 0

Pkðz; sþ DsÞ � Pkðz; sÞ
Ds

þ vkðz; sÞ
Pkðz; sÞ � Pkðz� Dz; sÞ

Dz
þ

X
j¼1;j „ k

akj

0
@

1
APkðz; sÞ �

X
j¼1;j„n

ajkPjðz; sÞ ¼ 0

The balance between the unknown variables and the relations available for their
estimation is given here: (i) for T= s ¼ s and ze=z ¼ r we obtain r � s � N
unknowns (for each solving network point we must determine the values of
P1(z,s) , P2(z,s)....PN(z,s)); (ii) the system of equations to compute unknowns is
made considering the particularization of:
. the relation (4.148) for all network points that are not in the

boundaries; it gives a total of ðr� 2Þ � s �N equations.
. the second condition from the univocity problem of the model

(4.146)–(4.147); this particularization gives Pkð0; 1Þ; ::::Pkð0; sÞ so
s �N equations;

. the third condition from the univocity problem of the model
(4.146)–(4.147); this particularization gives s*N equations.

The algorithm to compute a stochastic model with two Markov connected elemen-
tary states is shown in Fig. 4.11. Here, the process state evolves with constant v1

and v2 speeds. This model is a particularization of the model commented above
(see the assembly of relations (4.146)–(4.147)) and has the following mathematical
expression:

¶P1ðz; sÞ
¶s

þ v1
¶P1ðz; sÞ

¶z
þ aP1ðz; sÞ � bP2ðz; sÞ ¼ 0

¶P2ðz; sÞ
¶s

� v2
¶P1ðz; sÞ

¶z
þ bP2ðz; sÞ � aP1ðz; sÞ ¼ 0

P1ðz; 0Þ ¼ 0 ; P2ðz; 0Þ ¼ 0

P1ð0; 0Þ ¼ 1 ; P1ð0; sÞ ¼ 0 ; P2ð0; sÞ ¼ P2ðDz; sÞ

P2ðze; sÞ ¼ 0 ; P1ðze; sÞ ¼ P1ðze � Dz; sÞ (4.149)

246



4.4 Methods for Solving Stochastic Models

It can easily be observed that the considered case (4.149) corresponds to the situa-
tion for s ¼ 0: only one marked particle evolves through a stochastic trajectory (a
type 1 displacement with v1 speed). This example corresponds to a Dirac type
input and the model output response or the sum P1ðze; sÞ þ P2ð0; sÞ, represents
the distribution function of the residence time during the trajectory (see also ap-
plication 4.3.1).

Definition : Matrix P1(r,s) ; Matrix P2(r,s) 
Data: r=   , s=   , v1=   , v2=   , α=   , β=   , ∆τ=   , ∆z= 
Initial conditions : P1(j,0)=0 , P2(j,0)=0 for j=1,r 
Boundary conditions z=0 : P1(0,0)=1, P1(0,g)=0  for g=1,s  
Boundary conditions z=ze: P2(r,h)=0 for h=0,s 
i=1 
System solution: 

J=1,r 
P2(0,i)-P2(1,i)=0 
(P1(j,i)-P1(j,i-1))/∆τ+v1(P1(j,i)-P1(j-1,i))/∆z+αP1(j,i)-βP2(j,i)=0
(P2(j,i)-P2(j,i-1))/∆τ-v2(P2(j,i)-P2(j-1,i))/∆z-αP1(j,i)+βP2(j,i)=0
P1(r,i)-P1(r-1,i)=0 

Write and transfer through data processing: P1(j,i),P2(j,i) 
For i<s 
i=i+1 
Back to 7 
For i>s 

Stop 

1
2
3
4
5
6
7

8
9

10
11
12
13

Figure 4.11 Numerical text of the stochastic model given by Eq. (4.149).

4.4.3
The Solution of Stochastic Models with Analytical Methods

Examples 4.2 and 4.3 and the models from Section 4.4 show that the stochastic
models can frequently be described mathematically by an assembly of differential
partial equations.

The core of a continuous stochastic model can be written as Eq. (4.150). Here,
P(z,s) and a(z), b(z), c(z) are quadratic matrices and L is one linear operator with
action on the matrix P(z,s). In the mentioned equation, f(z) is a vector with a
length equal to the matrix P(z,s). In this model, z can be extended to a two- or a
three-dimensional displacement:

¶Pðz; sÞ
¶s

þ aðzÞ ¶Pðz; sÞ
¶z

þ bðzÞ ¶
2Pðz; sÞ
¶z2

þ cðzÞLðPðz; sÞÞ ¼ f ðzÞ (4.150)

This mathematical model has to be completed with realistic univocity conditions.
In the literature, a large group of stochastic models derived from the model
described above (4.150), have already been solved analytically. So, when we have a
new model, we must first compare it to a known model with an analytical solution
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so as to identify it. If we cannot produce a correct identification, then we must
analyze it so as to determine whether we can obtain an analytical solution. In both
situations, we have to carry out different permissive but accepted manipulations
of the original model:
. all algebraic transformations are accepted, especially the combi-

nation of model variables;
. model transformation with dimensionless variables and parame-

ters;
. all integral transformations that produce a model and univocity

conditions similar to those given in a problem with an analytical
solution.

The analysis of the univocity conditions attached to the model shows that, here,
we have an unsteady model where nonsymmetrical conditions are dominant.

The analytical solution of the model imposes the use of integral transformation
methods [4.53]. With the kernel K(z,l), the finite integral transformation of the
function P(z,s) is the function P1(l,s), which is defined with the following rela-
tion:

P1ðl; sÞ ¼
Rze

0
Kðl; zÞPðz; sÞdz (4.151)

The Laplace integral transformation, used in Section 4.3.1, allows the indentifica-
tion of its kernel as K(z,l) = K(z,s) = e–ss . It corresponds to the case when we
produce a transformation with time. So, for this case, we particularize the relation
(4.151) as:

P1(z,s) =
R¥
0

Pðz; sÞe�ssds (4.152)

So as to show how we use the integral transformation in an actual case, we sim-
plify the general model relation (4.150) and its attached univocity conditions to
the following particular expressions:

¶Pðz; sÞ
¶s

¼ a
¶2Pðz; sÞ

¶z2

 !
þ Fðz; sÞ (4.153)

z = 0 , s > 0 , c1a
dP
dz
þ a1P ¼ 0

z = ze , s > 0 , c2a
dP
dz
þ a2P ¼ 0

z > 0 , s = 0 , P = f0(z) (4.154)

In Eqs. (4.153) and (4.154), we recognize the general case of an unsteady state dif-
fusion displacement in a solid body.
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The particularization of relation (4.151) to Eqs. (4.153) and (4.154) results in
one image of the original model:

¶P1ðl; sÞ
¶s

¼ a
¶P1ðl; sÞ

¶l

� �
þ F1ðl; sÞ (4.155)

z = 0 , s > 0 , ðc1aþ a1ÞP1ðl; sÞ ¼ f1ðsÞ
Rze

0
Kðl; zÞdz

z = ze , s > 0 , ðc2aþ a2ÞP1ðl; sÞ ¼ f2ðsÞ
Rze

0
Kðl; zÞdz

z > 0 , s = 0 , P1ðl; sÞ ¼
Rze

0
f0ðzÞKðl; zÞdz ¼ f 1

0 ðlÞ (4.156)

It is easy to observe that the conditions from Eq. (4.154) have been completed
with the evolution with time of the stochastic trajectory at the start (z = 0) and at
the end (z = ze) (for instance, note the presence of f1ðsÞ and f2ðsÞ inside the assem-
bly of conditions (4.156)). The image of the model has the analytical solution giv-
en by Eq. (4.157) [4.53]. The notations used here are specified thanks to relations
(4.158) and (4.159):

P1ðln; sÞ ¼ e�ðal2
n=z2

eÞs f 1
0 ðlnÞ þ

Rs
0

eðal2
n=z2

eÞsAðln; sÞds

� �
(4.157)

Aðln; sÞ ¼
1
c1

F1ðln; sÞ þ
Kðln; zÞ

c1
f1ðsÞ

� �
z¼0

þ Kðln; zÞ
ac2

� �
z¼ze

f2ðsÞ (4.158)

F1ðln; sÞ ¼
Rze

0
Fðz; sÞKðln; z=zeÞdz (4.159)

The analytical solution for the original P(z,s) is obtained with the inversion formula
[4.53]. This solution is an infinite sum where the proper values ln, n = 1,2,..¥
represent the summing parameters:

Pðz; sÞ ¼
P¥
n¼1

Kðln; z=zeÞe�ðal2
n=z2

eÞs f 1
0 ðlnÞ þ

Rs
0

eðal2
n=z2

eÞsAðln; sÞds

� �
(4.160)

Table 4.2 gives the kernels and characteristic equations for cases with various
boundary conditions. Here h1 and h2 are defined by Fig. 4.12: h1 = a1/c1a , h2 =
a2/c2a.
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Table 4.2 The kernels and characteristic equations for the
stochastic model given by relations (4.153)–(4.154).

Univocity conditions Kernel expression: K(ln; z=ze) Equation for ln

z = 0 z = ze

h1 = ¥ h2 = ¥ ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ sin lnz=ze sin(l) = 0

h1 = ¥ h2 = 0 ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ sin lnz=ze cos(l) = 0

h1 = 0 h2 = ¥ ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ cos lnz=ze sin(l) = 0

h1 = 0 h2 = 0 ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ cos lnz=ze sin(l) = 0

h1 = 0 h2 = ct ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ l2

n þ h2
2z2

e

l2
n þ h2

2z2
e þ h2ze

� �1=2

cos ðlnz=zeÞ
ltan(l) = h2ze

h1 = ct h2 = ¥ ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ l2

n þ h2
1z2

e

l2
n þ h2

1z2
e þ h1ze

� �1=2

sin ðlnð1� z=zeÞÞ
lcot(l) = –h1ze

h1 = ct h2 = 0 ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ l2

n þ h2
1z2

e

l2
n þ h2

1z2
e þ h1ze

� �1=2

cos ðlnð1� z=zeÞÞ
ltan(l) = h1ze

h1 = ct h2 = ct ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ�

ln cos lnz=ze þ h1ze sin lnz=ze

½l2
n þ h2

1z2
eð1þ h2ze=ðl2

n þ h2
2z2

eÞ þ h1ze�1=2

" # tan(l) =
lðh1 þ h2Þze

l2 � h1h1z2
e

0Pα
dz

dP
ac 11 =+

0Pα
dz

dP
ac 22 =+

z=0

z=ze 

Figure 4.12 Univocity conditions of the model of diffusive and
unidirectional displacement (4.153).

We can illustrate this actual case by reaching an analytical solution if the follow-
ing considerations are taken into account:
. f0ðzÞ ¼ 1: this fact shows that we have uniformly distributed

marked particles onto the displacement trajectory at the initial
instant;
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. f1ðsÞ ¼ f2ðsÞ ¼ 0 for s ‡ 0 and Fðz; sÞ ¼ 0 for 0£ z £ ze and s ‡ 0:
we do not have any external intervention on boundaries, and it is
not possible to have a generation of marked particles along the
moving trajectory;

. h1 ¼ 0 and h2 ¼ ¥: the marked particle can leave the trajectory
only at position z ¼ 0.

In Table 4.2 our actual case can be identified to accept the kernel K(ln z/ze) =
ð
ffiffiffiffiffiffiffiffiffi
2=ze

p
Þ cos lnz=ze and sin ðlÞ ¼ 0 as the characteristic equation for the proper

values ln;n ¼ 1; ::::¥. At the same time, it is identified that A(ln,s) = 0 and, con-
sequently, after a little modification, solution (4.160) becomes:

Pðz; sÞ ¼
P¥
n¼1

e�ðal2
n=z2

eÞs cos ðlnz=zeÞ (4.161)

Figure 4.13 shows this dependence as a trend; here parameter Fo is recognized as
the Fourier number (Fo ¼ as=z2

e).

Fo enlarging  

P(z,τ) 

z/ze 

1 

1 

0 

Figure 4.13 Time and space evolution of Pðz; sÞ (case of
model (4.153)–(4.154)).

The model (4.140), which has been transformed, can easily accept this analytical
solution. The desorption of one species from a saturated membrane, when the
membrane surface respects the nonpermeable condition, can be described by
this solution. Other cases seem to be more interesting, as for example, when
the value of h2 is constant and not null. In this last example, the conversion
Pðz; sÞ = cðz; sÞ=c0 allows the calculation of the concentration field of mobile spe-
cies through the membrane thickness.

The following section contains the particularization of the integral Laplace
transformation for the case of the stochastic model given by the assembly of rela-
tions (4.146)–(4.147). This particularization illustrates how the Laplace transfor-
mation is used to solve partial differential equations. We start by applying the inte-
gral Laplace operator to all the terms of relation (4.146); the result is in:
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R¥
0

e�ss
¶Pkðz; sÞ

¶s
þ vk

¶Pkðz; sÞ
¶s

þ
XN

j¼1;J „ k

akj

0
@

1
APkðz; sÞ �

XN

j¼1;j „ k

ajkPjðz; sÞ

0
@

1
Ads ¼ 0

(4.162)

The computing of the above integrals gives:

sPkðz; sÞ � Pkðz; 0Þ þ vk
dPkðz; sÞ

dz
þ

XN

j¼1;j„ k

akj

0
@

1
APkðz; sÞ �

XN

j¼1;j„ k

ajkPjðz; sÞ ¼ 0

(4.163)

This last result can be written as Eq. (4.164) and completed with the univocity con-
ditions (4.165) resulting from the Laplace transformation of the original condi-
tions written with relation (4.147):

vk
dPkðz; sÞ

dz
¼ � sþ

XN

j¼1;j „ k

akj

0
@

1
APkðz; sÞ þ

XN

j¼1;j„ k

ajkPjðz; sÞ þ Pkð0Þ (4.164)

s � 0 ; z ¼ 0 ;
Pkð0; sÞ ¼

R¥
0

e�ssgkðsÞds for vk � 0

dPð0; sÞ=dz ¼ 0 for vk � 0

8<
:

s � 0 ; z ¼ ze ;
Pkðze; sÞ ¼

R¥
0

e�sshkðsÞds for vk � 0

dPðze; sÞ=dz ¼ 0 for vk � 0

8<
: (4.165)

From a mathematical view-point, this result is made up of a system of ordinary
differential equations with its respective integration conditions. In many situa-
tions, similar systems for probabilities Pk(z,s), k = 1,..N also have an analytical so-
lution. Using the inverse transformation (Mellin–Fourier transformation) of each
Pk(z,s), k = 1,...N, we obtain the originals Pk(z,s), k = 1,..N as an analytical expres-
sion. We complete the problem of inverse transformation of each Pk(z,s), k = 1,...N
with two observations: (i) the original is frequently obtained by using a table of
the Laplace transformed functions; in this table more associations for the image-
original assembly can be tabulated; (ii) all the non-destroying algebraic manipula-
tions of the Laplace image are accepted when we want an analytical expression for
its original.

When system (4.164)–(4.165) does not have any analytical solution, we can use
numerical integration coupled with interpolation for each function Pk(z,s),
k = 1,...N; then we can obtain the originals Pk(z,s), k = 1,...N. However, this proce-
dure gives an approximate result when compared to the direct numerical integra-
tion of the original model.

When we have discrete stochastic models, as those introduced through the poly-
stochastic chains, we can obtain their image by using different methods: the Z
transformation, the discrete Fourier transformation, the characteristic function of
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the process or the developing of the function of the process generator. The use of
a characteristic or generator function has already been discussed in this book in
some particular cases. Now we will focus on the use of the Z transformation to
solve discrete stochastic models. For a function uðsÞ and with a time network giv-
en as s ¼ n � Ds, we can introduce the transformation Z by means of:

Z uðsÞ½ � ¼ Z uðnÞ½ � ¼
P¥
n¼0

uðnDsÞz�n ¼
P¥
n¼0

uðnÞz�n ¼ FðzÞ (4.166)

It is not difficult to observe the recurrence property (4.167), which can be of inter-
est for the F (z) construction:

Z uðs� DsÞ½ � ¼ FðzÞ
z

(4.167)

For the discrete stochastic model given by the group of relations (4.58),
written considering a unitary and uniform displacement length for the step k:

pkðaÞ ¼
1 for a ¼ ak

0 for a „ ak

� ��
, the application of the Z transformation results in the

following expression:

Z Pkðn; iÞ½ � ¼
P
e˛K

Z pekPkðn� 1; i� akÞ½ � (4.168)

Considering the notation Fk(z,j) =
P¥
n¼0

Pkðn; jÞz�n, we can rewrite this expression

as shown in relation (4.169). If we particularize the model to address the simplifi-
cation that considers non-fractionary values for the steps ak, then we can easily
solve the transformed model after Fk(z,j). To do so, we must use a new discrete
transformation where n in the Fk(z,j) expression is replaced by j.

zFkðz; jÞ ¼
P
e˛K

pekFkðz; j� akÞ (4.169)

The Z transformation for a random and discrete variable results in facilitating the
computation of the most important parameters used for a process characteriza-
tion (mean values, momenta of various order, etc.). In example 4.3.1, we can use
the obtained functions Fk(z,j) to compute some parameters of this type because,
in this case, we have a solution to the characteristic function of the stochastic
model but not a complete and proper solution. The knowledge of the behaviour of
the mean values of random variables is frequently enough to provide the stochas-
tic model of the investigated process. For this purpose, the vector which contains
the probability distributions of the process random variables Pk(z,s), is used to-
gether with relation (4.170) in a finite space, to compute the mean values of the
random variables of various order (non-centred moment of various order). The
integration will carefully be corrected by bordering the space of the integral.

Em
k ðsÞ ¼

Rþ¥
�¥

zmPkðz; sÞdz ; k ‡ 0 (4.170)
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The derivate of the probabilities vector on the z axis results in:

Rþ¥
�¥

dPkðz; sÞ
ds

zmdz ¼ zmPkðz; sÞ=þ¥�¥ �m
Rþ¥
�¥

zm�1PKðz; sÞ ¼ �mEm�1
k (4.171)

Now we can particularize this transformation method (called method of
momenta) for the model case given by the group of relations (4.146)–(4.147):

dEm
k ðsÞ
ds

¼ �
XN

j¼1;j„ k

akj

0
@

1
AEm

k ðsÞ þmvkEm�1
k ðsÞ þ

XN

j¼1;j„ k

ajkEm
j ðsÞ (4.172)

s ¼ 0 ; Em
k ð0Þ ¼

Rþ¥
�¥

zmfkðzÞdz (4.173)

If the obtained formulation Em
k ðsÞ does not have any analytical solution, we can

carry out its Laplace transformation. In this case, the images Em
k ðsÞ can be written

with the following recurrence relations:

sþ
XN

j¼1;j „ k

akj

0
@

1
A

0
@

1
AEm

k ðsÞ �mvkEm�1
k ðsÞ �

XN

j¼1;j „m

ajkEm
j ðsÞ � Em

k ð0Þ ¼ 0 ;

k ¼ 1;N (4.174)

The solution of this equation system gives expressions Em
k ðsÞ; k ¼ 1;N, which

can be solved analytically by using an adequate inversion procedure. Indeed, the
stochastic model has now an analytical solution but only with mean values. It is
important to notice that when the analytical solution of a stochastic model pro-
diuces only mean values it is important to make relationships between these
results and the experimental work. This observation is significant because more
of the experimental measurements allow the determination of the mean values of
the variables of the process state, for the model validation or for the indentifica-
tion of process parameters.

At the end of this short analysis about solving stochastic models using integral
transformation, we can conclude that:
. by these methods we transform an original stochastic model into

its image that is simpler and consequently more easily explored;
. we transform: (i) a problem with singular coefficients into a non-

singular coefficient problem; (ii) a problem with a weak depen-
dence on one parameter into an independent problem with
respect to this parameter; (iii) an n order differential equation or a
system with n differential equations into a system with n–1 order
algebraic equations.

. by looking at the presented examples of transformation, it is not
difficult to consider the problem of a model transformation as a
general problem: indeed, the transformation presents a general
form vðtÞ ¼ EðuðsðtÞÞÞ, where sðtÞ is for each t a time randomly
distributed with the law hðs; tÞ and E is the mean value operator.
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4.5 Use of Stochastic Algorithms to Solve Optimization Problems

4.5
Use of Stochastic Algorithms to Solve Optimization Problems

In recent times, stochastic methods have become frequently used for solving dif-
ferent types of optimization problems [4.54–4.59]. If we consider here, for a steady
state process analysis, the optimization problem given schematically in Fig. 4.14,
we can wonder where the place of stochastic methods is in such a process. The
answer to this question is limited to each particular case where we identify a nor-
mal type distribution for a fraction or for all the independent variables of the pro-
cess (X = [Xi]). When we use a stochastic algorithm to solve an optimization prob-
lem, we note that stochastic involvement can be considered in [4.59]:
. the stochastic selection of the starting point of optimization. This

shows that each starting point of optimization is selected by a sto-
chastic procedure where all points have the same probability of
being chosen; so we have here a multi-start problem for the objec-
tive function and the algorithm of optimization.

. the selection procedure for the establishment of a value for each
independent variable of the process. Here, we use a random pro-
cedure in which a stochastic generator gives a value between the
minimal and maximal accepted value for each variable of the pro-
cess. We retain only the selected values producing a vector X that
minimizes or maximizes the objective function of the process.

model definition :Yi=f(Xj) ,X=[Xi],Y=[Yi] 

stable steady state

Building of the objective function:

constraints: Xm<X<XM

start points: M0K(X0k) 

optimisation

stable solution?

new constraints

optimized solution

no

no

Figure 4.14 Description of the problem of optimization of a
steady state process.
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Figure 4.15 details this computation procedure, here s max and i max are respec-
tively considered as the number of starting points and the number of acceptable
iterations for one start.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10  
11 
12 
13 
14 
15 
16 
17 
18

Define the stationary mathematical model Y=f(X,Y) 
Define an objective function F=F(X,Y)
Define the constraints C=C(X,Y)
Select a lower and upper bound for X such as   Xmi<Xi<XMi for all i=1,N 
Input smax and imax and start the selection of the  state vectors X0(s) , s=1,smax

Random select X=X0=X0(s) 
i=1 
Solve the  system Y0=f(X0,Y0) 
Compute FI=F(XI,YI) 
Random select X =XI nearXI-1

Solve the system Y1=f(X1,Y1) and compute FI
new

Control of the  constraints violations
For violations go back at 10 
For FI

new<FI go back at  10
For FI

new>FI    FI=FI
new  ,XI=X0; store and write FI and XI 

For i<imax  go back at 8
For s<smax go back at 6
End

Figure 4.15 The summary description of a stochastic proce-
dure used for the maximization of the objective function.

The success of this computation method depends strongly on the dimension of
the computation field which is considered here with the values of s max and i max.
Indeed, when the values of i max and s max are greater than 2*104 and 10 respec-
tively, using this method can be problematic because of the size of the computa-
tion volume. It is important to notice that this method works without the prepara-
tions considered in the gradient optimizing procedures (see Section 3.5.5).

This procedure can easily be transformed to identify the parameters of a process
as is shown in Fig. 4.15.

4.6
Stochastic Models for Chemical Engineering Processes

Stochastic modelling has been developing exponentially in all the domains of sci-
entific research since 1950, when the initial efforts for the particularization of the
stochastic theory in some practical domains were carried out. In 1960, James R.
Newman, who was one of the first scientists in modern statistical theory, wrote
the following about the stochastic theory particularization: Currently in the period
of dynamic indetermination in science, there is a serious piece of research that, if treated
realistically, does not involve operations on stochastic processes [4.8].

The stochastic process theory has been a major contribution to the opportune
renewal of the basic stochastic theory resulting from some actual requirements
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and forced by the necessity of characterizing modern scientific processes. The sci-
entific literature for the theory and practice of stochastic processes has been exten-
sively scattered in many books and magazines. Many reviews and specialized
books discuss the basic research lines in the theory of stochastic processes or pres-
ent very interesting applications [4.8].

The practical applications of the stochastic process theory are multiple. This is a
consequence of the capacity for this theory for predicting the future of a dynamic
system by use of its history and its current state. Among the most famous applica-
tions we can note:
. The analysis of all types of movements, from atomic and molecu-

lar level [4.61–4.62] to the evolution of macroscopic systems such
as atmospheric phenomena [4.63–4.64].

. The analysis of dynamic links for networks with locations where
the time of service is stochastically distributed (computer net-
works, internet networks, etc.).

. The analysis of virtual experiments given with a stochastic model
[4.65].

. The analysis of capital and fund movement [4.66, 4.67].

. The analysis and development of all types of games [4.68].

. The optimization and the control of all types of dynamic systems [4.68].

The applications of the stochastic theory in chemical engineering have been very
large and significant [4.5–4.7, 4.49–4.59, 4.69–4.78]. Generally speaking, we can
assert that each chemical engineering operation can be characterized with sto-
chastic models. If we observe the property transport equation, we can notice that
the convection and diffusion terms practically correspond with the movement and
diffusion terms of the Fokker–Plank–Kolmogorov equation (see for instance Sec-
tion 4.5) [4.79].

The following sections describe applications where stochastic models are used
for the characterization of some momentum, heat and mass transport examples.
For the beginner in stochastic modelling, these applications are relevant, firstly as
practical examples, secondly as an explanation of the procedures and methodology
for the creation of stochastic models and thirdly as examples of the use of stochas-
tic models to obtain computation formula or algorithms for one or more investi-
gated parameters of chemical engineering processes.

4.6.1
Liquid and Gas Flow in a Column with a Mobile Packed Bed

Columns packed with a moving bed are highly efficient for mass transfer in gas–
liquid or vapour–liquid systems. This high transfer efficiency is a consequence of
the rapid interface renewal brought about by the rapid movements of the packing
particles [4.80–4.82].

In this example, we consider two types of operation carried out in the same type
of packed column (shown in Fig. 4.16). The operating conditions depend on the
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values of the gas and liquid flow rates. In the former mode of operation, the col-
umn works in a wetted state whereas in the latter, we have a flooded packed state.
The mobile packing bed is composed of spherical spheres with diameter 1–3 cm
and density no greater than 500 kg/m3. For this type of device, recognized as
mobile wetted packed bed (MWPB), the liquid and gas flow are usually character-
ized either by processing the parameters’ relationships or through models that
show:
. The state of gas and liquid hold-up for specified values of factors

and parameters affecting the operation of the mobile packed bed;
. The state of phase mixing at each level of the working factors of

the MWPB.

Hd

FLOODED PACKED STATE WETTED PACKED STATE 

gasgas

liquid 

liquid 

gas

liquid 

Hd 

liquid

gas

1

2 

3

4 

Figure 4.16 Regimes of work of the moving bed column. 1 – solid bed particle,
2 – drops of liquid in the bed, 3 – small drops, 4 – gas bubbles.
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To deal with this problem, and more specifically with the working state of
the MWPB, we will use stochastic modelling of the liquid and gas flow. When
the MWPB operates with small liquid retention (wetted packed state) the liquid
and gas hold-up are described by the concept of mean residence time (sml; smgÞ
and the flow rate density (qvl; qvg) as follows:

el ¼ qvlsml=Hd (4.175)

eg ¼ qvgsmg=Hd (4.176)

The residence time for a liquid element flowing in a MWPB can be described by
Eq. (4.176). Here sml0 is the liquid mean residence time for a standard mobile
packed bed with a dp0-diameter solid packing and a qvl0-density liquid flow rate:

el ¼
qvl

dp0

dp

 !a
qvl0

qvl

� �b

sml0

Hd
(4.177)

A stable hydrodynamic state (where the particles move about, in all directions,
without any preferences) occurs in working states with a small liquid hold-up
(mobile and wetted packed bed or MWPB). This displacement is the driving force
of the liquid flow and we can then characterize the liquid flow by means of one
stochastic model with three evolution states (for instance, see Fig. 4.17). Indeed,
after this model, we accept that a liquid element is in motion with three indepen-
dent evolution states:
. The liquid element moves with a flow rate þvx towards the posi-

tive direction of x;
. the liquid element moves with a flow rate �vx along the negative

direction of x;
. the liquid element moves through the normal plane to x, or keeps

its position.

After this description, we can appreciate the evolution of the liquid element in
a MWPB through a continuous stochastic process. So, when the liquid element
evolves through an i state, the probability of skipping to the j type evolution is
written as pijaDs. Consequently, we express the probability describing the possibil-
ity for the liquid element to keep a type I evolution as:

Pi ¼ 1�
P
j„ i

pijaDs (4.178)
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liquid 
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Hd 

liquid

Figure 4.17 Elementary processes for the evolution of a liquid
element in a MWPB.

If we consider the evolution of the liquid element together with the state of prob-
abilities of elementary evolutions, we can observe that we have a continuous Mar-
kov stochastic process. If we apply the model given in Eq. (4.68), P1ðz; sÞ is the
probability of having the liquid element at position x and time s evolving by
means of a type 1 elementary process (displacement with a þvx flow rate along a
positive direction of x). This probability can be described through three indepen-
dent events:
. The liquid element which evolves at time s, with the rate of evolu-

tion þvx to the position x� Dx, keeps the same evolution for the
interval of time Ds; the probability of this occurrence is mathema-
tically written as: ð1� p12aDs� p13aDsÞP1ðx� vxDs; sÞ;

. the liquid element, which has evolved with rate �vx to position x
in a time s, changes to evolution rate þvx at the interval of time
Ds; p31aDsP3ðx; sÞ describes the probability of this occurrence;

. the last event is represented by the possibility for the liquid ele-
ment that evolves at a rate 0 to a position x in a time s, to change
its evolution rate to þvx in the interval of time Ds; p21aDsP2ðx; sÞ,
describes the probability of this occurrence.

Considering the type 1 evolution, we notice that P1ðz; sÞ is obtained by the sum of
the probabilities of independent events; so we obtain:
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P1ðx; sþ DsÞ ¼½1� ðp12 þ p13ÞaDs�P1ðx� vxDs; sÞþ
p21aDsP2ðx; sÞ þ p31aDsP3ðx; sÞ

(4.179)

By the same procedure, we obtain the probabilities of having the liquid element at
x position in a time sþ Ds with a type 2 or type 3 evolution. The relations below
describe these probabilities:

P2ðx; sþ DsÞ ¼½1� ðp21 þ p23ÞaDs�P1ðx� vxDs; sÞþ
p12aDsP1ðx; sÞ þ p32aDsP3ðx; sÞ

(4.180)

P3ðx; sþ DsÞ ¼½1� ðp31 þ p32ÞaDs�P3ðx� vxDs; sÞþ
p13aDsP1ðx; sÞ þ p23aDsP2ðx; sÞ

(4.181)

The probabilities P1ðHd; sÞ and P3ð0; sÞ show the possibilities for the liquid ele-
ment to leave the MWPB; these will consequently be used to compute the resi-
dence time of the liquid. When the time increases, Ds is very small (near zero)
and relations (4.180)–(4.181) become a particularization of the model (4.74)–
(4.76), (for instance see Section 4.4.2):

¶P1ðx; sÞ
¶s

þ vx
¶P1ðx; sÞ

¶x
¼ �ðp12 þ p13ÞaP1ðx; sÞ þ p21aP2ðx; sÞ þ p31aP3ðx; sÞ

(4.182)

¶P3ðx; sÞ
¶s

� vx
¶P3ðx; sÞ

¶x
¼ �ðp31 þ p31ÞaP3ðx; sÞ þ p13aP1ðx; sÞ þ p23aP2ðx; sÞ

(4.183)

¶P2ðx; sÞ
¶s

¼ �ðp21 þ p23ÞaP2ðx; sÞ þ p12aP1ðx; sÞ þ p32aP3ðx; sÞ (4.184)

The univocity conditions, necessary to solve the model, are established by the fol-
lowing considerations;
. when the liquid element gets into WPB at s ¼ 0, it will not be

present on the points where x > 0:

s ¼ 0 ; x > 0 ; P1ðx; 0Þ ¼ P2ðx; 0Þ ¼ P3ðx; 0Þ ¼ 0 (4.185)

. when the liquid element gets into WPB at x ¼ 0 with only an ele-
mentary type 1 process, we have:

s ¼ 0 ; x ¼ 0 ; P1ð0; 0Þ ¼ 1 (4.186)

. for all s > 0 at x ¼ 0 and x ¼ Hd, the liquid element cannot evolve
with a type 1 or a type 3 process:
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s > 0 ; x ¼ 0 ; x ¼ Hd ; P1ð0; sÞ ¼ 0 ; P3ðHd; sÞ ¼ 0 (4.187)

The process model expressed as a Laplace image is given by the following system
of differential equations:

vx
dP1ðx; sÞ

dx
¼ �ðsþ ap12 þ ap13Þ þ

p21ap12a
sþ p21aþ p23a

� �
P1ðx; sÞþ

p31aþ p21ap23a
sþ p21aþ p23a

� �
P3ðx; sÞ

(4.188)

vx
dP3ðx; sÞ

dx
¼ þðsþ ap12 þ ap13Þ �

p23ap32a
sþ p21aþ p23a

� �
P3ðx; sÞþ

p13aþ p12ap23a
sþ p21aþ p23a

� �
P1ðx; sÞ

(4.189)

Here, the image P2ðx:sÞ has been eliminated from the expressions that resulted
from the first form of the Laplace model transformation. The observations on the
packed particles evolving in WPB show that we do not have any preferential
motion directions. We can extend this observation to the motion of the liquid ele-
ment. Indeed, we can accept the equality of its transition probabilities:
pij ¼ 1=3 ; i ¼ 1; 3 ; j ¼ 1; 3. If we take into account this last consideration, to-
gether with a unitary value for the velocity evolution (vx ¼ 1 length units=s or
vx ¼1 dm/s), we can assert that the model of the evolution of the liquid element
flowing inside the MWPB is fully characterized. The solution of this model is car-
ried out with its Laplace transformation of the differential equations of the model
and by considering the corresponding univocity conditions. The result is given by
Eqs. (4.190) and (4.191). As explained at the beginning of this section, P2ðx; sÞ is
missing here as a consequence of its elimination from the first state of the Laplace
transformation of model differential equations:

dP1ðx; sÞ
dx

¼ �ðsþ aÞð3sþ aÞ
3sþ 2a

P1ðx; sÞ þ
aðsþ aÞ
3sþ 2a

P3ðx; sÞ (4.190)

dP3ðx; sÞ
dx

¼ ðsþ aÞð3sþ aÞ
3sþ 2a

P3ðx; sÞ þ
aðsþ aÞ
3sþ 2a

P1ðx; sÞ (4.191)

If we remove P3ðx; sÞ from the assembly of relations (4.190) and (4.191), the result
is:

d2P1ðx; sÞ
dx2

¼ 3asðsþ aÞ2

3sþ 2a
P1ðx; sÞ (4.192)

The general solution of this last differential equation is given by relation (4.193),
where C1 and C2 are integration constants and k2 is expressed by relation (4.194):

P1ðx; sÞ ¼ C1ekðsþaÞ þ C2e�kðsþaÞ (4.193)
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k2 ¼ 3as
3sþ 2a

(4.194)

Constants C1 and C2 are obtained from the univocity problem adapted to the
Laplace transformation. The solution thus obtained is given below. In this rela-
tion, K is given by Eq. (4.196):

P1ðx; sÞ ¼
1
K
½ð1þ kÞ2e�kxðsþaÞ � ð1� kÞ2e�2kHdþkxðsþaÞ� (4.195)

K ¼ ð1þ kÞ2 � ð1� kÞ2e�2kHd (4.196)

If we take into consideration the procedure that we used above to eliminate
P3ðx; sÞ from the system (4.190)–(4.191), we can obtain the following expression
for P3ðx; sÞ:

P3ðx; sÞ ¼
1
K
½ð1� k2Þe�kxðsþaÞ � ð1� k2Þe�2kHdþkxðsþaÞ� (4.197)

The residence time distribution function is found as a result of the addition of the
probabilities showing the possibility for a liquid element to leave the MWPB (see
also Section 4.3.1):

f ðs;HdÞ ¼ P1ðHd; sÞ þ P3ð0; sÞ (4.198)

The mean residence time for the liquid element evolution in a MWPB, can easily
be obtained from the first derivative of the characteristic function of the residence
time distribution:

sm0ðHdÞ ¼ �uð0;HdÞ (4.199)

The analytical expression of our uðs;HdÞ is obtained by coupling the basic formula
of the characteristic residence time distribution function with the solutions of
P1ðx; sÞ and P3ðx; sÞ:

uðs;HdÞ ¼
R¥
0

f ðs;HdÞe�ssds ¼ P1ðHd; sÞ þ P3ð0; sÞ (4.200)

uðs;HdÞ ¼
ChðkHdsÞ � 1� k2

2k
ShðkHdÞ �

1þ k2

2k
ShðkHdsÞ

1þ k2

2k
ShðkHdÞ þ ChðkHdÞ

(4.201)

A similar result for uðs;HdÞ but with a different relation for parameter k was
obtained in application 4.3.1. The value of the derivative u¢ð0;HdÞ is then obtained
using the definition of the derivative in a point:
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u¢ð0;HdÞ ¼ lim
sfi 0

uðs;HdÞ � uð0;HdÞ
s� 0

¼ lim
sfi 0

uðs;HdÞ � 1
s

¼

lim
sfi 0

ChðkHdsÞ � kShðkHdÞ � ChðkHdÞ �
1þ k2

2k
ShðkHdsÞ

1þ k2

2k
sShðkHdÞ þ sChðkHdÞ

¼ ::: ¼ � 3
2

Hd þ
Hd

Hd þ 2

� �
(4.202)

It is easy to observe that the intensity of transition from one state to another (para-
meter a from relations (4.179)–(4.181)) does not influence the mean residence
time characterizing the liquid evolution in the MWPB:

sm0ðHdÞ ¼ �u¢ð0;HdÞ ¼ �
3
2

Hd þ
Hd

Hd þ 2

� �
:

Coming back to the problem of liquid fraction in the MWPB, we observe that the
replacement of Eq. (4.177) by (4.202) imposes homogenizing units because we
previously established that the mean residence time of the liquid was calculated
considering vx ¼1 in dm/s and, consequently, Hd was used in decimeters. Now
considering Hd in meters, relation (4.177) becomes:

el ¼
30
2
þ 10

Hd þ 2

� �
qvl

dp0

dp

" #a
qvl0

qvl

� �b

(4.203)

We complete the expression of MWPB liquid hold-up by considering a ¼ 0:5 and
b ¼ 0:4. These values are also used to hold-up the liquid in a countercurrent gas–
liquid flow in a fixed packed bed. To complete the building of the MWPB liquid
hold-up expression, we show the identified conditions corresponding to a stan-
dard defined MWPB. These conditions correspond to a spherical-shaped packing
with dp0 ¼ 0.025 m, rp ¼ 300 kg/m3, fluidized by air and wetted by water with a
flowing density of qvl0 ¼ 2.5*10–3 m3/m2s. Indeed, the final expression is:

el ¼ 0:216
30Hd þ 8
30Hd þ 6

� �
q0:6

vl d�0:5
p (4.204)

For other shapes of packing, we have to correct the previous relation with a coeffi-
cient w (shape factor). Relation (4.205) takes into account this correction:

el ¼ 0:216
30Hd þ 8
30Hd þ 6

� �
q0:6

vl d�0:5
p w�0:5 (4.205)

The final expression giving the mean residence time for the liquid evolution in a
MWPB of spherical particles is written as follows:

sml ¼ 0:0143
30Hd

2
þ 10Hd

10Hd þ 2

� �
d�0:5

p q�0:4
vl (4.206)
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Experimental validation. When a model cannot be verified by experiments, it can
be considered as an excellent exercise which however does not have any practical
significance. So as to validate the results of our stochastic model for a liquid flow
in a MWPB, we will use data previously published [4.80, 4.82] for a model contact-
ing bed of spherical particles, in which the gas and liquid fluids were respectively
air and water. In these studies, the liquid residence time was estimated by measur-
ing the response of a signal injected into the bed. The MWPB liquid hold-up was
obtained by the procedure of instantly stopping the water and air at the bed input.
The data obtained are reported in Figs. 4.18–4.20.
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Figure 4.18 Response to signals in liquid for a WPB operated with air and
water (packing of spherical particles with dp = 0.0275 m and qp = 330 kg/m3,
qvl = 12 m3/m2h , H0 = 0.18 m).
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Figure 4.19 Liquid residence time for a MWPB operated with air and water
(Spherical particles with dp = 0.0275 m and qp = 330 kg/m3).
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Figure 4.20 Liquid hold-up state for air and water operated MWPB.
(Spherical particles with dp = 0.0275 m and qp = 330 kg/m2, H0 = 0.18 m).

Each point on the curves in Fig. 4.19 corresponds to the mean value of various
experimental results. We can notice that, even if we have good trends, the experi-
mental and calculated values do not match well. This can be ascribed to model
inadequacies, especially with respect to the liquid exit conditions; in that case, we
considered that the MWPB output had occurred at x ¼ 0 and at x ¼ Hd when it was
experimentally observed that the liquid exit dominantly occurs at x ¼ Hd. This results
in a decrease in the mean residence time computed values. If we look at Figs. 4.20 to
4.22, which have been obtained at different operating conditions, we can conclude
that we do not have major differences between the computed and experimental values
of liquid MWPB hold up; then we can consider the equality of the transition prob-
abilities between the individual states of the stochastic model to be realistic.
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Figure 4.21 Liquid hold-up state for a MWPB operated with air and water. Packing
particles of cylindrical shape with dp = 0.012 m, qp = 430 kg/m3, H0 = 0.18 m.
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Figure 4.22 Liquid hold-up state for a WPB operated with air and water. Case of
spherical particles with dp = 0.02 m and qp = 220 kg/m3; H0 = 0.22 m.

According to Fig. 4.21, where the particles used for the bed are cylindrical, as
well as to Fig. 4.22 obtained from the experimental data published by Chen [4.83],
we observe that the MWPB liquid hold-up does not depend on gas velocity as was
found in Fig. 4.20. In order to justify the value of the evolution velocity of a liquid
element (vx = 1 dm/s) used in the simulations, we drew Figs. 4.23 and 4.24. Figure
4.23 has been drawn after the data published by Cains and Prausnitz [4.84]. It
shows the evolution of the liquid velocity when water fluidizes spherical particles
of glass.
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Figure 4.23 Liquid flow state for the fluidization of a bed of
glass spheres with dp = 0.0032 m.
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Figure 4.24 Velocity frequencies for the motion of a mobile
sphere inside of a MWPB. Case: Air–water operated, spheres
with dp = 0.0275 m and H0 = 0.18 m, qvl = 0.004 m3/m2s.

In Fig. 4.24 we show the experimental data that present the frequency of the
velocity states for the motion of some marked particles inside MWPB. For this
purpose some particles of the packing have been coloured and their motion has
been recorded by means of a high speed video-recorder [4.81]. From both figures
it is obvious that the velocity range obtained is very near to the liquid element ve-
locity considered for simulations. Indeed, if in the MWPB the most important
quantity of the liquid covers the fluidized particles, the evolution of the liquid ve-
locity has to be identical to the fluidized particle velocity. However, it is obvious
that the physical properties of the liquid have to affect the residence time of the
liquid element that evolves inside the MWPB. Indeed, if we have a liquid different
from water we have to introduce the influence of its own physical properties on
the system response. The solution to this problem can be obtained by derivation
of the expression of the characteristic function of the liquid evolution as shown in
Eq. (4.206). Here He

d is considered as an equivalent height of the MWPB corre-
sponding to a unitary value of the velocity of displacement of the liquid element
(vx ¼ 1 conventional length unit/s).

u¢ð0;He
dÞ ¼ �

3
2

He
d þ

He
d

He
d þ 2

� �
(4.207)

The transposition of the equivalent height of the mobile packed bed (He
d) to a nor-

mal working unit is carried out through a correction function, which is applied to
a bed height corresponding to a MWPB operated with air and water. If we con-
sider that the major contributions to the correction function expression are given
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by liquid density, viscosity and superficial tension, we can complete the relations
(4.205) and (4.206), which are then rewritten as:

el ¼ 0:216
30Hd þ 8
30Hd þ 6

� �
q0:6

vl d�0:5
p w�0:5f ðgl;rl; rlÞ (4.208)

sml ¼ 0:0143
30Hd

2
þ 10Hd

10Hd þ 2

� �
d�0:5

p q�0:4
vl f ðgl;rl; rlÞ (4.209)

Some computed values of the function f ðgl;rl; rlÞ obtained by using the data
reported by Masao et al. [4.85], are given in Table 4.3. The analysis of the data of
Table 4.3 shows that the expression of the function f ðgl;rl; rlÞ can be written as
follows:

f ðgl;rl; rl ¼ ga
rlr

b

rlr
c

rlÞ (4.210)

Table 4.3 Some values of the function f ðgl;rl; rlÞ when
the MWPB is operated with air and various liquids.

f ðgl;rl; ql) Water
ql = 1 g/cm3 ,
gl = 1 CP,
rl = 72.8 d/cm

Ethanol
ql = 0.8 g/cm3,
gl = 1.38 CP,
rl = 22.5 d/cm

Glycerol 25%
ql = 1.07 g/cm3,
gl = 1.33 CP,
rl = 70.8 d/cm

Glycerol 65%
ql = 1.16 g/cm3,
gl = 14.5 CP,
rl = 67.5d/cm

Spheres of 170 kg/m3

dp = 0.02 m,
wg = 2 m/s
qvl = 0.0025 m3/m2s

1 0.759 0.955 1.36

Spheres of 590 kg/m3

dp = 0.028 m,
wg = 3 m/s
qvl = 0.006 m3/m2s

1 0.801 0.983 1.31

qr l = 1
gr l = 1
rr l = 1

qr l = 0.8
gr l = 1.33
rr l = 0.303

qr l = 1.07
gr l = 1.33
rr

qr l = 1.16
gr l = 14.45
rr l = 0.981

The data of this table also allow the identification of parameters a = 0.158,
b = 0.484 and c = –1.65. Based on these values, we can then write slightly more
complex relations for the liquid hold-up and liquid residence time in the MWPB:

el ¼ 0:216
30Hd þ 8
30Hd þ 6

� �
q0:6

vl d�0:5
p w�0:5g0:158

rl r0:484
rl r�1:65

rl (4.211)

sml ¼ 0:0143
30Hd

2
þ 10Hd

10Hd þ 2

� �
d�0:5

p q�0:4
vl g0:158

rl r0:484
rl r�1:65

rl (4.212)
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4.6.1.1 Gas Hold-up in a MWPB
In Fig. 4.16 the gas is shown to be the continuous phase of the MWPB. In this
configuration, many direction changes in the flow of gas elements originate from
the presence and moving of the packing spheres. If we consider that these
changes take place randomly, then we can carry out the particularization of the
stochastic flow description of the gas elements. This description has been success-
fully used for the case of gas–liquid flow in a fixed and in a mobile packed bed
[4.28, 4.81].

The gas element evolves inside the MWPB in 3 states: displacement in the þx
direction with velocity þvx; displacement in the �x direction with velocity �vx;
non-motion or displacement in the horizontal plane. The mathematical writing of
the stochastic model is given by relations (4.182)–(4.187). In order to particularize
this model to the case of gas element evolution inside the MWPB, we take into
account the following considerations:

1. The sense of the x-axis is determined by the global gas flow
direction and is inverse with respect to the liquid flow.

2. It is difficult to select the values for the probabilities of pas-
sage between process states.

3. The gas flowing element rapidly passes from one actual pro-
cess state to another and tends to follow an elementary pro-
cess type 1state.

4. Concerning the evolution of the velocity of the gas flowing
element, the skip velocity is added or subtracted from the
local gas flow velocity in the bed, when the gas flowing ele-
ment skips in the þx and �x directions respectively.

With these considerations, the model that describes the gas element motion in-
side the MWPB can be described by the following assembly of relations:

¶P1ðx; sÞ
¶s

þ ðwg þ vxÞ
¶P1ðx; sÞ

¶x
¼� ðp12 þ p13ÞaP1ðx; sÞ þ p21aP2ðx; sÞ

þ p31aP3ðx; sÞ
(4.213)

¶P3ðx; sÞ
¶s

þ ðwg � vxÞ
¶P3ðx; sÞ

¶x
¼� ðp31 þ p32ÞaP3ðx; sÞ þ p13aP1ðx; sÞ

þ p23aP2ðx; sÞ
(4.214)

¶P2ðx; sÞ
¶s

þ wg
¶P2ðx; sÞ

¶x
¼� ðp21 þ p23ÞaP2ðx; sÞ þ p12aP1ðx; sÞ

þ p32aP3ðx; sÞ
(4.215)

s ¼ 0 ; x ¼ 0 ; P1ðx; 0Þ ¼ P2ðx; 0Þ ¼ P3ðx; 0Þ ¼ 0 (4.216)

s ¼ 0 ; x ¼ 0 ; P1ð0; 0Þ ¼ 1� u P2ð0; 0Þ ¼ P3ð0; 0Þ ¼ u=2 (4.217)
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s > 0 ; x ¼ 0 ; P1ð0; sÞ ¼ 0 ; P2ð0; sÞ ¼ 0 ; P3ð0; sÞ ¼ 0 (4.218)

This stochastic model is in fact one type of turbulent motion model. For the uni-
vocity problem, we consider that a gas element can be influenced by any type of
elementary process after its insertion into the MWPB at x = 0. The permanent ve-
locity wg, pushes the gas element outside the bed at x = Hd and through any of the
elementary processes. The presented model can be completed by considering the
different frequencies induced by passing from one elementary process to another:
p11a11 ¼ a11; p12a12 ¼ a12; p13a13 ¼ a13, etc.

The distribution of the residence time for the gas evolution inside the bed takes
into account the statement above, which concerns the possibility for the gas to exit
the bed through any of the elementary processes:

f ðs;HdÞ ¼ P1ðs;HdÞ þ P2ðs;HdÞ þ P3ðs;HdÞ (4.219)

Theoretical and experimental results of the gas hold-up inside a MWPB show that
the data converge only when the p11 values are greater than 0.7. Figure 4.25 pre-
sents a simulation of the presented model, which intends to fit some experimental
data [4.82]. In the presented simulation, the initial values of P1ð0; 0Þ; P2ð0; 0Þ and
P3ð0; 0Þ injected into the model give an idea about the values of the transition
probabilities; these are: p11 = p21 = p31 = 0.7, p12 = p13 = p12 = p23 = p22 = p33 = p32 =
0.15. In Fig. 4.25 we can see that we have all the necessary data to begin the com-
putation of the mean residence time of a gas element evolving inside the MWPB.
Indeed, relation (4.176) can now be used to calculate the gas hold-up in the bed.
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Figure 4.25 The gas exit from the MWPB in terms of probability of the elementary
motion processes (wg = 2 m/s, vx = 0.1 m/s, Hd = 0.9 m, 1 – P1(0,0) = 0.7, 2 – P2(0,0) =
0.15, 3 – P3(0,0) = 0.15).
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4.6.1.2 Axial Mixing of Liquid in a MWPB
The liquid flowing inside a MWPB can be described with a one-parameter disper-
sion flow model. As we show in Section 3.3, the axial mixing coefficient or, more
correctly, the axial dispersion coefficient is the specific parameter for this model.
Relation (3.112) contains the link between the variance of the residence time of
liquid elements and the Peclet number. We can rewrite this relation so as to parti-
cularize it to the case of a MWPB. Here, we have the possibility to compute the
variance of the residence time of the liquid through the stochastic model for the
liquid flow developed previously in order to obtain the value of the axial dispersion
coefficient:

r2 ¼ 2
Pe
� 2

Pe2
ð1� e�PeÞ ¼ u†ð0;HdÞ

½u¢ð0;HdÞ�2
� 1 (4.220)

Pe ¼ wlHd

Dl
¼

H2
d

smlDl
¼ �

H2
d

u¢ð0;HdÞDl
(4.221)

If we carefully observe the expression of the characteristic function of the resi-
dence time distribution for the evolution of a liquid element (uðs;HdÞ, relation
(4.201)), we can notice that it is difficult to compute the expressions of the deriva-
tives u¢ð0;HdÞ and u†ð0;HdÞ. Using the expansion of the hyperbolic sine and
cosine respectively as multiplication series, we obtain the following simplified
expression for the characteristic function:

ChðzÞ ¼ 1þ 4z2

p2

� �
1þ 4z2

32p2

� �
1þ 4z2

52p2

� �
:::::: 1þ 4z2

ð2nþ 1Þ2p2

 !
::: (4.222)

ShðzÞ ¼ z 1þ z2

p2

� �
1þ z2

22p2

� �
1þ z2

32p2

� �
:::::: 1þ z2

ð2nþ 1Þ2p2

 !
::: (4.223)

uðs;HdÞ ¼
ð2þHdÞ þ ð3�HdÞs� 3Hds2 þ 1:2Hds3

ð2þHdÞ þ ð3þ 3Hd þ 1:2H2
dÞs

(4.224)

Table 4.4 compares the residence time results obtained with the characteristic
function given by the original equation (4.201) and with the simplified form
(4.224). We can notice that the values obtained with the simplified form are good
enough.

u¢ð0;HdÞ ¼ lim
sfi 0

uðs;HdÞ � uð0;HdÞ
s� 0

¼

lim
sfi 0

1:2Hds3 � 3Hds2 � ð1:2H2
d þ 4HdÞs

ð1:2H2
d þ 3Hd þ 3Þs2 þ 5ðHd þ 2Þs ¼

lim
sfi 0

3:6H2
ds2 � 6Hds� ð1:2H2

d þ 4HdÞ
ð2:4H2

d þ 6Hd þ 6Þsþ ðHd þ 2Þ ¼ �
1:2H2

d þ 4Hd

Hd þ 2

(4.225)
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Table 4.4 Mean residence time of the liquid in a MWPB as a
function of the bed height. First row – simplified characteristic
function, second row – original characteristic function.

Hd (dm) 0.5 1 2 3 4

�u¢ð0;HdÞ ¼ sml ¼
1:2H2

d þ 4Hd

Hd þ 2
ðsÞ 0.91 1.73 3.2 4.57 5.87

�u¢ð0;HdÞ ¼ sml ¼
3
2

Hd þ
Hd

Hd þ 2
ðsÞ 0.95 1.83 3.5 5.1 6.67

The analytical computation for the first derivative of the characteristic function
gives relation (4.226) where the functions aiðHdÞ ; i ¼ 1; 6 are written with the
relations (4.227)–(4.232):

u¢ðs;HdÞ ¼
a1ðHdÞs3 þ a2ðHdÞs2 þ a3ðHdÞsþ a4ðHdÞ

½a5ðHdÞ þ a6ðHdÞs�2
(4.226)

a1ðHdÞ ¼ 7:2H2
d þ 7:2H3

d þ 2:88H4
d (4.227)

a2ðHdÞ ¼ �ð9Hd þ 1:8H2
dÞ (4.228)

a3ðHdÞ ¼ �ð12Hd þ 6H2
dÞ (4.229)

a4ðHdÞ ¼ �ð8Hd þ 6:4H2
d þ 1:2H3

dÞ (4.230)

a5ðHdÞ ¼ 2þHd (4.231)

a6ðHdÞ ¼ 3þ 3Hd þ 1:2H2
d (4.232)

For the second derivative u†ð0;HdÞ at point zero, we use the definition formula
coupled with the l’Hospital rule for the elimination of the non-determination of
0/0 type. The result is:

u†ð0; HdÞ ¼ a3ðHdÞa5ðHdÞ � 2a4ðHdÞa6ðHdÞ
½a5ðHdÞ�2

(4.233)

Considering relations (4.220) and (4.221), we can observe that we have all the re-
quired elements to compute the axial dispersion coefficient. The theoretical com-
puted values for the axial mixing coefficient for the case where the bed height has
a practical importance are shown in Table 4.5. For the cases when the selection
vx ¼ 1 dm/s is not justified by the operational conditions, we replace Hd by He

d.
We can introduce He

d through equation (4.210):

He
d ¼ g0:158

rl r0:484
rl r�1:65

rl Hd (4.234)
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Table 4.5 Evolution of the Peclet number and of the axial
dispersion coefficient with the height of the MWPB (theoretical
computation).

Hd (dm) �u¢ð0;HdÞ (s) u†ð0;HdÞ (s2) r2 Pe Dl � 102 (m2/s)

0.5 0.95 2.33 1.33 – –

1 1.83 6.32 0.887 0.5 1.07

2 3.50 19.08 0.557 2.1 0.54

3 5.10 37.98 0.46 2.8 0.63

4 6.67 64.83 0.43 3.3 0.73

5 8.21 93.67 0.388 3.7 0.823

6 9.75 130.32 0.371 3.9 0.946

7 11.28 172.79 0.36 4.1 1.05

8 12.80 221.05 0.35 4.4 1.14

9 14.31 275.16 0.343 4.6 1.23

10 15.93 335.04 0.0336 4.7 1.34

Experimental testing. The experimental work for the determination of the liquid
axial mixing inside the packed bed has been carried out with the introduction of
an impulse of NaCl (12 g/l) on the input of a MWPB which operates with air and
water [4.80, 4.81] and with the recording of the evolution with time of the signal
state at the liquid output. We assume that the system can be described by the dis-
persion model and that its analytical solution is given by Eqs. (3.106) and (3.107).
Using these equations as well as the experimental results, we can then calculate
the Pe number and the Dl coefficient values. Figure 4.26 indirectly shows the evo-
lution of the signal at the output through the electric tension of a Wheatstone
bridge having the resistive detector placed in the output flow of liquid.

The experimental data processing has previously been presented in example
3.3.5.3. Equations (3.106) and (3.107) can be simplified in order to allow a rapid
identification of Pe and Dl as follows:

ln
cðhÞ
c0
¼� Pe

4
þ 4

Pe
k2

1

� �
hþ Pe

2
þ

ln
2k1

1þ Pe
2

� �
k1 sin ð2k1Þ �

Pe
2
þ Pe

2

� �2

�k2
1

" #
cos ð2k1Þ

¼ mhþ n

(4.235)
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Figure 4.26 The output signal of the inverse unitary impulse of a solution of
12 g/l NaCl in the liquid of the MWPB.
(1 – wg = 1.31 m/s, qvl = 0.0062 m3/m2s, H0 = 0.18 m , dp = 0.0275 m , qp = 330 kg/m3;
2 – wg = 1.31 m/s, qvl = 0.0031 m3/m2 s, H0 = 0.18 m , dp = 0.0275 m , qp = 330 kg/m3;
3 – wg = 2.4 m/s, qvl = 0.0062 m3/m2 s, H0 = 0.18 m , dp = 0.0275 m , qp = 330 kg/m3 ;
4 – wg = 2.4 m/s, qvl = 0.0031 m3/m2 s, H0 = 0.18 m , dp = 0.0275 m , qp = 330 kg/m3).

tgð2k1Þ ¼
Pe
2

k1

k2
1 �

Pe
4

� �2 (4.236)

It is easy to notice that the values of the parameters m and n, from Eq. (4.235),
will be estimated after the particularization of the least squares method for the

dependence of ln
cðhÞ
c0

� �
vs h

m ¼ Pe
4
þ 4

Pe
k2

1 (4.237)

n ¼ Pe
2
þ ln

2k1

1þ Pe
2

� �
k1 sin ð2k1Þ �

Pe
2
þ Pe

2

� �2

�k2
1

" #
cos ð2k1Þ

(4.238)

The value of the Pe number is obtained by solving the system formed by Eqs.
(4.237) and (4.238). Two examples of data processing [4.81] are given in Table 4.6.
Figure 4.27 presents the evolution of the Peclet number with the gas velocity
[4.81–4.83, 4.86]. A comparison between the published and computed stochastic
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dependence of Pe vs wg is given for cases 1 and 2, [4.81] (H0 = 0.36 m, qvl = 0.0031
and 0.0071 m3/m2 s, dp = 0.0275 m , qp = 330 kg/m3).

Table 4.6 Experimental data processing for the estimation of Pe and Dl.

Experimental conditions
wg = 2 m/s, qvl = 0.0047 m3/m2 s,
H0 = 1.8 dm, Hd = 2.1 dm, dp = 0.0275 m,
qp = 330 kg/m3

Experimental conditions
wg = 2.4 m/s, qvl = 0.0047 m3/m2 s,
H0 = 1.8 dm, Hd = 2.1 dm, dp = 0.0275 m,
qp = 330 kg/m3

N� c(h)/c0 h ln c(h)/c0 c(h)/c0 h ln c(h)/c0

0 0 * m= 1.29 0 0 * m= 1.31

2 1 0.36 0 Solutions: 1 0.34 0 Solutions:

3 0.52 0.69 –0.69 k1 = 0.608 0.53 0.69 –0.65 k1 = 0.618

4 0.375 1.03 –0.98 Pe = 1.75 0.35 1.02 –1.04 Pe = 1.81

5 0.276 1.37 –1.35 0.26 1.38 –1.347

6 0.23 1.71 –1.47 Stochastic 0.23 1.7 –1.47 Stochastic

7 0.11 2.05 –2.2 Pe = 2.4 0.12 2.04 –2.12 Pe = 2.55

8 0.05 2.4 –2.99 0.04 2.4 –3.2

9 0.013 2.76 0.028 2.72
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Figure 4.27 Variation of the Pe number with gas velocity. 1,2 – [4.81] H0 = 0.36 m,
qvl = 0.0031 and 0.0071 m3/m2 s, dp = 0.0275 m , qp = 330 kg/m3 ; 3,4 – [4.83]
H0 = 0.16 m, qvl = 0.0038 and 0.016 m3/m2 s, dp = 0.016 m , qp = 283 kg/m3;
5,6 – [4.86] H0 = 0.30 m , qvl = 0.0025 and 0.015 m3/m2 s dp = 0.0255 m ,
qp = 173 kg/m3. s and ~: calculated results for the cases 1 and 2.
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Figure 4.28 illustrates the dependence of the axial mixing coefficient with the
gas velocity for the examples given above. This graphic representation is derived
form Fig. 4.27 according to the relation: Pe ¼ H2

d=ðsmlDlÞ). Apparently, the sto-
chastic model predictions of the liquid axial mixing versus gas velocity are in con-
tradiction with the published data, especially at low gas velocity. This discordance
can be explained if we consider that, at low gas velocity, we only have an incipient
motion of the packing. Indeed, at low velocity, we can consider that we are near
the conditions of a fixed packed bed, and the stochastic model which considers
three states with the same probability: pij ¼ 1=3; 8i ¼ 1; 3; j ¼ 1; 3 is no longer
sustained. At the same time, the calculated Pe values are slightly less than the
experimental ones and then the experimentally obtained mixing is greater than
when calculated by the model. However, it is important to notice the good trend
observed for the axial mixing coefficient, which increases with the gas velocity as
shown in Fig. 4.28.
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Figure 4.28 State of the axial mixing coefficient versus gas velocity.
1,2 – [4.81] H0 = 0.36 m, qvl = 0.0031 and 0.0071 m3/m2 s, dp = 0.0275 m ,
qp = 330 kg/m3 ; 3,4 – [4.83] H0 = 0.16 m, qvl = 0.0038 and 0.016 m3/m2 s,
dp = 0.016 m , qp = 283 kg/m3; 5 – [4.86] H0 = 0.30 m , qvl = 0.0025 and
0.015 m3/m2 s dp = 0.0255 m , qp = 173 kg/m3. s and ~: calculated results for
the cases 1 and 2.

Before closing this discussion about the axial mixing of liquid inside
the MWPB, it is important to note the significance of the result generated by the
stochastic model. Concretely, we can compute the values of the axial mixing pa-
rameters for liquid flow inside the mobile wetted bed by a procedure (assembly of
relations (4.202), (4.220), (4.221), (4.229)–(4.233)) that requires only the computa-
tion of the bed height (Hd). This last parameter strongly depends on all the factors
that characterize fluidization: the density and diameter of the spheres, liquid flow
density, gas velocity, all momentum transport properties of gas and liquid (gas
and liquid density, viscosity, liquid superficial tension, etc.). Therefore, the axial
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mixing parameters for the liquid flow in the MWPB are influenced by all these
factors. For the computation of the height of the MWPB, we can use previously
published relations [4.80–4.81]. In these relations, the minimum fluidization ve-
locity appears as an important variable. The liquid flow density and the minimum
gas flow velocity for the fluidization, determine the value of this variable.

4.6.1.3 The Gas Fraction in a Mobile Flooded Packed Bed
Figure 4.16 shows that, in a mobile flooded packed bed (MFPB), the gas flow bub-
bles through the bed which is composed of the assembly of liquid and solid pack-
ing. The spheres that represent the mobile packing are frequently fluidized in the
liquid and are predominantly near the surface. In this MFPB, the bed’s gas frac-
tion strongly depends on the feed gas flow rate and consequently depends on the
apparent gas velocity. As far as many other factors can influence the bed’s gas frac-
tion, a stochastic approach to this problem can be convenient. Therefore, this sec-
tion will be devoted to establishing one stochastic model for the gas movement
inside the bed and to its use in solving the dependence between the gas fraction
and the various factors of the process. Experimental observations indicate that, in
a liquid–solid system, the gas bubbles have a non-organized motion, which can be
associated with a stochastic process. In addition, the phenomenon of bubble asso-
ciation is frequently observed in all cases of gas bubbling in a liquid or suspension
or in a liquid with large suspended solids. Looking at the motion of a single bub-
ble in this type of system, we can consider that the bubbles will change their veloc-
ity in response to: (i) an interaction with the liquid or with the solid; (ii) an interac-
tion with the bubbles in their vicinity. When dk-diameter bubbles interact with the
surrounding liquid, their velocities vk can be calculated by the following relation

vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gdkðrl � rgÞ

3fkrg

s
. Here, fk shows the hydrodynamic friction-resistance coeffi-

cient related with the movement of the bubble k. With f 0
k ðx; vk; sÞ, we note the

function of the velocity distribution with respect to the individual k-type bubbles.
We define the multiplication f 0

k ðx; vk; sÞdx as the fraction of bubbles having veloci-
ty vk that are positioned between x and xþ dx at the time s. For an intense bub-
bling situation, the interaction of the bubbles with the liquid or with the solid
coexists with the bubble–bubble interactions. For this motion type, the function of
distribution of velocities is noted as f ðx; vk; sÞ. Indeed, from the given motion
description we can identify two basic motion processes of bubbles (two elemen-
tary evolution states): bubbles interacting with only the neighborhood liquid,
when their velocities remain unchanged; bubbles interacting with other bubbles,
when we have an evolution of the velocities (the velocity of one bubble can skip
from one state to other m possible states).

If the probability for a motion caused only by bubbles–liquid interactions is
pa ¼ aDs, then the following: 1� pa ¼ 1� aDs, gives the probability for a dis-
placement due to the bubble–bubble interactions. When we have the last type of
motion in the interval of time Ds, one bubble changes its velocity ve to velocity vk
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with the probability pek. Based on this description, the probability balance (please
see the model relation (4.20)) gives the following equation:

fkðx; vk; sþ DsÞ ¼ ð1� aDsÞ
Pm
e¼1

pekfeðx� vkDs; ve; sÞ þ aDsf 0
k ðx� vkDs; vk; sÞ

(4.239)

Relation (4.239) shows that “k” bubbles (bubbles having velocity vk) reach point x
at time sþ Ds because of the interaction with the other types of bubbles (the prob-
ability for this event is 1� aDs) or because of the interaction with the composite
liquid–solid medium (the probability for this event is aDs). At the same time, the
bubbles that originate from the position x� vkDs without interaction with the
nearly bubbles keep their velocity; so the local distribution function of these indi-
viduals velocities is f 0

k ðx; vk; sÞ. Due to the stochastic character of the described
process, the transition probabilities from the state “e” to all “k” states verify
the unification condition. Consequently, the probability pkk will be written as

pkk ¼ 1�
Pm

e¼1;e „ k
pke and relation (4.239) will be rewritten as follows:

fkðx; vk; sþ DsÞ ¼ ð1� aDsÞ
Xm

e¼1;k „ e

pekfeðx� vkDs; ve; sÞþ

1�
Xm

e¼1;e„ k

pke

 !
fkðx� vkDs; vk; sÞþ

aDsf 0
k ðx� vkDs; vk; sÞ

(4.240)

The determination of the transition probabilities (pek; 8 k; e ¼ 1; :::m) is a prob-
lem that requires careful analysis. Experimental observations show that, for bub-
bles moving in a liquid, two interaction rules can be accepted:

1. The assembly resulting from a bubble–bubble interaction,
which takes the velocity of the bubble having the higher ve-
locity:

Intðve; vkÞ ¼ maxðve; vkÞ 8 e; k ¼ 1; :::m (4.241)

2. The assembly resulting from a bubble–bubble interaction,
which takes a velocity higher than any of the individual velo-
cities of the bubbles:

Intðve; vkÞ ¼ sup½maxðve; vkÞ� 8 e; k ¼ 1; :::m (4.242)

Expressions (4.241) and (4.242) describe the well known observed phenomena of
accelerated bubbling.

To estimate the probabilities pek or pke, we consider the behaviour of one indi-
vidual bubble having velocity vk at position x. Their interactions with the bubbles
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having velocities ve with ve � vk are described with the term �
Pm

e¼1;e „ k
pkefeð::::Þ in

relation (4.240). Because our “k” bubble has the highest velocity, we derive that its
relative velocity with respect to the type “e” bubbles is vk � ve. For the period of
time Ds, the covered space is ðvk � veÞDs and the number of type “e” bubbles met
by our “k” bubble is feðx; ve; sÞðvk � veÞDs. At the same time, the probability for
our bubbles to realize a linear velocity change depends on the interactions num-
ber feðx; ve; sÞðvk � veÞDs. So, for the transition probability pke, we can establish:

pke ¼ bfeðx; ve; sÞðvk � veÞDs ; k; e ¼ 1; 2; :::m (4.243)

When ve > vk, the interactions of the bubbles having a vk velocity with the bubbles

having a ve velocity are described in relation (4.240) by the term
Pm

e¼1;e „ k
pekfeð::::Þ.

After the analysis, updated here for the case of ve � vk, we obtain the following
relation for the transition probabilities pek:

pek ¼ bfkðx; vk; sÞðve � vkÞDs ; e; k ¼ 1; 2; :::m (4.244)

These two last relations respect the following interaction rule: (1) the assembly
resulting from a bubble–bubble interaction takes the higher velocity higher of any
of the individual velocities of the bubbles.

For the interaction rule of type (2), relations (4.243) and (4.244) become respec-
tively (4.245) and (4.246) where supðvkÞ and supðveÞ are velocities which are high-
er than vk and ve respectively:

pke ¼ bfeðx; ve; sÞðsupðvkÞ � veÞDs ; k; e ¼ 1; 2; :::m (4.245)

pek ¼ bfkðx; vk; sÞðsupðveÞ � vkÞDs ; e; k ¼ 1; 2; :::m (4.246)

In order to transform Eq. (4.240) into a form that can be computed, we introduce
the following considerations and definitions:
. the real effect of the bubbles interaction is:

lim
Dsfi 0

1
Ds

Xm
e¼1

pekfeðx� vkDs; ve; sÞ �
Xm
e¼1

pkefkðx� vkDs; vk; sÞ
" #

¼ b
Xm

e¼1;ve�vk

feð:::Þðve � vkÞfkð::Þ �
X

e¼1;ve<vk

feð::Þðvk � veÞfkð:::Þ
" #

¼ bfkð::Þ
Xm
e¼1

feð:::Þðve � vkÞ

(4.247)

. the concentration of bubbles is linear along their trajectory:

bðx; sÞ ¼
Pm
e¼1

feðx; ve; sÞ ¼
Pm
e¼1

f 0
k ðx; ve; sÞ (4.248)
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. the definition of the mean velocity (vðx; sÞ) of bubbles along their
trajectory is:

vðx; sÞ ¼

Pm
e¼1

vefeðx; vesÞ

Pm
e¼1

f ðx; ve; sÞ
(4.249)

We can notice that relation (4.248) is a norma condition for the distribution func-
tions f 0

k ðx; vk; sÞ and fkðx; vk; sÞ. The probability balance of the motion of bubbles
is developed by replacing relation (4.247) in Eq. (4.240) and by rearranging some
terms:

fkðx; vk; sþ DsÞ � fkðx� vkDs; vk; sÞ
Ds

¼

� a fkðx� vkDs; vk; s� f 0
k ðx� vkDs; vk; s

	 


þ bfkðx; vk; sÞ
Xm
e¼1

feðx; ve; sÞðve � vkÞ þ O1ðDsÞ

þ bfkðx� vkDs; vk; sÞ
Xm
e¼1

feðx� vkDs; ve; sÞðve � vkÞ þ O2ðDsÞ

(4.250)

Here O1ðDsÞ and O2ðDsÞ have negligible values. By introducing the Taylor expan-
sion of functions fkðx� vkDs; vk; sÞ into relation (4.250), we obtain the following
assembly of relations:

fkðx� vkDs; vk; sÞ ¼ fkðx; vk; sÞ � vkDs
Dfkðx; vk; sÞ

Dx
þ ::::: (4.251)

¶fk

¶s
þ vk

¶fk

¶x
¼ �aðfk � f 0

k Þ þ bfk

Xm
e¼1

feðve � vkÞ (4.252)

The final form of the stochastic model of the gas bubbling in the liquid–solid sys-
tem is written by coupling Eq. (4.252) with Eqs. (4.248) and (4.249):

¶fkðx; vk; sÞ
¶s

þ vk
¶fkðx; vk; sÞ

¶x
¼� a½fkðx; vk; sÞ � f 0

k ðx; vk; sÞ�þ

bfkðx; vk; sÞbðx; sÞ½vk � vðx; sÞ� k ¼ 1; ::m
(4.253)

When the number of the elementary states of the process (m) is important, the
discrete model (4.253) can be written in a continuous form:

¶f ðx; v; sÞ
¶s

þ v
¶f ðx; v; sÞ

¶x
¼ �a½f ðx; v; sÞ � f 0ðx; v; sÞ� þ bf ðx; v; sÞbðx; sÞ½v� vðx; sÞ�

(4.253¢)
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Here we have:

bðx; sÞ ¼
R¥
0

f ðx; v; sÞdv ¼
R¥
0

f 0ðx; v; sÞdv (4.254)

vðx; sÞ ¼
R¥

0 vf ðx; v; sÞdvR¥
0 f ðx; v; sÞdv

(4.255)

Taking into consideration the physical meaning of fkðx; vk; sÞ and f ðx; v; sÞ and
deriving f ðx; v; sÞdxdv, we define the number of the bubbles positioned at time s

between x and xþ dx and that gives the velocities in the interval ðv; vþ dvÞ. Rela-
tion (4.253) shows that: (i) the number of bubbles with velocity v decreases with
the fraction af ðx; v; sÞ due to their interaction with the neighbouring medium;
(ii) the number of bubbles with velocity v increases with the fraction af 0ðx; v; sÞ
due to their interaction with the neighbouring medium; (iii) for v > v the number
of the bubbles with velocity v increases respectively for v < v decreases due to the
interactions with other bubbles.

The complete unsteady state stochastic model of the bubbling process is given
coupling the assembly of relations (4.253)–(4.255) with the univocity conditions.
The numerical analysis (checking) of this model can easily produce interesting data
for the cases of bubbles coalescence and bubbles breaking. One interesting solution
of this model corresponds to the case of a homogenous steady state bubbling which
can be obtained with relation (4.253) and considering ¶=¶s ¼ ¶=¶x ¼ 0 and

1þ b

a
ðv� vÞ > 0. Here f ðx; v; sÞ becomes f ðvÞ:

f ðvÞ ¼ f 0ðvÞ

1þ b

a
ðv� vÞb

(4.256)

With the same conditions but considering 1þ b

a
ðv� vÞ ¼ 0, the solution for f ðvÞ

is given by the new relation below written; this fact is equivalent to v ¼ vþ a=ðbbÞ
which is the univocity condition for the model given by relations (4.253)–(4.255):

f ðvÞ ¼ f 0ðvÞ

1þ b

a
ðv� vÞb

þ cbd 1þ b

a
ðv� vÞb

� �
(4.256¢)

This expression (bubble velocities distribution) shows that two types of flows parti-
cipate in the bubbling process: the first type, introduced by the first term Eq.
(4.256¢), is the regular flow; the second flow type is called singular flow and is con-

tained in the term where the Dirac function d½1þ b

a
ðv� vÞb� appears. The singu-

lar flow becomes unimportant when we have: (i) a velocity distribution in a
restricted domain around v ; (ii) a slow concentration of bubbles. Both cases are
coupled when we can consider that cfi 0 in relation (4.256¢). If we multiply
the left and right terms of equation (4.256¢) by v and then integrate it for all
velocities of the bubbles, we obtain relations (4.257)–(4.258). Here we used

v ¼
R¥
0

vf ðvÞdv=
R¥
0

f ðvÞdv for the identification of the mean bubble velocity and for

the variance of the velocities around the mean velocity:
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r2 ¼
R¥
0
ðv� vÞvf ðvÞdv=

R¥
0

f ðvÞdv =
R¥
0

vð 1þ b

a
ðv� vÞb

� �
f ðvÞdv ¼

R¥
0

vf 0ðvÞdv (4.257)

v� b

a
r2b ¼ v0 (4.258)

Equation (4.258) gives the mean bubble velocity which is described through the
apparent gas velocity v ¼ wg=eg, whereas the linear bubble concentration is given

through the bubble diameter and the gas fraction b ¼ 6
p

� �1=3
e

1=3
g

dmb
. With these two

last expressions we can write that:

wg ¼
v0eg

1� ke
1=3
g

(4.259)

where k =
6
p

� �1=3
br2

avdmb
contains all the unknown factors introduced during

model building. Here, r2 depends on v. Indeed, it appears of interest to describe a
case where r2 becomes independent with respect to v. In relation (4.259), when
eg fi 1, we have a limit case where k = 1 and the relation between the gas fraction
and the gas apparent velocity becomes:

wg ¼
v0eg

1� e
1=3
g

(4.260)

To compute the mean bubble velocity (v0), it is necessary to know the mean bubble
diameter and some physical properties of the medium in which the bubbles evolve.

Experimental checking. Figure 4.29 compares the theoretical calculations and
experimental results for the evolution of eg=ð1� e

1=3
g Þ with wg=v0 for a MFPB.

The bed height has been fixed at 0.25 m. Two liquid–solid systems with solid frac-
tions of 0.1 and 0.3 m3/m3 have been chosen. A 0.0275 m diameter spheres of
density 980–1030 kg/m3 were selected as mobile packing. Air and water are the
working fluids. The gas fraction results from bed expansion when gas flows
through the liquid–solid system.

The computation of the mean bubble velocity was based on the bubble diameter
resulting from the bubble forming at each submerged orifice from the gas bub-
bling arrangement. In Fig. 4.29, we can observe that the stochastic model gives a
good trend with respect to the experimental results, even if some discordance
appears, especially at small values of the gas fraction. In all cases, the model
underestimates the experimental results, the underestimation is between 5 and
15% for values of wg/v0 greater than 0.3.

The problem of bubble motion in a liquid is fundamental in chemical reaction
engineering because about 25% of all chemical reactions occur in bi-phase systems.
As we have shown, the gas–liquid two-phase flow prevailing in a bubble column is
extremely complex. It is dominated by a rich variety of logical configurations and ex-
hibits inherent unsteadiness. As a consequence, the modelling of this flow is an
attractive subject and constitutes an excellent subject for stochastic modelling.
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Figure 4.29 Gas hold-up versus gas velocity for a MFPB.

4.6.2
Species Movement and Transfer in a Porous Medium

Frequently we define a porous medium as a solid material that contains voids and
pores. The notion of “pore” requires some observations for an accurate description
and characterization. If we consider the connection between two faces of a porous
body we can have opened and closed or blind pores; between these two faces we
can have pores which are not interconnected or with simple or multiple connec-
tions with respect to other pores placed in their neighborhood. In terms of manu-
facturing a porous solid, certain pores can be obtained without special preparation
of the raw materials whereas designed pores require special material synthesis
and processing technology. We frequently characterize a porous structure by sim-
plified models (Darcy’s law model for example) where parameters such as volu-
metric pore fraction, mean pore size or distribution of pore radius are obtained
experimentally. Some porous synthetic structures such as zeolites have an appar-
ently random internal arrangement where we can easily identify one or more cav-
ities; the connection between these cavities gives a trajectory for the flow inside
the porous body (see Fig. 4.30).

The diameter or the radius of the pores is one of the most important geometric
characteristic of porous solids. In terms of IUPAC nomenclature, we can have
macropores (mean pore size greater than 5 � 10–8 m), mesopores (between 5 � 10–8

and 2 � 10–9 m) and micropores (less than 2 � 10–9 m). The analysis of species
transport inside the porous structure is very important for the detailed description
of many unit operations or applications; among them we can mention: suspen-
sion filtration, solid drying and humidification, membrane processes (dialysis,
osmosis, gaseous permeation ......), flow in catalytic beds, ion exchange, adsorp-

284



4.6 Stochastic Models for Chemical Engineering Processes

tion, solid–liquid extraction, the dispersion of therapeutic species inside an ani-
mal or human body, species penetration in porous soils etc.

The most used methods for the characterization of flow and species transport
inside a porous body include the identification of the characteristics of the pores
of the porous structure and the particularisation of classic transport equations to
this case. These equations are generally associated with equations describing the
solid–fluid interaction, adsorption, capillary condensation and flow due to the
capillary forces etc. Concerning the species displacement (flow) problem inside a
porous structure, we can consider the following classification:
. For pores with a radius between 10–3 and 10–7 m, the theory of

Poiseuille flow is valid; so the mean force for fluid flow between
two planes is expressed by the pressure difference; this can be a
consequence of differential actions of external and capillary or/
and gravitational forces.

. For pores having a mean radius between 10–8 and 10–9 m, we
explain the porous body flow by the Knudsen theory; here the dif-
fusion coefficient and, consequently, the flow, strongly depend on
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Figure 4.30 Structure of a zeolite material. (a) Internal view – atoms, (b) internal
view of windows, (c) central-cavities and windows.
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the molecular weight of the species (two or more species moving
inside the porous body will present different displacement veloci-
ties);

. For pores smaller than 10–9 m, a molecular sieving effect can be
present and the movement of one or more species inside the po-
rous solid occurs due to the molecular interactions between the
species and the network of the porous body; here, for the descrip-
tion of species displacement, the theory of molecular dynamics is
frequently used. The affinity between the network and the species
is the force that controls the molecular motion; at the same time,
the affinity particularities, which appear when two or more spe-
cies are in motion inside the porous structure, explain the separa-
tion capacity of those solids. We can use a diffusive characterisa-
tion of species motion inside a porous solid by using the notion
of conformational diffusion.

Porous solids generally have a pores size distribution and in many cases this
results in a complicated transport mechanism which is a combination of the dif-
ferent mechanisms described above. This is also the case when the pores size are
ranged near the boundaries between these different mechanisms.

All these different mechanisms of mass transport through a porous medium
can be studied experimentally and theoretically through classical models (Darcy’s
law, Knudsen diffusion, molecular dynamics, Stefan–Maxwell equations, dusty-
gas model etc.) which can be coupled or not with the interactions or even reac-
tions between the solid structure and the fluid elements. Another method for the
analysis of the species motion inside a porous structure can be based on the obser-
vation that the motion occurs as a result of two or more elementary evolutions
that are randomly connected. This is the stochastic way for the analysis of species
motion inside a porous body. Some examples that will be analysed here by the
stochastic method are the result of the particularisations of the cases presented
with the development of stochastic models in Sections 4.4 and 4.5.

4.6.2.1 Liquid Motion Inside a Porous Medium
The classic and stochastic methods used for the analysis of liquid flow inside a
porous medium are strongly related. These interactions are given by the relation-
ships between the parameters of both types of models. We show here that the
analysis of the flow of a liquid through a porous medium, using a stochastic
model, can describe some of the parameters used in deterministic models such
as:
. parameters from Darcy’s law;
. parameters that appear in the equation of flow continuity in a

porous medium;
. parameters used by the models explaining the flow mechanism

inside a porous solid.
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Apparently the parameters of stochastic models are quite different from those of
classic (deterministic) models where the permeability, the porosity, the
pore radius, the tortuosity coefficient, the specific surface, and the coefficient of
the effective diffusion of species represent the most used parameters for porous
media characterization. Here, we will present the correspondence between the sto-
chastic and deterministic parameters of a specified process, which has been mod-
elled with a stochastic and deterministic model in some specific situations.

4.6.2.1.1 Stochastic Modelling of Dispersion of a Liquid in a Porous Body
The dispersion of a liquid that flows inside a porous medium is the macroscopic
result of some individual motions of the liquid determined by the pore network of
the solid structure. These motions are characterised by the local variations of the
velocity magnitude and direction. Accepting the simplified structure of a porous
structure shown in Fig. 4.31, the liquid movement can be described by the motion
of a liquid element in a þx direction (occurring with the probability p) compared
to the opposite motion or �x displacement (here q gives the probability of evolu-
tion and Dx represents the length portion of the pore which is not in contact with
the nearby pores). Indeed, the balance of probability that shows the chances for
the liquid element to be at time s in x position can be written as follows:

The probability to have
the fluid element at
time s in position x

=

The probability to have
the fluid element at time
s� Ds in position x� Dx
with an evolution along
þx for the next Ds time

+

The probability to have
the fluid element at time
s� Ds in position xþ Dx
with an evolution along
�x for the next Ds time

(4.261)

∆x x 

Figure 4.31 Fluid movement inside a uniform porous body.

When we express relation (4.261) mathematically we have:

Pðx; sÞ ¼ pPðx� Dx; s� DsÞ þ qPðxþ Dx; s� DsÞ (4.262)

The Taylor expansions of Pðxþ Dx; s� DsÞ and Pðx� Dx; s� DsÞ are used as their
right term:

DPðx; sÞ
Ds

þ ðp� qÞDx
Ds

DPðx; sÞ
Dx

¼ Dx2

2Ds

D2Pðx; sÞ
Dx2

(4.263)
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The term ðp� qÞDx
Ds

has a velocity dimension (L T–1) and physically represents the

net velocity of the liquid moving in the flow direction (w). The ratio
Dx2

2Ds
has the

dimension of a diffusion coefficient (L2 T––1) and is recognized as the dispersion
coefficient (D). With these observations we can rewrite relation (4.263) in order to
obtain Eq. (4.264) which is the equation that characterizes the dispersive flow in
one dimension (for instance see Section 3.35).

¶Pðx; sÞ
¶s

þ w
¶Pðx; sÞ

¶x
¼ D

¶2Pðx; sÞ
¶x2

(4.264)

It is not difficult to observe that, using this simple stochastic model of liquid flow
inside the porosity, we obtain that the parameters of the model, such as the net
flow velocity (w) and the dispersion coefficient (D), are determined by the porous
structure. This last parameter is considered here through the value of Dx (length
of one pore which is not in contact with nearby pores).

In order to solve the model equation, we must complete it with the univocity
conditions. In some cases, relations (3.100)–(3.107) can be used as solutions for
the model particularized for the process. The equivalence between both expres-
sions is that cðx; sÞ=c0 appears here as Pðx; sÞ. Extending the equivalence, we can
establish that Pðx; sÞ is in fact the density of probability associated with the reparti-
tion function of the residence time of the liquid element that evolves inside a uni-
form porous structure.

In the scientific literature, we can find a large quantity of experimental results
where the flow characterization inside a porous medium has shown that the value
of the dispersion coefficient is not constant. Indeed, for the majority of porous
structures the diffusion is frequently a function of the time or of the concentration
of the diffusing species. As far as simple stochastic models cannot cover these sit-
uations, more complex models have been built to characterize these dependences.
One of the first models that gives a response to this problem is recognized as the
model of motion with states having multiple velocities.

With this model, the liquid element evolves inside a porous solid with random
motions having the velocities vi; i ¼ 1; ::m. These random skips of velocity from
one state to another can be explained by random changes in pore sections and
pore interconnections. This description can be completed with the consideration
that here the elementary connection between the states (from one velocity or flow
to another) becomes a Markov type connection: pij ¼ p�ijaDs ¼ aijDs. We can
observe that, for a randomly chosen length of time, the component of the process
remains unchanged (the motion of the liquid with velocity vi); after this length of
time, the liquid element changes its velocity by skipping to another elementary
state of process and again it keeps this new value (vj) constant during this new
length of time. For this stochastic description, the balance of probabilities gives
relation (4.265). Here Piðx; sþ DsÞ represents the density of the probability that
shows the possibility of the existence of the liquid element at time sþ Ds in the
position x with the evolution vi; i ¼ 1; :::m.
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Piðx; sþ DsÞ ¼
Pm
j¼1

pjiPjðx� viDsÞ ; i ¼ 1; :::m (4.265)

If we go back to Section 4.4, then we discover that the model presented herein is
identical to the model presented at the beginning of Section 4.4.2. Based on the
analogy principle, we can extend the treatment of this previous model (Section
4.4.3) to the model in progress. Consequently, the assembly of relations (4.265)
takes the following form:

¶Piðx; sÞ
¶s

¼ �vi
¶Piðx; sÞ

¶x
�

Xm
j¼1;j„ i

aij

 !
Piðx; sÞ þ

Xm
j¼1;j„ i

ajiPjðx; sÞ (4.266)

Equation (4.266) shows that the time evolution of the fraction of the fluid (or fluid
elementary particles) that reaches position x with velocity vi at time s is deter-
mined by the following types of particles (i) particles having velocity vi and leaving
position x; (ii) particles having velocity vi and reaching position x ; (iii) particles
reaching position x and changing their velocity from vj to vi. For the particular
case where we have two evolution states for the fluid velocity (v1 ¼ þv, v2 ¼ �v)
the general model (4.266) is written as the set of relations (4.267). Here, the con-
sideration of a12 ¼ a21 ¼ a shows that we have a case of isotropic porous solid:

¶P1ðx; sÞ
¶s

¼ �v
¶P1ðx; sÞ

¶x
� aP1ðx; sÞ þ aP2ðx; sÞ

¶P2ðx; sÞ
¶s

¼ v
¶P2ðx; sÞ

¶x
� aP2ðx; sÞ þ aP1ðx; sÞ

(4.267)

This model is of interest because it can be easily reduced to a hyperbolic form of
the transport model of one property. With some particular univocity conditions,
this hyperbolic model accepts analytical solutions, which are similar to those of an
equivalent parabolic model. The hyperbolic model for the transport of a property
is obtained by coupling the equation Pðx; sÞ ¼ P1ðx; sÞ þ P2ðx; sÞ to relations
(4.267) and then eliminating the terms P1ðx; sÞ and P1ðx; sÞ. The result can be
written as:

¶Pðx; sÞ
¶s

þ 1
2a

¶2Pðx; sÞ
¶s2

¼ v2

2a

¶2Pðx; sÞ
¶x2

(4.268)

Pðx; sÞ gives the probability of having the liquid element flowing inside the porous
solid, in position x at time s. By a simple analysis of the hyperbolic model for the
property transport, (relation (4.268)) we can conclude that, in the case when para-

meter a has a high value, the term
1

2a

¶2Pðx; sÞ
¶s2

can be negligible with respect to

other terms. The result is the conversion of the hyperbolic model into a parabolic
model. For the transport in one dimension, this model is given by the partial dif-
ferential equation:

¶Pðx; sÞ
¶s

¼ v2

2a

¶2Pðx; sÞ
¶x2

(4.269)
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Now, we can have a special univocity case that considers the following unitary
impulse as presented in the example of Section 4.2.1 as signal to the flow input
inside the porous solid:

Pðx; 0�Þ ¼
0 for x £ 0
0 for x � 0

�
, Pðx; 0þÞ ¼

1 for x £ 0
0 for x � 0

�
(4.270)

The solution for the coupling of the model equation (4.269) with the above speci-
fied conditions (relations (4.270)) can be reached using the solution given by
Crank [4.87] for the response given by a similar model to a unitary impulse input:

Pðx; sÞ ¼
R0
�¥

Pimpð x� nj j; sÞdn ¼ �
Rx
¥

Pimpðg; sÞdg ¼
R¥
x

Pimpðg; sÞdg (4.271)

For the particularization of this last equation to our problem, we have to take into
account the following observations: (i) P(x, s) is normalized (its values are
included in the interval [0, 1]); (ii) P(x, s) is symmetric with respect to the plane
x ¼ 0. So we can write:

Pðx; sÞ ¼ 1
2
�
Rx
0

Pimpðg; sÞdg for x > 0

Pðx; sÞ ¼ 1
2
þ
R0
x

Pimpðg; sÞdg for x < 0 (4.272)

The same particularization procedure is used to establish a solution for the hyper-
bolic model (4.268) coupled to conditions (4.270). The solutions for Pimpðx; sÞ,
which correspond to the parabolic and hyperbolic models, are presented in Sec-
tion 4.2.1 (for instance see relations (4.36) and (4.37)). The results for the probabil-
ities Pðx; sÞ are given by the following relations:

x > 0 ; Pðx; sÞ ¼ 1
2
�
Zx

0

ffiffiffiffiffiffiffiffiffi
a

2v2s

r
exp � ag2

2v2s

� �
dg

¼ 1
2
�
Z xffiffiffiffiffi

2v2 s
a

p

0

1ffiffiffi
p
p e�z2

dz ¼ 1
2
� 1

2
erf

xffiffiffiffiffiffiffiffiffiffi
2v2

s

a

r
0
BB@

1
CCA

x < 0 ; Pðx; sÞ ¼ 1
2
þ 1

2
erf

xffiffiffiffiffiffiffiffiffiffi
2v2

s

a

r
0
BB@

1
CCA

(4.273)

The solution for the hyperbolic model is given by Eqs. (4.274). For negative values
of x (x < 0) the computation for the model solutions is developed by the same pro-
cedure given above:
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x > 0 ; Pðx; sÞ ¼ 1
2
�
Zx

0

ae�as

2v
I0 as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

v2s2

r !
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2

v2s2

r I1 as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

v2s2

r !2
664

3
775dg

¼ 1
2

e�as I0
a

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2s2 � x2
p� �

þ 2
X¥
n¼1

vs� x
vsþ x

� �n
2

In
a

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2s2 � x2
p� �" #

for 0 � x � vs

Pðx; sÞ ¼ 0 for x � vs (4.274)

With the hyperbolic and parabolic models, we can describe the evolution for the
existence probability Pðx; sÞ, which is shown in Fig. 4.32. Major differences be-
tween both models can be observed at small values of time.

The hyperbolic model shows a fast evolution of the probability Pðx:sÞ at
the spatial distance x ¼ ys with respect to x ¼ 0 or more precisely at
x= v2s=ad e0:5¼ 1=2expð�asÞ. At moderate or large time, we cannot observe a dif-
ference between the predicted values of Pðx:sÞ from the models. This is due to the
rapid decrease with time of the magnitude of the rapid evolution of the predicted
probability Pðx:sÞ in the hyperbolic model. It is important to specify that the
hyperbolic model keeps a fast evolving probability Pðx:sÞ for all possible univocity
conditions at small time. It is difficult to demonstrate experimentally the predic-
tion of the stochastic hyperbolic model for the liquid dispersion inside a porous
solid because the predicted skip is very fast Pðx:sÞ and not easily measurable.

P(x,τ) 

increase τ

x/[v2τ/α]0.5

-2 - 1 0 21 

0.5 

1 

P(x,τ) 

increase τ

small τ

1/2exp(-ατατ) 

x/[v2τ/α]0.5 

0.5

1

-2 -1 0 21

(a) (b)

Figure 4.32 Differences between the parabolic and hyperbolic models for
the calculation of the evolution of Pðx; sÞ. (a) Parabolic model, (b) hyperbolic model.
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In the characterization of porous membranes by liquid or gaseous permeation
methods, the interpretation of data by the hyperbolic model can be of interest
even if the parabolic model is accepted to yield excellent results for the estimation
of the diffusion coefficients in most experiments. This type of model is currently
applied for the time-lag method, which is mostly used to estimate the diffusion
coefficients of dense polymer membranes; in this case, the porosity definition can
be compared to an equivalent free volume of the polymer [4.88, 4.89].

Coming back to the stochastic analysis of the elementary particle motion inside
the porous solid, we can notice that this analysis introduces a consistent explana-
tion of the parameters participating in the coefficient of diffusion or dispersion,

which is written as D ¼ lim
Dxfi 0;Dsfi 0

ðDxÞ2

2Ds
¼ v2

2a
. Indeed, it is determined by the

motion velocity of the species and by the frequency of the changes of direction of
the velocity. Because v and a have specific values for each individual species–po-
rous structure couple, then the diffusion is the mechanism which allows separat-
ing out such species when they permeate through a porous membrane.

The particularization of the limit theorem of the second type to model (4.267)
(for instance see also Section 4.5.1.2, relations (4.132)–(4.134)) shows that the
stochastic model of the process becomes asymptotic with the parabolic model.

Indeed, we can identify the expressions Q ¼ �a a

a �a

� �
, V1 ¼ 0; V11 ¼

v2

2a

¶2

¶x2

that transform model (4.267) into model (4.269). The deviation of the original sto-
chastic model to a parabolic one is not a definitive argument to eliminate the use
of the hyperbolic model for the practical interpretation of some experimental data
on membrane permeation.

In porous solids made of larger elements such as fixed packed beds, where the
characteristic dimension of the packing is d (for example the diameter of a packed
solid), the frequency of the velocity change is a ¼ v=d (after each flow through an
element of the packed bed, the local fluid velocity v changes its direction). Now if
we use this value of a in the dispersion coefficient, we obtain the famous relation
Pe ¼ ðvdÞ=D ¼ 2, which gives the value of the dispersion coefficient when a fluid
flows through a packed bed [4.90].

This stochastic model of the flow with multiple velocity states cannot be solved
with a parabolic model where the diffusion of species cannot depend on the spe-
cies concentration as has been frequently reported in experimental studies.
Indeed, for these more complicated situations, we need a much more complete
model for which the evolution of flow inside of system accepts a dependency not
only on the actual process state. So we must have a stochastic process with more
complex relationships between the elementary states of the investigated process.
This is the stochastic model of motion with complete connections. This stochastic
model can be explained through the following example: we need to design some
flowing liquid trajectories inside a regular porous structure as is shown in
Fig. 4.33. The porous structure is initially filled with a fluid, which is non-miscible
with a second fluid, itself in contact with one surface of the porous body. At the
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start of the process, the second fluid begins to flow inside the well-structured
porosity by means of a process with the following characteristics:
. in a given time only a small portion of the liquid inside the

porosity is in a moving state;
. the points where the liquid gets into and out of the porous solid

are randomly distributed with time;
. we cannot exclude the possibility for the liquid element to come

back to a previous position;
. the present motion of the liquid element depends on its previous

state;
. at each spatial position and timing for the liquid motion, we can

identify four elementary states of the motion: k = 1 forward lead;
k = 2 backward lead; k = 3 left lateral movement; k = 4 right lateral
movement;

. the change in liquid velocity occurs not only when the flowing
liquid changes direction;

. the length of the step of the liquid movement is randomly
distributed.

A 

a

x 

Figure 4.33 The trajectory of a liquid element flowing inside a
regular porous structure.

If we combine all the aspects above with the descriptions of basic stochastic pro-
cesses, then we can conclude that we have the case of a stochastic process with
complete and random connections (see Section 4.4.1.1).

If a liquid element is initially in an i position moving with a k type of motion,
the probability that shows its coming to a j position as a result of n motion steps
is given by:

P�kðn; i; jÞ ¼
P
e˛K

P
a˛Z

pkeðiÞpkðaÞP�kðn� 1; iþ a; jÞ (4.275)
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In relation (4.275), we recognize pkeðiÞ, which represents the transition probability
from a type k motion into a type e motion at position i. By pkðaÞ, we express the
distribution of the length of steps related with type k motion.

For this case, the random system with complete connections [(A,A),(B,B),u,P]
presents the following particularisations: A = B = ZxK, u(Sn,En+1) = u((i,k),(a,e)) =
(i+a,e) and P(Sn...E1,S1, S0) = P((i,k);(a,e)) = pe(a)pke(i).

The probability of the type k motion for the liquid element which gets to the j
position, in a period of time given by the n evolution steps, is given by:

Pkðn; jÞ ¼
P
e˛K

P
a˛Z

pekðj� aÞpkðaÞPkðn� 1; j� aÞ (4.276)

For a practical computation, these two last equations need: (i) one procedure that
gives the transition probabilities from e to k state at each j� a position
(pekðj� aÞ); (ii) some practical relations that express, for k = 1, k = 2, etc., the dis-
tributions of the step lengths (pkðaÞ). It is not difficult to establish that the transi-
tion probabilities pekðj� aÞ depend strongly on the totality of the previous trajec-
tory. As a consequence, the fluid flowing trajectory is continuously updated step
by step.

4.6.2.1.2 Stochastic Models for Deep Bed Filtration
Deep bed filtration is used to clarify suspensions with a small content of solids.
This process, which is usually applied for water treatment, is based on the flowing
of a fluid through a deep bed of granular solids such as sand. During the flowing
inside the granular bed, interaction forces between one particle from the suspen-
sion and one particle from the granular bed occur. This interaction allows the par-
ticle from the suspension to latch onto the particle of the bed. This elementary
process occurs in many points placed through all the granular bed. The quantity
of the solid retained in one element of the system cannot exceed the quantity
held-up by the open spaces of the granular bed. When this retained quantity ap-
proaches the quantity determined by the bed porosity we can assert that the bed is
clogged. After clogging, we can regenerate the granular bed by a counter current
liquid fluidization but, depending on the type of bed filtration, other regeneration
processes can be used. For this filtration case, the quantity of particles retained by
the bed increases with time and, consequently, the filtrate flow rate decreases if
we do not increase the filtration pressure difference.

In addition to the traditional deep bed filtration, other interesting examples of
different processes and techniques can be described by the same basic principle:
(i) the tangential micro-filtration and ultra-filtration where a slow deep filtration
produces the clogging of the membrane surface; (ii) some processes of impregna-
tion of porous supports with a sol in order to form a gel which, after precipitation,
will form a membrane layer. Here the sol penetration inside the support is funda-
mental for the membrane quality.

The modelling of the deep bed filtration based on the description of the trajec-
tory of a suspension particle and on the deposition on a bed of solid has been
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extensively published. However, until now, the majority of the results generated
by these models were not satisfactory, because the models generally consider sim-
plifications with respect to the action of the forces that cause the deep bed filtra-
tion. While reviewing the forces occurring in the deep bed filtration, the complex-
ity of this operation can easily be noticed. Figure 4.34, which aims to indirectly
present those forces, shows the movement of one particle of the suspension
around one particle of the granular bed. Among the most important forces consid-
ered in deep bed filtration we have:
. The inertial force, that expresses the tendency of the microparticle

to keep moving when it is under the influence of the hydrody-
namic trajectory imposed by the flow around one element of the
fixed bed. The action of this force is given by the number
In ¼ ðrpd2wf Þ=ð18gdsÞ; here d is the microparticle diameter,
ds = D/2 represents the diameter of the element of the granular
bed, qp gives the density of the microparticle which is expected to
deposit, g is the viscosity of the flowing liquid and wf measures
the real local liquid velocity.

. The gravitational force characterizing the settling capacity of the
microparticle from the suspension flowing inside the porosity.
This is given by the Stokes number, St ¼ ½gðrp � rÞd2�=ð18gwf Þ,
which is a ratio between the Stokes settling velocity and the local
velocity for the flowing suspension.

. The diffusion force, giving the local action of the Brownian
motion on the deposition of the microparticle. A modified Peclet
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number, Pe ¼ ð3pgddswf Þ=ðkTÞ, is then considered. It is the ratio
between the Stokes and Brownian forces, which together influ-
ence the microparticle movement;

. the laminar flow force characterizing the action of the flowing liq-
uid on the microparticle; when the flowing field around the ele-
ment of the porous structure is not uniform, an undesired rota-
tion movement will be induced for the microparticle. The effect
of the laminar flow force can be considered by means of the Rey-
nolds number ( Re ¼ ðwf dsrÞ=g).
The common action of these four forces results in the global mechanism that

produces the approach of microparticles to deposition elements of the porous sol-
id. At distances shorter than 1 lm, other forces come into play and produce the
fixation of microparticles onto elements of the porous structure. Among these
forces we have:
. The electrostatic force that appears when microparticles and the

deposition element of the bed have electric charges; when the
electric charges of both entities have identical signs, we have a
repulsive force, the value of which is predicted by relation (4.277).
The suspensions including ionized substances contain an excel-
lent source of charged microparticles.

FðxÞR ¼
exp �kd

2x
d
� 2

� �" #

1þ exp �kd
2x
d
� 2

� �" # (4.277)

. The Van der Waals force that is caused by the molecular vibra-
tions of the material composing microparticles and deposition
elements. This is an attraction force that strongly depends on the
interparticles distance and on the wavelength (k) that charac-
terizes the assembly microparticle–deposition element. Relation
(4.278) gives a qualitative indication of the value of this force. In
this relation, FðuÞ gives a function which decreases rapidly with
the distance (x).

FðxÞvw ¼
1

2x
d
� 2

� �2 F

2x
d
� 2

�kk

0
B@

1
CA (4.278)

. The hydrodynamic adhesion force that expresses the resistance
occurring when microparticles latch onto deposition elements. It
is caused by the liquid that must be extracted out of the space be-
tween two particles when both microparticles adhere. This force
allows the slowing down of microparticles adhesion and offers a
possibility for drowning it in the flowing suspension.

. The detachment force that realizes the detachment of the assem-
bly microparticle–deposition element; when the number of the
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retained microparticles on one deposition element is important,
this force is very active. This force is not a short distance action
force.

As far as these forces, which present various origins and specificities, determine
an assembly of very complex interactions between the suspension of microparti-
cles and the deposition elements of the porous solid it is impossible to build a
completely phenomenological model for deep bed filtration. Nevertheless, various
empirical models have been developed by simplifying the assumptions concern-
ing the description of interactions. Among these models, we have the famous fil-
tration coefficient model or the Mint model [4.81]. This filtration coefficient noted
as kðk0; cssÞ depends on its initial value (k0) and on the local concentration of the
retained solid around the bed deposition elements (css). It is defined as the frac-
tion of the solid retained from the suspension in an elementary length of the
granular bed:

kðk0; cssÞ ¼ �
dcvs

cvs

1
dx

(4.279)

In Fig. 4.35, the mass balance of solid in an elementary volume is given when the
suspension flow is considered as a plug flow. This figure allows the establishment
of relationships between the local concentration of the solid in suspension and
the retained solid in the bed.

The mass balance of the retained solid is described by Eq. (4.280). The Mint
deterministic model results from the coupling of this relation with the definition
of the filtration coefficient. The result is written in Eq. (4.281) for the start time of
the filtration and in Eq. (4.282) for the remaining filtration time. Here a is the
detachment coefficient of the retained particle; its dimension is T–1.

Elements of the porous bed

dx

Gvs

cvs

Gvs

Cvs-dcvs

Solid accumulation 

for time interval

τ------τ∆ττ∆τ
css----css+dcss

Figure 4.35 Scheme for the mass balance of the retained solid in deep bed filtration.
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� dcvs

dx
¼ A

Gvs

¶css

¶s
¼ 1

wf

¶css

¶s
(4.280)

¶css

¶s
¼ wf k0cvs ; s ¼ 0 (4.281)

¶css

¶s
¼ wf k0cvs � acss ; s � 0 (4.282)

Relation (4.283), obtained by coupling Eq. (4.282) and (4.280), presents the time
derivation results in (4.284). Replacing the term ¶css=¶s in (4.284) by (4.280)
results in the famous Mint model equation (4.285). Relations (4.286) and (4.287)
are the most commonly used univocity conditions of this model: (i) before starting
filtration, the bed does not contain any retained solid; (ii) during filtration, the bed
is fed with a constant flow rate of suspension, which has a constant concentration
of solid.

¶cvs

¶x
¼ k0cvs �

a

wf
css (4.283)

¶2cvs

¶x¶s
¼ k0

¶cvs

¶s
� a

wf

¶css

¶s
¼ 0 (4.284)

¶2cvs

¶x¶s
þ k0

¶cvs

¶s
þ a

¶cvs

¶x
¼ 0 (4.285)

s ¼ 0 x‡ 0 cvs ¼ 0 (4.286)

s ‡ 0 x ¼ 0 cvs ¼ cv0 (4.287)

Relations (4.288)–(4.290) give one solution for the Mint model. It is not difficult to
verify that this solution cannot cover the requirement of relation (4.281). The giv-
en solution is a series with a rapid convergence due to the strong evolution of the
chain Tn. A good result will consequently be obtained by limiting the sum of Eq.
(4.288) to four or five terms:

cvs

cv0
¼
X¥
n¼1

expð�k0xÞ ðk0xÞn�1

ðn� 1Þ! Tnexpð�asÞ (4.288)

Tn ¼ Tn�1 �
ðasÞn�2

ðn� 2Þ! (4.289)

T1 ¼ expðasÞ (4.290)

A second solution to this model is given by Eq. (4.291), which is an assembly of
i-order Bessel functions with real argument Iiððk0xasÞ1=2Þ:
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cvs

cv0
¼ exp �ðk0xþ asÞð Þ

X¥
i¼1

as

k0x

� �i=2

Ii ðk0xasÞ1=2
h i

(4.291)

In the Mint model, we have to take into account the following considerations:
(i) the initial filtration coefficient k0, which is a parameter, presents a constant val-
ue after time and position; (ii) the detachment coefficient, which is another con-
stant parameter; (iii) the quantity of the suspension treated by deep filtration
depends on the quantity of the deposited solid in the bed; this dependency is the
result of the definition of the filtration coefficient; (iv) the start of the deep bed
filtration is not accompanied by an increase in the filtration efficiency. These con-
siderations stress the inconsistencies of the Mint model: 1. valid especially when
the saturation with retained microparticles of the fixed bed is slow; 2. unfeasible
to explain the situations where the detachment depends on the retained solid con-
centration and /or on the flowing velocity; 3. unfeasible when the velocity of the
mobile phase inside the filtration bed, varies with time; this occurrence is due to
the solid deposition in the bed or to an increasing pressure when the filtration
occurs with constant flow rate. Here below we come back to the development of
the stochastic model for the deep filtration process.

A stochastic model of deep bed filtration [4.5] identifies two elementary processes
for the evolution of the micro-particle in the filtration bed:

1. A type I process that considers the motion of microparticles
occurring with a velocity v1 ¼ v; this velocity is induced by
the surrounding flowing fluid (physically this type of process
corresponds to the non-deposition of the microparticle);

2. A type II process that shows the possibility for the micropar-
ticle to deposit; from the viewpoint of the motion, the veloci-
ty of this process is v2 ¼ 0.

The stochastic model accepts a Markov type connection between both elementary
states. So, with a12Ds, we define the transition probability from type I to type II,
whereas the transition probability from type II to a type I is a21Ds. By P1ðx; sÞ and
P2ðx; sÞ we note the probability of locating the microparticle at position x and time
s with a type I or respectively a type II evolution. With these introductions and
notations, the general stochastic model (4.71) gives the particularization written
here by the following differential equation system:

¶P1ðx; sÞ
¶s

¼ �v
¶P1ðx; sÞ

¶x
� a12P1ðx; sÞ þ a21P2ðx; sÞ

¶P2ðx; sÞ
¶s

¼ �a21P2ðx; sÞ þ a12P1ðx; sÞ

8>><
>>:

(4.292)

For the transformation of the stochastic model into a form, such as the Mint
model, that allows the computation of cvsðx; sÞ=cv0, we consider that this ratio
gives a measure of the probability to locate the microparticle in the specified posi-
tion: Pðx; sÞ ¼ P1ðx; sÞ þ P2ðx; sÞ. We can simplify our equations by eliminating
probabilities P1ðx; sÞ and P2ðx; sÞ with the use of this last definition and the rela-
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tions of system (4.292). The result is the following interesting partial differential
equation:

¶2Pðx; sÞ
¶s2

þ v
¶2Pðx; sÞ
¶x¶s

þ va21
¶Pðx; sÞ

¶x
þ ða21 þ a12Þ

¶Pðx; sÞ
¶s

¼ 0 (4.293)

By considering the combined variable z ¼ x� vs=2, we remove the mixed partial
differential term from Eq. (4.293). The transformation obtained is the hyperbolic
partial differential equation (4.294). This equation represents a new form of the
stochastic model of the deep bed filtration and has the characteristic univocity
conditions given by relations (4.295) and (4.296). The univocity conditions show
that the suspension is only fed at times higher than zero. Indeed, here, we have a
constant probability for the input of the microparticles:

¶2Pðzþ vs=2; sÞ
¶s2

� v2

4
¶2Pðzþ vs=2; sÞ

¶z2
þ v

2
ða21 � a12Þ

¶Pðzþ vs=2; sÞ
¶z

þ

ða21 þ a12Þ
¶Pðzþ vs=2; sÞ

¶s
¼ 0

(4.294)

s ¼ 0 ; x > 0 ; z ¼ x Pðz; sÞ ¼ 0 (4.295)

s > 0 ; x ¼ 0 ; z > 0 Pðz; sÞ ¼ P0 (4.296)

In this stochastic model, the values of the frequencies skipping from one state to
another characterize the common deep bed filtration. This observation allows the
transformation of the above-presented hyperbolic model into the parabolic model,
given by the partial differential equation (4.297). With the univocity conditions
(4.295) and (4.296) this model [4.5] agrees with the analytical solution described
by relations (4.298) and (4.299):

v2

4ða21 þ a12Þ
¶2P zþ vs

2
; s

� �
¶z2

¼ v
2

a21 � a12

a21 þ a12

� � ¶P zþ vs

2
; s

� �
¶z

þ
¶P zþ vs

2
; s

� �
¶s

¼ 0

(4.297)

x� va12

a21 þ a12
< 0 ;

Pðx; sÞ
P0

¼ 1
2

1þ erf
x� va12

a21 þ a12
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

a21 þ a12

s

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

(4.298)

x� va12

a21 þ a12
> 0 ;

Pðx; sÞ
P0

¼ 1
2

1� erf
x� va12

a21 þ a12
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

a21 þ a12

s

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

(4.299)
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It is well known that only experimental investigation can validate or invalidate a
model of a process. For the validation of the model developed above, we use the
experimental data of the filtration of a dilute Fe(OH)3 suspension (the concentra-
tion is lower than 0.1 g Fe(OH)3 /l) in a sand bed with various heights and particle
diameters. The experiments report the measurements at constant filtrate flow rate
and give the evolution with time of the concentration of Fe(OH)3 at the bed output
when we use a constant solid concentration at the feed. Figure 4.36 shows the
form of the time response when deep bed filtration occurs. The concentration of
the solid at the exit of the bed is measured by the relative turbidity (exit turbidity/
input turbidity*100). The small skips around the mean dependence, which appear
when the clogging bed becomes important, characterize the duality between the
retention and dislocation of the bed-retained solid. This dislocation shows that the
Mint model consideration with respect to the detachment coefficient is not accept-
able, especially when the concentration of the bed-retained solid is high.
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Figure 4.36 Response curves for the deep bed filtration of a
suspension of Fe(OH)3 in water.

The data from Fig. 4.36, that show the evolution of cvsðH; sÞ=cvo versus time,
have been used to identify the model parameters a12 and a21. Here, H is the
height of the fine sand granular bed used as porous filter. We have also selected
the following process factors: the porous bed height (H), the mean diameter of
the particles in the sand granular bed (dg), the filtrate flow rate (Gv), the content
of Fe(OH)3 in the water (noted here as C0 and cv0 in the model) and the fluid tem-
perature as an indirect consideration of the liquid viscosity (t). Table 4.7 shows the
results of these computations.

We can immediately observe that the assumption of the height values for the
parameters a12 and a21 is excellently covered by the experimental starting data.
Secondly, we find that all the process factors influence all the values of the param-
eters of the stochastic model.
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Table 4.7 Influence of the factors of the process on the parameters of the stochastic model.

Deep bed filtration factor Factor value Stochastic model parameters

a12 a21

H [cm]

t = 20 �C 2 1.14 326

Gv = 20 cc/min 3 0.592 458.9

dg = 0.5–0.3 mm 5 0.262 420.22

C0 = 6.75 mg/l 6 17.66 9611.41

t [�C]

H = 6 cm 20 17.95 9805.1

Gv = 20 cc/min 30 2.6 2748.14

dg = 0.5–0.31 mm 35 22.71 1347.5

C0 = 6.75 mg/l 40 4.337 3028

Gv [cm3/min]

H = 6 cm 20 3.054 3020.66

t = 30 �C 30 13.34 6698.96

dg = 0.5–0.31 mm 40 62.08 22605.24

C0 = 6.75 mg/l 50 118.2 42908.68

C0[mg/l] Fe(OH)3

H = 6 cm

t = 30 �C 6.75 111.7 40493

dg = 0.5–0.31 mm 13.49 82.7 28999.5

Gv = 50 cm3/min 26.98 34.18 10294.41

dg [mm]

H = 6 cm 0.31–0.2 754.98 355456.89

C0 = 6.75 mg/lFe(OH)3 0.5–031 110.65 39773

Tf = 30 �C 0.63–0.5 22.409 8795.98

Gv = 50 cm3/min 0.85–0.63 23.82 6449.82
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Using a regression analysis, the following dependences have been obtained:

a12 ¼ 67:75þ 3:003Gv� 2:872C0 � 256:28dg

a21 ¼ 3:081 � 104 þ 1111Gv� 1268C0 � 1:023 � 105dg

It is important to notice that these relations show the independence of the param-
eters of the stochastic model with respect to the height of the porous bed. With
the identified values of a12 and a21, we can now simulate the deep bed filtration
process by computing Eqs. (4.298) and (4.299), which show how the dimension-
less cvsðH; sÞ=cvo ¼ PðH; sÞ=Pð0; sÞ evolve with time.

Figure 4.37 gives the combination of the simulation results obtained with the
model and with an assembly of experimental data. We have to notice that the val-
ues of the factors for the relations that give the transition frequencies must
respect the dimensional units from Table 4.7. These relations make it possible to
formulate the optimisation of the filtration problem and then to establish the
combination of factors allowing deep bed filtration at minimum financial cost.
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Figure 4.37 Simulated and experimental time dependence of the dimensionless
solid concentration in the suspension at the bed output.
(Gv = 50 cm3/min, C0 = 6.75 mg Fe(OH)3/l, T = 30 �C, dg = 0.4 mm.)

If we want to make a more complete stochastic model, it is recommended to
consider a process with three elementary states which are: the microparticles
motion in the direction of the global flow, the microparticles fixation by the collec-
tor elements of the porous structure and the washing of the fixed microparticles.
In this case, we obtain a model with six parameters: a12, a13, a21, a23, a31, a32. This
is a rather complicated computation.

The discussed stochastic model presents the capacity to be converted into a
steady state model; in addition, an interesting asymptotic transformation can also
be carried out. For the conversion of the model into a steady state one, we consider
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a time interval Ds, where the probabilities for the system to change by means of a
type 1 or type 2 evolution process are given by a1Ds and a2Ds respectively and the
transition probabilities of the process are described by p12 ¼ a

12
Ds and

p21 ¼ a
21

Ds. Indeed, the model (4.292) will be expressed as follows:

¶P1ðx; sÞ
¶s

¼ �v
¶P1ðx; sÞ

¶x
� a1P1ðx; sÞ þ a21P2ðx; sÞ

¶P2 x; sð Þ
¶s

¼ �a2P2 x; sð Þ þ a12P1 £ x; sð Þ

8>><
>>:

(4.300)

With P1ðx; sÞ þ P2ðx; sÞ ¼ Pðx; sÞ, we obtain relation (4.301) and its corresponding
steady state (4.302):

¶2Pðx; sÞ
¶s2

þ v
¶2Pðx; sÞ
¶x¶s

þ va2
¶Pðx; sÞ

¶x
þ ða2 þ a1Þ

¶Pðx; sÞ
¶s

þ

ða1a2 � a12a21ÞPðx; sÞ ¼ 0
(4.301)

va2
dPðxÞ

dx
þ ða1a2 � a12a21ÞPðxÞ ¼ 0 (4.302)

When the particularization condition x ¼ 0;PðxÞ ¼ P0 ¼ 1 is used for the differen-
tial equation (4.302), its solution respects relation (4.303). The correspondence
with concentrations cvsðxÞ and cv0 is presented by means of relation (4.304).

PðxÞ ¼ P0exp � a1a2 � a12a21

va2

� �
¼ P0exp � ax

v

� �
¼ exp � ax

v

� �
(4.303)

cvsðxÞ ¼ cv0exp � ax
v

� �
(4.304)

It is important to notice the didactic importance of this last relation, because the
deep bed filtration process cannot operate at steady state.

The asymptotic transformation of the discussed stochastic model (see relation
4.292 and Section 4.5.1.2) is carried out with the identification of the operators:

V1ð1Þ ¼ �v¶=¶x ; V1ð2Þ ¼ 0 ; Q ¼ �a12 a12

a21 �a21

� �
; V1 ¼ �

va21

a12 þ a21

¶
¶x

.

The resulting asymptotic model is described by the following equation and the
univocity conditions given by relations (4.295) and (4.296):

¶Pðx; sÞ
¶s

þ va21

a12 þ a21

¶Pðx; sÞ
¶x

¼ 0 (4.305)

We can observe that the asymptotic model of the deep bed filtration has no term
concerning the dispersion of the flowing fluid. At the same time, it is important
to emphasize the fact that this model, considered as its deterministic equivalent,
is frequently used for the characterization of fluids seeping into the soil.
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4.6.2.2 Molecular Species Transfer in a Porous Solid
When a fluid flows through a porous solid or a porous bed, the species forming
the fluid can present some affinities with the solid particles. The affinity of species
with respect to the contacting solid, which here form what is called a stationary
phase, can be the result of different phenomena such as adsorption, ion exchange,
steric exclusion and absorption.

The separation of species by affinity is the principle of chromatographic pro-
cesses, as shown schematically in Fig. 4.38. At time s ¼ 0, we introduce a small
quantity of A and B species mixture (probe injection) at the column input in a
carrier fluid flowing inside a fine granular bed of porous medium. The motion of
species A and B caused by the flowing carrier creates the conditions necessary for
their separation. If species A and B present a sorption phenomenon on the granu-
lar solid, the separation will take place as a consequence of a specific adsorption–
desorption process repeated along the porous bed. On the contrary, the carrier
must be inert with respect to the interactions with the granular bed. Figure 4.38
shows that the separation of A and B is not complete at all the local points placed
in the first part of the length of the granular bed. So, it is important to emphasize
that complete separation of A and B is attained only if the combination of the bed
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Figure 4.38 The principle of separation by chromatography.
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length and the carrier velocity results in a good residence time. This residence
time must comply with the time needed for the separation of A and B, which
depends on the individual adsorption–adsorption process.

If we introduce a discrete feed of A and B, characterized by a reasonable interval
of time between two inputs, and a discrete collection of A-carrier and B-carrier
outputs into Fig. 4.38, then we will have a chromatographic separator.

When the carrier is a liquid, the instrumentation includes a pump, an injector,
a column, a detector and a recorder or a data acquisition system, connected to a
computer. The heart of the system is the column where the separation occurs.
Since the stationary phase is composed of micrometric porous particles, a high-
pressure pump is required to move the mobile phase through the column. The
chromatographic process begins by injecting the solute into the top of the column
by an impulse type injection. The separation of the components occurs during the
elution of the mobile phase through the column.

The majority of chromatographic separations as well as the theory assume that
each component elutes out of the column as a narrow band or a Gaussian peak.
Using the position of the maximum of the peak as a measure of retention time,
the peak shape conforms closely to the equation: C = Cmax exp[–(t – tR)2 /2r2]. The
modelling of this process, by traditional descriptive models, has been extensively
reported in the literature.

As has been explained previously in this chapter, the building of a stochastic
model starts with the identification of the individual states of the process.

For a chromatographic separation, each i species has three individual elemen-
tary evolutions (here we consider i = 2,...N because i = 1 corresponds to the carrier
which is not retained by the granular bed):

1. motion with velocity þv in the sense of carrier flow (type 1
process);

2. adsorption on the solid (a type 2 process; the fixation on the
solid stops the species motion);

3. motion with velocity �v.

If we consider that the connecting process is Markovian, then we can write the
balance of the probabilities for PðjÞ1 ðx; sÞ ; PðjÞ2 ðx; sÞ and PðjÞ3 ðx; sÞ. Here a

ðjÞ
i Ds

gives the probabilities for j species to change their i evolution state. Through
a
ðjÞ
ik Ds (i = 1, 3; k = 1, 3) we consider the transition probabilities of species j be-

tween states i and k. With the statements above, we can write the following bal-
ance relations:

PðjÞ1 ðx; sÞ ¼ ð1� a
ðjÞ
1 DsÞPðjÞ1 ðx� Dx; s� DsÞ þ a

ðjÞ
21DsPðjÞ2 ðx; s� DsÞþ

a
ðjÞ
31DsPðjÞ3 ðxþ Dx; s� DsÞ

(4.306)

PðjÞ2 ðx; sÞ ¼ ð1� a
ðjÞ
1 DsÞPðjÞ2 ðx; s� DsÞ þ a

ðjÞ
12DsPðjÞ1 ðx; s� DsÞþ

a
ðjÞ
32DsPðjÞ3 ðx; s� DsÞ

(4.307)
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PðjÞ3 ðx; sÞ ¼ ð1� a
ðjÞ
3 DsÞPðjÞ3 ðxþ Dx; s� DsÞ þ a

ðjÞ
13DsPðjÞ1 ðxþ Dx; s� DsÞþ

a
ðjÞ
23DsPðjÞ2 ðx; s� DsÞ

(4.308)

Using the Taylor expansion of the probabilities PðjÞi ðx – Dx; s� DsÞ at Dx and
Dsfi 0 for processing these balances, the results on the stochastic differential
model are given by the relations of the assembly (4.309)

¶PðjÞ1 ðx; sÞ
¶s

¼ �v
¶PðjÞ1

¶x
� a

ðjÞ
1 PðjÞ1 þ a

ðjÞ
21PðjÞ2 ðx; sÞ þ a

ðjÞ
31PðJÞ3

¶PðjÞ2 ðx; sÞ
¶s

¼ �a
ðjÞ
2 PðjÞ2 þ a

ðjÞ
12PðjÞ1 ðx; sÞ þ a

ðjÞ
32PðJÞ3

¶PðjÞ3 ðx; sÞ
¶s

¼ v
¶PðjÞ1

¶x
� a

ðjÞ
3 PðjÞ3 þ a

ðjÞ
13PðjÞ1 ðx; sÞ þ a

ðjÞ
23PðJÞ2

8>>>>>>>><
>>>>>>>>:

(4.309)

Since these equations do not have an acceptable form for the description of the
chromatographic separation, we have used them to build up the Lapidus model
[4.92] by considering only one positive motion for the carrier fluid. Indeed, we will
introduce PðjÞ3 ðx; sÞ = 0 into the general model. The result is given by the assembly
of equations (4.310):

¶PðjÞ1 ðx; sÞ
¶s

¼ �v
¶PðjÞ1

¶x
� a

ðjÞ
1 PðjÞ1 þ a

ðjÞ
21PðjÞ2 ðx; sÞ

¶PðjÞ2 ðx; sÞ
¶s

¼ �a
ðjÞ
2 PðjÞ2 þ a

ðjÞ
12PðjÞ1 ðx; sÞ

8>>><
>>>:

(4.310)

Now we have to particularize the obtained model by considering that the retention
of species j occurs by one adsorption–desorption process. So, if the j species des-
orbs from the solid, it has to appear in the mobile phase. We can express this con-
sideration mathematically with a

ðjÞ
1 ¼ a

ðjÞ
12 and respectively a

ðjÞ
2 ¼ a

ðjÞ
21. Now the

model can be written as follows:

¶PðjÞ1 ðx; sÞ
¶s

¼ �v
¶PðjÞ1

¶x
� a

ðjÞ
12PðjÞ1 ðx; sÞ þ a

ðjÞ
21PðjÞ2 ðx; sÞ

¶PðjÞ2 ðx; sÞ
¶s

¼ �a
ðjÞ
21PðjÞ2 ðx; sÞ þ a

ðjÞ
12PðjÞ1 ðx; sÞ

8>>><
>>>:

(4.311)

s ¼ 0 ; x > 0 ; PðjÞ1 ðx; sÞ ¼ PðjÞ2 ðx; sÞ ¼ 0 (4.312)

s ¼ 0þ ; x ¼ 0 ; PðjÞ1 ðx; sÞ ¼ PðjÞ10 ; PjÞ
2 ðx; sÞ ¼ 0 ;

P
j

PðjÞ10 ¼ 1 (4.313)

With the univocity conditions given in relations (4.312) and (4.313), the stochastic
model becomes ready to be used in simulation.

307



4 Stochastic Mathematical Modelling

If we agree with the absorption–desorption equilibrium of the j species at each
point of the bed and considering that the absorption–desorption process obeys the
well known Langmuir isotherm, then we can write: a

ðjÞ
12 ¼ b

ðjÞ
12ð1� PðjÞ2 ðx; sÞÞ ¼ b

ðjÞ
12

PðjÞ1 ðx; sÞ and the following local relation is obtained:

PðjÞ2 ðx; sÞ ¼
b
ðjÞ
12PðjÞ1 ðx; sÞ

a
ðjÞ
21 þ b

ðjÞ
12PðjÞ1 ðx; sÞ

(4.314)

With these considerations, we can transform Eq. (4.311) from the stochastic
model (4.311)–(4.313):

¶PðjÞ1 ðx; sÞ
¶s

¼ �v
¶PðjÞ1 x; sÞ

¶x
� b

ðjÞ
12PðjÞ1 ðx; sÞð1� PðjÞ2 ðx; sÞ þ a

ðjÞ
21PðjÞ2 ðx; sÞ

¶PðjÞ2 ðx; sÞ
¶s

¼ �a
ðjÞ
21PðjÞ2 þ b

ðjÞ
12PðjÞ1 ðx; sÞð1� PðjÞ2 ðx; sÞ j ¼ 1; :::Nc

8>>><
>>>:

(4.315)

This model given by the system of equations (4.315) together with the conditions
(4.312) and (4.313) can easily generate the chromatographic curves that are pre-
sented in Fig. 4.38. For this purpose, we simulate the state of existence probability
of each species along the chromatographic bed. For two species, the sums
Pð1Þðx; sÞ ¼ Pð1Þ1 ðx; sÞ þ Pð1Þ2 ðx:sÞ and Pð2Þðx; sÞ ¼ Pð2Þ1 ðx; sÞ þ Pð2Þ2 ðx:sÞ respectively
show the state of species 1 and species 2 along the chromatographic bed. Indeed,
we can identify the parameters of the stochastic model if we consider here the
conventional identification Pð1Þðx; sÞ ¼ cð1Þðx; sÞ=cð1Þð0; sÞ, where cð1Þðx; sÞ=cð1Þð0; sÞ
has been established experimentally.

An interesting transformation of the stochastic model can be carried out when

the derivate
¶PðjÞ1 ðx; sÞ

¶s
is smaller than

¶PðjÞ2 ðx; sÞ
¶s

. This situation corresponds to the

case when the variation of a fraction of the j species in the mobile phase is smaller
than the fraction of the j species in the solid phase. To obtain this transformation,
we operate in two steps: (i) we derivate again the first equation from system
(4.311) with respect to time; (ii) with this derivate and the equation remaining
from system (4.311), we eliminate probability PðjÞ2 ðx; sÞ. The result is:

¶PðjÞ1 ¢x; sÞ
¶x¶s

þ a12

v
¶PðjÞ1 ðx; sÞ

¶s
þ a21

¶PðjÞ1 ðx; sÞ
¶x

¼ 0 (4.316)

The univocity conditions can be obtained from Eq.(4.311) which, at s ¼ 0, results
in the problem described by Eq. (4.317), which presents solution (4.318). This last
relation represents the initial condition from the univocity problem of model
(4.316):

v
¶PðjÞ1 ðx; 0Þ

¶x
� a

ðjÞ
21PðjÞ1 ðx; 0Þ ; PðjÞ1 ð0; 0Þ ¼ PðjÞ10 (4.317)

PðjÞ1 ðx; 0Þ ¼ PðjÞ10e�
a12 x

vð Þ (4.318)

308



4.6 Stochastic Models for Chemical Engineering Processes

Other conditions of the univocity problem, give the probabilities to have j species
at the bed input. For an impulse at the input we have PðjÞ1 ð0; 0Þ ¼ PðjÞ10 and
PðjÞ1 ð0; sÞ ¼ 0. With all these conditions we can build the relation (4.319), which
gives the explicit solution to this transformed model [4.33]. Here, the Bessel func-
tion I0(y) is introduced with relation (4.320):

PðjÞ1 ðx; sÞ¼PðjÞ10e
�

a
ðjÞ
12

x

v

� �
e
�

a
ðjÞ
12ð Þ

2
s

a21

� �
I0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
ðjÞ
12

� �2
xs

a
ðjÞ
21

vuuut
0
BBB@

1
CCCAþ v

a
ðjÞ
12x

R
a
ðjÞ
12ð Þ

2
xs

a
ðjÞ
31

0
e
� vs

a
ðjÞ
12

xI0ð2
ffiffiffi
s
p

dsÞ

2
6664

3
7775

(4.319)

I0ðyÞ ¼
X¥
k¼0

ðy=2Þ2k

ðk!Þ2
(4.320)

This solution describes the evolution of the concentration of the j species in the
carrier fluid from the input to the output of the chromatographic bed. Once the
parameters are estimated, this solution can be used for the evaluation of the bed
height (length of chromatographic column) needed for one actual separation (giv-
en values for cðjÞ10).

4.6.3
Stochastic Models for Processes with Discrete Displacement

In this type of process, the flow pattern inside a device is considered to occur in
separated compartments. Each compartment is characterized by its own volume,
input and exit flow rates. The circulation between all compartments is given in
the scheme showing the flow topology of application 4.1.2 (Fig. 4.2). The system
studied here corresponds in detail to the scheme shown in Fig. 4.39. Here we
have species in motion inside a porous medium with active sites (as for example
catalytic sites); species skip randomly from one site (or agglomeration) to another
and inside the site they randomly interact with the site components. One agglom-
eration can support one or more visits of the flowing species and the time needed
for one skip is low in comparison with the residence time inside one agglomera-
tion. The model presented can easily be used to describe the visit of a very impor-
tant person to a reception where the participants are distributed in various groups;
considering that our VIP agrees with the protocol, he must visit each group; the
time spended by the VIP with each group is established proportionally with the
number of members of the group.

This type of model with compartment flow pattern can easily be applied in
many chemical engineering devices such as chemical reactors, mechanical stir-
rers, absorption, rectification and liquid-liquid extraction columns [4.18, 4.19,
4.94]. Nevertheless, the practical applications of these models present some diffi-
culties because of their high number of parameters. For example, in the applica-
tion of Section 4.12 (the numerical application of the mechanical stirring of a liq-
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uid) the volume of cells, the flow rates and the fluid current topology are some of
the parameters necessary for the model translation as simulator. Despite this
major difficulty, these models remain very prolific for the production of theoreti-
cal data. In addition, these models can also be easily modified when we introduce
some new conditions or when we change one or more of the existing conditions.

If we observe this type of modelling from the point of view of the general theory
of the stochastic models, we can presume that it is not very simple. Indeed, the
specific process which takes place in one compartment k = 1, 2, 3...., N, defines
the possible states of a fluid element (the elementary processes of the global sto-
chastic process) and the transition describing the fluid element flowing from one
compartment to another represents the stochastic connections. Consequently, pik

i ¼ 1; 2:::::;N are the transition probabilities from the i to the k compartment and
PkðsÞ is the probability of having, at time s, the fluid element inside the k com-
partment. With these notations, the probability balances for Pkðsþ DsÞ can be
written as follows:

Pkðsþ DsÞ ¼
PN
i¼1

pikPiðsÞ (4.321)

Because, when s ¼ nDs, the discrete case is usually applied, relation (4.321)
becomes:

Pkðnþ 1Þ ¼
PN
i¼1

pikPiðnÞ (4.322)
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During the time interval Ds, the fluid element exits compartment i and flows into
compartment k, which it cannot leave. This is the condition for the selection of
one realistic value of this time interval. So, for one cellular topology with N – 1
cells, the number N defines the output from the system. It is not difficult to
observe then that we have:

PN
j¼1

PjðNÞ ¼ 1 (4.323)

The multiplication PkðnÞDs gives the existence probability or the probability to
have the fluid element in compartment k in the interval of time defined by nDs

and ðnþ 1ÞDs. In other words, it is the response of compartment k to an impulse
signal. For k ¼ N, we can observe that the probability PNðnÞDs makes it possible
for the fluid element to leave the cells assembly in the same interval of time
s ¼ nDs and sþ Ds ¼ ðnþ 1ÞDs. Furthermore, because PN�1ðnÞ gives the distri-
bution of the residence time for our assembly of compartments, then we can con-
clude that the response to one step impulse can be written as:

FðsÞ ¼ FðnDsÞ ¼ PNðnÞ ¼
Pn
n¼0

PN�1ðnÞDs (4.324)

With this response, it is easy to obtain some important parameters characterizing
the flow in the cellular assembly: the mean residence time (sm), the variance
around the mean residence time (r2) and the flow intensity function (kðnÞ):

sm ¼

P¥
n¼1

nPN�1ðnÞDs

P¥
n¼1

PN�1ðnÞ
(4.325)

r2 ¼
P¥
n¼1
ðnDs� smÞ2PN�1ðnÞ (4.326)

kðnÞ ¼ PN�1ðnÞ
1� PNðnÞ

(4.327)

The basic relation of our stochastic model (relation (4.322)) can be written as the
vectorial equation (4.328), where EðnÞ gives the vector of the system state (relation
(4.329)) and the matrix P (relation (4.330)) contains the transition probabilities:

Eðnþ 1Þ ¼ P � EðnÞ (4.328)

EðnÞ ¼ ½P1ðnÞ;P2ðnÞ;P3ðnÞ; :::PN�1ðnÞ;PNðnÞ� (4.329)

P ¼

p11 p12 � p1N�1 p1N

p21 p22 � � p2N

� � � � �
pN�11 pN�12 � pN�1N�1 �
pN1 pN2 � pN�1N pNN

2
66664

3
77775 (4.330)

311



4 Stochastic Mathematical Modelling

In actual applications, the vector of the system state is used to observe the system
evolution through characteristic parameters such as species concentrations, tem-
perature, pressure, etc.

4.6.3.1 The Computation of the Temperature State of a Heat Exchanger
In this example, we can use a deterministic model based on the particularization
of the unsteady state heat balance and transfer equations. The particularization
can be carried out considering either the whole exchanger or a part of it. The
model that can present different degrees of complication is determined by the
heat exchanger construction and by the models of flow used for the hot and cold
fluids.

If we consider plug flow models for both fluids, the heat exchanger dynamics
can be described using the following model:

¶t1

¶s
þ w1

¶t1

¶x
¼ � 4k

dr1cp1
ðt1 � t2Þ (4.331)

¶t2

¶s
þ w2

¶t2

¶x
¼ � 4k

dr2cp2
ðt1 � t2Þ �

4ke

Dr2cp2
ðt2 � teÞ (4.332)

s ¼ 0 ; x > 0 ; t1 ¼ f1ðxÞ ; t2 ¼ f2ðxÞ (4.333)

s > 0 ; x ¼ 0 ; t1 ¼ g1ðsÞ ; t2 ¼ g2ðsÞ (4.334)

1
k
¼ 1

a1
þ

dp

kp
þ 1

a2
;

1
ke
¼ 1

ae
þ

dpe

kpe
þ 1

a2
;

a1 ¼ hðw1; r1; cp1; k1Þ ; a2 ¼ hðw2; r2; cp2; k2Þ (4.335)

The nomenclature of the equations above is: t1 and t2 – temperature of fluid 1 and
fluid 2 respectively, w1 and w2 – mean velocities for hot and cold fluid, r1 and r2

– fluid densities, cp1 and cp2 – fluid sensible heats, d and D – specific diameters of
the basic pipe and mantle of the heat exchanger, a1 and a2 – partial heat transfer
coefficients around the basic pipe, dp and dpe – thickness of the basic pipe and the
mantle, kp and kpe – thermal conductivities of the basic pipe and mantle walls, k
and ke – total heat transfer coefficients, te – external temperature of the heat
exchanger.

This model has the remarkable characteristic of considering the heat loss in the

external media with the term
4ke

Dr2cp2
ðt2 � teÞ. The evolutions t1ðx; sÞ and t2ðx; sÞ

result from the numerical integration of the model; for this purpose we need the
analytical or discrete expressions for the functions f1ðxÞ; f2ðxÞ; g1ðsÞ and g2ðsÞ.
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The stochastic model of this problem is obtained after introducing a cellular
structure and a flow topology. The partition of the heat exchanger into individual
cells is carried out as follows:

1. The exchanger contains NC perfectly mixed cells exposed to
the hot fluid flow and Nr cells of the same type where a cold
fluid exists; frequently Nc ¼ Nr ¼ N but this fact is not obli-
gatory;

2. The inter-fluid walls can be divided into Np cells where a cell
separates one or more hot cells from one or more cold cells;

3. The thermal capacity is symbolized as CCj; j ¼ 1;Nc,
Cri; i ¼ 1;Nr and Cpk; k ¼ 1;Np, for the hot, cold and inter-
fluid wall cells respectively whereas, the heat flows corre-
sponding to a cold or hot J cell are: (Gcijccjðti ¢� trÞ,
Grijccjðti† � trÞ; acjAjðtj ¢� tpj ¢Þ and arjAjðtpj† � tj†Þ; those
are considered as qc

ij, qr
ij when the temperature differences

are unitary.
4. If, for the interval of time Ds, one or many i cells coupled to

a j cell change their temperature, then the temperature of
the j cell will change too.

5. The heat transfer from a cell i to a cell j occurs in a time
interval Ds with the probability pij.

As far as the explanation above allows one to express the studied system with the
necessary objects of a cellular stochastic model, we can now describe the tempera-
ture changes inside the exchanger with a discrete Markov evolution that starts
with an input cell of the hot or cold fluid. Indeed, relations (4.328) or (4.329) can
now be particularized giving the expressions below whereas the matrix of the tran-
sition probabilities is described with relation (4.338).

tjðnþ 1Þ ¼
PN
i¼1

tiðnÞpij (4.336)

Tðnþ 1Þ ¼ TðnÞP (4.337)

As explained above in our actual application, we have to begin by identifying the
cellular structure and flow topology, consequently we have first carefully estab-
lished the cellular structure after the heat capacities of different fluids or materi-
als: Cci ¼ mcicri; i ¼ 1; Nc; Crj ¼ mrjcrj; j ¼ 1;Nr; Cpk ¼ mpkcpk; k ¼ 1;Np.

313



4 Stochastic Mathematical Modelling
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(4.338)

The elements of pjj type, which characterize the capacity of the heat carrier to be
in a j cell during a time Ds, are obtained by considering the perfect mixing inside
the cell. With this consideration, we introduce the fact that the carrier residence
time follows a Poisson distribution:

pjj ¼ 1�

PN
i¼1;i „ j

qij

Cj
Ds (4.339)

For our stochastic process, the probabilities pij; i „ j result from the Markov con-
nections which are described as follows:

pij ¼
qij

Cj
Ds (4.340)

The probabilities characterizing the hot or cold fluid input into the cellular
system, or pj0; j „ 0, are calculated with relation (4.340) but considering C0 fi¥.
So, all pj0; j „ 0 are null and, consequently p00 ¼ 1. The transition probabilities
obey the norm conditions, which require the verification of the equality:
PN
i¼0

pij ¼ 1; 8j ¼ 1;N.

As we have shown at the beginning of this section, the application purpose con-
sists in the establishment of a procedure for the thermal dynamics of the hot or
cold fluid, when we have a rapid temperature change at the heat exchanger input.
The topology of the heat exchanger of this example is shown in Fig. 4.40. If we
consider, as an initial condition, that both fluids have the same temperature, we
will not have a heat flow between the cells of the cellular assembly. Now, if we
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take into account a particular operation case where V1 ¼ V2 ¼ 0:5 � V;
C1 ¼ C2 ¼ 0:5C;Gv1r1cp1 ¼ Gv2r2cp2, then we can compare the stochastic solu-
tion to an analytical solution of the deterministic model. The relation (4.341),
which indicates the heat flow rate between both fluids, has been written with the
intention of presenting the physical meaning of q12 and q21. Indeed, when
t1† ¼ t2† ¼ tr, we do not have any heat flow inside the exchanger and the system
state for s ¼ 0 is represented by DT1 ¼ DT2 ¼ 0.

Q12 ¼ kAðt1† � t2†Þ ¼ kAðt1 ¢� trÞ
t1† � tr

t1 ¢� tr
� kAðt1 ¢� trÞ

t2† � tr

t1 ¢� tr

¼ q12DT1 � q21DT2

(4.341)

q12 

q21 

t1
'-tr 

0

1

2 

3 

coldhot

q01

q01 

q32 

q32 

t1
"-tr 

t2
"-tr 

t2
'-tr 

Q12 A 

k

V
V1 

V

V2 

t2
'-tr 

t1
'-tr 

t1
"-tr t2

"-tr 

Gv2ρ2cp2 Gv1ρ1cp1 

Figure 4.40 A simple heat exchanger and its cellular representation.

With the topology shown in Fig. (4.40) the matrix of the transition probabilities
can be written as shown below:

P ¼

p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33

2
664

3
775 (4.342)

If we consider the relations (4.339) and (4.340) respectively for pij, we obtain:

p00 ¼ 1; p10 ¼ q10=C0 ¼ 0; p20 ¼ q20=C0 ¼ 0; p30 ¼ q30=C0 ¼ 0;
p01 ¼ q01=C1 ¼¼ ðGv1r1cp1Þ=ðV1r1cp1Þ � Ds ¼¼ ðGv1=VÞ � Ds ¼ a,
p02 ¼ 0 ; p03 ¼ 0 , p11 ¼ 1� ½ðq01 þ q21Þ=C1�Ds ¼
p21 ¼ p12 ¼ a; p22 ¼ 1� ðq32 þ q12Þ ¼ 1� 2a;

p23 ¼ 0; p13 ¼ 0 ; p32 ¼ ðq32=C2Þ � Ds ¼ a; p33 ¼ 1.
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And the matrix giving the temperature change of the cells is written as follows:

Tð1Þ ¼ Tð0ÞP ¼ 1 0 0 0½ � �

1 a 0 0
0 1� 2a a 0
0 a 1� 2a 0
0 0 0 1

2
664

3
775 ¼ 1 a 0 0½ �;

Tð2Þ ¼ Tð1ÞP ¼ 1 a 0 0½ � �

1 a 0 0
0 1� 2a a 0
0 a 1� 2a 0
0 0 0 1

2
664

3
775 ¼ 1 2a� 2a2 0a 0½ � :::

The natural temperature values are:

ðt†1ð1Þ � trÞ ¼ ðt1†ð0Þ � trÞ þ aðt1 ¢� trÞ;
ðt2†ð1Þ � trÞ ¼ ðt2†ð0Þ � trÞ þ 0ðt1 ¢� trÞ;
ðt1†ð2Þ � trÞ ¼ ðt1†ð1Þ � trÞ þ ð2a� 2a2Þðt1 ¢� trÞ;
ðt2†ð2Þ � trÞ ¼ ðt2†ð1Þ � trÞ þ aðt1 ¢� trÞ; etc::::::

The results above are obtained from:

T1ð1Þ ¼ T1ð0Þð1þ aÞ , t1†ð1Þ � tr

t1 ¢� tr
¼ ð1þ aÞ t1†ð0Þ � tr

t1 ¢� tr
; etc::::::

It is not difficult to show that the analytical solution of the deterministic model is
given in relations (4.343) and (4.344) [4.94], where the parameter k is

k ¼ KA
Gv1r1cp1

¼ KA
Gv2r2cp2

DT1 ¼
1

1þ 2k
1þ k� 1

2
ð1þ 2kÞexpð�sÞ � 1

2
exp½�ð1þ 2kÞs�

� �
(4.343)

DT2 ¼
1

1þ 2k
k� 1

2
ð1þ 2kÞexpð�sÞ þ 1

2
exp½�ð1þ 2kÞs�

� �
(4.344)

Figure 4.41 compares the data predicted by the deterministic model with the sto-
chastic model. In this figure, we have to specify that: (i) for k ¼ 0, the value of the
corresponding a in the transition matrix of the probabilities results from the sim-
plification q12 ¼ q21 ¼ 0; (ii) the case being analyzed corresponds to a rapid
increase in the temperature of fluid 1 in the exchanger input; so t1 is the highest
temperature.

The extension of the stochastic method for actual exchangers depends strongly
on the correctness of the projected cellular topology and on the reality of the esti-
mated transition probabilities. Figure 4.42 shows an example of an actual heat
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exchanger and its division into cells. It is the case of a tubular heat exchanger,
where the hot fluid passes through the exchanger twice (in countercurrent and in
co-current). The walls separating the fluids have not been divided into cells;
because we considered that the heat accumulated by the walls was insignificant
with respect to the heat transferred between the hot and cold fluids. In such exam-
ple, the respective volumes of the heat exchanger cells are a priori different and
result in a much more complex situation when compared with the previous exam-
ple discussed in this chapter.

4.6.3.2 Cellular Stochastic Model for a Countercurrent Flow with Recycling
The example presented in this section is a system where two countercurrent fluids
flow through N identical cells; Fig. 4.43 describes this system schematically. In
this simplified case, we consider that, at each cell level, we have a perfect mixing
flow and that for a “k” cell, the actual transition probabilities are pkk; pkk�1 and
pkkþ1. Indeed, these probabilities are expressed as:

pkk�1 ¼
aGvDs

V
; pkkþ1 ¼

ð1þ aÞGvDs

V
; pkk ¼ 1� ðpkk�1 þ pkkþ1Þ (4.345)

When we have the same fraction of recycling in the system and when the cells
have the same volume, we can rewrite relation (4.345) as:

pkk�1 ¼
akGvDs

Vk�1
; pkkþ1 ¼

ð1þ akÞGvDs

Vk
; pkk ¼ 1� ðpkk�1 þ pkkþ1Þ (4.345)

We can observe that the first and the last cell of the system are in contact with
only one cell: cell number 2 and number N – 1 respectively. So, in the matrix of
the transition probabilities, the values p13 and pN�2N will be zero. It is easily
noticed that, if we have a complete matrix of the transition probabilities, then we
can compute the mean residence time, the dispersion around the mean residence
time and the mixing intensity for our cells assembly. The relations (4.324)–(4.326)
are used for this purpose.

P ¼

p11 p12 0 0 � 0 0
p21 p22 p23 0 � 0 0
0 p32 p33 p34 � 0 0
0 0 p43 p44 p45 0 0
0 0 0 0 0 pN�1N PNN

2
66664

3
77775 (4.346)
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If, besides hydrodynamics and mixing, we want to consider other phenomena,
such as a chemical reaction, we have to separate the probabilities characterizing
each particular phenomenon:
. pjk ¼ ajkDs – gives the probability for the species to skip from cell

j to cell k in the time Ds;
. pke ¼ akeDs – gives the probability for the species to quit the sys-

tem during the time interval Ds (this probability exists when the
k cell presents an open output);

. pkr ¼ akrDs – is the probability that quantifies the species trans-
formation as a result of its chemical interaction inside the k cell
at Ds.

With this notation and considering the definition of PkðsÞ already given, the
probability balance, with respect to the k cell for the time interval between s and
sþ Ds can be written as:

Pkðsþ DsÞ ¼ 1�
P

j;j„ k
akjDs

 !" #
1� ðake þ akrÞDs½ �PkðsÞ þ

P
j;j „ k

ajkDs

 !
PjðsÞ

(4.347)

If we consider that Ds is very small, we obtain the concluding form of our cellular
stochastic model. It describes the cellular countercurrent flow with recycling and
chemical reaction:

dPkðsÞ
ds

¼ �ðake þ akrÞPkðsÞ �
X
j;j „ k

akj

0
@

1
APkðsÞ þ

X
j;j „ k

ajk

0
@

1
APJðsÞ ;

k ¼ 1;N ; j ¼ 1;N (4.348)

Each term from the right side of this representative equation of the model has a
particular meaning. The first term shows that the number of the reactant species
molecules in the k cell decreases as a result of the consumption of species by the
chemical reaction and the output of species from the cell. The second term
describes the reduction of the number of molecules as a result of the transport to
other compartments. The last term gives the increase in the number of the spe-
cies in the k compartment because of the inputs from the other cells of the assem-
bly. With reference to the mathematical formalism, our model is described by an
ordinary system of differential equations. Indeed, for calculations we must specify
the initial state of the probabilities. So, the vector Pkð0Þ; k ¼ 1;N must be a known
vector. The frequencies ake; akr; akj; ajk will be established by means of the cellular
assembly topology and kinetic data. It is evident that the frequency akr will be
related to the reaction process taking place in the cell.

319



4 Stochastic Mathematical Modelling320

References

4.1 R. Higbie, Trans. A Inst. Chem. Engrs.
1935, 31, 365.

4.2 P. J. Dankwertsz, A.I.Ch.E. J. 1955, 1,
456.

4.3 F. Feller, Stochastic Processes, John Wiley,
New York, 1953.

4.4 V. V. Kafarov, Cybernetic Methods for
Technologic Chemistry, Mir, Moscow,
1969.

4.5 O. Iordache, Compound Stochastic Pro-
cesses Applied in Transport Phenomena,
Romanian Academy, Bucharest, 1981.

4.6 A. Tamir, Applications of Markov Chains
in Chemical Engineering, Elsevier,
Amsterdam, 1998.

4.7 N. G. VanKampen, Stochastic Processes
in Physics and Chemistry, Elsevier, North-
Holland, Amsterdam, 2001.

4.8 D. N. Shanbhag (Ed.), Handbook of Sta-
tistics: Stochastic Processes: Theory and
Method, Elsevier, North Holland,
Amsterdam, 2000.

4.9 R. B. Bird, W. E. Steward, E. N. Lightfoot,
Transport Phenomena, John Wiley, New
York, 1960.

4.10 Em. A. Bratu, Processes and Installations
for Industrial Chemistry, Bucharest Poly-
technic Institute, Bucharest, 1959.

4.11 Em. A. Bratu, Processes and Apparatus for
Industrial Chemistry I, II, Technical
Book, Bucharest, 1970.

4.12 O. Onicescu, G. Mihoc, Comp. Rend.
Acad. Sci. 1935, 200, 174.

4.13 O. Onicescu, G. Mihoc, Bull. Sci. Math.
1935, 59, 174.

4.14 O. Onicescu, G. Mihoc, Romanian Acad-
emy, Studies and Researches, Bucharest,
1943.

4.15 O. Onicescu, Probability and Random
Processes, Scientific and Encyclopedic
Book, Bucharest, 1977.

4.16 J. R. Doob, Stochastic Processes Theory,
John Wiley, New York, 1953.

4.17 M. Iosifescu, Finite Markov Chains and
Their Applications, Technical Book,
Bucharest, 1977.

4.18 J.Y. Oldshue, Fluid Mixing Technology,
McGraw-Hill, New York, 1983.

4.19 H. Holland, J. Chapman, Liquid Mixing
and Processing in Stirred Tanks, Rein-
hold, New York, 1966.

4.20 Em. A. Bratu, Unit Operations for Chemi-
cal Engineering, I, Technical Book,
Bucharest, 1983.

4.21 L. N. Braginsky, V. I. Begatcev,
G. Z. Kofman, Teor. Osn. Him. Technol.
1968, 2(1), 128.

4.22 L. N. Braginsky, V. I. Begatcev,
V. M. Barabash, Mixing of Liquids. Physi-
cal Foundations and Methods of Calcula-
tion, Himya Publishers, Leningrad,
1984.

4.23 L. N. Braginsky, Y. N. Kokotov, J. Disp.
Sci. Tech. 1993, 14, 3.

4.24 M. Filipescu, Modeling of Homogeny
Fluidization: Thesis, Polytechnic Insti-
tute, Bucharest, 1981.

4.25 A.E. Scheidegger, Can. J. Phys. 1958 ,
36, 649.

4.26 J. Crank, Mathematics of Diffusion, Clar-
endon Press, Oxford, 1956.

4.27 H. S. Carslow, J. C. Jaeger, Conduction of
Heat in Solids, Clarendon Press, Oxford,
1959.

4.28 S. K. Scrinivasan, M. K. Mehata,
A.I.Ch.E.J. 1972, 18(3), 650.

4.29 T. Dobre, Highly Efficient Mass Transfer
Apparatus- Mobile Packed Bed Column:
Thesis, Polytechnic Institute of Buchar-
est, 1985.

4.30 D. K. Pickard, E. M. Tory, Can. J. Chem.
Eng. 1977, 55, 655.

4.31 E.M. Tory, Chem. Eng. J. 2000, 80, 81.
4.32 D. K. Schmalzer, H. E. Hoelscher,

A.I.Ch.E.J. 1971, 17, 104.
4.33 O. Iordache, M. A. Iosifescu, Papers of

6th Romanian Conference on Probability,
pp.217–225, Brasov, 1979.

4.34 D. Revuz, Markov Chains, Elsevier,
North-Holland, Amsterdam, 1984.

4.35 I. J. Gikham, A. N. Shorod, Introduction
to the Theory of Random Processes, Saun-
ders, Philadelphia, 1969.

4.36 I. J. Gikham, A. N. Shorod, Stochastic
Differential Equations, Springer-Verlag,
Berlin,1972.

4.37 P. E. Kloeden, E. Platen, Numerical Solu-
tion of Stochastic Differential Equations,
Springer-Verlag, Berlin, 1992.

4.38 M. Pinsky, Probabilistic Methods in Differ-
ential Equations, Springer-Verlag, Ber-
lin,1975.



References 321

4.39 P. R. Iranpour, P. Chacon, Basic Stochas-
tic Processes, McMillan, New York,1988.

4.40 K. Yoshida, Functional Analysis,
Springer-Verlag, Berlin,1965.

4.41 E. B. Dynkin, Markov Processes, Academ-
ic Press, New York, 1965.

4.42 K. Burdzy, M. D. Frankel, A. Pauzner,
On the Time and Direction of Stochastic
Bifurcation, in Asymptotic Methods in
Probability and Statistics, B. Szyskowics,
(Ed.), Elsevier, North-Holland, Amster-
dam,1998.

4.43 R. A. Dabrowski, H. Dehling, Jump Dif-
fusion Approximation for a Markovian
Transport Model, in Asymptotic Methods
in Probability and Statistics,
B. Szyskowics, (Ed.), Elsevier, North-
Holland, Amsterdam, 1998.

4.44 M. Laso, A.I.Ch.E.J. 1994, 40, 1297.
4.45 D.K. Pickard, M.E. Tory, Dispersion Be-

havior-A Stochastic Approach, in
Advances in the Statistical Science, B. I.
MacNeil, J. G. Umphrey (Eds.), Vol. 4,
Ch. 1, D. Reidel, Dordrecht, 1987.

4.46 A. T. Bharuca Reid, Elements of Theory of
Markov Processes and Their Applications,
McGraw-Hill, New York, 1960.

4.47 R. L. Stratanovich, Conditional Markov
Processes and Their Applications, Elsevier,
Amsterdam, 1968.

4.48 L. Berkes, Results and Problems Related
to the Point wise Central Limit Theo-
rem, in Asymptotic Methods in Probability
and Statistics, B. Szyskowics (Ed.), Else-
vier, North-Holland, Amsterdam,1998.

4.49 J. Karger, M. D. Ruthven, Diffusion in
Zeolites and Other Micoporous Solids,
John Wiley , New York, 1992.

4.50 Y. N. Chen, M. D. Ruthven, Molecular
Transport and Reaction in Zeolites, VCH
Publishers, New York, 1994.

4.51 J. Weitkamp, Separation and Catalysis
by Zeolites, in Catalysis and Adsorption,
J. Vedrine, A. Jacobs (Eds.), Elsevier,
Amsterdam, 1991.

4.52 R. Haberlandt, J. Kager, Chem.Eng. J.
1999, 74, 15.

4.53 A. Luikov, Heat and Mass Transfer, Mir
Publishers, Kiev, 1980.

4.54 P. B. Fernando, N. P. Efstraitos,
M. S. Pedro, Ind. Eng. Chem. Res. 1999,
38(8), 3056.

4.55 R. J. Banga, Ind. Eng. Chem. Res. 1997,
36(6), 2252.

4.56 L. C. Cheng, Y. S. Daim, Ind. Eng.
Chem. Res. 2000, 39(7), 2305.

4.57 Z. Novak, Z. Kravanja, Ind. Eng. Chem.
Res. 1999, 38(7), 2680.

4.58 N. P. Efstratios, Ind. Eng. Chem. Res.
1999, 36(6), 2262.

4.59 R. A. Felipe, M. R. Carlos, V. N. Torres,
J. Biotechnol. 1999, 68, 15.

4.60 A. V. Ermoshin, V. Engel, Chem. Phys.
Lett. 2000, 332, 162, 110.

4.61 A. Gaizauskas, S. A. Berzanskas,
H. K. Feller, Chem. Phys. 1998, 235, 1-3,
123.

4.62 J. Christina, N. Breton, P. Daegelen,
J.Chem.Phys. 1997, 107(8), 2903.

4.63 R. Bocatti, Wave Mechanics for Oceanic
Engineering, Elsevier, Amsterdam, 1998.

4.64 C.V. Singh, Int. J. Clim. 1998, 18(14),
1611.

4.65 R. J. Koehler, B. A. Owen, Computer
Experiments, in Handbook of Statistics
13: Design and Analysis of Experiments,
S. Gosh, R. Rao (Eds.), Elsevier, North-
Holland, Amsterdam, 1996.

4.66 G. A. Mallinaris, A.W. Brock, Stochastic
Methods in Economics and Finance, 7th
edn., Elsevier, North-Holland, Amster-
dam,1996.

4.67 P. Embrechts, R. Frey, H. Furror, Sto-
chastic Processes in Insurance and
Finance, in Handbook of Statistics 19:
Stochastic Processes: Theory and Method,
N. E. Shanbhag, R. C. Rao (Eds.) Else-
vier, North-Holland, Amsterdam, 2000.

4.68 V. Zaharov, Games and Stochastic Con-
trol, in Control Applications of Optimiza-
tion 2000, Vol. 2, V. Zaharv (Ed.), Else-
vier Science, Amsterdam, 2000.

4.69 B. S. Poppe, Turbulent Flows, Cambridge
University Press, Cambridge, 2000.

4.70 V. Kudrna, P. Hsal, L. Vejmola, Collect.
Czech. Chem. Commun. 1994, 59(2), 345.

4.71 A. G. Maria, J. Colussi, J. Phys.
Chem.1996, 100(46), 18214.

4.72 B. K. Mishra, Powder Technol., 2000,
110(3), 246.

4.73 M. S. Cannon, S. B. Brewster,
D. L. Smoot, Combust. Flame, 1998, 113,
135.

4.74 H. Bertiaux, Powder Technol. 1999,
105(1-3), 266.

4.75 A.W. Curtin, Curr. Opin. Solid State
Mater. Sci. 1996, 1(5), 674.



4 Stochastic Mathematical Modelling322

4.76 H. Bertiaux, Chem. Eng. Sci. 2000,
55(19), 4117.

4.77 Z. Liang, A. M. Ioanidis, I. Chatzis,
Chem. Eng. Sci. 2000 , 55(22), 5247.

4.78 N. Scheerlinck, P. Verboven, D. J. Stigter,
D. J. Baerdemaeker, J. van Impe,
M. B. Nicolai, Int. J. Num. Methods Eng.
2001, 51(8), 961.

4.79 E. A. Stillman, H. J. Freed, J. Chem.
Phys. 1980, 72(1), 550.

4.80 T. Dobre, O. Floarea, Rev. Chim, 1984,
35(9), 867.

4.81 T. Dobre, O. Floarea, Rev. Chim, 1985,
36(11), 1021.

4.82 T. Dobre, Rev. Chim. 1992, 37(8), 879.
4.83 B. N. Chen, W. J. Douglas, Can. J. Chem.

Eng. 1968, 47(2),113.
4.84 J. E. Cains, M. I. Prausnitz, Ind. Eng.

Chem. 1959, 5(12), 441.
4.85 K. Masao, K. Tabei, K. Murata, Ind. Eng.

Chem. Proc. Des. Dev. 1978, 17(4), 568.

4.86 A. I. Kovali, V. A. Bespalov,
O. G. Kulesov, P. A. Jukov, Teor. Osn.
Him. Technol. 1975, 9(6), 887.

4.87 W. S. Rutherford, D. D. Do, Adsorption,
1997, 3, 283.

4.88 W. S. Rutherford, D. D. Do, Chem. Eng.
J. 1999, 74, 155.

4.89 O. Levenspiel, Chemical Reaction Engi-
neering, John Wiley, New York, 1999.

4.90 R.C. Darton, (Ed.) Modeling of Solid-
Fluid Separation, NATO Series, Ninjof,
New York, 1985.

4.91 P. M. Hertjes, P. M. Lerk, Trans. Inst.
Chem. Eng. 1967, 45, T138.

4.92 R. Arris, N. R. Amundson, Mathematical
Method in Chemical Engineering, Vol. 2,
Prentice Hall, New Jersey, 1973.

4.93 L. T. Fan, M. S. K. Chan, Y. K. Ahn,
W. Y. Wen, Can. J. Chem. Eng. 1969, 47,
141.

4.94 V. V. Kafarov, P. V. Voroviev,
A. N. Klipinitzer, Teor. Osn. Him. Tech-
nol. 1972, 6(4), 113.


