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6
Similitude, Dimensional Analysis and Modelling

Although many practical engineering problems involving momentum, heat and
mass transport can be modelled and solved using the equations and procedures
described in the preceding chapters, an important number of them can be solved
only by relating a mathematical model to experimentally obtained data.

In fact, it is probably fair to say that very few problems involving real momen-
tum, heat, and mass flow can be solved by mathematical analysis alone. The solu-
tion to many practical problems is achieved using a combination of theoretical
analysis and experimental data. Thus engineers working on chemical and bio-
chemical engineering problems should be familiar with the experimental
approach to these problems. They have to interpret and make use of the data
obtained from others and have to be able to plan and execute the strictly necessary
experiments in their own laboratories. In this chapter, we show some techniques
and ideas which are important in the planning and execution of chemical and bio-
chemical experimental research. The basic considerations of dimensional analysis
and similitude theory are also used in order to help the engineer to understand
and correlate the data that have been obtained by other researchers.

One of the goals of the experimental research is to analyze the systems in order
to make them as widely applicable as possible. To achieve this, the concept of
similitude is often used. For example, the measurements taken on one system
(for example in a laboratory unit) could be used to describe the behaviour of other
similar systems (e.g. industrial units). The laboratory systems are usually thought
of as models and are used to study the phenomenon of interest under carefully
controlled conditions, Empirical formulations can be developed, or specific predic-
tions of one or more characteristics of some other similar systems can be made
from the study of these models. The establishment of systematic and well-defined
relationships between the laboratory model and the “other” systems is necessary
to succeed with this approach. The correlation of experimental data based on
dimensional analysis and similitude produces models, which have the same quali-
ties as the transfer based, stochastic or statistical models described in the previous
chapters. However, dimensional analysis and similitude do not have a theoretical
basis, as is the case for the models studied previously.
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6.1
Dimensional Analysis in Chemical Engineering

In order to explain dimensional analysis in chemical engineering, we present a
typical problem of chemical engineering that requires an experimental approach.
Consider the steady flow of an incompressible Newtonian fluid through a long,
smooth-walled, horizontal and circular pipe which is heated from the outside.

In this system two important characteristics are of interest to an engineer
designing the pipeline:

1. the pressure drop per unit length along the pipe as a result
of friction,

2. the heat transfer coefficient that shows the kinetics of heat
transfer from the pipe wall to the bulk fluid.

The first step in planning an experiment to study this problem would take into
consideration the choice of factors, or variables that affect the pressure drop (Dp/l)
and the heat transfer coefficient (a). As a first approach, we can consider the
effects of temperature and pressure separately. In fact, the temperature variation
has no direct effect on the pressure drop but has an effect on the fluid’s physical
properties.

We can formulate that the pressure drop is a function of the pipe diameter, d,
the fluid density, q, the fluid viscosity, g, and the mean velocity at which the fluid
is flowing in the pipe (w). Thus, we can express this relationship as:

Dp=l ¼ f ðd; r;g;wÞ (6.1)

The heat transfer coefficient is considered as a function of the parameters pre-
viously described and of the two thermal properties of the liquid: the heat capacity,
cp, and the thermal conductivity, k:

a ¼ f ðd; r;g; cp; k;wÞ (6.2)

To carry out the experiments in a meaningful and systematic way, it will be neces-
sary, first, to consider one of the parameters as a variable while keeping the others
constant and then to measure the corresponding pressure drop. The same type of
experiment is carried out for the measurement of the heat transfer coefficient.
Contrary to the mass transport pressure drop, which could be measured directly,
the heat transfer coefficient is obtained indirectly by measuring the temperature
of the wall and of the fluid at the entrance and exit of the pipe. The determination
of the functional relationship between Dp/l, a and the various parameters that
influence the process is illustrated in Fig. 6.1.
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Figure 6.1 Illustrative plots showing the dependence of Dp/l and a on the state
of different process factors. (a) d, q, g, cp, k constant, (b) w, q, g, cp, k constant,
(c) w, d, g, cp, k constant , (d) w, d, q, cp, k constant, (e) w, d, q, g, k constant,
(f) w, d, g, cp, q constant.

Some of the results shown in this figure have to be obtained from experiments
that are very difficult to carry out. For example, to obtain the data illustrated in
Fig. 6.1(c) we must vary the liquid density while keeping the viscosity constant.
For the data needed in Fig. 6.1(e), the thermal conductivity has to be varied while
the density, the thermal capacity and viscosity are kept constant. These curves are
actually almost impossible to obtain experimentally because the majority of the
studied parameters are dependent on each other. This problem could be solved
using a much simpler approach with the dimensionless variables that are
described below. In fact, we can combine the different parameters described in
Eqs. (6.1) and (6.2) in non-dimensional combinations of variables (called dimen-
sionless groups, products’ criteria)

Dp
rw2

d
l
¼ f

wdr
g

� �
(6.3)

and

ad
k
¼ U

wdr
g

;
cpg

k

� �
(6.4)
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6 Similitude, Dimensional Analysis and Modelling

Thus, instead of working with five parameters for the estimation of Dp/l, we have
only two. In the case of a, which depends on seven parameters, this has been
reduced to three dimensionless variables.

In the first case, the experimental work will simply consist of variation of the
dimensionless product wdq/g and determination of the corresponding value of
Dp/(qw2)(d/l). The results of the experiments can then be represented by a single
universal curve, as illustrated in Fig. 6.2(a). Varying the dimensionless product
wdq/g and determining, for the dimensionless group cpg/k, the corresponding
value of ad/k, makes it possible to obtain the results shown in Fig. 6.2(b) for the
pipe heat transfer. From these results we can conclude that carrying out the
experimental work will be much simpler, easier, and cheaper. The basis of these
simplifications lies in consideration of the involved variables’ dimensions. It is
known that the physical quantities can be given in terms of basic dimensions
such as mass, M, length, L, time, T, temperature, h, quantity of substance N and
light intensity, K. The derivation systems of basic dimensions also coexist between
them, F L T h N K are the most common.

wdρρ/η wdρ/η

∆p/(ρw2)(d/l) αd/λ

cpη/λ=1

cpη/λ=20

cpη/λ=100

   turbulent flow

   turbulent flow

a) b) 

Figure 6.2 An illustrative example for pressure drop and heat transfer
coefficient evaluation using dimensionless groups: (a) dimensionless
pressure drop, (b) dimensionless heat transfer coefficient.

For example Newton’s second law, F = ma, can be written as:

[F] = [m][a] = M L T–2 (6.5)

Here, the brackets are used to indicate an operation using the basic dimension of
the variables. It is not difficult to obtain the dimension formulae for the variables
presented in the previously discussed examples; these are:
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6.2 Vaschy–Buckingham Pi Theorem

[Dp/L] = ML–2 T–2, [w] = LT–1, [d] = L, [q] = ML–3, [g] = ML–1T–1, [cp] = L2T–2h–1,
[k] = MLT–3h–1, [a] = MT–3h–1.

A rapid check of the groups’ dimension, which appears in relationships (6.3) and
(6.4), shows that they actually are dimensionless criteria:

Dp
rw2

d
l

� �
¼ ML�2T�2L

ML�3ðLT�1Þ2
¼ M0L0T0 ;

wdr
g

� �
¼ ðLT�1ÞLðML�3Þ

ML�1T�1
¼ M0L0T0

and

ad
k

� �
¼ ðMT�3h�1ÞL

MLT�3h�1 ¼ M0L0T0h0 ;
cpg

k

� �
¼ ðL

2T�2h�1ÞðML�1T�1Þ
MLT�3h�1 ¼ M0L0T0h0

With this methodology, not only has the number of variables been reduced, but
also the new groups are dimensionless combinations of variables, which means
that the results presented in Fig. 6.2 will be independent of the system of units
used. This type of analysis is called dimensional analysis. The basis for its applica-
tion to a wide variety of problems is found in the Buckingham Pi Theorem
described in the next section. Dimensional analysis is also used for other applica-
tions such as:
. establishing the dimensional formula for the derived physical

variables,
. verifying the dimensional homogeneity of the physical relation-

ships and equations used for the characterization of a process,
. verifying whether the units of measurement used for process vari-

ables are correct.

6.2
Vaschy–Buckingham Pi Theorem

When researchers want to use dimensional analysis of a process, the first and fun-
damental question they have to answer concerns the number of dimensionless
groups that are required to replace the original list of process variables. The
answer to this question is given by the basic theorem of dimensional analysis,
which is stated as follows:

“If a process is characterized by an equation involving m physical variables,
then this equation can be reduced to a relationship between m – n independent
dimensionless groups, where n represents the number of basic dimensions used
to describe the variable”.

The dimensionless groups are frequently called “pi terms” due to the symbol
used by Buckingham [6.1] to define the fact that the dimensionless group is a
product. Their first modern presentation was given by Vaschy [6.2], even though
several early investigators, including Rayleigh, contributed to the development of
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6 Similitude, Dimensional Analysis and Modelling

the pi theorem. In spite of the simplicity of the pi Theorem, its improvement is
not simple. This will not, however, be presented here, because the detailed mathe-
matical improvement is beyond the scope of this chapter. Many books give a more
detailed treatment of the pi theorem and dimensional analysis [6.3–6.15].

The pi theorem is based on the idea of the dimensional homogeneity of the pro-
cess equations or on the relationships that characterize one particular process.
From this point of view, all the coefficients of statistical models that have already
been discussed in Chapter 5 have a physical dimension, because the dependent
and the independent process variables have a physical dimension. Essentially, we
assume that any physically meaningful equation, which characterizes one process
and which involves m variables, such as y1 ¼ f ðx1; x2::::xmÞ presents, for each
term contained on the right-hand side, the same dimension as for the left-hand
side. This equation could be transformed into a set of dimensionless products (pi
terms):

P1 ¼ fðP2;P3:::Pm�nÞ (6.6)

The required number of pi terms is lower than the number of original n variables,
where n is determined by the minimum number of basic dimensions required to
describe the original list of variables. For common momentum and mass transfer,
the basic dimensions are usually represented by M, L, and T. For heat transfer pro-
cesses, four basic dimensions – M, L, T, h – have to be used. Moreover, in a few
rare cases, the variables could be described by a combination of basic dimensions
such as, for any flow processes, M/T2 and L. The use of the pi theorem may
appear to be mysterious and complicated, although there are systematic and rela-
tively simple procedures to develop the pi theorem for a given problem.

6.2.1
Determination of Pi Groups

Several methods can be used to form the dimensionless pi terms in a dimensional
analysis. The most important are those applying a systematic determination of
the pi terms, but they can be used only when the terms are dimensionless and
independent. These methods, which will be described in detail later, are called
“method of base non-complete group” [6.16] or “method of repeating variables”
[6.17]. The determination of pi groups must be considered as the beginning of
modelling for a process using dimensional analysis. We can consider that a model
is completely established if a general characteristic process function, obtained
after the application of this method, can be particularized by experimental data.

One of the simplest analyses consists in dividing the method into a series of
distinct steps that can be followed for any given problem. The description given
below is very similar to the methodology generally applied in the production of a
mathematical model process as previously presented in Chapter 2.
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6.2 Vaschy–Buckingham Pi Theorem

Step 1: List all the variables that are involved in the problem (process)
This step is one of the most difficult and is, of course, extremely important
because all pertinent variables have to be included in the analysis. The term vari-
able includes any physical quantity, dimensional and apparently non-dimensional
constant that plays a role in the phenomenon under investigation. The determina-
tion of the variables must take into account practical knowledge of the problem as
well as the physical laws governing the phenomenon. Variables typically include
the parameters that are necessary not only to describe the geometry of the system
(such as the diameter of the pipe in the example below), but also to define the
fluid properties (such as the density, viscosity, thermal capacity, thermal conduc-
tivity of the fluid, the diffusion coefficient for one species in the working fluid,
etc.) as well as to indicate the external effects that influence the system (such as
the driving pressure drop in the further discussed cases).

These general types of variables are intended to be as broad as possible in order
to be helpful in identification. However, in some cases, the variables may not easi-
ly fit into one of these categories. This is why each problem has to be carefully
analyzed.

Two conditions are very important during this analysis. First, generally, the
researchers wish to have a minimum number of variables in order to minimize
the experimental work. Secondly, these variables have to be independent. For
example, for a problem of flow in a pipe, the geometric dimensions such as the
pipe diameter and the section flow, could both be considered as variables. How-
ever, only the pipe diameter will be considered in the list of variables because the
section flow already contains the basic geometric dimension.

Step 2: Establishment of the dimensional formula for each variable from the
selected list
For a typical chemical engineering problem, the dimensions considered are gener-
ally M, L, T and h. The dimensions F, L, T, h can also be used but, in this case,
especially for heat transfer problems and for coupled heat and mass transfer pro-
cesses, complicated dimensional formulae are derived. To establish a dimensional
formula for a variable, it is necessary to have a relationship containing this vari-
able. This relationship can be independent of the process to which the dimen-
sional analysis is applied. The use of tables containing dimensional formulae for
physical variables can also be effective.

Step 3: Determination of the required number of pi terms
This step can be accomplished by means of the pi theorem which indicates that
the number of pi terms is equal to m – n, where m (determined in step 1) is the
number of selected variables and n (determined in step 2) is the number of basic
dimensions required to describe these variables. The reference dimensions
usually correspond to the basic dimensions and can be determined by a careful
inspection of the variables’ dimensions obtained in step 2. As previously noted,
the basic dimensions rarely appear combined, which results in a lower number of
reference dimensions than the number of basic ones.
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6 Similitude, Dimensional Analysis and Modelling

Step 4: Selection of a non-complete group containing the same number of variables
and basic dimensions
Here we select some variables from the original list in order to combine them
with the remaining variables to form the pi term. The variables contained in the
non-complete group do not change during the process of pi term production. All
the required reference (basic) dimensions must be included within the non-com-
plete group of repeating variables. Each repeating variable must be dimensionally
independent of the others (a similar consideration is taken into account when the
dimensions of one repeating variable cannot be reproduced by any combination
of the exponent product of the remaining repeating variables). In fact, we can con-
clude that the repeating variables cannot be combined with other repeating vari-
ables to form dimensionless criteria.

For any given problem, we are usually interested in determining how one par-
ticular variable influences (and is influenced by) other variables. A one-dimen-
sional analysis accepts only one dependent variable. It is recommended not to
choose the dependent variable as one of the repeating variables, since the repeat-
ing variable will generally appear in more than one pi group term and then the
variable separation cannot be carried out easily.

Step 5: Development of the pi terms one at a time by multiplying a non-repeating
variable by a non-complete group which has the repeating variable necessary to
obtain the arbitrary different exponents
Essentially, each pi term will be of the form xix

a
1xb

2xc
3 where xi is a non-repeating

variable and x1,x2, x3 represent the repeating variables of the non-complete group.
The exponents a, b, c are determined in order to give a dimensionless combina-
tion. The case presented here corresponds to a process where variables are intro-
duced with three basic dimensions (M, L, T). For heat transfer and the coupling of
heat and mass transfer processes, the form used for a pi term is xix

a
1xb

2xc
3xd

4. The
values of the exponents a, b, c are determined in this step by generating a system
of linear algebraic equations containing these exponents. The basis for the devel-
opment of the system is represented by the condition of the dimensionless pi
group.

Step 6: Checking all the resulting pi terms to make sure they are dimensionless
In order to prove that the pi terms are correctly formulated, their dimensionless
condition should be confirmed by replacing the variables in the dimensional for-
mula by the pi terms. This step can be carried out by writing the variables in
terms of M, L, T, h. If the dimensional analysis has been produced using F, L, T, h

as basic dimensions, then check the formula to make sure that the pi terms are
dimensionless.

Step 7: Establishment of the final form as a relationship among the pi terms
The most frequently used form of the final dimensional analysis is written as Eq.
(6.6) where P1 will contain the dependent variables in the numerator. It should be
emphasized that, if you have started out with a good list of variables (and the other
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6.2 Vaschy–Buckingham Pi Theorem

steps of the analysis have been completed correctly), the relationship in terms of
the pi groups can be used as a basis to describe the investigated problem. All we
need to do is work with the pi groups and not with the individual variables. How-
ever, it should be clearly noted that the functional relationship between the pi
groups has to be determined experimentally. The result is a relationship criterion
able to show the main behaviour of the analyzed system or process. The chemical
engineering research methodologies can also result in obtaining a theoretical rela-
tionship criterion using various theoretical bases [6.18–6.20]

To illustrate the steps described above, we will consider the problem already
introduced at the beginning of this chapter, which was concerned with the pres-
sure drop and heat transfer of an incompressible Newtonian fluid flowing in a
pipe.

The first problem is the classical example used to show the scientific force of
the dimensional analysis – and especially of the pi theorem. Remember that we
are interested in the pressure drop per unit length (Dp/l) along the pipe. Accord-
ing to the experimenter’s knowledge of the problem and to step 1, we must list all
the pertinent variables that are involved; in this problem, it was assumed that:

Dp=l ¼ f ðd; r;g;wÞ

where d is the pipe diameter, q and g are the fluid density and viscosity, and w is
the mean fluid velocity.

In step 2, we express all the variables in terms of basic dimensions. Using M, L,
T as basic dimensions, it follows that:

Dp=l½ � ¼ F=S½ �
l½ � ¼

MLT�2L�2

L
¼ ML�2T�2

d½ � ¼ L

r½ � ¼ ML�3

g½ � ¼ ML�1T�1

w½ � ¼ LT�1

We could also use F, L, and T as basic dimensions. Now, we can apply the pi theo-
rem to determine the required number of pi terms (step 3). An inspection of the
variable dimensions obtained in step 2 reveals that the three basic dimensions are
all required to describe the variables. Since there are five (m = 5) variables (do not
forget to count the dependent variable, Dp/l) and three required reference dimen-
sions (n = 3), then, according to the pi theorem, two pi groups (5 – 3) will be re-
quired.

We need to select three out of the four variables (d, q, g, w) in the list of the
incomplete group with repeating variables (step 4) to be used to form the pi terms.
Remember that we do not want to use the dependent variable as one of the repeat-
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6 Similitude, Dimensional Analysis and Modelling

ing variables. Generally, we will try to select the dimensionally simplest repeating
variables. For example, if one of the variables has a length dimension, we can
choose it as one of the repeating variables. We can note that this incomplete group
has to contain all the basic dimensions established by step 2. For this step, we use
d, q and w as repeating variables in the incomplete group.

We are now ready to form the two pi groups and to identify the exponents asso-
ciated with the repeating variables from the incomplete group (step 5). Typically,
we will start with the dependent variable and combine it with the repeating vari-
ables to form the first pi term:

P1 ¼ ðDp=lÞdarbwc (6.7)

This combination has to be dimensionless and, in the particular example, only M,
L and T are presented:

P1½ � ¼ ðDp=lÞdarbwc½ � (6.8)

The dimensional relationship (6.8) is developed into Eq. (6.9). Then, exponents
a, b, c must be determined so that the resulting exponent of each of the basic di-
mensions M, L and T, is zero (it gives a dimensionless combination). Thus, we
can also write the relationship (6.10):

M0L0T0 ¼ ML�2T�2ðLÞaðML�3ÞbðLT�1Þc ¼ Mð1þbÞLð�2þa�3bþcÞTð�2�cÞ (6.9)

1þ b ¼ 0

� 2þ a� 3bþ c ¼ 0

� 2� c ¼ 0

8><
>: (6.10)

Solution of the equation system (6.10) gives the desired values for a, b, c. It is easy
to observe that the following solution is obtained: a = 1, b = – 1, c = –2. Therefore,
the pi group is:

P1 ¼
Dp
rw2

d
l

This procedure is now repeated for the remaining non-repeating variables. In this
example, there is only one additional variable (g):

P2 ¼ gdarbwc (6.11)

By analogy with Eqs. (6.8) and (6.9), we can write Eqs. (6.12) and (6.13) which
allow one to build a system of linear algebraic equations (6.14). This system gives
the values of a, b, c associated with P2.
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6.2 Vaschy–Buckingham Pi Theorem

P2½ � ¼ gdarbwk½ � (6.12)

M0L0T0 ¼ ML�1T�1ðLÞaðML�3ÞbðLT�1Þc ¼ Mð1þbÞLð�1þa�3bþcÞTð�1�cÞ (6.13)

1þ b ¼ 0

� 1þ a� 3bþ c ¼ 0

� 1� c ¼ 0

8><
>: (6.14)

Solving Eq. (6.14), it follows that a = –1, b = –1, c = –1 and:

P2 ¼
g

wdr
(6.15)

At this point, we can check the dimensionless condition of the pi groups (step 6).
However, before checking, we have to write the dimensional formulae for the vari-
ables contained in the selected list using the basic dimensions F, L, T. To obtain
this transformation in the dimensional formulae used in step 2, the relationship
F = MLT–2 is used to replace the mass (M). The result obtained is:

Dp=l½ � ¼ FL�3 ; d½ � ¼ L ; r½ � ¼ FL�4T2 ; g½ � ¼ FL�2T ; w½ � ¼ LT�1

Now we can check whether the obtained pi groups are dimensionless:

P1½ � ¼
Dp
l

d
rw2

� �
¼ ðFL�3ÞðLÞ
ðFL�4T2ÞðLT�1Þ2

¼ F0L0T0

P2½ � ¼
g

wdr

� �
¼ FL�2T
ðLT�1ÞðLÞðFL�4T2Þ ¼ F0L0T0

or alternatively,

P1½ � ¼
Dp
l

d
rw2

� �
¼ ML�2T�2ðLÞ
ðML�3ÞðLT�1Þ2

¼ M0L0T0

P2½ � ¼
g

wdr

� �
¼ ML�1T�1

ðLT�1ÞðLÞðML�3Þ ¼ M0L0T0

Finally (step 7), we can express the result of dimensional analysis as:

Dp
rw2

d
l
¼ f

g

rwd

� �
(6.16)

This result indicates that this problem can be studied in terms of these two pi
terms, rather than in terms of the original five variables. Nevertheless, the dimen-
sional analysis will not provide the form of the function f. This can be obtained
from a suitable set of experiments. The power form for f has been successfully
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6 Similitude, Dimensional Analysis and Modelling

used in chemical engineering literature. Thus, Eq. (6.16) can be particularized
into Eq. (6.17) and, after the introduction of the Reynolds number, Eqs. (6.18) and
(6.19) are obtained. Eq. (6.19) is the famous Fanning expression for the fluid pres-
sure drop in the pipe. We can also derive the friction factor, kf, from Eqs. (6.18)
and (6.19):

Dp
rw2

d
l
¼ c

g

rwd

� �p

(6.17)

Dp ¼ c Re�p l
d

w2

2
r (6.18)

Dp ¼ kf
l
d

w2

2
r (6.19)

The second problem, introduced at the beginning of this chapter and discussed
here, is meant to show how – with the presented 7-step algorithm – we can obtain
a simple dimensionless relationship between the various process variables affect-
ing the heat transfer between the wall and the fluid.

Step 1 is rapidly resolved, based on the discussion of these problems at the
beginning of this chapter (Fig. 6.1). The list of variables considers that:

a ¼ Fðd; r;g; cp; k;wÞ

where the definition of each variable has been presented above.
Step 2 requires expressing all variables in terms of the basic dimensions. Using

M, L, T, and h as basic dimensions, the process variables show the dimensional
formulae:

a½ � ¼ MT�3h�1

d½ � ¼ L

r½ � ¼ ML�3

g½ � ¼ ML�1T�1

cp

h i
¼ L2T�2h�1

k½ � ¼ MLT�3h�1

w½ � ¼ LT�1

A similar result is obtained if we use F, L, T, h as basic dimensions. As previously
described, the M dimension is replaced by F. In the case of r½ �, the basic dimen-
sions of M, L, T, and h are replaced by F, L, T, and h. From F = MLT–2 we obtain
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6.2 Vaschy–Buckingham Pi Theorem

M = FL–1T2 which is used in the r½ � formula to finally obtain: r½ � = FL–1T2L–3 =
FL–4T2.

Step 3 begins with determining the number of basic dimensions (M, L, T, h). In
this case n = 4 and with m = 7 (the number of variables considered in the first
step) we conclude that the number of pi groups, np, is: np = m – n= 7 – 4 = 3.

In order to start step 4, we need to choose an incomplete group composed of n
variables; the variables of this incomplete group will be coupled one by one with
the remaining variables. Remember that we do not want to use the dependent
variable as one of the repeating variables. At the same time, the incomplete group
of repeating variables has to include all basic dimensions. We have chosen an
incomplete group which includes d, q, g and k because it has a very high number
of variables with simple dimensional formulae. We are now ready to form three pi
terms (step 5). To do so, we have to begin with the dependent variable and com-
bine it with the repeating variables. Therefore, the first pi term is:

P1 ¼ adbrcgdke (6.20)

Since this combination has to be dimensionless, we can write:

P1½ � ¼ adbrcgdke½ � (6.21)

or:

M0L0T0h0 ¼ MT�3h�1ðLÞbðML�3ÞcðML�1T�1ÞdðMLT�3h�1Þe (6.22)

Respectively:

M0L0T0h0 ¼ Mð1þcþdþeÞLðb�3c�dþeÞTð�3b�d�3eÞhð�e�1Þ (6.23)

Now we can identify the exponents b, c, d and e of the basic dimensions using the
equality between the exponents of the basic dimensions on the left-hand side and
the exponents on the right-hand side (Eq. (6.23)). Then we obtain the next system
of linear equations:

1þ cþ dþ e ¼ 0

b� 3c� dþ e ¼ 0

� 3b� d� 3e ¼ 0

1� e ¼ 0

8>>><
>>>:

(6.24)

The solution of this system of algebraic equations gives the desired values for b, c,
d and e. It is simple to obtain e= –1, b = 1, c = 0, d = 0 and therefore to write:

P1 ¼ Nu ¼ ad
k

(6.25)
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6 Similitude, Dimensional Analysis and Modelling

which is the classical Nusselt dimensionless number (Nu), currently used in heat
transfer processes. Step 5 must be repeated in order to obtain the dimensionless
groups P2 and P3. We still have some variables able to be coupled with the incom-
plete groups, which are the flow rate (w) and the liquid thermal capacity (cP).

If the selected variable is the flow rate, we can write the dimensionless expres-
sion:

P2 ¼ wdbrcgdke (6.26)

In this case, Eqs. (6.21)–(6.24) used for complete identification of this group,
show the following particularizations:

P2½ � ¼ wdbrcgdke½ � (6.27)

M0L0T0h0 ¼ LT�1ðLÞbðML�3ÞcðML�1T�1ÞdðMLT�3h�1Þe (6.28)

M0L0T0h0 ¼ MðcþdþeÞLð1þb�3c�dþeÞTð�1�d�3eÞhð�eÞ (6.29)

cþ dþ e ¼ 0

1þ b� 3c� dþ e ¼ 0

� 1� d� 3e ¼ 0

e ¼ 0

8>>><
>>>:

(6.30)

The solution of this system of algebraic equations gives the new values for b, c, d,
and e adapted to the P2 group. It is then simple to obtain e= –0, b = 1, c =1, d = –1
and therefore:

P2 ¼ Re ¼ wdr
g

(6.31)

If we carry out step 5 again, we obtain the group formed by coupling the liquid
thermal capacity with the incomplete group of repeating variables. After the usual
procedure P3 is written as:

P2 ¼ cpdbrcgdke (6.32)

The new values needed for b, c, d and e, will be obtained by applying the algo-
rithm to the P3 group in Eq. (6.32). The next relationships show the following
particularization:

P3½ � ¼ cpdbrcgdke
h i

(6.33)

M0L0T0h0 ¼ L2T�2h�1ðLÞbðML�3ÞcðML�1T�1ÞdðMLT�3h�1Þe (6.34)
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6.2 Vaschy–Buckingham Pi Theorem

M0L0T0h0 ¼ MðcþdþeÞLð2þb�3c�dþeÞTð�2�d�3eÞhð�1�eÞ (6.35)

cþ dþ e ¼ 0

2þ b� 3c� dþ e ¼ 0

� 2� d� 3e ¼ 0

� 1� e ¼ 0

8>>><
>>>:

(6.36)

It is then simple to obtain the new values of b, c, d and e adapted to the P3 group.
These are:

e = –1, d = 1, c = 0 and b = 0 and therefore:

P3 ¼ Pr ¼
cpg

k
(6.37)

This dimensionless group is recognized as the Prandtl number, which is currently
used in heat transfer processes. This number is very important when the bound-
ary layer theory is applied because it shows the relationship between the corre-
sponding thickness of the heat transfer boundary layer and the hydrodynamic
boundary layer [6.12].

The next step consists in making sure that the pi groups obtained are dimen-
sionless (step 6). As explained above, the dimensional formulae for the variables
contained in this selected list will be produced in the case of basic dimensions F,
L, T and h. Therefore, in the dimensional equations used in step 2, mass M will be
replaced by force F using the relationship F = MLT–2:

a½ � ¼ FL�1T�1h�1 ; d½ � ¼ L ; r½ � ¼ FL�4T2 ; g½ � ¼ FL�2T ; w½ � ¼ LT�1 ;

cp

h i
¼ L2T�2h�1 ; k½ � ¼ FT�1h�1

Now, let us check whether the obtained pi groups (Nu, Re, Pr) are dimensionless:

P1½ � ¼ Nu½ � ¼ ad
k

� �
¼ ðFL�1T�1h�1ÞL

FT�1h�1 ¼ F0L0T0h0

P2½ � ¼ Re½ � ¼ wdr
g

� �
¼ ðLT�1ÞðLÞðFL�4T2Þ

FL�2T
¼ F0L0T0h0

P3½ � ¼ Pr½ � ¼
cpg

k

h i
¼ ðL

2T�2h�1ÞðFL�2TÞ
FT�1h�1 ¼ F0L0T0h0

or alternatively,

P1½ � ¼ Nu½ � ¼ ad
k

� �
¼ ðMT�3h�1ÞL

MLT�3h�1 ¼ M0L0T0h0
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P2½ � ¼ Re½ � ¼ wdr
g

� �
¼ ðLT�1ÞðLÞðML�3Þ

ML�1T�1
¼ M0L0T0h0

P3½ � ¼ Pr½ � ¼
cpg

k

� �
¼ ðL

2T�2h�1ÞðML�1T�1Þ
MLT�3h�1 ¼ M0L0T0h0

Finally (step 7), we can express the result of dimensional analysis as:

ad
k
¼ U

wdr
g

;
cpg

k

� �
(6.38)

Equation (6.38), which contains function U, has already been proved theoretically
[6.12] and experimentally [6.18]. The famous relationship (6.39), which is applic-
able when pipe flow is fully developed, is currently used to characterize the heat
transfer kinetics in other similar examples:

Nu ¼ 0:023 Re0:8 Pr0:33 (6.39)

To summarize, the methodology to be followed in performing a dimensional anal-
ysis using the method of incomplete groups of repeating variables, consists in fol-
lowing this series of steps:
. Step 1: List all variables that are involved in the investigated phe-

nomenon. This step needs a very good knowledge of these vari-
ables.

. Step 2: Each variable has to be described by its dimensional for-
mula.

. Step 3: Establish the required number of pi groups.

. Step 4: Select the incomplete group of repeating variables. The
number of repeating variables and basic dimensions involved in
the problem are identical.

. Step 5: Form the pi term by multiplying one of the non-repeating
variables by the incomplete group where the repeating variables
have arbitrary powers and identify the actual pi expression.
Repeat this step for all non-repeating variables.

. Step 6: Check all the resulting pi terms to make sure they are
dimensionless.

. Step 7: Express the final form as a relationship among pi terms
and add supplementary commentaries if necessary.
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6.3
Chemical Engineering Problems Particularized by Dimensional Analysis

The two cases analyzed above give a model used to produce a particularization of
the dimensional analysis to a chemical engineering problem. It has been observed
that dimensional analysis is a good tool to rapidly elaborate a dimensionless frame
for a system on which the experiments could be carried out by measuring the sug-
gested variables. A further advantage lies in the “scale invariance” of dimension-
less groups, thus enabling the only reliable scaling-up of the analyzed phenom-
ena.

In the description of the various steps, it has been established that there are
only two real problems in dealing with dimensional analysis. The first problem is
the listing of all the relevant parameters that describe the process. Because chemi-
cal engineering processes are influenced by a high number of parameters, it is
not easy to establish a good list of variables. The second problem is the determina-
tion of the process characteristics and of the real operational numbers, particularly
in the case of large-scale factors. From the viewpoint of dimensional analysis, the
descriptive chemical engineering model based on graphic representations is fre-
quently effective in obtaining the correct interpretation of a process. We shall
develop this problem in the following examples.

6.3.1
Dimensional Analysis for Mass Transfer by Natural Convection in Finite Space

We introduce this problem with two particular examples. The first is the etching
of a metal placket immersed in a large specifically formulated liquid, with no gas
production. The second is the drying of a recently built wall. In both cases, we
have a non-observable flow and a particularization of the dimensional analysis is
required.

These two examples do not appear to have any similarities. Nevertheless, after a
deep analysis, we can conclude that both cases consist of a natural convection pro-
cess produced by a concentration gradient.

This is presented schematically in Fig. 6.3, which also shows that the kinetics of
these processes is described by the transport rate of A from the wall to the adja-
cent media. Using Fig. 6.3, we can establish that two elementary processes are
presented in this system. The first is the flow induced by the concentration gradi-
ent and the second is the mass transfer sustained by the processes on the surface
(a chemical reaction in the case of the metal placket immersed in a specifically
formulated liquid and the transport through the porosity in the case of the drying
wall). The case presented here corresponds to the situation when, in respect of the
bulk density, the fluid density begins to decrease near the wall. This generates the
displacement of the media and the specific ascension force, which is equivalent to
the density difference. This phenomenon depends on the concentration difference
in fluid A DcA=(cAp – cA¥). From Fig. 6.3 we can write a list of process variables:
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k ¼ f ðH; r;g;DA; gbdDcAÞ (6.40)

where g represents the gravitational acceleration, bd is the density coefficient of
the density–concentration dependence and DcA is the gradient for the natural con-
vection. It is then easy to observe that the product bd DcA is dimensionless.

cAp

cA?

1

3

2

4

NA=kc(cAp-cA?)

H

5

6

Figure 6.3 Mass transfer mechanism of natural convection between a placket
and an adjacent medium. 1: placket or drying wall, 2: limit of adjacent medium,
3: concentration of A, 4: fluid velocity, 5 and 6: fluid global displacement. System
properties: Geometric properties: H: height of placket. Fluid properties:
CA: concentration of A, density (q), viscosity (g), diffusion coefficient of A (DA).
Displacement properties: specific ascension force (gbcDcA). Interaction properties:
mass transfer coefficient (kc).

We can now complete the first step of the dimensional analysis. The dimen-
sions of the variables, using the MLT system for basic dimensions, are:

k½ � ¼ LT�1

H½ � ¼ L

r½ � ¼ ML�3

g½ � ¼ ML�1T�1

DA½ � ¼ L2T�1

gbcDcA½ � ¼ LT�2
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6.3 Chemical Engineering Problems Particularized by Dimensional Analysis

We can observe that all the basic dimensions (also specific to moment and mass
transfer) are required to define the six variables, taking into consideration that,
according to the Buckingham pi theorem, three pi terms will be needed (six vari-
ables minus three basic dimensions, m – n= 6 – 3).

The next step is the selection of three repeating variables such as H, q, and g to
form the incomplete group of repeating variables. A quick inspection of these
reveals that they are dimensionally independent, since each of them contains a
basic dimension not included in the others. Starting with the dependent variable
kc, the first pi term can be formed combining kc with the repeating variables so
that:

P1 ¼ kcHarbgc (6.41)

in terms of dimensions we have:

P1½ � ¼ kcHarbgc½ � (6.42)

M0L0T0 ¼ LT�1ðLÞaðML�3ÞbðML�1T�1Þc (6.43)

or

M0L0T0 ¼ MðbþcÞLð1þa�3b�cÞTð�1�cÞ (6.44)

the dimensionless condition of P1 implies:

bþ c ¼ 0

1þ a� 3b� c ¼ 0

� 1� c ¼ 0

8><
>: (6.45)

and, therefore a = 1, b = 1 and c = –1, the pi term then becomes:

P1 ¼
kcHr

g
(6.46)

The procedure is then repeated with the second non-repeating variable, DA:

P2 ¼ DAHarbgc (6.47)

It follows that

P2½ � ¼ DAHarbgc½ � (6.48)

M0L0T0 ¼ L2T�1ðLÞaðML�3ÞbðML�1T�1Þc (6.49)

M0L0T0 ¼ MðbþcÞLð2þa�3b�cÞTð�1�cÞ (6.50)
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and

bþ c ¼ 0

2þ a� 3b� c ¼ 0

� 1� c ¼ 0

8><
>: (6.51)

The solution of this system is: a = 0, b = 1 and c = –1, and therefore:

P2 ¼ Sc ¼ DAr
g

(6.52)

where symbol Sc introduces the Schmidt criterion which is frequently used in
mass transfer problems. In the theory of boundary layers, the Schmidt criterion
gives the relationship between the diffusion and hydrodynamic boundary layers.
Figure 6.3 can be completed considering the additional thickness of the boundary
layers formed at the placket wall and adjacent medium. The remaining non-
repeating variable is gbcDcA, where the third pi term is:

P3 ¼ gbcDcAHarbgc (6.53)

and

P3½ � ¼ gbcDcAHarbgc½ � (6.54)

M0L0T0 ¼ LT�2ðLÞaðML�3ÞbðML�1T�1Þc (6.55)

M0L0T0 ¼ MðbþcÞLð1þa�3b�cÞTð�2�cÞ (6.56)

and, therefore,

bþ c ¼ 0

1þ a� 3b� c ¼ 0

� 2� c ¼ 0

8><
>: (6.57)

Solving this system, we obtain a= 3, b = 2 and c = –2 and we can write:

P3 ¼ Grd ¼
gbcDcAH2r2

g2
(6.58)

Here Grd is the diffusion Grassoff number. It represents the natural convection
displacement based on the concentration difference.

We have obtained the three required pi terms, which have to be checked in
order to make sure that they are dimensionless. To do so, we use F, L and T, which
will also verify the correctness of the original dimensions used for the variables.
As explained earlier, we first have to replace M by F in the dimensional variable
formula. Then the result is:
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k½ � ¼ LT�1, H½ � ¼ L, r½ � ¼ FL�4T2, g½ � ¼ FL�2T, DA½ � ¼ L2T�1, gbcDcA½ � ¼ LT�2

The dimensionless verification gives:

P1½ � ¼
kcHr

g

� �
¼ ðLT�1ÞðLÞðFL�4T2Þ

FL�2T
¼ F0L0T0

P2½ � ¼
DAr

g

� �
¼ ðL

2T�1ÞðFL�4T2Þ
FL�2T

¼ F0L0T0

P3½ � ¼
gbcDcAH3r2

g2

� �
¼ ðLT�2ÞðLÞ3ðFL�4T2Þ2

ðFL�2TÞ2
¼ F0L0T0

If this analysis results in a bad agreement with the dimensionless condition, we
have to go back to the original list of variables and check the dimensional formula
of each variable as well as the algebra used to obtain the exponents a, b and c.

Before finishing the application, we show that each pi group obtained can be
replaced by a combination between this pi number and others. So, if we divide P1

by P3, we obtain:

P4 ¼ Sh ¼ P1

P2
¼ kcHr

g

g

DAr
¼ kcH

DA
(6.59)

where Sh represents the Sherwood number which encrypts the mass transfer
kinetics of the investigated process. Finally, we can represent the results of the
dimensional analysis particularization in the form of:

Sh ¼ f ðGrd;ScÞ (6.60)

However, at this stage of the analysis, the form and nature of the function f are
unknown. To continue, we will have to perform a set of experiments or we can
use one theoretical method able to show this function.

6.3.2
Dimensional Analysis Applied to Mixing Liquids

Mixing various components in a liquid medium is a chemical engineering opera-
tion with large industrial applications. Some examples of these applications are:
paint production, resin and pigment mixing, gas–liquid transfer or reaction by
bubbling in liquid, solid dissolution and solid crystallization in mixed liquid me-
dia, homogenous and heterogeneous chemical reactions involving liquid agitated
media, aerobic and anaerobic biochemical reactions with molecular transforma-
tions in the liquid phase. These examples show the importance of the optimiza-
tion of mixing liquids for the chemical industry.
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6 Similitude, Dimensional Analysis and Modelling

An important number of factors having a key influence on this unit operation
[6.19, 6.20], together with the examples described above, show how difficult it is to
formulate a complete and unitary mixing theory responding to the various techni-
cal questions such as mixing time, distribution of the residence time, power con-
sumption, heat and mass transfer kinetics in mixed media, scaling-up of a labora-
tory mixing plant etc.

In order to simplify the problem, we will apply dimensional analysis to liquid
mixing in a particular case. The studied example will take into account the interac-
tions showing:
. dependence of the power consumption with respect to process

factors,
. dependence of the mixing time with respect to process factors,
. dependence of the mass transfer kinetics with respect to process

factors in the case of dissolving suspended solids,
. dependence of the heat transfer kinetics with respect to process

factors in the case of a wall heated by an agitated liquid.

The first necessary condition [6.21] to be taken into account in all particularization
cases is the use of general mixing parameters (factors related to the geometry of
agitation, the properties of liquid media, the type of agitators and rotation speed)
as well as the use of the specific factors of the studied application. For example, in
the case of suspended solid dissolution, we can consider the mass transfer coeffi-
cient for dissolving suspended solids, the mean dimension of the suspended solid
particles, and the diffusion coefficient of the dissolved species in the liquid.

In this chapter, we present two particularizations: the first concerns the depen-
dence of the power consumption on the considered influencing factors; the sec-
ond shows the relationship between the mixing time and its affecting factors.

In order to establish the list of variables, we use the explicative Fig. 6.4 in both
cases. It especially shows the geometry of agitation, allowing the introduction of
geometric, material and dynamic factors.

In the first example, we considered that the power consumed by an agitator N,
depends on the agitator diameter d, on the geometric position of the agitator in
the liquid tank – expressed by the coordinates H, D, h, as well as on the rotation
speed of the agitator n, and on the liquid physical properties (density q, viscosity
g, and superficial tension r). The interest here consists in formulating a relation-
ship between the power consumption and the different affecting factors.

Considering Fig. 6.4, we can write (step 1 of the application procedure of the
dimensional analysis) the following list of variables:

N ¼ f ðd;D;H;h; b;n; r;g;rÞ (6.61)

Now we can write (step 2) all variables in terms of basic dimensions. Using M, L
and T it follows that:

N½ � ¼ ML2T�3, d½ � ¼ L, D½ � ¼ L, H½ � ¼ L, h½ � ¼ L, b½ � ¼ L, n½ � ¼ T�1, r½ � ¼ ML�3,
g½ � ¼ ML�1T�1, r½ � ¼ MT�2
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d

b

h

H

1

2

3

4

n
N   
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Figure 6.4 Schematic representation of mixing in liquid media.
1: Axis of paddle agitator, 2: tank of mixing system, 3: paddle of mixing system,
4: mixed liquid medium. System properties: geometric: agitator diameter (d) tank
diameter (D), liquid height (H), paddle width (b), bottom paddle position (h);
fluid: density (q), viscosity (g), superficial tension (r); displacement: rotation
speed (n); interaction: power consumption (N).

By applying the pi theorem (step 3), we obtain that the number of pi groups
required is 7 because m = 10 (process variables) and n = 3 (basic dimensions). The
repeating variables of the incomplete group have been selected according to d, q

and n and to the considerations of step 4. We can now form all the pi groups one
at a time. Typically, we begin with the coupling of the dependent variable (power
consumption, N) with the incomplete group. The formulation of the first pi term
is:

P1 ¼ Ndarbnc (6.62)

By applying the dimensional formulation to this relationship we have:

M0L0T0 ¼ ML2T�3ðLÞaðML�3ÞbðT�1Þc (6.63)

and

M0L0T0 ¼ Mð1þbÞLð2þa�3bÞTð�3�cÞ (6.64)

and, consequently, the system of equations obtained with the exponents is:
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1þ b ¼ 0

2þ a� 3b ¼ 0

� 3� c ¼ 0

8><
>: (6.65)

The solution of this system gives the desired values for a, b and c. It follows that
a = –5, b = –1 and c = –3 and therefore:

P1 ¼ KN ¼
N

d5n3r
(6.66)

By repeating this calculation for the first independent variable, which has not
been used as repeating variables in the incomplete group (the diameter of the ves-
sel D), we have:

P2 ¼ Ddarbnc (6.67)

M0L0T0 ¼ LðLÞaðML�3ÞbðT�1Þc (6.68)

M0L0T0 ¼ M0Lð1þa�3bÞTð�cÞ (6.69)

b ¼ 0

1þ a� 3b ¼ 0

c ¼ 0

8><
>: (6.70)

With these values for a, b and c (a = –1, b = 0 and c = 0) the second pi group is:

P2 ¼
D
d

(6.71)

For the other geometric factors, we obtain the next dimensionless relationships:

P3 ¼
H
d

, P4 ¼
h
d

, P5 ¼
b
d

The remaining two pi groups are now identified. For the non-repeating variable g,
the dimensional analysis calculation shows that:

P6 ¼ gdarbnc (6.72)

M0L0T0 ¼ ML�1T�1ðLÞaðML�3ÞbðT�1Þc (6.73)

M0L0T0 ¼ Mð1þbÞLð�1þa�3bÞTð�1�cÞ (6.74)

1þ b ¼ 0

� 1þ a� 3b ¼ 0

� 1� c ¼ 0

8><
>: (6.75)
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The solution to this system is a = –2, b = –1 and c = –1 and the sixth pi group can
be written as:

P6 ¼ Re ¼ nd2r
g

(6.76)

This criterion is recognized as the Reynolds number for mixing in a fluid.
The last non-repeating independent variable included in the list of variables

gives the next formulation for the seventh pi group and generates all the calcula-
tion procedures for the identification of a, b and c:

P7 ¼ rdarbnc (6.77)

M0L0T0 ¼ MT�2ðLÞaðML�3ÞbðT�1Þc (6.78)

M0L0T0 ¼ Mð1þbÞLða�3bÞTð�2�cÞ (6.79)

1þ b ¼ 0

a� 3b ¼ 0

� 2� c ¼ 0

8><
>: (6.80)

The group identified by the introduction of a, b and c values (a = 3, b = –1 and
c = –2) into Eq. (6.77) is called the Weber number for mixing in a fluid. We can
observe that, in this case, as in the previous one for the Re number, the original pi
groups are transformed by the inversion of the terms of their algebraic fraction:

P7 ¼We ¼ n2rd3

r
(6.81)

As in the previous examples, the next step (step 7) of the dimensional analysis
procedure (which is not presented here) allows one to confirm that the obtained
criteria are dimensionless. Now, finally, we can state the result of the dimensional
analysis as:

KN ¼ f
D
d
;
H
d
;
h
d
;
b
d
; Re;We

� �
(6.82)

The transformation of this relationship into the frequently used relationship for
the theoretical power consumption for mixing in a fluid (Eq. (6.83)) is easily
obtained. The We group relationship with KN and the geometry dependence of
the mixing constants a and b are needed for this transformation:

N ¼ ad5�bn3�br1�bgb (6.83)

When the mixing time sM represents the dependent variable of the mixing in the
fluid, all the independent variables used for the power consumption remain as
variables affecting the mixing time. We also have to introduce a specific indepen-
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dent variable which is the A diffusion coefficient (DA). The totality of the variables
for this case will be:

sM ¼ f ðd;D;H;h; b;n; r;g;r;DAÞ (6.84)

Because the dimensional formula of DA does not introduce a new basic dimen-
sion, we can establish that, in this case, the number of pi groups is 8 (eleven phys-
ical variables and three basic dimensions). If we use the incomplete group of the
repeating variables, as in the case of the dependence of the power consumption
factors, then we have to replace the KN group by a group introduced by the new
dependent variable (sM) and complete the established seven with a new group
which includes the DA factor. In this case, the formulation of the first pi group is
given by Eq. (6.85):

P1 ¼ sMdarbnc (6.85)

Applying the dimensional analysis procedure, we identify a = 0, b = 0 and c = –1
thus:

P1 ¼ sMn (6.86)

As far as the P2–P7 groups are the same as those identified in the case of the
power-factor dependence, we can identify the eighth pi group:

P8 ¼ DAdarbnc (6.87)

Exponents a, b and c have been identified by the following relationships:

M0L0T0 ¼ L2T�1ðLÞaðML�3ÞbðT�1Þc (6.88)

M0L0T0 ¼ MbLð2þa�3bÞTð�1�cÞ (6.89)

b ¼ 0

2þ a� 3b ¼ 0

� 1� c ¼ 0

8><
>: (6.90)

from Eq. (6.90) we get that a = –2, b = 0 and c = –1 and that the P8 expression
could be written as:

P8 ¼
DA

nd2
(6.91)

This criterion is recognized as the Fourier number for mixing time in liquid me-
dia. Finally, for this case, we can express the result of dimensional analysis as:

sMn ¼ f
D
d
;
H
d
;
h
d
;
b
d
;
nd2r

g
;
n2rd3

r
;

DA

nd2

� �
(6.92)
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This result indicates that this problem can generally be studied in terms of eight
pi terms, or – for a fixed geometry – in terms of four pi terms, instead of the orig-
inal eleven variables we started with. It also shows the complexity of this currently
used chemical engineering operation.

6.4
Supplementary Comments about Dimensional Analysis

Despite the fact that other methods can be used to identify pi groups [6.22], we
think that the method of the incomplete group of repeating variables explained in
the preceding section, provides a systematic procedure for performing a dimen-
sional analysis that can be easy enough for beginners. Pi terms can also be formed
by inspection, as will be briefly discussed in the next sections. Regardless of the
basis of dimensional analysis application for a concrete case, certain aspects of
this important tool must seem a little baffling and mysterious to beginners and
sometimes to experienced researchers as well.

In this section, we will show some of the guidelines required for a logical good
start in a particular dimensional analysis. First, we need to have a good knowledge
of the case being studied; this condition is one of the most important for success-
ful application of this method. Some methodology guidelines will also be pre-
sented to establish a mathematical model (see, for example, the case of the condi-
tions of univocity for the mathematical model of a particular process.)

6.4.1
Selection of Variables

One of the most important and difficult steps when applying dimensional analy-
sis to any given problem, is the selection of the variables that are involved (see for
example the introduction in the natural convection application presented in the
preceding section). No simple procedure allows the variables to be easily identi-
fied. Generally, one must rely on a good understanding of the phenomena
involved and of their governing physical laws. If extraneous variables are included,
too many pi terms appear in the final solution, and it may then be difficult, and
time and money consuming, to eliminate them experimentally. However, when
important variables are omitted, an incorrect result will be produced.

These two aspects (introduction of extraneous variables and omission of impor-
tant variables) show that enough time and attention has to be given when the vari-
ables are determined. Most chemical engineering problems involve certain simpli-
fying assumptions that have an influence on the variables to be considered.
Usually, a suitable balance between simplicity and accuracy is a required goal. The
accuracy of the solution to be chosen depends on the objective of the study. For
example, if we are only concerned with the general trends of the process, some
variables that are thought to have a minor influence could be neglected for sim-
plicity.
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For all the engineering branches that use dimensional analysis as a methodolo-
gy, the pertinent variables of one process can be classified into four groups:
. the variables describing the geometry of the system when the

process occurs,
. the variables showing the properties of the materials involved in

the evolution of the process being analyzed,
. the variables showing the internal dynamics of the process,
. the variables imposed by the external effects and having an

important influence on the process dynamics.

6.4.1.1 Variables Imposed by the Geometry of the System
The geometric characteristics can usually be described by a series of lengths and
angles. The application related to the mixing in a liquid medium (described
above) shows the importance of geometry variables in a dimensional analysis
problem. As in the above-mentioned case, the geometry of the system plays an
important role in the majority of chemical engineering problems. Thus, a suffi-
cient number of geometric variables must be included to describe the system.
These variables can usually be identified quickly.

6.4.1.2 Variables Imposed by the Properties of the Materials
Fluid flow, heating and composition, which change by reaction or by transfer at
one interface, represent the specificity of the chemical engineering processes. The
response of a system to the applied effects that generate the mentioned cases
depends on the nature of the materials involved in the process. All the properties
of the materials such as density, viscosity, thermal capacity, conductivity, species
diffusivity or others relating the external effects to the process response must be
included as variables. The identification of these variables is not always an easy
task. A typical case concerns the variation of the properties of the materials, in a
nonlinear dependence with the operation variables. For example, when studying
the flow of complex non-Newtonian fluids such as melted polymers in an exter-
nally heated conduct, their non-classical properties and their state regarding the
effect of temperature make it difficult to select the properties of the materials.

6.4.1.3 Dynamic Internal Effects
Variables, such as the heat or mass transfer coefficients from or to the interface or
the flow friction coefficient for a given geometry, represent variables that can be
included in this group. They have a dynamic effect on the process state and gener-
ally represent the dependent variables of the process.
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6.4.1.4 Dynamic External Effects
This definition is used to identify any visible variables that produce or tend to pro-
duce a change in the process. Pressure, velocity, gravity and external heating are
some of the most frequently used variables from this group.

Since we wish to keep the number of variables to a minimum, it is important to
have a selected list which contains only independent variables. For example, in
the case of a flow problem, if we introduce the equivalent flow diameter (de), we
do not have to introduce the flow area (A) nor the wetted perimeter (P) into the
list of variables, because both variables have already been taken into consideration
by the equivalent flow diameter (de = 4A/P). Generally, if we have a problem in
which the variables are:

f(y, x1, x2, x3, x4, ......xn) (6.93)

and it is known that an additional relationship exists among some of the variables,
for example:

x3 = f(x4, ......xn) (6.94)

then x3 is not required and can be omitted. Conversely, if it is known that the vari-
ables x4,x5,...xn can only be taken into account through the relationship expressed
by the functional dependence (6.94), then the variables x4,x5,...xn can be replaced
by the single variable x3, thus reducing the number of variables.

In addition to these supplementary comments about dimensional analysis, we
can also discuss the following points, which are necessary to establish the list of
variables. To do so, indeed, we have to:

1. Define the problem clearly using a descriptive model and
auxiliary graphic presentation. Establish the main variable of
interest (which is the dependent variable of the process).

2. Consider the basic laws that govern the phenomenon or
accept an empirical theory describing the essential aspects of
the investigated process as an open procedure for identifying
independent variables.

3. Start the identification of the variables process by grouping
them into the four groups of variables presented above
(geometry, material properties, internal dynamic effects and
external dynamic effects).

4. Verify whether other variables not included in the four
groups of variables are important and must be considered
and ensure that the dimensional constant, which can be
introduced in the list of variables, has been accepted.

5. Make sure that all variables are independent and, to this end,
the relationships among the subsets of the variables must be
carefully observed.
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6 Similitude, Dimensional Analysis and Modelling

6.5
Uniqueness of Pi Terms

A review of the method of an incomplete group of repeating variables used for
identifying pi terms reveals that the specific pi terms obtained depend on the
somewhat arbitrary selection of this incomplete group. For example, in the prob-
lem of studying the heat transfer from a wall to a fluid flowing in the pipe, we
have selected d, q, g, and k as repeating variables. This has led to the formulation
of the problem in terms of pi terms:

ad
k
¼ F

wdr
g

;
cpg

k

� �
(6.95)

What will the result be if we select d, q, g, and cp as repeating variables? A quick
check will reveal that the pi term involving the heat transfer coefficient (a)
becomes:

P1 ¼
ad
gcp

and the next pi terms remain the same. Thus, we can express the second result
as:

ad
gcp
¼ F1

wdr
g

;
cpg

k

� �
(6.96)

Both results are correct, and will lead to the same final equation for a. Note, how-
ever, that the functions F and F1 in Eqs. (6.95) and (6.96) will be different because
the dependent pi terms are different for both relationships. From this example,
we can conclude that there is no unique set of pi terms arising from a dimen-
sional analysis. Nevertheless, the required number of pi terms has been fixed, and
once a correct set has been determined, other possible sets can be developed by a
combination of the products of the powers of the original set. This is a classical
algebra problem, which shows that, if we have n independent variables (the pi
terms obtained by the incomplete group method are independent variables), then
each of these can be modified by a combination of the others and the resulting
new set has n independent variables. For example, if we have a problem involving
three pi terms:P1 ¼ FðP2;P3Þ, we could form a new set from this initial one by
combining the pi terms in order to form the new pi term P2 ¢, and to give
P2 ¢ ¼ Pa

2P
b
3 , where a and b are arbitrary exponents. For a = –1 and b = 0 we

obtain the inversion of the P2 expression group. Then the relationship between
the dimensionless groups could be expressed as:

P1 ¼ F1ðP2 ¢;P3Þ or P1 ¼ F2ðP2;P2 ¢Þ

It must be emphasized, however, that the required number of pi terms cannot be
reduced by this manipulation; only their form is altered. Thanks to this technique,
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we can see that the pi terms in Eq. (6.96) can be obtained from those presented in
Eq. (6.95); then, if we multiply P1 from Eq. (6.95) by P3

–1 we have:

ad
k

� �
cpg

k

� ��1
¼ ad

gcp

which is the P1 of Eq. (6.96).
One may ask: which form is the best for the pi groups? Usually, we recommend

keeping pi terms as simple as possible. In addition, it is easier to use the pi terms
that could be improved by the experimental methodology used. The final choice
remains arbitrary and generally depends on the researcher’s background and
experience.

6.6
Identification of Pi Groups Using the Inspection Method

The previously presented method of the incomplete group of repeating variables,
provides a systematic procedure which, when properly executed, provides a cor-
rect, complete and unique set of pi terms. In other words, this method offers an
excellent algorithm for the calculus. In this case, only the list of variables has to be
determined by the researcher. Since the only restrictions for the pi terms are to be
(a) correct in number, (b) dimensionless, and (c) independent, it is possible to pro-
duce other identifying procedures. One of them is the production of pi terms by
inspection, without resorting to a more formal methodology.

To illustrate this approach, we will consider a new example: the case of a simple
tubular membrane reactor for which we wish to show the dependence between
the conversion (gr) of the main reactant and other variables which influence the
process.

The membrane reactor shown in Fig. 6.5 consists of a tubular shell containing a
tubular porous membrane. It defines two compartments, the inner and the outer
(shell) compartments. The reactants are fed into the inner compartment where
the reaction takes place. We can observe that when the reactants flow along the
reactor, one or more of the reaction participants can diffuse through the porous
membrane to the outer side. In this case, we assume that only one participant pre-
sents a radial diffusion. This process affects the local concentration state and the
reaction rate that determine the state of the main reactant conversion. The rate of
reaction of the wall diffusing species is influenced by the transfer resistance of the
boundary layer (1/kc) and by the wall thickness resistance (d/Dp).

As geometric variables, we can consider the diameter (d) and the length of the
tubular reactor (l). The apparent constant rate of the chemical reaction (kr) and
the diffusion coefficient (Dm) of the species diffusing through the wall could be
chosen as the internal dynamic variables of the process. The variables showing
the properties of the materials (density and viscosity) as well as the variables char-
acterizing the flow and the velocity (w) for example, can be considered, but these
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are already introduced by the mass transfer coefficient (kc). With this descriptive
introduction, we can appreciate that, in this case, the variables are:

gr ¼ f ðd; l; kr; kc;Dm;Dp=dÞ (6.97)

Using M, L and T as basic dimensions, the following dimensional formulae of the
variables are obtained:

gr½ � ¼ M0L0T0

d½ � ¼ L

l½ � ¼ L

kr½ � ¼ T�1

kc½ � ¼ LT�1

Dm½ � ¼ L2T�1

Dp=d
h i

¼ LT�1

In this dimensional analysis problem, five pi terms are needed because we have
seven variables and two reference dimensions. The first pi term is represented by
the conversion of the main reactant because this variable is dimensionless. The
construction of the second pi group begins with variable d. This has a length
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6.7 Common Dimensionless Groups and Their Relationships

dimension (L) and to form a dimensionless group, it must be multiplied by a vari-
able the dimension of which is L–1:

P2 ¼
d
l

Inspecting the remaining variable, we observe that [krd2] = L2T�1. Then, by multi-
plying krd2 by 1/Dm, we obtain the third pi group:

P3 ¼
Dm

krd2

The formulation of the fourth pi group (P4) takes into account the observation
that kc and Dp/d present the same dimensional formula and that their ratio is
therefore dimensionless:

P4 ¼
kcd

Dm

The last pi group (P5) can be obtained by multiplying kcd (which has L2T–1 dimen-
sion) by 1/Dm, which also results in a dimensionless formula:

P5 ¼
kcd
Dm

The last three pi groups are well known in chemical engineering (P3 is recognized
as the Fourier reaction number (For), P4 is the famous Biot diffusion number
(Bid) and P5 is the Sherwood number (Sh)).

Relationship (6.98) shows the last result of this particularized case of dimen-
sional analysis.

gr ¼ f ðd=l;For;Bid;ShÞ (6.98)

It is important to note that when pi terms are formulated by inspection, we have
to be certain that they are all independent. In this case or in any other general
case, no pi group could result from the combination of two or more formulated pi
groups. The inspection procedure of forming pi groups is essentially equivalent to
the incomplete group method but it is less structured.

6.7
Common Dimensionless Groups and Their Relationships

Approximately three hundred dimensionless groups [6.23] are used to describe
the most important problems that characterize chemical engineering processes.
Out of these, only a limited number is frequently used and can be classified
according to the flow involved in the investigated process, the transport and inter-
face transfer of one property (species, enthalpy, pressure) and the interactions of
the transport mechanisms of the properties. In order to be considered in this anal-
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6 Similitude, Dimensional Analysis and Modelling

ysis, the dimensionless groups have to present the following general characteris-
tics:
. Each dimensionless group provides a physical interpretation,

which can be helpful in assessing its influence in a particular
application.

. The dimensionless groups that characterize a particular applica-
tion are correlated with others by the dimensional analysis rela-
tionship.

. When the process involves a transfer through an interface, some
of the relationships between the dimensionless groups can be
considered as relationships between the kinetic transfer and the
interface properties.

6.7.1
Physical Significance of Dimensionless Groups

The physical interpretation of each dimensionless group is not an easy task.
Because each dimensionless group can present various physical interpretations,
the study of each particular dimensionless pi term has to be carefully carried out.

To illustrate this, we will discuss the example shown in Fig. 6.6, which presents
one deformable fluid particle moving along a streamline. We can describe this sys-
tem taking into account inertia, resistive (viscous) force and weight force. The
magnitude of the inertia force along the streamline can be written as:

Fi ¼ mas ¼ m
dws

ds
¼ m

dws

ds
ds
ds
¼ mws

dws

ds
(6.99)

where ds is measured along the streamline and m is the particle mass. Based on
the fact that a streamline is representative of a flow geometry when a mean flow
rate, w, and a characteristic length are known, we can produce the dimensionless
transformation for ws and dws/ds. The dimensionless velocity and streamline
position are respectively was = ws/w and sa = s/l. Then Eq. (6.99) becomes:

Fi ¼ m
w2

l
was

dwas

dsa
(6.100)

The weight force is described by Fg = mg, then the ratio between the inertia and
the gravitational force is:

Fi

Fg
¼ w2

gl
was

dwas

dsa
(6.101)

The ratio between forces Fi/Fg is proportional to w2/gl and its square root (w=
ffiffiffiffi
gl

p
)

is recognized as the Froude number. Its physical interpretation is the index of the
relative importance of the inertial forces acting on the fluid particles with respect
to the weight of these particles.
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Now we consider the resistive force characterizing the movement of the particle
along the streamline expressed as the product between tensor sss and its normal
surface A (A = m/q.sd, where sd is the apparent height of the deformed particle)

Frs ¼ sssA ¼ g
dws

ds
m
rsd

(6.102)

Using the dimensionless velocity and streamline position, and completing these
values with the dimensionless height of the deformable particle sda = sd/l, Eq.
(6.102) can be written as:

Frs ¼
g

rl2
m
sda

dwas

dsa
(6.103)

Then, the ratio between the inertia and the resistive forces is:

Fi

Frs
¼ wlr

g

was

sda

dwas

dsa
¼ Re

was

sda

dwas

dsa
(6.104)

Here we can identify the Reynolds number (Re), which is a measure or an index
of the relative importance of the inertial and resistive (viscous) forces acting on
the fluid. If we write the general expression for the s direction rate of one property
when the transport is molecular and convective, we have:

~JJtAs ¼ �DCA
d~CCA

ds
þ ~wwSCA

we can obtain another physical interpretation for the Reynolds number, after par-
ticularizing the momentum transfer and replacing the corresponding terms
(DCA ¼ m ¼ g=r ; CA ¼ rws ,~JJtAs ¼~sstsy). This particularization gives:

~sstsy ¼ �g
d~wws

dy
þ ~wwsðrwsÞ (6.105)

Using the dimensionless velocity, we can write Eq. (6.106), which presents the
ratio between the right-hand side terms of Eq. (6.105).

wsðrwsÞ

g
dws

dy

¼ cwas
rwl
g
¼ cwas Re (6.106)

Equation (6.106) shows that the Reynolds number expresses the relationship be-
tween the momentum quantity supplied by the convection and the momentum
quantity supplied by the molecular movement. At the same time, because the con-
vective mechanism can be associated with the presence of the turbulence, we can
consider the following ratio:

Re ¼ Momentum quantity transferred by turbulent mechanism
Momentum quantity transferred by molecular mechanism
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Figure 6.6 Particle moving along a streamline.

The case of the Reynolds number discussed above shows that the physical inter-
pretation of one dimensionless group is not unique. Generally, the interpretation
of dimensionless groups used in the flow area in terms of different energies
involved in the process, can be obtained starting with the Bernoulli flow equation.
The relationship existing between the terms of this equation introduces one
dimensionless group.

6.6.2
The Dimensionless Relationship as Kinetic Interface Property Transfer Relationship

We begin this section by analyzing the case of free convection in an infinite medi-
um. The example chosen is shown in Fig. 6.7. A two-dimensional surface with
constant temperature tp transfers heat to the adjacent infinite media. As a result of the
temperature difference between the surface and the media, a natural convection flow
is induced. A dimensional analysis applied to this problem shows that:

Nu ¼ f ðGrtÞ

where the Nusselt number (Nu) and the Grashof number for thermal convection
(Grt) are given by:

Nu ¼ ad
k

; Grt ¼
gbtDtH3r2

g2
(6.107)

The goal of this analysis is to obtain a relationship describing the kinetics of the
heat transfer from the heated two-dimensional plate to the adjacent medium. This
relationship is one dimensionless pi group. Moreover, we can use this example as
a guide for the introduction of the relationships existing between dimensionless
groups such as the relationships for the property transfer kinetics. To write the
mathematical model for the problem of infinite medium natural heat convection,
we use the particularization of the property transport equations. The correspond-
ing equations were previously established in Chapter 3.
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-Internal dynamics : 
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Figure 6.7 Heat transfer by natural convection from a plate to an infinite medium.

The momentum and energy transfer equation for the presented case may be
written as:

wx
¶wx

¶x
þ wy

¶wx

¶y
¼ t

¶2wx

¶y2
þ btgðt� t¥Þ (6.108)

wx
¶t
¶x
þ wy

¶t
¶y
¼ a

¶2t
¶y2

(6.109)

¶wx

¶x
þ
¶wy

¶y
¼ 0 (6.110)

where m = g/q is the kinematic viscosity and a = k/q cp is the thermal diffusivity of
the medium.

The boundary conditions attached to the problem are:

y = 0, 0 < x < H, wx = 0, wy = 0, t = tp (6.111)

y = ¥, 0 < x < H, wx = 0, t = t¥ (6.112)

x = 0, y = 0, wx = wy = 0, t = tp (6.113)

We can now introduce the following dimensionless notation:

Grx ¼
gbtðtp � t¥Þx3

t2
; n ¼ y

x
Grx

4

� �1=4

(6.114)
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where Grx is the local Grashof number and n is a combination of the cartesian
coordinate. Therefore, if we use the method of the stream function w for the trans-
formation of the original model, we can write:

w ¼ 4m
Grx

4

� �1=4

uðnÞ (6.115)

and then:

wx ¼
dw

dn

dn

dy
¼

gbtðtp � t¥Þ
4t2

� �
4tx1=2u¢ðnÞ (6.116)

wy ¼ �
dw

dn

dn

dx
¼ tx�1=4 gbtðtp � t¥Þ

4t2

� �1=4

½nu¢ðnÞ � 3uðnÞ� (6.117)

With these conditions, the equations of the original model can be written as:

u†ðnÞ þ 3uðnÞu¢ðnÞ � 2½u¢ðnÞ�2 þ hðnÞ ¼ 0 (6.118)

h†ðnÞ þ Pr uðnÞh¢ðnÞ ¼ 0 (6.119)

where hðnÞ ¼ tðnÞ � t¥
tp � t¥

is the dimensionless temperature and Pr represents the

Prandtl number.

The boundary conditions are now the following:

n ¼ 0 u ¼ u¢ ¼ 0 ; h ¼ 1 (6.120)

n ¼ ¥ u¢ ¼ 0 ; h ¼ 0 (6.121)

With the approximation of u†ð0Þ and h¢ð0Þ, the model represented by assembling
Eqs. (6.118)–(6.121) can be readily solved by an adequate numeric method. The
Prandtl number is, in this case, a parameter of numerical integration.

The heat transfer kinetics is represented by the heat flux produced and trans-
ferred by the plate.

q ¼ k
dt
dy

� �
y¼0

¼ axðtp � t¥Þ (6.122)

The preceding expression can also be written as:

Nux ¼
axx
k
¼

k
dt
dy

� �
y¼0

x

kðtp � t¥Þ
¼

x
dt
dy

� �
y¼0

ðtp � t¥Þ
(6.123)

When we introduce the combined variable n and the dimensionless temperature
h(n) into Eq. (6.123) we have:
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Nux ¼
x

dhðnÞ
dn

dn

dy
dt
dh

� �
n¼0

ðtp � t¥Þ
¼ �h¢ð0Þ Grx

4

� �1=4

(6.124)

and

Nu ¼ 1
H

RH
0

Nuxdx ¼ �0:404hð0ÞGr1=4 (6.125)

The values used to calculate the temperature gradient and the velocity gradient
near the heated vertical plate are given in Table 6.1.

Table 6.1 Some values of the temperature and velocity gradients
at the surface in the case of natural convection heat transfer.

Pr = cpg/k 0.01 0.793 1 2 10 100 1000

–h¢(0) 0.0812 0.5080 0.5671 0.7165 1.1694 2.191 3.966

u†(0) 0.9862 0.6741 0.6421 0.5713 0.4192 0.2517 0.1450

When the heated medium is air (Pr » 0.793) Eq. (6.125) takes the value of 0.508
for –h¢(0), then we have:

Nu ¼ 0:205Gr1=4
t (6.126)

In the Nusselt and Grashof numbers, the height of the heated plate is the charac-
teristic length.

The example presented here allows these important conclusions:
. when we solve the transport property equation, we obtain a

dimensionless relationship which characterizes the kinetics of
the transfer for the property near the interface,

. the form of the obtained relationship can be simplified to a power
type dependence.

Now we will consider the case of a transferable property for the contact between
two phases. The transfer kinetics is characterized by the two transfer coefficients
of the property given by Eq. (3.15). If we analyze the transport process with refer-
ence only to one phase, then we can write:

kC ¼
�DC

dC

dx

� �
x¼xi

ðC¥ � Cii
Þ (6.127)

where the index of the phase definition has been omitted and index i indicates the
interface position. If the preceding relationship is multiplied by the ratio between
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the characteristic length and the diffusion coefficient of the property (l/Dc), the
relationship becomes:

kCl
DC

¼

dC

dðx=lÞ

� �
x¼xi

ðCi � C¥i
Þ (6.128)

This equation can also be written as:

NuC ¼
dCa

dxa

� �
xa¼xai

(6.129)

where Ca is the concentration of the dimensionless property and xa represents the
dimensionless transport coordinate. NuC is used here as a generalized Nusselt
number and gives the transport kinetics for any kind of property (heat, species,
etc.). The dimensionless groups’ relationship that is able to explain the property
gradient near the interface, in terms of other dimensionless groups characterizing
the process, can be obtained from Eq. (6.129) if we consider that the interface is a
plane given by the equation x = xi. For this separated phase (for example, the left
side of the interface), the flow is considered as two-dimensional with a normal
and parallel direction with respect to the interface. We consider that the steady
state flow and the participating natural convection are not excluded. The consid-
ered flow is similar to that shown in Fig. 6.6. The continuity of x and y could be
written using the Navier–Stokes equations:

¶wx

¶x
þ
¶wy

¶y
¼ 0 (6.130)

wx
¶wx

¶x
þ wy

¶wx

¶y
¼ 1

r
¶p
¶x
þ t

¶2wx

¶x2
þ ¶2wx

¶y2

 !
(6.131)

wx

¶wy

¶x
þ wy

¶wy

¶y
¼ gybCDCþ 1

r
¶p
¶y
þ t

¶2wy

¶x2
þ
¶2wy

¶y2

 !
(6.132)

The flow equations are completed with the corresponding boundary conditions,
which, for example, show:
. a maximum velocity at the interface coupled with a constant pres-

sure:

x ¼ xi ; �yv £ y £ yv ; wx ¼ 0 ;
dwy

dx
¼ 0 ; p ¼ pi (6.133)

. the absence of the velocity component for planes y = yv and y = –yv

(normal planes at the interface) coupled with the linear pressure
state:

0£ x £ xi ; y ¼ �yv ; y ¼ yv ; wx ¼ wy ¼ 0 ; p ¼ pi þ rgðxi � xÞ (6.134)
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. a particular velocity state for plane x = 0:

x ¼ 0 ; �yv £ y £ yv ; wy ¼ f ðyÞ ; wx ¼ 0 (6.135)

The convective-diffusion equation characterizes the transport of the property for
the fluid placed on the left of the interface. Here, the property participates in a
reaction process, which is described by simple kinetics. Then, the particulariza-
tion of the convective property transport equation becomes:

wx
¶C

¶x
þ wy

¶C

¶y
¼ DC

¶2
C

¶x2
þ ¶2

C

¶y2

 !
� krCC (6.136)

The first boundary condition for the convective-diffusion equation shows that, at
the interface, the property flux is written using the transfer property coefficient:

x ¼ xi ; �yv £ y £ yv ; kCðCi � C0Þ ¼ DC

dC

dx
(6.137)

If, for the second boundary condition, we consider a constant concentration (C0)
of the property at plane x = 0, we can write:

x ¼ 0 ; �yv £ y £ yv ; C ¼ C0 (6.138)

The third boundary condition considers that planes ys = s–yv and ys = syv are
impermeable to the transferred property:

0£ x £ xi ; y ¼ �yv; y ¼ yv ;
dC

dy
¼ 0 (6.139)

The equations described above could be written in a dimensionless form taking
into account different dimensionless parameters. They include a geometrical
dimension such as the dimensionless coordinates xa = x/l and ya = y/l; the dimen-
sionless velocity, the pressure and property concentration:

wa
x ¼

wx

w
; wa

y ¼
wy

w
; pa ¼

p
Dp

; Ca ¼
C� C0

Ci � C0
(6.140)

where w is a stable, real or computed velocity, characteristic of the system and Dp
is the differential pressure (p0 – pi). With these dimensionless definitions, the ba-
sic model equations become:

¶wa
x

¶xa
þ
¶wa

y

¶ya
¼ 0 (6.141)

w2

l
wa

x
¶wa

x

¶xa
þ w2

l
wa

y
¶wa

x

¶y
¼ Dp

rl
¶pa

¶xa
þ tw

l2
¶2wa

x

¶x2
a
þ ¶2wa

x

¶y2
a

 !
(6.142)

w2

l
wa

x

¶wa
y

¶xa
þ w2

l
wa

y

¶wa
y

¶ya
¼ gybCDCþ Dp

rl
¶pa

¶y
þ tw

l2
¶2wa

y

¶x2
a
þ
¶2wa

y

¶y2
a

 !
(6.143)
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wðCi � C0Þ
l

wa
x
¶Ca

¶xa
þ wðCi � C0Þ

l
wa

y
¶Ca

¶ya
¼

DCðCi � C0Þ
l2

¶2
Ca

¶x2
a
þ ¶2

Ca

¶y2
a

 !

� krC½C0 þ CaðCi � C0Þ�
(6.144)

If we multiply Eqs. (6.142) and (6.143) by
l2

tw
and Eq. (6.144) by

l2

DCðCi � C0Þ
, we

obtain the new forms of this set of equations. These are dimensionless and conse-
quently include coefficients, which are dimensionless groups or combinations of
the dimensionless groups. Assembling Eqs. (6.145) and (6.154) shows the initial
model in its dimensionless form:

¶wa
x

¶xa
þ
¶wa

y

¶ya
¼ 0 (6.145)

Re wa
x
¶wa

x

¶xa
þ wa

y
¶wa

x

¶y

� �
¼ Eu:Re:

¶pa

¶xa
þ ¶2wa

x

¶x2
a
þ ¶2wa

x

¶y2
a

 !
(6.146)

Re wa
x

¶wa
y

¶xa
þ wa

y

¶wa
y

¶ya

� �
¼ GrC Re�1 þ Eu:Re:

¶pa

¶y
þ

¶2wa
y

¶x2
a
þ
¶2wa

y

¶y2
a

 !
(6.147)

Re:PrC wa
x
¶Ca

¶xa
þ wa

y
¶Ca

¶ya

� �
¼ ¶2

Ca

¶x2
a
þ ¶2

Ca

¶y2
a

 !
� ForCCa (6.148)

xa ¼ xa
i ; �ya

v £ ya £ ya
v ; wa

x ¼ 0 ;
dwa

y

dxa
¼ 0 ; p ¼ pa

i (6.149)

0£ xa £ xa
i ; ya ¼ �ya

v ; ya ¼ ya
v ; wa

x ¼ wa
y ¼ 0 ; pa ¼ pa

i þ rgðxa
i � xaÞ:l=Dp (6.150)

xa ¼ 0 ; �ya
v £ ya £ ya

v ; wa
y ¼ f ðyaÞ ; wa

x ¼ 0 (6.151)

xa ¼ xa
i ; �ya

v £ ya £ ya
v ; NuC ¼

dCa

dxa
(6.152)

xa ¼ 0 ; �ya
v £ ya £ ya

v ; Ca ¼ 0 (6.153)

0£ xa £ xa
i ; ya ¼ �ya

v; ya ¼ ya
v ;

dCa

dya
¼ 0 (6.154)

The formal solution for this complete dimensionless model can be obtained when
the flow equations can be resolved separately. Then we obtain:

wa
x ¼ f ðEu; Re;GrC; xa; yaÞ (6.155)
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wa
y ¼ gðEu; Re;GrC; xa; yaÞ (6.156)

where f and g define any particular function.
The solution for the concentration state of the transferable property can be writ-

ten as:

Ca ¼ hðRe;PrC; ForC;wa
x;wa

y; xa; yaÞ (6.157)

The substitution of Eqs. (6.155) and (6.156) into Eq. (6.157) gives a new form to
the concentration state of the transferable property:

Ca ¼ FðEu;GrC; Re;PrC;ForC; xa; yaÞ (6.158)

Using this last relationship, we can now appreciate the value of the concentration
dimensionless gradient of the transferable property near the interface. Then, the
result is:

dCa

dxa

� �
xa¼xi

a

¼ GðEu;GrC; Re;Pr
C
; ForC; ix; iyÞ (6.159)

where G is the F function derivative and ix and iy are the geometric simplex (ratio
between the interface coordinates and the characteristic geometrical length).

The combination of Eqs. (6.130) and (6.159) gives a relationship between the
general dimensionless groups characterizing the interface kinetic transfer of one
property:

NuC ¼ GðEu;GrC; Re;PrC;ForC; ix; iyÞ (6.160)

We can conclude that the transfer intensity is determined by pressure (introduced
by the Euler number (Eu)) as well as by natural convection (expressed by the non-
particularized Grashof number (GrC)), by controlled convection (given by the Rey-
nolds number (Re)), by chemical reaction (expressed by the reaction Fourier num-
ber (ForC)), by the transport properties of the medium (assigned by the Prandtl
number (PrC)) and finally by the geometry of the system (shown by the geometri-
cal simplex ix, iy). Moreover, some of these actions are over represented because
they cannot be used together. For example, the pressure action produces a con-
trolled flow, which is characterized by the Reynolds number. However, in Eq.
(6.160), the Euler number is not an independent parameter and can consequently
be eliminated. Another example shows that, in the case of an important convec-
tive action (turbulent flow), the effect of the natural convection can be neglected.
The same consideration shows that, in the cases of pure natural convection flow,
the Reynolds number is not important. Finally, in the case of gas transfer at mod-
erate pressures and temperatures, the generalized Prandtl number presents a con-
stant value and, consequently, its influence in the kinetic relationship is not
important.
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Table 6.2 sums up these considerations in the case of transfer with no chemical
reaction. We observe, for example, that the geometry of the system, the Reynolds
number and the generalized Prandtl number, determine the intensity of the prop-
erty transfer in a liquid medium with a turbulent flow.

Table 6.2 Relationships of the kinetic transfer dimensionless groups.

Fluid Type of flow Particularization of
Eq. (6.160)

Particularization of
heat transfer

Particularization of
mass transfer

Liquid natural
convection

NuC ¼ GðGrC;PrC; ix; iyÞ Nu ¼ GðGrt;Pr; ix; iyÞ Sh ¼ GðGrd;Sc; ix; iyÞ

forced
convection

NuC ¼ GðRe;PrC; ix; iyÞ Nu ¼ GðGrt;Pr; ix; iyÞ Sh ¼ GðRe;Sc; ix; iyÞ

Gas natural
convection

NuC ¼ GðGrC; ix; iyÞ Nu ¼ GðGrt; ix; iyÞ Sh ¼ GðGrd; ix; iyÞ

forced
convection

NuC ¼ GðRe; ix; iyÞ Nu ¼ GðRe; ix; iyÞ Sh ¼ GðRe; ix; iyÞ

It is important to note that the classification presented above is not unique.
Indeed, each particular case has its G function. For example, when a chemical
reaction occurs, the generalized Fourier number (ForC) and its particularization
for heat and mass transfer can be introduced as a G function argument.

6.6.3
Physical Interpretation of the Nu, Pr, Sh and Sc Numbers

This section will present one of the possible physical interpretations of these
important dimensionless numbers. First, to show the meaning of Nusselt num-
ber, we consider the heat transfer flux in the x direction in the case of a pure mo-
lecular mechanism compared with the heat transfer characterizing the process
when convection is important. The corresponding fluxes are then written as:

qm ¼ �k
dt
dx

� �
x¼xi

(6.161)

qc ¼ aðti � t¥Þ (6.162)

where a, k and t have been defined above (for instance, see Fig. 6.7). Index i indi-
cates the position of the interface. By analogy with the model already used to
determine the significance of the Reynolds number, we calculate the ratio be-
tween both heat fluxes which is represented by the following relationship:
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qc

qm
¼ al

k

ðt¥ � tiÞ
dt

dðx=lÞ

� �
x¼xi

¼ Nu
dta

dxa

� �
xa¼xa

i

(6.163)

The result shows that the physical significance of the Nusselt number is:

Nu ¼ quantity of heat transferred by the convective mechanism
quantity of heat transferred by the molecular mechanism

As for the Prandtl number, we consider the heat transfer flux which can be writ-
ten with the use of the fluid enthalpy (Eq. (6.164)) and the molecular momentum
flux given by Eq. (6.165):

qm ¼ �
k

rcp

dðrcpt

dx

� �
x¼xi

(6.164)

smyx ¼ �
g

r

dðrwyÞ
dx

� �
x¼xi

(6.165)

The ratio between both fluxes shows that the Prandtl number is an index giving
the relative quantity of the momentum transported by the molecular mechanism
and of the heat transported by the same mechanism at the interface:

smxy

qm
¼

cpg

k

dðrwyÞ
dðrcpt

 !
x¼xi

¼ Pr
dðrwyÞ
dðrcpt

 !
x¼xi

(6.166)

As for the significance of the Sherwood number, the following mass transfer
fluxes for species A are used:
. the flux of component A transported to the interface by pure dif-

fusion (molecular mechanism):

NAm ¼ DA
dðrxAÞ

dx

� �
x¼xi

(6.167)

. the flux of component A transported to the interface by natural
and provoked/induced/forced convection;

NAc ¼ kc ðrxaÞi � ðrxAÞ¥
� 	

(6.168)

The ratio between both fluxes shows that the Sherwood number can be considered
as an index of the relative participation of the convective and molecular mecha-
nisms to the transport process.

The next relationship gives the mathematical form of this physical interpreta-
tion:

NAc

NAm
¼

kc ðrxAÞi � ðrxAÞ¥
� 	
DA

dðrxAÞ
dx

� �
x¼xi

¼ kcl
DA

ðrxAÞi � ðrxAÞ¥
� 	

dðrxAÞ
dðx=lÞ

� �
x¼xi

¼ Sh
1

dxa
A

dxa

� �
xa¼xa

i

(6.169)
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Sh ¼ Quantity of the species A transported to the interface by convective mechanism
Quantity of the species A transported to the interface by molecular mechanism

The Schmidt number is the mass transfer analogue of the Prandtl number.
Indeed, by analogy, we can note that the Schmidt number is a measure character-
izing the ratio between the quantity of the momentum transported to the interface
by the molecular mechanism and the quantity of species A transported to the
interface by the same mechanism. Equation (6.171) shows this statement:

smxy

NAm
¼ g

rD

dðrwyÞ
dðrxA

� �
x¼xi

¼ Sc
dðwyÞ
dðxAÞ

� �
x¼xi

(6.170)

6.6.4
Dimensionless Groups for Interactive Processes

When a process is produced under the divergent or convergent action of two dif-
ferent forces, the ratio between them represents a dimensionless number. The
heat and mass transfer enhanced by the supplementary action of a pulsating field
(vibration of apparatus, pulsation of one (or two) phase flow(s), ultrasound action
etc.) has been experimented and applied in some cases [6.25–6.27]. Then, the new

dimensionless number Ix ¼
g

x2A
has to be added to the list of dimensionless

groups presented above in this chapter.

As an example of an interactive process, we can mention the rapid drying of a
porous material when heat and mass transport occur simultaneously. This case
corresponds to very intensive drying such as high frequency or conductive drying.
In this case, a rapid transfer of humidity from the liquid to the vapour state, asso-
ciated with local change in pressure, induces a rapid vapour flow in the porous
structure. To establish the equations of water transport, we assume that the gradi-
ent is established from the material matrix to the outside. It results in additional
moisture and heat transfer induced by the hydrodynamic (filtration) motion of liq-
uid and vapours. The total pressure gradient within the material appears as the
result of evaporation and of the resistance of the porous skeleton during vapour
motion. The air from the adjacent medium flows by molecular and slip diffusion
in the capillarity of the system.

In the case of a high-rate heat- and mass-transfer process, heat and mass flows
are not described by the classical Onsager equations (as, for instance, in Eq.
(3.12)):

~jjk ¼
P

i
Lki
~XXi (6.171)

but by the following generalized equation:

~jjk ¼
P

i
Lki
~XXiþ LðrÞk

¶~jjk
¶s

(6.172)
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for example, the Fourier heat-conduction equation~qqm ¼ �k~��t will be replaced by:

~jjq ¼~qq ¼ k~��t� srq
¶~qq
¶s

(6.173)

Equation (6.173) is valid only for one-dimensional problems. For a multidimen-
sional study, it can be used as an approximation where the relaxation period of the
thermal stress srq is defined as one experimental constant. A similar relationship

is used for moisture diffusion. The term LðrÞk

¶~jjk
¶s

corresponds to the finite propaga-

tion velocity of a certain substance. The stress relaxation period srk of substance k
(mass, heat, etc.) is defined by:

srk ¼
Dk

v2
k

(6.174)

where vk is the finite propagation velocity and Dk the diffusivity of substance k.
From Eq. (6.172), we can now describe the flux of property with the local Ck con-
centration as:

~jjtk ¼
Pn
i¼1

DCkl~nni
~��Ckl

� �
þ ~ww�~CCk � srk

¶~jjk
¶s

(6.175)

When we particularize this relationship for the mass transport of the humidity
into a porous medium (~ww ¼ 0, because there is no microscopic displacement), we
can observe the superposition of the thermo-diffusion and of the diffusive filtra-
tion (where p is the humidity flowing by filtration) over the pure diffusion pro-
cess:

~JJtu ¼ Dm
~��uþ Dmd~��tþ Dmdp

~��p (6.176)

Based on Eq. (6.176), we obtain the next particularization for the general conserva-
tion relationship (see, for instance, Eq. (3.6)), which was established in Chapter 3:

srk
¶2

Ck

¶s2
þ ¶Ck

¶s
þ ~ww�~CCk

� �
¼ div

Xn

i¼1

Lkl~nni
~��Ckl

 !
þ jvk (6.177)

It is not difficult to particularize this relationship for the three simultaneous pro-
cesses occurring in the porous medium. The result is the Luikov [6.28] complete
relationships:

sru
¶2u
¶s2
þ ¶u

¶s
¼ K11�

2uþ K12�
2tþ K13�

2p (6.178)

srq
¶2t
¶s2
þ ¶t
¶s
¼ K21�

2uþ K22�
2tþ K23�

2p (6.179)

srp
¶2p
¶s2
þ ¶p

¶s
¼ K31�

2uþ K32�
2tþ K33�

2p (6.180)
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where the coefficients Kij (i, j = 1,2,3) correspond to:

K11 ¼ Dm , K12 ¼ Dmd ¼ ðDt
m1 þ Dt

m2Þ, K13 ¼ Dmdp ¼ kp=r0 (6.181)

K21 ¼ Dm
re
c

, K22 ¼ a, K32 ¼ Dm

erdp

c
(6.182)

K31 ¼ �Dm
e

cph
, K32 ¼ �Dm

ed

cph
, K33 ¼ Dp � Dm

edp

cph
(6.183)

where kp is the filtration moisture-coefficient defined by the equation

~JJp ¼ �kp
~��p; dp is the dimensionless filtration moisture flow, dp ¼ kp=Dmr0; ap is

the convective filtration diffusion coefficient, ap ¼
kp

cphr0
; cph is the coefficient of

humid air capacity in a porous material defined by the relationship
dðu1 þ u2Þ ¼ cphdp; u1 is the material moisture in the vapour state, u2 is the
moisture in the liquid state; e is the dimensionless fraction defined by

e ¼ Dm1

Dm1 þ Dm2
¼ Dm1

Dm
; a is the thermal diffusivity, and Dt

m1 and Dt
m2 are respec-

tively the thermo-diffusion coefficients of vapour and liquid humidity.

Taking into account the above description, the mass transfer similarity num-
bers, which characterize this process, can be formulated. The following similarity
numbers can then be formulated from the differential moisture transfer equa-
tions ((6.178) – (6.183)):

1. The homochronism of the transfer numbers of the field
potential referred to as Fourier numbers:

Foq ¼
as

l2
, Fom ¼

Dms

l2
, Fop ¼

aps

l2
(6.184)

These dimensionless groups are related by the criteria Lu
and Lup (drying Luikov dimensionless groups).

2. The mass transfer relaxation Fourier number:

Form ¼
Dmsrm

l2
(6.185)

It is then important to specify that this number is formed by
known magnitudes. The relaxation period of mass stress is
about 104 times the thermal stress relaxation. The Fourier
mass transfer number is, therefore, many times greater than
the Fourier heat transfer relaxation number: Forq ¼ asrq=l2.

3. The diffusion moisture-transfer number, with respect to the
heat diffusion or the moisture- flow diffusion number (dry-
ing Luikov number [6.23, 6.28]):
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Lu ¼ Dm

a
, Lup ¼

Dp

a
(6.186)

The Lu number is the ratio between the mass diffusion co-
efficient and the heat diffusion coefficient. It can be inter-
preted as the ratio between the propagation velocity of the
iso-concentration surface and the isothermal surface. In
other words, it characterizes the inertia of the temperature
field inertia, with respect to the moisture content field (the
heat and moisture transfers inertia number). The Lup diffu-
sive filtration number is the ratio between the diffusive filtra-
tion field potential (internal pressure field potential) and the
temperature field propagation.

For some moist materials, the Lu number increases with
the moisture content following a slow linear dependence.
From Eq. (6.184), we can appreciate that, for Lu>1, the prop-
agation velocity of the mass transfer potential is greater than
the propagation velocity of the temperature field potential.
The value of the diffusive filtration number of moisture Lup

is normally much higher than one. The total internal pres-
sure relaxation of the vapour–gas mixture in a capillary po-
rous body is 2–3 orders of magnitude higher than the relaxa-
tion of the temperature field. The relationships between Fou-
rier numbers may be expressed in terms of Lu and Lup:

Fom ¼ FoqLu, Fop ¼ FoqLup (6.187)

4. The Kossovich (Ko) and Posnov (Pn and Pnp) numbers
[(6.23), (6.28)] defined by Eqs. (6.188)–(6.190) are obtained
from the drying model (Eqs. (6.178)–(6.183) completed with
specific initial and boundary conditions). Moreover, they are
converted into a dimensionless form by applying the pi theo-
rem:

Ko ¼ rDu
cqDt

(6.188)

Pn ¼ dDt
Du
¼ Dt

mr0Dt
r0DmDu

(6.189)

Pnp ¼
dpDp

Du
¼

kpDp

r0DmDu
(6.190)

The Ko number shows the relationship between the heat
consumed by the liquid evaporation (rDu) and the heating of
the moist body (cqDt). The Pn number is an index of the
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ratio between the quantity of the humidity transported by
the thermal-diffusive mechanism and the pure diffusive
mechanism. A similar consideration can be advanced with
respect to the Pnp number.

5. Using the property of the dimensionless groups which show
that a mathematical combination of such groups gives a
dimensionless group, we introduce the Feodorov number
(Fe) [6.23, 6.28] which is as a dimensionless number describ-
ing the drying process of a porous material:

Fe ¼ eKoPn ¼ edr
cq

(6.191)

This number is independent of the heat and mass transfer
potentials because it is defined by coefficients e, d, r and cq

(the last two are, respectively, the vaporization latent heat of
moisture and the specific heat capacity of the moist body).

6. The Rebinder (Rb) number is formulated using the method-
ology described above in item 5. This dimensionless number
is given as the ratio between the dimensionless temperature
coefficient of drying and the Kossovich number:

Rb ¼ B
Ko
¼

b
Du
Dt

rDu
cqDt

¼
cqb

r
(6.192)

As in the case of the Fedorov number, the Rebinder number
is independent of the choice of the heat and mass transfer
potentials. This number is part of the fundamental heat bal-
ance of the drying process. Unlike the Pn number, the tem-
perature-drying coefficient describes the changes occurring
in the integral mean temperature (t) and in the mean mois-
ture content (u). In other words, it relates the kinetic proper-
ties of integral heat with moisture transfer properties,
whereas, the Pn number is concerned with local changes in
u and t.

7. The Biot numbers of heat and mass transfer could be
obtained from the boundary conditions of a third kind:
. the heat transfer Biot number:

Biq ¼

aex

rexcpex
l

a
@

aexl
km

(6.193)

. the mass transfer Biot number:

Bim ¼
kcexl
Dm

(6.194)
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Considering these Biot numbers, we can observe that they
are similar to the Nusselt and Sherwood numbers. The only
difference between these dimensionless numbers is the
transfer coefficient property characterizing the Biot num-
bers’ transfer kinetics for the external phase (aex: heat trans-
fer coefficient for the external phase, kcex: mass transfer coef-
ficient for the external phase). We can conclude that the Biot
number is an index of the transfer resistances of the contact-
ing phases.

When the boundary conditions of the third kind cannot be
established for heat (qintðsÞ) and mass flux (NAintðsÞ) flows,
then Biq and Bim are substituted by two Kirpichev ( Ki) [6.23,
6.28] numbers:

Kiq ¼
qintðsÞl
koDt

, Kim ¼
NAintðsÞl
DmDu

(6.195)

If fluxes qintðsÞ and NAintðsÞ are defined by the Newton laws,
these numbers (Bi and Ki) are related by simple equations:

Kiq ¼ Biq
tc � tint

Dt
, Kim ¼ Bim

uc � tint

Du
(6.196)

where indexes c and int indicate the central and interface
position of the moist body. Quantities Dt, Du and Dp, appear-
ing in the heat and mass transfer similarity numbers, are
chosen taking the conditions of the problem into account.

The problem here discussed can be considered as an example, which can be gen-
eralized when the different elementary processes interact. At the same time, it
shows the large potentialities of the chemical engineering methodologies in defin-
ing and using dimensionless groups for process characterization. All newly intro-
duced dimensionless groups can also be obtained through an adequate dimen-
sional analysis using the pi theorem procedure described earlier in this chapter.

6.6.5
Common Dimensionless Groups in Chemical Engineering

It is not easy to produce a basic list of the dimensionless groups frequently uti-
lized in chemical engineering problems. This is due to the very large number of
dimensionless groups that characterize the totality of chemical engineering pro-
cesses. Table 6.3 gives a list of variables, which are commonly encountered in this
type of analysis. Obviously, the list is not exhaustive but indicates a broad range of
variables typically found in chemical engineering problems. Moreover, we can
combine these variables with some of the common dimensionless groups given
in Table 6.4.
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Table 6.3 Some common variables typically used in chemical engineering.

Symbol Definition

l characteristic length

bd concentration convection coefficient

q density

D diffusion coefficient

DHr enthalpy of reaction

g gravity acceleration

heat transfer coefficient

kc mass transfer coefficient

x oscillation frequency

p,Dp pressure or pressure difference

kr reaction kinetics constant

c speed of sound

r surface tension

cp or cv thermal capacity

k thermal conductivity

bt thermal convection coefficient

w velocity

g viscosity

R universal constant of gases
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Table 6.4 Some dimensionless groups typically used in chemical engineering.

Name and
symbol

Definition
formula

Physical interpretation Type of application

Reynolds
number
Re

wlr
g

momentum quantity transfered by turbulent mechanism
momentum quantity transferd by molecular mechanism

all types of momentum,
heat and mass transfer
with forced convection

Froude
number
Fr

wffiffiffiffi
gl

p inertia force
gravitational force

flow with a free surface,
pipe and packed bed
two phase flow

Euler
number
Eu

Dp
rw2

energy involved by the surface forces
energy involved by the inertia forces

problems in which
pressure or pressure dif-
ferences are of interest
(jets from nozzles,
injectors etc.)
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Name and
symbol

Definition
formula

Physical interpretation Type of application

Mach
number
Ma

w
c

inertia force
compressibility force

flow in which the com-
pressibility of the fluid
is important

Strouhal
number
St

xl
w

local inertia force
global inertia force

rotational steady and
unsteady flow

Weber
number
We

rw2l
r

energy involved by the inertia forces
energy involved by the surface tension forces

problems in which sur-
face tension is impor-
tant (bubbles, drops and
particles)

Archi-
medes
number
Ar

gl3rDr
g2

archimedian force
viscous force

flow of the particles,
drops and bubbles in
liquid and gaseous me-
dia, fluidized and
spurted bed

Grashof
thermal
number
Grt

gl3btDtr2

g2

thermal convection force
viscous force

flow and heat transfer
by natural thermal con-
vection

Grashof
diffusion
number
Grt

gl3bdDCr2

g2

concentration convection forces
viscous forces

flow and mass transfer
by natural convection

Nusselt
number
Nu

al
k

quantity of the heat transfered by convection
quantity of heat transfered by the molecular mechanism

all heat transfer prob-
lems

Prandtl
number
Pr

cpg

k

momentum quantity transfered by molecular mechanism
heat quantity transfered by molecular mechanism

all heat transfer prob-
lems in forced convec-
tion

Biot
number
Bi

d=k

1=a

conductive resistance media
convective resistance media

all heat transfer prob-
lems with interface flux
condition

Fourier
reaction
number
For

krl2

D2

quantity of species consumed by reaction
quantity of species transported by molecular mechanism

mass transfer problems
with chemical reaction

Schmidt
number
Sc

g

rD
momentum quantity transfered by molecular mechanism

species quantity transfered by molecular mechanism

all mass transfer prob-
lems with forced convec-
tion

Sherwood
number
Sh

kcl
D

species quantity transported by convective mechanism
species quantity transported by molecular mechanism

all mass transfer prob-
lems
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Some additional details or commentaries about these important dimensionless
groups are discussed in the next sections.

Reynolds Number (Re)
This dimensionless number is undoubtedly the most famous parameter in chemi-
cal engineering and fluid mechanics. It was named after Osborne Reynolds
(1842–1912), a British engineer, who, with his famous experiment called the “Rey-
nolds experiment” (1892) showed for the first time that this combination of vari-
ables could be used as a criterion to characterize laminar and turbulent flows. The
Reynolds number is the measure of the ratio between the inertia and the viscous
forces of a fluid element. The flow occurring in different systems such as mono-
phase, two-phase and three-phase flows in a packed bed, two-phase and three-
phase flows in trays can also be characterized by different Reynolds numbers.
In addition, in chemical engineering, all the kinetic relationships, where
forced convection is present (see for instance Table 6.2), can be described accord-
ing to the Reynolds number. For example, the general kinetic relationship
NuC ¼ GðRe;PrC; ix; iyÞ will show a particular form of the function G for a lami-
nar flow and another particular form of the same function when turbulent flow
occurs. The small values of the Reynolds number indicate that the viscous forces
are dominant in the system and that we can consequently eliminate the participa-
tion of the forced convective mechanism in the flux property equation. It results
in simplified forms of the equations related to flow field and to property field. In
some cases, this type of simplification allows an analytical solution. Another
example can be shown in the case of flow occurring over an immersed body
(packed bed, sedimentation, etc.). In this example, for very large Reynolds num-
bers, inertial effects predominate over viscous effects and it may be possible to
neglect the effect of viscosity and consider the problem as if it involved a ’non-vis-
cous’ fluid. In this case the Navier–Stokes equations can easily be reduced to the
Euler equations for flow.

Froude Number (Fr)
The Froude number is named after William Froude (1810–1879), a British civil
engineer, mathematician, and naval expert who pioneered the use of towing tanks
of ship design. In some scientific papers the Froude number is defined as the
square of the mathematical equation considered here, (for instance, see Table
6.8). This dimensionless number shows the importance of the gravitational force
in some chemical engineering processes. This is typically the case for natural con-
vection and surface flows. Figure 6.8 shows two examples of chemical engineering
processes, which are used to separate or put into contact two different phase
fluids. In case A, where a two-phase flow occurs in a contacting tray device, the
Froude number is used to characterize the hydrodynamics and stability of the
flow, whereas, in case B, where we have a co-current two-phase pipe flow, it
defines the different states of the flow.
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 increase Frg number 

gas and liquid

gas and liquid 

A B

1 2 3 4

gas

gas
liquid

liquid 

Figure 6.8 Two specific chemical engineering processes where the Fr number
is applied. A: device with trays for contacting two phases; B: two-phase pipe flow
in co-current configuration. 1: bubble flow; 2: aggregated flow; 3: plug flow;
4: annular flow.

Euler Number (Eu)
The Froude number described above is frequently used for the description
of radial and axial flows in liquid media when the pressure difference along a mix-
ing device is important. When cavitation problems are present, the dimensionless
group ðpr � pvÞ=rw2 – called the Euler number – is commonly used. Here pv is
the liquid vapour saturation pressure and pr is a reference pressure. This number
is named after the Swiss mathematician Leonhard Euler (1707–1783) who per-
formed the pioneering work showing the relationship between pressure and flow
(basic static fluid equations and ideal fluid flow equations, which are recognized
as Euler equations).

Mach Number (Ma)
The Austrian physicist E. Mach (1838–1916) is the recognized founder of this
dimensionless group. This number is not very useful for most of the chemical
engineering flow problems because it considers that the flowing fluid density is
not affected by the field flow. In chemical engineering processes the Mach num-
ber takes values lower than 0.3. This means that this type of process is placed on
the boundary between flows without and with compressibility effects. However, in
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some cases where the sound field has been introduced as the active factor to
enhance a specific unit operation (for example absorption) characterization using
this number could be useful. This number is the more commonly used parameter
in the fields of gas dynamics and aerodynamics.

Strouhal Number (St)
This number is used to characterize the stationary and unsteady oscillatory flow
when the oscillatory field frequency presents a significant value. This type of flow
can be generated for example, when a fluid is transported by piston pumps. In
this case, the frequency flow parameters could be described by a combination of
Strouhal number and Reynolds number:

Ff ¼ St:Re ¼ rxl2

g

A second example can be generated when an intensive flow over a body produces
closed field lines (called a vortex) at variable distances. This effect was observed by
Strouhal (1850–1912) when some flow of air over wires produced a song. The
Strouhal’s �singing wires’ give the measure of the frequency that characterizes the
vortex flow. This type of flow has been used to produce the so-called grid turbu-
lence, which has various applications in the forced cooling of electronic devices
[6.29].

Weber Number (We)
The Weber number is used when the surface tension forces acting on a fluid ele-
ment are important. The Weber number for this special flow case is introduced by
applying the pi theorem particularized to mixing in a liquid medium. In this case,
it characterizes the ratio between the surface forces along the paddle that retain
the flowing fluid element and the inertial forces that displace the flowing fluid
element. This dimensionless number may be useful for the characterization of
thin film flow and for the formation and breaking of droplets and bubbles. How-
ever, not all the problems involving a flow with an interface will require the inclu-
sion of the surface tension.

When surface tension differences appear or are produced between some points
or some small regions of an interface, the flow produced is called the Marangoni
flow or flow with Marangoni effect. The Marangoni number, used to characterize
the flow shown on Fig. 6.9, is a combination of the Reynolds number, the Weber
number and the Schmidt number:

Mn ¼ ReaWebScc

if we make the assumption that the Mn number is dimensionless we obtain

a = 2, b = –1, c = 1

Then the Marangoni number could be written as:
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Mn ¼ Dr l
rD

where Dr will be ¶r=¶t � Dt when the Marangoni flow is caused by a temperature
gradient or where Dr will be ¶r=¶c � Dc when it is produced by the concentration
gradient.

ll 

l

y 

x

∆σσσσ

low σσσσ liquid (fine drops)

interface surface 

Figure 6.9 Flow and surface forces produced by surface tension gradients (Dr).

Grashof Numbers (Grt, Grd)
These two numbers (diffusion Grashof number and thermal Grashof number) are
used to characterize the natural convection produced by a thermal or concentra-
tion gradient. At moderate temperature or concentration gradient values, the nat-
ural convection flow keeps the properties of a laminar flow. However, higher gra-
dient values of temperature and/or concentration can be caused by a turbulent
natural convection flow. All the flows associated with heat and mass transfer pro-
cesses, which occur without an important external action, are characterized with
the Grashof number. Grashof numbers are also used in meteorology. Grashof
numbers and the Froude number are the most used dimensionless groups that
include gravitational acceleration as a physical parameter.

Nusselt Number (Nu)
This number is the main dimensionless group for heat transfer problems. With
the partial heat transfer coefficient as physical parameter, it characterizes the
kinetics of interface heat transfer. Unfortunately we cannot generally appreciate
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the intensity of the heat transfer from the Nu number values because, in some
cases, the intensity of the heat transfer process is not directly related to the Nu
value. For example, the Nusselt number computed for liquid boiling, which is a
very intensive heat transfer operation, can be lower than the Nusselt number com-
puted for heat transfer from a heating device to adjacent media. This is caused by
the differences between the characteristic lengths. Table 6.2 shows that the Nus-
selt number is coupled with other dimensionless groups by various relationships.
Different ways are used in chemical engineering to particularize these relation-
ships: the analytical and numerical solution of the equations of heat and mass
transfer at steady state, particularized for a system of simple geometry; the parti-
cularizations of the boundary layer theory for a heat transfer case; the particulari-
zation of the transfer analogies for an actual heat transfer case and finally the
experimental data correlation.

Prandtl Number (Pr)
The significance of the Prandtl number has been given earlier in this chapter.
Another meaning is given by the boundary layer heat transfer theory and it shows
that we can consider the Prandtl number as a relationship between the heat
boundary layer and the hydrodynamics boundary layer associated in a concrete
case.

We should also note that the boundary layer is the region where the solid inter-
acts mechanically and thermally with the surrounding flow. A practical spin-off of
Prandtl’s recognition of the boundary layer is the understanding of the mecha-
nisms of skin friction and heat transfer. This number is named after Ludwig
Prandtl (1875–1953). Indeed, his discovery of the boundary layer is regarded as
one of the most important breakthroughs of all time in fluid mechanics and has
earned Prandtl the title of “Father of Modern Fluid Mechanics”. The heat and
mass transfer analogies frequently used in chemical engineering are based on the
Prandtl theory (Prandtl and Prandtl–Taylor boundary layer analogies). For heat
transfer in gaseous media at moderate pressures, the Prandtl number can be
neglected since, in this case, its values are between 0.7 and 1.

Schmidt Number (Sc)
As explained earlier, with respect to the heat and mass transfer analogies, the
Schmidt number is the Prandtl number analogue. Both dimensionless numbers
can be appreciated as dimensionless material properties (they only contain trans-
port media properties). For gases, the Sc number is unity, for normal liquids it is
600–1800. The refined metals and salts can have a Sc number over 10 000.

Sherwood Number (Sh)
Initially called the diffusion Nusselt number, this number characterizes the mass
transfer kinetics when expressed in dimensionless terms.

All the statements given before for the Nusselt number have the same signifi-
cance for the Sherwood number if we change the words “couple heat transfer” to
“couple mass transfer”. We have to specify that, as far as the Sherwood number is
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concerned, we can use the mass transfer coefficient apparent values. This is the
case for tray columns when the mass transfer coefficients are reported for the geo-
metric active tray area, not for the real mass transfer tray area. This is very useful
in problems when a precise value of the real mass transfer area cannot be pre-
cisely established.

6.7
Particularization of the Relationship of Dimensionless Groups Using Experimental
Data

After establishment of the general dimensional analysis relationship for a con-
crete case, we have to formulate an adequate theory or an experimental investiga-
tion that will show the specific relationships between dimensionless groups. At
the same time, the obtained relationships have to be justified as usable. The
beginning of this chapter shows that dimensional analysis is an aid in the efficient
interpretation of experimental data. As previously shown, a dimensional analysis
cannot provide a complete answer to any specific relationship among the groups
which are unknown. The general methods used to produce groups of relation-
ships have been mentioned earlier; they are:

1. the analytical solution of the equations of all transfer proper-
ties for a particular example,

2. the numerical solution of the equations of all transfer prop-
erties supplemented with a correlation and regression analy-
sis with respect to the relationships between the dimension-
less groups,

3. the particularization of the boundary layer theory if, for the
studied case, a stable boundary layer can be defined,

4. the particularization of the transfer analogies and their
experimental validation,

5. the development of a consistent experimental research pro-
gramme supplemented with a correlation and regression
analysis with respect to the relationships between the dimen-
sionless groups.

In the last case, when the determination of the relationships between the dimen-
sionless groups is based on suitable experimental data, all the methods presented
here can be used successfully. The degree of difficulty involved in this process
depends on the number of pi terms and the nature of the experiments (for exam-
ple experiments that require a change in the geometric simplex cannot be
accepted because they require new experimental plants).

For a chemical engineering problem, the concrete activity of the correlation of
experimental data shows the following two particularities:

1. No more than three, exceptionally four, pi non-geometric
groups characterize the majority of analyzed problems.
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2. The power form of the dimensionless pi groups is the one
most used from among the possible relationships.

The simplest problem concerns only one pi term. The complexity of the analysis
increases rapidly with increasing number of pi terms because then the choice of
the experimental plan related to the proposed relationship for the dimensionless
pi groups cannot be solved by an automatic procedure.

6.7.1
One Dimensionless Group Problem

When a one-dimensional analysis problem shows that the difference m – n (m =
number of process variables, n = number of basic dimensions associated with the
process variables) is unitary, then only one pi term is required to describe the pro-
cess. The functional relationship that can be used for one pi term is:

P1 ¼ C

where C is a constant. The value of the constant, however, has to be determined
experimentally. Normally, only one experiment is needed for the identification of
C.

The case of Stokes settling velocity is considered as an illustrative example. If
we assume that the stationary settling velocity, w0, of a small particle flowing into
a liquid or gaseous medium is a function of its diameter, d, specific weight, gDq,
and the viscosity of the gaseous or liquid medium, it follows that:

w0 ¼ f ðd; gDr;gÞ

and the dimensions of the variables are:

½w0� ¼ LT�1 ½d� ¼ L ½gDr� ¼ ½gðrp � rÞ� ¼ ML�1T�2 ½g� ¼ ML�1T�1.

We observe that four variables and three basic dimensions (M, L, T) are required
to describe the variables. For this problem, one pi term (group) can be produced
according to the pi theorem. This pi group can easily be expressed as:

P1 ¼
w0g

gDrd2

Since there is only one pi group, it follows that:

w0g

gDrd2
¼ C

or
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w0 ¼ Cgd2 Dr
g

Thus, for a given particle and fluid, the gravitational settling velocity varies directly
with d2, Dq, and with 1/g. However, we cannot predict the value of the settling
velocity since the constant C is unknown. In this case, we have to carry out experi-
ments to measure the particle velocity and diameter, the density difference and
the fluid viscosity. We can run a single experimental test but we will certainly have
to repeat it several times in order to obtain a reliable value for C. It should be
emphasized that once the value of C is determined, it is not necessary to run sim-
ilar tests using different spherical particles and fluids because C is a universal
constant. Indeed, the settling velocity of the small particles is a function only of
the diameter and the specific weight of the particles and the fluid viscosity.

An approximate solution to this problem can also be obtained with the particu-
larization of the Hadamard–Rybczynski problem [6.30, 6.31] from which it is
found that C = 1/18 so that:

w0 ¼
1
18

gd2 ðrp � rÞ
g

(6.197)

This relationship is commonly called the “Stokes settling velocity” and is applic-
able for Re = w0dq/g <1 and when particle interactions are not present during the
settling process.

6.7.2
Data Correlation for Problems with Two Dimensionless Groups

The chemical engineering processes which can be characterized by two dimen-
sionless groups are important, especially for heat and mass transfer with gaseous
media, as shown in Table 6.4. If the phenomenon can be described with two pi
terms we have:

P1 ¼ UðP2Þ

the form of the U function can be identified by varying P2 experimentally and
measuring the corresponding P1 value. The results can be conveniently presented
in graphical form as in Fig. 6.10. Here the uniqueness of the relationship between
P1 and P2, is shown.

Nevertheless, since it is an empirical relationship, we can only conclude that it
is valid over the range of P2 dealt with by the experiments. It would be unwise to
extrapolate beyond this range since, as illustrated with the dashed lines in the fig-
ure, the nature of the phenomenon can dramatically change if the range of P2 is
extended.

For the valid range, we clearly obtain a curve with a break (B), then for each
part, we will produce a particularization of the function U from the general P1

and P2 relationship.
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Figure 6.10 P1 versus P2 and illustration of the effect of
extrapolation data over the valid range (A: continuous curve,
B: curve with a break; 1,1¢, 2, 2¢, 3; 3¢ possible extrapolations).

The break in the curve can be associated with a fundamental change in the pro-
cess mechanism (such as, for example: a change from laminar to turbulent flow, a
change from moderate natural convection to turbulent natural convection, etc.)

If we assume that the function U from the general P1 and P2 relationship is a
power expression, then the relationship P1 ¼ aPb

2 will be obtained. If we apply
the logarithm to this relationship, we can identify a and b using a normalized lin-
ear system Eq. (5.15).

To illustrate this methodology, we show the case of pressure drop per unit
length for one-phase flow in a packed bed. In laboratories, the pressure drop is
measured over a 0.1 m length of packed bed using an apparatus as shown in Fig.
6.11. The fluid used is water at 20 �C (q = 1000 kg/m3, g = 10–3 kg/ms). While the
tests are carried out the velocity is varied and the corresponding pressure drop is
measured. Table 6.5 shows the results of these tests.
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Table 6.5 Measurements of packed bed pressure drop for the experimental
device from Fig. 6.11.

Fictive water
velocity (m/s)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Pressure drop
for 1m bed height
(N/m2)

10930 21350 32760 43736 142727 198217 261759 332893 417838 497497
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H 
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4

5

water from a constant  level tank

Figure 6.11 Device with a packed bed one-phase flow for the measurement
of the pressure drop. 1: glass spherical particles (diameter = 1.5 mm),
2: glass column (diameter = 30 mm, H = 0.1 m), 3: differential manometer,
4: flow meter, 5: control valve, 6: water collector.

We will use these data to obtain a general relationship between the pressure
drop per unit height of packed bed and the other variables. To search for an actual
solution to this problem, we begin by performing a dimensional analysis, which
can be realized without any experiment. We will assume that the pressure drop
per unit height of packed bed, Dp/H, is a function of the equivalent packed body
diameter, de, the fluid density, q, the fluid viscosity, g, and the mean packed bed
fluid velocity, w.

The equivalent packed body diameter, de, is related to the bed holdup, e, and
specific packed surface, s, as well as via the relationship de = 4e/r. For the packed
bed from spherical bodies (e = 0.44 and r = 6/dp), the equivalent packed body di-
ameter depends only on the sphere diameter. The mean internal packed bed fluid
velocity represents the ratio between the fictive velocity and the packed bed porosi-
ty (e). According to these data, we can write:

Dp
H
¼ f ðde; r;g;wÞ
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the application of the pi theorem yields:

Dp
rw2

de

H
¼ U

wder
g

� �

The simplest way to obtain
Dp
rw2

de

H
for various Re ¼ wder

g
¼ 4wfr

rg
is to vary the

fictive velocity.
Based on the data given in Table 6.5, we can calculate the values for both pi

terms. The results obtained are given in Table 6.6. A plot of these pi terms can
now be made as a function of the Reynolds number. The results are shown in Fig.
6.12.

Table 6.6 Packed bed pressure drop in dimensionless terms.

Dp
rw2

de

H
7 3.5 2.33 1.75 3.65 3.50 3.42 3.33 3.25 3.18

wder
g
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Figure 6.12 Dimensionless packed bed pressure drop versus Reynolds number.

The correlation appears to be quite good and shows that the valid range is
divided into two parts. The first part corresponds to a Reynolds number lower
than 40, which corresponds to the laminar flow range in the packed bed. The
apparent turbulent flow range in the packed bed is obtained in the second part,
corresponding to Reynolds numbers greater than 50 [6.32].

A wrong correlation may be due either to important experimental errors or to
the omission of an important variable. The curve shown in Fig. 6.12 represents
the general relationship between the pressure drop and the other factors for Rey-
nolds numbers between 10 and 100. For this range of Reynolds number, as far as
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the provided independent variables (de, q, g, w) are the only important parame-
ters, it is not necessary to repeat the test for other packed beds or fluids. In order
to determine the power of the relationships of pi terms, the data from Table 6.5
allow the identification of the next equations:

Dp
rw2

de

H
¼ 70

Re
for Re <40

and:

Dp
rw2

de

H
¼ 8

ðReÞ0:2
for Re >40

It is then not difficult to write:

Dp ¼ f
Hr

8e3
w2

f r ; f ¼ 140=Re for Re <40; f ¼ 16=ðReÞ0:2 for Re >40;

Re ¼ ð4wfrÞ=ðrgÞ

which represents the Javoronkov procedure for packed bed pressure drop on
phase flow calculation [6.32]. This so-called Javoronkov procedure is based on nu-
merous experimental results similar to the type used in this example.

6.7.3
Data Correlation for Problems with More than Two Dimensionless Groups

When the number of pi groups involved in the dimensional problems increases, it
becomes more difficult to organize the experimental research, to display the
results in a convenient graphical form and to determine a specific empirical equa-
tion describing the phenomenon. If we accept that a power relationship between
the pi groups is validated for all experimental ranges or for clearly identified por-
tions of a range, we can easily identify the coefficients that characterize this rela-
tionship.

In this case, we can use a special experiment planning characterized by the rep-
etition of a classical second order planning, where the centre of the plan is
changed to cover a large range of each pi group and to discover the possible breaks
in the state of dependent pi groups. In the previous chapter, it was shown that the
majority of the functional dependences can be reduced to a multiple linear regres-
sion. If we propose for the relationships between the pi groups equations different
from powers then they can be identified by using the particularized system of
equations of the multiple regression. For most of the problems involving heat and
mass transfer, the dependent pi groups are represented by Nusselt and Sherwood
numbers, the independent pi groups characterizing the flow by the Reynolds or
Grashof numbers and the media properties by the Prandtl and Schmidt numbers.

Changes in the fundamental flow mechanism are expected if large ranges of
the pi groups characterizing the flow are considered. Consequently, a transition
zone in the state of pi dependent groups has to be observed. This case is illustrat-
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ed in Fig. 6.13. We have to specify that the general dependences considered in this
figure cannot be extended to heat and mass transfers associated with phase trans-
formations, because this case is more complicated. In complicated systems it is
often more feasible to use models to predict specific characteristics of the system
rather than to try to develop general correlations. If we extend the situation shown
by the figure below to more than three terms, we obtain a very complicated prob-
lem where a graphical representation and a suitable empirical equation become
intractable.
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Figure 6.13 The graphical presentation of data for chemical engineering problems
involving three pi dimensionless groups.

6.8
Physical Models and Similitude

To validate models based on transfer equations or stochastic models and, espe-
cially, to develop a coherent and planned experimental investigation of the studied
process, the researcher has to imagine and build up a reduced scale experimental
installation (laboratory device or model, LM). The goal using this reduced scale
pilot plant is to obtain the experimental data necessary to validate the models.

Major chemical engineering projects involving structures, tray or packed col-
umns, reactors, separators, heat exchangers and heaters, reservoirs and special
deposits, fluid pumping as well as compressing devices, frequently involve the
use of small scale studies using laboratory scale devices. According to the context,
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the term “laboratory model”, “engineering model”, “physical model”, “laboratory
pilot unit” or “small prototype” may be used. It is important to note that, as
explained above, the term LM concerns one small pilot unit, which is different
from the term “mathematical model” currently used throughout this book.

The pilot laboratory units, which are generally a different size, may involve dif-
ferent fluids, and often operate under different conditions (temperature, pressure,
velocity, etc.). These units are frequently designed so that the parameters can be
varied independently. The idea is not only to facilitate the study of the influence of
the different process parameters but also to include the complexity of industrial
scale units in the study.

Until now, the classical way to scale up industrial plants using laboratory scale
units was very tedious and laborious: it consisted in systematically studying all the
influencing parameters and operating conditions. In addition, many works were
based on the use of different increasing scale. Consequently, methods concerning
the characterization by a more rapid jump from laboratory small pilot to larger
scale plants began to be developed [6.22, 6.33, 6.34]. These methods are therefore
based on mathematical model simulations with incomplete laboratory experimen-
tal data for one actual problem [6.35]. There is, of course, an inherent danger in
the use of models if the predictions realized are not correctly validated, because
they can be erroneous and it may not be possible to detect errors until the indus-
trial size plant is found not to perform as predicted. It is, therefore, imperative to
have a properly designed and tested model, as well as correctly interpreted results.
This is the basic question of the similitude theory: “To what extent can experimen-
tal data be relied upon when the dimensions of the experimental devices increase
or decrease?”

In the following sections we will present some procedures and examples which
show how LM can be designed in order to have a similar behaviour evolution for
different device scales such as laboratory device (small scale) and prototype units
(medium scale).

6.8.1
The Basis of the Similitude Theory

Which mathematical models or designing procedures were used to build the
Egyptian pyramids or the gothic cathedrals? Since the ancient times, geometric
scaling-up procedures have been used. These rules are based on similitude laws,
which are still used today.

It is recognized that a phenomenon which occurs in an apparatus or a plant at
different scales (various geometrical dimensions) presents the same evolution for
all scales only if the conditions of the geometric similarity (geometric similitude),
material similarity (material similitude), dynamic similarity (dynamic similitude)
are respected and if the phenomenon shows the same initial state in all cases. The
parametric description of a phenomenon occurring at laboratory and prototype
scales is given in Table 6.7. In this case, we consider that the initial state of the
phenomenon is identical for both scales.
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Table 6.7 Determinant general parameters for the phenomenon
evolution (two dimension scales).

Name of parameters Symbolic notations for
the laboratory model

Symbolic notations
for the prototype

1 Characteristic geometric parameters
(geometric dimensions of apparatus or plant)

l0 , l1, l2, .....ln L0 , L1, L2, .....Ln

2 Characteristic material parameters
(specific properties of the materials used in
experiments: density, viscosity, etc.)

c0, c1, c2, ....cr C0, C1, C2, ....Cr

3 Characteristic parameters for the phenomenon
dynamics
(flow velocities, mixing flow, heating rate, mass
transfer rate, reaction rate, etc.)

s0, = s1, s2, ....sq T0, T1, T2, ....Tq

With respect to the evolution of the phenomenon considered in Table 6.7, if ag,
ac and as are the scaling factors (the coefficients that multiply the laboratory model
parameters in order to obtain the value of the prototype’s parameters) then these
can be written as:

ag ¼
L0

l0
¼ L1

l1
¼ L2

l2
¼ :::::: ¼ Ln

ln
(6.198)

ac ¼
C0

c0
¼ C1

c1
¼ C2

c2
¼ ::::::: ¼ Cr

cr
(6.199)

as ¼
T0

s0
¼ T1

s1
¼ T2

s2
¼ ::::::: ¼

Tq

sq
(6.200)

It is obvious that ac = 1 or c0 = C0, c1 = C1, c2 = C2, cr = Cr when the same materials
are used for the LM and for the prototype unit.

Equations (6.198)–(6.200) can be arranged to show dimensionless or dimen-
sional ratios, which express only the LM or the prototype. These dimensionless or
dimensional relations are called similitude simplexes when they result from the
same type of parameters and similitude multiplexes when they are composed of
different types of parameters.

Using l0 and L0, c0 and C0 and s0 and T0 as the characteristic parameters for the
laboratory device and prototype geometry, used materials and phenomenon
dynamics respectively we transform the preceding relationships as:

ig1 ¼
l1
l0
¼ L1

L0
; ig2 ¼

l2
l0
¼ L2

L0
; ::::::::; ign ¼

ln
l0
¼ Ln

L0
(6.201)

ic1 ¼
c1

c0
¼ C1

C0
; ic2 ¼

c2

c0
¼ C2

C0
; ::::::::; icr ¼

cr

c0
¼ Cr

C0
(6.202)
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is1 ¼
s1

s0
¼ T1

T0
; is2 ¼

s2

s0
¼ T2

T0
; ::::::::; isq ¼

sq

s0
¼

Tq

T0
(6.203)

where ig1, ig2,....., ign are the geometric simplexes, ic1, ic2,......, icr are the dimen-
sional material simplexes or multiplexes and is1, is2, ........isq are the dynamic
dimensional multiplexes. Then we can postulate that “the phenomenon occurring
in the laboratory device and in the prototype present the same evolution only
when all ig1, ig2,....., ign , ic1, ic2,......, icr, is1, is2, ...isq are the same ( ig1, ig2,....., ign , ic1,
ic2,......, icr, is1, is2, ...isq stay unchanged when the dimensions of the model increase
or decrease)”

Because all the dimensional material and dynamic multiplexes are reported
only for the LM or for the prototype, we can combine these r*q dimensional mul-
tiplexes and the characteristic geometric parameters (so we have r*q+1 dimen-
sional terms) to formulate new dimensionless independent multiplexes. It is not
difficult to observe that these independent dimensionless multiplexes are the
dimensionless pi groups that characterize the evolution of the phenomenon. If
P1, P2,....Ps represent the dimensionless groups that characterize the evolution
of the phenomenon in the laboratory device or in the prototype, we transform the
similitude postulate into the next new statement:

“One phenomenon occurring in two differently scaled devices (models) pre-
sents the same evolution only if the dimensionless pi groups characterizing the
phenomenon have the same values. In other words, we have similitude if the
dimensionless pi groups characterizing the phenomenon stay unchanged when
the dimension of the device (model) changes”.

The theory of the models can be readily developed using the principles of
dimensional analysis. It has been shown that any given problem can be described
in terms of a set of pi terms as:

P1 ¼ UðP2;P3; :::PsÞ (6.204)

Once this relationship is formulated, all we need to know is the general nature of
the physical phenomenon and variables. Specific values for variables (size of com-
ponents, fluid proprieties, etc.) are not needed to perform the dimensional analy-
sis. This relationship could be applied to any system, if it is governed by the same
variables and laws. If Eq. (6.204) describes the behaviour of a laboratory device, a
similar relationship can be written for evolution of the phenomenon in the proto-
type:

P1p ¼ UðP2p;P3p; :::PspÞ (6.205)

where the subscript p shows that this is the case of the evolution of the phenome-
non in the model prototype.

The pi terms can be developed so that P1p contains the variables that have to be
predicted from the observation made on the laboratory apparatus. Therefore, if
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the prototype is designed and operated, in relationship to the LM, under the fol-
lowing conditions:

P2p ¼ P2; P3p ¼ P3; ::::::::::;Psp ¼ Ps (6.206)

then, with the presumption that the form of function U is the same for the LM
and for the prototype, it follows that:

P1p ¼ P1 (6.207)

Equation (6.207) indicates that the measured value of P1 for the LM will be identi-
cal to the corresponding P1 for the prototype as long as the other pi terms are
similar.

The conditions specified by Eq. (6.206) provide the conditions required to
design the model, also called similarity requirements or modeling laws. The same
analysis could be carried out for the governing differential equations or the partial
differential equation system that characterize the evolution of the phenomenon
(the conservation and transfer equations for the momentum). In this case the ba-
sic theorem of the similitude can be stipulated as: “A phenomenon or a group of
phenomena which characterizes one process evolution, presents the same time
and spatial state for all different scales of the plant only if, in the case of identical
dimensionless initial state and boundary conditions, the solution of the dimen-
sionless characteristic equations shows the same values for the internal dimen-
sionless parameters as well as for the dimensionless process exits”.

As an example of this methodology, we can consider the problem of determin-
ing the heat loss of a rectification column which is placed perpendicularly to a
fluid flowing at the velocity w. (see Fig. 6.14). The dimensional analysis of this
problem shows that:

a ¼ f ðd;H;g; r; k;wÞ

where a represents the heat transfer coefficient, d, the column diameter, H, the
column height, k, the fluid thermal, while g and q show the fluid viscosity and
density conductivity and w, represents the incident air velocity. Application of the
pi theorem gives:

ad
k
¼ U

H
d
;
wdr

g

� �
(6.208)

We are now concerned with the design of a laboratory device which can be used to
predict the heat loss on a different-sized prototype.
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d

∆t H

Karman vortices 

flowing fluid (air) with w, ,ρ η λ
q=α∆t

,

Figure 6.14 Heat loss in a rectification column (flow around the column).
Fluid characteristics: w: velocity, g: viscosity, q: density, k: thermal conductivity.
Column characteristics: d: diameter, H: height. Dt: differential temperature
between the air and the column surface.

Since the relationship expressed by Eq. (6.208) applies to both prototype and
laboratory models, we can assume that for the prototype, a similar relationship
could be written:

apdp

kp
¼ U

Hp

dp
;
wpdprp

gp

 !
(6.209)

the design conditions, or similarity requirements are therefore:

H
d
¼

Hp

dp
;

wdr
g
¼

wpdprp

gp
(6.210)

the size of the laboratory device is obtained from the first requirement which indi-
cates that:

d ¼ H
Hp

dp (6.211)

we can then establish the height ratio H/Hp, and the diameter of the laboratory
device d is fixed in accordance with Eq. (6.210).

The second similarity requirement indicates that the LM and the prototype
must be operated at the same Reynolds number. The required velocity for the lab-
oratory model is obtained from the relationship:

w ¼ g

gp

rp

r

dp

d
wp (6.212)
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Note that this model design requires not only geometric scaling, as specified in
Eq. (6.211), but also the correct scaling of the velocity in accordance with Eq.
(6.212). This result is typical of most design procedures, where the scaling up is
more difficult than simply scaling the geometry.

With the foregoing similarity requirement satisfied, the equation for the predic-
tion of the column heat loss is:

apdp

kp
¼ ad

k

or

ap ¼ a
d
dp

kp

k

or

Qp ¼ appdpHpDt ¼ a
d
dp

kp

k
pdpHpDt ¼ Q

Hp

H

� �
kp

k

� �
(6.213)

where Q represents the heat loss of the laboratory size column that is operated
with a temperature difference (Dt ) between its surface and the incident flowing
fluid. Once the heat loss is measured on the laboratory device, Q has to be multi-
plied by the ratios corresponding to the height of the columns and the conductiv-
ity of the flowing fluids in order to obtain the predicted value of the heat loss for a
real column.

If we analyze the case of the rectification column which loses heat by natural
convection, then we change the list of variables by considering the specific ascen-
sion force, gbtDt, as an important variable and by removing the fluid velocity, w.
In this case, the application of the pi theorem shows that:

aH
k
¼ U

d
H
;
gbtDtH3r2

g2

� �
(6.214)

the design conditions, or similarity requirements are therefore:

d
H
¼

dp

Hp
;

gbtDtH3r2

g2
¼

gbtDtH3
pr2

p

g2
p

(6.215)

if the same fluid is used for both geometric scales, then the size of LM cannot be
established because we obtain:

d ¼ dp
H
Hp

; H ¼ Hp

the same result will be obtained when we remove the diameter (d), from the list of
variables.

This very simple example shows that sometimes it is not possible to use this
scaling-up procedure. Fortunately, the majority of the problems presenting scal-
ing-up impossibilities can be solved using other methodologies. As illustrated in
this example, to achieve the similarity between the behaviour of both the laborato-
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ry model and the prototype, all the corresponding pi terms must be equated be-
tween these two scales. Usually, one or more pi terms involve ratios of important
lengths (such as H/d in the foregoing example). Thus, when we equate the pi
terms involving length ratios we are requiring “a complete geometric similarity”
to exist between the laboratory device and the prototype. Geometric scaling could
be extended to the finest feature of the system, such as surface roughness, or
small protuberances on a structure, since the surface state also determines the
flow pattern. When a deviation from the complete geometric scaling must be con-
sidered, a careful analysis has to be carried out. For example, the design of one
new packed body, or of a new sort of tray, cannot be produced without a complete
geometric scaling.

Other groups of characteristic pi terms (such as Re ¼ wdr
g

in the foregoing

example) involve mechanisms’ ratio or forces’ ratio as noted in Table 6.4. The
equality of these pi terms requires the same mechanisms’ or forces’ ratios in labo-
ratory devices and prototypes. Thus, for similar Reynolds numbers, the values
defining the turbulent and laminar flow mechanisms have to be the same for
both devices. If other pi groups are involved, such as the Froude, Weber, Archi-
mede or Grashof numbers, a similar conclusion can be drawn; that is, the equality
of these pi groups requires identical ratios of identical forces for the laboratory
apparatus and for the prototype. In the case of similar pi terms, we can say that
we have a “hydrodynamic similarity”.

Other similarities used in chemical engineering concern the “field concentra-
tion similarity” and the “property transfer similarity”. The field concentration of
the property is characterized by the Prandtl, Schmidt or reaction Fourier numbers
(Table 6.4). It has been shown here that if the geometric and hydrodynamic simi-
larities are respected, the transfer similarities exist between the laboratory device
and the prototype. These last two similarity conditions represent the conditions of
“transfer kinetic similarity”. In order to have complete similarity, we need to main-
tain the similarity between the geometry, dynamics and transfer kinetics between
both units. If scaling up is found to be impossible, we have to ascertain whether
all important variables are included in the dimensional analysis, and whether all
the similarity requirements based on the resulting pi groups are satisfied.

6.8.2
Design Aspects: Role of CSD in Compensating for Significant Model Uncertainties

The experimental studies with one laboratory device, generally involve simplifying
assumptions concerning the variables to be considered. In spite of the fact that
the number of assumptions is less restrictive than required for mathematical
models they introduce some uncertainty into the design of the device. It is, there-
fore, desirable to check the design experimentally whenever possible. Generally,
the purpose of the LM is to predict the effects of certain changes proposed in a
given prototype or in a larger-scale device. The LM has to be designed, con-
structed, and tested and then the predictions can be compared with the available
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data from larger-scale devices. If the agreement is satisfactory, then the changes
allowing one to build a bigger model can be accepted with increased confidence.
Another useful procedure is to run tests with a series of LM having different sizes,
where one of the devices can be considered as the prototype and the others as
models of this prototype. With the devices designed and operated on this basis,
we also need to improve other conditions for the validity of the LM design: accu-
rate predictions have to be made between any pair of devices, since each of them
can always be considered as the model of another one.

It is important to note that a good agreement in the validation tests described
above does not unequivocally indicate that the scaling up is correct, especially
when the dimensions of the scales between the different LMs are significantly dif-
ferent from those required by the basic laboratory model. However, if the agree-
ment between the various models is not good, it is impossible to use the same
model design to predict the behaviour of the basic laboratory model.

Some designing cases show that the general ideas, which establish similarity
conditions for models when we use simple corresponding pi terms, are not always
able to satisfy all the known requirements. To illustrate such a case: if, for a rela-
tionship P1 ¼ UðP2;P3; :::;PsÞ one or more similarity requirements are not
respected, such as, for example: P2 „P2p, then it follows that the prediction rela-
tionship P1 ¼ P1p is not true. The models designed without satisfying all the
requirements are called limited models or distorted models.

The classic example of a distorted model occurs in the study of liquid media
which are mixed mechanically as described earlier in this chapter. The dimen-
sional analysis shows that:

KN ¼ U
H
d
;
h
d
;
b
d
; Re;We

� �

where:

KN ¼
N

d5n3r
; Re ¼ nd2r

g
; We ¼ rn2d3

r

If we consider that heat transfer occurs during the mixing, the dimensional analy-
sis shows that:

Nu ¼ U
H
d
;
h
d
;
b
d
;KN; Re;We

� �
(6.216)

where the Nusselt number is Nu ¼ ðadÞ=k where a is the heat transfer coefficient
to the wall of the mixing unit and k the thermal conductivity of the mixed fluid. If
ag is the geometric scaling factor the geometric similarity requires:

Hp ¼ Hag ; hp ¼ hag ; bp ¼ bag

The similarity of the Euler number (the group KN is a form of the Euler number
for mixing) requires:
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Np

rpn3
p
¼ N

rn3
a5

g

or

Np ¼ N
rp

r

np

n

� �3
a5

g

The similarity of the Reynolds number requires:

n2
prp

gp
¼ n2r

g

1
a2

g
or

np

n
¼

gp

g

r
rp

 !1=2
1
ag

Whereas the similarity of the Weber number requires:

rpn2
p

rp
¼ rn3

r

1
a3

g
or

np

n
¼ r

rp

rp

r

 !1=2
1

a3=2
g

Since the scale of the speed of rotation
np

n

� �
is expressed by two relationships,

their combination could be written as:

gp

g

r

rp

 !1=2

¼ a1=2
g (6.217)

When we use the same fluid for the LM and the prototype, we obtain ag=1 which
is unacceptable. Apparently, with a different fluid, it may be possible to satisfy this
design condition but it may be quite difficult, if not impossible, to find a suitable
model fluid, particularly for a small scale unit. When the identity requirement of
the Weber numbers is eliminated, we obtain a distorted model, which gives a
good approach to intensive mixing (a large Reynolds number shows that inertia
forces are dominant in the mixing process). A distorted model could also be
obtained when the identity requirements of the Reynolds numbers are eliminated.
Then these models are good for the description of cases in which the mechanical
mixing is slow but intensive because the forces at the surface are important.

Distorted models can be used successfully, but the interpretation of the results
obtained using this type of model is obviously difficult compared to the true mod-
els for which all similarity requirements are obtained. The success of using dis-
torted models is dependent on the skill and experience of the investigator respon-
sible for the design of the model and on the interpretation of the experimental
data produced with the model. In many cases, the distorted models are associated
with one or more uncertainties and the use of their data in the scaling-up design
of the complex processes must be appreciated and compensated using an ade-
quate control system design (CSD).

6.8.2.1 Impact of Uncertainties and the Necessity for a Control System Design
While designing complex systems, we can basically encounter two types of uncer-
tainties. In the first, we know that the system will work but it is difficult to deter-
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mine its scale. Typical examples of these are the uncertainties in physical proper-
ties such as heat transfer coefficients, mass transfer coefficients, tray efficiency
etc. [6.36–6.39]. A judicious over design will solve the uncertainties. If we extend
the observation, we can appreciate that their main impact concerns the capacity of
the plant. Under-sized equipment will bottleneck the process. The important
point is that a judicious over-size design is relatively cheap, while retrofitting to
relieve bottlenecks is expensive in both low-cost capacity and capital cost. This is
the more critical type of uncertainty, which, if not adequately addressed, can lead
to a total process failure. We can illustrate this case with important examples
extracted from the experience of some chemical industries [6.40] when the scal-
ing-up of one plant ended up in a great fiasco. Even if the plant was not entirely
abandoned, extensive and expensive modifications were required to operate it.

However, this problem can be easily avoided through straightforward concur-
rent design. One might also argue that building a large pilot plant or a small dem-
onstration plant could minimize some of these difficulties and risk involved. For
example, the Exxon case, in which an expensive demonstration plant was built to
demonstrate the new Fischer-Tropsch process, is well known [6.40]. This type of
expensive unit can be justified in some special cases but will not always be neces-
sary.

Pilot plants are not often designed to provide the essential information for a
scaling up. Instead, they are operated to demonstrate a single steady state that
gives acceptable results. They are seldom meant to investigate the impact of the
process variables, which is essential for safe scaling up and control design. There
is no great difference between designing a large pilot plant or a commercial plant.
In both cases we have to make certain that the design can deal with the risks of
scaling up.

To avoid any misunderstanding, we would like to emphasize that our main con-
cern here includes such critical parts of the plant as new chemical reactors, pro-
cesses or some complex separations that cannot be reliably modelled from a lim-
ited set of experiments carried out in a laboratory or on a small-scale pilot plant.
For the remaining and more classical plant devices we can use modern simulators
that provide all sorts of mathematical models and that have had a tremendous
impact on the modern designing of plants. At the same time, we must note that
the scaling-up based on combining complete complex mathematical models with
experimental data from small-sized laboratory units [6.41–6.47] begins to be fre-
quently used for the needs of the design and also for better operation of existing
plants.

Nevertheless, we have to specify that the scaling up of one process must be con-
sidered as a complex problem with not only controlled goals determined by the
dominant process variables but also independent degrees of freedom. Here, the
efficiency of the process, the process modelling and design procedure have to be
identified, computed, changed if necessary and used in order to perform an effi-
cient process control. For a process scaling-up or design, the following objectives
of control have to be considered:
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1. Allow the system to meet the specifications. Allow on-line
change of the specifications.

2. Stabilize the system.
3. Compensate for changes in feedstock, in properties of the

catalyst (if the core process is a catalytic reaction) and
unknown dynamic and persistent perturbations.

4. Allow compensation for uncertainties in the design and scal-
ing-up of the unit.

To achieve these goals, both dynamic and steady state controls are required. For
most chemical plants, the control to meet specifications is the primary objective.
The capacity to stabilize and reject perturbations is essential to achieve the goals
mentioned above.

Before proceeding to the designing methodology itself, it will be helpful to
review and define some of the principles and concepts of partial control. We are
concerned with the control of a system in which the number of process variables
to be controlled is higher than the number of variables which are manipulated to
realize this control. If all the process variables have to be controlled according to
exact set points, the process has to abandoned or the design modified in order to
provide the requisite number of manipulated variables. However, it is quite often
the case that many of these variables need only be controlled within prescribed
limits, hence the terminology of partial control.

Dominant variables are characterized by observation, which shows that they
exert a strong influence on many of the other interesting process variables. The
operating temperature of the reactor is a typical example, because changes in this
parameter generally modify the reactant conversion and product composition.
Thus, by controlling the dominant variables, we can maintain the other process
variables of concern within their prescribed limits. A variable is dominant for the
stability if, by controlling it, we exert an effect on the system stability. This is par-
ticularly important if the system is an unstable open loop. It is very important to
identify which variables are dominant in the laboratory. Strictly speaking, each
apparatus presents its dominant variables. For example, potential dominant vari-
able candidates for a catalytic reactor are: the temperature, pressure, space veloci-
ty, catalyst activity, and the properties of the reactants.

While the impact of dominant variables on process outputs can be identified
and measured in the laboratory, this is not always true for stability. In this case,
we have to rely on the availability of used models to identify possible dominant
variables. It is clear that all dominant variables for stability are also dominant vari-
ables for outputs.

In conventional control (design control, evolution control), the number of
degrees of freedom is considered as the number of available manipulated vari-
ables. We define the practical degrees of freedom as the number of dominant vari-
ables that can be controlled independently. The ability to have an impact on the
outputs and stability of one chemical system is limited by the number of indepen-
dently controllable dominant variables available in the design. The design of a
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control system is one part of the whole design and is completely dependent on the
scaling-up process. In the situation with one system of control, the choice of the
dominant variables and the independent degrees of freedom is deemed to be suf-
ficient if they provide the management with adequate constraints and also result
in a good stabilization of the system.

For the design of any complex system, including or not a chemical reactor, we
do not need a complete model but rather minimal information of the model,
which strongly depends on the design itself. The laboratory identification of all
dominant variables is essential, together with sufficient data on their impact on
the most important outputs of the process. This is essential for a safe scaling-up
and to produce a preliminary model. It is also important to know how the mini-
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6.9 Some Important Particularities of Chemical Engineering Laboratory Models

mal information of the model determines the choice of the basic design and the
control design.

In all cases the design key features are:
. the identification of the control system goals (specifications),
. the generation of the model information that adequately charac-

terizes the system,
. the identification of the dominant process variables,
. the determination of the effective degrees of freedom,
. the determination of the control structure.

Figure 6.15 shows the general detailed structure of the working steps for the
design of a scaling-up and control unit for a chemical fabrication. It is observable
that we can generate a number of alternate process designs, either sequentially or
in parallel. Then, one must also develop and evaluate the best partial structure
control for each of these designs. The design which represents the best compro-
mise between cost and controllability in the face of uncertainty could be consid-
ered as the final design.

6.9
Some Important Particularities of Chemical Engineering Laboratory Models

Generally, the chemical engineering processes include steps where interface
transfer with or without a chemical reaction is dominant. In these cases the sur-
face of transfer is one the parameters which controls the transfer efficiency. Some
of the various technical solutions which have been developed to increase the sur-
face of transfer are:
. the use of packed beds of small bodies for the differential transfer

apparatus involved in the phase contacting procedure,
. the development of the highly efficient tray equipped with devices

that produce small bubbles or drops with dense and uniform spa-
tial distribution.

. the use of catalytic fixed beds with catalytic pellets with a diameter
not exceeding 10–15 mm as well as fluidized beds with catalysts
in powder form.

For all the examples given above, the analysis of the characteristic geometric
length shows that this dimension is very small (diameter of packed body, bubble
or drop diameter, catalyst particle diameter). In this section, we have shown that
both the laboratory plant and the scaling-up apparatus (plant) have to be designed
to work with the same characteristic geometric lengths. We can conclude that the
relationship l/lp = 1 is necessary in the case of the geometric scaling-up of labora-
tory models. In addition, since the majority of the laboratory models are designed
to use real fluids (those that will be used in the extended model) in their tests, we
can appreciate that we have scales of the same unitary value for all materials.
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If we analyze the fundamental dynamics aspects of the fluids contacting in the
laboratory device, we can easily observe that the velocities and other dynamic pa-
rameters of the specific phases, could be identical to those of the extended model.
If we neglect the wall effects, which, in the case of LM could be important, we can
easily conclude that the dimensionless pi terms that characterize the dynamics of
the process present the same values for the laboratory plant and for the extended
model. Taking these observations into consideration, we can see that LMs do not
require a scaling up of the data and information obtained when we want to use
them on experimental investigations of a physico-chemical process. This means
that the relationships, the curves and the qualitative observations obtained with
an LM could be directly applicable to larger devices.

We cannot finish without presenting some uncertainties, which show the differ-
ences between the LMs and their real homologue:
. the chemical processes are frequently studied at laboratory scale

taking into account only the critical parts. This means that the
elements are considered as new or unknown. Then, the studied
problems may be presented when computed and experimented
parts are assembled.

. The stationary time of laboratory models is quite small when
compared with the corresponding time for extended models. This
fact introduces important uncertainties in the capacity of the
experimental data to predict the states of the system not covered
by experimentation (in, for example, concentration and tempera-
ture fields).

. Frequently the experimental models are tested with boundary
conditions that are not identical to those of the extended model.
This is sustained by the different evolution of the temperature
and concentration fields described above.

If we can ensure the control and compensation of these uncertainties, then we
can appreciate the enormous importance of the experimental chemical engineer-
ing research for developing new processes or for modernizing those that are
already in use.
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