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The aim of this book is to teach the use of modelling and simulation as a disci-
pline for the understanding of chemical engineering processes and their dy-
namics. This is done via a combination of basic modelling theory and computer
simulation examples, which are used to emphasise basic principles and to de-
monstrate the cause-and-effect phenomena in complex models. The examples
are based on the use of a powerful and easy-to-use simulation language, called
BERKELEY-MADONNA, that was already successfully used in the second edition
of this book. Developed at the University of California for Windows and Macin-
tosh, MADONNA represents almost all we have ever wanted in simulation soft-
ware for teaching. The many programmed examples demonstrate simple model-
ling procedures that can be used to represent a wide range of chemical and chem-
ical engineering process phenomena. The study of the examples, by direct compu-
ter experimentation, has been shown to lead to a positive improvement in the
understanding of physical systems and confidence in the ability to deal with chem-
ical rate processes. Quite simple models can often give realistic representations of
process phenomena. The methods described in the text are applicable to a range of
differing applications, including process identification, the analysis and design of
experiments, process design and optimisation, process control and plant safety, all
of which are essential aspects of modern chemical technology.

The book is based on the hands-on use of the computer as an integral part of the
learning process. Although computer-based modelling procedures are now com-
monplace in chemical engineering, our experience is that there still remains a
considerable lack of ability in basic modelling, especially when applied to dynamic
systems. This has resulted from the traditional steady state approach to chemical
engineering and the past emphasis on flow-sheeting for large-scale continuous
processes. Another important contributing factor is the perceived difficulty in solv-
ing the large sets of simultaneous differential equations that result from any rea-
listic dynamic modelling description. With modern trends towards more intensive
high-value batch processing methods, the need for a better knowledge of the plant
dynamics is readily apparent. This is also reinforced by the increased attention
that must now be paid to proper process control, process optimisation and plant
safety. Fortunately the PC and Macintosh computers with suitable simulation soft-
ware now provide a fast and convenient means of solution.
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The excellent software BERKELEY-MADONNA enables a more modern, Win-
dows-based (also Macintosh compatible) and menu driven solution.

In this third edition we have revised the theoretical part and introduced a
number of new simulation examples. Some examples deal with safety problems
in chemical reactors and others are related to modelling of environmental sys-
tems and are located in a new Environmental Process section.

Organisation of the Book

The book consists of an introduction to basic modelling presented in Chapters
1 to 4. An introduction to simulation principles and methods and the simula-
tion examples are found in Chapter 5. The first four chapters cover the basic
theory for the computer simulation examples and present the basic concepts of
dynamic modelling. The aim is not to be exhaustive, but simply to provide suffi-
cient introduction, for a proper understanding of the modelling methodology
and computer-based examples. Here the main emphasis is placed on under-
standing the physical meaning and significance of each term in the resulting
model equations. Chapter 5, constituting the main part of the book, provides
the MADONNA-based computer simulation exercises. Each of the examples is
self-contained and includes a model description, the model equations, exercises,
nomenclature, sample graphical output and references. The combined book
thus represents a synthesis of basic theory and computer-based simulation ex-
amples. The accompanying CD includes the MADONNA simulation language
for Windows and Macintosh and the ready-to-run simulation example programs.
Each program is clearly structured with comments and complete nomenclature.
Although not included within the main body of the text, the MADONNA solu-
tion programs provided on the CD are very simple both to write and to under-
stand, as evidenced by the demonstration program BATSEQ in Section 5.1.3.
All the programs are clearly structured and are accompanied by clear descrip-
tions, nomenclature and details of any special items of programming that might
be included. All programs are therefore very easy to understand, to apply and, if
needed, to modify. Further, a clear connection between the model relationships
described in the text and the resulting program is very apparent.

Chapter 1 deals with the basic concepts of modelling, and the formulation of
mass and energy balance relationships. In combination with other forms of re-
lationship, these are shown to lead to a systematic development for dynamic
models. Though the concepts are simple, they can be applied equally well to
very complex problems.

Chapter 2 is employed to provide a general introduction to signal and process
dynamics, including the concept of process time constants, process control, pro-
cess optimisation and parameter identification. Other important aspects of dy-
namic simulation involve the numerical methods of solution and the resulting
stability of solution; both of which are dealt with from the viewpoint of the si-
mulator, as compared to that of the mathematician.
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Chapter 3 concerns the dynamic characteristics of stagewise types of equip-
ment, based on the concept of the well-stirred tank. In this, the various types of
stirred-tank chemical reactor operation are considered, together with allowance
for heat effects, non-ideal flow, control and safety. Also included is the model-
ling of stagewise mass transfer applications, based on liquid-liquid extraction,
gas absorption and distillation.

Chapter 4 concerns differential processes, which take place with respect to
both time and position and which are normally formulated as partial differential
equations. Applications include heterogeneous catalysis, tubular chemical reac-
tors, differential mass transfer, heat exchangers and chromatography. It is
shown that such problems can be solved with relative ease, by utilising a finite-
differencing solution technique in the simulation approach.

Chapter 5 comprises the computer simulation examples. The exercises are in-
tended to draw the simulators attention to the most important features of each
example. Most instructive is to study the influence of important model parame-
ters, using the interactive and graphical features of MADONNA. Interesting fea-
tures include the possibility of making “parametric runs” to investigate the in-
fluence of one parameter on the steady state values. When working with arrays
to solve multistage or diffusion problems, the variables can be plotted versus
the array number, thus achieving output plots as a function of a distance mea-
sure.

Working through a particular example will often suggest an interesting varia-
tion, such as a control loop, which can then be inserted into the model. In run-
ning our courses, the exercises have proven to be very open-ended and in tack-
ling them, we hope you will share our conviction that computer simulation is
fun, as well as being useful and informative. An Appendix provides an instruc-
tional guide to the MADONNA software, which is sufficient for work with the
simulation examples.

In this edition some of our favourite examples from our previous book “Envi-
ronmental Bioprocesses” have been added in a new section of Chapter 5. Also
the exercises from some examples have been expanded, according to our teach-
ing experience in the area of reactor safety and control.

We are confident that the book will be useful to all who wish to obtain a bet-
ter understanding of chemical engineering dynamics and to those who have an
interest in sharpening their modelling skills. We hope that teachers with an
interest in modelling will find this to be a useful textbook for chemical engin-
eering and applied chemistry courses, at both undergraduate and postgraduate
levels.
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Symbols Units

A Area m2

A Magnitude of controller input signal various
a Specific interfacial area m2/m3 and cm2/cm3

a Various parameters various
B Magnitude of controller output signal various
b Various parameters various
C Concentration kg/m3, kmol/m3

cp Heat capacity at constant pressure kJ/kg K, kJ/mol K
cV Heat capacity at constant volume kJ/kg K, kJ/mol K
D Diffusivity m2/s
d Differential operator –
d, D Diameter m
E Energy kJ or kJ/kg
E Activation energy kJ/mol
E Residence time distribution –
F Residence time distribution –
F Volumetric flow rate m3/s
f Frequency in the ultimate gain method 1/s
G Gas or light liquid flow rate m3/s
g Gravitational acceleration m/s2

G� Superficial light phase velocity m/s
H Enthalpy kJ/mol, kJ/kg
�H Enthalpy change kJ/mol, kJ/kg
H Height m
H Henry’s law constant bar m3/kg
HG Rate of heat gain kJ/s
HL Rate of heat loss kJ/s
h Fractional holdup –
hi Partial molar enthalpy kJ/mol
J Total mass flux kg/s, kmol/s
j Mass flux kg/m2 s, mol/m2 s
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K Constant in Cohen-Coon method various
K Mass transfer coefficient m/s
K kinetic growth constant s–1

k Constant various
kd specific death rate coefficient s–1

KGa Gas-liquid mass transfer coefficient 1/s
referring to concentration in G-phase

kGa Gas film mass transfer coefficient 1/s
KLa Gas-liquid mass transfer coefficient 1/s

referring to concentration in L-phase
kLa Liquid film mass transfer coefficient 1/s
KLX a Overall mass transfer capacity coefficient kmol/m3 s

based on the aqueous phase mole ratio X
Kp Proportional controller gain constant various
Ks saturation constant kg m–3

L Length m
L Liquid or heavy phase flow rate m3/s, mol/s
L� Superficial heavy phase velocity m/s
M Mass kg, mol
M
�

Mass flow rate kg/s
m maintenance factor kg S/kg X
N Mass flux kg/m2 s
N Molar flow rate mol/s
n Number of moles –
n Reaction order –
P Controller output signal various
P Total pressure or pure component bar

vapour pressure
p Partial pressure bar
Pe Peclet number (L v/D) –
Q Heat transfer rate kJ/s
Q Total transfer rate kg/s, mol/s
q Heat flux kJ/m2 s
R Ideal gas constant bar m3/K mol
R Reaction rate kg/s, kmol/s
R Number of reactions –
r Reaction rate kg/m3 s, kmol/m3 s
rAds Adsorption rate of the sorbate g/cm3 s
rd death rate kg m–3 s–1

ri Reaction rate of component i kg i/m3 s, kmol/m3 s
rQ Heat production rate kJ/m3 s
rS Rate of substrate uptake kg S m-3 s-1

rX Growth rate kg biomass/m3 h
S Slope of process reaction curve/A various
S Selectivity –
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S Number of compounds –
S Concentration of substrate kg/m3

s Laplace operator –
T Temperature �C, K
t Time h, min, s
TrA Transfer rate of sorbate g/s
U Heat transfer coefficient kJ/m2 K s
U Internal energy kJ/mol
V Vapour flow rate mol/s
V Volume m3

v Flow velocity m/s
W Rate of work kJ/s
W Mass flow rate kg/s
X Concentration in heavy phase kg/m3, mol/m3

X Mole ratio in the heavy phase –
X Conversion –
X Biomass concentration kg/m3

x Mole fraction in heavy phase –
x Input variable various
Y Fractional yield –
Y Concentration in light phase kg/m3, mol/m3

Y Mole ratio in the light phase –
Y Yield coefficient kg/kg
Yi/j Yield of i from j kg i/kg j
y Mole fraction in light phase –
y Output variable various
Z Arrhenius constant various
Z Length variable m
z Length variable m

Greek

� Difference operator –
� Thiele modulus –
� Dimensionless time –
� Summation operator –
� Backmixing factor –
� Relative volatility –
�� � Reaction order –
� Controller error various
� Effectiveness factor –
� Plate efficiency –
� Dynamic viscosity kg m/s
� Specific growth rate 1/h
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�m Maximum growth rate 1/h
	 Stoichiometric coefficient –

 Dimensionless temperature –
� Density kg/m3

� Controller time constant s
� Residence time h and s
� Shear stress kg m/s2

� Time constant h, min, s
�L Time lag h, min, s
� Partial differential operator –

Indices

0 Refers to initial, inlet, external, or zero order
1 Refers to outlet or first order
1, 2, . . ., n Refers to segment, stage, stream, tank or volume element
A Refers to component A
a Refers to ambient
abs Refers to absorption
agit Refers to agitation
app Refers to apparent
avg Refers to average
B Refers to component B, base, backmixing, surface position or boiler
C Refers to component C or combustion
c Refers to cross-sectional or cold
D Refers to derivative control, component D, delay or drum
E Refers to electrode
eq Refers to equilibrium
F Refers to formation or feed
f Refers to final or feed plate
G Refers to gas or light liquid phase or generation
h Refers to hot
ht Refers to heat transfer
I Refers to integral control
i Refers to component i or to interface
inert Refers to inert component
j Refers to reaction j or to jacket
L Refers to liquid phase, heavy liquid phase or lag
m Refers to metal wall or mixer
max Refers to maximum
mix Refers to mixer
mt Refers to mass transfer
n Refers to tank, section, segment or plate number
p Refers to plug flow, pocket and particle
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Q Refers to heat
R Refers to recycle stream
r Refers to reactor
S Refers to settler, steam, solid or surroundings
s Refers to surface, settler or shell side
SL Refers to liquid film at solid interface
ss Refers to steady state
St Refers to standard
t Refers to tube
tot Refers to total
V Refers to vapour
w Refers to water or wall
– Bar above symbol refers to dimensionless variable
� Refers to perturbation variable, superficial velocity or stripping section
* Refers to equilibrium concentration
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