
2.1
Signal and Process Dynamics

2.1.1
Measurement and Process Response

The aim of dynamic simulation is to be able to relate the dynamic output re-
sponse of a system to the form of the input disturbance, in such a way that an
improved knowledge and understanding of the dynamic characteristics of the
system are obtained. Figure 2.1 depicts the relation of a process input distur-
bance to a process output response.

In testing process systems, standard input disturbances, such as the unit-step
change, unit pulse, unit impulse, unit ramp, sinusoidal, and various random-
ised signals, can be employed.

All the above changes are easily implementable in dynamic simulations,
using MADONNA and other digital simulation languages. The forms of re-
sponse obtained differ in form, depending upon the system characteristics and
can be demonstrated in the various MADONNA simulation examples. The re-
sponse characteristics of real systems are, however, more complex. In order to
be able to explain such phenomena, it is necessary to first examine the re-
sponses of simple systems, using the concept of the simple, step-change distur-
bance.

2.1.1.1 First-Order Response to an Input Step-Change Disturbance
The simplest response of a linear system is described mathematically by the fol-
lowing standard form of first-order differential equation
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Fig. 2.1 Relation of process input to process output.



�
dy
dt

� y � y0

dy
dt

� y0 � y
�

where y is the measured or process response value, t is time, and � is the equa-
tion time constant. In its second form, the equation is often described as a first-
order lag equation, in that the response, y, lags behind the input value y0, im-
posed on the system at time t � 0.

For the step-change condition, shown in Fig. 2.2, the initial conditions are giv-
en by y � 0, when t � 0. The solution to the differential equation, with the
above boundary conditions, is given by

y � y0�1 � e�t���

and is shown in Fig. 2.2

Substituting the value t � �, gives

y� � y0�1 � e�1� � 0�632y0

Hence the value of the equation time constant � is simply determined as the
time at which the response achieves sixty three per cent of its eventual steady-
state value, when following a step change disturbance to the system.

2.1.1.2 Case A: Concentration Response of a Continuous Flow, Stirred Tank
Liquid flows through a tank of constant volume V, with volumetric flow rate F
and feed concentration C0, as shown in Fig. 2.3.
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Fig. 2.2 First-order exponential response to an imposed step-change disturbance.



Assuming well-mixed conditions, the component balance equation is given by

V
dC1

dt
� FC0 � FC1

This can be expressed as

dC1

dt
� C0 � C1

�

where � is V�F.

Note that the equation has the general form

Rate of change
output variable

� �
� Input variable � Output variable

Process time constant

� �

Thus the time constant for the process is equal to the mean residence or hold-
up time in the tank and has units of time (volume/volumetric flow rate).

Integrating with C1 � 0 when t � 0 gives

C1 � C0�1 � e�t���

The response to a step change in feed concentration is thus given by

C1 � C0�1 � e�t��� � C0�1 � e�Ft�V�

and follows the same form as that shown in Fig. 2.4.
Note that when time, t, tends to infinity, the value C1 approaches C0, and

when time, t, is numerically equal to �

C1 � C0�1 � e�1� � 0�632C0

Thus the response is 63.2% complete when the time passed is equal to the time
constant �. Further, for time t equal to four times the value of time constant �,

2.1 Signal and Process Dynamics 53

Fig. 2.3 A continuous stirred-tank reactor.



C1 � C0�1 � e�4� � 0�98C0

then the response is 98% complete.

2.1.1.3 Case B: Concentration Response in a Continuous Stirred Tank
with Chemical Reaction
Assuming a chemical reaction in the tank, in which the rate of reaction is pro-
portional to concentration, the component balance equation now becomes

V
dC1

dt
� FC0 � FC1 � kC1V

where k is the chemical rate coefficient (1/s). This can be rewritten as

V
F � kV

dC1

dt
� C1 � F

F � kV
C0

and the system time constant now has the value

� � V
F � kV

with high values of k acting to reduce the magnitude of �.

The above equation now becomes

dC1

dt
� C1� � C1

�

where C1� is the final steady-state value at t � �, and is given by

C1� � F C0

F � kV
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Fig. 2.4 Step response of a first-order system.



Figure 2.5 illustrates the effect on the process response of increasing values of
k. This shows that increasing the value of k will decrease the response time of
the system and that the final effluent concentration leaving the tank will be re-
duced in magnitude. Increasing k has, however, very little influence on the ini-
tial rate of response.

Note that for k � 0, with zero reaction, the final steady-state response is given
by C0, and the response is identical to that of Case A.

2.1.1.4 Case C: Response of a Temperature Measuring Element
Instrument measurement response can often be important in the overall system
response. The thermal response of a simple thermometer bulb, immersed in
fluid, as shown in Fig. 2.6, is the result of a simple heat balance in which
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Fig. 2.5 Step response of a stirred tank with first-order chemical reaction
(V = 1, F = 1, k4 = 0, k3 = 0.2, k2 = 0.5, k1 = 1).

Fig. 2.6 Temperature measuring element.



Rate of accumulation
of heat by the bulb

� �
� Rate of heat transfer

to the bulb from the fluid

� �

i.e., Mcp
dT
dt

� UA�TS � T�

where M is the mass of the thermometer bulb contents, cp is the specific heat
capacity of the bulb contents, U is the film heat transfer coefficient between the
fluid and bulb wall, A is the heat transfer surface area and TS is the tempera-
ture of the surrounding fluid. Note that the stirred-tank or lumped-parameter
concept has again been adopted in the modelling approach and that the tem-
perature of the fluid within the bulb is assumed to be uniform.

The simple balance equation can be reformulated as

M cp

U A
dT
dt

� T � TS

showing that the measurement time constant is

� � M cp

U A

Often an instrument response measurement can be fitted empirically to a first-
order lag model, especially if the pure instrument response to a step change dis-
turbance has the general shape of a first-order exponential.

As shown in Section 2.1.1.1, the time constant for the instrument is then giv-
en as the time at which 63% of the final response is achieved and the instru-
ment response may be described by the simple relationship

dTmeas

dt
� Tsystem � Tmeas

�

where Tsystem, the actual temperature, and Tmeas, the measured temperature, are
related by the measurement dynamics, as shown in Fig. 2.7, and � is the experi-
mentally obtained instrument time constant.

The ratio of the time constants, �meas and �system, determines whether or not
the system value is significantly different from the measurement value when
conditions are changing, since the measured value will tend to lag behind that
of the system.

For a thermometer to react rapidly to changes in the surrounding tempera-
ture, the magnitude of the time constant should be small. This involves a high
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Fig. 2.7 Influence of instrument response on the measured temperature.



surface area to liquid mass ratio, a high heat transfer coefficient and a low spe-
cific heat capacity for the bulb liquid. With a large time constant, the instru-
ment will respond slowly and may result in a dynamic measurement error.

2.1.1.5 Case D: Measurement Lag for Concentration in a Batch Reactor
The measurement lag for concentration in a reactor is depicted in Fig. 2.8. The
actual reactant concentration in the reactor at any time t is given by Cr, but ow-
ing to the slow response of the measuring instrument, the measured concentra-
tion, shown by the instrument, Cm, lags behind Cr, as indicated in Fig. 2.9.

The dynamic error existing between Cm and Cr depends on the relative mag-
nitudes of the respective time constants. For the reactor, assuming a first-order
constant volume reaction

dCr

dt
� �k Cr

gives a time constant for the reaction

�r � 1
k

Assuming that the instrument response is first order, then as shown in Section
2.1.1.1, the instrument time constant �m is given by the value of time at the
63% point (response to a step-change disturbance), where

dCm

dt
� Cr � Cm

�m
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Fig. 2.8 Concentration measurement lag.

Fig. 2.9 Measured (Cm) and actual (Cr) concentration responses.



The ratio of the time constants, �r��m, which for this case equals �k�m� will de-
termine whether Cr is significantly different from Cm. When this ratio is less
than 1.0 the measurement lag will be important. If �r��m � 10, then Cm � Cr

and the measurement dynamics become unimportant.
The effects of measurement dynamics are demonstrated in the simulation ex-

amples KLADYN, TEMPCONT and CONTUN.

2.1.2
Higher Order Responses

Actual response curves often follow a sigmoidal curve as shown in Fig. 2.10.
This is characteristic of systems having a series of multiple lags and hence of
systems which are characterised by several time constants.

Examples of higher order response curves are shown by the following case
studies.

2.1.2.1 Case A: Multiple Tanks in Series
Consider the case of three, constant-volume tanks in series, as represented in
Fig. 2.11, in which the tanks have differing volumes V1, V2, V3, respectively. As-
suming well-mixed tanks, the component balance equations are

for tank 1 V1
dC1

dt
� F C0 � F C1

for tank 2 V2
dC2

dt
� F C1 � F C2

for tank 3 V3
dC3

dt
� F C2 � F C3
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Fig. 2.10 Higher order step response.



The above balance equations may be expressed as

�1
dC1

dt
� C1 � C0 �1 � V1

F

�2
dC2

dt
� C2 � C1 �2 � V2

F
and

�3
dC3

dt
� C3 � C2 �3 � V3

F
or as

dC1

dt
� C0 � C1

�1

dC2

dt
� C1 � C2

�2

dC3

dt
� C2 � C3

�3
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Fig. 2.11 Stirred tanks in series.

Fig. 2.12 Step response of n equal volume stirred tanks in series (n = 1, 2, 5, 10, 20).



In this case, three time constants in series, �1, �2 and �3, determine the form of
the final outlet response C3. As the number of tanks is increased, the response
curve increasingly approximates the original step-change input signal, as shown
in Fig. 2.12. The response curves for three stirred tanks in series, combined
with chemical reaction are shown in the simulation example CSTRPULSE.

2.1.2.2 Case B: Response of a Second-Order Temperature Measuring Element
The temperature response of the measurement element shown in Fig. 2.13 is
strictly determined by four time constants, describing (a) the response of the
bulk liquid, (b) the response of the thermometer pocket, (c) the response of the
heat conducting liquid between the wall of the bulb and the wall of the pocket
and (d) the response of the wall material of the actual thermometer bulb. The
time constants (c) and (d) are usually very small and can be neglected. A realis-
tic model should, however, take into account the thermal capacity of the pocket,
which can sometimes be significant.

Assuming the pocket to have a uniform temperature TP, the heat balance for
the bulb is now

Rate of accumulation
of heat by the bulb

� �
� Rate of heat transfer

to the bulb from the pocket

� �

M cp
dT
dt

� U1 A1�TP � T�

where U1 is the heat transfer coefficient from the pocket to the bulb and A1 is
the heat transfer surface between the fluid and the bulb.
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Fig. 2.13 Thermometer enclosed within a pocket.



Since the pocket temperature, TP, is now a variable in the system, an addi-
tional heat balance equation is required for the pocket. This is of the same form
as for the bulb, except that heat is now transferred both to the pocket from the
surrounding and from the pocket to the bulb. Thus

Rate of

accumulation

of heat

by the pocket

�
����

�
���� �

Rate of heat transfer

to the pocket

from the fluid

�
��

�
���

Rate of heat transfer

from the pocket

to the bulb

�
��

�
��

giving

MP cpP
dTP

dt
� U2 A2�TS � TP� � U1 A1�TP � T�

where U2 is the heat transfer coefficient between the fluid and the pocket, A2 is
the heat transfer surface between the fluid and the pocket, MP is the mass of
the pocket, and cpP is the specific heat of the pocket.

The overall instrument response is thus now determined by the relative mag-
nitudes of the two major time constants, where for the liquid in the bulk

�1 � M cP

U1 A1

and for the pocket,

�2 � MP cpP

U1A1 � U2A2

For accurate dynamic measurement of process temperature, both �2 and �1

should be small compared with the time constant of the actual process.

2.1.3
Pure Time Delay

In contrast to the prior lag type response signals, time delays give no immediate
response until the elapse of a given period of dead time or delay. In flow processes,
this is equivalent to the time required for the system to pass through the signal in
an otherwise unchanged state. An example would be the time taken to pump a
sample from the process to a measuring instrument. In this case the magnitude
of the time delay would simply be the time taken for the sample to travel along the
pipe or the volume of the sample pipe divided by the sample flow rate, and thus
equal to the mean residence time of the sample system.

As shown in Fig. 2.14, the input signal from the process is transmitted
through the sample pipe until it arrives at the measuring instrument at a delay
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time tL. In all other respects, however, the signal arriving at the measurement
point is identical to the response of the actual system.

Most simulation languages include a standard time delay function, which is
pre-programmed into the language structure. This facility is also available in
MADONNA and is implemented in several of the simulation examples.

2.1.4
Transfer Function Representation

Complex systems can often be represented by linear time-dependent differential
equations. These can conveniently be converted to algebraic form using Laplace
transformation and have found use in the analysis of dynamic systems (e.g.,
Coughanowr and Koppel, 1965; Stephanopoulos, 1984; Luyben, 1990).

Thus, as shown in Fig. 2.15, the input-output transfer-function relationship,
G(s), is algebraic, whereas the time domain is governed by the differential equa-
tion.

Model representations in Laplace transform form are mainly used in control
theory. This approach is limited to linear differential equation systems or their
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Fig. 2.14 Schematic drawing of a process with immediate and time-delayed
responses to a step change of an input signal.

Fig. 2.15 Time and Laplace domain representations.



linearized approximations and is achieved by a combination of first order lag
function and time delays. This limitation together with additional complications
of modelling procedures are the main reasons for not using this method here.
Specialized books in control theory as mentioned above use this approach and
are available to the interested reader.

Dynamic problems expressed in transfer function form are often very easily
reformulated back into sets of differential equation and associated time delay
functions. An example of this is shown in the simulation example TRANSIM.

2.2
Time Constants

As shown in the preceding sections, the magnitude of various process time con-
stants can be used to characterise the rate of response of a process resulting
from an input disturbance. A fast process is characterised by a small value of
the time constant and a slow process by large time constants. Time constants
can therefore be used to compare rates of change and thus also to compare the
relative importance of differing rate processes.

The term time constant is more or less equivalent to process time, characteristic
time and relaxation time. Relaxation time is often used in physics, but is applied
only to first-order processes and refers to the time for a process to reach a certain
fraction of completion. This fraction is given by �1 � 1�e� � 0�63, which for a first-
order process, as shown previously, is reached at a time t � �. Time constants also
may be used to describe higher order processes and also non-linear processes. In
these cases the time constant is defined as the time in which the process proceeds
to a specified fraction of the resultant steady state. Higher order processes are of-
ten more elegantly described by a series of time constants.

A knowledge of the relative magnitude of the time constants involved in dy-
namic processes is often very useful in the analysis of a given problem, since
this can be used to
� discover whether a change of regime occurs during scale up
� reduce the complexity of mathematical models
� determine whether the overall rate of a process is limited by a particular rate

process, e.g., kinetic limitation or by diffusion, mixing, etc.
� check the controllability of a process
� check the difficulty of numerical solution due to equation stiffness

If the differing time constants for a chemical process are plotted as a function of
the system variables, it can often be seen which rate process may be limiting.
Many dimensionless groups can be considered as a ratio of the time constants
for differing processes, and can give a clearer view on the physical meaning of
the group. Such factors are discussed in much greater detail in other texts (Sweere
et al., 1987), but here the intention is simply to draw attention to the importance of
process time constants in the general field of dynamic simulation.
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As shown previously, the general form of equation serving to define time con-
stants is as follows

The rate of change
of the variable

� �
� Final value � Instantaneous value

Time constant

� �

However, a more general way to define time constants is

Time constant � Capacity
Rate

In this definition both “capacity” and “rate” have to be used in a rather general
way. Some examples are presented in Table 2.1. The symbols are defined in the
Nomenclature.

The choice of capacity is sometimes a problem, and may change according to
the particular circumstance. Sometimes using a definition of time constant,
based on the above equations, is not very helpful and other means must be em-
ployed. For example, mixing time is a very important time constant relating to
liquid mixing, and this is best obtained directly from empirical correlations of
experimental data.

2.2.1
Common Time Constants

2.2.1.1 Flow Phenomena
Some common time constants, relating to particular chemical engineering flow
applications, are

� � Capacity
Rate

� Length
Velocity

� Travelling time

� � Capacity
Rate

� Volume
Volumetric flow

� Residence time

�circ � Circulation time
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Table 2.1 Time constants defined by capacity and flow.

Capacity symbol Dimension Rate symbol Dimension Time constant

L m v m/s Travelling time �

V m3 F m3/s Residence time �

V C kmol V kLa C kmol/s Mass transfer time �mt

V C kmol V rC kmol/s Reaction time �r

V �cp dT J U A dT J/s Heat transfer time �ht

V �cp dT J V rh J/s Heat production time �hp

V C kmol A D C/L kmol/s Diffusion time �d



Various empirical equations are available for the circulation time constant, �circ,
in stirred vessels, columns, etc. Usually the value of the time constant, however,
will represent a mean value, owing to the stochastic nature of flow.

Mixing time constants, �mix, are also available based on an empirical corre-
lation and are usually closely related to the value of �circ (Joshi et al., 1982). A
value of �mix = 4�circ is often used for stirred vessels and a value of �mix = 2 to
4�circ for columns. The exact value strongly depends on the degree of mixing ob-
tained.

2.2.1.2 Diffusion–Dispersion
Diffusion and dispersion processes can be characterised by a time constant for
the process, given by

�D � Capacity
Rate

� L2

D

where L is the characteristic diffusion or dispersion length and D is the diffu-
sion or dispersion coefficient.

2.2.1.3 Chemical Reaction
Chemical reaction rate processes can be described by time constants.

In general

�r � Capacity
Rate

� V C
V r

� C
r

where C is concentration and r is the reaction rate. Hence
� for a zero-order process r = k �r = C/k
� for a first-order process r = kC �r = 1/k
� for a second-order process r = kC2 �r = 1/kC

2.2.1.4 Mass Transfer
Transfer rate processes can also be characterized by time constants formulated
as

�mt � Capacity
Rate

� V C
V Ka C

� 1
Ka

where Ka is the mass transfer capacity coefficient, with units (1/s).

For a first-order process the time constant can be found from the defining dif-
ferential equation as shown in Section 2.1.1.1. For the case of the aeration of a
liquid, using a stirred tank, the following component balance equation applies
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VL
dCL

dt
� kLa�C�

L � CL�VL

where CL is the concentration of oxygen in the liquid phase (kg/m3), t is time
(s), kLa is the mass transfer coefficient (1/s), VL is the liquid volume (m3), and
C�

L is the equilibrium-dissolved oxygen concentration corresponding to the gas
phase concentration, CG.

By definition, the time constant for the process is thus 1�kLa and the dis-
solved oxygen response to a step change in gas concentration is given by

CL � C�
L 1 � e�kLat
	 


One has to be careful, however, in defining time constants. The first important
step is to set up the correct equations appropriately. If the prime interest is not
the accumulation of oxygen in the liquid as defined previously, but the deple-
tion of oxygen from the gas bubbles, then the appropriate balance equation be-
comes

VG
dCG

dt
� �kLa�C�

L � CL�VL

Note that in this case, the gas phase concentration, CG, relates to the total
mixed gas phase volume VG, whereas the mass transfer capacity coefficient
term is more conveniently related to the liquid volume, VL.

If we consider the case where CL 	 C�
L and that C�

L is related to CG via the
Henry’s Law coefficient as C�

L = CG�H, we can rewrite the above equation as

dCG

dt
� �kLaVL

H VG
CG

The time constant is now given by

H VG

kLa VL

Thus for the accumulation of oxygen in the liquid phase

�mt � 1
kLa

and for the depletion of oxygen from the gas phase

�mt � H
kLa

VL

VG

thus representing a substantial order of difference in magnitude for the two
time constants.
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2.2.1.5 Heat Transfer
Heat transfer processs time constants are formulated as

�ht � Capacity
Rate

� M cP T
U A T

� M cP

U A

U is the heat transfer coefficient, M the mass, cp the heat capacity and A the
heat transfer area. A knowledge and understanding of the appropriate time con-
stants is important in interpreting many of the simulation examples.

2.2.2
Application of Time Constants

Figure 2.16 gives an example of a bubble column reactor with growing microor-
ganisms which consume oxygen. Here the individual process time constants are
plotted versus the operating variable, the superficial gas velocity. It can be seen
that for high values of the superficial gas velocity (vs) and low rates of oxygen
consumption (rO2), the time constants for mixing (�mix) and for the oxygen
mass transfer rate (�mt) are lower in magnitude than the oxygen reaction rate
time constant (�r). For higher reaction rates (e.g., rO2 � 1 
 10� � 3 kg�m3s) and
reasonable values of vs, it is impossible to obtain a value of �mix less than �r,
and therefore mixing and mass transfer processes can become limiting at high-
er reaction rates.
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Fig. 2.16 Mixing, mass transfer and oxygen consumption in a bubble column
bioreactor (Oosterhuis, 1984). �r reaction time constant, �mt mass transfer
time constant, �mix mixing time constant. rO2 oxygen consumption rate,
vs superficial gas velocity.



2.3
Fundamentals of Automatic Control

Automatic process control involves the maintenance of a desired value of a mea-
sured or estimated quantity (controlled variable) within prescribed limits (devia-
tions, errors), without the direct action of an operator. Generally, this involves
three steps:
1. Measuring the present value of the controlled variable.
2. Comparing the measurement with the desired value (set point).
3. Adjusting some other variable (manipulated variable), which has influence on

the controlled variable, until the set point is reached.

The most important reasons for applying process control are as follows:
� Safety for personnel and equipment.
� Uniform and high quality products.
� Increase of productivity.
� Minimisation of environmental hazards.
� Optimisation and decrease of labour costs.

Successful design of a process control system requires the following steps:
1. Selection of the control variables which are the most sensitive and easily mea-

surable.
2. Formulation of the control objective; for example, the minimisation of some

cost function.
3. Analysis of the process dynamics.
4. Selection of the optimal control strategy.

Process control is highly dynamic in nature, and its modelling leads usually to
sets of differential equations which can be conveniently solved by digital simula-
tion. A short introduction to the basic principles of process control, as employed
in the simulation examples of Section 5.7, is presented.

2.3.1
Basic Feedback Control

The concept of an automatic control system is illustrated in Fig. 2.17, based on
a temperature-controlled chemical reactor.

The components of the basic feedback control loop, combining the process
and the controller, can be best understood using a generalised block diagram
(Fig. 2.18). The information on the measured variable, temperature, taken from
the system is used to manipulate the flow rate of the cooling water in order to
keep the temperature at the desired constant value, or setpoint. This is illus-
trated by the simulation example TEMPCONT (Section 5.7.1).
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2.3.2
Types of Controller Action

In the basic conventional feedback control strategy the value of the measured
variable is compared with that for the desired value of that variable and if a dif-
ference exists, a controller output is generated to eliminate the error.
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Fig. 2.17 Simple feedback temperature control system. M motor with stirrer,
PV pneumatic valve, TT temperature measurement, TC temperature controller.

Fig. 2.18 Block diagram of a feedback control system.



2.3.2.1 On/Off Control
The simplest and, despite its several drawbacks, the most widely used type of
control is the on/off control system. An example is a contact thermometer,
which closes or opens a heater circuit. The designation on/off means that the
controller output, or the manipulated variable (electric current) is either fully on
or completely off. To avoid oscillations around the setpoint, the real on/off con-
troller has built into it a small interval on either side of the setpoint within
which the controller does not respond, and which is called the differential gap
or deadzone. When the controlled variable moves outside the deadzone, the ma-
nipulated variable is set either on or off. This is illustrated in Fig. 2.19. Such
shifts from the set point are known as offset.

The oscillatory nature of the action and the offset make the resulting control
rather imperfect, but the use of on/off control can be justified by its simplicity
and low price, and the reasonable control obtained, especially for systems which
respond slowly.

2.3.2.2 Proportional-Integral-Derivative (PID) Control
Three principal functional control modes are proportional (P), integral (I) and
derivative (D) control. These are performed by the ideal three-mode controller
(PID), described by the equation

P � P0 � Kp��t� � Kp

�I

� t

0
��t�dt � Kp�D

d��t�
dt

Controller modes: P I D

where:
P0 is the controller output for zero error
Kp is the proportional gain
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Fig. 2.19 On/off controller with differential gap or dead zone.



��t� is the error or deviation of actual from desired value
�I is the integral time or reset time constant
�D is the derivative time constant

The response of a controller to an error depends on its mode. In the propor-
tional mode (P), the output signal is proportional to the detected error, �. Sys-
tems with proportional control often exhibit pronounced oscillations, and for
sustained changes in load, the controlled variable attains a new equilibrium or
steady-state position. The difference between this point and the set point is the
offset. Proportional control always results in either an oscillatory behaviour or
retains a constant offset error.

Integral mode controller (I) output is proportional to the sum of the error
over the time. It can be seen that the corrections or adjustments are propor-
tional to the integral of the error and not to the instantaneous value of the error.
Moreover, the corrections continue until the error is brought to zero. However,
the response of integral mode is slow and therefore is usually used in combina-
tion with other modes.

Derivative mode (D) output is proportional to the rate of change of the input
error, as can be seen from the three-mode equation.
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Fig. 2.20 Response of the most common controller modes for step change
and ramp function of the error signal.



In industrial practice it is common to combine all three modes. The action is
proportional to the error (P) and its change (D) and it continues if residual error
is present (I). This combination gives the best control using conventional feed-
back equipment. It retains the specific advantages of all three modes: propor-
tional correction (P), offset elimination (I) and stabilising, quick-acting charac-
ter, especially suitable to overcome lag presence (D).

Simple control strategies form an integral part of many of the simulation ex-
amples, including RELUY, COOL, DEACT, REFRIG1, REFRIG2, RUN, EXTRA-
CTCON, SULFONATION and the special control examples in Sec. 5.7, TEMP-
CONT, TWOTANK and CONTUN.

Figure 2.20 depicts the responses of the various control modes and their com-
binations to step and ramp inputs.

The performance of different feedback control modes can be seen in Fig.
2.21.

The selection of the best mode of control depends largely on the process char-
acteristics. Further information can be found in the recommended texts listed
in the reference section. Simulation methods are often used for testing control
methods. The basic PI controller equations are easily programmed using a sim-
ulation language, as shown in the example programs. In the simulation exam-
ples, the general PID equation is simplified and only the P or P and I terms are
used. Note that the I term can be set very low by using a high value for �I.

If desired, the differential term, d�/dt, can be programmed as follows:

Since
� � y � yset

then
d�
dt

� dy
dt

and this derivative can be obtained directly from the model equations.

2.3.2.3 Case A: Operation of a Proportional Temperature Controller
Liquid flows continuously through a tank of volume, V, provided with an elec-
tric heater. A controller regulates the rate of heating directly in accordance with
the difference between a required set point temperature, Tset, and the actual
temperature, T1, as shown in Fig. 2.22.

The heat balance equation for the tank is similar to that of Case A of Section
1.2.5.1, i.e.,

V� cp
dT
dt

� F0�cp�T0 � T1� � Q

but where Q is the rate of electric heating and is expressed by a proportional
control equation (omitting the I and D terms)

Q � Q0 � Kp�Tset � T1�
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2.3.3
Controller Tuning

The purpose of controller tuning is to choose the correct controller constants to
obtain the desired performance characteristics. This usually means that the con-
trol variables should be restored in an optimal way to acceptable values, follow-
ing either a change in the set point or the appearance of an input disturbance.
Numerous books discussing the subject are available (e.g. Shinskey, 1996). The
Internet is a good source of information, where some e-Books appeared, e.g.
“The PID Controller Tuning Methods” by John Shaw. Simulation examples
TEMPCONT and CONTUN provide exercises for controller tuning using the
methods explained below.
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Fig. 2.21 Response of controlled variable to a step change in error using
different control modes.

Fig. 2.22 Temperature control, TC, of a continuously operated stirred tank
with an electric heater (Q).

Time



2.3.3.1 Trial and Error Method
Controllers can be adjusted by changing the values of gain Kp, reset time �I and
derivative time �D. The controller can be set by trial and error by experimenting,
either on the real system or by simulation. Each time a disturbance is made the
response is noted. The following procedure may be used to test the control with
small set point or load changes:
1. Starting with a small value, Kp can be increased until the response is unstable

and oscillatory. This value is called the ultimate gain Kp0.
2. Kp is then reduced by about one-half.
3. Integral action is brought in with high �I values. These are reduced by factors

of 2 until the response is oscillatory, and �I is set at 2 times this value.
4. Include derivative action and increase �D until noise develops. Set �D at 1/2

this value.
5. Increase Kp in small steps to achieve the best results.

2.3.3.2 Ziegler–Nichols Open-Loop Method
This empirical open-loop tuning mode, known also as the “Reaction Curve”
method, is implemented by uncoupling the controller. It is an empirical open-
loop tuning technique, obtained by uncoupling the controller. It is based on the
characteristic curve of the process response to a step change in manipulated
variable of magnitude A. The response, of magnitude B, is called the process re-
action curve. The two parameters important for this method are given by the
slope through the inflection point normalised by A, so that S = Slope/A, and by
its intersection with the time axis (lag time TL), as determined graphically in
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Table 2.2 Controller settings based on process responses.

Controller Kp �I �D

Ziegler–Nichols
P 1/(TLS)
PI 0.9/(TLS) 3.33 TL

PID 1.2/(TLS) 2 TL TL/2

Cohen–Coon
P

�

K TL
1 � TL

3�

� �

PI
�

K TL
0�9 � TL

12�

� �
TL

30 � 3TL��

9 � 20TL��

PID
�

K TL

4
3
� TL

12�

� �
TL

32 � 6TL��

13 � 8TL��
TL

4
12 � 2TL��

Ultimate Gain
P 0.5 Kp0

PI 0.45 Kp0 1/1.2 f0

PID 0.6 Kp0 1/2 f0 1/8 f0



Fig. 2.23. The actual tuning relations, based on empirical criteria for the “best”
closed-loop response are given in Table 2.2.

2.3.3.3 Cohen–Coon Controller Settings
Cohen and Coon observed that the response of most uncontrolled (controller
disconnected) processes to a step change in the manipulated variable is a sig-
moidally shaped curve. This can be modelled approximately by a first-order sys-
tem with time lag TL, as given by the intersection of the tangent through the in-
flection point with the time axis (Fig. 2.23). The theoretical values of the con-
troller settings obtained by the analysis of this system (e.g. Luyben and Luyben,
1997) are summarised in Table 2.2. The model parameters for a step change A
to be used with this table are calculated as follows:

K � B�A � � B�S

where B is the extent of response, S is the slope at the inflection point, and TL

is the lag time as determined in Fig. 2.23.

2.3.3.4 Ultimate Gain Method
The previous transient-response tuning methods are sensitive to disturbances be-
cause they rely on open-loop experiments. Several closed loop methods have been
developed to eliminate this drawback. One of these is the empirical tuning meth-
od, ultimate gain or continuous cycling method. The ultimate gain, Kp0, is the
gain which brings the system with sole proportional control only to sustained os-
cillation (stability limits) with frequency fp0, where 1�fp0 is called the ultimate per-
iod. This is determined experimentally by increasing Kp from low values in small
increments until continuous cycling begins. The controller settings are then cal-
culated from Kp0 and fp0 according the tuning rules given in Table 2.2.
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Fig. 2.23 Process reaction curve for the Ziegler–Nichols method.



While this method is very simple it can be quite time consuming in terms of
number of trials required and especially when the process dynamics are slow.
In addition, it may be hazardous to experimentally force the system into un-
stable operation.

2.3.3.5 Time Integral Criteria
Several criteria may be used to estimate the quality of control (Stephanopoulos,
1984). One of these is the integral of the time-weighted absolute error (ITAE),
where

ITAE �
� t

0
�t ��t���dt�

Integral error criteria are ideally suited to simulation applications since only
one additional program statement is required for the simulation. The optimal
control parameters Kp, �I and �D can be then found at minimal ITAE. For this,
it is useful to be able to apply the available optimisation tools implemented in
such programs as MATLAB, ACSL-OPTIMIZE or MADONNA.

2.3.4
Advanced Control Strategies

2.3.4.1 Cascade Control
In control situations with more than one measured variable but only one ma-
nipulated variable, it is advantageous to use control loops for each measured
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Fig. 2.24 Cascade control to maintain product concentration by manipulating
the reactant concentration in the feed.



variable in a master-slave relationship. In this, the output of the primary con-
troller is usually used as a set point for the slave or secondary loop.

An example of cascade control could be based on the simulation example
DEACT and this is shown in Fig. 2.24. The problem involves a loop reactor with
a deactivating catalyst, and a control strategy is needed to keep the product con-
centration CP constant. This could be done by manipulating the feed rate into
the system to control the product concentration at a desired level, Cset. In this
cascade control, the first controller establishes the setpoint for flow rate. The
second controller uses a measurement of flow rate to establish the valve posi-
tion. This control procedure would then counteract the influence of decreasing
catalyst activity.

2.3.4.2 Feedforward Control
Feedback control can never be perfect as it reacts only to disturbances in the
process outlet. Feedforward control can theoretically be perfect, because the inlet
disturbances are measured, and their effects on the process are anticipated via
the use of a model. If the model is perfect then the calculated action to be taken
will be exact.

The example simulation THERMFF illustrates this method of using a dy-
namic process model to develop a feedforward control strategy. At the desired
setpoint the process will be at steady-state. Therefore the steady-state form of
the model is used to make the feedforward calculations. This example involves
a continuous tank reactor with exothermic reaction and jacket cooling. It is as-
sumed here that variations of inlet concentration and inlet temperature will dis-
turb the reactor operation. As shown in the example description, the steady
state material balance is used to calculate the required response of flowrate and
the steady state energy balance is used to calculate the required variation in
jacket temperature. This feedforward strategy results in perfect control of the
simulated process, but limitations required on the jacket temperature lead to
imperfections in the control.

2.3 Fundamentals of Automatic Control 77

Fig. 2.25 Feed-forward control with additional feedback loop.



The success of this control strategy depends largely on the accuracy of the
model prediction, which is often imperfect as models can rarely exactly predict
the effects of process disturbances. For this reason, an additional feedback loop
is often used as a backup or to trim the main feedforward action, as shown in
Fig. 2.25. Many of the continuous process simulation examples in this book
may be altered to simulate feedforward control situations.

2.3.4.3 Adaptive Control
An adaptive control system can automatically modify its behaviour according to
the changes in the system dynamics and disturbances. They are applied espe-
cially to systems with non-linear and unsteady characteristics. There are a num-
ber of actual adaptive control systems. Programmed or scheduled adaptive con-
trol uses an auxiliary measured variable to identify different process phases for
which the control parameters can be either programmed or scheduled. The
“best” values of these parameters for each process state must be known a priori.
Sometimes adaptive controllers are used to optimise two or more process out-
puts, by measuring the outputs and fitting the data with empirical functions.

2.3.4.4 Sampled Data or Discrete Control Systems
When discontinuous measurements are involved, the control system is referred
to as a sampled data or discrete controller. Concentration measurements by
chromatography would represent such a case.

Here a special consideration must be given to the sampling interval �T (Fig.
2.26). In general, the sampling time will be short enough if the sampling fre-
quency is 2 times the highest frequency of interest or if �T is 0.5 times the
minimum period of oscillation. If the sampling time satisfies this criterion, the
system will behave as if it were continuous. Details of this and other advanced
topics are given in specialised process control textbooks, some of which are
listed in the references.
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Fig. 2.26 Sampled control strategy.



2.4
Numerical Aspects of Dynamic Behaviour

2.4.1
Optimisation

Optimisation may be used, for example, to minimise the cost of reactor opera-
tion or to maximise conversion. Having set up a mathematical model of a reac-
tor system, it is only necessary to define a cost or profit function and then to
minimise or maximise this by variation of the operational parameters, such as
temperature, feed flow rate or coolant flow rate. The extremum can then be
found either manually by trial and error or by the use of numerical optimisa-
tion algorithms. The first method is easily applied with MADONNA, or with
any other simulation software, if only one operational parameter is allowed to
vary at any one time. If two or more parameters are to be optimised this meth-
od becomes extremely cumbersome. To handle such problems, MADONNA has
a built-in optimisation algorithm for the minimisation of a user-defined objec-
tive function. This can be activated by the OPTIMIZE command from the Pa-
rameter menu. In MADONNA the use of parametric plots for a single variable
optimisation is easy and straight-forward. It often suffices to identify optimal
conditions, as shown in Case A below.

Basically two search procedures for non-linear parameter estimation applica-
tions apply (Nash and Walker-Smith, 1987). The first of these is derived from
Newton’s gradient method and numerous improvements on this method have
been developed. The second method uses direct search techniques, one of
which, the Nelder-Mead search algorithm, is derived from a simplex-like
approach. Many of these methods are part of important mathematical packages,
e.g., ASCL and MATLAB.

2.4.1.1 Case A: Optimal Cooling for a Reactor with an Exothermic
Reversible Reaction
A reversible exothermic reaction A � B is carried out in a stirred-tank reactor with
cooling. The details of the model are given in the simulation example REVTEMP.
Specific heats are functions of temperature. The temperature dependency of the
reaction rate constants are given by the Arrhenius equation, that of the equilib-
rium constant by the van’t Hoff equation. Adiabatic operation restricts conversion
because of an unfavourable equilibrium at high temperature. Early cooling favours
the equilibrium conversion but reduces reaction rates, according to the Arrhenius
equation. It is assumed that the cooling water temperature is constant, and that
the cooling water flow, FC, may be either on or off. At time TIMEON the cooling
water flow is set to FCON. A profit function is defined as

SPTYB � C2
B

t

2.4 Numerical Aspects of Dynamic Behaviour 79



This reflects the desire to have high conversion in a short time period. SPTYB
always passes through a maximum during a batch run. The problem is defined
as finding the optimal times to switch on the cooling water flow (TIMEON) and
to harvest the tank contents (TFIN). The program listing is given on the CD.

In MADONNA this problem is easily solved in the following way. Plotting
SPTYB versus TIME always gives a maximum. This would be the optimal har-
vesting time for a preset value of TIMEON. The optimal value for TIMEON
is found by Batch Runs, Initial value = 6, Final Value = 20 and e.g. 40 Runs.
Selecting the Mode Parametric Plot, choosing SPTYB as variable and selecting
Maximum value, gives a plot as depicted in Fig. 2.27a. Increasing TIMEON
from 6 to 8 increases SPTMB (max.) dramatically showing a flat maximum be-
tween 8 and 10. Inspection of the tabular output gives an optimal value of about
8.5. From making one Run with the optimal value of TIMEON by setting
TIMEON = 8.5 in the Parameters Window and plotting SPTYB versus TIME
the maximum value of SPTYB is directly obtained (Fig. 2.27b). From the shape
of the curves it is clearly seen that the system is very robust for values of
TIMEON > 8.

In non-linear systems one can usually not predict a priori whether the opti-
mum found is global or whether the optimum obtained represents only a local
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Fig. 2.27 (a) Parametric run of REVTEMP varying variable TIMEON.
(b) Run of REVTEMP with optimal value of TIMEON from (a).

(a)

(b)



condition. A good judgement on the behaviour of the model can be seen in con-
tour and three-dimensional plots, which are easily obtained using other alterna-
tive software packages, such as ACSL-OPTIMIZE or MATLAB.

2.4.2
Parameter Estimation

Having set up a model to describe the dynamics of the system, a very important
first step is to compare the numerical solution of the model with any experi-
mental results or observations. In the first stages, this comparison might be
simply a check on the qualitative behaviour of a reactor model as compared to
experiment. Such questions might be answered as: Does the model confirm the
experimentally found observations that product selectivity increases with tem-
perature and that increasing flow rate decreases the reaction conversion?

Following the first preliminary comparison, a next step could be to find a set
of parameters that give the best or optimal fit to the experimental data. This
can be done by a manual trial-and-error procedure or by using a more sophisti-
cated mathematical technique which is aimed at finding those values for the
system parameters that minimise the difference between values given by the
model and those obtained by experiment. Such techniques are general, but are
illustrated here with special reference to the dynamic behaviour of chemical re-
actors.

Table 2.3 is used to classify the differing systems of equations, encountered
in chemical reactor applications and the normal method of parameter identifica-
tion. As shown, the optimal values of the system parameters can be estimated
using a suitable error criterion, such as the methods of least squares, maximum
likelihood or probability density function.

2.4 Numerical Aspects of Dynamic Behaviour 81

Table 2.3 Classification of systems of reactor equations with a set of
parameters and time-dependent variables.

Examples of linear systems Examples of non-linear systems

Algebraic
equations

Steady state of CSTR with first-order
kinetics. Algebraic solution and opti-
misation (least squares, Draper and
Smith, 1981).

Steady state of CSTR with complex
kinetics. Numerical solution and opti-
misation (least squares or likelihood
function).

Differential
equations

Batch reactor with first-order kine-
tics. Analytical or numerical solution
with analytical or numerical param-
eter optimisation (least squares or
likelihood).

Batch reactor with complex kinetics.
Numerical integration and parameter
optimisation (least squares or likeli-
hood).



2.4.2.1 Non-Linear Systems Parameter Estimation
The methods concerned with differential equation parameter estimation are, of
course, the ones of most concern in this book. Generally reactor models are
non-linear in their parameters, and therefore we are concerned mostly with
non-linear systems.

Given a model in the form of a set of differential equations,

dy
dt

� f �k1 � � � kn� y�

A model described by this differential equation is linear in the parameters
k1 � � � kn, if

�f
�ki

� g�k1 � � � kn�

but is non-linear, if for at least one of the parameters ki

�f
dki

� h�k1 � � � � y�

The application of optimisation techniques for parameter estimation requires a
useful statistical criterion (e.g., least-squares). A very important criterion in non-
linear parameter estimation is the likelihood or probability density function.
This can be combined with an error model which allows the errors to be a func-
tion of the measured value.

If basic assumptions concerning the error structure are incorrect (e.g., non-
Gaussian distribution) or cannot be specified, more robust estimation tech-
niques may be necessary, e.g., Maria and Heinzle (1998). In addition to the
above considerations, it is often important to introduce constraints on the
estimated parameters (e.g., the parameters can only be positive). Such con-
straints are included in the simulation and parameter estimation package ACSL-
OPTIMIZE and in the MATLAB Optimisation Toolbox. Because of numerical
inaccuracy, scaling of parameters and data may be necessary if the numerical
values are of greatly differing order. Plots of the residuals, difference between
model and measurement value, are very useful in identifying systematic or
model errors.

Non-linear parameter estimation is far from a trivial task, even though it is
greatly simplified by the availability of user-friendly program packages such as
(a) ACSL-OPTIMIZE, (b) MADONNA, (c) a set of BASIC programs (supplied
with the book of Nash and Walker-Smith, 1987) or (d) by mathematical software
(MATLAB). MADONNA has only limited possibilities for parameter estimation,
but MADONNA programs can easily be translated into other more powerful
languages.
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2.4.2.2 Case B: Estimation of Rate and Equilibrium Constants
in a Reversible Esterification Reaction Using MADONNA
The objective is to demonstrate the use of MADONNA in the estimation of
model parameters. Here the parameters are estimated using the CURVE FIT
feature of MADONNA. This allows data to be imported by clicking the IMPORT
DATA in this menu and selecting an external text file. The file must have the
time in the first column and the data values in the second column. Two data
columns can also be used, but they must correspond to equally spaced times.
The number of parameters to be estimated can be one or more.

In this example, ethanol and acetic acid react reversibly to ethyl acetate, using
a catalyst, ethyl hydrogensulfate, which is prepared by reaction between sulfuric
acid and ethanol.

Acetic acid + Ethanol ���� Ethyl acetate + water

A � B ����
k2

k1 C � D

The rate of batch reaction for reactant A (acetic acid) is modelled as

dCA

dt
� rA � �k1CACB � k2CCCD

The progress of the reaction is followed by taking samples at regular time inter-
vals and titrating the remaining free acid with alkali (mL).

The table of measured data, time (min) versus titrated volume (mL) is im-
ported into the program from the external file ESTERdat.txt and will be plotted
after a graph window is defined. Clicking CURVE-FIT will allow the selection of
the variable and the parameters. For each parameter, two preliminary guessed
values and the maximum and minimum allowable values can be entered. On
running under CURVE-FIT, the values of the required parameters are repeat-
edly updated, until the final converged values are obtained. The updated values
can be found in the Parameter Window. On clicking Run, a final run is made,
enabling the final simulation results to be compared with the original data val-
ues. The MADONNA program ESTERFIT and the graph of the data and the
final results of the parameter estimation are shown below.

{ESTERFIT}
{Fitting of experimental titration data to determine the rate
constants for a reversible reaction:
ethanol + acetic Acid � ethyl acetate +water}

METHOD Auto
STARTTIME = 0
STOPTIME = 1200
DT = 0.3
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{Initial guess on rate constants, m3/kmol min}
k1 = 0.003
k2 = 0.001

INIT CA = 5.636 {initial acetic acid, kmol/m3}
INIT CB = 5.636 {initial ethanol, kmol/m3}
INIT CC = 0 {initial ethyl acetate, kmol/m3}
INIT CD = 0.634 {initial water, kmol/m3}
CA0 = 5.636 {initial acetic acid, kmol/m3}

{Batch material balances}
d/dt(CA)=-r1+r2
d/dt(CB)=-r1+r2
d/dt(CC)=+r1-r2
d/dt(CD)=+r1-r2

r1=k1*CA*CB
r2=k2*CC*CD

MLtitrated=CA/Titfact
Titfact=CA0/ML0 {Ratio (kmoles/m3)/mL 1 N NaOH}
ML0=16.25 {mL titrated for calibration}

File of data (ESTERdat) giving time (min.) versus mL titrated
0.0 16.25
2.0 15.1
4.0 14.25
6.0 13.8
8.0 12.9
10.0 11.7
15.0 12.1
20.0 11.05
25.0 10.6
30.0 10.45
35.0 10.2
40.0 9.5
45.0 9.5
55.0 8.9
70.0 8.5
103.0 7.5
143.0 7.1
1000.0 6.5
1043.0 6.5
1100.0 6.5
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From Fig. 2.28 it is obvious that a reasonable fit is easily obtained. A detailed
analysis of the results, however, discloses that there seems to be a systematic de-
viation in the residuals with high predicted values at the equilibrium conditions
(TIME > 1000) and a low prediction between TIME around 50 and 150. These
differences can be caused by an inadequacy in the model or by systematic ex-
perimental errors. A more appropriate objective function may also be desirable.

2.4.3
Sensitivity Analysis

The sensitivity of a model or a real system can be determined by making
changes in the parameters of interest and noting their influences on each vari-
able. The simplest measure of sensitivity is the derivative of the variable with re-
spect to the change in the parameter, �V��P. MADONNA has an automatic
means for making “Sensitivity Runs”. This is done by making two runs, one at
the normal value of the parameter and another run using a value which is in-
creased by 0.1%. The sensitivity is calculated using the difference in the vari-
able, �V, divided by the difference in the parameter, �P, to give �V��P �
�V��P. These derivative values are plotted for all the selected variables and pa-
rameters versus time. Obviously during any simulation, or during a real experi-
ment, the sensitivity of the process to a particular parameter will vary as the
conditions vary with time. Such a sensitivity analysis provides guidance as to
how accurately a parameter needs to be determined. If the process is not sensi-
tive to a model parameter then sometimes this enables the model to be simpli-
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Fig. 2.28 Experimental data with fitted profile of mL titrated.
Values found: k1 = 0.00397 and k2 = 0.00185
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fied. Figure 2.29 illustrates an iterative experimental procedure for parameter es-
timation, involving sensitivity analysis.

Below the results of Sensitivity Runs with MADONNA are given from the
BIOREACT example that is run as a batch fermenter system. This example in-
volves Monod growth kinetics, as explained in Section 1.4. In this example, the
sensitivity of biomass concentration X, substrate concentration S and product
concentration to changes in the Monod kinetic parameter, KS, was investigated.
Qualitatively, it can be deduced that the sensitivity of the concentrations to KS

should increase as the concentration of S becomes low at the end of the batch.
This is verified by the results in Fig. 2.30. The results in Fig. 2.31 give the sen-
sitivity of biomass concentration X and substrate concentration S to another bio-
logical kinetic parameter, the yield coefficient Y, as defined in Section 1.4.

Sensitivity analysis is a very important tool in analysing the relative impor-
tance of the model parameters and in the design of experiments for their opti-
mal determination. In many cases, it is found that a model may be rather in-
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Fig. 2.29 Iterative procedure for parameter estimation, sensitivity analysis and experimentation.



sensitive to a particular parameter value in the region of main interest, and
then the parameter obviously does not need to be determined very accurately.

Model parameters are usually determined from experimental data. In doing
this, sensitivity analysis is valuable in identifying the best experimental condi-
tions for the estimation of a particular model parameter. Sensitivity analysis is
easy effected with MADONNA, and sensitivity analysis is also provided in other
more advanced software packages, such as ACSL-OPTIMIZE.
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Fig. 2.30 Sensitivity of biomass concentration X and substrate concentration S
(�X/�KS solid line and �S/�KS dotted line) to changes in KS from a batch
run of example BIOREACT .

Fig. 2.31 Sensitivity of biomass X and substrate concentrations S (�X/�Y solid
line and �S/�Y dashed line) to changes in the yield coefficient Y from the
run of Fig. 2.31.



2.4.4
Numerical Integration

Only a very short introduction to numerical integration is given here, simply to
demonstrate the basic principles and possible sources of error. In the great ma-
jority of simulation studies, the numerical integration will not be found to cre-
ate problems and a detailed knowledge of the differing numerical integration
methods is generally unnecessary. For more complex problems, where numeri-
cal difficulties may occur, the reader is referred to more specialist texts, e.g.,
Press et al. (1992), Walas (1991), Noye (1984).

In the solution of mathematical models by digital simulation, the numerical
integration routine is usually required to achieve the solution of sets of simulta-
neous, first-order differential equations in the form

dyi

dt
� fi�y1� y2� y3� y4� � � � yn� for i � 1� 2� � � � �m

The differential equations are often highly non-linear and the equation variables
are often highly interrelated. In the above formulation, yi represents any one of
the dependent system variables and fi is the general function relationship, relat-
ing the derivative, dyi�dt, with the other related dependent variables. The sys-
tem-independent variable, t, will usually correspond to time, but may also repre-
sent distance, for example, in the simulation of steady-state models of tubular
and column devices.

In order to solve the differential equations, it is first necessary to initialise the
integration routine. In the case of initial value problems, this is done by specify-
ing the conditions of all the dependent variables, yi, at initial time t = 0. If,
however, only some of the initial values can be specified and other constant val-
ues apply at further values of the independent variable, the problem then be-
comes one of a split-boundary type. Split-boundary problems are inherently
more difficult than the initial value problems, and although most of the exam-
ples in the book are of the initial value type, some split-boundary problems are
presented.

In both types of problem, solution is usually achieved by means of a step-by-
step integration method. The basic idea of this is illustrated in the information
flow sheet, which was considered previously for the introductory MADONNA
complex reaction model example (Fig. 1.4).

Referring to Fig. 1.4, the solution begins with the initial concentration condi-
tions A0�B0�C0 and D0, defined at time t = 0. Knowing the magnitudes of the
kinetic rate constants k1� k2� k3 and k4, thus enables the initial rates of change
dCA�dt, dCB�dt, dCC�dt and dCD�dt, to be determined. Extrapolating these
rates over a short period of time �t, from the initial conditions A0�B0�C0 and
D0, enables new values for A, B, C and D to be estimated at the new time,
t = t � �t. If the incremental time step �t is sufficiently small, it is assumed
that the error in the new estimated values of the concentration, A, B, C and D,
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will also be small. This procedure is then repeated for further small increments
of time until the entire concentration versus time curves have been determined.

In this approach, the true solution is approximated as a series of discrete
points along the axis of the independent variable t. The solution then proceeds
step-by-step from one discrete time step to the next. In the simplest case, the
time steps will be spaced at uniform intervals, but the spacing can also be var-
ied during the course of solution. Where there are several dependent variables
involved, all the variables must be updated to their new value, by projecting all
the respective rates of change or concentration-time gradients over the identical
time increment or integration step length, h. In order to do this, the integration
method has to carry out a number of separate evaluations of the gradient terms.
These evaluations are known as the “stages” of the computation.

Thus taking the single rate equation dy�dt = f �y� t� and knowing the solution
at any point Pn�yn� tn�, the value of the function at the next point can be pre-
dicted, knowing the local rate of change dyn�dtn. In the simplest case, this can
be approximated by a simple difference approximation

dyn

dt
� f �yn� tn� � yn�1 � yn

tn�1 � tn
� yn�1 � yn

hn

from which

yn�1 � yn � hnf �yn� tn�

This procedure is illustrated in Fig. 2.32.
Much effort has been devoted to producing fast and efficient numerical inte-

gration techniques, and there is a very wide variety of methods now available.
The efficiency of an integration routine depends on the number of function
evaluations, required to achieve a given degree of accuracy. The number of eva-
luations depends both on the complexity of the computation and on the num-
ber of integration step lengths. The number of steps depends on both the na-
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Fig. 2.32 The difference approximation for rate of change or slope.
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ture and complexity of the problem and the degree of accuracy required in the
solution. In practice, an over complex integration routine will require excessive
computing time, owing to the many additional function evaluations that are re-
quired, and the use of an inappropriate integration algorithm can lead to an in-
accurate solution, excessive computing time and, sometimes, a complete inabil-
ity to solve the problem.

It is thus very important that the output of any simulation is checked, using
other integration methods. Most simulation languages allow a choice of integra-
tion routine which can be made best on the basis of experience. It is important
to remember that all methods generate only approximate solutions, but these
must be consistent with a given error criterion. As the models themselves, how-
ever, are also approximate, errors in the numerical solution must be seen in the
general context of the problem as a whole. Numerical errors occur in the ap-
proximation of the original function and also are due to limits in the numerical
precision of the computation. From experience, it can be shown that most cases
of “strange” behaviour, in the results of a simulation, can be attributed largely
to errors in the model and inadequate model parameter selection, rather than
to numerical inaccuracies. Very powerful integration routines for stiff systems
are supplied by MATLAB.

Integration methods used by MADONNA

1. Fixed step Euler method (Euler).
2. Fixed step, 2nd-order, Runge-Kutta method (RK2).
3. Fixed step, 4th-order, Runge-Kutta method (RK4).
4. Variable step, 5th-order, Runge-Kutta method (AUTO).
5. Rosenbrock Method (Stiff).

Important integration parameters and default settings

METHOD Choice of integration method as above (Euler).
DT Calculation interval or integration step length in fixed step meth-

ods (0.25).
DTOUT Output time interval.
STOPTIME Value of the independent variable with which the run is termi-

nated (12).
STARTTIME Value of the independent variable at the start of the run (0).
TOLERANCE Relative accuracy for the Auto and Stiff methods (0.01).

The most common numerical problem, as shown by some of the simulation ex-
amples, is that of equation stiffness. This is manifested by the need to use
shorter and shorter integration step lengths, with the result that the solution
proceeds more and more slowly and may come to a complete halt. Such behav-
iour is exhibited by systems having combinations of very fast and very slow pro-
cesses. Stiff systems can also be thought of as consisting of differential equa-
tions, having large differences in the process time constants. Sometimes, the
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stiffness is the result of bad modelling practice and can be removed by assum-
ing the very fast processes to be virtually instantaneous, as compared to the
slower overall rate determining processes. In this way, the differential equations
involving the troublesome very fast processes are replaced by steady-state alge-
braic equations, in which the rate of accumulation is, in effect, taken to be zero.
Solving the implicit equations that result from such procedures often requires a
root finder algorithm, as is supplied by MADONNA. Unfortunately, this tech-
nique is not always possible, and many systems are stiff in their own right and
therefore need special integration methods.

2.4.5
System Stability

System instability can also be a problem in dynamic simulation, and this can
origin either from the integration routine or from the model itself. Instability in
the integration routine can arise owing to the approximation of the real func-
tions by finite-difference approximations, which can have their own parasitical
exponential solutions. When the unwanted exponentials decrease with respect
to time, the numerical solution will be stable, but if the exponential is positive
then this can increase very rapidly and either swamp or corrupt the solution,
sometimes in a manner that may be difficult to detect. Many integration algo-
rithms show a dependence of the stability of the solution on the integration
step length. There can thus be a critical integration step, which if exceeded can
lead to instability. This type of instability can be seen in many of the simulation
examples, where an injudicious choice of DT can cause numerical overflow.
Reducing the integration step size makes the solution run more slowly, and
rounding off errors caused by the limited accuracy of the digital representation
may then become important. Practically, one can try to solve such problems by
changing the integration routine or by adjusting the error criteria in MADON-
NA.

Model instability is demonstrated by many of the simulation examples and
leads to very interesting phenomena, such as multiple steady states, naturally
occurring oscillations, and chaotic behaviour. In the case of a model which is in-
herently unstable, nothing can be done except to completely reformulate the
model into a more stable form.

In general, the form of the solution to the dynamic model equations will be
in the form

yi�t� � steady-state solution + transient solution

where the transient part of the solution can be represented by a series of expo-
nential functions

Ytrans � A1e�t � A2e�2 
 t � � � �� Ane�nt
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In the above relationship, the coefficients A1 to An depend on the initial condi-
tions of the problem and the exponential values, �i, are determined by the pa-
rameters of the system and in fact represent the eigenvalues or roots of the
characteristic solution of the system.

In a stable system, the above transient terms must decay to zero to give the
steady-state solution. This applies when all the roots are simple negative expo-
nentials. The system is also stable with all the roots occuring as negative real
parts of complex roots, causing a decaying oscillatory approach to the eventual
steady-state condition. If any of the roots are positive real numbers or complex
numbers with real positive parts, the corresponding transient terms in the solu-
tion will grow in magnitude, thus directing the solution away from the unstable
steady-state condition. Where the roots of the transient solution are pure imag-
inary numbers, the result is an oscillation of constant amplitude and frequency.
The dynamic stability of such systems is often shown most conveniently on a
phase-plane diagram, as shown in several of the simulation examples. Model in-
stability is discussed further in Section 3.2.7, with regard to the stability of con-
tinuous stirred-tank reactors.

For a fuller treatment of dynamic stability problems, the reader is referred to
Walas (1991), Seborg et al. (1989), Perlmutter (1972) and to the simulation ex-
amples THERM, THERMPLOT, COOL, REFRIG1, REFRIG2 and OSCIL.
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