
3.1
Introduction

The principle of the perfectly-mixed stirred tank has been discussed previously
in Section 1.2.2, and this provides an essential building block for modelling ap-
plications. In this section, the concept is applied to tank type reactor systems
and stagewise mass transfer applications, such that the resulting model equa-
tions often appear in the form of linked sets of first-order difference differential
equations. Solution by digital simulation works well for small problems, in
which the number of equations are relatively small and where the problem is
not compounded by stiffness or by the need for iterative procedures. For these
reasons, the dynamic modelling of the continuous distillation columns in this
section is intended only as a demonstration of method, rather than as a realistic
attempt at solution. For the solution of complex distillation and extraction prob-
lems, the reader is referred to commercial dynamic simulation packages.

3.2
Stirred-Tank Reactors

3.2.1
Reactor Configurations

This section is concerned with batch, semi-batch, continuous stirred tanks and
continuous stirred-tank-reactor cascades, as represented in Fig. 3.1. Tubular
chemical reactor systems are discussed in Chapter 4.

Three modes of reactor operation may be distinguished: batch, semi-batch
and continuous. In a batch system all reactants are added to the tank at the giv-
en starting time. During the course of reaction, the reactant concentrations de-
crease continuously with time, and products are formed. On completion of the
reaction, the reactor is emptied, cleaned and is made ready for another batch
and allows differing reactions to be carried out in the same reactor. The disad-
vantages are the downtime needed for loading and cleaning and possibly the
changing reaction conditions. Batch operation is often ideal for small scale flex-
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ible production and high value, low output product production, where the
chemistry and reaction kinetics are not known exactly.

In many reactions pure batch operation is not possible, mainly due to safety
or selectivity reasons. In semi-batch operation, one reactant may be charged to
the vessel at the start of the batch, and then the others fed to the reactor at per-
haps varying rates and over differing time periods. When the vessel is full, feed-
ing is stopped and the contents allowed to discharge. Semi-batch operation al-
lows one to vary the reactant concentration to a desired level in a very flexible
way, and thus to control the reaction rates and the reactor temperature. It is,
however, necessary to develop an appropriate feeding strategy. Modelling and
simulation allows estimation of optimal feeding profiles. Sometimes it is neces-
sary to adjust the feeding rates using feed-back control. The flexibility of opera-
tion is generally similar to that of a batch reactor system.

Continuous operation provides high rates of production with more constant
product quality. There are no downtimes during normal operation. Reactant
preparation and product treatment also have to run continuously. This requires
careful flow control. Continuous operation can involve a single stirred tank, a
series of stirred tanks or a tubular-type of reactor. The latter two instances give
concentration profiles similar to those of batch operation, whereas in a single
stirred tank, the reaction conditions are at the lowest reactant concentration, cor-
responding to effluent conditions.
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Fig. 3.1 Stirred-tank reactor configurations.



3.2.2
Generalised Model Description

The energy and material balance equations for reacting systems follow the same
principles, as described previously in Sections 1.2.3 to 1.2.5.

3.2.2.1 Total Material Balance Equation
It becomes necessary to incorporate a total material balance equation into the
reactor model, whenever the total quantity of material in the reactor varies, as
in the cases of semi-continuous or semi-batch operation or where volume
changes occur, owing to density changes in flow systems. Otherwise the total
material balance equation can generally be neglected.

The dynamic total material balance equation is represented by
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3.2.2.2 Component Balance Equation
The general component balance for a well-mixed tank reactor or reaction region
can be written as
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For batch reactors, there is no flow into or out of the system, and those terms
in the component balance equation are therefore zero.

For semi-batch reactors, there is inflow but no outflow from the reactor and
the outflow term in the above balance equation is therefore zero.

For steady-state operation of a continuous stirred-tank reactor or continuous
stirred-tank reactor cascade, there is no change in conditions with respect to
time, and therefore the accumulation term is zero. Under transient conditions,
the full form of the equation, involving all four terms, must be employed.

3.2.2.3 Energy Balance Equation
For reactions involving heat effects, the total and component material balance
equations must be coupled with a reactor energy balance equation. Neglecting
work done by the system on the surroundings, the energy balance is expressed
by where each term has units of kJ/s. For steady-state operation the accumulation
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term is zero and can be neglected. A detailed explanation of energy balancing is
found in Section 1.2.5, together with a case study for a reactor.

Both flow terms are zero for the case of batch reactor operation, and the out-
flow term is zero for semi-continuous or semi-batch operation.

The information flow diagram for a non-isothermal, continuous-flow reactor
(in Fig. 1.18, shown previously in Section 1.2.5) illustrates the close interlinking
and highly interactive nature of the total material balance, component material
balance, energy balance, rate equation, Arrhenius equation and flow effects F.
This close interrelationship often brings about highly complex dynamic behav-
iour in chemical reactors.

3.2.2.4 Heat Transfer to and from Reactors
Heat transfer is usually affected by coils or jackets, but can also be achieved by
the use of external loop heat exchangers and, in certain cases, heat is trans-
ported out of the reactor by the vaporization of volatile material from the reac-
tor. The treatment here mainly concerns jackets and coils. Other examples of
heat transfer are illustrated in the simulation examples of Chapter 5.

Figure 3.2 shows the case of a jacketed, stirred-tank reactor, in which either heat-
ing by steam or cooling medium can be applied to the jacket. Here V is volume, cp

is specific heat capacity, � is density, Q is the rate of heat transfer, U is the overall
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Fig. 3.2 Model representation of a stirred-tank reactor with heat transfer to the jacket.



heat transfer coefficient, A is the area for heat transfer, T is temperature, H is en-
thalpy of vapour, h is liquid enthalpy, F is volumetric flow rate and W is mass flow
rate. The subscripts are j for the jacket, s for steam and c for condensate.

The rate of heat transfer is most conveniently expressed in terms of an overall
heat transfer coefficient, the effective area for heat transfer and an overall tem-
perature difference, or driving force, where

Q � UA�T � Tj� kJ�s

Jacket or Coil Cooling

In simple cases the jacket or cooling temperature, Tj, may be assumed to be
constant. In more complex dynamic problems, however, it may be necessary to
allow for the dynamics of the cooling jacket, in which case Tj becomes a system
variable. The model representation of this is shown in Fig. 3.3.

Under conditions, where the reactor and the jacket are well insulated and
heat loss to the surroundings and mechanical work effects may be neglected
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Fig. 3.3 Dynamic model representation of the cooling jacket.



Assuming the liquid in the jacket is well-mixed, the heat balance equation for
the jacket becomes

Vj�jcpj
dTj

dt
� Fj�jcpj�Tjin � Tj� � UA�T � Tj�

Here Fj is the volumetric flow of coolant to the jacket, Tjin is the inlet coolant
temperature, and Tj is the jacket temperature. Under well-mixed conditions, Tj

is identical to the temperature of the outlet flow.
Alternatively neglecting the jacket dynamics and assuming that the coolant in

the jacket is at some mean temperature, Tjavg, as shown in Fig. 3.4, a steady-
state energy balance can be formulated as
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� Rate of energy transfer

from the reactor to the jacket

� �

Fj�jcpj�Tjout � Tjin� � UA�T � Tjavg� � Q

Assuming an arithmetic mean jacket temperature,

Tjavg � Tjin � Tjout

2

Substituting for Tjout into the steady-state jacket energy balance, solving for Tjavg

and substituting Tjavg into the steady-state balance, gives the result that

Q � UAK1�T � Tjin�

where K1 is given by
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Fig. 3.4 Steady-state model representation of the cooling jacket.



K1 � 2Fj�jcpj

UA � 2Fj�jcpj

As shown in several of the simulation examples, the fact that Q is now a func-
tion of the flow rate, Fj, provides a convenient basis for the modelling of cooling
effects, and control of the temperature of the reactor by regulation of the flow
of coolant.

3.2.2.5 Steam Heating in Jackets
The dynamics of the jacket are more complex for the case of steam heating.
The model representation of the jacket steam heating process is shown in Fig.
3.5.

A material balance on the steam in the jacket is represented by
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Vj
d�j

dt
� Fs�s � Wc

The enthalpy balance on the jacket is given by

Vj
d�Hj�j�

dt
� Fs�sHs � UA�T � Tj� � WcHc

where Hj is the enthalpy of the steam in the jacket.
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Fig. 3.5 Model representation of steam heating in the jacket.



The saturated steam density, �j, depends on the jacket temperature, Tj, in the
first approximation in accordance with the Ideal Gas Law and hence

�j �
18Pj

RTj

where R is the Ideal Gas Constant.
The jacket steam pressure, Pj, is itself a function of the jacket steam tempera-

ture, Tj, as listed in steam tables or as correlated by the Antoine equation for va-
pour pressure, where

Pj � exp
A
Tj

� B

	 


Here, A and B are the Antoine steam constants and Tj is the absolute steam
temperature.

Combining the two equations for steam density and pressure gives an impli-
cit equation requiring a numerical root estimation.

0 � Pj � exp
A

18Pj�R�j
� B

� �

The MADONNA root finder provides a powerful means of solution. An example
of the use of root finder is employed in the simulation example RELUY for
steam jacket dynamics. Other examples of use are in BUBBLE and STEAM.

3.2.2.6 Dynamics of the Metal Jacket Wall
In some cases, where the wall of the reactor has an appreciable thermal capaci-
ty, the dynamics of the wall can be of importance (Luyben, 1973). The simplest
approach is to assume the whole wall material has a uniform temperature and
therefore can be treated as a single lumped parameter system or, in effect, as a
single well-stirred tank. The heat flow through the jacket wall is represented in
Fig. 3.6.

The nomenclature is as follows: Qm is the rate of heat transfer from the reac-
tor to the reactor wall, Qj is the rate of heat transfer from the reactor wall to the
jacket, and

Qm � UmAm�T � Tm�

Qj � UjAj�Tm � Tj�

Here, Um is the film heat transfer coefficient between the reactor and the reac-
tor wall. Uj is the film heat transfer coefficient between the reactor wall and the
jacket. Am is the area for heat transfer between the reactor and the wall. Aj is
the area for heat transfer between the wall and the jacket.
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The heat balance for the wall gives

Vm�mcpm
dTm

dt
� Qm � Qj

and the balance for the jacket becomes

Vj�jcpj
dTj

dt
� Fj�jcpj�Tjin � Tj� � Qj

In some cases, it may be of interest to model the temperature distribution
through the wall.

This might be done by considering the metal wall and perhaps also the jacket
as consisting of a series of separate regions of uniform temperature, as shown
in Fig. 3.7. The balances for each region of metal wall and cooling water volume
then become for any region, n

Vmn�mcpm
dTmn

dt
� Qmn � Qjn

Vjn�jcpj
dTjn

dt
� Fj�jcpj�Tjn�1 � Tjn� � Qjn

where Vmn and Vjn are the respective volumes of the wall and coolant in ele-
ment n. Amn and Ajn are the heat transfer areas for transfer from the reactor to
the wall and from the wall to the jacket. Hence:

Qmn � UmAmn�T � Tmn�

Qjn � UjAjn�Tmn � Tjn�

Note that the effects of thermal conduction along the jacket wall are assumed to
be negligible in this case.
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Fig. 3.6 Model representation of heat flow through a reactor wall with
assumed uniform temperature.



3.2.3
The Batch Reactor

It is assumed that all the tank-type reactors, covered in this and the immedi-
ately following sections, are at all times perfectly mixed, such that concentration
and temperature conditions are uniform throughout the tanks contents. Figure
3.8 shows a batch reactor with a cooling jacket. Since there are no flows into
the reactor or from the reactor, the total material balance tells us that the total
mass, within the reactor, remains constant.
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Fig. 3.7 Model representation of temperature distribution in the wall and
jacket, showing wall and jacket with four lumped parameters.

Fig. 3.8 The batch reactor with heat transfer.
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V�cp
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Here V is the volume of the reactor, � is the density, cp is the mean specific heat
of the reactor contents (kJ/kg K) and rQ is the rate of generation of heat by reac-
tion (kJ/s m3).

3.2.3.1 Case A: Constant-Volume Batch Reactor
A constant volume batch reactor is used to convert reactant, A, to product, B,
via an endothermic reaction, with simple stoichiometry, A�B. The reaction
kinetics are second-order with respect to A, thus

rA � �kC2
A

From the reaction stoichiometry, product B is formed at exactly the same rate as
that at which reactant A is decomposed.
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The rate equation with respect to A is

�rA � kC2
A � kC2

A0�1 � XA�2

giving the component balance equation as

dXA

dt
� kCA0�1 � XA�2

For the second-order reaction, the term representing the rate of heat production
by reaction simplifies to

rQV � �rA���H�V � kC2
A0�1 � XA�2���H�V

This gives the resultant heat balance equation as

V�cp
dT
dt

� kC2
A0�1 � XA�2���H�V � UA�Tj � T�

where it is assumed that heat transfer to the reactor occurs via a coil or jacket
heater.

The component material balance, when coupled with the heat balance equa-
tion and temperature dependence of the kinetic rate coefficient, via the Arrhe-
nius relation, provide the dynamic model for the system. Batch reactor simula-
tion examples are provided by BATCHD, COMPREAC, BATCOM, CASTOR,
HYDROL and RELUY.

3.2.4
The Semi-Batch Reactor

A semi-batch reactor with one feed stream and heat transfer to a cooling jacket
is shown in Fig. 3.9.
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Fig. 3.9 The semi-batch reactor.



Total Material Balance

A total material balance is necessary, owing to the feed input to the reactor,
where
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rate in
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d��V�
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Here �0 is the feed density.

The density in the reactor, �, may be a function of the concentration and tem-
perature conditions within the reactor. Assuming constant density conditions

dV
dt

� F

Component Balance Equation

All important components require a component balance.

For a given reactant A
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dnA

dt
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where NA0 is the molar feeding rate of A per unit time.

In terms of concentration, this becomes

d�VCA�
dt

� F0CA0 � rAV

where F is the volumetric feed rate and CA0 is the feed concentration. Note that
both the volumetric flow and the feed concentration can vary with time, depend-
ing on the particular reactor feeding strategy.

Energy Balance Equation

Whenever changes in temperature are to be calculated, an energy balance is
needed. With the assumption of constant cp and constant �, as derived in Sec-
tion 1.2.5, the balance becomes

�cpV
dT
dt

� F0�cp�T0 � T� � rQV � Q
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Note that the available heat transfer area may also change as a function of time,
and may therefore also form an additional variable in the solution. Note also
that although constant � and cp have been assumed here, this is not a restrictive
condition and that equations showing the variations of these properties are easi-
ly included in any simulation model.

3.2.4.1 Case B: Semi-Batch Reactor
A semi-batch reactor is used to convert reactant, A, to product, B, by the reac-
tion A�2B. The reaction is carried out adiabatically. The reaction kinetics are
as before

rA � �kC2
A

and the stoichiometry gives

rB � �2rA � �2kC2
A

The balances for the two components A and B, with flow of A, into the reactor
are now

d�VCA�
dt

� FCA0 � rAV

d�VCB�
dt

� rBV

and the enthalpy balance equation is

V�cp
dT
dt

� F�cp�T0 � T� � kC2
A0�1 � XA�2���HA�V

since, for adiabatic operation, the rate of heat input into the system, Q, is zero.
With initial conditions for the initial molar quantities of A and B (VCA, VCB),

the initial temperature, T, and the initial volume of the contents, V, specified,
the resulting system of equations can be solved to obtain the time-varying
quantities, V(t), VCA(t), VCB(t), T(t) and hence also concentrations CA and CB

as functions of time. Examples of semi-batch operations are given in the
simulation examples HMT, SEMIPAR, SEMISEQ, RUN, SULFONATION and
SEMIEX.

3.2.5
The Continuous Stirred-Tank Reactor

Although continuous stirred-tank reactors (Fig. 3.10) normally operate at steady-
state conditions, a derivation of the full dynamic equation for the system is nec-
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essary to cover the instances of plant start up, shut down and the application of
reactor control.

Total Material Balance

The dynamic total material balance equation is given by
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For a given reactant A

dnA

dt
� NA0 � NA � rAV
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Fig. 3.10 Continuous stirred-tank reactor with heat transfer.



where nA is the moles of A in the reactor, NA0 is the molar feeding rate of A to
the reactor, and NA is the molar flow rate of A from the reactor.

Under constant density and constant volume conditions, this may be ex-
pressed as

V
dCA

dt
� FCA0 � FCA � rAV

or

dCA

dt
� CA0 � CA

�
� rA

where � (= V/F) is the average holdup time or residence time of the reactor.
For steady-state conditions to be maintained, the volumetric flow rate F and

inlet concentration CA0 must remain constant and

dCA

dt
� 0

hence at steady state

rAV � �F�CA0 � CA� � ��NA0 � NA�

and

XA � NA0 � NA

NA0
� � rAV

NA0
� � rAV

FCA0

or

� � V
F
� CA0XA

rA

Energy Balance Equation

This, like the other dynamic balances for the CSTR, follows the full generalised
form, of Section 1.2.5, giving
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or assuming constant cp

V�cp
dT
dt

� F0�cp�T0 � T� � rQV � Q
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3.2.5.1 Case C: Constant-Volume Continuous Stirred-Tank Reactor
The chemical reaction data are the same as in the preceding example. The reac-
tion kinetics are

rA � �kC2
A

with
rB � �2rA

and the component balances for both A and B are given by

V
dCA

dt
� FCA0 � FCA � rAV

V
dCB

dt
� FCB0 � FCB � rBV

Assuming both constant density and constant specific heat, the heat balance
equation becomes

V�cp
dT
dt

� F�cp�T0 � T� � kC2
AV���H� � UA�T � Tj�

Here cooling of an exothermic chemical reaction, via a cooling coil or jacket, is
included.

3.2.6
Stirred-Tank Reactor Cascade

For any continuous stirred-tank reactor, n, in a cascade of reactors (Fig. 3.11)
the reactor n receives the discharge from the preceding reactor, n – 1, as its feed
and discharges its effluent into reactor n + 1, as feed to that reactor.
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Fig. 3.11 Cascade of continuous stirred-tank reactors.



Thus the balance equations for reactor, n, simply become

Vn
dCAn

dt
� FCAn�1 � FCAn � rAnVn

Vn�cp
dTn

dt
� F�cp�Tn�1 � Tn� � rQnV � Qn

where, for example,

rAn � �knC�
AnC�

Bn

kn � Ze�E�RTn

and
Qn � UnAn�Tjn � Tn�

Thus the respective rate expressions depend upon the particular concentra-
tion and temperature levels that exist within reactor n. The rate of production
of heat by reaction rQ was defined in Section 1.2.5 and includes all occurring
reactions. Simulation examples pertaining to stirred tanks in series are
CSTRPULSE, CASCSEQ and COOL.

3.2.7
Reactor Stability

Consider a simple first-order exothermic reaction, A�B, carried out in a single,
constant-volume, continuous stirred-tank reactor (Fig. 3.10), with constant jacket
coolant temperature, where rA = kCA.

The model equations are then given by

V
dCA

dt
� F�CA0 � CA� � VkCA

V�cp
dT
dt

� F�cp�T0 � T� � VkCA���H� � UA�T � Tj�

k � Ze�E�RT

At steady state, the temperature and concentration in the reactor are constant
with respect to time and

dCA

dt
� dT

dt
� 0

Hence from the component material balance

F�CA0 � CA� � VkCA
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the steady-state concentration is given by

CA � CA0

1 � kV�F

From the steady-state heat balance the heat losses can be equated to the heat
gained by reaction, giving

�F�cp�T0 � T� � UA�T � Tj� � VkCA���H� � VkCA0��H�
1 � kV�F

i.e.,
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�
��

�
�� �
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the reactor

�
��

�
��

or

HL � HG

The above equation then represents the balanced conditions for steady-state re-
actor operation. The rate of heat loss, HL, and the rate of heat gain, HG, terms
may be calculated as functions of the reactor temperature. The rate of heat loss,
HL, plots as a linear function of temperature, and the rate of heat gain, HG, ow-
ing to the exponential dependence of the rate coefficient on temperature, plots
as a sigmoidal curve, as shown in Fig. 3.12. The points of intersection of the
rate of heat lost and the rate of heat gain curves thus represent potential steady-
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Fig. 3.12 Heat loss HL and heat gain HG in a steady-state continuous stirred-tank reactor.



state operating conditions that satisfy the above steady-state heat balance criteri-
on.

Figure 3.12 shows the heat gain curve, HG, for one particular set of system
parameters, and a set of three possible heat loss, HL, curves. Possible curve in-
tersection points, A1 and C2, represent singular stable steady-state operating
curves for the reactor, with cooling conditions as given by cooling curves, I and
III, respectively.

The cooling conditions given by curve II, however, indicate three potential
steady-state solutions at the curve intersections A, B and C. By considering the
effect of small temperature variations, about the three steady-state conditions, it
can be shown that points A and C represent stable, steady-state operating condi-
tions, whereas the curve intersection point B is unstable. On start up, the reac-
tion conditions will proceed to an eventual steady state, at either point A or at
point C. Since point A represents a low temperature, and therefore a low con-
version operating state, it may be desirable that the initial transient conditions
in the reactor should eventually lead to C, rather than to A. However if point C
is at a temperature which is too high and might possibly lead to further decom-
position reactions, then A would be the desired operating point.

The basis of the argument for intersection point, B, being unstable is as fol-
lows and is illustrated in Fig. 3.13.

Consider a small positive temperature deviation, moving to the right of point
B. The condition of the reactor is now such that the HG value is greater than
that for HL. This will cause the reactor to heat up and the temperature to in-
crease further, until the stable steady-state solution at point C is attained. For a
small temperature decrease to the left of B, the situation is reversed, and the
reactor will continue to cool, until the stable steady-state solution at point A is
attained. Similar arguments show that points A and C are stable steady states.
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Fig. 3.13 Characteristics of unstable point B of Fig. 3.12.
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System stability can also be analysed in terms of the linearised differential
model equations. In this, new perturbation variables for concentration C� and
temperature T� are defined. These are defined in terms of small deviations in
the actual reactor conditions away from the steady-state concentration and tem-
perature Css and Tss respectively. Thus

C� � C � Css and T� � T � Tss

The linearisation of the non-linear component and energy balance equations,
based on the use of Taylor’s expansion theorem, leads to two, simultaneous,
first-order, linear differential equations with constant coefficients of the form

dC�

dt
� a1C� � b1T�

dT�

dt
� a2C� � b2T�

The coefficients of the above equations are the partial differentials of the two
dynamic balance equations evaluated at Css, Tss and are given by

a1 � �F�C�T�
�C�

����
����
Css�Tss

b1 � �F�C�T�
�T�

����
����
Css�Tss

a2 � �G�C�T�
�C�

����
����
Css�Tss

b2 � �G�C�T�
�T�

����
����
Css�Tss

where F(C, T) represents the dynamic component balance equation and G(C, T)
represents the dynamic heat balance equation.

The two linearised model equations have the general solution of the form

C� � ae�1t � be�2t

and

T� � ce�1t � de�2t

The dynamic behaviour of the system is thus determined by the values of the
exponential coefficients, �1 and �2, which are the roots of the characteristic
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equation or eigenvalues of the system and which are also functions of the sys-
tem parameters.

If �1 and �2 are real numbers and both have negative values, the values of the
exponential terms and hence the magnitudes of the perturbations away from
the steady-state conditions, c� and T�, will reduce to zero with increasing time.
The system response will therefore decay back to its original steady-state value,
which is therefore a stable steady-state solution or stable node.

If �1 and �2 are real numbers and both or one of the roots are positive, the
system response will diverge with time and the steady-state solution will there-
fore be unstable, corresponding to an unstable node.

If the roots are, however, complex numbers, with one or two positive real
parts, the system response will diverge with time in an oscillatory manner, since
the analytical solution is then one involving sine and cosine terms. If both
roots, however, have negative real parts, the sine and cosine terms still cause an
oscillatory response, but the oscillation will decay with time, back to the original
steady-state value, which, therefore remains a stable steady state.
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Fig. 3.14 Systems response with real and complex roots.

Fig. 3.15 Phase-plane representations of reactor stability. In the above
diagrams the point + represents a possible steady-state solution, which
(a) may be stable, (b) may be unstable or (c) about which the reactor
produces sustained oscillations in temperature and concentration.



If the roots are pure imaginary numbers, the form of the response is purely
oscillatory, and the magnitude will neither increase nor decay. The response,
thus, remains in the neighbourhood of the steady-state solution and forms
stable oscillations or limit cycles.

The types of system behaviour predicted by the above analysis are depicted in
Figs. 3.14 and 3.15. The phase-plane plots of Fig. 3.15 give the relation of the
dependent variables C and T. Detailed explanation of phase-plane plots is given
in control textbooks (e.g., Stephanopoulos, 1984). Linearisation of the reactor
model equations is used in the simulation example, HOMPOLY.

Thus it is possible for continuous stirred-tank reactor systems to be stable, or
unstable, and also to form continuous oscillations in output, depending upon
the system, constant and parameter, values.

This analysis is limited, since it is based on a steady-state criterion. The
linearisation approach, outlined above, also fails in that its analysis is restricted
to variations, which are very close to the steady state. While this provides excel-
lent information on the dynamic stability, it cannot predict the actual trajectory
of the reaction, once this departs from the near steady state. A full dynamic
analysis is, therefore, best considered in terms of the full dynamic model equa-
tions and this is easily effected, using digital simulation. The above case of the
single CSTR, with a single exothermic reaction, is covered by the simulation
examples THERMPLOT and THERM. Other simulation examples, covering
aspects of stirred-tank reactor stability are COOL, OSCIL, REFRIG1 and
REFRIG2. Phase-plane plots are very useful for the analysis of such systems.

3.2.8
Reactor Control

Two simple forms of a batch reactor temperature control are possible, in which
the reactor is either heated by a controlled supply of steam to the heating jacket,
or cooled by a controlled flow of coolant (Fig. 3.16). Other control schemes
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Fig. 3.16 Reactor with control of temperature by manipulating the flow of cooling water.



would be to regulate the reactor flow rate or feed concentration, in order to
maintain a given reaction rate (see simulation example SEMIEX).

Figure 3.17 represents an information flow diagram for the above control
scheme.

Assuming the jacket is well-mixed, a heat balance on the jacket gives

Vj�jcpj
dTj

dt
� Fj�jcpj�Tjin � Tj� � UA�T � Tj�

Consider the case of a proportional controller, which is required to maintain a
desired reactor temperature, by regulating the flow of coolant. Neglecting dy-
namic jacket effects, the reactor heat balance can then be modified to include
the effect of the varying coolant flow rate, Fj, in the model equation as:

V�cp
dT
dt

� �rQV � UAK1�T � Tjin�

where the mean temperature of the jacket is accounted for by the term K1, as
shown in Section 3.2.2.4, and given by

K1 � 2Fj�jcpj

UA � 2Fj�jcpj

For a proportional controller

Fj � Fjss � Kc�T � Tset�

where Kc is the proportional gain of the controller and the temperature difference
term (T – Tset), represents the error between the reactor temperature T and control-
ler set point Tset. Note that in this conventional negative feedback system, when
the reactor temperature, T, is below the setpoint temperature, Tset, the coolant flow
is decreased, in order to reduce the rate of heat loss from the reactor to the jacket.
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Note also that the incorporation of the controller equation and parameter val-
ue, Kc, into the dynamic model also alters the stability parameters for the sys-
tem and thus can also change the resultant system stability characteristics. A
stable system may be made to oscillate by the use of high values of Kc or by the
use of a positive feedback action, obtained with the use of the controller equa-
tion with Kc negative. Thus the reactor acts to provide greater degrees of cooling
when T < Tset, and conversely reduced degrees of cooling when T > Tset. This phe-
nomenon is shown particularly in simulation example OSCIL.

This example shows that the reactor may oscillate either naturally according
to the system parameters or by applied controller action. Owing to the highly
non-linear behaviour of the system, it is sometimes found that the net yield
from the reactor may be higher under oscillatory conditions than at steady state
(see simulation examples OSCIL and COOL). It should be noted also that, un-
der controlled conditions, Tset need not necessarily be set equal to the steady-
state value T and Tset, and that the control action may be used to force the reac-
tor to a more favourable yield condition than that simply determined by steady-
state balance considerations.

The proportional and integral controller equation

Fj � Fjss � Kc�� Kc

�I

� t

0

�dt

where �I is the integral time constant and � is the error = (T – Tset) or (CA –
CAset) can similarly be incorporated into the reactor simulation model.

Luyben (1973) (see simulation example RELUY) also demonstrates a reactor
simulation including the separate effects of the measuring element, measure-
ment transmitter, pneumatic controller and valve characteristics which may in
some circumstances be preferable to the use of an overall controller gain term.

3.2.9
Chemical Reactor Safety

A necessary condition for chemical production is the safe operation of chemical
reactors and other unit processes (Grewer, 1994). This is best achieved by the
design of inherently safe processes, i.e. processes with negligible potential for
the release of harmful chemicals. This is often impossible owing to the require-
ment for active substrates or because of the inherently high reactivity of certain
products. The next possible improvement may be made by minimizing the
amount of material held under critical conditions or by maintaining process
conditions, e.g. pressure and temperature, in the ranges of non-critical condi-
tions. Modeling and simulation provide modern tools for the support of risk
analysis and are of major importance for the design of safe chemical reactors
and safe operation of chemical reactors (Stoessel, 1995). In the following, safety
aspects of batch reactor design and operation are discussed.
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3.2.9.1 The Runaway Scenario
A most critical event for an exothermic chemical reaction is that of a cooling
failure. Depending on the reactive potential of the process the temperature of
the reactor will rise and may thus possibly trigger the formation of unwanted
decomposition reactions with often very large potential for possible reactor fail-
ure (Fig. 3.18). The thermal runaway of a polymerisation reaction is described
in the simulation example RUN. The reactor operation, i.e. feeding of reactants,
the selection of process temperature etc., has to be such that a cooling failure
will not cause a reaction runaway or that the time-to-maximum rate criterion,
TMRad, is sufficiently long, e.g. 24 hours, to permit the appropriate safety ac-
tions to be taken. See example SULFONATION where substrate feed is adjusted
such as to keep TMRad always above 24 hours. A proper safety assessment
should start with calorimetric measurements to allow the estimation of �Tad,2,
the adiabatic temperature rise by decomposition reaction, and also of the time
required for this, TMRad. This study is preferably achieved via the use of differ-
ential scanning calorimetry, DSC.

Other simulation examples involving various safety aspects are HMT,
THERM, REFRIG1, REFRIG2 and DSC.

3.2.9.2 Reaction Calorimetry
In differential scanning calorimetry, the selected chemical reaction is carried
out in a crucible and the temperature difference �T compared to that of an
empty crucible is measured. The temperature is increased by heating and from
the measured �T the heat production rate, q, can be calculated (Fig. 3.19). Inte-
gration of the value of q with respect to time yields measures of the total heats
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Fig. 3.18 Scenario of cooling failure with thermal runaway. �Tad1 is the
adiabatic temperature rise by desired reaction. �Tad2 is the adiabatic tem-
perature increase by the decomposition reaction. The time required for this
increase is TMRad.



released, QR, and QD, from which �HR and �HD as well as �Tad1 and �Tad2

can be calculated from Fig. 3.18. The estimation of the activation energy, Ea, is
possible by the use of isothermal DSC based on the following equation

q � k0f �c����HR� exp � Ea

RT

	 


or in its logarithmic form

ln q � ln�k0f �c����HR�� � Ea

RT

by plotting ln q versus 1/T at constant conversion. The preexponential factor, k0,
can be determined knowing f(c), that means conversion and kinetics have to be
known. These data permit then a computer simulation of a reactor runaway sce-
nario. Keller et al. (1997) employed a series of chemical kinetic models to simu-
late the DSC experimental technique suitable for preliminary safety assessment
and as an aid to preliminary screening (see simulation example DSC).

3.2.10
Process Development in the Fine Chemical Industry

As many other industries, the fine chemical industry is characterized by strong
pressures to decrease the time-to-market. New methods for the early screening
of chemical reaction kinetics are needed (Heinzle and Hungerbühler, 1997).
Based on the data elaborated, the digital simulation of the chemical reactors is
possible. The design of optimal feeding profiles to maximize predefined profit
functions and the related assessment of critical reactor behavior is thus possible,
as seen in the simulation examples RUN and SELCONT.
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Fig. 3.19 Differential scanning calorimetry with heat release by desired
reaction, R and by decomposition reaction D.



3.2.11
Chemical Reactor Waste Minimisation

The optimal design and operation of chemical reactors lies at the highest point
of the waste minimisation hierarchy, in facilitating a reduction in the produc-
tion of waste directly at source though eventually the behaviour of a production
process as a whole is decisive (Heinzle et al., 2006). Ullmann’s Encyclopedia
(1995) describes many significant industrial process improvements that have re-
sulted from direct waste reduction at source initiatives. These include the devel-
opment of new process routes, equilibrium shifts to improve productivities, im-
provements in selectivity, new catalyst developments, process optimisation
changes, reaction material changes, raw material purity changes, the employ-
ment of less harmful process materials and improved recycle and reuse of waste
residues. In carrying out such new process initiatives, the combination of chem-
ical reactor design theory and process chemistry is one that provides consider-
able opportunities for the exercise of flair and imagination. The chemical reac-
tor is now recognised as the single most important key item in the chemical
process and especially in regard to waste minimisation, where the emphasis is
being applied increasingly to the maximum utilisation of reactants, maximum
production of useful products and minimisation of wasteful by-products. In
this, it is important to choose the optimum process chemistry, the best chemical
reaction conditions and the most appropriate form and mode of operation for
the actual chemical reactor. The importance of the reactor, in this respect, lies
in the dependence of chemical reaction rates on reactant concentration and tem-
perature. Thus the manipulation of concentration and temperature levels within
the reactor provides an opportunity to directly manipulate relative reaction rates
and to force reactions towards higher degrees of conversion and towards higher
selectivities for the desired products as compared to byproduct wastes.

The above principles have been recognised since the very beginnings of
chemical reactor design theory and are well treated in conventional reactor de-
sign textbooks. The topic is also given special emphasis with respect to the
minimisation of waste by Smith (1995). The importance of the very early con-
sideration of waste minimisation in an integrated process development strategy
has also been highlighted by Heinzle and Hungerbühler (1997). In this latter re-
spect, digital simulation forms a very important adjunct in enabling a detailed
study of many prospective alternatives at the earliest design stage. An essential
part of this process is the application of modelling and simulation techniques,
particularly using models that are formulated as simply as possible with mini-
mum complexity; a topic stressed extensively throughout this book. Important
aspects of waste minimisation, as allied to chemical reactor design and opera-
tion, are illustrated in many of the accompanying digital simulation examples
as follows: BATSEQ involving optimum reaction time; BATCOM, HYDROL,
RELUY, BENZHYD, ANHYD, REVREACT and REVTEMP having optimal tem-
perature or optimum temperature profiling strategies; CASCSEQ, SEMIPAR
and SEMISEQ with optimal feed distribution policies; REXT featuring increased
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conversion via in situ product removal and BATSEQ, SEMISEQ and COMPSEQ
describing feed segregation effects.

In all these examples, the relevant waste minimisation aspects can be usefully
studied simply in terms of the relative distribution of reaction compounds pro-
duced or by an extension of the programs to include possible quantification.
A useful method of comparison is the “environmental index” as defined by
Sheldon (1994), as the mass ratio of the total waste to that of useful product
He showed that this index is very dependent both on the scale and chemical
complexity of the process, with values ranging from about 0.1 for oil refining
applications, up to 50 for fine chemical production and up to 100 plus for phar-
maceutical operations. It thus reflects both the smaller scale of production, the
greater usage of batch and semi batch operations and the greater complexity of
the chemical processes. Sheldon also suggested the use of an environmental
quotient, defined as EQ = E Q, where Q is an arbitrary quotient related to the
degree of environmental damage, with Q varying from 1 for simple compounds
and up to 1000 for very destructive compounds.

Heinzle et al. (1998), Koller et al. (1998), Biwer and Heinzle (2004) and
Heinzle et al. (2007) have described a simple but slightly more elaborate meth-
odology to calculate such an environmental quotient based on more detailed
material balances. Alternatively in terms of the present simulation examples,
the analysis may perhaps be extended simply by means of incorporating a sim-
ple weighting or cost factor for each material to account for positive sales value
or negative cost values representing the potential damage to the environment,
as suggested in simulation example BATSEQ. A full analysis of any reactor or
process simulation must of course take full account of all the relevent aspects,
and Heinzle et al. (1998) and Koller et al. (1998) describe detailed studies as to
how this might best be achieved.

Simulation Considerations

The waste minimisation reaction related examples in this text are represented
mainly by combinations of consecutive and parallel type reactions. Although the
major details of such problems are dealt with in conventional textbooks, it may
be useful to consider the main aspects of such problems from the viewpoint of
solution by digital simulation.

Consider the following first order consecutive reaction sequence

A
k1�	B

k2�	C

Solving the kinetic equations clearly demonstrates that the concentration of B
passes through a maximum in respect to reaction time. If B is the desired prod-
uct and C is waste, an optimal time topt can be defined for the maximum con-
centration of B, and where both the optimal yield and optimum reaction time
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are functions of the kinetic rate constants k1 and k2. In waste minimisation
terms, however, the quantity of B obtained both in relation to the unreacted A
and waste product C is important, since these may represent quite distinct sepa-
ration problems and may also have quite distinct associated environmental load-
ings. In general, one wants the rate of decomposition of A to B to be high rela-
tive to the rate of decomposition of B to C. Since these rates are also tempera-
ture dependent, a favourable product distribution can also be effected by varying
the reaction temperature.

Now consider the following parallel reaction where A and B are reactants, P
is useful product and Q is by-product waste.

A � B
k1�	P

A � B
k2�	Q

It is obviously important to achieve complete reaction for A and B and high se-
lectivity for the formation of P with respect to Q.

The individual rates of reaction may be given by

rP � k1CnA1
A CnB1

B

and

rQ � k2CnA2
A cnB2

B

where nA1 and nA2 and nB1 and nB2 are the respective reaction for reactions 1
and 2.

The relative selectivity for the reaction is given by

rP

rQ
� k1

k2
C�nA1�nA2�

A C�nB1�nB2�
B

Thus if nA1 > nA2, high selectivity for P is favoured by maintaining the concen-
tration of A high. Conversely if nA1 < nA2, high selectivity is favoured by low con-
centration of B.

With the orders of reaction being equal in both reactions

rP

rQ
� k1

k2

where k1 and k2 are both functions of temperature, again showing that a favour-
able selectivity can be obtained by appropriate adjustment of the reactor tem-
perature.
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These and other waste minimisation considerations can be explored more
fully both by reference to conventional texts and by simulation.

3.2.12
Non-Ideal Flow

The previous analysis of stirred-tank reactors has all been expressed in terms of
the idealised concept of perfect mixing. In actual reactors, the mixing may be
far from perfect and for continuous flow reactors may lie somewhere between
the two idealised instances of perfect mixing and perfect plug flow, and may
even include dead zones or short-cut flow. The concept of ideal plug flow is
usually considered in terms of continuous tubular or continuous column type
devices and the application of this to continuous flow reactors is discussed in
Section 4.3.1. In ideal plug-flow reactors, all elements of fluid spend an identi-
cal period of time within the reactor, thus giving a zero distribution of residence
times. All elements of fluid thus undergo an equal extent of reaction, and tem-
peratures, concentrations and fluid velocities are completely uniform across any
flow cross section. For a well-mixed, continuous stirred-tank reactor, however,
there will be elements of fluid with, theoretically, a whole range of residence
times varying from zero to infinity. Practical reactors will normally exhibit a dis-
tribution of residence times, which lie somewhere between these two extreme
conditions and which effectively determine the performance of the reactor. The
form of the residence time distribution curve can therefore be used to character-
ise the nature of the flow in the reactor, and models of the mixing behaviour
can be important in simulations of reactor performance. Often different combi-
nations of tanks in series or in parallel can be used to represent combinations
of differing mixed flow regions and provide a powerful tool in the analysis of
actual reactor behaviour.

Using Tracer Information in Reactor Design

Residence time distributions can be determined in practice by injecting a non-
reactive tracer material into the input flow to the reactor and measuring the out-
put response characteristics in a similar manner to that described previously in
Section 2.1.1.

Unfortunately RTD studies cannot distinguish between early mixing and late
mixing sequences of different types. Whereas the mixing history does not influ-
ence a first-order reaction, other reaction types are affected; the more complex
the reaction kinetics the more the reaction selectivity or product distribution
generally will be influenced. Thus for certain kinetic cases a detailed knowledge
of the mixing can be important to the reactor performance. In practice this in-
formation may be difficult to obtain. In principle, tracer injection and sampling
at different points in the reactor can supply the needed information. In practice,
the usual procedure is to develop a model based on RTD experiments and the
modeller’s intuition. A comparison of the actual reactor performance with the
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model predictions for known reaction kinetics reveals then whether the model
assumptions were correct. The procedure is outlined above in Fig. 3.20.

Simulation examples demonstrating non-ideal mixing phenomenon in tank
reactors are CSTRPULSE, NOCSTR and TUBEMIX. Other more general ex-
amples demonstrating rank-based residence time distributions are MIXFLO1,
MIXFLO2, GASLIQ1, GASLIQ2 and SPBEDRTD.

3.2.13
Tank-Type Biological Reactors

Fermentation systems obey the same fundamental mass and energy balance re-
lationships as do chemical reaction systems, but special difficulties arise in bio-
logical reactor modelling, owing to uncertainties in the kinetic rate expression
and the reaction stoichiometry. In what follows, material balance equations are
derived for the total mass, the mass of substrate and the cell mass for the case
of the stirred tank bioreactor system (Dunn et al., 2003).

As indicated below in Fig. 3.21, feed enters the reactor at a volumetric flow
rate F0, with cell concentration X0 and substrate concentration S0. The vessel
contents, which are well-mixed, are defined by volume V, substrate concentra-
tion S1 and cell concentration X1. These concentrations are identical to those of
the outlet stream, which has a volumetric flow rate F1.
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Fig. 3.20 Reactor design procedure with reactors having residence time
distributions deviating from those of ideal reactors.



As shown previously, the general balance form can be derived by setting:

(Rate of accumulation) = (Input rate) – (Output rate) + (Production rate)

and can be applied to the whole volume of the tank contents.

Expressing the balance in equation form gives:

Total mass balance: d�V��
dt

� ��F0 � F1�

Substrate balance: d�VS1�
dt

� F0S0 � F1S1 � rSV

Organism balance: d�VX1�
dt

� F0X0 � F1X1 � rXV

where the units are: V (m3), � (kg/m3), F (m3/s), S (kg/m3), X (kg/m3) with rS

and rX (kg/m3 s).

The rate expressions can be simply given by the Monod Equation:

rX � �X1

and

� � �mS1

KS � S1

using a constant yield coefficient

rS � rX

YX�S

but other forms of rate equation may equally apply.
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Fig. 3.21 Tank fermenter variables.



The above generalised forms of equations can be simplified to fit particular
cases of bioreactor operation.

3.2.13.1 The Batch Fermenter
Starting from an inoculum (X at t = 0) and an initial quantity of limiting sub-
strate, S at t = 0, the biomass will grow, perhaps after a short lag phase, and will
consume substrate. As the substrate becomes exhausted, the growth rate will
slow and become zero when substrate is completely depleted. The above general
balances can be applied to describe the particular case of a batch fermentation
(constant volume and zero feed). Thus,

Total balance: dV
dt

� 0

Substrate balance: V
dS1

dt
� rSV

Organism balance: V
dX1

dt
� rXV

Suitable rate expressions for rS and rX and the specification of the initial condi-
tions would complete the batch fermenter model, which describes the exponen-
tial and limiting growth phases but not the lag phase.

3.2.13.2 The Chemostat
The term chemostat refers to a tank fermentation which is operated continu-
ously. This bioreactor mode of operation normally involves sterile feed (X0 = 0),
constant volume and steady state conditions, meaning that dV/dt = 0, d(VS1)/
dt = 0, d(VX1)/dt= 0.
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Fig. 3.22 The batch fermenter and variables.



For constant density the total mass balance simplifies to

0 � F0 � F1

which means that the flow rates in and out of the bioreactor must be equal.

The dynamic component balance equations are then

Substrate balance: V
dS1

dt
� F�S0 � S1� � rSV

Cell balance: V
dX1

dt
� �FX1 � rXV

where F is the volumetric flow through the system.

At steady state, dS1/dt = 0 and dX1/dt = 0.

Hence for the substrate balance:

0 � F�S0 � S1� � rSV

and for the cell balance:
0 � �FX1 � rXV

Inserting the Monod-type rate expressions gives:

For the cell balance

FX1

V
� rX � �X1

or simply

� � F
V
� D
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Fig. 3.23 The chemostat and its variables.



Here D is the dilution rate and is equal to 1/�, where � = V/F and is equal to
the mean residence time of the tank.

For the substrate balance:

F�S0 � S1� � rX

YX�S
V

from which
X1 � YX�S�S0 � S1�

Thus, the specific growth rate in a chemostat is controlled by the feed flow rate,
since � is equal to D at steady state conditions. Since �, the specific growth rate,
is a function of the substrate concentration, and since � is also determined by
dilution rate, then the flow rate F also determines the outlet substrate concen-
tration S1. The last equation is, of course, simply a statement that the quantity
of cells produced is proportional to the quantity of substrate consumed, as re-
lated by the yield factor YX/S.

If the flow rate F is increased, D will also increase, which causes the steady
state value of S1 to increase and the corresponding value of X1 to decrease.
It can be seen by simulation that when D nears �m, X1 will become zero and
S1 will rise to the inlet feed value S0. This corresponds to a complete removal
of the cells by flow out of the tank, and this phenomenon is known as “wash-
out”.

3.2.13.3 The Feed Batch Fermenter
This bioreactor mode refers to a tank fermenter operated semi-continuously.
The rate of the feed flow, F0, may be variable, and there is no outlet flow rate
from the fermentor. As a consequence of feeding the reactor volume will
change with respect to time.

The balance equations then become for constant density

dV
dt

� F0

d�VS1�
dt

� F0S0 � rSV

d�VX1�
dt

� rXV

Here the quantities VS1 and VX1 represent the masses of substrate and bio-
mass, respectively, in the reactor. In a simulation, dividing these masses by the
volume V gives the concentrations S1 and X1 as a function of time and which
are needed in the appropriate kinetic relationships to calculate rS and rX.
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It can be shown by simulation that a quasi-steady state can be reached for a
fed-batch fermenter, where dX1/dt= 0 and �= F/V (Dunn and Mor, 1975). Since
V increases, � must therefore decrease, and thus the reactor moves through a
series of changing steady states for which �= D, during which S1 and � de-
crease, and X1 remains constant. A detailed analysis of fed batch operation has
been made by Keller and Dunn (1978).

All three bioreactor modes described above can be simulated using the exam-
ple BIOREACT.

3.3
Stagewise Mass Transfer

3.3.1
Liquid-Liquid Extraction

Liquid-liquid extraction is an important chemical engineering separation pro-
cess, and a knowledge of the process dynamics is important since many solvent
extraction operations are still carried out batchwise. In addition, although most
continuous solvent extraction plants are still designed on a steady-state basis,
there is an increasing awareness of the need to assess possible safety and envi-
ronmental risks at the earliest possible design stage. For this, a knowledge of
the probable dynamic behaviour of the process becomes increasingly important.
This applies, especially, in the fields of nuclear reprocessing and heavy metal ex-
traction.

The modelling of solvent extraction is also of interest, since the dynamic be-
haviour of both liquid phases can be important, and because of the wide range
of equipment types that can be employed and the wide range of dynamic behav-
iour that results. The equipment is typified by mixer–settlers at one extreme, of-
ten representing high capacity, stagewise contacting devices, in which near equi-
librium conditions are achieved with slow, stable, but long-lasting dynamic char-
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acteristics. At the other extreme are differential column devices, representing
high throughput, low volume, non-equilibrium, differential contacting devices,
with fast-acting dynamic behaviour. These columns have a limited range of per-
missible operating conditions and often an inherent lack of stability, especially
when plant conditions are changing rapidly. Truly differential column devices
are considered in Chapter 4, but some types of extraction columns can be re-
garded basically as stagewise in character, since the modelling of the dynamic
characteristics of this type of device leads quite naturally from the equilibrium
stagewise approach.

The treatment is confined to the use of two completely immiscible liquid
phases, the feed or aqueous phase and the solvent or organic phase. No attempt
is made to apply the modelling methodology to the case of partially miscible
systems. Although one of the phases, the dispersed phase, will be in the form
of droplets, dispersed in a continuum of the other, this is simplified by assum-
ing each liquid phase to consist of separate well-mixed stage volumes. The mod-
elling approach, shown in this chapter, follows the general modelling methodol-
ogy in that it starts with the simplest case of a single component, batch extrac-
tion and then builds in further complexities. Finally a complex model of a non-
ideal flow in a multistage, multicomponent, extraction cascade, which includes
a consideration of both hydrodynamic effects and control, is achieved.

3.3.1.1 Single Batch Extraction
Volumes VL and VG of the two immiscible liquid phases are added to the extrac-
tion vessel and a single solute distributes itself between the phases as concen-
trations X and Y, respectively, at a rate, Q, as shown in Fig. 3.25.

For batch extraction, with no feed into the system, the component balances
on each phase are given by:

Rate of accumulation

of solute in

the given phase

�
��

�
�� � 


Effective rate of

mass transfer to

or from the phase

�
��

�
��

Neglecting the effects of concentration changes on solvent density, the phase
volumes will remain constant. Thus for the liquid phase with volume VL
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Fig. 3.25 Single-solute batch extraction between immiscible liquid phases.



VL
dX
dt

� �Q

and for liquid phase with volume VG

VG
dY
dt

� �Q

where Q is the rate of solute transfer with units (mol/s) or (kg/s)

Q � KLa�X � X��V

KL is the mass transfer coefficient for the L phase (m/s), a is the interfacial area
per unit volume (m2/m3), referred to the total liquid volume of the extractor, V
is the total holdup volume of the tank, and is equal to (VL + VG). X* is the equi-
librium concentration, corresponding to concentration Y, given by

X� � feq�Y�

as illustrated in Fig. 3.26.

The information flow diagram (Fig. 3.27) for this system shows the two com-
ponent material balance relations to be linked by the equilibrium and transfer
rate relationships.

Note that the transfer rate equation is based on an overall concentration driv-
ing force (X – X*) and overall mass transfer coefficient KL. The two-film theory-
for interfacial mass transfer shows that the overall mass transfer coefficient, KL,
based on the L-phase is related to the individual film coefficients for the L and
G-phase films, kL and kG, by the relationship

1
KL

� 1
kL

� m
kG
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Fig. 3.26 Equilibrium relationship between two liquid phases.

Equilibrium line
X*=feq(Y)



where m is the slope of the equilibrium curve and

dY�

dX
� m

For a linear equilibrium curve with constant film coefficients, kL and kG, the
overall coefficient, KL, will also be constant, but for the case of a non-linear
equilibrium relationship, the value of m, which is the local slope of the equilib-
rium curve, will vary with solute concentration. The result is that the overall
coefficient, KL, will also vary with concentration, and therefore in modelling the
case of a non-linear equilibrium extraction, further functional relationships re-
lating the mass transfer coefficient to concentration will be required, such that

KL � f �X�

3.3.1.2 Multisolute Batch Extraction
Two solutes distribute themselves between the two phases as concentrations XA

and YA, and XB and YB and with rates QA and QB, respectively, as shown in Fig.
3.28. The corresponding equilibrium concentrations XA

* and XB
* are functions of

both the interacting solute concentrations, YA and YB, and can be expressed by
functional relationships of the form

X�
A � fAeq�YA�YB�

X�
B � fBeq�YA�YB�

Typical representations of the way that the two differing equilibrium relation-
ships can interact are shown in Fig. 3.29, and it is assumed that the equilibria
can be correlated by appropriate, explicit equation forms.
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For multi-component systems, it is necessary to write the dynamic equation
for each phase and for each solute, in turn. Thus, for phase volume VL, the bal-
ances for solute A and for solute B are

VG
dYA

dt
� KLAa�XA � X�

A�VL

VG
dYB

dt
� KLBa�XB � X�

B�VL

The overall mass transfer coefficients are also likely to vary with concentration,
owing to the complex multisolute equilibria, such that

KLA � fA�XA�XB�

KLB � fB�XA�XB�

Again, these functional relationships should ideally be available in an explicit
form in order to ease the numerical method of solution. Two-solute batch ex-
traction is covered in the simulation example TWOEX.

3.3.1.3 Continuous Equilibrium Stage Extraction
Here the extraction is carried out continuously in a single, perfectly mixed, ex-
traction stage as shown in Fig. 3.30. It is assumed that the outlet flow concen-
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Fig. 3.28 Two-solute batch extraction.

Fig. 3.29 Interacting solute equilibria for the two solutes A and B.



trations, X1 and Y1, achieve equilibrium and that density variations are negligi-
ble.

Following an initial transient, the extractor will achieve a steady state operat-
ing condition, in which the outlet concentrations remain constant with respect
to time.

At steady state, the quantity of solute entering the extractor is equal to the
quantity of solute leaving. A steady-state balance for the combined two-phase
system gives

LX0 � GY0 � LX1 � GY1

where for an equilibrium stage extraction

X1 � feq�Y1�

Here, L and G are the volumetric flow rates of the heavy and the light phases,
respectively, X0 and Y0 are the respective inlet solute concentrations of the two
phases, X1 and Y1 are the respective outlet solute concentrations.

For a linear equilibrium relationship

Y1 � mX1

A simple substitution of the value Y1 in the balance equation enables the
steady-state concentration X1 to be determined, where

X1 � �LX0 � GY0�
�L � mG�

The steady-state approach, however, provides no information on the initial tran-
sient conditions, whereby the extractor achieves eventual steady state or on its
dynamic response to disturbances.

The eventual steady state solution may often be also very difficult to calculate
for cases in which the equilibrium is non-linear or where complex interacting
equilibria for multicomponent mixtures are involved. In such instances, we
have found a dynamic solution to provide a very simple means of solution.
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Fig. 3.30 Continuous equilibrium stage extraction.



The dynamic component balance equations for each of the two phases in turn.

Rate of
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of solute
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��

�
�� �

Rate of

flow in

of solute

�
��

�
���

Rate of

flow out

of solute

�
��

�
��


Rate

of solute

transfer

�
��

�
��

The sign of the transfer term will depend on the direction of mass transfer.
Assuming solute transfer again to proceed in the direction from volume VL to
volume VG, the component material balance equations become for volume VL

VL
dX1

dt
� LX0 � LX1 � Q

and for volume VG

VG
dY1

dt
� GY0 � GY1 � Q

where

Q � KLa�X1 � X�
1�VL

For an equilibrium stage, the outlet concentrations leaving the stage are in equi-
librium, i.e.

X�
1 � feq�Y1�

Here an arbitrarily high value for the mass transfer coefficient KL can be used
to force a close approach to equilibrium. Thus for a finite value of the rate of
transfer Q, the driving force will be very small, and hence the value of Xn

* is
forced to be very close to Xn. The final near equilibrium condition is thus
achieved as a result of the natural cause and effect in which equilibrium is fa-
voured by a high mass transfer coefficient, which is used here simply as a high
gain forcing factor, in the manner originally suggested by Franks (1972). Using
this technique, some additional problems in solution may be experienced due
to stiffness caused by a too high value for KL, but using the fast numerical inte-
gration routines of MADONNA, such difficulties become rather minimal.

This dynamic approach to equilibrium method is used in later examples to il-
lustrate its further application to the solution of complex steady state problems.

Continuous single-stage extraction is treated in the simulation example
EQEX. Chemical reaction with integrated single stage extraction is demon-
strated in the simulation example REXT.
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3.3.1.4 Multistage Countercurrent Extraction Cascade
For a high degree of extraction efficiency, it is usual to connect several continu-
ous flow stages to form a countercurrent flow extraction cascade, as indicated in
Fig. 3.31.

In each stage, it is assumed that the two phases occupy well-mixed, constant
volumes VL and VG. The phase volumes VL and VG can, however, vary from
stage to stage along the cascade. This effect is easily included into any simula-
tion program. Additional complexity, in the formulation of the model, is now
provided by the requirement of having to write balance equations for each of
the stages of the cascade. The total number of equations to be solved is thus in-
creased, but the modelling procedure remains straightforward.

For any given stage, n, the component material balance equations for each
phase are thus defined by

VLn
dXn

dt
� L�Xn�1 � Xn� � Qn

VGn
dYn

dt
� G�Yn�1 � Yn� � Qn

where
Qn � KLnAn�Xn � X�

n�Vn

and

X�
n � feq�Yn�

as shown in Fig. 3.32.
Note that the rate of transfer is defined by the local concentrations Xn and Xn

*

appropriate to the particular stage, n. It is straightforward in the formulation of
the model to allow for variations of the parameter values VL, VG, KL and a from
stage to stage and for both KL and a to vary with respect to the local concentra-
tion. In order to do this, it is necessary to define new constant values for VL

and VG for each stage and to have functional relationships, relating the mass
transfer capacity coefficient to stage concentration. In order to model equilib-
rium stage behaviour, actual values of the mass transfer capacity product term
(KLn an) would be again replaced by an arbitrary high value of the gain coeffi-
cient, KLn, to force actual stage concentrations close to the equilibrium. Multi-
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Fig. 3.31 Multistage countercurrent extraction cascade.



stage extraction is treated in the simulation example EQMULTI, which permits
calculation of the dynamics and steady state for situations in which the num-
bers of stages, flow rate and mass transfer conditions can all become variables
in the simulation solution.

3.3.1.5 Countercurrent Extraction Cascade with Backmixing
The extension of the modelling approach to allow for backmixing between
stages, cascades with side streams, or multiple feeds is also accomplished, rela-
tively easily, by an appropriate modification of the inflow and outflow terms in
the component balance equations (Ingham and Dunn, 1974). Backmixing re-
duces the efficiency of countercurrent mass transfer cascades, owing to its effect
on the concentration profiles within the cascade and in decreasing the effective
concentration driving forces. The effects of backmixing are especially severe in
the case of solvent extraction columns. The stagewise model with backmixing is
a well-known model representation, but the analytical solution is normally
mathematically very complex and analytical solutions, both for steady-state and
unsteady-state operating conditions, only apply for single-solute extraction
where parameter values remain constant and furthermore where a linear equi-
librium relationship applies. Compared to this, the solution of the dynamic
model equations by digital simulation using MADONNA is far more general,
since this has the ability to encompass varying parameter values, non-linear
equilibria-multisolute systems plus a variable number of stages.

A multistage extraction cascade with backmixing is shown in Fig. 3.33. Here
the backmixing flow rates LB and GB act in the reverse direction to the main
phase flows, between the stages and along the cascade. One important factor in
the modelling process is to realise that, as a consequence of the backmixing
flows, since phase volumes remain constant, then the interstage flow rates
along the cascade, in the forward direction, must also be increased by the
magnitude of the appropriate backmixing flow contribution. With a backmixing
flow LB in the aqueous phase, the resultant forward flow along the cascade
must now be (L + LB), since the backmixing does not appear exterior to the col-
umn. Similarly with a backmixed flow GB, the forward flow for the organic
phase is also increased to (G + GB). Taking into account the changed flow rates,
however, the derivation of the component balance equations follows normal pro-
cedures.
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Fig. 3.32 Flow and composition inputs to stage n of the cascade.



The relative inflow and outflow contributions for each phase of any stage n of
the cascade is shown in Fig. 3.34.

Allowing for the additional backmixing flow contributions, the component
balance equation for the two phases in stage n of the cascade are now

VLn
dXn

dt
� �L � LB�Xn�1 � �L � LB�Xn � LBXn�1 � LBXn � Qn

or

VLn
dXn

dt
� �L � LB��Xn�1 � Xn� � LB�Xn�1 � Xn� � Qn

and

VGn
dYn

dt
� �G � GB��Yn�1 � Yn� � GB�Yn�1 � Yn� � Qn
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Fig. 3.33 Multistage extraction cascade with backmixing of both phases.

Fig. 3.34 Stage n of a multistage extraction cascade with backmixing.



Although more complex in form, the resulting model equations provide no ma-
jor additional difficulty, and solution is also easily obtained. Multistage extrac-
tion with backmixing is covered in the simulation example EQBACK.

3.3.1.6 Countercurrent Extraction Cascade with Slow Chemical Reaction
A countercurrent extraction cascade with reaction A + B�C is shown in Fig.
3.35. The reaction takes place between a solute A in the L-phase, which is trans-
ferred to the G-phase by the process of mass transfer, where it then reacts with
a second component, B, to form an inert product, C, such that A, B and C are
all present in the G-phase.

The general component balance form of equation gives
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where for phase L

VLn
dXAn

dt
� L�XAn�1 � XAn� � QAn

and for phase G

VGn
dYAn

dt
� G�YAn�1 � YAn� � QAn � rnVGn

Components B and C are both immiscible in phase L and remain in phase G.
Therefore

VGn
dYBn

dt
� G�YBn�1 � YBn� � rnVGn
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Fig. 3.35 Solute A is transferred from the L-phase to the G-phase, where it
reacts with a component B, to form C.



VGn
dYCn

dt
� G�YCn�1 � YCn� � rnVGn

where the transfer rate is

QAn � KALnan�XAn � X�
An�Vn

and the reaction rate is

rn � kYAnYBn

Figure 3.36 shows the graphical output in the G-phase concentrations of compo-
nent A with respect to time, starting the cascade at time t = 0 with initially zero
concentrations throughout. The maximum in the YA1 profile for stage 1 is due
to a delay of reactant B in reaching A. This is because A and B are fed from the
opposite ends of the cascade, and thus a certain time of passage through the ex-
tractor is required before B is able to react with A in stage 1.

3.3.1.7 Multicomponent Systems
Assuming the liquid phases remain immiscible, the modelling approach for
multicomponent systems remains the same, except that it is now necessary to
write additional component balance equations for each of the solutes present,
as for the multistage extraction cascade with backmixing in Section 3.2.2. Thus
for component j, the component balance equations become

VLn
dXj

dt
� �L � LB��Xjn�1 � Xjn� � LB�Xjn�1 � Xjn� � Qjn
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Fig. 3.36 Concentrations in the solvent phases of stages 1, 2 and 3 in a
countercurrent extraction column with slow chemical reaction.
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VGn
dYj

dt
� �G � GB��Yjn�1 � Yjn� � GB�Yjn�1 � Yjn� � Qjn

where
Qjn � KLjnan�Xjn � X�

jn�Vn

The additional number of differential equations and increased complexities of
the equilibrium relationships may also be compounded by computational prob-
lems caused by widely differing magnitudes in the equilibrium constants for
the various components. As discussed in Section 3.3.2, it is shown that this can
lead to widely differing values in the equation time constants and hence to stiff-
ness problems for the numerical solution.

3.3.1.8 Control of Extraction Cascades
A typical control problem might be the maintenance of a required raffinate out-
let concentration, YN, with the controller action required to compensate the ef-
fect of variations in the feed concentration Y0, as indicated in Fig. 3.37.

The proportional-integral control equation, as given in Section 2.3.2.2, is:

L � L0 � Kp��t� � Kp

�I

� t

0

��t�dt

where L is the manipulated variable, i.e., the solvent flow rate, L0 is the base val-
ue for L, Kp is the proportional gain, �I is the integral action time and � is the
error between the actual concentration YN and the desired value Yset. These rela-
tionships can be directly incorporated into a digital simulation program as
shown in example EXTRACTCON. If required, it is also possible to include the
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Fig. 3.37 Maintenance of raffinate outlet concentration, by regulation of solvent flow rate.



dynamic effects of the measuring elements, measurement transmitters, and the
control valve characteristics into the simulation program as shown by Franks
(1972) and Luyben (1990).

3.3.1.9 Mixer–Settler Extraction Cascades
The archetypal stagewise extraction device is the mixer–settler. This consists es-
sentially of a well-mixed agitated vessel, in which the two liquid phases are
mixed and brought into intimate contact to form a two-phase dispersion, which
then flows into the settler for the mechanical separation of the two liquid
phases by continuous decantation. The settler, in its most basic form, consists
of a large empty tank, provided with weirs to allow the separated phases to dis-
charge. The dispersion entering the settler from the mixer forms an emulsion
band, from which the dispersed phase droplets coalesce into the two separate
liquid phases. The mixer must adequately disperse the two phases, and the hy-
drodynamic conditions within the mixer are usually such that a close approach
to equilibrium is obtained within the mixer. The settler therefore contributes lit-
tle mass transfer function to the overall extraction device.

Ignoring the quite distinct functions and hydrodynamic conditions which ex-
ist in the actual mixer and settler items of the combined mixer–settler unit, it is
possible, in principle, to treat the combined unit simply as a well-mixed equilib-
rium stage. This is done in exactly the way as considered previously in Sections
3.2.1 to 3.2.6. A schematic representation of an actual mixer–settler device is
shown in Fig. 3.38 and an even more simplified representation of the equivalent
simple well-mixed stage is given in Fig. 3.39.

A realistic description of the dynamic behaviour of an actual mixer–settler
plant item should however also involve some consideration of the hydrodynamic
characteristics of the separate mixer and settler compartments and the possible
flow interactions between mixer and settler along the cascade.

The notation for separate mixer–settler units is shown in Fig. 3.40, for stage
n of the cascade.
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Fig. 3.38 Schematic representation of a mixer–settler unit.



In this representation, the heavy phase with a flow rate, Ln–1, enters the mixer
from the preceding stage n–1, together with solvent flow, Gn+1, from stage n + 1.
The corresponding phase flow rates, in the dispersion, leaving the mixer and
entering the settler are shown as Lmn and Gmn and with concentrations Xmn

and Ymn respectively. This is to allow for possible changes in the volumetric
holdup of the mixer following changes in flow rate. The modelling of the sepa-
rate mixer and settler compartments follows that of Wilkinson and Ingham
(1983).

Mixer Dynamics

Owing to the intensive agitation conditions and intimate phase dispersion, ob-
tained within the mixing compartment, the mixer can usually be modelled as a
single perfectly mixed stage in which the rate of mass transfer is sufficient to
attain equilibrium. As derived previously in Section 3.3.1.3, the component bal-
ance equations for the mixer, based on the two combined liquid phases, is thus
given by

d�VLmXmn � VGmYmn�
dt

� Ln�1Xn�1 � Gn�1Yn�1 � GmnYmn � LmnXmn

where subscript m refers specifically to the conditions within the mixer and
hence to the effluent flow, leaving the mixer and entering the settler.
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Fig. 3.39 The well-mixed stage representation of a mixer–settler unit.

Fig. 3.40 The separate mixer and settler compartments for stage n of a mixer–settler cascade.



The total material balance for the mixer is expressed by

Rate of change of

mass in mixer

� �
� Mass

flow in

� �
� Mass

flow out

� �

Neglecting the effects of any density changes, the total material balance then
provides the relationship for the change of total volume in the mixer with re-
spect to time.

d�VLmn � VGmn�
dt

� Ln�1 � Gn�1 � Lmn � Gmn

Under well-mixed flow conditions it is reasonable to assume that the mixer
holdup volumes, VLmn and VGmn, will vary in direct proportion to the appropri-
ate phase flow rate, and that the total liquid holdup in the mixer will vary as a
function of the total flow rate to the mixer.

The total flow rate (Lmn + Gmn), leaving the mixer, will be related to the total
phase volumes VLm and VGm by a hydrostatic equation, which will depend on
the net difference in the head of liquid between the levels in the mixer and in
the settler. The actual form of this relationship might need to be determined ex-
perimentally, but could, for example, follow a simple square-root relationship of
the form in which flow rate is proportional to the square root of the difference
in liquid head, or indeed to the total volume of liquid in the mixer, e.g.,

Lmn � Gmn � �VLm � VGm�1�2

The further assumptions are that the respective phase volumes are in direct pro-
portion to the phase flow rate, i.e.,

VLmn

VGmn
� Lmn

Gmn

and the concentrations leaving the mixer are in equilibrium according to

Ymn � feq�Xmn�

These equations complete a preliminary model for the mixer. Note that it is also
possible, in principle, to incorporate changing density effects into the total ma-
terial balance equation, provided additional data, relating liquid density to con-
centration, are available.

Settler Dynamics

The simplest settler model is that in which it is assumed that each phase flows
through the settler in uniform plug flow, with no mixing and constant velocity.
This has the effect that the concentrations leaving the settler, Xn and Yn, are
simply the time-delayed values of the exit mixer concentrations Xmn and Ymn.
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In this the magnitude of the time delay is thus simply the time required for the
phase to pass through the appropriate settler volume.

The outlet phase flow rates, Ln and Gn, may again be related to the inlet set-
tler phase flow rates, Lmn and Gmn, and settler phase volumes by hydraulic con-
siderations, using similar formulations to those proposed for the mixer, as re-
quired.

In practice, some mixing will, however, occur in each phase of the settler, and
various models involving either an arbitrary number of perfect mixing stages or
various flow combinations, with and without recycle effects, can be postulated.
Some of these are indicated in Fig. 3.41, where Fig. 3.41 A represents settler
mixing, given by a series of stirred tanks, Fig. 3.41 B a series of well-mixed
tanks interconnected to stagnant regions and Fig. 3.41 C a series of two tanks
with recycle. The actual representation adopted for a given situation, would, of
course, have to depend very much on the actual mechanical arrangement and
flow characteristics of the particular settler design, together with actual observa-
tions of the flow behaviour.

Figure 3.42 shows one possible representation in which a proportion of each
phase passes through the settler in plug flow, while the remaining proportion is
well mixed.

The resultant outlet concentration from the settler is then given by the com-
bined plug-flow and well-mixed flow streams.

The notation for the above flow model, in respect of the aqueous-phase settler
volume, is shown in Fig. 3.43.

If Lmn is the volumetric flow rate of the heavy phase entering the settler from
the mixer, and f is the fraction of flow passing through the plug-flow region
with time delay tDn, then Lmn f is the volumetric flow passing through the plug-
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Fig. 3.41 Alternative settler-flow representations for the separate phases.



flow region. The concentration at the plug-flow region outlet, Xspn, is the inlet
concentration at time t – tDn and is given by

Xspn � Xmn�t�tDn�

The fractional flow rate Lmn (1 – f) is then also the volumetric flow passing
through the well-mixed region of settler phase volume, Vmix. The flows leaving
the plug-flow and well-mixed regions Xspn and Xsmn, respectively, then combine
to give the actual exit concentration from the settler Xn.
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Fig. 3.42 Combined plug-flow and well-mixed settler-flow representation.

Fig. 3.43 Combined plug-flow and well-mixed flow representation for the
heavy phase settler flow.



The model equations for the heavy phase settler region then become for the
well-mixed region

Vsmn
dXsmn

dt
� Lmn�1 � f ��Xmn � Xsmn�

and for the combined outlet phase flow

LnXn � Lmn�1 � f �Xsmn � Lmnf Xspn

Mixer–Settler Cascade

The individual mixer and settler model representations can then be combined
into an actual countercurrent-low, multistage, extraction scheme representation
as shown in Fig. 3.44. This includes an allowance for backmixing, between the
stages of the cascade caused by inefficient phase disengagement in the settlers,
such that a fraction fL or fG of the appropriate phase flow leaving the settler is
entrained. This means it is actually carried back in the reverse direction along
the cascade by entrainment in the other phase. It is assumed, for simplicity,
that the total flows of each phase, L and G, remain constant throughout all the
stages of the cascade. Entrainment fractions fL and fG are also assumed constant
for all settlers. The above conditions, however, are not restrictive in terms of the
capacity of the solution by digital simulation.
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Fig. 3.44 Multistage mixer–settler cascade with entrainment backmixing.
M and m refers to mixer and S and s to settler; stages are 1 to N.



The conditions in the mixer of any stage n are represented in Fig. 3.45.
Allowing for the additional flow contributions due to the entrainment back-

mixing, the component balance equations, for any mixer n along the cascade,
are now expressed by

VLmn
dXmn

dt
� LXsn�1 � fLLXsn�1 � �1 � fL�LXmn � Qmn

and

VGmn
dYmn

dt
� GYsn�1 � fGGYsn�1 � �1 � fG�GYmn � Qmn

where

Qmn � KLam�Xmn � X�
mn�VLmn

Vmn � VLmn � VGmn

The settler equations are as shown previously, but must, of course, be applied
to both phases.

Figure 3.46 shows the output obtained from a full solution of the mixer–set-
tler model. The effect of the time delay in the settlers, as the disturbance, as
propagated through the system from stage to stage, is very evident.
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Fig. 3.45 One mixer–settler stage, n.



3.3.1.10 Staged Extraction Columns
A wide variety of extraction column forms are used in solvent extraction applica-
tions. Many of these, such as rotary-disc contactors (RDC), Oldshue–Rushton
columns, and sieve-plate column extractors, have rather distinct compartments
and a geometry which lends itself to an analysis of column performance in
terms of a stagewise model. As the compositions of the phases do not come to
equilibrium at any stage, however, the behaviour of the column is therefore
basically differential in nature.

At the prevailing high levels of dispersion normally encountered in such
types of extraction columns, the behaviour of these essentially differential type
contactors, however, can be represented by the use of a non-equilibrium stage-
wise model.

The modelling approach to multistage countercurrent equilibrium extraction
cascades, based on a mass transfer rate term as shown in Section 1.4, can there-
fore usefully be applied to such types of extractor column. The magnitude of
the mass transfer capacity coefficient term, now used in the model equations,
must however be a realistic value corresponding to the hydrodynamic condi-
tions, actually existing within the column and, of course, will be substantially
less than that leading to an equilibrium condition.

In Fig. 3.47 the column contactor is represented by a series of N non-equilib-
rium stages, each of which is of height H and volume V. The effective column
height, Z, is thus given by Z= N H.

The stagewise model with backmixing is an essential component of any mod-
el representation of a stagewise extraction column. As shown in Section 3.3.1.5
the non-ideal flow behaviour is represented by the presence of the N stages
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in series and the constant backflow contributions, LB and GB, as indicated in
Fig. 3.47 appropriate for each phase.

Special attention has to be given to the end compartments of an extraction
column, since the phase inlet and outlet points are usually located at different
points of the column. These are complicated by the presence of phase distribu-
tors and at one end by the coalescence zone for the dispersed phase droplets.

In Fig. 3.47 the end sections are represented quite simply as well-mixed zones,
in which some limited degree of mass transfer may be present, but at which the
mass transfer rate is much lower than in the main body of the column.

The standard equations for a stagewise extraction cascade with backmixing as
developed in Section 3.3.1.5 are

VLn
dXn

dt
� �L � LB��Xn�1 � Xn� � LB�Xn�1 � Xn� � Qn

VGn
dYn

dt
� �G � GB��Yn�1 � Yn� � GB�Yn�1 � Yn� � Qn
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where
Qn � KLnan�Xn � X�

n�V
and

X�
n � feq�Yn�

Here an is the interfacial area per unit volume.
In extraction column design the model equations are normally expressed in

terms of superficial phase velocities, L� and G�, based on unit cross-sectional
area. The volume of any stage in the column is then A H, where A is the cross-
sectional area of the column. Thus the volume occupied by the total dispersed
phase is h A H, where h is the fractional holdup of dispersed phase, i.e., the
droplet volume in the stage divided by the total volume of the stage. The vol-
ume occupied by the continuous phase in the stage is (1 – h) A H.

Taking the phase flow rate G� to represent the dispersed phase, the compo-
nent balance equations now become for any stage n

A Hn�1 � hn� dXn

dt
� �L� � L�

B��Xn�1 � Xn� � L�
B�Xn�1 � Xn� � Qn

A Hnhn
dYn

dt
� �G� � G�

B��Yn�1 � Yn� � G�
B�Yn�1 � Yn� � Qn

In the above equations KL is the overall mass transfer coefficient (based on
phase L), a is the specific interfacial area for mass transfer related to unit col-
umn volume, X and Y are the phase solute concentrations, X* is the equilibrium
concentration corresponding to concentration Y and subscript n refers to stage
n of the extractor.

Normally the backmixing flow rates LB and GB are defined in terms of con-
stant backmixing factors �L = LB/L and �G = GB/G. The material balance equa-
tions then appear in the form

Hn�1 � hn� dXn

dt
� L��1 � �L�Xn�1 � L��1 � 2�L�Xn � �LL�Xn�1 � Qn

Hnhn
dYn

dt
� G��1 � �G�Yn�1 � G��1 � 2�G�Yn � �GG�Yn�1 � Qn

Considering the end regions of the column as well-mixed stages with small but
finite rates of mass transfer, component balance equations can be derived for
end stage 0

V0�1 � h0� dX0

dt
� LXF � LBX1 � �L � LB�X0 � Q0

V0h0
dY0

dt
� �G � GB��Y1 � Y0� � Q0
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and for end stage N

VN�1�1 � hN�1� dXN�1

dt
� �L � LB��XN � XN�1� � QN�1

VN�1hN�1
dYN�1

dt
� GYF � GBYN � �G � GB�YN�1 � QN�1

The correct modelling of the end sections is obviously of great importance and,
depending on the geometrical arrangement, it is possible to consider the col-
umn end sections as combinations of well-mixed tanks, exterior to the actual
column.

3.3.1.11 Column Hydrodynamics
Under changing flow conditions it can be important to include some considera-
tion of the hydrodynamic changes within the column (Fig. 3.48), as manifested
by changes in the fractional dispersed phase holdup hn and the phase flow rates
Ln and Gn which, under dynamic conditions, can vary from stage to stage. Such
variations can have a considerable effect on the overall dynamic characteristics
of an extraction column, since variations in hn also affect the solute transfer
rate terms Qn by virtue of the corresponding variation in the specific interfacial
area an.
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A dynamic balance for the dispersed phase holdup in stage n gives

Vn
dhn

dt
� Gn�1 � Gn

Since liquid phases are incompressible

Ln�1 � Gn�1 � Ln � Gn

and for the overall column

L � G � LN � G1

The fractional dispersed phase holdup h is normally correlated on the basis of a
characteristic velocity equation, which is based on the concept of a slip velocity
for the drops vslip, which then can be related to the free rise velocity of single
drops, using some correctional functional dependence on holdup f(h). The nor-
mal method of correlating dispersed phase holdup is normally of the form

vslip � L�

�1 � h� �
G�

h
� vcharf �h�

where vchar is the characteristic velocity for the dispersed phase droplets. Know-
ing the value of vchar, the value of h can be determined for any values of L� and
G�, using an iterative procedure.

In some cases, the characteristic velocity can cause difficulties in solution, ow-
ing to the presence of an implicit equation. In this the appropriate value of Ln

or Gn satisfying the value of hn generated by the differential material balance
equation must be found by root finding algorithms increasing computation
time required.

If necessary, the implicit nature of the calculation may, however, be avoided
by a reformulation of the holdup relationship into an explicit form. The result-
ing calculation procedure then becomes much more straightforward and the
variation of holdup in the column may be combined into a fuller extraction col-
umn model in which the inclusion of the hydrodynamics now provides addi-
tional flexibility. The above modelling approach to the column hydrodynamics,
using an explicit form of holdup relationship, is illustrated by the simulation ex-
ample HOLDUP.

3.3.2
Stagewise Absorption

Gas–liquid contacting systems can be modelled in a manner similar to liquid–
liquid contactors. There are however some modelling features which are pecu-
liar to gas–liquid systems. The single well-mixed contacting stage is shown in
Fig. 3.49.
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In this, G and L are the volumetric flow rates of the two phases, and X and Y
are the concentrations of any component in each phase. Q is the transfer rate
of the component.

For single-solute gas–liquid mass transfer the component balances are as before

VL
dX1

dt
� L0X0 � L1X1 � Q

VG
dY1

dt
� G0Y0 � G1Y1 � Q

where VG is the volume of the well-mixed gas phase, and VL is the volume of
the well-mixed liquid phase.

In the preceding solvent extraction models, it was assumed that the phase
flow rates L and G remained constant, which is consistent with a low degree of
solute transfer relative to the total phase flow rate. For the case of gas absorp-
tion, normally the liquid flow is fairly constant and L0 is approximately equal to
L1, but often the gas flow can change quite substantially, such that G0 no longer
equals G1. For highly concentrated gas phase systems, it is therefore often pre-
ferable to define flow rates, L and G, on a solute-free mass basis and to express
concentrations X and Y as mass ratio concentrations. This system of concentra-
tion units is used in the simulation example AMMONAB.

The transfer term Q is written as

Q � KLa�X�
1 � X1�VL

where a is the transfer surface per volume of liquid, KL is the overall mass
transfer coefficient for phase L, VL is the liquid phase volume and X1

* is given
by the equilibrium relation

X�
i � feq�Y1�
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Fig. 3.49 Well-mixed gas–liquid contacting stage.



As shown for the case of extraction, a high value of KLa will result in X1 ap-
proaching very close to the value Xi

*, and therefore the outlet concentrations of
the two phases will be close to equilibrium.

Owing to the substantially greater density of liquids, as compared to gases,
the volumetric flow rate of the gas is usually much greater than that of the liq-
uid or G >>L as a general consequence

VL

L

 VG

G

meaning that

�L 
 �G

The significance of the large difference in the relative magnitudes of the time
constants, for the two phases, is that the gas concentrations will reach steady
state much faster than the liquid phase.

In the component balance equations dY1/dt will therefore be zero, whereas
dX1/dt may still be quite large. This can obviously cause considerable difficulties
in the integration procedure, owing to equation stiffness.

For gas absorption this problem can often be circumvented by the assumption
of a quasi-steady-state condition for the gas phase. In this, the dynamics of the
gas phase are effectively neglected and the steady state, rather than the dynamic
form of component balance, is used to describe the variation in gas phase con-
centration.

The gas phase balance then becomes for the above situation

0 � G0Y0 � G1Y1 � Q

Hence

Y1 � G0Y0 � KLa�X�
1 � X1�VL

G1

Thus Y1 is obtained not as the result of the numerical integration of a differen-
tial equation, but as the solution of an algebraic equation, which now requires
an iterative procedure to determine the equilibrium value X1

*. The solution of al-
gebraic balance equations in combination with an equilibrium relation has
again resulted in an implicit algebraic loop. Simplification of such problems,
however, is always possible, when X1

* is simply related to Y1, as for example

X�
1 � mY1

Combining the two equations then gives an explicit solution for concentration
Y1 and hence also X1
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Y1 � G0Y0 � KLaX1VL

G1 � KLamVL

and the implicit algebraic loop is eliminated from the solution procedure.
Assuming equilibrium conditions and a linear equilibrium relationship,

where Y1 = m X1 and a quasi-steady-state conditions in the gas with dY1/dt = 0 to
be achieved, a component balance for the entire two phase system of Fig. 3.49
gives

VL
dX1

dt
� GY0 � LX0 � LX1 � GmX1

which can be expressed as

dX1

dt
�

GY0 � LX0

L � Gm
X1

VL

L � Gm

This equation has the form

dX1

dt
� A � X1

�

where the time constant for the system, �, is thus shown to be dependent on
the value of the equilibrium constant m. Since the value of m depends on the
nature of the particular solute concerned, this has the consequence that in mul-
ticomponent applications the value of the time constant will vary according to
the system component. This can cause problems of equation stiffness in the so-
lution of the often quite large sets of simultaneous multicomponent balance
equations. The importance of eliminating unnecessary stiffness, by careful con-
sideration of the relative magnitudes of the various system time constants, thus
becomes very apparent.

3.3.3
Stagewise Distillation

3.3.3.1 Simple Overhead Distillation
A simple overhead topping distillation process, without fractionation, is illus-
trated in Fig. 3.50.

The total material balance is given by

Rate of accumulation

of mass in the still

� �
� Rate of mass

input to the still

� �

3 Modelling of Stagewise Processes156



giving
dM
dt

� �V

where M is the total moles of liquid in the still and V is the vapour removal rate
in moles/time.

For a simple binary distillation, the component balance equation becomes

d�MxA�
dt

� �VyA

where xA and yA are the liquid and vapour mole fraction of component A of the
liquid and vapour phases, respectively, where A is the more volatile component.

The relative volatility � is usually related to the compound having the higher
boiling point, which in this case is B and hence

�A�B � yA�xA

yB�xB

Assuming that the liquid and vapour compositions in the still are in equilib-
rium, i.e., that the still acts as a theoretical stage

yA � feq�xA�

or in terms of relative volatility �

yA � �AxA

1 � ��A � 1�xA

The combination of the two material balance equations, together with an ex-
plicit form of equilibrium relationship gives a system that is very easily solvable
by direct numerical integration, as demonstrated in the simulation example
BSTILL.
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Fig. 3.50 Model representation of a simple overhead distillation.



Extending the method to a multicomponent mixture, the total material bal-
ance remains the same, but separate component balance equations must now
be written for each individual component i, giving

dMxi

dt
� �Vyi

and where now the equilibrium condition is given by

yi � �ixi

��ixi

Again solution is straightforward, as illustrated in the simulation examples
DIFDIST and MCSTILL.

3.3.3.2 Binary Batch Distillation
A batch distillation represents a complete dynamic process since everything,
apart from the geometry of the column and the nature of the equilibrium rela-
tionship, varies with time. Owing to the removal of a distillate containing more
of the volatile component, the compositions of the vapour and the liquid on all
plates of the column vary with time. The total quantity of liquid in the still de-
creases with time, and its composition becomes successively depleted in the
more volatile component. This makes the separation more and more difficult,
requiring the use of higher reflux ratios to maintain a high distillate composi-
tion. The increased reflux increases the liquid flow down the column, and
hence the liquid holdup on each plate. As a result of the increasing concentra-
tion of less volatile component in the still, the still temperature increases during
distillation, thus reducing the rate of heat transfer to the still by reducing the
temperature driving force in the reboiler and hence reducing the vapour boil-up
rate. Despite this, conventional textbooks persist in analysing batch distillation
in terms of quasi-steady-state graphical techniques applied at different concen-
tration levels during the distillation process. These are also based on rather
idealised and unrealistic conditions of operating a batch distillation process, i.e.:

1. Distillation at constant reflux ratio but varying top product composition.
2. Distillation at constant top product composition but varying reflux ratio.

Compared to this a solution approach based on digital simulation is much more
realistic.

Consider the binary batch distillation column, represented in Fig. 3.51, and
based on that of Luyben (1973, 1990). The still contains MB moles with liquid
mole fraction composition xB. The liquid holdup on each plate n of the column
is Mn with liquid composition xn and a corresponding vapour phase composi-
tion yn. The liquid flow from plate to plate Ln varies along the column with con-
sequent variations in Mn. Overhead vapours are condensed in a total condenser
and the condensate collected in a reflux drum with a liquid holdup volume MD
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and liquid composition xD. From here part of the condensate is returned to the
top plate of the column as reflux at the rate L0 and composition xD. Product is
removed from the reflux drum at a composition xD and rate D, which is con-
trolled by a simple proportional controller acting on the reflux drum level and
is proportional to MD.

For simplicity the following assumptions are made, although a more general
model could easily be derived, in which these assumptions could be relaxed.

1. The system is ideal, with equilibrium described by a constant relative volatili-
ty, the liquid components have equal molar latent heats of evaporation and
there are no heat losses or heat of mixing effects on the plates. Hence the
concept of constant molar overflow (excluding dynamic effects) and the use of
mole fraction compositions are allowable.

2. The liquid volumes in the still, reflux drum and on the column plates are
well-mixed regions of uniform composition.

3. The dynamics of the overhead pipework and condenser are negligible.
4. The dynamics of the vapour phase in the column are much faster than that

of the liquid phase and are neglected.
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Fig. 3.51 Model representation of a batch distillation column and typical
plate n as per Luyben (1973).



5. The still provides a constant vapour boil-up rate, which remains constant with
respect to time.

6. The column plates have 100% plate efficiency and act as theoretical plates.

Since the vapour phase dynamics are negligible, the vapour flow rate through
the column is constant from plate to plate, at the rate of V (kmol/s). The liquid
flow rates Ln and the liquid holdup on the plate, however, will vary under
changing hydrodynamic conditions in the column. The corresponding notation,
for any plate n in the column, is as indicated in Fig. 3.51.

Total mass and component material balance equations are written for all the
plates of the column, for the still and for the top reflux drum.

Here L, G and D are the molar flow rates and x and y are mol fraction com-
positions.

For plate n the total material balance is given by

dMn

dt
� Ln�1 � Vn�1 � Ln � Vn

Since vapour phase dynamics are neglected and “Constant Molal Overflow” con-
ditions also apply, Vn+1 = Vn = V, and

dMn

dt
� Ln�1 � Ln

The component balance equation is given by

d�Mnxn�
dt

� Ln�1xn�1 � Lnxn � V�yn�1 � yn�

The corresponding equations for the boiler are

dMB

dt
� LN � V

and
d�MBxB�

dt
� LNxN � VyB

where N refers to conditions on the bottom plate of the column.

For the reflux drum

dMD

dt
� V � D � L0
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and

d�MDxD�
dt

� Yy1 � �L0 � D�xD

where L0/D= R is the reflux ratio for the column.
Assuming theoretical plate behaviour, i.e., equilibrium between the gas and

liquid phases, for plate n

yn � �xn

1 � ��� 1�xn

where � is the relative volatility.
The above equation also applies to the liquid and vapour compositions of the

still, where equilibrium plate behaviour is again assumed.
The maintenance of constant liquid level in the reflux drum can be expressed

by the following proportional control equation

D � Kp�MD � MD�set��

where Kp is the controller gain and MD(set) is the level controller set point.

Automatic control of distillate composition (xD) may also be affected by control
of the reflux ratio, for example to maintain the distillate composition at constant
set point (xDset).

R � KpR�xD � xDset�

Batch distillation with continuous control of distillate composition via the regula-
tion of reflux ratio is illustrated in the simulation example BSTILL. In this an ini-
tial total reflux condition, required to establish the initial concentration profile
with the column, is represented in the simulation by a high initial value of R,
which then changes to the controller equation for conditions of distillate removal.

Changes in the hydraulic hold-up of liquid on the column plates is known
to have a significant effect on the separating efficiency of batch distillation
columns, and may be relatively easily incorporated into the batch simulation
model. The hydraulic condition of the plates is represented in Fig. 3.52.

A material balance for the liquid on plate n is given by

dMn

dt
� Ln�1 � Ln

In this simplified model, it is assumed that liquid may leave the plate, either by
flow over the weir Ln(weir) or by weepage Ln(weep). Both these effects can be de-
scribed by simple hydraulic relations, in which the flow is proportional to the
square root of the available hydrostatic liquid head. The weir flow depends on
the liquid head above the weir, and hence
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Ln�weir� � �Mn � Mns�0�5

Ln(weir) is zero for the condition Mn < Mns. Mn is the mass of liquid on plate n,
and Mns is the mass of liquid on the plate corresponding to the weir height or
static liquid holdup on the plate. The rate of loss of liquid from the plate by
weepage, however, will depend on the total mass of liquid on the plate

Ln�weep� � M0�5
n

The total flow of liquid from the plate is therefore given by

Ln � K1�Mn � Mns�0�5 � K2M0�5
n

where K1 is an effective weir discharge constant for the plate, K2 is the weepage
discharge constant and Mns is the static holdup on the plate.

3.3.3.3 Continuous Binary Distillation
The continuous binary distillation column of Fig. 3.53 follows the same general
representation as that used previously in Fig. 3.51. The modelling approach
again follows closely that of Luyben (1990).

The relationships for the section of column above the feed plate, i.e., the en-
riching section of the column, are exactly the same as those derived previously
for the case of the batch distillation column.

The material balance relationships for the feed plate, the plates in the strip-
ping section of the column and for the reboiler must, however, be modified, ow-
ing to the continuous feed to the column and the continuous withdrawal of bot-
tom product from the reboiler. The feed is defined by its mass flow rate, F, its
composition xF and the thermal quality or q-factor, q. The column bottom prod-
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uct is defined by its mass flow rate W and composition xW and is controlled to
maintain constant liquid level in the reboiler.

The liquid and vapour molar flow rates in the enriching section are denoted
by L and V, as previously and in the stripping section as L� and V�. The relation-
ship between L, V, L� and V� is determined by the feed rate F and the thermal
quality of the feed “q”.

The thermal quality of the feed is defined as the heat required to raise 1 mole
of feed from the feed condition to vapour at the feed plate condition divided by
the molar latent heat, and the following values apply: q= 0 for saturated liquid
feed; q= 1 for saturated vapour feed, and q> 1 for cold feed. The value of q af-
fects the relative liquid and vapour flow rates (L and V) above and (L� and V�)
below the feed plate, as indicated in Fig. 3.54.

Thus an energy balance around the feed plate can be employed to show that
under certain conditions
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Fig. 3.53 Model representation of a continuous binary distillation column.
PC is the cooling water controller, LC the reflux controller.



L� � L � qF

V � V� � �1 � q�F

and where for a saturated liquid feed with q= 1

L� � L � F

and

V � V�

For any plate n above the feed as shown previously for constant liquid holdup
conditions

Mn
dxn

dt
� L�xn�1 � xn� � V�yn�1 � yn�

The component balance for the feed plate is given by

Mn
dxF

dt
� Lxf�1 � L�xf � V�yF�1 � Vyf � FxF

and for any plate m, in the stripping section, below the feed

Mm
dxn

dt
� L��xm�1 � xm� � V��ym�1 � ym�

For the reboiler

MB
dxB

dt
� L�xN � WxB � V�yB
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The controller equations

W � f �MB�

V� � f �xB�

are also required to complete the model. The relationships around the top part
of the column and control of reflux drum level remain the same as those for
the batch situation, described in Section 3.3.3.2.

If necessary the hydraulic relationships, previously derived for batch distilla-
tion, are also easily implemented into a continuous distillation model.

Continuous binary distillation is illustrated by the simulation example CON-
STILL. Here the dynamic simulation example is seen as a valuable adjunct to
steady state design calculations, since with MADONNA the most important col-
umn design parameters (total column plate number, feed plate location and re-
flux ratio) come under the direct control of the simulator as facilitated by the
use of sliders. Provided that sufficient simulation time is allowed for the col-
umn conditions to reach steady state, the resultant steady state profiles of com-
position versus plate number are easily obtained. In this way, the effects of
changes in reflux ratio or choice of the optimum plate location on the resultant
steady state profiles become almost immediately apparent.

3.3.3.4 Multicomponent Separations
As discussed previously in Section 3.3.1.7, each additional component of the
feed mixture must be expressed by a separate component material balance
equation and by its own equilibrium relationship.

Thus for component i of a system of j components, the component balance
equation, on the nth plate, becomes

Mn
dxin

dt
� L�xin�1 � xin� � V�yin�1 � yin�

where i= 1 to j.

Assuming the equilibrium to be expressed in terms of relative volatilities �i and
theoretical plate behaviour, the relation between the vapour and liquid mole
fraction compositions leaving the plate is given by

yin � ainxin
j

1

ainxin

or where the equilibrium can be based in terms of K values, the relationship be-
comes

yin � Kinxin
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Using the above form of equilibrium relationship, the component balance equa-
tions now become

Mn
dxin

dt
� Lxin�1 � Lxin � VKin�xin�1 � xin�

This again shows that the component balance may thus have different time
constants, which depend on the relative magnitudes of the equilibrium con-
stants Ki, which again can lead to problems of numerical solution due to equa-
tion stiffness.

One way of dealing with this is to replace those component balance differen-
tial equations, having low time constants (i.e., high K values) and fast rates of
response, by quasi-steady-state algebraic equations, obtained by setting

M
dxi

dt
� 0

and effectively neglecting the dynamics in the case of those components, having
very fast rates of response.

Continuous multicomponent distillation simulation is illustrated by the simu-
lation example MCSTILL, where the parametric runs facility of MADONNA pro-
vides a valuable means of assessing the effect of each parameter on the final
steady state. It is thus possible to rapidly obtain the optimum steady state set-
tings for total plate number, feed plate number and column reflux ratio via a
simple use of sliders.

3.3.3.5 Plate Efficiency
The use of a plate efficiency correction enables the simulation of columns with
a real number of plates to be simulated. This may be important in the study of
real columns, when incorporating an allowance for plate hydrodynamic behav-
iour.

The situation for any plate n, with liquid composition xn corresponding to an
equilibrium vapour composition yn

*, but with actual vapour composition yn, is
represented on a small section of the McCabe–Thiele diagram in Fig. 3.55.

The actual plate efficiency can be defined as

� � Actual change of composition
Maximum possible change of composition

where

� � �yn � yn1�
�y�n � yn1�
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Hence by simple algebra

yn � ��y�n � yn�1� � yn�1

Additional equations, as above, can thus be used to correct the values of yn
*, ob-

tained from the equilibrium data to give actual plate values yn.

3.3.3.6 Complex Column Simulations
More complex situations where ideal behaviour can no longer be assumed re-
quire the incorporation of activity coefficient terms in the calculation of the
equilibrium vapour compositions. Assuming ideal behaviour in the gas phase,
the equilibrium relation for component i is

yi � 	ixiPi

P

where P is the total pressure in the column. Since the saturated vapour pres-
sure of the pure compound i, Pi, is a function of temperature, the calculation of
the equilibrium vapour composition requires that a plate temperature must be
determined such that the condition �yi = 1 is obtained. Examples of this tech-
nique are illustrated in the corresponding simulation examples STEAM and
BUBBLE.

Furthermore heat effects on the plates may also have to be accounted for, by
means of a dynamic heat balance for each plate, including allowances for the
enthalpies of the liquid and vapour streams, entering and leaving the plate, heat
of mixing, etc. This thus represents a much more complicated and time-con-
suming computational procedure than has been considered so far. In such
cases, it obviously becomes much more meaningful to employ larger simulation
packages, with their sophisticated physical property data-bases and estimation
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Fig. 3.55 Actual and theoretical plate compositions for plate n.



procedures. The general principles of the modelling procedure, however, remain
very much the same.

Multicomponent equilibria combined with distillation heat effects are dis-
cussed in more detail in Section 3.3.4 below.

3.3.4
Multicomponent Steam Distillation

Steam distillation is a process whereby organic liquids may be separated at tem-
peratures sufficiently low to prevent their thermal decomposition or whereby
azeotropes may be broken. Fats or perfume production are examples of applica-
tions of this technique. The vapour–liquid equilibria of the three-phase system
is simplified by the usual assumption of complete immiscibility of the liquid
phases and by the validity of the Raoult and Dalton laws. Systems containing
more than one volatile component are characterised by complex dynamics (e.g.,
boiling point is not constant).

Steam distillation is normally carried out as a semi-batch process whereby the
organic mixture is charged into the still and steam is bubbled through continu-
ously, as depicted in Fig. 3.56.

As discussed, modelled and simulated by Prenosil (1976), the dynamics of the
process bring in the question of steam consumption, steam flow rate, starting
time of the distillation, and shut-down time when the desired degree of separa-
tion has been reached. The modelling of steam distillation often involves the
following assumptions.

1. Ideal behaviour of all components in pure state or mixture.
2. Complete immiscibility of the water and the organic phases.
3. Zero temperature gradients in the bulk phases (ideal mixing in the boiler).
4. Equilibrium between the organic vapour and its liquid at all times.
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Fig. 3.56 Schematic drawing of the apparatus for steam distillation.



The mathematical model is divided into two time periods:

(a) The heating period until boiling point is reached.
(b) The distillation period after boiling has started.

Heating Period

To describe the dynamic behaviour of this semi-batch process, unsteady-state
mass and energy balances are needed. Their interrelationships are depicted in
Fig. 3.57.

For the water phase,
dmw

dt
� WS

Here, it is assumed that all the steam condenses in the distillation vessel. In
this period, the organic phase component masses remain constant.

The rate of heat accumulation is balanced by the heat of condensation and
the heat losses. An energy balance therefore gives

d�mwHLw � m�xiHLi�
dt

� WSHS � Q

The enthalpy changes are calculated from molar heat capacities given by the
usual functions of temperature, according to

�mwcpLw � m�xicpLi� dT
dt

� WS�HS � HLw� � Q
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Fig. 3.57 Information flow diagram for the heating period.



from which it follows that

dT
dt

� WS�HS � HLw� � Q
mwcpLw � �xicpLi

The heat transfer Q to the surroundings is calculated from the simple relation

Q � UA�TE � T�

The solution of the above model gives the temperature of the mixture at any
time during the heating period.

Distillation Period

The distillation starts when the boiling point is reached. Then a vapour stream
at flow rate V is obtained, which condenses as a distillate. The material balances
can be written as follows:

For water
dmw

dt
� WS � Vyv

For the organic compound i

d�mxi�
dt

� �Vyi

and for the total organic phase

dm
dt

� �V�yi

The energy balance is now

d�mwHLw � m�xiHLi�
dt

� WSHS � VHV � Q

where
HV � ywHVw � �yiHVi

The vapour enthalpies are calculated from the molar heat capacity functions for
the vapour components and the latent heats of vaporisation at standard tem-
perature. The vapour overflow, V, is then obtained from the energy balance as

V � WSHS � Q � d�mwHLw � m
xiHLi�
dt

1
HV
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Phase Equilibria

Assuming ideal liquid behavior, the total partial pressure of the organic phase is
given by the sum of the partial pressures of its components according to
Raoult’s Law.

yi

xi
� Pi

P

where Pi is the vapour pressure of pure component i. For non-idealities, this
must be modified with appropriate activity expressions (Prenosil, 1976). For
water, the vapour pressure varies only with temperature so that

yw � Pw

P
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Fig. 3.58 Information flow diagram for the distillation period.



Boiling will commence when the sum of the organic partial pressures and the
water vapour pressure is equal to the total pressure or in terms of the mole
fractions

�yi � yw � 1

As boiling proceeds the loss of the lightest organic vapours will cause the boil-
ing point to increase with time. The vapour pressures Pi and Pw of the pure
components can be calculated using the Antoine equation

log P � A � B
C � T

The highly interactive nature of the balance and equilibria equations for the dis-
tillation period are depicted in Fig. 3.58. An implicit iterative algebraic loop is
involved in the calculation of the boiling point temperature at each time inter-
val. This involves guessing the temperature and calculating the sum of the par-
tial pressures or mole fractions. The condition required is that �yi + yw = 1. The
model of Prenosil (1976) also included an efficiency term E for the steam heat-
ing, dependent on liquid depth L and bubble diameter D.

Multicomponent steam distillation is illustrated in simulation example
STEAM.
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