
4.1
Introduction

4.1.1
Dynamic Simulation

The main process variables in differential contacting devices vary continuously
with respect to distance. Dynamic simulations therefore involve variations with
respect to both time and position. Thus two independent variables, time and po-
sition, are now involved. Although the basic principles remain the same, the
mathematical formulation for the dynamic system now results in the form of
partial differential equations. As most digital simulation languages permit the
use of only one independent variable, the second independent variable, either
time or distance, is normally eliminated by the use of a finite-differencing pro-
cedure. In this chapter, the approach is based very largely on that of Franks
(1967), and the distance coordinate is treated by finite differencing.

In this procedure, the length coordinate of the system is divided into N finite-
difference elements or segments, each of length �Z, where N times �Z is equal
to the total length or distance. It is assumed that within each element any varia-
tion with respect to distance is relatively small. The conditions at the mid-point
of the element can therefore be taken to represent the conditions of the element
as a whole. This is shown in Fig. 4.1, where the average concentration of any
element n is identified by the midpoint concentration Cn. The actual continuous
variation in concentration with respect to length is therefore approximated by a
series of discontinuous variations.

The dynamic behaviour of element n is affected by the conditions in its
neighbouring elements n – 1 and n + 1, and each original partial differential
equation is approximated by a system of N simultaneous difference differential
equations. In practice, the length of each element �Z may be kept constant or
may be varied from segment to segment. A greater number of elements usually
improves the approximation of the profile, but the computational effort required
is also greater. The approach is demonstrated in the simulation examples
DISRET, DISRE, AXDISP, CHROMDIFF, MEMSEP, HEATEX, DRY, ENZDYN,
BEAD, SOIL and LEACH.
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4.1.2
Steady-State Simulation

Under steady-state conditions, variations with respect to time are eliminated
and the steady-state model can now be formulated in terms of the one remain-
ing independent variable, length or distance. In many cases, the model equa-
tions now become simultaneous first-order differential equations, for which so-
lution is straightforward. Simulation examples of this type are the steady-state
tubular reactor models TUBE and TUBEDIM, TUBTANK, ANHYD, BENZHYD
and NITRO.

Some models, however, take the form of second-order differential equations,
which often give rise to problems of the split boundary type. In order to solve
this type of problem, an iterative method of solution is required, in which an
unknown condition at the starting point is guessed, the differential equation in-
tegrated. After comparison with the second boundary condition a new starting
point is estimated, followed by re-integration. This procedure is then repeated
until convergence is achieved. MADONNA provides such a method. Examples
of the steady-state split-boundary type of solution are shown by the simulation
examples ROD and ENZSPLIT.

In order to overcome the problem of split boundaries, it is sometimes prefer-
able to formulate the model dynamically, and to obtain the steady-state solution,
as a consequence of the dynamic solution, leading to the eventual steady state.
This procedure is demonstrated in simulation example ENZDYN.
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Fig. 4.1 Finite-differencing a tubular reactor with the stepwise approximation
of the continuous concentration profile.



4.2
Diffusion and Heat Conduction

This section deals with problems involving diffusion and heat conduction. Both
diffusion and heat conduction are described by similar forms of equation. Fick’s
Law for diffusion has already been met in Section 1.2.2 and the similarity of
this to Fourier’s Law for heat conduction is apparent.

With Fick’s Law

jA � �D
dCA

dZ

and Fourier’s Law

q � �k
dT
dZ

Here jA is the diffusional flux of component A (kmol/m2 s), D is the diffusion
coefficient (m2/s), CA is the concentration of component A (kmol/m3), q is the
heat transfer flux (kJ/m2 s), k is the thermal conductivity (kJ/m s K), T is the
temperature (K) and Z is the distance (m).

In diffusional mass transfer, the transfer is always in the direction of decreas-
ing concentration and is proportional to the magnitude of the concentration gra-
dient, the constant of proportionality being the diffusion coefficient for the sys-
tem.

In conductive heat transfer, the transfer is always in the direction of decreas-
ing temperature and is proportional to the magnitude of the temperature gradi-
ent, the constant of proportionality being the thermal conductivity of the sys-
tem.

The analogy also extends to Newton’s equation for momentum transport,
where

� � ��
dv
dZ

where, for Newtonian liquids, � is the viscosity, � is the shear stress, v is velocity
and Z is again distance.

4.2.1
Unsteady-State Diffusion through a Porous Solid

This problem illustrates the solution approach to a one-dimensional, non-
steady-state, diffusional problem, as demonstrated in the simulation examples,
DRY and ENZDYN. The system is represented in Fig. 4.2. Water diffuses
through a porous solid, to the surface, where it evaporates into the atmosphere.
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It is required to determine the water concentration profile in the solid, under
drying conditions. The quantity of water is limited and, therefore, the solid will
eventually dry out and the drying rate will reduce to zero.

The movement of water through a solid, such as wood, in the absence of
chemical reaction, is described by the following time-dependent diffusional
equation.

�C
�t

� �D
�2C
�Z2

where, at steady state, �C/�t = 0, and

0 � D
d2C
dZ2

integrating
dC
dZ

� constant

Thus at steady state the concentration gradient is constant.
Note that since there are two independent variables of both length and time,

the defining equation is written in terms of the partial differentials, �C/�t and
�C/�Z, whereas at steady state only one independent variable, length, is in-
volved and the ordinary derivative function is used. In reality the above diffu-
sion equation results from a combination of an unsteady-state material balance,
based on a small differential element of solid length dZ, combined with Fick’s
Law of diffusion.

To set up the problem for simulation involves discretising one of the indepen-
dent variables, in this case length, and solving the time-dependent equations,
obtained for each element, by means of a simulation language. By finite-differ-
encing the length coordinate of the solid, as shown in Fig. 4.3, the drying pro-
cess is approximated to that of a series of finite-differenced solid segments.
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Fig. 4.2 Unsteady-state diffusion through a porous solid.



The diffusional fluxes from segment to segment are indicated in Fig. 4.4.
Note that the segments are assumed to be so small, that any variation in con-

centration within the segment, with respect to length, can effectively be ignored.
The effective concentration of the segment can therefore be taken as that at the
midpoint.

A component material balance is written for each segment, where

Rate of accumulation
in the segment

� �
� Diffusional

flow in

� �
� Diffusional

flow out

� �

or

�Vn
dCn

dt
� �jn�1 � jn�A

Here jn is the mass flux leaving segment n (kg/m2 s), Cn is the concentration
of segment n (kg/m3), A is the cross-sectional area (m2), t is time (t) and �Vn is
the volume of segment n (m3).

By Fick’s Law j � �D
dC
dZ

with dimensions M
L2T

� L2

T
M

L3L

The concentration gradient terms, dC/dZ, both in and out of segment n, can be
approximated by means of their finite-differenced equivalents. Substituting
these into the component balance equation gives
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Fig. 4.3 Finite-differenced equivalent of the depth of solid.

Fig. 4.4 Diffusional fluxes from segment to segment.



�Vn
dCn

dt
� D

�Cn�1 � Cn�
�Z

A � D
�Cn � Cn�1�

�Z
A

where �Z is the length of the segment and �Vn = A �Z. Thus

dCn

dt
� D

�Cn�1 � 2Cn � Cn�1�
�Z2

The above procedure is applied to all the finite-difference segments in turn. The
end segments (n = 1 and n = N), however, often require special attention accord-
ing to particular boundary conditions: For example, at Z = L the solid is in con-
tact with pure water and CN+1 = Ceq, where the equilibrium concentration Ceq

would be determined by prior experiment.
At the air–solid surface, Z= 0, the drying rate is determined by the convec-

tive heat and mass transfer drying conditions and the surrounding atmosphere
of the drier. Assuming that the drying rate is known, the component balance
equation for segment 1 becomes

Rate of accumulation
in segment 1

� �
�

Rate of input

by diffusion

from segment 2

�
��

�
���

Rate of

drying

from surface

�
��

�
��

Alternatively, the concentration in segment 1, C1, may be taken simply as that
in equilibrium with the surrounding air.

The unsteady model, originally formulated in terms of a partial differential
equation, is thus transformed into N difference differential equations. As a re-
sult of the finite-differencing, a solution can be obtained for the variation with
respect to time of the water concentration, for every segment throughout the
bed.

The simulation example DRY is based directly on the above treatment,
whereas ENZDYN models the case of unsteady-state diffusion combined with
chemical reaction. Unsteady-state heat conduction can be treated in an exactly
analogous manner, though for cases of complex geometry, with multiple heat
sources and sinks, the reader is referred to specialist texts, such as Carslaw and
Jaeger (1959).

4.2.2
Unsteady-State Heat Conduction and Diffusion in Spherical
and Cylindrical Coordinates

Although the foregoing example in Section 4.2.1 is based on a linear coordinate
system, the methods apply equally to other systems, represented by cylindrical
and spherical coordinates. An example of diffusion in a spherical coordinate
system is provided by simulation example BEAD. Here the only additional com-
plication in the basic modelling approach is the need to describe the geometry
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of the system, in terms of the changing area for diffusional flow through the
bead.

4.2.3
Steady-State Diffusion with Homogeneous Chemical Reaction

The following example, taken from Welty et al. (1976), illustrates the solution
approach to a steady-state, one-dimensional, diffusion or heat conduction prob-
lem.

As shown in Fig. 4.5, an inert gas containing a soluble component S stands
above the quiescent surface of a liquid, in which the component S is both solu-
ble and in which it reacts chemically to form an inert product. Assuming the
concentration of S at the gas–liquid surface to be constant, it is desired to deter-
mine the rate of solution of component S and the subsequent steady-state con-
centration profile within the liquid.

Under quiescent conditions, the rate of solution of S within the liquid is de-
termined by molecular diffusion and is described by Fick’s Law, where

jS � �D
dCS

dZ
kmol�m2s

At steady-state conditions, the rate of supply of S by diffusion is balanced by
the rate of consumption by chemical reaction, where assuming a first-order
chemical reaction
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Fig. 4.5 Steady-state diffusion with chemical reaction.



rS � �kCS

with typical units of kmol/m3s.

Thus considering a small differential element of liquid volume, dV, and depth,
dZ, the balance equation becomes

jSAS � rSdV

where AS is the cross-sectional area of the element and dV= AS dZ.

Hence

�D
dCS

dZ
AS � �kCSASdZ

or

�D
d2CS

dZ2
� kCS � 0

where each term has the dimensions mass/time or units (kmol/s).
The above second-order differential equation can be solved by integration. At

the liquid surface, where Z= 0, the bulk gas concentration, CS0, is known, but
the concentration gradient dCS/dZ is unknown. Conversely at the full liquid
depth, the concentration CS0 is not known, but the concentration gradient is
known and is equal to zero. Since there can be no diffusion of component S
from the bottom surface of the liquid, i.e., jS at Z = L is 0 and hence from Fick’s
Law dCS/dZ at Z = L must also be zero.

The problem is thus one of a split boundary value type, and it can be solved
by an iterative procedure based on an assumed value for one of the unknown
boundary conditions. Assuming a value for dCS/dZ at the initial condition Z = 0,
the equation can be integrated twice to produce values of dCS/dZ and CS at the
terminal condition, Z = L. If the correct initial value has been chosen, the inte-
gration will lead to the correct final boundary condition, i.e., that dCS/dZ= 0 at
Z = L and hence give the correct values of CS. The value of the concentration gra-
dient dCS/dZ is also obtained for all values of Z throughout the depth of liquid.

Further applications of this method are given in the simulation examples
ENZSPLIT and ROD.

4.3
Tubular Chemical Reactors

Mathematical models of tubular chemical reactor behaviour can be used to pre-
dict the dynamic variations in concentration, temperature and flow rate at var-
ious locations within the reactor. A complete tubular reactor model would how-
ever be extremely complex, involving variations in both radial and axial posi-
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tions, as well as perhaps spatial variations within individual catalyst pellets.
Models of such complexity are beyond the scope of this text, and variations only
with respect to both time and axial position are treated here. Allowance for axial
dispersion is however included, owing to its very large influence on reactor per-
formance, and the fact that the modelling procedure using digital simulation is
relatively straightforward.

4.3.1
The Plug-Flow Tubular Reactor

Consider a small element of volume, �V, of an ideal plug-flow tubular reactor,
as shown in Fig. 4.6.

Component Balance Equation
A component balance equation can be derived for the element �V, based on the
generalised component balance expression, where, for any reactant A

Rate of

accumulation

of A

�
��

�
�� �

Mass

flow

of A in

�
��

�
���

Mass

flow

of A out

�
��

�
���

Rate of

formation

of A by reaction

�
��

�
��

The rate of accumulation of component A in element �V is (�V dCA/dt), where
dCA/dt is the rate of change of concentration.

The mass rate of flow of A into element �V is F CA, and the rate of flow of A
from element �V is F CA + �(F CA), where F is the volumetric flow rate. The
rate of formation of A by reaction is rA�V, where rA is the rate per unit volume.
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Fig. 4.6 Component balancing for a tubular plug-flow reactor.



Substituting these quantities gives the resulting component balance equation as

�V
dCA

dt
� F CA � �F CA � ��F CA�� � rA�V

or

dCA

dt
� ���FCA�

�V
� rA

The above equation may also be expressed in terms of length, since

�V � Ac�Z

where Ac is the cross-sectional area of the reactor.
Allowing �V to become very small, the above balance equation is transformed

into the following partial differential equation, where

�CA

�t
� � 1

Ac

��FCA�
�Z

� rA

For constant volumetric flow rate, F, throughout the reactor

�CA

�t
� � F

Ac

�CA

�Z
� rA

where F/Ac is the superficial linear fluid velocity v, through the reactor.

Under steady-state conditions

�CA

�t
� 0

and hence, at steady state
dCA

dZ
� 1

v
rA

This equation can be integrated to determine the resulting steady-state variation
of CA with respect to Z, knowing the reaction kinetics rA = f(CA) and the initial
conditions CA at Z = 0.

Cases with more complex multicomponent kinetics will require similar bal-
ance equations for all the components of interest.

The component balance equation can also be written in terms of fractional
conversion, XA, where for constant volumetric flow conditions

CA � CA0 �1 � XA�

and CA0 is the inlet reactor feed concentration. Thus

dCA � �CA0dXA
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The material balance, in terms of XA, is thus given by

CA0
dXA

dZ
� � 1

v
rA

Reactant A is consumed, so rA is negative, and the fractional conversion will in-
crease with Z.

In terms of molar flow rates

NA0
dXA

dZ
� �Ac rA

and

NA0
dXA

dV
� �rA

where NA0 is the molar flow of reactant A entering to the reactor.

Energy Balance Equation
The energy balance for element �V of the reactor again follows the generalised
form, derived in Section 1.2.5. Thus

Rate of

accumulation

of energy

�
��

�
�� �

Rate of energy

required to

heat the incoming

stream from

T to T � �T

�
�������

�
�������

�

Rate of

energy

generated

by reaction

at T � �T

�
�������

�
�������

�

Rate of

energy

out by

transfer

�
����

�
����

Referring to Fig. 4.7, the general energy balance for segment n with S compo-
nents and R reactions is

	S

i�1

�nincpin� dTn

dt
� �

	S

i�1

Nin�1


Tn�1��T

Tn�1

cpin�1dT �
	R

j�1

Rijn

�ij
���Hjn� � Qn

With more complex cases, cp and �H are functions of temperature, then the
substitutions would be as shown in Case C of Section 1.2.5.3. This general
form, which may give rise to very complex expressions, may be important for
gas phase reactions (see also Section 4.3.3). Simplifying by assuming only one
reaction (R = 1) and constant cpi gives

	S

i�1

�nincpin� dTn

dt
� �

	S

i�1

�Nin�1cpin�1�Tn� � Rin

�i
���Hn� � Qn
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Assuming the total heat capacity to be constant,
�S
i�1

�Nicpi� = F � cp, and replac-

ing
�S
i�1

�nincpin� by �V � cp, the total heat capacity of one element gives

�V � cp
dTn

dt
� �F � cp �Tn � �V

rin

�i
���Hn� � Qn

The heat loss through the wall to the jacket is

Qn � U�A�Tn � Tj�

The term �T can be approximated by (dT/dZ)�Z (see also Section 4.3.5). For a
tube

�A
�V

� d��Z

d
2

� �2

��Z

� 4
d

where d is the tube diameter. Noting further that �V= Ac�Z, that the linear ve-
locity v= F/Ac and letting �Z approach zero, gives the defining partial differen-
tial equation

�T
�t

� �v
�T
�Z

� 1
� cp

ri

�i
���H� � 4U

d � cp
�T � Tj�
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For steady-state conditions, the above equation reduces to

dT
dZ

� 1
v � cp

ri

�i
���H� � 4U

v � cpd
�T � Tj�

This equation can be integrated together with the component balances and the
reaction kinetic expressions where the kinetics could, for example, be of the
form

ri � ki Cn
i � k0 e�E�RT Cn

i

thus including variation of the rate constant k with respect to temperature.
The component material balance equation, combined with the reactor energy

balance equation and the kinetic rate equation, provide the basic model for the
ideal plug-flow tubular reactor.

4.3.2
Liquid-Phase Tubular Reactors

Assuming the case of a first-order chemical reaction (rA = – k CA) and a non-
compressible liquid system, the generalised mass and energy balance equations
reduce to

dCA

dZ
� � k

v
CA

and

dT
dZ

� ���H�
v � cp

k CA � 4U
v � cp d

�T � Tj�

where v, � and cp are assumed constants and k is given by the Arrhenius equa-
tion k = k0 e–E/RT.
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Fig. 4.8 Flow diagram for the simultaneous integration of the balances.



The general solution approach, to this type of problem, is illustrated by the
information flow diagram, shown in Fig. 4.8. The integration thus starts with
the initial values at Z = 0, and proceeds with the calculation of rA, along the
length of the reactor, using the computer updated values of T and CA, which
are also produced as outputs.

The simultaneous integration of the two continuity equations, combined with
the chemical kinetic relationships, thus gives the steady-state values of both, CA

and T, as functions of reactor length. The simulation examples BENZHYD, AN-
HYD and NITRO illustrate the above method of solution.

4.3.3
Gas-Phase Tubular Reactors

In gas-phase reactors, the volume and volumetric flow rate frequently vary, ow-
ing to the molar changes caused by reaction and the effects of temperature and
pressure on gas phase volume. These influences must be taken into account
when formulating the mass and energy balance equations.

The Ideal Gas Law can be applied both to the total moles of gas, n, or to the
moles of a given component of the gas mixture ni, where

PV � nRT

and
piV � niRT

Here P is the total pressure of the system, pi is the partial pressure of compo-
nent i, V is the volume of the system, T is temperature and R is the Ideal Gas
Constant.

Using Dalton’s Law
pi � yiP

the relationship for the concentration Ci, in terms of mole fraction yi, and total
pressure is obtained as

Ci � ni

V
� yiP

RT

This can also be expressed in terms of the molar flow rate Ni, and the volu-
metric flow rate G, where

Ni � yiPG
RT
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Assuming first-order kinetics for the reaction A�m B

rA � �kCA � � kyAP
RT

and by stoichiometry

rB � mkCA � mkyAP
RT

The steady-state material balance – for a volume element, �V, as shown in Fig.
4.9, for reactant A – is given by

0 � NA � �NA � �NA� � rA�V

which, since �V = Ac�Z, then gives

dNA

dZ
� rAAc

Similarly for component B

dNB

dZ
� rBAc

where Ac is again the cross-sectional flow area of the reactor.

The variation in molar flow can be written as

dNA

dZ
�

d yAPG
RT

� 
dZ

which for constant temperature and pressure conditions becomes

dNA

dZ
� P

RT
d�yAG�

dZ

Substituting this and the reaction kinetics rA into the component balance equa-
tion for reactant A gives
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Fig. 4.9 Material balancing for a gas-phase tubular reactor.



d�yAG�
dZ

� �kyAAc �I�

Similarly for B

d�yBG�
dZ

� mkyAAc �II�

The volumetric flow rate depends on the total molar flow of the gas and the
temperature and pressure of reaction, where

G � �NA � NB � Ninerts�RT
P

�III�

where the molar flow rates of A and B are given by

NA � yAGP
RT

�IV�
and

NB � yBGP
RT

�V�

The model equations, I to V above, provide the basis for solution, for this case
of constant temperature and pressure with a molar change owing to chemical
reaction. This is illustrated by the information flow diagram (Fig. 4.10). The
step-by-step calculation procedure is as follows:

1. The initial molar flow rates of each component at the reactor inlet, (yAG)0

and (yBG)0, are known.
2. The component balance equations (I) and (II) are integrated with respect to

distance to give the volumetric flow rate of each component, (yAG)Z and
(yBG)Z, at any position Z, along the length of the reactor.

3. The total molar flow rate of each component, (NA)Z and (NB)Z, can then be
calculated at position Z, from equations (IV) and (V).

4. The total volumetric flow rate G is calculated at each position, using equation
(III) and hence:

5. The composition of the gas mixture at position Z is obtained by dividing the
individual molar flow rate by the volumetric flow rate.

The results of the calculation are thus the mole fraction compositions yA and
yB, together with the total volumetric flow rate G, as steady-state functions of re-
actor length.

The step-by-step evaluation is, of course, effected automatically by the compu-
ter, as shown in the simulation example VARMOL.
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To obtain the fractional conversion at any position along the reactor the ap-
propriate equation is

NA � NA0�1 � XA�
where

yANTot � yA0NTot0�1 � XA�

In the case of non-isothermal situations with significant pressure drop through
the reactor, the term

d
yiGP
RT

� �

dZ

must be retained in the model equations. The variation of reactor pressure with
reactor length, (P)Z, can be obtained by the use of available pressure drop-flow
correlations, appropriate to the reactor geometry and flow conditions. The varia-
tion in temperature, with respect to length, (T)Z must be obtained via a steady-
state energy balance equation, as described in Section 4.3.1.

4.3.4
Batch Reactor Analogy

The ideal plug-flow reactor is characterised by the concept that the flow of liquid or
gas moves with uniform velocity similar to that of a plug moving through the tube.
This means that radial variations of concentration, temperature and flow velocity
are neglected and that axial mixing is negligible. Each element of fluid flows
through the reactor with the same velocity and therefore remains in the reactor
for the same length of time, which is given by the flow volume of the reactor di-
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Fig. 4.10 Information flow diagram for a gas-phase tubular reactor with molar change.



vided by the volumetric flow rate. The residence time of fluid in the ideal tubular
reactor is thus analogous to the reaction time in a batch reactor.

With respect to reaction rates, an element of fluid will behave in the ideal tu-
bular reactor, in the same way, as it does in a well-mixed batch reactor. The sim-
ilarity between the ideal tubular and batch reactors can be understood by com-
paring the model equations.

For a batch reactor, under constant volume conditions, the component materi-
al balance equation can be represented by

dCA

dt
� rA

For a plug-flow tubular reactor, the flow velocity v through the reactor can be re-
lated to the distance travelled along the reactor or tube Z, and to the time of
passage t, where

dt � dZ
v

Equating the time of passage through the tubular reactor to that of the time re-
quired for the batch reaction, gives the equivalent ideal-flow tubular reactor de-
sign equation as

dCA

dZ
� rA

v

4.3.5
Dynamic Simulation of the Plug-Flow Tubular Reactor

The coupling of the component and energy balance equations in the modelling of
non-isothermal tubular reactors can often lead to numerical difficulties, especially
in solutions of steady-state behaviour. In these cases, a dynamic digital simulation
approach can often be advantageous as a method of determining the steady-state
variations in concentration and temperature, with respect to reactor length. The
full form of the dynamic model equations are used in this approach, and these
are solved up to the final steady-state condition, at which condition

dT
dt

� dCA

dt
� 0

The procedure is to transform the defining model partial differential equation
system into sets of difference-differential equations, by dividing the length or
volume of the reactor into disc-shaped segments. The concentrations and tem-
peratures at the boundaries of each segment are approximated by a midpoint
average. Each segment can therefore be thought of as behaving in a similar
manner to that of a well-stirred tank.
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This is shown above in Fig. 4.11, where segment n, with volume �V, is identi-
fied by its midpoint concentration CAn and midpoint temperature Tn.

The concentration of reactant entering segment n, from segment n – 1, is
approximated by the average of the concentrations in the two segments and is
given by

CAn�1 � CAn

2

Similarly, the concentration of reactant leaving segment n, and entering seg-
ment n + 1, is approximated by

CAn � CAn�1

2

This averaging procedure has the effect of improving the approximation. Alter-
natively, each segment may be treated as a well-mixed tank with the outflow
variables equal to the tank values. This simpler approach would require a great-
er number of segments for the same accuracy.

Applying the generalised component balance equation for component A to
each segment n gives

Rate of

Accumulation

of reactant

�
��

�
�� �

Flow of

reactant

in

�
��

�
���

Flow of

reactant

out

�
��

�
���

Rate of

Production

of reactant

�
��

�
��

and results in

�V
dCAn

dt
� F

CAn�1 � CAn

2
� CAn � CAn�1

2

� �
� rAn�V

where �V = A �Z.
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Fig. 4.11 Finite-differencing for a dynamic tubular reactor model.
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The application of the energy balance equation to segment n results similarly in
the relationship

�V�cp
dTn

dt
� F�cp

Tn�1 � Tn

2
� Tn � Tn�1

2

� �
� rAn

�A
���H��V � U�At�Tn � Tj�

where the outer surface area for heat transfer in segment n is given by

�At � At

N

At is the total surface for heat transfer and for a single tube is given by

At � �D�Z

where D is the tube diameter and �Z is the length of segment.

The resulting forms of the component and energy balance equations are thus

dCAn

dt
� CAn�1 � CAn�1

2�n
� rAn

dTn

dt
� Tn�1 � Tn�1

2�n
� rAn

�A

���H�
�cp

� U�At�Tn � Tj�
�V�cp

The above equations are linked by the reaction rate term rA, which depends on
concentration and temperature.

In the above equation, �n is the mean residence time in segment n and is
equal to the volume of the segment divided by the volumetric flow rate

�n � �V
F

The modelling of the end sections, however, needs to be handled separately, ac-
cording to the appropriate boundary conditions. The concentration and tempera-
ture conditions at the inlet to the first segment, n = 1, are, of course with no ax-
ial dispersion, identical to those of the feed, CA0 and T0, which gives rise to a
slightly different form of the balance equations for segment 1. The outlet
stream conditions may be taken as CAN and TN or, more accurately, as sug-
gested by Franks (1967), one may assume an extrapolated value of CAN+1 and
TN+1 through segments N– 1, N and N + 1. This is treated in greater detail in
the following section.
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4.3.6
Dynamics of an Isothermal Tubular Reactor with Axial Dispersion

Axial and radial dispersion or non-ideal flow in tubular reactors is usually char-
acterised by analogy to molecular diffusion, in which the molecular diffusivity
is replaced by eddy dispersion coefficients, characterising both radial and longi-
tudinal dispersion effects. In this text, however, the discussion will be limited to
that of tubular reactors with axial dispersion only. Otherwise the model equa-
tions become too complicated and beyond the capability of a simple digital sim-
ulation language.

Longitudinal diffusion can be analysed using the unsteady-state diffusion
equation

�C
�t

� � �

�Z
D
�C
�Z

� �

based on Fick’s Law.
In the above case, D is an eddy dispersion coefficient and Z is the axial dis-

tance along the reactor length. When combined with an axial convective flow
contribution and considering D as constant the equation takes the form

�C
�t

� v C � D
�2C
�Z2

where v is the linear flow velocity.
Written in dimensionless form, this equation is seen to depend on a dimen-

sionless group vL/D, which is known as the Peclet number. The inverse of the
Peclet number is called the Dispersion Number. Both terms represent a mea-
sure of the degree of dispersion or axial mixing in the reactor. Thus low values
of the Peclet number correspond to high dispersion coefficients, low velocities
and short lengths of tube and thus characterise conditions approximating to
those of perfect mixing. For high values of the Peclet number the converse con-
ditions apply and thus characterise conditions approximating to perfect plug
flow.

In the extreme, the Peclet number corresponds to the following conditions:

Pe�0 perfect mixing prevails
Pe�� plug flow prevails

4.3.6.1 Dynamic Difference Equation for the Component Balance Dispersion Model
The development of the equations for the dynamic dispersion model starts by
considering an element of tube length �Z, with a cross-sectional area of Ac, a
superficial flow velocity of v and an axial dispersion coefficient or diffusivity D.
Convective and diffusive flows of component A enter and leave the element, as
shown by the solid and dashed arrows, respectively, in Fig. 4.12.
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For each element, the material balance is

Rate of

accumulation

of A

�
��

�
�� �

Convective

flow of

A in

�
��

�
���

Convective

flow of

A out

�
��

�
���

Diffusive

flow of

A in

�
��

�
���

�
Diffusive

flow of

A out

�
��

�
���

Rate of

loss of A

due to

reaction

�
����

�
����

As before, the concentrations are taken as the average in each segment and the
diffusion fluxes are related to the concentration gradients at the segment
boundaries.

The concentrations of reactant entering and leaving section n are

CAin � CAn�1 � CAn

2
and

CAout � CAn � CAn�1

2

The concentration gradients at the inlet and outlet of the section are

dC
dZ

� �
in
� CAn�1 � CAn

�Z

and
dC
dZ

� �
out

� CAn � CAn�1

�Z

The convective mass flows in and out are obtained by multiplying the respective
concentrations by the volumetric flow rate, which is equal to Acv. The diffusive
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Fig. 4.12 Fluxes for the axial dispersion model.



mass flows are calculated from the inlet and outlet concentration gradients
using the multiplying factor of AcD.

Dropping the A subscript for concentration, the component balance for reac-
tant A, in section n, becomes

Ac�Z
dCn

dt
� Acv

Cn�1 � Cn

2
� Cn � Cn�1

2

� �
�

� AcD
Cn�1 � Cn

�Z
� Cn � Cn�1

�Z

� �
� knCnAc�Z

where here the reaction rate is taken as first order, rA = k CA.

Dividing by Ac�Z gives the defining component material balance equation for
segment n, as

dCn

dt
� v

�Z
Cn�1 � Cn�1

2

� �
� D

�Cn�1 � 2Cn � Cn�1�
�Z2 � kn Cn

A dimensionless form of the balance equation can be obtained by substituting
the following dimensionless variables

Cn � Cn

C0
� �Z � �Z

L
� t � tv

L

The model for section n, now in dimensionless form, yields

dCn

dt
� Cn�1 � Cn�1

2�Z
� D

vL
Cn�1 � 2Cn � Cn�1

�Z
2

� �
� knL

vCn

where D/Lv= 1/Pe, is the inverse Peclet number.

The boundary conditions determine the form of balance equation for the inlet
and outlet sections. These require special consideration as to whether diffusion
fluxes can cross the boundaries in any particular physical situation. The physi-
cal situation of closed ends is considered here. This would be the case if a smal-
ler pipe were used to transport the fluid in and out of the reactor, as shown in
Figs. 4.13 and 4.14.

Since no diffusive flux enters the closed entrance of the tube, the component
balance for the first section becomes
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Fig. 4.13 Inlet section for the tubular reactor.



Ac�Z
dC1

dt
� Acv C0 � C1 � C2

2

� �
� AcD

�C1 � C2�
�Z

� k1C1Ac�Z

Dividing by Ac�Z gives

dC1

dt
� v�2C0 � C1 � C2�

2�Z
� D

C1 � C2

�Z2
� k1C1

Similarly, the outlet of the reactor is closed for diffusion as shown in Fig. 4.14.
An extrapolation of the concentration profile over the last half of element N

is used to calculate the outlet concentration Cout, giving

Cout � CN � CN�1 � CN

2

with the balance for section N becoming

Ac�Z
dCN

dt
� Acv�CN�1 � CN� � AcD

�Z
�CN�1 � CN� � kNCNAc�Z

dCN

dt
� v

CN�1 � CN

�Z
� D

CN�1 � CN

�Z2
� kNCN

A similar finite-differenced equivalent for the energy balance equation (includ-
ing axial dispersion effects) may be derived. The simulation example DISRET
involves the axial dispersion of both mass and energy and is based on the work
of Ramirez (1976). A related model without reaction is used in the simulation
example FILTWASH.

4.3.7
Steady-State Tubular Reactor Dispersion Model

Letting the element distance �Z approach zero in the finite-difference form of
the dispersion model, gives

�CA

�t
� �v

�CA

�Z
� D

�2CA

�Z2
� kCA
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Fig. 4.14 Outlet section of the tubular reactor.



Defining the following dimensionless variables

CA � CA

CA0
� Z � Z

L
� t � t

�
where � = L�v.

The dimensionless form for an nth-order reaction is

�CA

�t
� � �CA

�Z
� D

Lv

� �
�2CA

�Z
2 � k �Cn�1

A0 �CA�n

At steady state � CA�� t can be set to zero and the equation becomes an ordi-
nary second-order differential equation, which can be solved using MADONNA.

Again the entrance and exit boundary conditions must be considered. Thus the
two boundary conditions at Z = 0 and Z= L are used for solution, as shown in Fig.
4.15. Note that these boundary conditions refer to the inner side of the tubular re-
actor. A discontinuity in concentration at Z= 0 is apparent in Fig. 4.16.
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Fig. 4.15 Convective and diffusive fluxes at the entrance (Z= 0) and exit
(Z= L) of the tubular reactor.

Fig. 4.16 Concentration profiles in the tubular reactor for extreme and
intermediate values of the dispersion number.

� �

(CA0)Z=0



Balancing the material flows at the inlet gives a relation for the boundary condi-
tions at Z = 0

FCA0 � �FCA�Z�0 � DAc
dCA

dZ

� �
Z�0

The zero flux condition at the closed outlet requires a zero gradient, thus

dCA

dZ

� �
Z�L

� 0

According to the boundary conditions, the concentration profile for A must
change with a discontinuity in concentration from CA0 to (CA0)Z = 0 occurring at
the reactor entrance, as shown in Fig. 4.16.

In dimensionless form the boundary condition at Z = 0 is represented by

CA � D
Lv

dCA

dZ
� 1

and at Z = 1 by
dCA

dZ
� 0.

The solution requires two integrations as shown in Fig. 4.17.
Referring to Fig. 4.15, it is seen that the concentration and the concentration

gradient are unknown at Z= 0. The above boundary condition relation indicates
that if one is known, the other can be calculated. The condition of zero gradient
at the outlet (Z= L) does not help to start the integration at Z = 0, because, as
Fig. 4.17 shows, two initial conditions are necessary. The procedure to solve this
split-boundary value problem is therefore as follows:

1. Guess �CA�Z�0 and calculate
dCA

dZ

� �
Z�0

from the boundary condition rela-
tion.

2. Integrate to Z= 1 and check whether
dCA

dZ

� �
Z�1

equals zero.

3. Vary the guess and iterate between Z = 0 and Z = 1 until convergence is ob-
tained.
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Fig. 4.17 Flow diagram for solving the second-order differential equation
from the axial dispersion model.



4.4
Differential Mass Transfer

This section concerns the modelling of countercurrent flow, differential mass
transfer applications, for both steady-state and non-steady-state design or simu-
lation purposes. For simplicity, the treatment is restricted to the case of a single
solute, transferring between two inert phases, as in the standard treatments of
liquid–liquid extraction or gas absorption column design.

4.4.1
Steady-State Gas Absorption with Heat Effects

Figure 4.18 represents a countercurrent-flow, packed gas absorption column, in
which the absorption of solute is accompanied by the evolution of heat. In order
to treat the case of concentrated gas and liquid streams for which total flow
rates of both gas and liquid vary throughout the column, the solute concentra-
tions in the gas and liquid are defined in terms of mole ratio units and related
to the molar flow rates of solute free gas and liquid respectively, as discussed
previously in Section 3.3.2. By convention, the mass transfer rate equation is
however expressed in terms of mole fraction units. In Fig. 4.18, Gm is the molar
flow of solute free gas (kmol/m2 s) and Lm is the molar flow of solute free liquid
(kmol/m2 s), where both Lm and Gm remain constant throughout the column. Y
is the mole ratio of solute in the gas phase (kmol solute/kmol solute free gas),
X is the mole ratio of solute in the liquid phase (kmol solute/kmol solute free
liquid), y is the mole fraction of solute in the gas phase, x is the mole fraction
of solute in the liquid phase and T is temperature (K).
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Fig. 4.18 Steady-state gas absorption with heat effects.



Mole ratio and mole fraction contents are related by

Y � y
1 � y

and X � x
1 � x

x � Y
1 � Y

and y � X
1 � X

Subscripts L and G refer to the liquid and gas phases, respectively, and sub-
scripts ‘in’ and ‘out’ refer to the inlet and outlet streams.

4.4.1.1 Steady-State Design
In the steady-state design application, the flow rates Lm and Gm and concentra-
tions Yin, Xin, Yout and Xout will either be specified or established by an overall
steady-state solute balance, where

LmXin � GmYin � LmXout � GmYout

Temperatures TLin and TGin will also be known. The problem then consists of
determining the height of packing required to obtain the above separation.

Component Material Balance Equations
For a small element of column volume dV

Rate of loss

of solute from

the gas

�
��

�
�� �

Rate of gain

of solute in

the liquid

�
��

�
�� �

Rate

of solute

transfer

�
��

�
��

�GmAcdY � LmAcdX � KLxa�x� � x�dV

Here KLxa (kmol/m3 s) is the overall mass transfer coefficient for the liquid
phase, based on mole fraction in the L-phase, x* is the equilibrium liquid phase
mole fraction, and Ac is the cross-sectional area of the column (m2). Hence with
dV= Ac dZ

dY
dZ

� KLxa�x� � x�
Gm

and

dX
dZ

� KLxa�x� � x�
Lm
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Energy Balance
It is assumed that there are no heat losses from the column and that there is
zero heat exchange between the gas and liquid phases. Consequently the gas
phase temperature will remain constant throughout the column. A liquid phase
heat balance for element of volume dV is given by

Rate of gain of heat
by the liquid

� �
� Rate of generation of

heat by absorption

� �

or
L Ac cp dTL � KLx a �x� � x� dV�Habs

where L is the total mass flow rate of liquid (kg/m2 s), cp is the specific heat ca-
pacity of the liquid (kJ/kg K) and �Habs is the exothermic heat of absorption
(kJ/kmol solute transferred). Hence

dTL

dZ
� KLx a�x� � x��Habs

Lcp

The temperature variation throughout the column is important, since this af-
fects the equilibrium concentration x*, where

x� � feq�y�TL�

Solution of the required column height is achieved by integrating the two com-
ponent balance equations and the heat balance equation down the column from
the known conditions xin, yout and TLin, until the condition that either Y is
greater than Yin or X is greater than Xout is achieved. In this solution approach,
variations in the overall mass transfer capacity coefficient both with respect to
temperature and to concentration, if known, can also be included in the model
as required. The solution procedure is illustrated by the simulation examples
AMMONAB and BIOFILT.

Using the digital simulation approach to steady-state design, the above design
calculation is shown to proceed naturally from the defining component balance
and energy balance equations, giving a considerable simplification to conven-
tional text book approaches.

4.4.1.2 Steady-State Simulation
In this case, the flow rates Lm and Gm, concentrations Yin and Xin, tempera-
tures TGin and TLin, are known and in addition the height of packing Z is also
known. It is now, however, required to establish the effective column perfor-
mance by determining the resulting steady-state concentration values, Yout and
Xout, and also temperature TLout. The problem is now of a split-boundary type
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and must be solved by assuming a value for Yout, integrating down the column
for a column distance Z and comparing the calculated value for Yin with the
known inlet gas concentration condition. A revised guess for the starting value
Yout can then be taken and the procedure repeated until convergence is
achieved. This is easy using MADONNA’s split boundary tool.

4.4.2
Dynamic Modelling of Plug-Flow Contactors: Liquid–Liquid Extraction
Column Dynamics

A plug-flow, liquid–liquid, extraction column is represented in Fig. 4.19. For
convenience, it is assumed that the column operates under low concentration
conditions, such that the aqueous and organic flow rates, L and G, respectively
are constant. At low concentration, mole fraction x and y are identical to mole
ratios X and Y, which are retained here in the notation for convenience. This
however leads to a more complex formulation than when concentration quanti-
ties are used, as in the example AXDISP.

Consider a differential element of column volume �V, height �Z and cross-
sectional area, Ac, such that �V= Ac�Z. Component material balance equations
can be written for each of the liquid phases, where

Rate of

accumulation

of solute

�
��

�
�� �

Convective

flow of

solute in

�
��

�
���

Convective

flow of

solute out

�
��

�
���

Rate of

solute

transfer

�
��

�
��
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The actual volume of each phase in element �V is that of the total volume of
the element, multiplied by the respective fractional phase holdup. Hence con-
sidering the direction of solute transfer to occur from the aqueous or feed phase
into the organic or solvent phase, the material balance equations become:

For the aqueous phase

�LhL�V
�X
�t

� �LAc
�X
�t

�Z � KLX a �X � X���V

for the organic phase

�GhG�V
�Y
�t

� GAc
�Y
�Z

�Z � KLX a �X � X���V

where each term in the equations has units of kmol solute/s and where the
symbols are as follows:

a is the specific interfacial area related to the total volume (m2/m3)
Ac is the column cross-sectional area (m2)
G is the molar flow rate of the light, organic phase per unit area

(kmol/m2 s)
hG is the volumetric holdup fraction of the light organic phase (–)
hL is the volumetric holdup fraction of the heavy aqueous phase (–)
KLX a is the overall mass transfer capacity coefficient based on the aqueous

phase mole ratio X (kmol/m3 s)
L is the molar flow rate of the heavy aqueous phase per unit area (kmol/m2 s)
X is the aqueous phase mole ratio (kmol solute/kmol water)
X* is the equilibrium mole ratio in the heavy phase, corresponding to light

phase mole ratio Y (kmol solute/kmol water)
Y is the organic phase mole ratio (kmol solute/kmol organic)
Z is the height of the packing (m)
�V is the total volume of one column segment with length �Z (m3)
�G is the density of the solute-free light phase (kmol/m3)
�L is the density of the solute-free heavy phase (kmol/m3)

The above balance equations simplify to

�LhL
�X
�t

� L
�X
�Z

� KLX a�X � X��

�GhG
�Y
�t

� �G
�Y
�Z

� KLX a�X � X��

with the equilibrium relationship represented by

X� � feq�Y�
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Thus the system is defined by two coupled partial differential equations, which
can be solved by finite-differencing.

Consider a finite-difference element of length �Z as shown in Fig. 4.20.
Approximating the concentrations entering and leaving each section by an ar-

ithmetical mean of the neighbouring concentrations, as shown in Section 4.3.5,
the component balance equations for stage n become

�LhLAc�Z
dXn

dt
� LAc

�Xn�1 � Xn�
2

� �Xn � Xn�1�
2

� �
� Qn

and

�GhGAc�Z
dYn

dt
� GAc

�Yn�1 � Yn�
2

� �Yn � Yn�1�
2

� �
� Qn

where Qn (kmol solute/s) is rate of solute transfer in element n given by

Qn � KLX a �X � X���V

Hence with �V= Ac�Z

�LhL
dXn

dt
� �L

�Xn�1 � Xn�1�
2�Z

� KLX a �X � X��

�GhG
dYn

dt
� �G

�Yn�1 � Yn�1�
2�Z

� KLX a �X � X��

The boundary conditions are formulated with the help of Figs. 4.21 and 4.22
and in accordance with the methodology of Franks (1967).

This gives for stage 1

�LhL
dX1

dt
� L

2�Z
�2X0 � X1 � X2� � KLX a �X1 � X�

1�

�GhG
dY1

dt
� G

2�Z
�Y2 � Y1 � 2Y0� � KLX a �X1 � X�

1�
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Fig. 4.20 Finite-difference element for the two-phase transfer system.



The balances for the end stage N thus become

�LhL
dXN

dt
� L

2�Z
�XN�1 � XN � 2XN�1� � KLX a �XN � X�

N�

�GhG
dYN

dt
� G

2�Z
�YN�1 � YN � YN�1� � KLX a �XN � X�

N�

The representation of the boundary conditions for both the top and bottom of
the column are really more mathematical than practical in nature and fail to
take into account the actual geometry and construction of the upper and lower
parts of the column and the relative positioning of the inlet and outlet connec-
tions. They may therefore require special modelling appropriate to the particular
form of construction of the column, as discussed previously in Section 3.3.1.10.

4.4.3
Dynamic Modelling of a Liquid–Liquid Extractor with Axial Mixing in Both Phases

Axial mixing is known to have a very significant effect on the performance of
agitated liquid–liquid extraction columns, and any realistic description of col-
umn performance must take this into account. Figure 4.23 represents a small
differential element of column volume �V and height �Z. Here the convective
flow rates, as in Fig. 4.19, are shown by the solid arrows, and the additional dis-
persion contributions, representing axial mixing, are shown by dashed arrows.
It is assumed that axial mixing in both phases can be described by analogy to
Fick’s Law, but using an effective eddy dispersion coefficient appropriate to the
respective liquid phase.
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Fig. 4.21 Aqueous and organic phase streams at the inlet.

Fig. 4.22 Aqueous and organic phase streams at the outlet.



Writing unsteady-state component balances for each liquid phase results in
the following pair of partial differential equations which are linked by the mass
transfer rate and equilibrium relationships

�LhL
�X
�t

� �L
�X
�Z

� �LhLDL
�2X
�Z2 � KLX a �X � X��

�GhG
�Y
�t

� G
�Y
�Z

� �GhGDG
�2Y
�Z2 � KLX a �X � X��

Here the nomenclature is the same as in Section 4.4.2. In addition, DG is the
effective eddy dispersion coefficient for the organic or extract phase (m2/s) and
DL is the effective eddy dispersion coefficient for the aqueous or feed phase
(m2/s). The above equations are difficult to solve analytically (Lo et al., 1983)
but are solved with ease using digital simulation.

Referring to Fig. 4.23, the extractor is again divided into N finite-difference
elements or segments of length �Z. The convective terms are formulated for
each segment using average concentrations entering and leaving the segment,
as shown in Section 4.4.2. The backmixing terms j are written in terms of dis-
persion coefficients times driving-force mole-ratio gradients. The resulting equa-
tions for any segment n are then for the aqueous feed phase with each term in
kmol solute/s.

�LhLn�ZAc
dXn

dt
� LAc

Xn � Xn�1

2
� Xn�1 � Xn

2

� �
�

� �LDLhLnAc
Xn�1 � Xn

�Z
� Xn � Xn�1

�Z

� �
� KLXn an �Xn � X�

n��ZAc
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Fig. 4.23 Differential element of height, �Z, for a liquid–liquid extractor
with axial mixing in both phases.



Rearranging

dXn

dt
�� L

2hLn�L�Z
�Xn�1 � Xn�1� � DL

�Z2 �Xn�1 � 2Xn � Xn�1��

� KLXn an

hLn�L
�Xn � X�

n�

Similarly for the light solvent–extract phase

�ZAchGn�G
dYn

dt
� AcG

Yn � Yn�1

2
� Yn�1 � Yn

2

� �
�

� �GDGhGnAc
Yn�1 � Yn

�Z
� Yn � Yn�1

�Z

� �
� KLXn an �Xn � X�

n��ZAc

Rearranging

dYn

dt
� G

2hGn�G�Z
�Yn�1 � Yn�1� � DG

�Z2 �Yn�1 � 2Yn � Yn�1� � KLXn an

hGn�G
�Xn � X�

n�

Note that the above formulation includes allowance for the fractional phase
holdup volumes, hL and hG, the phase flow rates, L and G, the diffusion coeffi-
cients DL and DG, and the overall mass transfer capacity coefficient KLX a, all of
which may vary with position along the extractor.

Boundary Conditions
The column end sections require special treatment to allow for the fact that
zero diffusive flux enters through the end wall of the column. The equations
for the end section are derived by setting the diffusion flux leaving the column
to zero. In addition, the liquid phase outlet concentrations leaving the respective
end sections of the column are approximated by an extrapolation of the concen-
tration gradient from the preceding section. The resulting model equations give
the concentrations of each segment in both phases as well as the outlet concen-
trations as a function of time. The resulting model formulation is shown in the
simulation example AXDISP.

4.4.4
Dynamic Modelling of Chromatographic Processes

Preparative chromatographic processes are of increasing importance particularly
in the production of fine chemicals. A mixture of compounds is introduced into
the liquid mobile phase, and this then flows through a packed column contain-
ing the stationary solid phase. The contacting scheme is thus differential, but
since the adsorption characteristics of the compounds in the mixture are simi-
lar, many equivalent theoretical stages are required for their separation. Chro-
matographic processes are mostly run under transient conditions, such that
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concentration variations occur with respect to both time and space, but steady-
state and quasi-steady-state systems are also being applied increasingly to over-
come the inherent disadvantages of batch operation. The transient operational
mode is essentially a scaled-up version of the usual analytical chromatography,
but whereas analytical systems are usually run with low concentrations to avoid
non-linearities, preparative industrial systems are highly loaded to increase pro-
ductivity. Countercurrent chromatography is still not available, but simulated
moving bed chromatography with switching between a series of columns is
used increasingly industrially. An important feature of chromatographic process
behaviour is that it is generally governed more by the adsorption equilibrium
than by the kinetics of adsorption.

The modelling of chromatographic processes is treated in great detail by
Ruthven and Ching (1993) and by Blanch and Clark (1996), with two alternative
approaches being available. In a most rigorous approach the chromatographic
separation column is considered as a plug flow contactor with axial dispersion
analogous to previous descriptions in this chapter (Section 4.3.6). The second
approach is to represent the column as a large number of well mixed stages,
with a treatment similar to that shown in Chapter 3.

The interaction of the two phases can be accomplished either through the as-
sumption of equilibrium or through a transfer rate that will eventually reach
equilibrium. The transfer rate approach is closer to the real process and simpli-
fies the calculations for nonlinear equilibrium. This is similar to the modelling
of extraction columns with backmixing as found in Section 4.4.3. For linear
equilibrium, simplifications in the models are possible. In the following section,
the dispersion model is developed and is presented as a simulation example
CHROMDIFF. A further simulation example, CHROMPLATE, considers the
stagewise model for linear equilibrium. Dynamic modelling and simulation of
simulated moving bed chromatography has been studied by Storti et al. (1993)
and Strube et al. (1998).

4.4.4.1 Axial Dispersion Model for a Chromatography Column
Generally for modelling chromatograph systems, component mass balances are
required for each component in each phase. The differential liquid phase com-
ponent balances for a chromatographic column with non-porous packing take
the partial differential equation form

�CL

�t
� �v

�CL

�Z
� D

�2CL

�Z2 � 1 � �

�
rads

where CL is the liquid phase concentration of each component and D is the ax-
ial dispersion coefficient.

The linear superficial flow velocity in the packing voids v is calculated from
volumetric flow rate Lin, voidage fraction of the adsorbant bed � and column di-
ameter d as
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v � 4Lin

��d2

The transfer rate of the sorbate from the liquid phase to the solid adsorbant rads

can be written as

rads � k�C�
S � CS�

Here the rate is specific to a unit volume of solids (g/cm3 s) and k is a mass
transfer rate coefficient (1/s).

The solid phase concentrations are influenced only by the rate of mass trans-
fer, with convection and dispersion effects both being zero for this phase.

�CS

�t
� 1 � �

�
rads

Equilibrium relations are required to calculate the values of CS
*, the solid phase

equilibrium concentrations, for each component. For very dilute systems these
relations may be of linear form

C�
S � KCL

where K is the equilibrium constant for the particular component.
For concentrated systems the Langmuir adsorption form may be appropriate

and for an interacting two-component system (A and B) may take the form

C�
SA � KACLA

1 � bACLA � bBCLB

C�
SB � KBCLB

1 � bACLA � bBCLB

Here the constants bA and bB account for the competitive adsorption effects be-
tween components A and B.

Writing the model in dimensionless form, the degree of axial dispersion of
the liquid phase will be found to depend on a dimensionless group vL/D or
Peclet number. This is completely analogous to the case of the tubular reactor
with axial dispersion (Section 4.3.6).

4.4.4.2 Dynamic Difference Equation Model for Chromatography
Instead of the partial differential equation model presented above, the model is
developed here in dynamic difference equation form, which is suitable for solu-
tion by dynamic simulation packages, such as MADONNA. Analogous to the
previous development for tubular reactors and extraction columns, the develop-
ment of the dynamic dispersion model starts by considering an element of tube
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length �Z, with a cross-sectional area Ac, a superficial flow velocity v and an ax-
ial dispersion coefficient or diffusivity D. Convective and diffusive flows of com-
ponent A enter and leave the liquid phase volume of any element n, as indi-
cated in Fig. 4.24 below. Here j represents the diffusive flux, L the liquid flow-
rate and CSA and CLA the concentration of any species A in both the solid and
liquid phases, respectively.

For each element, the material balance in the liquid phase, here for compo-
nent A, is

Rate of

acumulation

of component

A

�
����

�
���� �

Convective

flow of

A in

�
��

�
���

Convective

flow of

A out

�
��

�
���

Diffusive

flow of

A in

�
��

�
���

�
Diffusive

flow of

A out

�
��

�
���

Rate of

loss of A due

to transfer

�
��

�
��

As before, the concentrations are taken as the average in each segment and the
diffusion fluxes are related to the concentration gradients at the segment
boundaries.

The concentrations of reactant entering and leaving any section n are

CLA� in � CLA�n�1 � CLA�n

2

and

CLA� out � CLA�n � CLA�n�1

2

4 Differential Flow and Reaction Applications210

Fig. 4.24 Finite difference axial dispersion model of a chromatographic column.



The concentration gradients at the inlet and outlet of the section are

dCLA

dZ

� �
in
� CLA�n�1 � CLA�n

�Z

and

dCLA

dZ

� �
out

� CLA�n � CLA�n�1

�Z

The convective mass flows in and out of the segment are calculated by multiply-
ing the respective concentrations by the constant volumetric flow rate, Lin. The
diffusive mass flows are calculated from Fick’s Law, using the inlet and outlet
concentration gradients and the area �Ac.

The transfer rate of A, TrA (g/s), from liquid to solid is given by

TrA � rAads�VS � keff ap �C�
SA � CSA��1 � ���ZAc

where keff (cm/s) is a transfer coefficient, ap is the specific area of the spherical
packing (6/dp) and �VS is the volume of the solid phase. CSA

* is given by the
equilibrium relation

C�
SA � fequil�CLA�

The component balance for reactant A in the liquid phase, in any section n, be-
comes

�Ac�Z
dCLA�n

dt
� Lin

CLA�n�1 � CLA�n

2
� CLA�n � CLA�n�1

2

� �
�

� �AcD
CLA�n�1 � CLA�n

�Z
� CLA�n � CLA�n�1

�Z

� �
� �1 � ��rAads�ZAc

Here the specific transfer rate rads is related to the solid phase volume.

Dividing by �Ac�Z gives the defining component material balance equation for
segment n as

dCLA�n

dt
� Lin

�Ac�Z
CLA�n�1 � CLA�n�1

2

� �
�

� D
�CLA�n�1 � 2CLA�n � CLA�n�1�

�Z2 � 1 � �

�
rAads�n
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A dimensionless form of the balance equation can be obtained in the same way
as described for the tubular reactor (Section 4.3.6).

The balance equation for component A in the solid phase balance for any ele-
ment n is

�1 � ��Ac�Z
dCSA�n

dt
� �1 � ��Ac�Z rAads�n

or simply
dCSA�n

dt
� rAads�n

The formulation of the end section balances needs special attention as already
discussed in Section 4.3.6.1.

The axial dispersion coefficient may be calculated from a knowledge of the
Peclet number, where

D � 4LinDp

Pe � � d2

The Reynolds number for a particle with diameter Dp is defined as

Re � � v Dp

�

and this is used to determine the Peclet number from a suitable correlation,
such as

Pe � 0�2
�

� 0�011
�

Re
�

� �0�48

These equations are applied in the simulation example CHROMDIFF to the
case of a two-component separation with linear equilibrium. The situation of a
non-linear equilibrium is considered as an exercise in the example.

The simulation program CHROMPLATE uses the plate model for the same
column conditions as the simulation model CHROMDIFF. The results obtained
are very similar in the two approaches, but the stagewise model is much faster
to calculate.

With high concentrations, heat effects in the chromatographic column may
be important. This would require the simultaneous application of an energy bal-
ance and the introduction of a term reflecting the influence of temperature on
the adsorption equilibrium.
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4.5
Heat Transfer Applications

4.5.1
Steady-State Tubular Flow with Heat Loss

Here a steady-state formulation of heat transfer is considered (Pollard, 1978). A
hot fluid flows with linear velocity v, through a tube of length L, and diameter
D, such that heat is lost via the tube wall to the surrounding atmosphere. It is
required to find the steady-state temperature profile along the tube length.

Consider an element of tube of length �Z, distance Z from the tube inlet as
shown in Fig. 4.25. If the temperature at the inlet to the tube element is T, then
the temperature at the outlet of the element can be written as T + (dT/dZ) �Z.

The energy balance for the element of tube length can be stated as

Rate of

accumulation

of enthalpy

in the element

�
����

�
���� �

Heating of

inlet stream

to element

temperature

�
����

�
�����

Rate of

heat loss

to the wall

�
��

�
��

As shown in Section 1.2.5 the heat balance equation, assuming constant fluid
properties, becomes

Mcp
dT
dt

� Wcp T � T � dT
dZ

�Z

� �� �
� U A �T � Tw�

where

A is the heat transfer surface area for the element = 2�D�Z (m2)
D is the tube diameter (m)
M is mass of fluid in the element = (�D2/4)��Z (kg)
Ts is the wall temperature (K)
Tw is the temperature of the wall (K)
U is the heat transfer coefficient between the fluid and the wall (kJ/m2 s)
v is the linear velocity of the fluid (m/s)
W is the mass flow rate along the tube = (�D2/4)�v (kg/s)
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Simplifying the above equation gives

dT
dt

� �v
dT
dZ

� 4U
� cpD

�T � Tw�

Under steady-state conditions, dT
dt = 0, and the resulting temperature profile

along the tube is given by

v
dT
dZ

� 4U
�cpD

�T � Ts� � 0

Assuming constant coefficients, both the dynamic and steady-state equations de-
scribing this system can be solved analytically, but the case of varying coeffi-
cients requires solution by digital simulation.

4.5.2
Single-Pass, Shell-and-Tube, Countercurrent-Flow Heat Exchanger

4.5.2.1 Steady-State Applications
Figure 4.26 represents a steady-state, single-pass, shell-and-tube heat exchanger.
For this problem W is the mass flow rate (kg/s), T is the temperature (K), cp is
the specific heat capacity (kJ/m2 s), A (=�D Z) is the heat transfer surface area
(m2), and U is the overall heat transfer coefficient (kJ/m2 s K). Subscripts c and
h refer to the cold and hot fluids, respectively.

Heat balances on a small differential element of heat transfer surface area, �A,
give

Rate of

accumulation

of enthalpy

in the element

�
����

�
���� �

Rate of

heat transfer

to the element

�
��

�
��
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Thus for the hot fluid

�W cp�h�Th � �U�Th � Tc��A

and for the countercurrent cold fluid

�W cp�c�Tc � �U�Th � Tc��A

In the limit, the defining model equations for countercurrent flow become

dTh

dA
� �U �Th � Tc�

�Wcp�h

and
dTc

dA
� �U �Th � Tc�

�Wcp�c

where for cocurrent flow the sign in cold-fluid equation would be positive.
For design purposes the two equations can be integrated directly starting for

the known temperature conditions at one end of the exchanger and integrating
towards the known conditions at the other end, hence enabling the required
heat exchange surface to be determined. This procedure is very similar to that
of the steady-state mass transfer column calculation of Section 4.4.1.1. The de-
sign approach for a steady-state two-pass exchanger is illustrated by simulation
example SSHEATEX.

However, the simulation of the steady-state performance for a heat exchanger
with a known heat transfer surface area will demand an iterative split boundary
solution approach, based on a guessed value of the temperature of one of the
exit streams, as a starting point for the integration.

4.5.2.2 Heat Exchanger Dynamics
The modelling procedure is again based on that of Franks (1967). A simple, sin-
gle-pass, countercurrent flow heat exchanger is considered. Heat losses and heat
conduction along the metal wall are assumed to be negligible, but the dynamics
of the wall (thick-walled metal tube) are significant.

Figure 4.27 shows the temperature changes over a small differential element
of exchanger length �Z.

In this problem W is the mass flow rate (kg/s), T is temperature (K), cp is the
specific heat capacity (kJ/kg K), D is the diameter (m), U is the heat transfer
coefficient (kJ/m2 sK), Q is the rate of heat transfer (kJ/s), V is the volume (m3),
� is the density (kg/m3) and A is the heat transfer area (m2). The subscripts are
as follows: t refers to tube conditions, s to shellside conditions, and m to the
metal wall.
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Heat balance equations on the element of heat exchanger length �Z accord-
ing to enthalpy balance relationship

Rate of

accumulation

of enthalpy

in the element

�
����

�
���� �

Flow rate

of enthalpy

into

the element

�
����

�
�����

Flow rate

of enthalpy

out of

the element

�
����

�
�����

Rate of

heat transfer

to the element

�
��

�
��

lead to three coupled first-order partial differential equations, which can be con-
verted into difference equations for simulation language solution using standard
finite-difference formulae as mentioned in Section 4.6.
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Fig. 4.28 Finite-differencing of heat exchanger length.



Alternatively, the difference-equation model form can be derived directly by
dividing the length of the heat exchanger into N finite-difference elements or
segments, each of length �Z, as shown in Fig. 4.28.

The heat balance equation can now be applied to segment n of the heat ex-
changer. The heat transfer rate equations are given by the following terms:

Rate of heat transfer from tube contents to the metal wall

Qtn � Ut�At�Ttn � Tmn�

where Ut is the tubeside film heat transfer coefficient and �At is the incremen-
tal tubeside area

�At � �Dt�Z

Rate of heat transfer from the metal wall to the shellside contents

Qmn � Um�Am �Tmn � Tsn�

where Um is the film heat transfer coefficient from the wall to the shell and
�Am is the incremental metal wall outside area

�Am � �Dm�Z

Using a similar treatment as described previously in Section 4.3.5, the resulting
finite difference form of the enthalpy balance equations for any element n be-
come

dTn

dt
� Wtcpt

2
�Ttn�1 � Ttn�1� � Qtn

�Vtcpt�t

dTmn

dt
� �Qtn � Qmn�

�Vmcpm�m

dTsn

dt
� Wscps

2
�Tsn�1 � Tsn�1� � Qmn

�Vscps�s

where

�Vs � �Z ��D2
s � D2

m�
4

�Vt � �Z �D2
t

4

�Vm � �Z � �D2
m � D2

t �
4
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Boundary Conditions
The consideration of the boundary conditions again follows Franks (1967). The
position at the tube inlet and shell outlet section, segment number 1 is shown
in Fig. 4.29.

Considering segment 1, the temperature of the entering shell side fluid is
(Ts2 + Ts1)/2. The outlet shellside fluid temperature can also be approximated,
either as

Ts0 � Ts1

or

Ts0 � Ts1 � Ts1 � Ts2

2

The heat balance equations for end segment 1 thus become

cps�s�Vs
dTs1

dt
� Ws cps

Ts2 � Ts1

2
� Ts0

� �
� Qm1

and

cpt�t�Vt
dTt1

dt
� Wt cpt Tt0 � Tt1 � Tt2

2

� �
� Qt1

Similar reasoning for the tube outlet and shell inlet segment, number N, give

for the tubeside fluid

�Vtcpt�t
dTtN

dt
� Wtcpt

TtN�1 � TtN

2
� TtN�1

� �
� QtN

4 Differential Flow and Reaction Applications218

Fig. 4.29 Tube inlet and shell outlet segment.



and for the shellside fluid

�Vscps�s
dTsN

dt
� Wscps TsN�1 � TsN � TsN�1

2

� �
� QmN

Note that the outlet approximations must be consistent with a final steady-state
heat balance. Note also that it is easy to allow in the simulation for variations in
the heat transfer coefficient, density and specific heats as a function of tempera-
ture. The modelling methods demonstrated in this section are applied in the
simulation example HEATEX.

4.6
Difference Formulae for Partial Differential Equations

As shown in this chapter for the simulation of systems described by partial dif-
ferential equations, the differential terms involving variations with respect to
length are replaced by their finite-differenced equivalents. These finite-differ-
enced forms of the model equations are shown to evolve as a natural conse-
quence of the balance equations, according to Franks (1967), and as derived for
the various examples in this book. The approximation of the gradients involved
may be improved, if necessary, by using higher order approximations. Forward
and end-sections can be better approximated by the forward and backward dif-
ferences as derived in the previous examples. The various forms of approxima-
tion based on the use of central, forward and backward differences have been
listed by Chu (1969).

a) First-Order Approximations

Central difference as extensively used in this chapter

�U
�X

� �
n
� Un�1 � Un�1

2�X

�2U
�X2

� �
n
� Un�1 � 2Un � Un�1

�X2

Forward difference

�U
�X

� �
n
� Un�1 � Un

�X

�2U
�X2

� �
n
� Un�2 � 2Un�1 � Un

�X2
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Backward difference
�U
�X

� �
n
� Un � Un�1

�X

�2U
�X2

� �
n
� Un � 2Un�1 � Un�2

�X2

b) Second-Order Central Difference Approximations

�U
�X

� �
n
� �Un�2 � 8Un�1 � 8Un�1 � Un�2

12�X

�2U
�X2

� �
n
� �Un�2 � 16Un�1 � 30Un � 16Un�1 � Un�2

12�X2
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