Appendix: Using the MADONNA Language

1 A Short Guide to MADONNA

Computer Requirements

Two unregistered versions of MADONNA are supplied with this book on the CD, one for Windows 95, NT 4.0 and later and one for the Power Macintosh, including OSX. More information with free downloads of this software can be found on the following MADONNA website: http://www.berkeleymadonna.com. The unregistered version does not allow saving new programs but will run any existing program.

Installation

The files are compressed on the CD in the same form as they are available on the Internet. Information on registering MADONNA is contained in the files. Registration is optional since all the examples in the book can be run with the unregistered version. Registration makes available a detailed manual and is necessary for anyone who wants to develop his or her own programs.

Running Programs

To our knowledge, MADONNA is by far the easiest simulation software to use, as can be seen on the Screenshot Guide in this Appendix. Running an example typically involves the following steps:

- Open MADONNA and open a prepared program file.
- Go to Model/Equations on the menu and study the equations and program logic.
- Go to Parameters/Parameter Window on the menu and see how the values are set. They may be different than on the program listing. Those with a* can be reset to the original values. Also, if necessary, here the integration

598 Appendix: Using the MADONNA Language

method and its parameters (D $_{T}$ D $_{T_{min}}$ and D $_{T_{max}}$ Stoptime, etc.) values can be changed.

- Decide which plot might be interesting, based on the discussion in the text.
- Go to Graph/New Window and then Graph/Choose Data to select data for each axis. All calculated results on the left side of the equations are available and can be selected.
- Run the program and make a graph by clicking Run on the graph window.
- Adjust the graph by setting the legend with the legend button. Perhaps put one of the variables on the right side of the graph with Graph/Choose Data.
- Possibly select the range of the axes with Graph/Axis Settings. Choose colours or line types with the buttons.
- Decide on further runs. It is most common to want to compare runs for different values of the parameters. This is usually done with Parameter/Batch Runs and also with Model/Define Sliders. If the overlay button is set, then more than one set of runs can be graphed on top of the first run. Sometimes more than one parameter needs to be set; this is best done with changes done in the Parameters/Parameter Window, with an overlay graph if desired.

As seen at the end of the Screenshot Guide, Parametric Plots are very useful to display the steady-state values as a function of the values of one parameter. For this, one needs to be sure that the Stoptime is sufficiently long to reach steady-state for all the runs.

When running a program with arrays, as found in the finite-differenced examples, the X axis can be set with [i] and the Y axes with the variables of interest. The resulting graph is a plot of the variable values at the Stoptime in all of the array sections. For equal-sized segments, this is the equivalent of a plot of the variables versus distance. If the steady-state has been reached then the graph gives the steady-state profile with distance. More on running programs is found in Section 1.1.7 and in Section 2 of the Appendix.

Special Programming Tips

MADONNA, like all programming languages, has certain functions and characteristics that are worth noting and that do not appear elsewhere in this book.

Editing Text

The very convenient built-in editor is usually satisfactory. Also the program can be written with a word processor and saved as a text-only file with the suffix ".mmd". MADONNA can then open it.

Finding Programming Errors. Look at a Table Output of the Variables

Sometimes programs do not run because of errors in the program that cause integration problems. Some hint as to the location of the error can often be found by making an output table of all the calculated variables. This is done by going to Graph/New Window and then Graph/Choose Data to select all the variables. Then the program is run and the tabular data button is chosen. Inspection of all the values during the first one or two time intervals will usually lead to an isolation of the problem for those values that are marked in red with NAN (not a number). Also, values going negative can be found easily here and often indicate an integration error.

The Program Does Not Compile. Is a Bracket Missing?

Sometimes variables are not found when the program is compiling. Often this can be due to one of the comment brackets missing, usually on the right side. MADONNA does not presently test for bracket pairs, and a missing bracket means that the whole program will be read as a comment. The error message is usually "Undetermined comment" or expect "=".

Setting the Axes. Watch the Range of Values

Remember that each Y axis can have only one range of values. This means that you must choose the ranges so that similarly sized values are located on the same axis. Choose the right axes in Graph/Choose Variables.

Are There Bugs or Imperfections in MADONNA?

Yes, there are some that we are aware of. You may find some or you may have some special wishes for improvements. The MADONNA developers would be glad to receive your suggestions. See the homepage for the email address.

Making a Pulse Input to a Process

This can be done in two ways: Either use the pre-programmed PULSE function (see the program CSTRPULSE for an example) or use an IF-THEN-ELSE statement to turn a stream on and off (see example CHROM).

Making a More Complex Conditional Control of a Program

In general the IF-THEN-ELSE conditional statement form is used, combined with the inequality and/or possibilities as found in the HELP. This can involve a switching from one equation to another within this statement. Another way is to use flags or constants that take values of 0 or 1 and are multiplied by terms in the equations to achieve the desired results. The programs RUN and RELUY contain such programming. As shown in RUN, nesting of multiple IF statements is possible:

```
V = IF (Disk < 1 AND P > 1.9)
THEN 0.85*KV*P/SQRT(TR+273)
ELSE IF (Disk < 1 AND P <= 1.9 AND P > 1.1)
THEN KV*P/SQRT(TR+273)*SQRT(1+(1/P)*(1/P))
```

Parameter Estimation to Fit Parameters to Data

For fitting sets of data to one or more parameters the data can be imported as a text file (Import Data Set) found in the window of Parameters/Curve Fitting. The Preferences/Graph Windows provide the possibility of having the data as open circles. See the programs KLAFIT and ESTERFIT for examples of this. Normally this data would be time in the first column and the measured variable in the second column. If the data is available at equal time increments then two sets of data can be used. See also Help/How Do I.

Optimisation of a Variable

There is a real optimisation routine available in MADONNA under Parameters/ Optimize. It is actually a minimization and the function needs to be written in the window. It is also useful to check the results by making runs. If it is something simple with one or two parameters, then sliders can be effectively used. If the value of a maximum is sought as a function of a single parameter value, then the Parametric Plot for maximum value should be used.

Finding the Influence of Two Parameters on the Steady State?

A Parametric Plot choosing the "final" value can be used to find the influence of one variable on the steady state. The second parameter can be changed in the Parameter Window and additional parametric runs made and plotted with an overlay plot. Thus it is possible to obtain a sort of contour plot with a series of curves for values of the second parameter. Unfortunately, no automatic contour plot is yet possible.

Nice Looking Results Are Not Always Correct

A warning! It is possible to obtain results from a program that at first glance seems OK. Always make sure that the same results are obtained when D_T is reduced by a factor of 10 or when a different integration method is used. Plotting all the variables may reveal oscillations that indicate integration errors. These may not be detectable on plots of the other variables.

Setting the Integration Method and Its Parameters?

It is recommended to choose the automatic step-size method AUTO and to set a small value of $D_{T_{min}}$ and a large value for $D_{T_{max}}$. If the results are good, try to improve the speed by increasing both parameters. Sometimes the resulting curves are not smooth if $D_{T_{max}}$ is too high. In most cases, good results are obtained with AUTO and $D_{T_{min}}$ set to about 1/1000 of the smallest time constant.

If no success is found with AUTO, then try Rosenbrock (STIFF) and adjust by the same procedure. Oscillations can sometimes be seen by zooming in on a graph; often these are a sign of integration problems. Sometimes some variables look OK but others oscillate, so look at all of them if problems arise. Unfortunately there is not a perfect recipe, but fortunately MADONNA is very fast so the trial-and-error method usually works out.

Checking Results by Mass Balance

For continuous processes, checking the steady-state results is very useful. Algebraic equations for this can be added to the program, such that both sides became equal at steady state. For batch systems, all the initial mass must equal all the final mass, not always in mols but in kg. Expressed in mols the stoichiometry must be satisfied.

What Is a "Floating Point Exception"?

This error message comes up when something does not calculate correctly, such as dividing by zero. This is a common error that occurs when equations contain a variable in the denominator that is initially zero. Often it is possible to add a very small number to it, so that the denominator is never exactly zero. These cases can usually be located by outputing a table of all the variables.

Plotting Variables with Distance and Time

Stagewise and finite-differenced models involve changes with time and distance. When the model is written in array form the variable can be plotted as a function of the array index. This is done by choosing an index variable for the Y axis and the [] symbol for the X axis. The last value calculated is used in the plot, which means that if the steady-state has been reached then it is a steady-state profile with distance. An example is given in the "Screenshot Guide" in Section 2 of the Appendix and in many other simulation examples.

Writing Your Own Plug-in Functions or Integration Methods

Information on using C or C++ for this can be obtained by email from Tim Zahnley, the MADONNA programmer-developer, at madonna@kagi.com.

2 Screenshot Guide to BERKELEY-MADONNA

This guide is intended as a supplementary introduction to MADONNA.

donna File Edit Flowchart Model Compute Graph Parameters Window Help 000 BATSEQ.MMD - Equations Run METHOD AUTO DT = 0.1 STOPTIME= 500 {Length of simulation, sec.} K1 = 0.01 {First order rate constant, 1/s} K2 = 0.01 {First order rate constant, 1/s} X3 = 0.05 {First order rate constant, 1/s} K4 = 0.02 {First order rate constant, 1/s} INIT CA=1 {Initial concentration, kmoles/m3} INIT CB=0 {Initial concentration, kmoles/m3} INIT CC=0 {Initial concentration, kmoles/m3} INIT CD=0 {Initial concentration, kmoles/m3} [Batch mass balances for components A, B, C and D] d/dt(CB) = rA d/dt(CB) = rB d/dt(CC) = rC d/dt(CD) = rD{Kinetic rate terms for components A, B, C and D} rA=-K1*CA rB=K1*CA-K2*CB+K3*CC-K4*CB rC=K2*CB-K3*CC rD=K4*CB MDLE = CA+CB+CC+CD {Sum of moles}

Fig. 1 The example BATSEQ equation window has been opened with Model/Equations.

000	BATSEQ.MMD - Run 1: CA, CB vs. TIM	IE
Run 🔒 0 단	FLP 🗚 🕶 📾 Ic No Z	
		T

Fig. 2 The example BATSEQ has been run with the Colors, Data Points and Grid selected. From left: Lock, Overlay, Table, Legend, Parameters, Colors, Dashed Lines, Data Points, Grid, Value Output and Zoom.

Fig. 3 The menus GRAPH and PARAMETERS are shown above.

le	Edit	Flowchart	Model	Compute	Grap
			BATSEQ.N	MMD – Equati	ons
	00	BATSEQ	.MMD – Pa	arame	
	Ru	un Auto-	stepsize		•
gth	Res	set			
orde orde orde orde cor cor cor	STARTT STOPTI DTMIN DTMAX DTOUT TOLERA K1 K2 K2 K3 K4 INIT CA INIT CC	11ME 0 ME 500 1e-6 1 0 NCE 0.01 0.01 0.05 0.02 1 0 0 0 0 0 0 0 0 0 0 0 0 0			
s £o	»:				11
CC-P	¢.				1

Fig. 4 The MODEL/EQUATIONS was chosen. Seen here is also the PARAMETER WINDOW.

UQFLP885	• • • • • • • • • • • • • • • • • • •	Run	1:506 steps in 0 seco
	Channella		10.000
	Choose Va	riables	
Variables:		Y Axes:	
CA	Carada	CA	
CC	(>> A00	CC	
CD	< < Remov	ve <<) CD	
rA		rA	
rC		rC	
rD		rD	
MOLE			
		Visible [Right Axis
Y Avis: TIME			
A GAIS! TIME		Cancel	OK

Fig. 5 If a new graph is chosen under GRAPH/NEW WINDOW then the data must be selected under GRAPH/CHOOSE VARIABLES.

Fig. 6 A graph window with CC on the right-side Y-axis with Legend, Parameter and Data buttons selected.

E	Parameters:	Sliders:		
an iun	STARTTIME STOPTIME DTMIN DTMAX DTOUT TOLERANCE K1 K2 K3	> Add >> Remove <<	© Linear ○ Logarithmic Minimum: 0 Maximum: 0.1 Increment: 0.01	- 0.] - 0.] - 0.
ľ	K3		Cancel OK	

Fig. 7 The window to define the sliders (Parameters/Define Sliders).

Fig. 8 The Batch Runs window for 10 values of k_1 as shown.

Fig. 9 A Parametric Plot to give the maximum in CB as a function of k_1 .

3 List of Simulation Examples

AMMONAB	Steady-State Absorption Column Design 471
ANHYD	Oxidation of O-Xylene to Phthalic Anhydride 324
ASCSTR	Continuous Stirred Tank Reactor Model of
	Activated 577
AXDISP	Differential Extraction Column with Axial
	Dispersion 468
BASIN	Dynamics of an Equalisation Basin 560
BATCHD	Dimensionless Kinetics in a Batch Reactor 235
BATCOM	Batch Reactor with Complex Reaction Sequence 240
BATEX	Single Solute Batch Extraction 442
BATSEG, SEMISEG	Mixing and Segregation 394
and COMPSEG	
BATSEQFL	Example of Flowchart Programming 227
BATSEQ	Complex Reaction Sequence 232
and BATSEQFL	
BEAD	Diffusion and Reaction in a Spherical Catalyst Bead 533
BENZHYD	Dehydrogenation of Benzene 320
BIOFILM	Biofilm Tank Reactor 551
BIOFILT	Biofiltration Column for Removing Ketone from
	Air 555
BIOREACT	Process Modes for a Bioreactor 538
BSTILL	Binary Batch Distillation Column 490
BUBBLE	Bubble Point Calculation for a Batch Distillation
	Column 504
CASCSEQ	Cascade of three Reactors with Sequential
	Reactions 276
CASTOR	Batch Decomposition of Acetylated Castor Oil 243
CHROMDIFF	Dispersion Model for Chromatography Columns 483
CHROMPLATE	Stagewise Model for Chromatography Columns 486
COMPREAC	Complex Reaction 237
CONFLO1, CONFLO2	Continuous Flow Tank 406
and CONFLO3	
CONSTILL	Continuous Binary Distillation Column 496
CONTUN	Controller Tuning Problem 427
COOL	Three-Stage Reactor Cascade with Countercurrent
	Cooling 287
CSTRCOM	Isothermal Reactor with Complex Reaction 265
CSTRPULSE	Continuous Stirred-Tanks, Tracer Experiment 273
DEACT	Deactivating Catalyst in a CSTR 268
DEADFISH	Distribution of an Insecticide in an Aquatic
	Ecosystem 581
DIFDIST	Multicomponent Differential Distillation 494
DISCHARGE	Dissolved Oxygen and BOD Profiles in a River 572

DISRE	Isothermal Reactor with Axial Dispersion 335
DISRET	Non-Isothermal Tubular Reactor with Axial
	Dispersion 340
DRY	Drying of a Solid 521
DSC	Differential Scanning Calorimetry 258
ENZDYN	Dynamic Diffusion with Enzymatic Reaction 529
ENZSPLIT	Diffusion and Reaction: Split Boundary Solution 525
EQBACK	Multistage Extractor with Backmixing 453
EQEX	Simple Equilibrium Stage Extractor 447
EQMULTI	Continuous Equilibrium Multistage Extraction 449
ESTERFIT	Esterification of Acetic Acid with Ethanol, Fitting 261
EXTRACTCON	Extraction Cascade, Backmixing and Control 456
FILTWASH	Filter Washing 479
GASLIQ1/GASLIQ2	Gas-Liquid Mixing and Mass Transfer 385
HEATEX	Dynamics of a Shell-and-Tube Heat Exchanger 511
HMT	Semi-Batch Manufacture of Hexamethylene-
	triamine 353
HOLDUP	Transient Holdup Profiles in an Agitated Extractor 459
HOMPOLY	Homogeneous Free-Radical Polymerisation 310
HYDROL	Batch Reactor Hydrolysis of Acetic Anhydride 247
INHIBCONT	Continuous Bioreactor with Inhibitory Substrate 543
KLADYN, KLAFIT	Dynamic Oxygen Electrode 462
and ELECTFIT	
LEACH	One-Dimensional Transport of Solute Through
	Soil 584
MCSTILL	Continuous Multicomponent Distillation Column 501
MEMSEP	Gas Separation by Membrane Permeation 475
METAL	Transport of Heavy Metals in Water and Sediment 565
MIXFLO1/MIXFLO2	Residence Time Distribution Studies 381
NITBED	Nitrification in a Fluidised Bed Reactor 547
NITRO	Conversion of Nitrobenzene to Aniline 329
NOCSTR	Non-Ideal Stirred-Tank Reactor 374
OSCIL	Oscillating Tank Reactor Behaviour 290
OXIBAT	Oxidation Reaction in an Aerated Tank 250
OXSAG	Classic Streeter-Phelps Oxygen Sag Curves 569
REFRIG1/REFRIG2	
	Auto-Refrigerated Reactor 295
RELUY	Auto-Refrigerated Reactor295Batch Reactor of Luyben253
RELUY REVREACT	Auto-Refrigerated Reactor295Batch Reactor of Luyben253Reversible Reaction with Temperature Effects305
RELUY REVREACT REVTEMP	Auto-Refrigerated Reactor295Batch Reactor of Luyben253Reversible Reaction with Temperature Effects305Reversible Reaction with Variable Heat Capacities299
RELUY REVREACT REVTEMP REXT	Auto-Refrigerated Reactor295Batch Reactor of Luyben253Reversible Reaction with Temperature Effects305Reversible Reaction with Variable Heat Capacities299Reaction with Integrated Extraction of Inhibitory
RELUY REVREACT REVTEMP REXT	Auto-Refrigerated Reactor295Batch Reactor of Luyben253Reversible Reaction with Temperature Effects305Reversible Reaction with Variable Heat Capacities299Reaction with Integrated Extraction of InhibitoryProduct280
RELUY REVREACT REVTEMP REXT ROD	Auto-Refrigerated Reactor295Batch Reactor of Luyben253Reversible Reaction with Temperature Effects305Reversible Reaction with Variable Heat Capacities299Reaction with Integrated Extraction of InhibitoryProductProduct280Radiation from Metal Rod518
RELUY REVREACT REVTEMP REXT ROD RUN	Auto-Refrigerated Reactor295Batch Reactor of Luyben253Reversible Reaction with Temperature Effects305Reversible Reaction with Variable Heat Capacities299Reaction with Integrated Extraction of InhibitoryProduct280Radiation from Metal Rod518Relief of a Runaway Polymerisation Reaction355
RELUY REVREACT REVTEMP REXT ROD RUN SELCONT	Auto-Refrigerated Reactor 295 Batch Reactor of Luyben 253 Reversible Reaction with Temperature Effects 305 Reversible Reaction with Variable Heat Capacities 299 Reaction with Integrated Extraction of Inhibitory Product 280 Radiation from Metal Rod 518 Relief of a Runaway Polymerisation Reaction 355 Optimized Selectivity in a Semi-Continuous

608 Appendix: Using the MADONNA Language

SEMIEX	Temperature Control for Semi-Batch Reactor 430	
SEMIPAR	Parallel Reactions in a Semi-Continuous Reactor 347	
SEMISEQ	Sequential-Parallel Reactions in a Semi-Continous	
	Reactor 350	
SOIL	Bioremediation of Soil Particles 591	
SPBEDRTD	Spouted Bed Reactor Mixing Model 390	
SSHEATEX	Steady-State, Two-Pass Heat Exchanger 515	
STEAM	Multicomponent, Semi-Batch Steam Distillation 508	
SULFONATION	Space-Time-Yield and Safety in a Semi-Continuous	
	Reactor 365	
TANK and TANKDIM	Single Tank with nth-Order Reaction 270	
TANKBLD	Liquid Stream Blending 409	
TANKDIS	Ladle Discharge Problem 412	
TANKHYD	Interacting Tank Reservoirs 416	
TEMPCONT	Control of Temperature in a Water Heater 420	
THERM and	Thermal Stability of a CSTR 283	
THERMPLOT		
THERMFF	Feedforward Control of an Exothermic CSTR 437	
TRANSIM	Transfer Function Simulation 435	
TUBDYN	Dynamic Tubular Reactor 332	
TUBE and TUBEDIM	Tubular Reactor Model for the Steady-State 315	
TUBEMIX	Non-Ideal Tube-Tank Mixing Model 378	
TUBETANK	Design Comparison for Tubular and Tank Reactors 317	
TWOEX	Two-Solute Batch Extraction with Interacting	
	Equilibria 444	
TWOTANK	Two Tank Level Control 424	
VARMOL	Gas-Phase Reaction with Molar Change 344	