GREEN CHEMISTRY AND ENGINEERING

GREEN CHEMISTRY AND ENGINEERING A Pathway to Sustainability

Anne E. Marteel-Parrish

Department of Chemistry Washington College

Martin A. Abraham

College of Science, Technology, Engineering, and Mathematics Youngstown State University

AIChE

WILEY

Cover design: John Wiley & Sons, Inc. Cover images: © Martin A. Abraham and Elizabeth C. Abraham

Copyright © 2014 by the American Institute of Chemical Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750–8400, fax (978) 750–4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748–6011, fax (201) 748–6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762–2974, outside the United States at (317) 572–3993 or fax (317) 572–4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Marteel-Parrish, Anne E. Green chemistry and engineering : a pathway to sustainability / Anne E. Marteel-Parrish, Department of Chemistry, Washington College; Martin A. Abraham, College of Science, Technology, Engineering, and Mathematics, Youngstown State University.

pages cm Includes bibliographical references and index. ISBN 978-0-470-41326-5 (hardback)

 Environmental chemistry–Industrial applications. I. Martin A. Abraham. II. Title. TP155.2.E58A27 2014 660.6'3–dc23

2013011104

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

I dedicate this book to Damon Parrish, Ph.D., my endlessly supportive and patient husband, and to Martin and Marie, my two children and best accomplishments in life. Without them I would not be the person I am today.

I thank Sara Martin, Washington College Chemistry major 2014, and Damon Parrish for their assistance with the figures. Anne E. Marteel-Parrish, Chestertown, MD, January 2013

I dedicate this book to my parents, Sam and Barbara Abraham, who have always been supportive of my goals and aspirations. They have encouraged me to dream big and reassured me that I could achieve anything that I wanted. I further dedicate this book to my family, my wife Nancy, and my children Elizabeth and Josh, who have put up with my long hours in the lab and the office. Without their support, none of this would have been possible. Martin A. Abraham, Youngstown, OH, January 2013

CONTENTS

Preface

xiii

1	UNDERSTANDING THE ISSUES	1		
	1.1 A Brief History of Chemistry	1		
	1.1.1 Fermentation: An Ancient Chemical Process	2		
	1.1.2 The Advent of Modern Chemistry	2		
	1.1.3 Chemistry in the 20th Century: The Growth of Modern Processes	2		
	1.1.4 Risks of Chemicals in the Environment	6		
	1.1.5 Regulations: Controlling Chemical Processes	11		
	1.2 Twenty-first Century Chemistry, aka Green Chemistry	13		
	1.2.1 Green Chemistry and Pollution Prevention	13		
	1.2.2 Sustainability	14		
	1.3 Layout of the Book	18		
	References	19		
2	PRINCIPLES OF GREEN CHEMISTRY AND GREEN ENGINEERING	21		
_	2.1 Introduction	21		
	2.2 Green Chemistry	23		
	2.2.1 Definition	23		
	2.2.2 Principles of Green Chemistry and Examples	24		
	2.2.3 Presidential Green Chemistry Challenge Awards	31		
	2.3 Green Engineering	34		
	2.3.1 Definition	34		
	2.3.2 Principles of Green Engineering	35		
	2.4 Sustainability	38		
	References	41		
3	CHEMISTRY AS AN UNDERLYING FORCE			
J	IN ECOSYSTEM INTERACTIONS			
	3.1 Nature and the Environment	44		
	3.1.1 Air and the Atmosphere (Outdoor and Indoor Pollution)	44		

	3.1.2 Water (Water Pollutants, Issues Associated with	
	Nonpotable Drinking Water)	52
	3.1.3 Chemistry of the Land	53
	3.1.4 Energy	56
	3.2 Pollution Prevention (P2)	61
	3.3 Ecotoxicology	62
	3.4 Environmental Assessment Analysis	64
	3.5 What Can You Do to Make a Difference?	68
	References	70
4	MATTER: THE HEART OF GREEN CHEMISTRY	73
	4.1 Matter: Definition, Classification, and the Periodic Table	73
	4.1.1 Aluminum (Al)	75
	4.1.2 Mercury (Hg)	76
	4.1.3 Lead (Pb)	77
	4.2 Atomic Structure	77
	4.3 Three States of Matter	79
	4.4 Molecular and Ionic Compounds	81
	4.4.1 Molecular Compounds	82
	4.4.2 Ionic Compounds	94
	4.5 Chemical Reactions	100
	4.6 Mixtures, Acids, and Bases	102
	References	107
5	CHEMICAL REACTIONS	109
	5.1 Definition of Chemical Reactions and Balancing	
	of Chemical Equations	109
	5.2 Chemical Reactions and Quantities of Reactants	
	and Products	112
	5.3 Patterns of Chemical Reactions	115
	5.3.1 Combination, Synthesis, or Addition Reactions	115
	5.3.2 Decomposition Reactions	117
	5.3.3 Elimination Reactions	117
	5.3.4 Displacement Reactions	118
	5.3.5 Exchange or Substitution Reactions	124
	5.4 Effectiveness and Efficiency of Chemical Reactions:	10-
	Yield Versus Atom Economy	135
	Reference	138

6	KIN	ETICS, CATALYSIS, AND REACTION ENGINEERING	139	
	6.1	6.1 Basic Concept of Rate		
		6.1.1 Definition of Reaction Rate	139	
		6.1.2 Parallel Reactions	142	
		6.1.3 Consecutive Reactions	146	
		6.1.4 Chemical Equilibrium	150	
		6.1.5 Effect of Concentration on Reaction Rate	153	
		6.1.6 Effect of Temperature on Reaction Rate	159	
	6.2	Role of Industrial and Biological Catalysts	162	
		6.2.1 Definition of Catalysts	162	
		6.2.2 Catalytic Kinetics	166	
		6.2.3 Types of Catalysts and Impact on		
		Green Chemistry	170	
		6.2.4 Biocatalysis	175	
	6.3	Reaction Engineering	181	
		6.3.1 Batch Reactor	181	
		6.3.2 Continuous Stirred Tank Reactor	184	
		6.3.3 Plug Flow Reactor (PFR)	188	
		6.3.4 Multiphase Reactor Design	191 194	
	6.4 Summary			
	References		194	
7	THERMODYNAMICS, SEPARATIONS, AND EQUILIBRIUM			
	7.1	Ideal Gases	197	
	7.2	The First Law of Thermodynamics	201	
		7.2.1 Closed System	203	
		7.2.2 Open System	204	
	7.3	Ideal Gas Calculations	205	
	7.4	Entropy and the Second Law of Thermodynamics	210	
	7.5	Real Gas Properties	214	
	7.6	The Phase Diagram	217	
	7.7	Equilibrium	221	
		7.7.1 The Flash Calculation	227	
	7.8	Solubility of a Gas in a Liquid	229	
	7.9	Solubility of a Solid in a Liquid	230	
	7.10	Summary	233	
	Refe	rences	233	

8	RENEWABLE MATERIALS		235
	8.1	Introduction	235
	8.2	Renewable Feedstocks	236
		8.2.1 Role of Biomass and Components	236
		8.2.2 Production of Chemicals from Renewable Resources	242
	8.3	Applications of Renewable Materials	251
		8.3.1 The Case of Biodegradable Plastics	251
		8.3.2 The Case of Compostable Chemicals	254
		8.3.3 Production of Ethanol from Biomass	254
		8.3.4 The Case of Flex-Fuel Vehicles	256
		8.3.5 Production of Biodiesel	258
	8.4	Conclusion	261
	References		261

9		RENT AND FUTURE STATE OF ENERGY PRODUCTION	263
	9.1	Introduction	263
	9.2	Basic Thermodynamic Functions and Applications	267
	9.3	Other Chemical Processes for Energy Transfer	272
		9.3.1 Microwave-Assisted Reactions	272
		9.3.2 Sonochemistry	273
		9.3.3 Electrochemistry	273
		9.3.4 Photochemistry and Photovoltaic Cells	274
	9.4	Renewable Sources of Energy in the 21st Century	
		and Beyond	275
		9.4.1 Solar Energy	275
		9.4.2 Wind Power	279
		9.4.3 Geothermal Solution	281
		9.4.4 Hydropower	283
		9.4.5 The Case of Hydrogen Technology	284
		9.4.6 Barriers to Development	285
	9.5	Concluding Thoughts About Sources of Energy	
		and their Future	285
	Refe	rences	286
10	THE	ECONOMICS OF GREEN AND SUSTAINABLE	
			707

28/
287
289

		10.2.1 Plant (Microscale) Scale Economics	290
		10.2.2 Corporate Economics	290
		10.2.3 Macroeconomics	292
	10.3	Economic Impact of Green Chemistry	293
	10.4	Business Strategies Regarding Application	
		of Green Chemistry	306
	10.5	Incorporation of Green Chemistry in Process	
		Design for Sustainability	310
	10.6	Case Studies Demonstrating the Economic Benefits	
		of Green Chemistry and Design	317
		Summary	321
	Refe	rences	322
11	GREI	EN CHEMISTRY AND TOXICOLOGY	325
	By D	ale E. Johnson and Grace L. Anderson	
	11.1	Introduction	325
	11.2	Fundamental Principles of Toxicology	326
		11.2.1 Basic Concepts	326
		11.2.2 Toxicokinetics	330
		11.2.3 Cellular Toxicity	333
	11.3	Identifying Chemicals of Concern	335
		11.3.1 Mode of Action Approaches	336
		11.3.2 Adverse Outcome Pathways	337
		11.3.3 Threshold of Toxicological Concern	338
		11.3.4 Chemistry-Linked-to-Toxicity: Structural	
		Alerts and Mechanistic Domains	338
	11.4	Toxicology Data	339
		11.4.1 Authoritative Sources of Information	339
		11.4.2 Data Gaps: The Challenge and the Opportunity	
		Arising from New Technologies	340
	11.5	Computational Toxicology and Green Chemistry	341
		11.5.1 Tools for Predictions and Modeling	341
		11.5.2 Interoperability of Models for Decision Making	
		and the Case for Metadata	346
	11.6	Applications of Toxicology into Green Chemistry Initiatives	346
		11.6.1 REACH	346
		11.6.2 State of California Green Chemistry Initiatives	348
		Future Perspectives	349
	Refe	rences	350

PREFACE

When green chemistry was first described in 1998 through the publication of *Green Chemistry: Theory and Practice* by Paul Anastas and John Warner, nobody could have predicted the role that it would play today in the world's politics, economics, and education.

The success of green chemistry has been driven by academia, industry, and governmental agencies. It is a central theme within the American Chemical Society and the American Institute of Chemical Engineers, the professional societies for chemists and chemical engineers, and leading organizations that will determine the future of our professions.

The importance of education in driving the future of our profession cannot be understated. The future generations of scientists and engineers, our students of today, who learn chemistry from a green chemistry point of view, will be able to make connections between real-world issues and the challenges that chemistry presents to the environment, and to understand environmentally preferable solutions that overcome these challenges.

This book provides the springboard for students to be exposed to green chemistry and green engineering, the understanding of which will lead to greater sustainability. As Paul Anastas mentioned: "Green chemistry is one of the most fundamental and powerful tools to use on the path to sustainability. In fact, without green chemistry and green engineering, I don't know of a path to sustainability."

This book is aimed at students who want to learn about chemistry and engineering from an environmentally friendly point of view. This book can be used in the first undergraduate course in general chemistry and would be appropriate for a two-semester sequence to allow a more complete understanding of the role of chemistry in society. Portions of this text would be suitable as the basis for a one-semester introductory course on the principles of science and engineering for nontechnical majors, as well.

This book gives students a new outlook on chemistry and engineering in general. While covering the essential concepts offered in a typical introductory course for science and engineering majors, it also incorporates the more fascinating applications derived from green chemistry. This book spans the breadth of general, organic, inorganic, analytical, and biochemistry with applications to environmental and materials science. A novel component is the integration of introductory engineering concepts, allowing the reader to move from the fundamental science included in a typical course into the application areas. As much as the excitement of green chemistry and green engineering occurs at the interface between science and engineering, it is that interface at which we aimed our attention.

This book is divided in three main areas: the first three chapters introduce the birth of green chemistry (Chapter 1), fundamental principles of green chemistry and green engineering (Chapter 2), and the role of chemistry as an underlying force in ecosystem interactions (Chapter 3). After having been provided the foundation of green chemistry and engineering, readers will realize how applications of green chemistry and engineering are relevant while acquiring knowledge about matter, the atomic structure, different types of compounds, and an introduction to chemical reactions (Chapter 4). Readers will also discover the different types of reactions and the quantitative aspect of chemistry in reactions and processes (Chapter 5), while learning about the role of kinetics and catalysis in chemical processes (Chapter 6) and the role of thermodynamics and equilibrium in multiphase systems and processes (Chapter 7). The last four chapters look into novel applications of green chemistry and engineering through the use of renewable materials (Chapter 8) and through the current and future state of energy production and consumption (Chapter 9), while unveiling the relationship between green chemistry and economics (Chapter 10). The importance of toxicology to green chemistry, and the identification of hazards and risks from chemicals to ecological, wildlife, and human health targets conclude this book (Chapter 11).

We hope that this book will enlighten students' perception about chemistry and engineering and will demonstrate the benefits of pursuing a career in the chemical sciences, while contributing to their knowledge of sustainability for our planet and its well-being for our future generations.

> Anne E. Marteel-Parrish Martin A. Abraham