Multi-Objective Optimization in Chemical Engineering

Multi-Objective Optimization in Chemical Engineering

Developments and Applications

Edited by

GADE PANDU RANGAIAH

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

ADRIÁN BONILLA-PETRICIOLET

Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, Mexico

This edition first published 2013 © 2013 John Wiley & Sons, Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Multi-objective optimization in chemical engineering : developments and applications / [edited by] Gade Rangaiah, Adrián Bonilla-Petriciolet.

pages cm

ISBN 978-1-118-34166-7 (hardback)

1. Chemical processes. 2. Mathematical optimization. 3. Chemical engineering. I. Rangaiah, Gade Pandu.

II. Bonilla-Petriciolet, Adrián. TP155.7.M645 2013 660–dc23

2012048233

A catalogue record for this book is available from the British Library

ISBN: 9781118341667

Set in 10/12pt Times by Aptara Inc., New Delhi, India

Contents

List of Contributors Preface		xiii xv	
Par	tΙ	Overview	1
1		oduction án Bonilla-Petriciolet and Gade Pandu Rangaiah	3
	1.1 1.2 1.3 1.4 Refe	Optimization and Chemical Engineering Basic Definitions and Concepts of Multi-Objective Optimization Multi-Objective Optimization in Chemical Engineering Scope and Organization of the Book erences	3 5 8 9 15
2	e-C	imization of Pooling Problems for Two Objectives Using the onstraint Method bo Zhang and Gade Pandu Rangaiah	17
		IntroductionPooling Problem Description and Formulations $2.2.1$ p -Formulation $2.2.2$ r -Formulation ε -Constraint Method and IDE AlgorithmApplication to Pooling ProblemsResults and DiscussionConclusionsrecisesperences	17 19 19 21 25 27 28 32 33 33
3		ti-Objective Optimization Applications in Chemical Engineering om Sharma and Gade Pandu Rangaiah	35
	3.1 3.2 3.3	Introduction MOO Applications in Process Design and Operation MOO Applications in Petroleum Refining, Petrochemicals and	35 37
		Polymerization	57

	3.4	MOO Applications in the Food Industry, Biotechnology and	
	25	Pharmaceuticals	57
	3.5	MOO Applications in Power Generation and Carbon Dioxide	()
	3.6	Emissions MOO Applications in Renewable Energy	66 66
	3.0 3.7	MOO Applications in Hydrogen Production and Fuel Cells	82
	3.8	Conclusions	82
		onyms	87
		rences	87
Pa	rt II	Multi-Objective Optimization Developments	103
4		ormance Comparison of Jumping Gene Adaptations of the Elitist -dominated Sorting Genetic Algorithm	105
		om Sharma, Seyed Reza Nabavi and Gade Pandu Rangaiah	10.
	4.1	Introduction	105
	4.2	Jumping Gene Adaptations	107
	4.3	Termination Criterion	110
	4.4	Constraint Handling and Implementation of Programs	112
	4.5	Performance Comparison	114
		4.5.1 Performance Comparison on Unconstrained Test Functions	114
	16	4.5.2 Performance Comparison on Constrained Test Functions Conclusions	121
	4.6		124
		rcises prences	124 125
5	Imp	roved Constraint Handling Technique for Multi-Objective imization with Application to Two Fermentation Processes	129
	-	om Sharma and Gade Pandu Rangaiah	147
	5.1	Introduction	129
	5.2	Constraint Handling Approaches in Chemical Engineering	131
	5.3	Adaptive Constraint Relaxation and Feasibility Approach for SOO	132
	5.4	Adaptive Relaxation of Constraints and Feasibility Approach for MOO	133
	5.5	Testing of MODE-ACRFA	136
	5.6	Multi-Objective Optimization of the Fermentation Process	139
		5.6.1 Three-Stage Fermentation Process Integrated with Cell	
		Recycling	139
		5.6.2 Three-Stage Fermentation Process Integrated with Cell	
		Recycling and Extraction	143
		5.6.3 General Discussion	152
	5.7	Conclusions	153
			150
	Acro	prences	153 154

	obust Multi-Objective Genetic Algorithm (RMOGA) with Online oproximation under Interval Uncertainty	157
W	eiwei Hu, Adeel Butt, Ali Almansoori, Shapour Azarm and Ali Elkamel	
6.	Introduction	157
6.	2 Background and Definition	159
	6.2.1 Multi-Objective Genetic Algorithm (MOGA)	160
	6.2.2 Multi-Objective Robustness with Interval Uncertainty:	
	Basic Idea	161
6.	5	163
	6.3.1 Nested RMOGA	163
	6.3.2 Sequential RMOGA	165
	6.3.3 Comparison between Nested and Sequential RMOGA	167
6.4		168
	6.4.1 Steps in Approximation-Assisted RMOGA	168
	6.4.2 Sampling	169
	6.4.3 Metamodeling and Verification	170
	6.4.4 Sample Selection and Filtering	171
6.:		172
	6.5.1 Numerical Example	172
	6.5.2 Oil Refinery Case Study	175
6.	5 Conclusions	178
R	eferences	179
	nance Constrained Programming to Handle Uncertainty	
	Nonlinear Process Models Shalay Mitra	183
7.	Introduction	183
7.	2 Uncertainty Handling Techniques	184
7.		186
	7.3.1 Calculation of $P(h_k(x, \xi) \ge 0) \ge p$ $(k = 1,, u)$	192
	7.3.2 Calculation of max $\{\tilde{f} P\{f(x,\xi) \ge \tilde{f}\} \ge \alpha\}$	193
7.4		193
	7.4.1 Grinding Process and Modeling	193
	7.4.2 Optimization Formulation	195
	7.4.3 Results and Discussion	199
7.	5 Conclusions	206
N	omenclature	209
A	ppendices	210
A.		210
A.	2 Calculation of Mean and Variance for General Function	212
D	eferences	212

8	by N	y Multi-Objective Optimization for Metabolic Reaction Networks lixed-Integer Hybrid Differential Evolution -Sheng Wang and Wu-Hsiung Wu	217
	8.1	Introduction	217
	8.2	Problem Formulation	219
		8.2.1 Primal Multi-Objective Optimization Problem	219
		8.2.2 Resilience Problem	221
	8.3	Optimality	223
	8.4	Mixed-Integer Hybrid Differential Evolution	228
		8.4.1 Algorithm	228
		8.4.2 Constraint Handling	231
	8.5	Examples	233
	8.6	Conclusions	240
	Exer	cises	241
	Refe	rences	242
Par	t III	Chemical Engineering Applications	247
9	Usin	meter Estimation in Phase Equilibria Calculations g Multi-Objective Evolutionary Algorithms eer Punnapala, Francisco M. Vargas and Ali Elkamel	249
	9.1	Introduction	249
	9.2	Particle Swarm Optimization (PSO)	250
		9.2.1 Multi-Objective Particle Swarm Optimization (MO-PSO)	251
	9.3	Parameter Estimation in Phase Equilibria Calculations	253
	9.4	Model Description	253
		9.4.1 Vapor Liquid Equilibrium	254
		9.4.2 Heat of Mixing	255
	9.5	Multi-Objective Optimization Results and Discussion	257
	9.6	Conclusions	260
	Nom	enclature	260
	Exer	cises	261
	Refe	rences	264
10		e Equilibrium Data Reconciliation Using Multi-Objective	2/7
		e rential Evolution with Tabu List án Bonilla-Petriciolet, Shivom Sharma and Gade Pandu Rangaiah	267
	10.1	Introduction	267
	10.2	Formulation of the Data Reconciliation Problem for Phase	
		Equilibrium Modeling	270
		10.2.1 Data Reconciliation Problem	270
	10.3	10.2.2 Data Reconciliation for Phase Equilibrium Modeling Multi-Objective Optimization using Differential Evolution with	271
		Tabu List	274

	10.4	Data Reconciliation of Vapor-Liquid Equilibrium by MOO 10.4.1 Description of the Case Study	277 277
		10.4.2 Data Reconciliation Results	278
	10.5	Conclusions	287
	Exer	vises	290
		ences	290
11		Emissions Targeting for Petroleum Refinery Optimization nmad A. Al-Mayyahi, Andrew F.A. Hoadley and Gade Pandu Rangaiah	293
	11.1	Introduction	293
		11.1.1 Overview of the CDU	295
		11.1.2 Overview of the FCC	296
		11.1.3 Pinch Analysis	297
		11.1.4 Multi-Objective Optimization (MOO)	301
	11.2	MOO-Pinch Analysis Framework to Target CO ₂ Emissions	303
		Case Studies	304
		11.3.1 Case Study 1: Direct Heat Integration	305
		11.3.2 Case Study 2: Total Site Heat Integration	310
	11.4	Conclusions	315
	Nom	enclature	315
	Exer	vises	317
	Appe	ndices	318
	A.1	Modeling of CDU and FCC	318
	A.2	Preliminary Results with Different Values for NSGA-II Parameters	320
	A.3	Pinch Analysis Techniques	320
		A.3.1 Composite Curves (CC)	322
		A.3.2 Grand Composite Curve (GCC)	326
		A.3.3 Total Site Profiles	326
	Refe	ences	331
12	Ecod	esign of Chemical Processes with Multi-Objective Genetic	
		rithms	335
	0	erine Azzaro-Pantel, Adama Ouattara and Luc Pibouleau	
	12.1	Introduction	335
	12.2	Numerical Tools	337
		12.2.1 Evolutionary Approach: Multi-Objective Genetic	
		Algorithms	337
		12.2.2 Choice of the Best Solutions	337
	12.3	Williams–Otto Process (WOP) Optimization for Multiple Economic	
		and Environmental Objectives	338
		12.3.1 Process Modelling	338
		12.3.2 Optimization Variables	339
		12.3.3 Objectives for Optimization	340
		12.3.4 Problem Constraints	341

		12.3.5 Implementation	341
		12.3.6 Procedure Validation	341
		12.3.7 Tri-Objective Optimization	343
		12.3.8 Discussion	346
	12.4	Revisiting the HDA Process	346
		12.4.1 HDA Process Description and Modelling Principles	346
		12.4.2 Optimization Variables	349
		12.4.3 Objective Functions	350
		12.4.4 Multi-Objective Optimization	354
	12.5	Conclusions	361
		nyms	363
	Refe	rences	364
13	Mod	eling and Multi-Objective Optimization of a	
	Chro	omatographic System	369
	Abhij	iit Tarafder	
	13.1	Introduction	369
		Chromatography—Some Facts	371
		Modeling Chromatographic Systems	373
		Solving the Model Equations	376
	13.5	Steps for Model Characterization	377
		13.5.1 Isotherms and the Parameters	378
		13.5.2 Selection of Isotherms	379
		13.5.3 Experimental Steps to Generate First Approximation	382
		Description of the Optimization Routine—NSGA-II	387
	13.7	Optimization of a Binary Separation in Chromatography	387
		13.7.1 Selection of the Objective Functions	387
		13.7.2 Selection of the Decision Variables	388
	12.0	13.7.3 Selection of the Constraints	389
	13.8	An Example Study	390
		13.8.1 Schemes of the Optimization Studies	390
	12.0	13.8.2 Results and Discussion	393
		Conclusions	396 397
	Kele	lences	397
14		nation of Crystal Size Distribution: Image Thresholding Based on	200
		i-Objective Optimization hik Raja Periasamy and S. Lakshminarayanan	399
			200
	14.1	Introduction	399
	14.2	Methodology	401
	14.3	Image Simulation	402
		14.3.1 Camera Model	402
		14.3.2 Process Model	402
	144	14.3.3 Assumptions	403
	14.4	Image Preprocessing	404

	14.5	Image Segmentation	404
		14.5.1 Image Thresholding Based on Single Objective Optimization	404
		14.5.2 Multi-Objective Optimization	406
		14.5.3 Problem Formulation	409
		14.5.4 Results and Discussion	410
	14.6	Feature Extraction	413
		14.6.1 Results and Discussion	414
		Future Work	417
		Conclusions	418
		enclature	418
	Refe	rences	419
15	Mult	i-Objective Optimization of a Hybrid Steam Stripper-Membrane	
		ess for Continuous Bioethanol Purification	423
	Krish	na Gudena, Gade Pandu Rangaiah and S. Lakshminarayanan	
	15.1	Introduction	423
	15.2	Description and Design of a Hybrid Stripper-Membrane System	426
		15.2.1 Hybrid Stripper-Membrane System of Huang et al.	426
		15.2.2 Modified Design of the Hybrid Stripper-Membrane System	427
	15.3	Mathematical Formulation and Optimization	431
		15.3.1 Problem Formulation	432
		15.3.2 Optimization Methodology for MOO Problems in	
		Cases A and B	434
	15.4	Results and Discussion	435
		15.4.1 Maximize Ethanol Purity (f _{purity}) and Minimize Operating Cost/kg of Bioethanol (f _{cost})	435
		15.4.2 Minimize Ethanol Loss (f_{loss}) and also Operating Cost/kg of	
		Bioethanol (f_{cost})	439
		15.4.3 Detailed Analysis of a Selected Optimal Solution	440
	15.5	Conclusions	445
	Exer	cises	445
	Refe	rences	446
16	Proc	ess Design for Economic, Environmental and Safety Objectives with	
	an A	pplication to the Cumene Process	449
	Shive	m Sharma, Zi Chao Lim and Gade Pandu Rangaiah	
	16.1	Introduction	449
	16.2	Review and Calculation of Safety Indices	451
		16.2.1 Integrated Inherent Safety Index (I2SI)	452
	16.3	Cumene Process, its Simulation and Costing	455
	16.4	I2SI Calculation for Cumene Process	459
		16.4.1 FEDR Calculation for Units Involving Physical Operations	459
		16.4.2 FEDR Calculation for Units Involving Chemical Reactions	460
		16.4.3 TDR Calculation	461
		16.4.4 Conversion of FEDR to FEDI, and TDR to TDI	462

	16.5	Optimization using EMOO Program	462
	16.6	Optimization for Two Objectives	464
		16.6.1 Tradeoff between DI and Material Loss	465
		16.6.2 Tradeoff between TCC and Material Loss	467
		16.6.3 Tradeoff between DI and TCC	467
	16.7	Optimization for EES Objectives	469
	16.8	Conclusions	471
	Exerc	rcises	472
	Appe	endices	472
	A.1	Penalty Calculation for FEDR	472
	A.2	Penalty Calculation for TDR	474
	A.3	3-D Plots for Optimization of EES Objectives	475
	Refe	prences	476
17		PI Controller Tuning Methods Using Multi-Objective	e Optimization 479
	Allan	n Vandervoort, Jules Thibault and Yash Gupta	
	17.1	Introduction	479
		PI Controller Model	480
		Optimization Problem	481
	17.4		481
		17.4.1 Dominated and Non-dominated Solutions	482
		17.4.2 Few Methods for Approximating the Pareto De	
		17.4.3 Application of Principal Component Analysis	
		Search Approach	484
		Optimization Results	488
	17.6	Controller Tuning	490
		17.6.1 Method 1	490
		17.6.2 Method 2	491
	17.7	11 0	491
		17.7.1 First-Order Plus Dead Time System	491
		17.7.2 Fourth-Order Plus Dead Time System	495
		17.7.3 Application to a Process with a First-Order Dis	sturbance 497
			498
		nenclature	499
	Exerc	rcises	500
	Refe	erences	500

503

List of Contributors

Ali Almansoori, Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE

Mohmmad A. Al-Mayyahi, Department of Chemical Engineering, Monash University, Australia

Shapour Azarm, University of Maryland, College Park, USA

Catherine Azzaro-Pantel, Université de Toulouse, Laboratoire de Génie Chimique, France

Adrián Bonilla-Petriciolet, Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, Mexico

Adeel Butt, Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE

Ali Elkamel, Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE and Department of Chemical Engineering, University of Waterloo, Canada

Krishna Gudena, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

Yash Gupta, Department of Chemical and Biological Engineering, University of Ottawa, Canada

Andrew F.A. Hoadley, Department of Chemical Engineering, Monash University, Australia

Weiwei Hu, University of Maryland, College Park, USA

S. Lakshminarayanan, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

Zi Chao Lim, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

Kishalay Mitra, Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India

Seyed Reza Nabavi, Faculty of Chemistry, University of Mazandaran, Iran

Adama Ouattara, Université de Toulouse, Laboratoire de Génie Chimique, France

Karthik Raja Periasamy, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

Luc Pibouleau, Université de Toulouse, Laboratoire de Génie Chimique, France

Sameer Punnapala, Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE

Gade Pandu Rangaiah, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

Shivom Sharma, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

Abhijit Tarafder, Department of Chemistry, University of Tennessee, USA

Jules Thibault, Department of Chemical and Biological Engineering, University of Ottawa, Canada

Allan Vandervoort, Department of Chemical and Biological Engineering, University of Ottawa, Canada

Francisco M. Vargas, Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE

Feng-Sheng Wang, Department of Chemical Engineering, National Chung Cheng University, Taiwan

Wu-Hsiung Wu, Department of Chemical Engineering, National Chung Cheng University, Taiwan

Haibo Zhang, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

Preface

The optimization approach is well established in both academia and in industrial practice with numerous applications in chemical engineering. Several tools are readily available for process optimization. However, optimization applications often have more than one objective, which requires Multi-Objective Optimization (MOO). Since the early 2000s, MOO has grown significantly as an effective and useful approach, especially for process optimization in chemical engineering. In particular, current technologies and requirements in the petrochemical, chemical, biotechnology, energy and other emerging industries have imposed new challenges to the field of MOO. These challenges are due to the necessity of solving complex design-optimization problems that involve several objectives, many decision variables and constraints. To date, there have been many theoretical and computational developments in MOO and its applications for solving these complex problems of modern industry. Yet, in spite of many advances and applications of MOO, there is only one book specifically devoted to MOO techniques and their applications in chemical engineering. This earlier book, edited by Rangaiah and published in 2009, describes selected MOO techniques and a number of application problems.

The present book on MOO covers the most recent developments in and novel applications of MOO, for modeling and solving a variety of challenging case studies in different areas of chemical engineering. In particular, this book covers new MOO methods and ideas that have not been introduced in earlier MOO books. It is a collection of contributions from the leading chemical engineering researchers on MOO and its applications. Every chapter in this book has been reviewed anonymously by at least two experts, and then thoroughly revised by the respective contributors. The review process for chapters co-authored by each of the editors has been entirely handled by the other editor. Through this rigorous review, every attempt has been made to maintain the high-quality and educational value of the contributions.

This book is organized into three parts. Part I (Chapters 1–3) provides the introduction, one important application of MOO, and an overview of chemical engineering applications of MOO since the year 2007. New algorithm developments and state-of-the-art techniques used for solving MOO problems are presented in Part II (Chapters 4–8). Finally, Chapters 9–17, in Part III, deal with various MOO application studies from thermodynamics, petrochemical, environmental, biofuels and other chemical engineering areas. These illustrate the applicability and advantages of MOO in process systems engineering within chemical engineering. A number of chapters have exercises at the end, and the material in some chapters is complemented by relevant and useful programs/files available on the book's web site (http://booksupport.wiley.com; enter the book's title, editor names or ISBN to access this).

Multi-Objective Optimization in Chemical Engineering will be useful for researchers, practitioners and postgraduate students interested in the area of MOO. Chapters can be readily adopted as part of advanced courses on optimization for senior undergraduate and postgraduate students. They will also allow the readers to adapt and apply available techniques to their processes or specific problems. In general, readers can choose the chapters of interest and read them independently.

We are grateful to all the contributors and the reviewers of the chapters for their cooperation in meeting the requirements and schedule to finalize the book. In particular, we thank Prof. S.K. Gupta, Prof. J. Thibault and Prof. A.F.A. Hoadley for their timely help in reviewing some chapters authored by the editors. Special thanks are due to Shivom Sharma and Gudena Krishna, who assisted us in preparing and submitting the final files to the publisher. Finally, we would like to thank Ms. Sarah Tilley, Ms. Emma Strickland and Ms. Rebecca Stubbs of John Wiley & Sons, Ltd, for their cooperation and promptness in producing this book.

Research in MOO will continue to be an active area in chemical engineering, and we hope that this book will contribute to further developments in this topic.

Gade Pandu Rangaiah National University of Singapore, Singapore

Adrián Bonilla-Petriciolet Instituto Tecnológico de Aguascalientes, México

October 2012