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2.1 Introduction

Pooling and blending problems are important optimization problems in petroleum refiner-
ies with huge cost savings potential (Baker and Lasdon, 1985; Rigby et al., 1995). In
petroleum refineries, final products are often made by mixing flows from pools or feed
streams with different sulfur content, octane number and/or density. Pooling occurs when
source/feed streams are mixed in storage tanks (pools) before producing final products. The
source streams can be intermediate products from different distillation units, reformers and
catalytic crackers, and/or additives like ethanol, and therefore have different compositions
and properties (DeWitt et al., 1989). The resulting streams from pools are then dispatched
to different final products to meet the specified requirements. The pools enhance the oper-
ational flexibility of the process by providing intermediate storage. On the other hand,
blending is direct mixing of source/feed streams into final products, and hence blending
problems do not involve pools (i.e., storage tanks). Pooling problems are also encountered
in waste-water treatment (Bagajewicz, 2000), supply-chain operations and communications
(Misener and Floudas, 2009).
Pooling problems have been studied for a single objective, namely, cost minimization

(i.e., profit maximization) by optimal allocation of source/feed streams to pools and then
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blending streams from pools to final products, subject to constraints arising from mass
balances, quality balances, feed availability and product requirements. Because of the non-
linearities and nonconvexities in the optimization problem, a global optimization algorithm
is required for solving pooling problems.
Many studies have focused on the solution of pooling problems, starting from Haverly

(1978), who used recursive linear programming. Next, Lasdon et al. (1979) applied suc-
cessive linear programming for solving pooling problem. Later, Baker and Lasdon (1985)
applied successive linear programming to improve blending schemes at Exxon Company.
The solution of pooling problems led to annual savings of more than 30 million dollars in
the 1980s (DeWitt et al., 1989). Reviews of global optimization methods and their appli-
cations to pooling problems can be found in Floudas and Gounaris (2009) and Misener
and Floudas (2009). All these attempts to solve pooling problems have used deterministic
algorithms for single objectives only.
In general, many real-world problems involve several conflicting objectives. It is often

difficult to formulate these problems into a single-objective optimization (SOO) problem.
The conflicting objectives in multi-objective optimization (MOO) problems lead to a set of
optimal solutions called Pareto-optimal solutions, which are equally good for the specified
objectives. These solutions provide better understanding of the tradeoff among objectives
and many choices to the decision-maker for choosing one of them for implementation. Over
the last two decades, MOO field has grown significantly and many chemical engineering
applications of it have been reported (Cheah and Rangaiah, 2009; Jaimes and Coello
Coello, 2009; Masuduzzaman and Rangaiah, 2009; Chapter 3 in this book). One approach
to solving a MOO problem is to transform it into a single-objective problem that can be
solved using a suitable SOO method. For example, in the ε-constraint method, the MOO
problem is converted into a SOO problem for one primary objective and the other objectives
are treated as constraints.
Khosla et al. (2007) have studied fuel oil blending for two and three objectives such as

profit, quality give-away, production rate, use of light products and calorific value, using the
elitist nondominant sorting genetic algorithm (NSGA-II) with and without jumping-gene
adaptations. However, until now, pooling problems have not been optimized for multiple
objectives. Hence, in this chapter, pooling problems are optimized for two objectives using
the ε-constraint method. Another purpose of this chapter is to illustrate the ε-constraint
method. The resulting SOO problem is solved using a recent stochastic global optimization
algorithm, namely, integrated differential evolution (IDE) (Zhang and Rangaiah, 2012).
Many benchmark pooling problems from the literature are optimized for two objectives:
cost (or profit) and product quality, which conflict. The results demonstrate the usefulness
of the ε-constraint method and IDE for the MOO of pooling problems.
Comparison of several deterministic and stochastic global optimization algorithms has

been discussed in the literature (Nocedal and Wright, 2006; Srinivas and Rangaiah, 2006;
Weise 2008; Mashinchi et al., 2011; Exler et al., 2008). In general, stochastic methods
are more robust, require little or no assumption on the characteristics of the optimization
problem, and yet provide a high probabilistic convergence to the global optimum. Further,
they are usually simple in principle and easy to implement and use. Hence, in this chapter,
IDE is used for finding the global optimum of the SOO problem.
In pooling problems, objective functions and/or constraints are nonlinear with respect to

decision variables; they are also non-convex and havemultiple optima. These characteristics
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and the presence of many equality and inequality constraints add to the difficulty of finding
the global optimum. Mathematical formulation of pooling problems can mitigate these
difficulties by changing nonlinear terms, size of the search space and/or number of equal-
ity/inequality constraints. In this chapter, we describe and use an improved formulation
named, r-formulation, for pooling problems.
The remainder of this chapter is organized as follows. Description and formulation of

pooling problems is presented in section 2.2 by considering typical problems. Section 2.3
describes the ε-constraintmethod including an outline of the IDE algorithm. The application
of this method to pooling problems is described in section 2.4. The results are presented
and discussed in section 2.5. Finally, section 2.6 concludes this chapter with a summary of
the findings.

2.2 Pooling Problem Description and Formulations

2.2.1 p-Formulation

The bilinear programming formulation, known as the p-formulation, was formulated by
Haverly (1978), who also studied the solution of pooling problems using recursive linear
programming. Nomenclature for the p-formulation of a pooling problem network is pre-
sented in Figure 2.1(a); for illustration, one of the benchmark pooling problems, Ben-Tal 4
(Ben-Tal et al., 1994) is shown in Figure 2.1(b).
The source/feed streams with flow rate (Xi,j from ith source stream to jth pool), quality

(λi,w forw quality of ith source stream) and price (Ci of ith source stream), from process units
are mixed in one or more pools (Figure 2.1). There can be an upper limit on the availability
of ith source stream (AU

i in Figure 2.1a) and/or more than one quality variable. Streams
from the pools with flow rate (Yj,k from jth pool to kth product) and quality (μj,w) are mixed
again in the product tanks. The final products from the pooling network should satisfy the
demand (DU

k ) and product quality (ηk,w), and their selling price is denoted Sk. The objective
function is the difference between the cost of source/feed streams and the revenue from
selling the final products. The constraints are mainly from mass balances about the pools,
quality balances about the pools, raw material availability, product demands and quality
requirements. Details of the p-formulation of pooling problems can be found in Misener
and Floudas (2009).
For example, BT-4 problem shown in Figure 2.1(b) involves four source streams, two

pools and two products. Three of the four source streams are mixed in one pool. The second
pool has only one source stream, which is referred as bypass stream—it may go through
a pool or mixed directly to the products. All streams going from this pool to the products
will have the same qualities as its single source stream, and so the presence or absence
of a pool does not affect the problem formulation and results except for introducing an
additional X variable. Considering a pool for each bypass stream is helpful for the general
problem formulation. Hence, a pool is considered for each bypass stream in this chapter (see
Figures 2.1b and 2.3). Data shown in Figure 2.1(b) follow the symbols in Figure 2.1(a). For
example, (6, 3) on top of source stream 1 are the price and quality of the source stream 1,
(9, 2.5) on top of product stream 1 are the price and quality requirement of the product
stream, and (100) below the product stream 1 is the upper bound on the demand for the
product stream 1. Note that (50) below the source stream 2 is the availability of this stream.
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λi,w = w th quality of i th source
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Figure 2.1 (a) Schematic showing the general notation for the p-formulation. (b) Pooling
network with variables for the p-formulation: Ben-Tal4 problem.

For the Ben-Tal 4 problem, the SOO problem using p-formulation is as follows:

min {6X11 + 15X21 + 16X31 + 10X42}︸ ︷︷ ︸
cost

−{9(Y11 + Y21)+ 15(Y12 + Y22)}︸ ︷︷ ︸
revenue

(2.1a)

s.t. X11 + X21 + X31 = Y11 + Y12
X42 = Y21 + Y22

}
Mass balance around pools (2.1b)

3X11 + 1X21 + 1X31 = μ11(Y11 + Y12)
2X42 = 2(Y21 + Y22)

}
Quality balance around pools (2.1c)

μ11Y11 + 2Y21 ≤ 2.5(Y11 + Y21)
μ11Y12 + 2Y22 ≤ 1.5(Y12 + Y22)

}
Quality requirments of products (2.1d)

Y11 + Y21 ≤ 100
Y12 + Y22 ≤ 200

}
Product demands (2.1e)

X21 ≤ 50 Availability of the source stream 2 (2.1f)
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Decision variables and their values at the global optimum for the Ben-Tal 4 problem are:
X11 = 0, X21 = 50, X31 = 50, X42 = 100, Y11 = 0, Y21 = 0, Y12 = 100, Y22 = 100 and
μ11 = 1 with objective function = {6× 0+ 15× 50+ 16× 50+ 10× 100} − {9× (0+
0)+ 15× (100+ 100)} = −450.

2.2.2 r-Formulation

The new formulation, named, the r-formulation, reduces the number of decision variables,
constraints and search space in the optimization problem. In this formulation, new decision
variables, ri,j ∈ (0, 1) and Rj,k ∈ (0, 1) are introduced instead of flow rates, Xi,j and Yj,k .
The new decision variables, Rj,k can be used to calculate flow rates, Yj,k as follows.

Y1,k = R1,kD
U
k k = 1, 2, . . . , K (2.2)

Yj,k = Rj,k

(
DU

k −
j−1∑
m=1

Ym,k

)
j = 2, 3, . . . , P ; k = 1, 2, . . . , K (2.3)

In the above, K and P are, respectively, the number of products and the number of pools
in the pooling network. Thus, Rj,k represents the fraction of the maximum possible value
for Yj,k . In other words, the upper bound of the product demand and all previous Yj,k values
are taken into account (see Equations 2.2 and 2.3). Thus, use of Rj,k in the r-formulation
reduces the search space, the number of decision variables and constraints.
Similarly, new decision variables, ri,j ∈ (0, 1) are used to calculate source stream flow

rates, Xi,j via qi,j , each of which represents the fraction of total flow through jth pool that
comes from ith source stream. For this, qi,j are calculated using ri,j as follows:

q1,j = r1,j j = 1, 2, . . . , P (2.4)

qi,j = ri,j

(
1−

i−1∑
m=1

qm,j

)
i = 2, 3, . . . , N − 1; j = 1, 2, . . . , P (2.5)

Here, N is the total number of source/feed streams. Equation 2.5 takes into account the
previous qi,j values calculated from ri,j. The last qN,j is calculated from:

N∑
m=1

qm,j = 1 j = 1, 2, . . . , P (2.6a)

or qN,j = 1−
N−1∑
m=1

qm,j j = 1, 2, . . . , P (2.6b)

This equation eliminates the equality constraints arising from the mass balances for
pools. The source/feed flow rates are then given by

Xi,j = qi,j

K∑
k=1

Yj,k i = 1, 2, . . . , N ; j = 1, 2, . . . , P (2.7)

Similar to Rj,k , the use of ri,j in the r-formulation reduces the search space, number of
decision variables and constraints.
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The optimization problem using r-formulation is simplified to as follows. Objective
function:

min
N∑

i=1

P∑
j=1

K∑
k=1
(Ciqi,j Yj,k)−

K∑
k=1

Sk

⎛
⎝ P∑

j=1
Yj,k

⎞
⎠ (2.8)

Subject to

N∑
i=1

P∑
j=1

λi,wqi,j Yj,k − ηk,w

P∑
j=1

Yj,k ≤ 0, k = 1, 2, . . . , K;
w = 1, 2, . . . , W

⎫⎬
⎭ Product Qualities (2.9)

P∑
j=1

K∑
k=1

qi,jYj,k − AU
i ≤ 0, i = 1, 2, . . . , N

⎫⎬
⎭ Feed Availability (2.10)

Note that qi,j and Yj,k in the above equations are calculated using equations 2.4–2.6 and
2.2–2.3 respectively. Decision variables and their bounds in the optimization problem are:

0 ≤ ri,j ≤ 1 i = 1, 2, . . . , N − 1 j = 1, 2, . . . , P (2.11)

0 ≤ Rj,k ≤ 1 j = 1, 2, . . . , P k = 1, 2, . . . , K (2.12)

Thus, the optimization problem using r-formulation has only two sets of inequality
constraints (Equations 2.9 and 2.10), and the decision variables are normalized between 0
and 1 (Equations 2.11 and 2.12). Depending on the interconnections in the pooling network,
suitable values (either 0 or 1) can be assigned to some ri,j and Rj,k in advance. This will
further reduce the number of decision variables.
Figure 2.2 shows a schematic of Ben-Tal 4 problem using ri,j and Rj,k for r-formulation.

The SOO problem for this pooling problem using r-formulation is as follows. Decision

1
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(16, 1)

(10, 2)

Figure 2.2 Pooling network with variables for the r-formulation: Ben-Tal4 problem.
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variables in this problem are r’s and R’s; and q, X and Y are given by the explicit equations
(2.2)–(2.7). So, the latter are dependent variables calculated using the values of decision
variables, r’s and R’s. Explicit equations for calculating the dependent variables using
decision variables: r11, r21, R11, R12, R21 and R22, are:

Y11 = R11 × DU
1 = 100R11, Y21 = R21 × (DU

1 − Y11) = R21 × (100− Y11)

Y12 = R12 × DU
2 = 200R12, Y22 = R22 × (DU

2 − Y12) = R22 × (200− Y12)
(2.13a)

q11 = r11, q21 = r21 × (1− q11) , q31 = 1− q11 − q21 (2.13b)

X11 = (Y11 + Y12)× q11, X21 = (Y11 + Y12)× q21

X31 = (Y11 + Y12)× q31, X42 = (Y21 + Y22)
(2.13c)

The objective function and constraints for Ben-Tal 4 problem using r-formulation are:

min {6X11 + 15X21 + 16X31 + 10X42}︸ ︷︷ ︸
cost

−{9(Y11 + Y21)+ 15(Y12 + Y22)}︸ ︷︷ ︸
revenue

(2.13d)

s.t. (3q11 + 1q21 + 1q31)Y11 + 2Y21 ≤ 2.5(Y11 + Y21)
(3q11 + 1q21 + 1q31)Y12 + 2Y22 ≤ 1.5(Y12 + Y22)

}
Quality requirements
of products

(2.13e)

X21 ≤ 50 Availability of the source stream 2 (2.13f)

Values of decision variables at the global optimum of the Ben-Tal 4 problem are:
r11 = 0, r21 = 0.5, R11 = 0, R12 = 0.5, R21 = 0 and R22 = 1. Flow rates in the pooling
network (i.e., dependent variables) can be calculated easily using Equations 2.13a–2.13c.

Y11 = R11 × DU
1 = 0× 100 = 0;Y21 = R21 × (DU

1 − Y11) = 0× (100− 0) = 0;

Y12 = R12 × DU
1 = 0.5× 200 = 100;Y22 = R22 × (DU

1 − Y12) = 1× (200− 100) = 100;

q11 = r11 = 0; q21 = r21(1− q11) = 0.5; q31 = 1− q11 − q21 = 0.5

X11 = (Y11 + Y12)× q11 = (0+ 100)× 0 = 0;X21 = (Y11 + Y12)× q21 = (0+ 100)
× 0.5 = 50;X31 = (Y11 + Y12)× q31 = 100× 0.5 = 50;X42 = (Y21 + Y22) = 100;

The objective function (cost) is

{6× 0+ 15× 50+ 16× 50+ 10× 100} − {9× (0+ 0)+ 15× (100+ 100)} = −450

The above values are the same as those given at the end of section 2.2.1.
Another more complicated pooling problem, namely Ben-Tal 5 (Ben-Tal et al., 1994)

shown in Figure 2.3, is considered for illustrating r-formulation for pooling problems. This
problem involves five source streams, four pools, five product streams and two qualities;
one source stream is a bypass stream shown with pool 4. The data (6, 3, 1) on top of source
stream 1 are the price, quality 1 and quality 2 of the source stream 1, respectively, (18,
2.5, 2) above the product stream 1 are price, quality 1 and quality 2 of product stream 1,
respectively, and (100) below the product stream 1 is the upper limit on the demand for
product stream 1. For clarity, only the decision variables at pools 1 and 4 are shown in
Figure 2.3.
As before, decision variables are r’s and R’s in r-formulation (see Table 2.1). Explicit

equations for calculating the dependent variables: q, X and Y are given by generic
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Table 2.1 Decision variables, dependent variables and their optimal values for Ben-Tal 5
problem.

Decision variables Dependent variables
(with optimal values in brackets) (with optimal values in brackets)

r11 (0.0); r21 (0.0); r31 (0.0) q11 (0.0); q21 (0.0); q31 (0.0); q41 (1.0)
r12 (1.0); r22 (0.05); r32 (0.0) q12 (1.0); q22 (0.0); q32 (0.0); q42 (0.0)
r13 (1.0); r23 (0.0); r33 (0.005) q13 (1.0); q23 (0.0); q33 (0.0); q43 (0.0)
R11 (0.33); R12 (1.00); R13 (0.67);

R14 (0.67); R15 (0.67)
Y11 (33.14); Y12 (200.00); Y13 (66.67);

Y14 (66.67); Y15 (66.67); X11 (0.00);
X21 (0.00); X31 (0.00); X41 (433.14)

R21 (0.98); R22 (0.73); R23 (1.00);
R24 (0.67); R25 (1.00)

Y21 (65.47); Y22 (0.0); Y23 (33.33);
Y24 (22.41); Y25 (33.33); X12 (154.55);
X22 (0.0); X32 (0.0); X42 (0.0)

R31 (0.79); R32 (0.98); R33 (0.94);
R34 (1.00); R35 (0.85)

Y31 (1.1); Y32 (0.0); Y33 (0.0); Y34 (10.93);
Y35 (0.0); X13 (12.02); X23 (0.0); X33 (0.0);
X43 (0.0)

R41 (1.00); R42 (0.91); R43 (1.00);
R44 (1.00); R45 (1.00)

Y41 (0.29); Y42 (0.0); Y43 (0.0); Y44 (0.0);
Y45 (0.0); X54 (0.29)

1
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Figure 2.3 Pooling network with variables for the r-formulation: Ben-Tal 5 problem; for clarity,
only some decision variables are shown.
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Equations 2.2–2.7, and are not shown here for conciseness but they can be found in
the Excel file on the accompanying web site for the book at http://booksupport.wiley.com.
The objective function and constraints are:

min

{
6(X11 + X12 + X13)+ 16(X21 + X22 + X23)
+ 15(X31 + X32 + X33)+ 12(X41 + X42 + X43)+ 10X54

}
︸ ︷︷ ︸

cost

−
⎧⎨
⎩
18(Y11 + Y21 + Y31 + Y41)+ 15(Y12 + Y22 + Y32 + Y42)
+ 19(Y13 + Y23 + Y33 + Y43)+ 16(Y14 + Y24 + Y34 + Y44)
+ 14(Y15 + Y25 + Y35 + Y45)

⎫⎬
⎭︸ ︷︷ ︸

revenue

(2.14a)

s.t. (3q11 + 1q21 + 1q31 + 1.5q41)Y11 + (3q12 + 1q22 + 1q32 + 1.5q42)Y21
+ (3q13 + 1q23 + 1q33 + 1.5q43)Y31 + 2Y41 ≤ 2.5(Y11 + Y21 + Y31 + Y41)
(3q11 + 1q21 + 1q31 + 1.5q41)Y12 + (3q12 + 1q22 + 1q32 + 1.5q42)Y22
+ (3q13 + 1q23 + 1q33 + 1.5q43)Y32 + 2Y42 ≤ 1.5(Y12 + Y22 + Y32 + Y42)
(3q11 + 1q21 + 1q31 + 1.5q41)Y13 + (3q12 + 1q22 + 1q32 + 1.5q42)Y23
+ (3q13 + 1q23 + 1q33 + 1.5q43)Y33 + 2Y43 ≤ 2(Y13 + Y23 + Y33 + Y43)
(3q11 + 1q21 + 1q31 + 1.5q41)Y14 + (3q12 + 1q22 + 1q32 + 1.5q42)Y24
+ (3q13 + 1q23 + 1q33 + 1.5q43)Y34 + 2Y44 ≤ 2(Y14 + Y24 + Y34 + Y44)
(3q11 + 1q21 + 1q31 + 1.5q41)Y15 + (3q12 + 1q22 + 1q32 + 1.5q42)Y25
+ (3q13 + 1q23 + 1q33 + 1.5q43)Y35 + 2Y45 ≤ 2(Y15 + Y25 + Y35 + Y45)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Quality 1
requirments
of products

(2.14b)
(1q11 + 3q21 + 2.5q31 + 2.5q41)Y11 + (1q11 + 3q21 + 2.5q31 + 2.5q41)Y21
+ (1q11 + 3q21 + 2.5q31 + 2.5q41)Y31 + 2.5Y41 ≤ 2(Y11 + Y21 + Y31 + Y41)
(1q11 + 3q21 + 2.5q31 + 2.5q41)Y12 + (1q11 + 3q21 + 2.5q31 + 2.5q41)Y22
+ (1q11 + 3q21 + 2.5q31 + 2.5q41)Y32 + 2.5Y42 ≤ 2.5(Y12 + Y22 + Y32 + Y42)
(1q11 + 3q21 + 2.5q31 + 2.5q41)Y13 + (1q11 + 3q21 + 2.5q31 + 2.5q41)Y23
+ (1q11 + 3q21 + 2.5q31 + 2.5q41)Y33 + 2.5Y43 ≤ 2.6(Y13 + Y23 + Y33 + Y43)
(1q11 + 3q21 + 2.5q31 + 2.5q41)Y14 + (1q11 + 3q21 + 2.5q31 + 2.5q41)Y24
+ (1q11 + 3q21 + 2.5q31 + 2.5q41)Y34 + 2.5Y44 ≤ 2(Y14 + Y24 + Y34 + Y44)
(1q11 + 3q21 + 2.5q31 + 2.5q41)Y15 + (1q11 + 3q21 + 2.5q31 + 2.5q41)Y25
+ (1q11 + 3q21 + 2.5q31 + 2.5q41)Y35 + 2.5Y45 ≤ 2(Y15 + Y25 + Y35 + Y45)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Quality 2
requirments
of products

(2.14c)

X31 + X32 + X33 ≤ 50 Availability of the source stream 3 (2.14d)

The first set of constraints (Equation 2.14b) is for quality 1 requirements on products,
and the second set of constraints (Equation 2.14c) is for quality 2 requirements on products.
The third constraint (Equation 2.14d) is the availability of the source stream 3 only. The
Ben-Tal 5 problem has a multiple global minimum of −3500; the values of decision
variables and dependent variables at one global minimum are given in Table 2.1.

2.3 ε-Constraint Method and IDE Algorithm

Previous studies on pooling problems have all focused on SOO. In this chapter, pool-
ing problems are solved for two objectives to find Pareto-optimal solutions that provide
insights into tradeoffs between objectives andmany optimal choices for the decision-maker.
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A classical approach to solvingMOOproblems is by transforming themulti-objective prob-
lem into a sequence of parameterized single-objective problems such that the solution of
each single-objective problem corresponds to one Pareto-optimal solution. The common
transformation method is the ε-constraint method, proposed by Haimes et al. (1971). It is
based on scalarization where one of the objective functions is optimized while treating the
other objectives as inequality constraints in order to keep them within reasonable limits.
Consider the bi-objective optimization problem:

Objective 1: Min. f1(x) (2.15a)

Objective 2: Min. f2(x) (2.15b)

Subject to : g(x) ≤ 0 (2.15c)

h(x) = 0 (2.15d)

where “x” is the set of decision variables, and g(x) and h(x) are the inequality and equality
constraints, respectively. For solving this bi-objective problem by the ε-constraint method,
one objective—say, f2(x)—is converted into an inequality constraint as follows:

Objective : Min. f1(x) (2.16a)

Subject to : g(x) ≤ 0 (2.16b)

h(x) = 0 (2.16c)

f2(x) ≤ ε (2.16d)

In the above, ε is a suitable value in order to keep the objective f2(x) small enough. The
solution of the above single-objective problem for each ε value gives one Pareto-optimal
solution. A series of Pareto-optimal solutions can be obtained by varying ε from a large
to a small value. The large value for ε can be based on the solution of the single-objective
problem in Equation 2.16 without the constraint on f2(x), and the small value for ε is the
minimum of f2(x) subject to g(x) ≤ 0 and h(x) = 0 (i.e., ignoring f1(x)), which can be
obtained by SOO. Alternatively, the range of ε can be based on the physical knowledge of
the optimization problem; this strategy is used for bi-objective optimization of pooling
problems in the next section.
The concept of an ε-constraint method is simple, and one can use one of many available

SOO techniques (e.g., the Solver tool provided in the MS-Excel file; see Lee et al., 2008).
However, themethod requires the solution of the SOOproblemnumerous times, particularly
for more than two objectives. The additional constraints introduced for the objectives can
make the SOO problem very difficult to solve. Further, Pareto-optimal solutions obtained
from numerous SOO problems may not be well distributed. Despite these limitations, the
ε-constraint method is used in this chapter for illustration, because it is a classical approach
and popular for bi-objective problems. Here, SOO problems arising in the ε-constraint
method are solved using the stochastic global optimization method, namely, integrated
differential evolution (IDE) (Zhang and Rangaiah, 2012). The IDE algorithm integrates
several strategies with differential evolution (DE), proposed by Storn and Price (1997).
Differential evolution is a population-based global optimization method, its principle and
steps are easy to understand, and it has relatively fast convergence and high reliability in
finding the global optimum (Price et al., 2005; Srinivas and Rangaiah, 2006).
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The IDE algorithm incorporates the following strategies: (i) a self-adaptive strategy and
learning to tune values of algorithm parameters and select a suitable mutation strategy;
(ii) the tabu concept and a list of tabu searches to prevent revisiting the same search
area and increasing the population diversity; (iii) self-adaptive constraint handling method
to handle equality and inequality constraints; (iv) a novel stopping criterion based on
the number of rejections; and (v) local optimization after the global search to find the
precise optimum efficiently. The better reliability and effectiveness of IDE have been
shown on many challenging benchmark functions with equality and inequality constraints
by comparison with other stochastic optimizationmethods. See Zhang and Rangaiah (2012)
for more details on IDE.

2.4 Application to Pooling Problems

In this study, product qualities, Equation 2.9 of the r-formulation is used as the second
objective function (f2) which is transformed as an inequality constraint shown in Equa-
tion 2.17 while retaining the objective function (f1) as the single objective function and
other constraints (Equations 2.10–2.12) unchanged.

N∑
i=1

P∑
j=1

λi,wqi,j Yj,k ≤ εk,w k = 1, 2, . . . , K;w = 1, 2, . . . ,W (2.17)

The f2 is included as an inequality constraint such that its value is not more than ε at the
optimal solution of the transformed problem. The SOO problem will have to be solved for
a range of ε values in order to find many Pareto-optimal solutions.
In this study, range of ε values is calculated based on the quality of the products at the

global optimum of the original pooling problem with single objective of cost and using the
following equation.

εk,w =
⎛
⎝ηk,w

P∑
j=1

Yj,k

⎞
⎠ × QR k = 1, 2, . . . , K;w = 1, 2, . . . ,W (2.18)

Here, QR is the ratio of the product quality. QR = 1 corresponds to the original pooling
problem with a single objective,QR > 1 implies lower product quality, andQR < 1 refers to
better product quality. Since the overall cost of the process increases with product quality,
these two objective functions are conflicting and one can expect many Pareto-optimal
solutions. In this study, the range of QR is set from 0.8 to 2.0 after preliminary testing on
selected pooling problems.
The ε-constraint method with IDE for solving the resulting SOO problems is employed

for optimizing 13 benchmark pooling problems for cost and product-quality objectives. In
these problems employing r-formulation, the number of variables is in the range 5 to 152,
and the number of inequality constraints is 2 to 24. Table 2.2 summarizes the basic details
of these pooling problems with single and multiple qualities. The global optimum for each
problem is also given in Table 2.2, which is the same solution when QR is equal to 1 in
MOO approach.
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Table 2.2 Basic details of 13 benchmark pooling problems used for MOO; see Adhya et al.
(1999) for further details.

Problem Input Pools + Decision Inequality Global
name streams bypasses Products Quality variablesa constraintsa optimum

Haverly 1 3 1 + 1 2 1 5 2 −400
Haverly 2 3 1 + 1 2 1 5 2 −600
Haverly 3 3 1 + 1 2 1 5 2 −750
Foulds 2 6 2 + 2 4 1 18 4 −1100
Foulds 3 11 8 + 0 16 1 152 16 −8
Foulds 4 11 8 + 0 16 1 152 16 −8
Foulds 5 11 4 + 0 16 1 92 16 −8
Ben-Tal 4 4 1 + 1 2 1 6 3 −450
Ben-Tal 5 5 3 + 1 5 2 29 11 −3500
Adhya 1 5 2 + 0 4 4 11 16 −549.8
Adhya 2 5 2 + 0 4 6 11 24 −549.8
Adhya 3 8 3 + 0 4 6 17 24 −561.05
Adhya 4 8 2 + 0 5 4 16 20 −877.65

aNumber of decision variables and number of inequality constraints are for r-formulation.

For solving MOO of pooling problems by the ε-constraint method, the following param-
eter values were used in IDE: population size, NP= 50, learning period, LP= 50, tabu list
size= 50 and tabu radius=min (0.7, 0.02×Number of Variables). Stopping criterion is the
satisfaction of either the maximum number of rejections, Nmax = 8 or maximum number
of function evaluations, Gmax = 10000× number of variables. The latter is used as another
stopping criterion to avoid infinite loops. The local optimizer used in IDE is “fmincon”
from the MATLAB toolbox. These parameter values are selected from those in Zhang and
Rangaiah (2012) and are based on preliminary testing.
For eachQR value, the SOO problem is solved 20 times using IDE, in order to ensure that

the global optimum is obtained; the best results obtained from the 20 runs are presented and
discussed in the next section. All calculations for MOO of pooling problems are performed
in MATLAB. The computer system employed in this study is the Intel Core 2 (Duo CPU
3.10 GHz, 3.16 GB RAM) for which MFlops (million floating point operations per second)
for the LINPACK benchmark program (at www.netlib.org/) for a matrix of order 500 are
1074 CPU time for one run of SOO by IDE varies from 3 to 20 s depending on the pooling
problem.

2.5 Results and Discussion

First, the Ben-Tal 4 and 5 problems with stream data shown in Figures 2.2 and 2.3 have
been optimized for loss (whose minimization is equivalent to profit maximization) and
product quality simultaneously. The Ben-Tal 4 problem has four input streams, one pool,
one bypass, two product streams and a single quality; it has six decision variables (ri,j

and Rj,k; see Equation 2.13 and description below it). The Ben-Tal 5 problem has five
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Figure 2.4 Pareto-optimal solutions obtained by the ε-constraint method for Ben-Tal 4 and 5
problems.

input streams, four pools, one bypass, five product streams and two qualities; it has 29
decision variables (see Table 2.1). Figure 2.4 shows the two-objective optimization results
obtained for the Ben-Tal 4 and 5 problems. The x-axis is the second objective, namely,
product quality ratio. The product quality is higher when the quality ratio is lower. For
example, sulfur content in gasoline represents the gasoline quality; lower sulfur content
in the gasoline means higher product quality. The y-axis is the first objective: profit (i.e.,
negative of loss) from the pooling network.
Figure 2.4 shows that the Pareto-optimal front for Ben-Tal 4 and 5 problems is well

distributed except for a possible discontinuity. This indicates that the ε-constraint method
requires many trials for a smooth Pareto-optimal front. As expected, profit and product
quality are conflicting in nature (i.e., an increase in product quality is accompanied by a
decrease in profit). For the Ben-Tal 4 problem, the solution obtained with the quality ratio
at 1 is exactly the solution presented in section 2.2.2 for the SOO problem with quality
constraints (Equation 2.13). This particular solution is identified with × in Figure 2.4 and
subsequent figures. The profit increases linearly with the quality ratio from 0.8 to 1.3, shows
a sudden jump from $950 to $1350, and then increases linearly with the quality ratio from
1.4 to 2.0. This indicates that a small decrease in product quality near the sudden jump can
increase profit substantially.
Compared to the Ben-Tal 4 problem, the Ben-Tal 5 problem is more difficult to solve

because of greater complexity and multiple qualities; the latter problem also has multiple
global optimum solutions. For the Ben-Tal 5 problem, the profit decreases sharply from
3500 to 1653 when the quality ratio is changed from 1.0 to 0.8 (Figure 2.4). At a higher
quality ratio (i.e., lower product quality), the profit increase becomes relatively small. The
point “×” indicates the global optimum reported in the literature for SOO at a quality
ratio of 1.
The Pareto-optimal fronts obtained by the ε-constraint method for the Haverly 1, 2 and 3

problems are well distributed (Figure 2.5). For these problems, the profit increases almost
linearly as the quality ratio increases from 0.8 to 1.3. Then, as the quality ratio increases
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Figure 2.5 Pareto-optimal solutions obtained by the ε-constraint method for Haverly 1, 2 and
3 problems.

from 1.3 to 1.4, the profit increases sharply, particularly for the Haverly 2 problem. This
is because the product 1 demand in Haverly 2 is higher than that in the Haverly 1 and 3
problems. Subsequently, the profit increases linearly until a it reaches a quality ratio of
2.0. For the Haverly 1 and 2 problems, the profit becomes zero when the quality ratio
reduces to 0.8, whereas the profit is 540 for the Haverly 3 problem when the quality ratio
is 0.8. Results in Figure 2.5 show that the Haverly 2 problem has a substantially higher
profit at a lower product quality (i.e., higher quality ratio). On the other hand, the Haverly
3 problem has a higher profit at high quality. Interestingly, the Haverly1 and 3 problems
have exactly the same profit for quality ratio from 1.4 to 2.0. The solutions shown as “×”
in Figure 2.5 refer to those obtained by IDE when the quality ratio is equal to 1; IDE is
able to obtain the global optimum solution reported in the literature for Haverly problems
(Table 2.2).
When the number of decision variables and pools are larger, the pooling problem is

even more difficult to solve. The ε-constraint method with IDE for SOO is applied to larger
pooling problems: Foulds 2 to 5 with large numbers of pools and products and consequently
a large number of decision variables, from 18 to 152, as shown in Table 2.2. Figure 2.6
shows that the Pareto-optimal front for each of Foulds problems is well distributed. For the
Foulds 2 problem, the profit increases almost linearly with increasing quality ratio. This is
not so for Foulds 3, 4 and 5, where the profit does not increase much for quality ratio more
than 1.8. Interestingly, Foulds 3, 4 and 5 have similar Pareto-optimal fronts even though
they are different in number of pools, input stream data and decision variables.
The Adhya 1 to 4 problems have multiple qualities—up to six—which indicates their

complexity. The MOO results obtained for these problems by the ε-constraint method with
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Figure 2.6 Pareto-optimal solutions obtained by the ε-constraint method for Foulds 2, 3, 4
and 5 problems.

IDE for SOO are shown Figure 2.7. These results indicate that a slight increase in product
quality can lead to a large decrease in profit in Adhya problems. In fact, when the quality
ratio is at 0.8, the profit is 0 for the Adhya 1, 2 and 3 problems. For Adhya 1, comparable
profit is obtained at $837.2 and $854.2 for quality ratio of 1.2 and 1.3 respectively. Similar
solutions can be seen for the Adhya 2 problem in Figure 2.7, where the profit is $615.5 and
$626.3 for quality ratio of 1.1 and 1.2 respectively. For the Adhya 3 problem, the Pareto-
optimal front is well distributed in the quality ratio range from 1.2 to 2.0. A somewhat
different Pareto-optimal front is obtained for Adhya 4. The profit is $105 when the quality
ratio is at 0.8 and 0.9, and it is $877.65 when the quality ratio is 1. Increasing the quality
ratio above 1.2 does not increase profit. These trends are useful in decision making for
situations where the product quality can be varied for different markets.
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Figure 2.7 Pareto-optimal solutions obtained by the ε-constraint method for Adhya 1, 2, 3
and 4 problems.

2.6 Conclusions

In this chapter, pooling problems were optimized for two objectives, for the first time, using
the ε-constraint method along with IDE for SOO. In addition, the r-formulation for pooling
problemswas described and used; this formulation reduces the number of decision variables
and constraints as well as search space. The approach of using the ε-constraint method,
IDE for SOO and the r-formulation for pooling problems is successful in optimizing 13
benchmark pooling problems from the literature for two objectives. The results obtained
demonstrate the usefulness of MOO for understanding the tradeoff between objectives
and in having many optimal solutions for selection. Given the large scale of operations in
petroleum refineries, even minor improvements in solutions can lead to substantial savings
in costs. In the present study, product prices are taken to be the same as those in the
literature; these are likely to vary with product quality, location and time. The ε-constraint
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method, IDE for SOO and the r-formulation for pooling problems can easily be applied
to new pooling problems. It is also possible to use methods such as NSGA-II or MOO
toolbox in MATLAB, which find many non-dominated solutions in a single run, instead of
the ε-constraint method (see Exercise 2.3).

Exercises

2.1. For the pooling problems solved in this chapter, obtain the results presented using
ε-constraint method and a global optimizer (e.g., IDE or BARON in GAMS). Confirm
your results with those presented in this chapter.

2.2. IDE algorithm includes both global and local optimizers, where the global optimizer
is based on DE and the local optimizer is sequential quadratic programming (SQP)
method. Solve the problems in this chapter using ε-constraint method with a local
optimizer only (e.g., using Solver in Excel or fmincon in MATLAB). Compare the
results obtained with those in this chapter, and discuss the differences, if any.

2.3. Optimize pooling problems studied in this chapter, for two objectives using a MOO
method such as NSGA-II or MOO toolbox in MATLAB. Compare and discuss the
results obtained with those presented in this chapter.

2.4. For MOO in this chapter, the two objectives are profit and product quality. It is
possible to choose other objectives (e.g., product demand). Will there be Pareto-
optimal solutions or single optimal solution if the two objectives are profit and product
demand? Briefly explain.
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