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4.1 Introduction

Many applications of optimization involve more than one objective function. To solve such
multi-objective optimization (MOO) problems, Deb et al. (2002) have developed the elitist
non-dominated sorting genetic algorithm (NSGA-II), which has foundmany applications in
chemical engineering. In order to improve the performance of the binary-coded NSGA-II
algorithm, Kasat and Gupta (2003) have included the jumping gene (JG) operator in it.
Following this, several variants of JG adaptations have been developed and applied to solve
a number of application problems. Guria et al. (2005a) have developed one variant of JG
adaptation, referred to as mJG, for problems having optimal solutions near to bounds on
decision variables. Bhat et al. (2006) have proposed aJG variant, which was later used with
NSGA-II in Bhat (2007). Agarwal and Gupta (2008a) have suggested two new variants
of JG adaptations, namely, sJG and saJG, and studied them with binary-coded NSGA-II.
NSGA-II-saJG can only be applied if the number of binaries used for representing each
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decision variable is the same, whereas NSGA-II-sJG completely replaces part of the chro-
mosome associated with a particular decision variable and so can be used even if the number
of binaries used is not the same for different variables. Agarwal and Gupta (2008a) also
compared four variants of JG adaptations (namely, JG, aJG, sJG and saJG) on three uncon-
strained test functions. Set convergence ratio, spacing and maximum spread are used as
performance indicators, and it was found that performance of NSGA-II-aJG, NSGA-II-sJG
andNSGA-II-saJG is comparable, whereas NSGA-II-JG is outperformed by the other three.
Ramteke and Gupta (2009a) have discussed and evaluated five variants of JG adap-

tations, namely, NSGA-II-JG/mJG/aJG/saJG/sJG, on three unconstrained test functions.
Recently, two more variants of JG adaptations, namely, Alt-NSGA-II-aJG (Ramteke and
Gupta, 2009b) and biogenetic-NSGA-II-aJG (Ramteke and Gupta, 2009c), were proposed.
Alt-NSGA-II-aJG mimics biological altruism from the honey bee to solve MOO problems.
In biogenetic-NSGA-II-aJG, information/solution from an earlier optimization problem is
used to solve the modified/new optimization problem. This strategy can be used with other
JG variants too, and is relevant for modifications in industrial optimization problems, such
as an increase in the number of objectives, decision variables, and/or ranges of decision
variables.
In order to speed up the convergence, Ripon et al. (2007) and Furtuna et al. (2011)

applied the concept of jumping gene in real coded NSGA-II. In the work of Ripon et al.
(2007), part of the chromosome (i.e., transposon) is copied/cut-and-pasted into the same or
a different chromosome. Its performance has been compared with seven MOO algorithms
on five test functions, using convergence metric, spacing, spread, and hyper volume as
performance metrics. Mostly, the proposed JG adaptation performed better than other
algorithms, in terms of diversity of non-dominated solutions and convergence to the known
Pareto-optimal front. Furtuna et al. (2011) adapted the JG proposed by Kasat and Gupta
(2003) for the real coded NSGA-II. The JG and aJG variants (of binary coded NSGA-II) are
also used with multi-objective simulated annealing (Sankararao and Gupta, 2006, 2007a,
2007b). So, the jumping gene concept has potential for use with other MOO algorithms.
In summary, a number of JG adaptations have been proposed and applied to chemical

engineering problems since the early 2000s, and some of these have been compared on
a limited number of problems (Agarwal and Gupta, 2008a; Ramteke and Gupta, 2009a).
However, there has been no comprehensive and systematic evaluation of these adaptations.
Further, NSGA-II has been popular for solving application problems. Hence, this chapter
analyzes and compares the performance of four variants of JG adaptations, namely, NSGA-
II-aJG, NSGA-II-saJG, NSGA-II-sJG and Alt-NSGA-II-aJG, for bi-objective optimization
problems. As in the earlier studies, which proposed these adaptations, binary coding is
used for representing variables. In this work, NSGA-II-mJG and biogenetic-NSGA-II-aJG
are not considered because the former’s applicability is for a specific type of optimization
problem and the latter is similar to NSGA-II-aJG except for the difference in the approach,
which can be used with other adaptations/algorithms as well.
Many application problems have constraints; hence, performance of the above four

JG adaptations is compared on four constrained and five unconstrained test functions.
Furthermore, several accepted and/or applied performancemetrics are used for performance
comparison, at intermediate generations and also at the end of the search. Search termination
at the right time improves efficiency of the algorithm; hence, a termination criterion, based
on the improvement in non-dominated solutions obtained in different generations, is also
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tested with the four selected JG adaptations of NSGA-II. A true (i.e., known) Pareto-optimal
front, which is to be found for a new application problem, is not used in the development
of this termination criterion.
The rest of this chapter is organized as follows. The next section of this chapter briefly

discusses different variants of JG adaptations and their applications. Section 4.3 describes
performance metrics and the termination criterion for MOO algorithms. Details on con-
straint handling and program implementation including values of algorithm parameters are
given in section 4.4. Section 4.5 compares the performance of selected JG adaptations on
many test functions. Finally, useful findings of this work are summarized in the last section
of this chapter.

4.2 Jumping Gene Adaptations

A multi-objective optimization problem for k different objectives: f1, f2, . . . , fk, can be
stated mathematically as follows:

Minimize {f1(x), f2(x), . . . fk(x)} (4.1)

Subject to xL ≤ x ≤ xU (4.2)

g(x) ≤ b (4.3)

Here, x is the vector of decision variables with lower (i.e., xL) and upper (i.e, xU) bounds;
g is the set of inequality constraints where b is the vector of constants. If an optimization
problem has equality constraints, then those can be converted into inequality constraints by
relaxation.
A detailed flowchart of NSGA-II with JG adaptation for MOO is given in Figure 4.1.

More details on NSGA-II can be found in Deb (2001). NSGA-II can be implemented
using binary or real coding for the values of decision variables. Here, binary coding is
used, wherein a number of bits is used to represent each and every decision variable
of a (trial) individual (i.e., solution), also known as a chromosome. JG adaptations are
mostly developed for binary coded NSGA-II, and programs for different JG adaptations
are readily available (www.iitk.ac.in/che/skg.htm). Hence, binary coding is selected in this
study. The number of binaries, lstring used for each variable may or may not be the same
depending on the accuracy required and variable type (i.e., integer or continuous variable).
For simplicity, only the common termination using the maximum number of generations
(MNG) is shown in the flowchart in Figure 4.1.
Different JG adaptations are explained below and also shown schematically in Figure 4.2.

For this, a chromosome is assumed to have four decision variables with 6, 7 or 8 bits used
for each variable value. In total, the length of the chromosome, nchr is 28.

• In NSGA-II-JG (Kasat and Gupta, 2003), part of the chromosome is randomly replaced
based on JG probability (pJG). For this, two random positions between 1 and nchr (p1 and
p2 in Figure 4.2a) are selected, and bits between these positions are randomly replaced.

• In NSGA-II-mJG (Guria et al., 2005a), each chromosome undergoes mJG adaptation as
per specified JG probability. In this, all bits of a randomly selected decision variable (e.g.,
third decision variable in Figure 4.2b) of a chromosome are changed to either zeros or
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Start Set values of Cr, F, NP and MNG

Randomly initialize population, and evaluate values of objective
functions and constraints of all individuals in the population.

Select NP individuals from the current
population by binary tournament.

Set generation no., G = 1

Evaluate values of objective functions
and constraints for NP new individuals.

Find the number of individuals dominating
each individual (nd) in the population.

Generate NP new individuals by crossover operation

Bit-wise mutation on NP new individuals

Jumping gene operation on NP new individuals

Check each individual for violation of decision variable
bounds; if there is any violation, randomly reinitialize

that decision variable inside the bounds.

Combine current population and NP new individuals; set RK = 0.

If nd = 0, then rank of individuals = RK + 1

Selection of NP individuals for the next generation – first individuals with
best ranks (first, second, third, etc.) are selected. If all individuals of

same rank cannot be selected to complete the population size, then less
crowded individuals are selected from that rank/front.

RK = RK + 1

Population of remaining
individuals (excluding

previously ranked
individuals).

Are
all individuals

ranked?

No

Yes

Yes No
Is G < MNG? StopG = G + 1

Figure 4.1 A detailed flowchart of NSGA-II with JG adaptation for MOO.

ones with equal probability. This replacement of bits is different from other adaptations
discussed, where bits are replaced by zeros and ones randomly.

• In NSGA-II-aJG (Bhat et al., 2006; Bhat, 2007), the fixed length of the chromosome is
randomly changed; JG probability is used to make the decision on this partial replace-
ment. One random position (p1) between 1 and (nchr − fb) is selected to replace fb number
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(no of bits)
decision variable number

1(6) 2(7) 3(8) 4(7)

1(6) 2(7) 3(8) 4(7)

1(6) 2(7) 3(8) 4(7)

1(7) 2(7) 3(7) 4(7)

1(6) 2(7) 3(8) 4(7)

1’s

all 1’s

0’s

p2p1

p1

p1

p1 + fb

p1 + lstring

(a)
NSGA-II-JG

(b)
NSGA-II-mJG

(c)
NSGA-II-aJG

(d)
NSGA-II-saJG

(e)
NSGA-II-sJG

Figure 4.2 Schematic of JG adaptations.

of bits, where fb (= 10 in Figure 4.2c) is any arbitrary number between 1 and nchr. Thus,
fb is another parameter of this algorithm, to be specified by the user.

• NSGA-II-saJG (Agarwal and Gupta, 2008a) requires an equal number of bits (lstring) for
each decision variable. If the probability allows saJG adaptation of a chromosome, then
one random position (p1) between 1 and (nchr − lstring) is chosen to replace lstring (= 7 in
Figure 4.2d) bits from p1, randomly.
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• In NSGA-II-sJG (Agarwal and Gupta, 2008a), all bits of a selected decision variable are
changed randomly. JG probability is used to decide sJG adaptation of each chromosome,
and the selection of a particular decision variable (e.g., the third variable in Figure 4.2e)
is random. Except for the random replacement of a particular decision variable, sJG is
similar to mJG.

• In Alt-NSGA-II-aJG (Ramateke and Gupta, 2009b), the jumping gene operator is the
same as that in NSGA-II-aJG, but the selection of individuals for reproduction operation
is not random. It mimics biological altruism in hymenopterans species (mostly honey
bees) to solve MOO problems. In order to get the maximum benefit of the queen in
the optimization, more than one queen (e.g., ten) and two- or three-mate crossover
strategies are used in Alt-NSGAII-aJG. These queens are selected in the beginning of
each generation based on their crowding distance indices. In the altruistic adaptation, all
genetic operations (crossover, mutation and aJG) are carried out only between the one
of the queen chromosomes and one of the worker-bee chromosomes. In non-altruistic
adaptations, these operators are carried out for randomly selected chromosomes based
on their probability.

Several researchers have successfully used one or more variants of JG adaptations to
solve different application problems; these applications are summarized in Table 4.1. Math-
ematical functions tested in these studies are also included in this table. Although many
applications have been studied using JG adaptations, their evaluation using mathematical
functions is limited, as can be seen in Table 4.1.

4.3 Termination Criterion

In this chapter, a performance-based termination criterion is employed, instead of MNG,
to compare the performance of JG adaptations. It monitors the improvement in the non-
dominated solutions obtained in recent generations using selected performance metrics,
and decides the search termination using statistical tests. Several performance metrics have
been proposed in MOO literature to evaluate the quality of the obtained optimal solutions
compared to the known Pareto-optimal front; these include generational distance (GD)
(Van Veldhuizen and Lamont, 1998), spread (SP) (Deb et al., 2000) and hyper volume
(HV) (Zitzler and Thiele, 1998). These have been used mainly to evaluate the quality of the
obtained non-dominated solutions by an algorithmwith respect to the knownPareto-optimal
front, after MNG. However, their usage for search termination is very limited.
The true/knownPareto-optimal front is yet to be found and so is unavailable in advance for

new application problems; hence, original performance metrics cannot be used to monitor
the search progress. Wagner et al. (2009) have developed a termination criterion using
different performance metrics (HV, R2 indicator and ε+ indicator). Sharma (2013) has
modified GD and SP for the non-dominated solutions obtained in consecutive generations,
and then used them to develop a search termination criterion.
Generational distance is calculated between the non-dominated solutions obtained in the

current generation and its previous generation, using the following equation:

GD = 1

NP

√√√√ NP∑
i=1
d2i (4.4)
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Here, NP is the number of non-dominated solutions obtained in the previous generation,
and di is the Euclidean distance of each of these solutions to its nearest non-dominated
solution in the current generation.
Spread was introduced by Deb et al. (2000) for bi-objective optimization problems to

measure the distribution of non-dominated solutions. Later, Zhou et al. (2006) extended
the spread indicator to more than two objectives. The modified SP calculation requires
the Euclidean distance between two neighboring, non-dominated solutions in the current
generation.

SP =
∑NP
j=1 |dj − d̄|
NPd̄

(4.5)

where

dj = min ‖ Sj − Sk ‖2 with respect to k = 1, 2, . . . ,NP (except k = j) (4.6)

Here, S is the set of NP non-dominated solutions obtained in the current generation, dj
is the Euclidean distance of solution Sj to solution Sk, and d̄ is the average of dj for all
solutions in the set S.
For the development of the termination criterion, GD and SP values obtained for λ

number of recent generations are used for χ2-test (i.e., to test their variation), as follows.

Chi (PI) = Variance [PI1,PI2, . . . ,PIλ] (λ − 1)
δ2PI

(4.7)

p(PI) = χ2[Chi (PI), (λ − 1)] (4.8)

Here, PI is the performance metric, which can be GD or SP, and δPI is the threshold
value for the standard deviation of PI values. In Equation (4.8), p is the probability that
χ2-test supports the hypothesis that variance in PI values obtained in λ number of recent
generations is lower than the threshold value (δPI). If this probability is more than 99% for
GD and also for SP simultaneously, then global search is terminated. To avoid indefinite
looping, termination criterion based on MNG is also included in the program.

4.4 Constraint Handling and Implementation of Programs

Penalty function and feasibility criterion are the two popular approaches for handling
constraints within evolutionary algorithms. In this work, penalty function approach is used
to handle inequality constraints. In this approach, objective functions are penalized (i.e.,
modified) by adding a penalty term to each of the original objective functions, as follows.

Fi(x) = fi(x)+
nc∑
j=1
Rj max

[
0,Gj(x)

]
(4.9)

Here, Fi and fi are ith modified and original objective function respectively, Gj(x) is
jth inequality constraint (defined in Equation 4.10 below), Rj is the user-defined penalty
parameter for jth inequality constraint and nc is the number of inequality constraints. In
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order to use a single-penalty parameter for all inequality constraints in Equation 4.3, they
are normalized using the following transformation.

Gj(x) = gj(x)/bj − 1 ≤ 0 (4.10)

Qualities of the non-dominated solutions obtained at different generations are assessed
using GDt, SPt and IGDt along with the known Pareto-optimal front. Note that GDt and
SPt for this purpose are slightly different from those used for search termination, which
do not require the known Pareto-optimal front. GDt is calculated based on Equation (4.4)
using the non-dominated solutions from the best front obtained in the current generation
and the known Pareto-optimal front. SP is calculated using the following equation (Zhou
et al., 2006):

SPt =
∑M
m=1 d(em,S)+ ∑NP

j=1 |dj − d̄|∑M
m=1 d(em,S)+ NPd̄ (4.11)

Here, M is the number of objective functions, {e1, e2, . . . , eM} are M boundary solutions
from the known Pareto-optimal front, and d(em, S) is the Euclidean distance between the
extreme solution of mth objective in the known Pareto-optimal front to its nearest non-
dominated solution obtained. The remaining symbols used in Equation 4.11 are defined in
the previous section.
IGDt, similar to GDt, is calculated between the non-dominated solutions from the best

front obtained in the current generation and the known Pareto-optimal front:

IGDt = 1

NT

NT∑
n=1
dn (4.12)

Here, NT is the number of solutions in the known Pareto-optimal front, and dn is the
Euclidean distance of each solution in the known Pareto-optimal front to its nearest solution
in the obtained Pareto-optimal front. Like GDt, IGDt also determines the closeness of the
non-dominated solutions obtained to the known Pareto-optimal front but it calculates the
closeness in the opposite direction from the known Pareto-optimal front. IGD can measure
both convergence and diversity of the obtained non-dominated solutions (Zhang et al.,
2009).
FORTRAN programs for NSGA-II-aJG and Alt-NSGA-II-aJG have been taken from

www.iitk.ac.in/che/skg.htm (accessed November 26, 2012), and then modified for NSGA-
II-sJG and NSGA-II-saJG. All these programs have been amended to include GD and SP
calculations, and to implement the χ2-test for termination, as discussed in section 4.3.
Moreover, GDt, SPt and IGDt calculations are also implemented to compare the obtained
Pareto-optimal front with the known Pareto-optimal front at intermediate generations and
also at the end of search.
Parameters used in the termination criterion are: λ = 10, δGD = 0.0002 and δSP =

0.03. A large, fixed value of the penalty parameter (R = 109) is used for all constrained
problems. As stated earlier, this chapter analyzes and compares the performance of four JG
adaptations: NSGA-II-aJG, NSGA-II-saJG, NSGA-II-sJG and Alt-NSGA-II-aJG. Values
of the parameters in these algorithms used in this study are chosen based on the values used
and/or recommendations in Agarwal and Gupta (2008a) and Ramteke and Gupta (2009b),
and these are given in Table 4.2.
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Table 4.2 Values of parameters in JG adaptations of NSGA-II used in this study.

Parameter aJG saJG sJG Alt-aJG

NP (population size) 200 200 200 200
MNG (maximum number of generations) 1500 1500 1500 1500
pc (crossover probability) 0.9 0.9 0.9 0.9
pm (mutation probability) 0.001 0.001 0.001 0.001
pJG (JG probability) 0.5 0.5 0.5 0.5
fb (arbitrary number used in aJG operator) 25 or 10a – – 25 or 10a

lstring (no. of bits for each decision variable) 30 30 30 30

aFor constrained problems

4.5 Performance Comparison

Performance of the selected JG adaptations of NSGA-II is compared on five bi-objective
unconstrained test functions: ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 (Zitzler et al., 2000)
and on four bi-objective constrained test functions: Osyczka, CONSTR, SRN and TNK
(Coello Coello et al., 2007). The unconstrained test functions have different characteristics
like continuous or discontinuous objective functions, multi-modality and convexity of
search space. ZDT1 and ZDT2 test functions have convex and non-convex Pareto-optimal
front respectively. ZDT3 has several non-continuous convex parts in the Pareto-optimal
front. ZDT4 is multi-modal in nature and has 99 local optimal fronts (Sindhya et al., 2011),
and ZDT6 problem has non-uniform density of solutions. The constrained test functions:
Osyczka, CONSTR, SRN, and TNK are considered for testing because many applications
involve constraints. Main details of unconstrained and constrained test functions are given
in Tables 4.3 and 4.4 respectively.
All the non-dominated solutions obtained in the current generation are used to calculate

values of GDt, SPt and IGDt for assessing their quality. For the termination criterion, all the
non-dominated solutions obtained in the current and its previous generations are used to
calculate GD and SP values. The maximum number of non-dominated solutions possible
in a generation is NP, population size.

4.5.1 Performance Comparison on Unconstrained Test Functions

Values of GDt and IGDt vary significantly with generations and also for different algo-
rithms, whereas SPt does not change much. Hence, for ease of comparison among different
algorithms, GDt and IGDt values are normalized using certain GDtmax and IGDtmax. GDt

and IGDt values are larger in the beginning of search, and decrease slowly with the progress
of search. Further, there can be some fluctuations in GDt and IGDt values at the start of
search due to change in the number of non-dominated solutions in the best Pareto-optimal
front obtained. However, GDt and IGDt vary smoothly after some generations (e.g., 100).
Hence, maximum values of GDt and IGDt obtained after 100 generations using four dif-
ferent algorithms are considered as GDtmax and IGDtmax. Table 4.5 presents GDtmax and
IGDtmax for different unconstrained and constrained test problems. As mentioned earlier
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Table 4.4 Constrained test functions studied in this work.

Test Range of decision
function variables Objectives (minimize) Constraints

Osyczka (x1, x2, x6) ∈ [0, 10],
(x3, x5) ∈ [1, 5],
x4 ∈ [0, 6],

f1(x) = −[25(x1 − 2)2 + (x2 − 2)2
+ (x3 − 1)2 + (x4 − 4)2
+ (x5 − 1)2]

f2(x) = x21 + x22 + x23 + x24 + x25 + x26

x1 + x2 − 2 ≥ 0
−x1 − x2 + 6 ≥ 0
x1 − x2 + 2 ≥ 0
−x1 + 3x2 + 2 ≥ 0
−(x3 − 3)2 − x4 + 4 ≥ 0
(x5 − 3)2 + x6 − 4 ≥ 0

CONSTR x1 ∈ [0.1, 1],
x2 ∈ [0, 5]

f1(x) = x1
f2(x) = (1+ x2)/x1

9x1 + x2 − 6 ≥ 0
9x1 − x2 − 1 ≥ 0

SRN (x1, x2) ∈ [−20, 20] f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2
f2(x) = 9x1 − (x2 − 1)2

−x21 − x22 + 225 ≥ 0
−x1 + 3x2 − 10 ≥ 0

TNK (x1, x2) ∈ [0, π ] f1(x) = x1
f2(x) = x2

x21 + x22 − 1− 0.1
× cos(16 arctan(x1/x2))
≥ 0

−(x1 − 0.5)2 − (x2 − 0.5)2
+ 0.5 ≥ 0

in section 4, GDt, SPt and IGDt are calculated for original values of objectives, and hence
significant variation can be observed from problem to problem (Table 4.5).

4.5.1.1 Comparison of JG Adaptations using the Termination Criterion

Table 4.6 presents GDt/GDtmax, SPt and IGDt/IGDtmax for unconstrained test problems
using four JG adaptations: NSGA-II-aJG, NSGA-II-saJG, NSGA-II-sJG and Alt-NSGA-
II-aJG. Here, the search is stopped using the termination criterion discussed in section
4.3; the termination generation (GT) of each algorithm for each problems is also given
in Table 4.6. These performance metrics values are the average of ten runs with different
random number seed values (i.e., 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95),
for each problem with each algorithm. Note that random number seed value affects the
series of random numbers generated, which in turn can affect performance of stochastic
algorithms. Same set of random seed values and procedure are employed for testing JG
adaptations on constrained problems. The best values obtained for a problem by different
JG adaptations are identified in bold in Table 4.6 and subsequent tables.
It can be seen in Table 4.6 that Alt-NSGA-II-aJG gives smaller values of GDt/GDtmax

and IGDt/IGDtmax for the unconstrained functions tested, compared to other three JG

Table 4.5 Maximum values of GDt and IGDt obtained after 100 generations, using four
different algorithms.

PM ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 OSY CONSTR SRN TNK

GDt
max 0.0046 0.0043 0.0038 0.0118 0.0343 1.5156 0.0008 0.0173 0.0008

IGDt
max 0.1155 0.1468 0.1133 0.2631 0.7386 9.1184 0.0341 0.5498 0.0212
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Table 4.6 GDt/GDt
max, SPt and IGDt/IGDt

max for unconstrained test functions obtained by
four JG adaptations using termination criterion; these values are the average of ten runs, each
with a different random number seed value.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 Total

NSGA-II-aJG 0.598 0.860 0.675 0.361 0.275 2.768
NSGA-II-saJG 0.707 0.866 0.778 0.601 0.244 3.196
NSGA-II-sJG 0.604 0.720 0.651 0.439 0.215 2.629
Alt-NSGA-II-aJG 0.030 0.020 0.131 0.029 0.003 0.214G

D
t /
G
D
t m
ax

NSGA-II-aJG 0.829 1.079 0.978 0.797 1.028 4.711
NSGA-II-saJG 0.855 1.107 0.963 0.885 1.019 4.828
NSGA-II-sJG 0.802 1.061 0.904 0.814 1.002 4.584
Alt-NSGA-II-aJG 0.970 0.983 1.177 0.771 1.004 4.906SP

t

NSGA-II-aJG 0.592 0.733 0.738 0.467 0.287 2.817
NSGA-II-saJG 0.637 0.763 0.777 0.564 0.280 3.021
NSGA-II-sJG 0.599 0.627 0.720 0.446 0.223 2.616
Alt-NSGA-II-aJG 0.026 0.026 0.099 0.031 0.002 0.183IG

D
t /
IG
D
t m
ax

NSGA-II-aJG 165 136 163 202 466 1132
NSGA-II-saJG 156 135 163 297 514 1265
NSGA-II-sJG 181 159 195 251 522 1308
Alt-NSGA-II-aJG 407 139 116 227 222 1111G

T

adaptations. NSGA-II-sJG and Alt-NSGA-II-aJG gives better values of SPt on different
unconstrained test problems. The Alt-NSGA-II-aJG algorithm performs well on ZDT3
and ZDT6 problems, based on the closeness of the non-dominated solutions obtained for
the known Pareto-optimal front (i.e., smaller GDt/GDtmax and IGDt/IGDtmax), and it takes
the smallest GT (i.e., 116 and 222). For ZDT2 and ZDT4 problems, Alt-NSGA-II-aJG
is superior to the other three adaptations, based on all three performance metrics; here,
generations used (i.e., 139 and 227) are also comparable to the smallest GT for these
problems (i.e., 135 and 202). For ZDT1 problem, Alt-NSGA-II-aJG gives significantly
smaller values of GDt/GDtmax and IGDt/IGDtmax but it takes larger number of generations
(i.e., 407 compared to the smallest GT of 156). NSGA-II-aJG is the second best algorithm
for solving ZDT1 problem, which gives smaller GDt/GDtmax, smaller IGDt/IGDtmax and
comparable SPt than those obtained byNSGA-II-saJG andNSGA-II-sJG; here, the required
number of generations (i.e., 165) is also comparable to those used by NSGA-II-saJG and
NSGA-II-sJG algorithms (i.e., 156 and 181 respectively).
The total values of GDt/GDtmax, SPt, IGDt/IGDtmax and GT for four JG adaptations on

the unconstrained functions tested are shown in the last column of Table 4.6. Overall,
Alt-NSGA-II-aJG is the best, based on GDt/GDtmax, IGDt/IGDtmax and GT, among the
adaptations tested. NSGA-II-sJG is better than other adaptations based on SPt; Alt-NSGA-
II-aJG gives smallest SPt for ZDT2 and ZDT4 but relatively larger SPt for ZDT1 and
ZDT3 test functions. The NSGA-II-saJG algorithm performs worse than others tested,
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Figure 4.3 Non-dominated solutions obtained by Alt-NSGA-II-aJG and NSGA-II-saJG algo-
rithms using random seed of 0.05: (a) ZDT3 and (b) ZDT4.

based on all performance metrics. Figure 4.3 shows the non-dominated solutions obtained
by Alt-NSGA-II-aJG (the best adaptation) and NSGA-II-saJG (the worst adaptation) for
ZDT3 and ZDT4 test functions. For ZDT3 function, the non-dominated solutions obtained
by both these adaptations are closer to the known Pareto-optimal front. The obtained
non-dominated solutions by NSGA-II-saJG for ZDT4 function are away from the known
Pareto-optimal front, indicating premature convergence to a local Pareto-optimal front (as
ZDT4 has 100 distinct Pareto-optimal fronts). However, the global Pareto-optimal front of
the ZDT4 problem can be found by NSGA-II-saJG using a larger number of generations,
which means that this algorithm is able to escape from the local Pareto-optimal front after
some generations of stagnation. On the other hand, Alt-NSGA-II-aJG gives converged
solutions closer to the global Pareto-optimal front in fewer generations (see Figure 4.3).
In order to analyze the working of the termination criterion, modified GD and SP

values obtained in different generations, for two selected problems (i.e., ZDT3 having a
discontinuous Pareto-optimal front and ZDT4 having a multi-modal Pareto-optimal front)
using two JG adaptations (best and worst) are shown in Figure 4.4. Figures 4.4(a) and 4.4(b)
show respectively variations in GD and SP with generations using Alt-NSGA-II-aJG on
ZDT3 test function. GT based on GD and SP alone are marked in the respective figures with
dotted vertical lines. In Figure 4.4(a), search can terminate very early based on GD (i.e.,
generation 28), but it continues until both modified GD and SP values in the termination
criterion satisfy test statistics individually (i.e., GT = 187). Variations in modified GD and
SP with generations for ZDT4 function using NSGA-II-saJG are shown in Figure 4.4(c)
and 4.4(d); here, search is terminated at 223 generation, using the improvement based
termination criterion.

4.5.1.2 Comparison of JG Adaptations at Intermediate Generations

Figure 4.5 shows variations of GDt/GDtmax and SPt with generations for different uncon-
strained problems using the four JG adaptations considered. The IGDt/IGDtmax variation is
not shown in this figure and Figure 4.6 as it is similar to GDt/GDtmax.



Performance Comparison of Jumping Gene Adaptations of NSGA-II 119
G

D
G

D

S
P

0.002

0.0015

0.001

0.0005

0

0.006

0.005

0.004

0.003

0.002

0.001

0
0 50 100 150 200 250

Number of generations

Number of generations

0 50 100 150 200 250

Number of generations

Number of generations

GT - 187
GT - 28 (GD)

GT - 223
GT - 122 (GD)

GT - 223
GT - 223 (SP)

GT - 187
GT - 187 (SP)

1.8

1.6

1.4

1.2

1

0.8

S
P

1.4

1.2

1

0.8

0.6

0.4

(a)

(c) (d)

(b)

0 50 100 150 200 0 50 100 150 200

Figure 4.4 Variations in GD and SP values with generations for: (a) and (b) ZDT3 using
Alt-NSGA-II-aJG (random seed = 0.05), and (c) & (d) ZDT4 using NSGA-II-saJG (random
seed = 0.05).

Profiles in Figure 4.5 confirm that, based on GDt/GDtmax, Alt-NSGA-II-aJG is the
best algorithm on all the unconstrained problems studied; the non-dominated solutions
obtained by Alt-NSGA-II-aJG are closer to the known Pareto-optimal front, compared to
those by other JG adaptations at all generations shown. If all the non-dominated solu-
tions obtained are equally spaced and also contain the extreme solutions, then SPt should
be zero. The performance of NSGA-II-aJG, NSGA-II-saJG and NSGA-II-sJG, based on
SPt, is nearly comparable on the tested unconstrained problems; SPt decreases initially
except for ZDT6, and it is nearly constant towards the end of the search. This is due
to variations in the number of non-dominated solutions (during the initial stage of the
search) and in the number of duplicate non-dominated solutionswith generations (illustrated
in Table 4.7).
There are many duplicate non-dominated solutions present in the best Pareto front

obtained at different generations, and this number increases with generations. Table 4.7
presents the number of non-dominated solutions and also the number of unique non-
dominated solutions obtained for ZDT1 function using NSGA-II-sJG with random
seed = 0.05. NSGA-II and NSGA-II-sJG give a comparable number of unique non-
dominated solutions until about 500 generations.However,NSGA-II-sJGgivesmore unique
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Figure 4.5 Variation of GDt/GDt
max and SPt with generations using different JG adaptations

for unconstrained test functions; these profiles are based on an average of 10 runs by each
algorithm for each test function.
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Table 4.7 Variation in the number of unique non-dominated solutions obtained with
generations (NSGA-II with and without sJG; test function − ZDT1; random seed = 0.05).

No. of unique No. of unique
No. of non-dominated non-dominated

non-dominated solutions using solutions using SPt using
Generation no. solutions NSGA-II-sJG NSGA-II NSGA-II-sJG

100 160/157* 148 149 1.004
200 200 190 195 0.718
300 200 191 194 0.670
400 200 188 186 0.694
500 200 188 171 0.733
1000 200 172 145 0.923
1500 200 157 143 1.051

* These numbers are respectively in case of NSGA-II-sJG and NSGA-II (i.e., with zero JG probability).

non-dominated solutions after 500 generations, showing that the adaptation of sJG can
improve the performance in this aspect. Duan et al. (2010) have mentioned that duplicate
non-dominated solutions are common in NSGA-II. Fewer unique non-dominated solutions
lead to increase in SPt in later generations (see Table 4.7).
Variation in SPt, in the event of Alt-NSGA-II-aJG for ZDT1, ZDT2 and ZDT3 problems,

follows a slightly different trend than the other JG adaptations (see Figure 4.5). Compared
to other JG adaptations tested, Alt-NSGA-II-aJG provides non-dominated solutions with
lower SPt for ZDT4 but higher SPt for ZDT3.

4.5.2 Performance Comparison on Constrained Test Functions

4.5.2.1 Comparison of JG Adaptations using the Termination Criterion

Table 4.8 shows values of GDt/GDtmax, SPt, IGDt/IGDtmax and GT for constrained test
problems by four JG adaptations using the termination criterion. As mentioned in section
4.5.1.1, these results are the average of ten runs with different random seed values. Alt-
NSGA-II-aJG gives the smallest GDt/GDtmax values for the OSY, CONSTR and TNK
problems, and close to the smallest value of GDt/GDtmax for the SRN problem. It requires
the smallest GT for the OSY, CONSTR and SRN problems, and its GT (= 115) for the
TNK problem is comparable to the best GT value of 105. All JG adaptations of NSGA-II
are comparable based on SPt for different problems tested; the variation in the total value
of SPt for the different JG adaptations is less than 2%. NSGA-II-aJG gives the smallest
values of IGDt/IGDtmax for OSY, CONSTR and TNK problems, and close to the smallest
value of IGDt/IGDtmax for the SRN problem. Alt-NSGA-II-aJG is computationally more
efficient than the other adaptations, while number of generations used by NSGA-II-aJG is
significantly more than the best GT required for solving these problems.
The total of GDt/GDtmax, SPt, IGDt/IGDtmax and GT by four JG adaptations on con-

strained functions tested are in the last column of Table 4.8. Overall, Alt-NSGA-II-aJG and
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Table 4.8 GDt/GDt
max, SPt and IGDt/IGDt

max for constrained test functions obtained by
four JG adaptations using the termination criterion; these values are average of ten runs, each
with a different random number seed value.

Algorithm OSY CONSTR SRN TNK Total

NSGA-II-aJG 0.547 0.946 0.930 0.556 2.979
NSGA-II-saJG 1.129 0.974 1.108 0.917 4.128
NSGA-II-sJG 1.248 1.070 1.014 0.627 3.960
Alt-NSGA-II-aJG 0.233 0.927 0.941 0.168 2.269G

D
t /
G
D
t m
ax

NSGA-II-aJG 0.921 0.988 0.466 1.001 3.375
NSGA-II-saJG 0.888 1.009 0.500 1.021 3.418
NSGA-II-sJG 0.872 0.975 0.484 1.034 3.366
Alt-NSGA-II-aJG 0.938 0.987 0.515 0.971 3.410SP

t

NSGA-II-aJG 0.528 0.943 0.976 0.545 2.991
NSGA-II-saJG 0.824 1.061 1.001 0.706 3.593
NSGA-II-sJG 0.754 0.920 0.964 0.595 3.233
Alt-NSGA-II-aJG 0.583 0.987 0.965 0.998 3.533IG

D
t /
IG
D
t m
ax

NSGA-II-aJG 305 198 317 137 957
NSGA-II-saJG 223 145 290 120 778
NSGA-II-sJG 182 161 340 105 788
Alt-NSGA-II-aJG 173 95 106 114 488G

T

NSGA-II-aJG are the best based on GDt/GDtmax and IGDt/IGDtmax respectively. The for-
mer is computationally efficient too. NSGA-II-saJG performs worse than other adaptations,
based on all performance metrics.

4.5.2.2 Comparison of JG Adaptations at Intermediate Generations

The variation in GDt/GDtmax and SPt with generations for constrained problems tested
using the four JG adaptations is shown in Figure 4.6. The performance of all four JG
adaptations is comparable for CONSTR and SRN problems, based on both GDt/GDtmax
and SPt. Based on GDt/GDtmax, NSGA-II-sJG and Alt-NSGA-II-aJG perform better on
the OSY problem, whereas NSGA-II-aJG and Alt-NSGA-II-aJG are better on the TNK
problem at the beginning of the search (until 800 generations). Initially, Alt-NSGA-II-aJG
gives a significantly smaller GD value as there are fewer non-dominated solutions in
the best Pareto-optimal front obtained. The performance of different JG adaptations
is nearly comparable based on the distribution of non-dominated solutions, except
that Alt-NSGA-II-aJG gives marginally better SPt than other adaptations for the TNK
problem. Further, SPt is nearly constant after 100 generations, for the JG adaptations
tested.
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Figure 4.6 Variation of GDt/GDt
max and SPt with generations using different JG adaptations

for constrained test functions; these profiles are based on average of ten runs by each algorithm
for each test function.



124 Multi-Objective Optimization in Chemical Engineering

4.6 Conclusions

In this chapter, the performance of four jumping gene adaptations of NSGA-II was analyzed
on bi-objective test problems; of these, five were unconstrained and four were constrained
problems. This analysis considered the quality of non-dominated solutions (i.e., conver-
gence to the known Pareto-optimal front measured by GDt and IGDt, and distribution of
non-dominated solutions measured by SPt) and also computational efficiency measured
by the number of generations for satisfying the termination criterion (GT). There is not
much improvement in the non-dominated solutions after satisfying the termination crite-
rion with further search (i.e., performance metrics are nearly constant). This confirms that
the described termination criterion is able to terminate the search at the right time, and so
it can avoid unnecessary computations. The termination criterion described will be useful
for the comparative evaluation of MOO algorithms.
For the unconstrained problems tested, Alt-NSGA-II-aJG performs significantly better

than other adaptations for convergence to the known Pareto-optimal front; it gives
non-dominated solutions having lowest values of GDt and IGDt. Either NSGA-II-sJG
or Alt-NSGA-II-aJG gives lowest SPt depending on the problem. NSGA-II-sJG gives
the lowest total SPt whereas Alt-NSGA-II-aJG takes the least number of generations in
total for the unconstrained problems tested. For the constrained problems tested, Alt-
NSGA-II-aJG and NSGA-II-aJG respectively give better GDt/GDtmax and IGDt/IGDtmax
than other adaptations. Further, the four JG adaptations tested give comparable SPt,
indicating similar distribution of non-dominated solutions obtained. Alt-NSGA-II-aJG
with termination criterion takes the least number of generations in total for all constrained
problems tested. Overall, Alt-NSGA-II-aJG is better than the other three JG adaptations
for both unconstrained and constrained problems. As Alt-NSGA-II-aJG is better than
NSGA-II-aJG, other operators such as sJG and saJG can be combined with the altruism
approach in order to improve their performance.

Exercises

4.1. This study employs the algorithm parameters used/recommended in the literature (see
Table 4.2). Study the effect of one or more of these parameter values on the JG
adaptations tested in this chapter.

4.2. Study the performance of NSGA-II-mJG with the termination criterion for the test
problems used in this chapter. For this, a slight modification in NSGA-II-sJG code is
required.

4.3. Several unconstrained and constrained multi-objective test functions with the known
Pareto-optimal fronts are available at: http://www.cs.cinvestav.mx/∼emoobook/
(accessed November 27, 2012). Study the performance of the JG adaptations on
these problems. Note that some of these test functions are challenging.

4.4. Study the performance of (a) sJG and (b) saJG in combination with the altruism
approach. The Alt-NSGA-II-aJG code can be easily modified for Alt-NSGA-II-saJG
and Alt-NSGA-II-sJG.
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4.5. Test the performance of JG adaptations for chemical engineering application prob-
lems: Williams-Otto process, alkylation process and industrial ecosystem, described
in Rangaiah (2009).
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