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5.1 Introduction

Multi-objective optimization (MOO) has had numerous chemical engineering applications
(Masuduzzaman andRangaiah, 2009; see alsoChapter 3 in this book).Application problems
often have constraints besides bounds on decision variables; these constraints arise from
design equations (such as mass and energy balances), equipment limitations (such as size)
and operation requirements (such as temperature limit for safe operation). For example,
Guria et al. (2005) have optimized the reverse osmosis process for multiple objectives.
Here, solvent and solute mass balances around the reverse osmosis module have to be
solved for calculating objective functions. For each set of decision variable values, Guria
et al. (2005) have solved these model equations; this strategy is referred to as the sequential
solution approach; further, they used the penalty function approach for handling inequality
constraints. An alternative strategy is to treat the model equations as equality constraints in
the optimization problem; this strategy is referred to as simultaneous solution approach.
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The mathematical form of a constrained MOO optimization problem is as follows:

Minimize {f1(x), f2(x), . . . fk(x)} (5.1)

Subject to xL ≤ x ≤ xU (5.2)

h(x) = 0 (5.3)

g(x) ≤ 0 (5.4)

Here f1, f2, . . . , fk are k number of objective functions; x is the vector of n decision
variables; xL and xU are respectively vectors of lower and upper bounds on decision
variables; and h and g are the set of ne equality and ni inequality constraints respectively.
Many algorithms have been proposed to solve MOO problems; examples of these algo-

rithms are the elitist non-dominated sorting genetic algorithm (NSGA-II; Deb et al., 2002),
strength Pareto evolutionary algorithm (SPEA2; Zitzler et al., 2001), multi-objective parti-
cle swarm optimization (MO-PSO; Coello Coello and Salazar Lechuga, 2002) and multi-
objective differential evolution (MODE). Originally, MOO algorithms were developed and
studied for solving unconstrained optimization problems (i.e., with bounds on decision
variables but without any inequality or equality constraints). Later, to solve constrained
MOO problems, several constraint-handling techniques were developed and incorporated
in the MOO algorithms.
Coello Coello (2002) summarized constraint handling methods utilized in evolutionary

algorithms under five main categories: (i) penalty function approach, (ii) separation of
constraints and objectives, (iii) special representation, (iv) repair algorithms, and (v) hybrid
methods. The penalty function approach penalizes objective functions (e.g., it increases
their values by adding penalty terms, in case of minimization of objectives), based on the
extent of constraint violation; it is simple in concept and has been popular. However, the
difficulty in using this approach is the selection of a suitable penalty factor value for different
problems. If the penalty factor value is not appropriate, then the optimization algorithm
may converge to either a non-optimal feasible solution or an infeasible solution. Penalty
function approach is divided into several subcategories (e.g., static, dynamic, adaptive,
co-evolutionary, etc.) based on the method of penalty factor handling. If the objective
function value cannot be computed in the infeasible search space for some reason, then
the penalty function approach cannot be used for solving such constrained optimization
problems. For example, mathematical functions such as logarithms and/or square roots,
present in the objectives, cannot be evaluated for negative values of their arguments. If
values of objective functions cannot be calculated or a process simulator does not converge
for a particular set of decision variable values (i.e., potential solution), then the worst value
for each objective can be given. This solution, then, is very unlikely to be selected for the
subsequent generation.
Deb et al. (2002) proposed feasibility approach for handling inequality constraints,

which considers the constraints and objectives separately. It selects a feasible solution over
an infeasible solution during the selection step in the generations. Constraint handling
using special representation is employed for particular types of optimization problems,
whereas repair algorithms convert the infeasible individual into a feasible or less infeasible
individual (Harda et al., 2007). Finally, in the hybrid approach, constraint handling is tied
with some other optimization approach. For example, Van Le (1995) combined fuzzy logic
with evolutionary programming to handle the constraints; here; constraints are replaced by
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fuzzy constraints, which allow high tolerance for constraint violation. Of the five categories
of constraint handling methods, penalty function and feasibility approaches have been
popular for solving constrained MOO problems in chemical engineering applications; see
section 5.2 for more details.
The feasibility approach can handle equality constraints via suitable transformation

into inequality constraints, but this requires different values of tolerance limit for dif-
ferent constraints in the same problem and also for different problems. Takahama and
Sakai (2006) proposed ε-constrained DE, where equality constraints are relaxed systemat-
ically. Zhang and Rangaiah (2012) proposed adaptive constraint relaxation with feasibility
approach (ACRFA) for handling constraints in single objective optimization (SOO). In
this approach, individuals with total constraint violation less than certain limit are tem-
porarily considered as feasible individuals during selection for the next generation. This
violation limit is changed dynamically based on the performance of the search. In this
chapter, ACRFA, as proposed by Zhang and Rangaiah (2012), is modified for solving
constrained MOO problems. It is implemented in the multi-objective differential evolution
(MODE) algorithm and tested on two benchmark functions with equality and inequality
constraints. Then, MODE with ACRFA is used to optimize two fermentation processes
for two objectives; these applications involve many equality constraints arising from mass
balances. The performance of ACRFA is compared with the feasibility approach alone, and
discussed.
The next section of this chapter reviews recent applications of constraint handling

approaches in chemical engineering. Section 5.3 describes ACRFA for constrained SOO
problems, and section 5.4 presents modified ACRFA for constrained MOO problems. In
section 5.5, performance of ACRFA is compared with the classical feasibility approach on
two test functions. MODE with modified ACRFA is used for MOO of two fermentation
processes in section 5.6. Finally, concluding remarks are made at the end of this chapter.

5.2 Constraint Handling Approaches in Chemical Engineering

Researchers have used different approaches for handling constraints in optimization prob-
lems. Selected constrained MOO studies in chemical engineering in the past decade, using
stochastic algorithms with constraint handling approaches, are briefly reviewed in this
section.
Li et al. (2003) optimized the design of a styrene reactor, where penalty function approach

is used for handling constraints; they used a larger value for penalty factor to locate the global
optimumprecisely. Yee et al. (2003) usedNSGAwith penalty function approach to optimize
the styrene reactor. Mitra et al. (2004) handled constraints using the feasibility approach
to optimize a semi-batch epoxy polymerization process. In this study, feasibility approach
is chosen for handling constraints as it does not involve any additional parameter. Tarafder
et al. (2005) used NSGA-II with feasibility approach to optimize styrene manufacturing
process for multiple objectives, and they found feasibility approach to be efficient and better
than penalty function approach. Guria et al. (2005) have used penalty function approach for
handling constraints in the optimization of reverse osmosis process for multiple objectives.
Sarkar and Modak (2005) used NSGA-II with feasibility approach for MOO of fed-batch
bioreactors.
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Agrawal et al. (2006) applied NSGA-II and its jumping gene adaptations with penalty
function approach for optimal design of a low-density polyethylene tubular reactor for
multiple objectives. Later, Agrawal et al. (2007) used both penalty and feasibility
approaches to handle constraints in the optimization of the same process, and found that
the feasibility approach performs slightly better than penalty function approach. Sand
et al. (2008) have used the penalty-function approach for handling constraints in batch
scheduling; the penalty function approach is selected over the repair algorithm as the latter
approach may introduce bias into the search. Ponsich et al. (2008) tried several constraint
handling techniques with a genetic algorithm to optimize the design of a batch plant; these
include elimination of infeasible individuals (i.e., fitness of infeasible individual= 0, which
prevents selection of an infeasible individual using a roulette wheel), use of penalty term in
the objective, relaxation of upper bounds for discrete variables, dominance-based tourna-
ment (similar to feasibility approach), and multi-objective strategy. Based on their results,
Ponsich et al. (2008) concluded that elimination of infeasible individuals is most attractive
when objective function calculations require less computational effort, and dominance-
based tournament is better if the process model calculations require large computational
time. This is mainly due to the number of (objective) function evaluations required.
Mazumder et al. (2010) have used NSGA-II-aJG with penalty function approach to opti-

mize design of a liquid-solid circulating bed for continuous protein recovery, for multiple
objectives. Kundu et al. (2012) have also used the penalty function approach to handle
inequality constraints in the MOO of a counter-current moving bed chromatographic reac-
tor. From this brief review of the selected studies it is clear that both penalty function
and feasibility approaches have been used and popular for handling constraints in MOO of
chemical engineering applications. Of these two, feasibility approach seems to be preferable
because it does not involve any parameter and for potential computational efficiency.

5.3 Adaptive Constraint Relaxation and Feasibility
Approach for SOO

Real-world optimization problems often involve both equality and inequality constraints.
Although an equality constraint can be converted into an inequality constraint by a priori
relaxation, feasible search space is very small in cases of problems with equality con-
straints, compared to complete search space and also compared to feasible search space of
problems with no equality constraints. Moreover, equality constraints in chemical engineer-
ing problems arise from mass balances, mole fraction summation and/or energy balances,
with terms having a wide range of magnitudes. Such equality constraints require different
magnitudes of relaxation to obtain meaningful optimal solutions.
Zhang and Rangaiah (2012) introduced the concept of adaptive relaxation of constraints

based on the number of feasible points obtained in each generation. First, the values of objec-
tive function and constraints are calculated for the initial population. Next, total absolute
constraint violations (TACV) are calculated for each individual in the population, using:

TACV =
ne∑
i=1

|hi(x)| +
ni∑
j

max[0, gj (x)] (5.5)
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where hi and gj are the equality and inequality constraints respectively, and ne and ni are
the number of equality and inequality constraints respectively. The median of TACV for all
individuals in the initial population is chosen as the initial value for constraint relaxation
(μ). Individuals are treated as temporarily feasible if their TACV is less than μ.
In the first generation, the feasibility of each individual (in differential evolution ter-

minology, or off-spring in genetic algorithm terminology) is decided using μ value from
the initial population; i.e., the individual is considered feasible if its TACV is less than μ.
After that, the feasibility approach of Deb et al. (2002) is used to select the individuals for
subsequent generation. The μ value is updated based on the number of feasible solutions
obtained at the end of the first generation (see Equation 5.6), which is used to decide the
feasibility of individuals in the next generation.

μG+1 = μG

(
1− FF

NP

)
(5.6)

Here, FF is the fraction of feasible individuals at the end of first generation. G and NP
are, respectively, the generation number and population size. The iterative procedure is
repeated until the maximum number of generations.

5.4 Adaptive Relaxation of Constraints and Feasibility
Approach for MOO

In the case of SOO by differential evolution (DE), selection is made between target and
trial individuals. In MOO by MODE, on the other hand, nondominant sorting is employed
where all target and trial individuals collectively contest for selection to the next generation.
A trial individual can be temporarily feasible based on its TACV and μ, but, based on non-
dominated sorting, it may not be selected for the subsequent generation. In any case, FF can
be obtained by checking the feasibility of individuals selected for subsequent generation.
In the initial tests, μ value was updated using Equation 5.6 in MODE, but μ was found
to decrease very fast, leading to many infeasible individuals in the population. In the case
of SOO, a few feasible individuals are good enough to obtain the global solution. On the
other hand, for MOO, a larger number of feasible solutions is required to obtain the Pareto-
optimal front with many optimal solutions. Hence, several other relaxation schemes were
tried but they all showed a fast decrease in μ value.
Finally, a different strategy is adopted for dynamically updating μ value in ACRFA for

MOO problems with constraints. μ value is chosen so as to make a certain percentage of
individuals selected for the next generation as infeasible. After trying μ based on 10%,
25% and 50% infeasible individuals on several test problems, a μ value corresponding to
25% infeasible individuals is found to be better. Since better individuals are selected for the
next generation, μ value is expected to decrease continually; this is confirmed by results
presented later.
Kukkonen and Lampinen’s (2009) MODE algorithm is used for implementing and test-

ing ACRFA (MODE-ACRFA) for solving constrained MOO problems. A flowchart of
MODE-ACRFA is shown in Figure 5.1. The population of NP individuals is initialized ran-
domly inside the bounds on decision variables. Values of objectives, constraints and TACV
(according to Equation 5.5) are calculated for each individual in the initial population.
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NP, MNG

Initialize population randomly, and evaluate values of objective
functions and constraints of all individuals in the population

Calculate TACV for each individual in the
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Set generation no., G = 1

Set target individual no., i = 1

Store the trial individual in offspring population

Combine parent and offspring populations

Select population for the next generation
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Is G < MNG?

Is i < NP?

Select μ value using selected individuals

Define feasibility of each individual in the
combined population, based on TACV

Non-dominating sorting of combined population,
and calculate crowding distance, if required

Generate a new mutant individual
and then a trial individual

Evaluate values of objective functions and
constraints of the trial individual

Check the trial individual for violation of decision variable
bounds; if there is any violation, then it is randomly

reinitialized within the bounds on that decision variable

Figure 5.1 Flowchart for MODE-ACRFA algorithm.

Then, initial value of μ is selected such that 25% of individuals in the initial population
will be temporarily infeasible based on TACV.
In each generation, a trial individual/vector for each target individual in the current/initial

population is generated by mutation and crossover on three randomly selected individuals
from the current/initial population. For this, DE/rand/1 mutation strategy and binomial
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crossover are applied according to Equations 5.7 and 5.8, respectively. See Price et al.
(2005) for more details on these mutation and crossover operations in the differential
evolution.

vi = xr0 + F(xr1 − xr2) (5.7)

ui,j =
{
vi,j if rand(0, 1) ≤ Cr or j = jrand
xi,j otherwise

j = 1, 2, . . . , no of decision variables (5.8)

Here, vi and ui are respectively mutant and trial vectors for ith target individual. xr0,
xr1 and xr2 are three randomly selected individuals from the current population. F and Cr
are mutation rate and crossover probability, respectively. After crossover, the trial vector
is tested for satisfaction of decision variable bounds; if a bound on any decision variable
is violated, then it is randomly reinitialized within the bounds on that decision variable.
Finally, values of objective functions, constraints and TACV of the trial individual are
calculated. Thus, NP trial individuals (offspring) are generated and stored in the child
population, which is later mixed with the parent population containing target individuals.
The combined population of 2NP individuals undergoes non-dominated sorting fol-

lowed by crowding distance calculation. If the MOO problem has no constraints, then NP
individuals are selected from the combined population based on the following definitions
and steps:

1. Two individuals A and B are non-dominated to each other if A is better than B in at
least one objective, and also B is better than A in at least one other objective. Thus, both
these individuals are equally good. One individual is dominating another individual if it
is better than the other in all objectives.

2. The number of individuals dominating each individual (nd) is calculated. First rank
is assigned to the non-dominated individuals with nd = 0. This is shown as PF1 in
Figure 5.2.
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Figure 5.2 Selection of NP individuals from the combined population of 2NP individuals
using Pareto dominance and crowding distance criteria.
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3. Then, non-dominated individuals in the remainder of the combined population (i.e.,
excluding those with first rank) are assigned second rank (shown as PF2 in Figure 5.2).
This procedure is repeated until all individuals are ranked.

4. The first/best NP individuals are selected as the population for the subsequent generation.
For this, individuals are first selected based on the Pareto rank given in the above
steps. When all the individuals of a Pareto front cannot be selected for the subsequent
generation (e.g., PF3 in Figure 5.2), less crowded individuals (based on the crowding
distance measure) are selected to complete the population size. Note that the crowding
distance measures distribution of non-dominated solutions on the Pareto-optimal front
by calculating Euclidean distance between two neighboring non-dominated solutions;
see Deb (2001) for more details.

For constrainedMOOproblems, the feasibility of all individuals in the combined population
is decided using the current μ value. MODE-ACRFA algorithm selects NP individuals for
subsequent generation from the combined population according to steps 2–4 above, but the
following definition of constrained dominance is used in step 1 (according to feasibility
approach of Deb et al., 2002). If any of the following conditions is true, then individual A
is dominating individual B:

• Both the individuals are feasible, and individual A dominates B (as per the usual domi-
nance definition in step a above).

• Individual A is feasible and B is infeasible.
• Both the individuals are infeasible, but individual A has smaller number of violated
constraints (and lesser TACV if both have the same number of violated constraints)
compared to individual B.

The TACV of selected individuals for the next generation is used to update the μ value,
which is chosen so that 25% of selected individuals will be temporarily infeasible based
on TACV. The new μ value is used to define the feasibility of individuals in the combined
population in the next generation. The generations and stochastic search continue until
the specified search termination criterion is met. Here, maximum number of generations
(MNG) is the termination criterion (Figure 5.1), which is commonly used in stochastic
algorithms. See Chapter 4 for performance based termination criterion for evolutionary
algorithms.

5.5 Testing of MODE-ACRFA

There are many benchmark problems for testing MOO algorithms; these are with only
bounds on decision variables (Zitzler et al., 2000) or with both bounds on variables and
inequality constraints (Coello Coello et al., 2007). Interestingly, there seem to be no
benchmark MOO problems with equality constraints. So, in this work, two inequality
constrained MOO problems, namely, Viennet and Osyczka problems (Coello Coello et al.,
2007) have been modified to equality-constrained MOO problems. For this, values of
different inequality constraints corresponding to the complete Pareto-optimal front have
been analyzed. If an inequality constraint is active or has nearly constant value, then it is
converted to an equality constraint. The modified test problems are given in Table 5.1.
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Table 5.1 Modified MOO test functions with equality constraints.

Test
problem

Decision
variables Objective functions (minimize) Constraints

Modified
Viennet

−4 < x < 4
−4 < y < 4

F1 = (x − 2)2/2 + (y + 1)2/13 + 3
F2 = (x + y − 3)2/175 + (2y − x)2/17 − 13
F3 = (3x − 2y + 4)2/8 + (x − y + 1)2/27 + 15

4x + y − 4 = 0
− x − 1 < 0
x − y − 2 < 0

Modified
Osyczka

2 < x < 7
5 < y < 10

F1 = x + y2

F2 = x2 + y
x + y − 12 = 0
−x2 − 10x + y2

− 16y + 80 < 0

The performance of MODE-ACRFA is compared with that of MODEwith the feasibility
approach alone (MODE-FA). For MODE-FA, each equality constraint is converted into an
inequality constraint as follows.

hi(x) = 0 (5.9)

TL− |h(x)| ≥ 0 (5.10)

Here, TL is the tolerance limit of constraint violation, which depends on the terms in the
equality constraint (e.g., flow rates can be large whereas mole fractions are between zero
and unity).
Generational distance, GD (Van Veldhuizen and Lamont, 1998) is used to compare the

performance ofMODE-FAandMODE-ACRFA. It is calculated between the non-dominated
solutions obtained in the current/last generation and the non-dominated solutions from the
known/true Pareto-optimal front as follows:

GD = 1

ND

√√√√ ND∑
i=1
d2i (5.11)

Here, ND is the number of non-dominated solutions obtained in the best front in the
current generation, which can be less than or equal to the population size (i.e., NP). di is
the Euclidean distance of each of these solutions to its nearest non-dominated solution in
the known Pareto-optimal front.
Algorithm parameters used in the performance comparison for test functions/problems

are: F= 0.8, Cr= 0.9,NP= 100 andMNG= 500; values of F andCr are based on the recom-
mendation in the literature (e.g., Chen et al., 2010), while a population size of 100 is reason-
able for small problems with a few decision variables and constraints. A TL value of 1.0e-6
is used for relaxing equality constraints in Table 5.1 into inequality constraints for MODE-
FA. Figures 5.3(a) and 5.4(a) show the variation in GD with generations on the modified
Viennet and Osyczka problems, respectively, using MODE-FA and MODE-ACRFA. The
performance of both constraint-handling approaches is comparable on the modified Viennet
problem. Initially, MODE-FA shows faster convergence on the modified Osyczka problem,
but performance of both approaches is comparable after 200 generations (Figure 5.4a).
Moreover, the final Pareto-optimal fronts obtained for both the problems using ACRFA
and FA are very close to the true Pareto-optimal fronts, as shown in Figures 5.3 and 5.4.
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Figure 5.5 shows the variation in μ with generations on the Viennet and Osyczka prob-
lems using MODE-ACRFA; these follow the general trend of GD with generations in
Figures 5.3(a) and 5.4(a). As expected, μ decreases with generations because better indi-
viduals (in terms of feasibility and objective values) are selected for the next generation.

5.6 Multi-Objective Optimization of the Fermentation Process

Ethanol is widely used as a chemical and biofuel. Bioethanol production from sustainable
feedstocks is one of the possible alternatives to fossil fuel. Its production using first-
generation feedstocks (e.g., glucose) is well established, while bioethanol production using
second generation feedstocks (e.g., starch and cellulose) is in the development phase.
In this section, operation of a fermentation process integrated with cell recycling and a
fermentation process integrated with cell recycling and inter-stage extraction is optimized
for multiple objectives by both MODE-FA and MODE-ACRFA. Both these applications
involve equality constraints.

5.6.1 Three-Stage Fermentation Process Integrated with Cell Recycling

Wang and Lin (2010) have studied a three-stage continuous fermentation process integrated
with cell recycling, where each stage has a fermentor and a cell separator to separate the
cell mass and recycle it back to the fermentor, for ethanol production from glucose. A
schematic diagram of this fermentation process integrated with cell recycling is shown in
Figure 5.6.
Equations 12–14 present steady-statematerial balances for cell mass, glucose and ethanol

respectively, around the kth stage of continuous fermentation process. The used kinetic
model is given by Equations 5.15 and 5.16. Equations for all the three stages including
kinetic parameter values are available in one Excel file on the web site for this book.

D [bk−1xk−1 − bkxk]+ μkxk = 0 (5.12)

D
[
sf,k + sk−1 − sk

] − qp,k
Yp/s

xk = 0 (5.13)
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Figure 5.6 Schematic diagram of a three-stage continuous fermentation process integrated
with cell recycling.

D
[
pk−1 − pk

] + qp,kxk = 0 (5.14)

μk =
(

μmsk
Ks + sk + s2k/KsI

) (
Kp

Kp + pk + p2k/KpI

)
(5.15)

qp,k =
(

νmsk
K′
s + sk + s2k/K′

sI

) (
K′
p

K′
p + pk + p2k/K′

pI

)
(5.16)

Here, D (= F1/V) is the dilution rate, F1 is the feed flow rate to the first stage, and V is
the volume of each fermentor. xk, sk and pk are respectively cell mass, glucose and ethanol
concentrations in kth stage; bk is the bleed ratio for kth stage. sf,k is glucose concentration in
the feed to kth stage; as feed is entering only into the firststage, sf,2 = 0 and sf,3 = 0 for the
second and third stages. Further, for the first stage, bk−1, xk−1, sk−1 and pk−1 are all zero.
Kinetic parameter values used in Equations 5.12–5.16 are listed in Table 5.2.
To optimize the fermentation process, ethanol productivity and glucose conversion are

used as two objectives, which ensure efficient utilization of production capacity and glu-
cose respectively. The MOO problem for the three-stage continuous fermentation process
integrated with cell recycling is summarized in Table 5.3. Decision variables for this opti-
mization are dilution rate (D), glucose concentration in feed (sf,1) and cell mass recycling
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Table 5.2 Kinetic parameters and their values for the continuous fermentation process
integrated with cell recycling (Wang and Sheu, 2000).

Kinetic parameter Estimated value Kinetic parameter Estimated value

μm 0.9819 Kp 27.9036
νm 2.3507 K’p 252.306
Ks 2.3349 KpI 41.2979
K’s 7.3097 K’pI 15.2430
KsI 213.5899 Yp/s 0.4721
K’sI 5759.105

for different stages (i.e., bleed ratios, b1, b2 and b3). Physical constraints are positive
values of productivity and glucose conversion for each stage. Residual glucose after the
third stage and total glucose supplied per unit volume of all fermentors in the feed are
additional constraints in the optimization problem (Wang and Lin, 2010). The model Equa-
tions 5.12 to 5.16 for each stage are the equality constraints in the MOO problem. Of these,
Equations 5.15 and 5.16 can be substituted in Equations 5.12 to 5.14. Then, there will
be three equality constraints for each stage or nine equality constraints for the three-stage
fermentation process.
Wang and Lin (2010) have solved the MOO problem in Table 5.3 using the fuzzy

goal attainment method, which requires preference intervals for objectives and constraints.
Finally, it is solved as a SOO problem using hybrid differential evolution (HDE). The
adaptive penalty function approach has been used for constraint handling in HDE. The
same optimization approach (i.e., HDE with an adaptive penalty function approach) is also
used to solve the MOO problem of extractive fermentation process (section 5.6.2). In this
work, MOO problem (Table 5.3) has been solved by three different strategies, all using

Table 5.3 MOO problem formulation for the three-stage continuous fermentation process
integrated with cell recycling.

Objective functions Max. ethanol productivity D
3 p3 [kg/(m3.h)]

Max. overall glucose conversion 1− s3
sf,1

Decision variables Dilution rate 3.5 ≤ D ≤ 4 [1/h]
Glucose concentration in feed 60 ≤ sf,1 ≤ 65 [kg/m3]
Bleed ratio for each stage 0.1 ≤ b1 = b2 = b3 ≤ 0.2

Constraints Productivity for each stage D[pk − pk−1] ≥ 0 for k = 1, 2, 3
[kg/(m3.h)]

Glucose conversion for each stage 1− sk
sfk+sk−1

≥ 0 for k = 1, 2, 3

Residual glucose after 3rd stage 0.1 ≤ s3; and s3 ≤ 0.5 [kg/m3]
Total glucose supplied per unit

volume of all fermentors
10 ≤ sT; and sT ≤ 180;
sT ≡ Dsf,1

3 [kg/(m3.h)]
Model for the process Equations 5.12 to 5.16 for each

stage
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Decision variable vector

MODE algorithm
with feasibility

approach

Calculation of objectives
and constraints

Solving model equations
using “Solver” tool in Excel

Figure 5.7 Flowchart for calculation of objective functions and constraints using “Solver”
tool in Excel for solving process model equations.

MODE. Each strategy differs in the handling of constraints, as described below. The present
approach provides many Pareto-optimal solutions for better understanding and selection of
one of them.

(A) MODE-Solver and FA: In this approach, the MODE algorithm has been used to
generate the vector of three decision variables (i.e., D, Sf, and b). In order to calculate
objectives and constraints, material balance equations 5.12–5.14 for each stage have to be
solved; Solver tool in Excel is used to solve these equations (see Figure 5.7). The feasibility
approach is used to handle inequality constraints in the optimization problem (a total of ten
inequality constraints in Table 5.3 excluding the model equations). This strategy is used to
illustrate the use of the sequential solution of optimization problem and equality constraints
(i.e., model equations), and to obtain the Pareto-optimal solutions for comparison.

(B) MODE-FA: In this approach, material balance equations 5.12–5.14 for each stage are
converted into inequality constraints; conversion of each equality constraint to an inequality
constraint is based on Equations 5.9 and 5.10 and using the same value of TL. Finally, the
reformulated MOO problem has 19 inequality constraints (ten inequality constraints in
Table 5.3, and nine inequality constraints from material balances for each stage). For this
and the next strategy, additional decision variables are cell mass, glucose and ethanol
concentrations for each stage. These variables with their bounds are presented in Table 5.4;
non-dominated solutions obtained, using strategy A, are used to choose suitable bounds on
the additional decision variables. Thus, the number of decision variables in this and next
strategy is 12.

(C) MODE-ACRFA: This approach can handle equality constraints without any con-
version. It has nine equality and ten inequality constraints. Decision variables are the

Table 5.4 Additional decision variables and their bounds for optimization strategies B and C.

Decision variable x1 x2 x3 s1 s2 s3 p1 p2 p3

Lower bound 40 80 90 10 0 0.1 10 20 20
Upper bound 70 110 110 30 10 0.5 30 40 40
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Table 5.5 MODE algorithm parameter values used in MOO of fermentation processes.

Algorithm
parameter

Strategy A:
MODE-Solver with FA

Strategy B:
MODE-FA

Strategy C:
MODE-ACRFA

F
Cr
NP
MNG

0.9
0.9
100
100

0.9
0.9
465
5000

0.9
0.9
465
5000

same as those in MODE-FA. Optimization problem and equality constraints are solved
simultaneously in both MODE-FA and MODE-ACRFA. However, solution of equality
constraints in MODE-FA is not exact due to relaxation by TL, and so its optimization
results can differ from the other two strategies.
MODE parameters used in this optimization study are given in Table 5.5. The F value is

tuned through preliminary experimentation, whereas the Cr value is based on the recom-
mendation in the literature (see Chen et al., 2010). The population size of 100 is used in
solution strategy A, while the population size in solution strategies B and C is 15 times the
sum of the number of decision variables and constraints. MNG used for different strategies
is based on preliminary experimentation.
Figure 5.8(a) shows the Pareto-optimal front obtained for the three-stage continuous

fermentation process integrated with cell recycling using strategy A. As expected, ethanol
productivity is conflicting with glucose conversion. The obtained Pareto-optimal front is
well distributed, and dilution rate is mainly contributing to the variations in the objective
functions. Glucose concentration in the feed and bleed ratios are nearly constant, and they
are near to their upper (i.e., 65) and lower (i.e., 0.1) bounds respectively. For brevity, bleed
ratios are not shown in Figure 5.8. The Pareto-optimal front obtained in Figure 5.8(a) is
nearly linear in shape. In the operation optimization considered, production capacity is
sufficiently large to convert glucose completely for any dilution rate in the range 3.5 to 4;
hence, glucose concentration in the feed is always near to its upper limit (see Figure 5.8c). A
further, increase in dilution rate increases ethanol productivity as a larger amount of glucose
enters into the fermentor although glucose conversion decreases due to lower residence
time. Both objectives are linearly dependent on dilution rate because the quantities (i.e.,
dilution rate, ethanol concentration in the product stream, glucose concentration in feed
and residual glucose) involved in the objectives are directly related to the dilution rate
(see Table 5.3).
Figure 5.8(a) also shows the Pareto-optimal front obtained for the same continuous

fermentation process using MODE-FA. These optimization results are obtained using TL
of 3.0; MODE-FA did not give any feasible solution with a TL of 1.0 or smaller. The non-
dominated solutions in Figure 5.8(a) have average absolute constraint violations (AACV) of
2.15. Here, variation in ethanol productivity is smaller compared to the Pareto-optimal front
obtained using strategy A (Figure 5.8a). Figures 5.8(b) and 5.8(c) show, respectively, the
variations in dilution rate and glucose concentration in the feed with ethanol productivity.
Bleed ratio is constant near to 0.1, and so this is not shown in Figure 5.8. Variations in the
remaining decision variables for strategies B and C (in Table 5.4) are also not presented as
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Figure 5.8 Selected optimization results for a three-stage continuous fermentation process
integrated with cell recycling, using strategies A (Solver), B (FA), and C (ACRFA).
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these are not essential for performance comparison. Pareto-optimal front obtained for the
three-stage continuous fermentation process integrated with cell recycling using MODE-
ACRFA is also shown in Figure 5.8(a). Here, both objectives are varying in narrow ranges
compared to the other two; AACV for all non-dominated solutions obtained by MODE-
ACRFA is 0.013, which is much smaller than that by MODE-FA.
Figure 5.8(a) can be used for comparing the non-dominated solutions obtained for

the three-stage continuous fermentation process integrated with cell recycling using three
different optimization strategies. In this comparison, Pareto-optimal front obtained by
MODE-Solver with FA can be considered as the correct front. It can be seen that non-
dominated solutions obtained usingMODE-FA are significantly far from the correct Pareto-
optimal front; also they have high value of AACV (= 2.15), and so they are not the optimal
solutions satisfying all constraints. On the other hand, non-dominated solutions obtained
by MODE-ACRFA are close to the correct Pareto-optimal front, and they have a much
lower value of AACV (= 0.013), which is acceptable in engineering applications.

5.6.2 Three-Stage Fermentation Process Integrated with
Cell Recycling and Extraction

Chen and Wang (2010) have studied a three-stage fermentation process integrated with cell
recycling and inter-stage extraction using a mixture of glucose and xylose as feedstocks
(referred to as simply extractive fermentation from now on). Figure 5.9 shows a schematic
diagram of this fermentation process. Ethanol concentration inhibits conversion of glucose

Recycled cell mass

Recycled cell mass

Recycled cell mass

Cell
settler-1

Cell
settler-2

Cell
settler-3

Fermentor-1

Extractor-1

Extractor-2

Fermentor-2

Fermentor-3

Feed (F1)
Sf,1

b1F1

b2F1

b3F1

x1, s1, p1

x2, s2, p2

x3, s3, p3

xe,1, se,1, pe,1

(1 − b1)F1

(1 − b2)F1

(1 − b3)F1

+

+

+

Figure 5.9 Schematic diagram of a three-stage fermentation process integrated with cell
recycling and extraction.
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and xylose to ethanol in the fermentor, which results in lower ethanol productivity and yield.
To avoid this, ethanol can be removed continuously from the fermentor, for example using
extraction. In the present study, three fermentors are placed in series, with feed entering
into the first fermentor only. Part of the mother liquor from a fermentor goes directly to
the next fermentor while the remainder goes through a cell separator and an extractor. A
cell separator is used after each fermentor to separate the cell mass and recycle it back
to the fermentor, whereas an extractor is used to extract ethanol using an organic solvent.
After extraction of ethanol, mother liquor goes to the next fermentor. An extractor is not
necessary in the last/third stage of the fermentation process (see Figure 5.9).
The mathematical model of the three-stage extractive fermentation process is taken from

Chen and Wang (2010). Equations 5.17–5.20 present steady-state mass balances for cell
mass, glucose, xylose and ethanol around kth stage, respectively. Equations for all the three
stages including kinetic parameter values are available in the Excel file on the web site for
this book.

D [bk−1 + (1− bk−1) ζx] xk−1 − D [bk + (1− bk) ζx] xk + rx,k = 0 (5.17)

Dλsf,k + D [bk−1 + (1− bk−1) ζs] sg,k−1 − D[bk + (1− bk) ζs]sg,k − rsg,k = 0 (5.18)

D(1− λ)sf,k + D [bk−1 + (1− bk−1) ζs] sx,k−1 − D[bk + (1− bk) ζs]sx,k − rsx,k = 0

(5.19)

D

[
bk−1 + (1− bk−1) ζp

1+ Ek−1

]
pk−1 − D [

bk + (1− bk) ζp
]
pk + rp,k = 0 (5.20)

In the above equations, D is the dilution rate. xk, sg,k, sx,k and pk are respectively
cell mass, glucose, xylose and ethanol concentration (kg/m3) in kth stage fermentor. bk
is the bleed ratio for kth stage, and sf,k is the substrate concentration in feed entering
kth stage. λ is the mass fraction of glucose in substrate (and the remaining is xylose).
ζ x, ζ s and ζ p are cell discard factors (e.g., xe,1/x1 = 0.01), substrate condensed factors
(e.g., se,1/s1 = 1.01) and ethanol condensed factors (e.g., pe,1/p1 = 1.01) respectively (see
Figure 5.9); these factors define relative concentrations of cell mass, substrate and ethanol in
mother liquor after cell separation compared to those after the fermentor. Ek is the extraction
efficiency for kth stage. Here, feed is entering only into the first fermentor, and so values of
sf,2 = 0 and sf,3 = 0 for second and third stages respectively. Further, for the first stage,
bk−1, xk−1, sg,k−1, sx,k−1, pk−1 and Ek−1 are also zero.
The rate expressions for cell mass growth (rx,k), glucose consumption (rsg,k), xylose

conversion (rsx,k) and ethanol production (rp,k) are as follows.

rx,k = μmix,kxk (5.21)

rsg,k = 1

Yp/sg
νg,kxk (5.22)

rsx,k = 1

Yp/sx
νx,kxk (5.23)

rp,k = (
νg,k + νx,k

)
xk (5.24)
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Here, μmix is the specific cell growth rate for the yeast 1400 (pLNH33) on glucose-xylose
mixture. For this yeast, νg and νx are the specific production rates of glucose and xylose,
respectively. μmix, νg and νx are defined as follows.

μg,k = μmgsg,k
Kg + sg,k + s2g,k/Kig

{
1−

(
pk
pmg

)�g
}

(5.25)

μx,k = μmxsx,k
Kx + sx,k + s2x,k/Kix

{
1−

(
pk
pmx

)�x
}

(5.26)

μmix = sg,k
sg,k + sx,kμg,k + sx,k

sg,k + sx,kμx,k (5.27)

νg,k = νmgsg,k
K′
g + sg,k + s2g,k/K′

ig

{
1−

(
pk
p′
mg

)ϕg
}

(5.28)

νx,k = νmxsx,k
K′
x + sx,k + s2x,k/K′

ix

{
1−

(
pk
p′
mx

)ϕx
}

(5.29)

The kinetic parameters in Equations 5.21–5.29 are taken from Krishnan et al. (1999),
and are reported in Table 5.6.
The MOO problem formulation for the three-stage extractive fermentation process is

given in Table 5.7. In this case, ethanol productivity and xylose conversion are considered
as objectives. Glucose conversion is not used as an objective because it is always higher
than xylose conversion; it is used as an additional constraint in the optimization problem.
Dilution rate and substrate concentration in the feed are the decision variables. Bleed ratios
for different stages are not considered as decision variables, as low values are optimal,
based on section 5.6.1; so, bleed ratio for each of the stages is fixed at 0.2. Here, positive
values of ethanol productivity of each stage, glucose and xylose conversions in each stage
are physical constraints. Other constraints are total sugar supply (sT < 180) and limits on

Table 5.6 Kinetic parameters and their values for
extractive fermentation process (Krishnan et al., 1999).

Kinetic parameters Estimated values

μmg, μmx (h−1) 0.662, 0.190
νmg, νmx (h−1) 2.005, 0.250
Kg, Kx (kg/m3) 0.565, 3.4
Kig, Kix (kg/m3) 283.7, 18.1
K’g, K’x (kg/m3) 1.342, 3.4
K’ig, K’ix (kg/m3) 4890, 81.3
pmg, pmx (kg/m3) 95.4, 59.04
p’mg, p’mx (kg/m3) 103.03, 60.2
�g, �x 1.29, 1.036
ϕg, ϕx 1.42, 0.608
Yp/sg, Yp/sx (kg/kg) 0.47, 0.40
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Table 5.8 Additional decision variables and their bounds for optimization strategies B and C.

Decision variable x1 x2 x3 sg1 sg2 sg3 sx1 sx2 sx3 p1 p2 p3

Lower bound 0 20 50 0 0 0 20 0 0 20 10 0
Upper bound 20 60 70 10 1 10 40 20 1 40 30 20

the residual glucose and xylose concentrations (sg,3 < 0.5 and sx,3 < 1) in the mother liquor
from the third fermentor (Chen andWang, 2010). Themodel Equations 5.17 to 5.29 for each
stage are the equality constraints in the MOO problem. Of these, Equations 5.21 to 5.29
can be substituted in Equations 5.17 to 5.20. Then, there will be four equality constraints
for each stage or 12 equality constraints for the three-stage extractive fermentation process.
The MOO problem in Table 5.7 is solved using three different strategies, described

in section 5.6.1. The problem for strategy A (using Solver and FA) has two decision
variables and 13 inequality constraints. Reformulation of the problem for MODE-FA has
12 additional inequality constraints arising from material balances around each and every
stage (in total, 25 inequality constraints). Problem forMODE-ACRFAhas 13 inequality and
12 equality constraints.Moreover, the problem for bothMODE-FA andMODE-ACRFAhas
12 additional decision variables (i.e., cell mass, glucose, xylose and ethanol concentrations
for each of the three stages); these variables and their bounds are listed in Table 5.8.
Very wide bounds for additional decision variables (e.g., 0 to 1000) will result in slow
convergence of the algorithm; hence, non-dominated solutions obtained using strategy A
are used to choose the bounds on the additional decision variables.
The feed contains 65% glucose and 35% xylose, and extraction efficiency for each stage

is 6.93, which is equivalent to 87.4% of ethanol removal from the mother liquor (Chen
and Wang, 2010). The MODE algorithm parameters used in the optimization of extractive
fermentation process are same as those in Table 5.5, except the value of NP for strategies
B and C is 585 (i.e., 15 times the number of decision variables and constraints).
Figure 5.10(a) shows the Pareto-optimal front obtained for the three-stage extractive

fermentation process using optimization strategy A (i.e., Solver for solving equality con-
straints/model equations with FA for inequality constraints; see section 5.6.1). The obtained
Pareto-optimal front can be divided into two parts: (i) improvement in ethanol productivity
from 5.4 to 5.8 kg/(m3.h) with a small decrease in xylose conversion, and (ii) a linear
change between ethanol productivity and xylose conversion (∼ 0.985–0.97). In the first
part, the improvement in ethanol productivity, is mainly due to fast change in substrate
concentration in feed, while dilution rate is mainly affecting the objectives in the sec-
ond part (see Figures 5.10a–c). For a fixed production capacity, an increase in substrate
concentration in the feed produces more ethanol but it does not affect residence time in
the fermentor. Hence, an increase in ethanol productivity is relatively faster compared to
decrease in xylose conversion (see the first part of the Pareto-optimal front in Figure 5.10a).
Increase in dilution rate also increases ethanol productivity as a larger amount of glucose
enters into fermentors, but substrate conversion decreases relatively faster with an increase
in dilution rate due to lower residence time (see the second part of the Pareto-optimal front
obtained in Figure 5.10a). In conclusion, a relatively fast increase in ethanol productivity is
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Figure 5.10 Selected optimization results for the 3-stage extractive fermentation process using
optimization strategy A (Solver and FA).

achieved initially by an increase in substrate concentration in the feed, until substrate con-
centration reached availability limit. In the present operation optimization case, the ethanol
production facility is sufficient to convert feed, at its maximum available concentration (i.e.,
95 kg/m3), into product, and keeps the unreacted substrate in the product stream below the
required limit.
Figure 5.11(a) shows the Pareto-optimal front obtained for the three-stage extractive

fermentation process using MODE-FA. These non-dominated solutions are obtained using
TL of 1.0; MODE-FA is not able to give any feasible solution with a smaller value of
TL. The non-dominated solutions in Figure 5.11(a) have an AACV of 0.608. Variations in
objectives can be visually correlated to the variation in dilution ratewith ethanol productivity
(Figure 5.11b),while substrate concentration in feed is scattered between its lower and upper
bounds (Figure 5.11c).
The Pareto-optimal front obtained by MODE-ACRFA is shown in Figure 5.11(d). Here,

both objectives are varying in relatively narrow ranges compared to the Pareto-optimal front
obtained using the other two strategies. AACV for all non-dominated solutions obtained
using MODE-ACRFA is 0.022, which is acceptable for engineering applications. Values
and trends in the Pareto-optimal front and decision variables in Figures 5.11(d) to (f) are
similar to those obtained by strategy A (Figure 5.10).
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Figure 5.11 Selected optimization results for the three-stage extractive fermentation process
using MODE-FA (plots a, b and c in the left column), and using MODE-ACRFA (plots d, e and
f in the right column).

Finally, Figure 5.12 compares the Pareto-optimal fronts obtained for extractive fermenta-
tion process using the three different optimization strategies. Pareto-optimal front obtained
by strategy A (i.e., MODE-Solver-FA) can be considered as the correct solution to this
problem. It can be seen that MODE-FA (Strategy B) gives wide ranges of both objectives,
but these non-dominated solutions have a large value of AACV, and so they are incorrect and
unacceptable. The non-dominated solutions obtained by MODE-ACRFA (Strategy C) are
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Figure 5.12 Comparison of the Pareto-optimal fronts obtained for the three-stage fermen-
tation process integrated with cell recycling and inter-stage extraction, using three different
optimization strategies.

closer to the correct Pareto-optimal front, and cover most part of the correct Pareto-optimal
front except a small part corresponding to higher xylose conversion.

5.6.3 General Discussion

It is clear from the results in sections 5.6.1 and 5.6.2 that optimal non-dominated solutions
obtained by MODE-Solver and FA (Strategy A) are better; they satisfy equality constraints
almost exactly and so can be considered to be accurate. Non-dominated solutions obtained
by MODE-FA (strategy B) are affected by the TL used; their validity is questionable due
to constraint violations (i.e., the larger value of AACV). MODE-ACRFA gives optimal
solutions which satisfy the equality constraints; they are comparable to those obtained by
strategy A, although their range is narrow.
The approximate time required for solving the MOO problem for the continuous fer-

mentation process using strategies A, B and C is respectively 1, 8 and 3 hours on an Intel R©

CoreTM2 Duo Processor (CPU 2.8 & 2.8 GHZ and RAM 4 GB). Mflops (million floating
point operations per second) on this computer is 537 for the LINPACK benchmark program
for a matrix of order 500 (http://www.netlib.org/benchmark/linpackjava/). Optimization of
the extractive fermentation process requires around 2, 12 and 4 hours by strategies A, B
and C respectively, using same computer. In the case of MODE-FA and MODE-ACRFA,
the required computational time is larger due to larger population size and MNG. Hence,
strategy A using Solver for sequential solution of equality constraints seems to be better
followed by strategy C using adaptive constraints relaxation with FA for simultaneous
solution of optimization problems and equality constraints.
Although twoMOO test functions with equality constraints are used in this chapter, these

problems are small with a few decision variables and constraints, and are easy to solve.
Hence, it is difficult to observe the difference in the performance of FA and ACRFA strate-
gies. Many MOO test functions with equality constraints are required for a comprehensive
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comparison between FA and ACRFA solution strategies. Use of application problems for
testing purpose is not easy as it requires process knowledge and due to the unavailability of
a true solution. However, owing to the lack of MOO test functions with equality constraints
in the current literature, fermentation processes studied in this chapter are recommended
for evaluating constraint-handling approaches in stochastic global optimization techniques.
These application problems are challenging, withmany equality constraints. Pareto-optimal
solutions obtained by MODE-Solver with FA are well distributed and satisfy equality and
other constraints. These are available in the Excel file on the web site for this book at
http://booksupport.wiley.com.

5.7 Conclusions

In this chapter, feasibility approach (FA) and the adaptive constraint relaxation with fea-
sibility approach (ACRFA) were investigated for the solution of MOO problems with
equality constraints, bounds on decision variables and inequality constraints. The perfor-
mance of these approaches is comparable on two test functions, modified to have equality
constraints. Three-stage continuous fermentation and three-stage extractive fermentation
processes, which contain many equality constraints arising from mass balances, were opti-
mized using three different strategies: solution of equality constraints using Solver with FA
for inequality constraints, FA andACRFA. Of these,MODE-Solver-FA is themost effective
to solve both fermentation processes compared to FA and ACRFA. The feasibility approach
requires a suitable value for relaxation, which affects the optimization results obtained, and
it performed poorly compared to ACRFA on both fermentation processes. Non-dominated
solutions obtained by ACRFA have less average absolute constraint violations than those
obtained by FA, and are closer to those obtained by the Solver-FA strategy.
The sequential solution of the optimization problem and equality constraints using Solver

along with FA for inequality constraints, is the better strategy for the optimization of the
fermentation processes considered here. However, it may not be efficient if the solution of
equality constraints (i.e., process model equations) is computationally intensive. In such
cases, the simultaneous solution of the optimization problem and equality constraints via
the ACRFA strategy may be suitable. Further research is required to improve ACRFA.
Interestingly, there are no benchmark test functions for MOO with equality constraints;
but, many chemical engineering applications involve equality constraints. Hence, there is a
need for benchmark test functions for MOO with equality constraints. For the present, the
fermentation processes studied in this chapter are recommended for testing new strategies
for solving equality-constrained MOO problems. For this, equations in these problems and
the non-dominated solutions obtained are readily available in the Excel file provided on the
book’s web site.

Acronyms

AACV average absolute constraint violation.
ACRFA adaptive constraint relaxation with feasibility approach.
FA feasibility approach.
GD generational distance.
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HDE hybrid differential evolution.
MNG maximum number of generation.
MODE multi-objective differential evolution.
MOO multi-objective optimization.
MO-PSO multi-objective particle swarm optimization.
NSGA-II non-dominated sorting genetic algorithm-II.
SOO single objective optimization.
SPEA2 strength Pareto evolutionary algorithm.
TACV total absolute constraint violations.
TL tolerance limit (used with MODE-FA solution strategy).
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