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6.1 Introduction

Chemical process design and operations often require optimization of conflicting objectives
subject to multiple constraints (e.g., Al-Sharrah et al., 2001; Halsallwhitney and Thibaut,
2006; Rangaiah, 2009). For example, to minimize the utility cost and maximize the product
output while ensuring the quality of the end products. Such problems are identified as multi-
objective optimization (MOO) (Cohon, 1978; Ehrgott, 2005). Recently the use of nature-
inspired approaches based on genetic algorithms (Holland, 1975), simulated annealing
(Kirkpatrick et al., 1983), and particle swarm algorithm (Kennedy and Eberhart, 1995) have
drawn increasing interest in the area ofMOO. A common characteristic in these approaches
is that instead of searching for one optimum solution, a so-called Pareto-optimum solution
set can be obtained in ‘one go’ of the optimization algorithm (Deb, 2001).Many population-
basedmulti-objective optimization approaches (e.g., Goldberg, 1989; Serafini, 1992; Coello
Coello, 2002) use meta-heuristics to obtain an estimate of the Pareto set (Evans et al., 1991;
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Deb, 2007; Ferreira et al., 2008), among which the Multi-objective Genetic Algorithm
(MOGA) has become quite popular (Fonseca and Fleming, 1993).
One concern in using MOGA for chemical process optimization is that, often, system

inputs (variables and/or parameters) may be uncertain (Limbourg, 2005; Basseur and Zit-
zler, 2006). For example, the temperature in a distillation column may be fluctuating in an
uncertain way around a nominal value. Consequently, such uncertainty can create uncertain
variations in the system outputs or objective and/or constraint functions of the model.
Since deterministic optimum solutions are typically located on or close to the boundary
of one or more constraint functions, a small variation in the inputs can lead to a constraint
violation and potentially results in a failure of the system (Nikolaidis et al., 2004). Such a
problem can be addressed by using the concept of a robust design. Established by Taguchi,
for a robust (or insensitive) design, variations in its response (objective and/or constraint
function) remain acceptable (Taguchi, 1987) for all realizations of input uncertainty.
Applying the robust design concept during the course of optimization, also called robust
optimization, one is able to obtain solutions that are not only optimum but also relatively
insensitive (in terms of objective and constraint functions) to uncertainties (e.g., Deb and
Gupta, 2005; Gunnawan and Azarm, 2005; Li et al., 2006; Ferreira et al., 2008).
Different approximation (metamodeling) techniques are used in the literature, for exam-

ple artificial neural network (Mitra and Majumder, 2011), radial basis function (Ray et al.,
2009), Kriging (Voutchkov and Keane, 2010), among others, for solving multi-objective
optimization problems. The purpose of the approximation is to replace a potentially com-
putationally expensive objective/constraint function with an inexpensive metamodel or
surrogate. To construct a metamodel, a set of sample points needs to be determined, which
is called design of experiment (Sacks et al., 1989). Approximation techniques for multi-
objective optimization can be either offline (Ray et al., 2009) or online (Voutchkov and
Keane, 2010). The main difference between these two is that sample points in an offline
technique are not updated during optimization while the sample points in an online tech-
nique are updated.
In this chapter, two approaches inRMOGA—nestedRMOGAand sequential RMOGA—

are presented. In RMOGA approaches, objective and feasibility robustness measures are
evaluated based on a worst-case analysis. The nested RMOGA was originally developed
by Li et al. (2006), and included a computationally intensive two-level (nested) solution
approach. To address its computational difficulty, the nested RMOGA is improved with a
sequential approach (Hu et al., 2011). It is shown that the sequential RMOGA requires a
significantly less number of function calls than the nested RMOGA. However, both nested
and sequential RMOGA have some limitations, which can be addressed, including: (i) In
both RMOGAs (Li et al. 2006; Hu et al., 2011), objective robustness requires that the
variations (both increasing and decreasing values) in objective functions remain within an
acceptable range.However, in this chapter, the objective robustness is consideredwith a one-
sided variation because in chemical application, the decision maker is typically indifferent
with a variation in the objective function as long as such variation does not degrade the
expected performance. For example, a downside variation in a utility cost implies a cost
reduction, which is desirable. (ii) The nested RMOGA is computationally expensive and
cannot be applied efficiently for chemical applications. An online approximation technique
is therefore integrated with the nested RMOGA in this chapter. In online approximation,
sample points are selected online based on intermediate solutions and used to improve
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the accuracy of the metamodel. The optimum solutions are verified based on the mean
squared error in the true and estimated objective and constraint function values to ensure
they are acceptable. The procedures for the nested and sequential RMOGA with online
approximation are presented and compared. Two case studies (one numerical and the
other based on a petroleum refinery) are used to show the applicability of the approaches
in RMOGA. It is shown that, without using an approximation technique, the optimum
solutions from both RMOGAs are consistent but require a large number of function calls.
However, by using an approximation technique, both RMOGA techniques are able to arrive
at the optimum solutions using a reasonably small number of function calls.
In section 6.2, an overview of related background and definitions is provided. In Sec-

tion 6.3, two RMOGAs are presented and compared with a corresponding online approx-
imation method that is combined with these two techniques. Section 6.4 demonstrates
RMOGAs with two examples. Finally, a conclusion is provided in section 6.5.

6.2 Background and Definition

Ageneral formulation for amulti-objective optimization problem is defined in Equation 6.1:

min
x

f(x, p)

s.t g(x, p) ≤ 0
x ∈ [xl , xu]

(6.1)

In this formulation, x = (x1, x2, . . . , xi) is a vector of i variables and p =
(p1, p2, . . . , pj ) is a vector of j parameters. f = (f1, f2, . . . , fm) represents an objec-
tive function vector and g = (g1, g2, . . . , gn) represents an inequality constraint vector. In
Equation 6.1, the superscripts l and u in variable x represent the lower and upper bounds,
respectively and, while the variables can be changed by an optimizer, parameters are fixed
during an optimization run. However, p (and even x) can have uncertainty (see section 2.2).
The feasible domain in Equation 6.1, denoted by �, consists of the set of points that

satisfy all constraints. For a minimization problem, as in Equation 6.1, a point x1 is said
to multi-objectively dominate x2, if f(x1) ≤ f(x2) for all objective functions with strict
inequality holding for at least one objective function (Miettinen, 1999). A solution point
x ∈ � is non-dominated if there does not exist another solution point y ∈ � that dominates
it. A non-dominated set �, or Pareto solution set (Pareto frontier), is defined as: {x ∈ �|
there does not exist y ∈ � such that y dominates x}.
One way to measure the relative goodness of Pareto frontier is by using the quality

metrics (Wu and Azarm, 2001). The Hyperarea Difference (HD) and Overall Spread (OS)
are the two quality metrics used in this study based on a set of non-dominated points. As
shown in Figure 6.1, HD is represented by the shaded area based on a definition of a good
point (Pgood) and a bad point (Pbad) in the objective space. As HDmeasures the closeness of
the non-dominated points to a good point, the smaller the HD value the better. On the other
hand, OS is defined as the ratio between the rectangle area bounded by the two extreme
points of the non-dominated points {a-f-e-m} to the rectangle area bounded by the good
and bad points. Since OS measures the spread of the set of non-dominated points, the larger
the value of OS is the better the spread of the non-dominated points.
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Figure 6.1 Quality metrics for a set of non-dominated points.

The classical approach for obtaining a non-dominated set for Equation 6.1 is to select
one design objective that is most important as the main objective subject to the other
objectives as constraints (e.g., Ignizio, 1978). An alternative approach is to combine all
design objectives into a single function with a weighted summation. This approach uses
various weights to generate different non-dominated points but suffers from the difficulty
in identifying the entire Pareto frontier (Miettinen, 1999). These methods obtain one Pareto
solution with each optimization run. Instead of obtaining one solution point at a time,
a population-based approach, such as a genetic algorithm, can be combined with a non-
dominated sorting method in order to obtain all the solution points, as detailed below. The
other advantage of GA is that it can solve highly nonlinear optimization problems with
continuous and/or discrete variables and also can obtain a global optimum solution.

6.2.1 Multi-Objective Genetic Algorithm (MOGA)

The MOGA is a population based multi-objective optimization approach first introduced
by Fonseca and Fleming (1993). Due to its meta-heuristic nature, MOGA is capable of
obtaining a good estimate of the Pareto frontier. A good estimate of the Pareto frontier is
one that covers a large portion of the true Pareto front. MOGA operates on a population of
points. Each point defines a chromosome which can be in the form of either a combination
of real-valued variables (real-coded GA) or a binary string (binary-coded GA). The fitness
of each point is a measure of performance of the point as defined by the objective and
constraint functions. If a point violates constraints, the value of the objective function is
penalized. MOGA basically consists of three parts: (i) coding and decoding the points into
chromosome; (ii) evaluating the fitness of each point; and (iii) applying genetic operators
to generate the next generation of points. Among these three parts, the first and third parts
in MOGA are essentially the same as those in a GA (Goldberg, 1989).
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The fitness of each point in MOGA is evaluated by performing a sorting algorithm
based on the value of the objective functions. A commonly used sorting algorithm is Non-
Dominated Sorting (NDS), see, for example, Deb (2001). The NDS procedure, based on a
population of strings (individuals or points), works as follows. First, a non-dominated set
�1 among a population of strings is determined based on their objective function values. All
members in �1 are assigned to the first-rank points. From the remaining points, the set of
non-dominated points�2 is detected and its members are assigned to the second rank. This
procedure is repeated, until the whole population is divided into partitions�1,�2, . . . , �s .
Members in each of these partitions are assigned to ranks 1, 2, . . . , s. Obviously, there
can be more than one element in each of the partitions. In order to establish a distinctive
ranking among the elements of a particular partition, crowding distance sorting can be used
(Coello Coello et al., 2002). Using a crowding distance sorting, individuals that contribute
more to the diversity are assigned higher ranks. In addition to NDS, other sorting schemes
(Knowles and Corne, 1999) can also be used for fitness assignment in MOGA.
A simple penalty method can be used in MOGA to handle constrained multi-objective

optimization problems. Using a penalty method, in minimization problems, the infeasi-
ble points are penalized by adding a large positive value to their original fitness values.
Typically, the penalty value is proportional to their constraint function values. Since the con-
straint values for infeasible points are always positive, highly infeasible points with higher
constraint values are penalized more than the less infeasible points with smaller constraint
values. Other constraint handling techniques (e.g., Kurpati et al., 2002; Qu and Suganthan,
2011) can also be used in MOGA. In general, these constraint handling approaches tend to
consider constraint function values during the fitness assignment stage.

6.2.2 Multi-Objective Robustness with Interval Uncertainty: Basic Idea

It is assumed that, at a candidate point, variables x and parameters p have nominal values.
Let�x and�p represent the interval uncertainty around the nominal x and p, respectively.
This uncertainty range is prespecified, such as�x ∈ [−�xl , �xu] and�p ∈ [−�pl , �pu].
Due to this uncertainty, the value for the objective and constraint functions is changed from
their nominal. Typically, for minimization problems, it is undesirable for an objective
function value to increase. Let�f+ denotes an increase in the value of objective functions:

�f+ = [f(x + �x, p + �p)− f(x, p)]+

=
{

0, if f(x + �x, p + �p) ≤ f(x, p)

f(x + �x, p + �p)− f(x, p), otherwise

(6.2)

where f(x + �x, p+�p) and f(x, p) represent the actual and nominal values for the objective
functions.�f+ is called the objective variation vector and its elements represent the increase
(if any) in each objective function as a result of input uncertainty. To measure the variation
in all objectives with a scalar (single value), the Euclidean norm ‖�f+‖ is used, i.e.,
‖�f+‖ = (

∑m
mi=1 �f 2mi)

1/2, where mi is the index for the objective functions. In solving a
multi-objective optimization problem under interval uncertainty, it is important to obtain
solutions which are not only optimal but also have acceptable increases in all of their
objectives. To achieve this goal, the decision maker can prespecify a positive scalar value
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Figure 6.2 Multi-objective robustness hypothetical case: (a) uncertainty space (b) objective
variation space.

of ηf as the acceptable limit for the objective variations, such that the maximum Euclidean
norm as defined above is smaller than or equal to ηf :

max
�x,�p

∥∥�f+∥∥ ≤ nf (6.3)

The inequality constraint in Equation 6.3 is referred to as multi-objective robustness
constraint. Any candidate point that satisfies Equation 6.3 is considered to be a multi-
objective robust point. A two-diemnsional conceptual representation of multi-objective
robustness with interval uncertainty is shown in Figure 6.2. The uncertainty space in
Figure 6.2(a) has two axes defined by�x and�p, where the grey area represent the known
uncertain interval. Any point inside the grey area in the uncertainty space corresponds to a
realization of uncertainty. For example, as shown in Figure 6.2(a), the point o represents the
nominal point (x, p), and point u, v each represents a realized uncertain value. The entire
gray area in Figure 6.2(a) can be mapped to the objective variation space in Figure 6.2(b)
where the nominal point o′ represents the nominal value for objectives, i.e., f(x, p). It can
be seen that the maximum Euclidean norm of the objective variation vector �f+ is the
distance from the nominal point to the furthest point u′ on the mapped objective variation
range in Figure 6.2(b). Notice that the point u in Figure 6.2(a) is the corresponding point
to point u′ in Figure 6.2(b). The dash-lined circle in Figure 6.2(b) denotes the acceptable
variation range whose radius is equal to ηf .
It should be mentioned that since we are only concerned with the increase in the objec-

tives, any point in the third quadrant in themapped objective variation range in Figure 6.2(b)
(where all objective values are decreased) is unimportant and ignored. However, to calculate
the Euclidean norm of the objective variation for points in the second and forth quadrant,
those points should be projected first to the positive axis as in Figure 6.2(b). For example,
point v′′ is the projection of point v′ in Figure 6.2(b), while the corresponding point for
point v′ is point v in Figure 6.2(a). The Euclidean norm of the objective variation for point v,
i.e., ‖�f+

v ‖, is represented by the horizontal line segment along the�f1 axis. Likewise, all
other points in the second and forth quadrant of the mapped objective variation range (gray
area) in Figure 6.2(b) can be transformed. In this way, in searching for the furthest point
or the maximum Euclidean norm of the objective variation vector, only the first quadrant
(including the transformed points) needs to be considered. Figure 6.2 shows the case in
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which the furthest point on the mapped objective variation range is located in the first
quadrant in the objective variation space. Since the point is within the dashed circle and
max ‖�f+‖ ≤ ηf is satisfied, the candidate point is said to be multi-objectively robust. It
should be noted that the Euclidean norm is maximized with respect to �x and �p. Graph-
ically this means searching for a point in the uncertain interval (gray area) in Figure 6.2(a),
which corresponds to the furthest points (point u) mapped into the first quadrant in the
objective variation space in Figure 6.2(b). This is essentially a worst case approach to
ensure the robustness of a solution point.
Feasibility robustness is defined in a similar way to the definition of multi-objective

robustness, with the following inequality constraint:

max
�x,�p

[
max

n
g(x + �x, p + �p)

]
≤ 0 (6.4)

In this formulation, the outer “max” is for different realizations of uncertainty �x
and �p, while the inner “max” is with respect to different elements of the constraint
functions, g = (g1, g2, . . . , gn). Note that for feasibility robustness, the decision maker is
only concerned with the feasibility of a candidate point (i.e., g ≤ 0), under all realizations of
uncertainty. As shown by the feasibility robustness constraint, Equation 6.4, the left-hand
side represents the worst case constraint value, which should be less than or equal to zero
in order to ensure feasibility. Consequently, any point that satisfies Equation 6.4 is called a
feasibly robust point.
As a final note, both objective and feasibility robustness have been defined earlier

(Gunawan and Azarm, 2005; Li et al., 2006; Hu et al., 2011) for the case when both
positive and negative variations in the objective functions and constraints are considered. In
this way, the variation range must be symmetric for both objective and constraint functions.
However, this symmetric assumption for the variation range can be relaxed to handle
asymmetric variations by specifying two different values of ηf in Equation 6.3. In the next
section, the objective and feasibility robustness are integrated within two MOGAs.

6.3 Robust Multi-Objective Genetic Algorithm (RMOGA)

This section presents two approaches in RMOGA for solving amulti-objective optimization
problem with interval uncertainty. In both RMOGAs, robustness of a solution point is
evaluated based on a worst case analysis. Briefly, the difference between the two approaches
is based onwhen robustness evaluation is carried out. In the nested RMOGA, the lower level
subproblems evaluate robustness of all candidate solution points; while in the sequential
RMOGA, the robustness of each optimal solution point obtained in the upper level problem.
The details of the nested RMOGA (section 6.3.1) and sequential RMOGA (section 6.3.2)
are presented next.

6.3.1 Nested RMOGA

The nested RMORO is formulated as a bi-level optimization framework with an upper level
problem and two lower level subproblems (Li et al., 2006). In the upper level, MOGA
searches the variable space to identify point x which optimizes the objectives; while in the
lower level, a single-objective GA evaluates multi-objective and feasibility robustness of
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each intermediate point considered in the upper-level. The formulations for the upper- and
lower-level problems are given as follows:
Upper level problem:

max
x

f(x, p)

s.t. g(x, p) ≤ 0
max

∥∥�f+∥∥ ≤ ηf

max[max g] ≤ 0
x ∈ [xl , xu]

(6.5)

Lower level subproblems:

max
∥∥�f+∥∥ = max

�x,�p

∥∥[f(x + �x, p + �p)− f(x, p)]+
∥∥

s.t. �x ∈ [−�xl , �xu],�p ∈ [−�pl , �pu]
(6.6)

max[max g] = max
�x,�p

[max
n

g(x + �x, p + �p)]

s.t. �x ∈ [−�xl , �xu],�p ∈ [−�pl , �pu]
(6.7)

The upper level is formulated as a multi-objective optimization problem as in Equa-
tion 6.1, except that the multi-objective and feasibility robustness constraints, as defined in
Section 6.2.2 are added. Notice that in Equation 6.5 the left-hand side of the inequalities
of multi-objective and feasibility robustness constraints, i.e., max ‖�f+‖ and max[max g]
must be evaluated in the lower-level sub-problems. As shown in Equation 6.6 and Equa-
tion 6.7, the lower level includes two single-objective optimization subproblems where
the value for the nominal design denoted by x is fixed. Essentially, the first optimization
subproblem obtains the maximum Euclidean norms of increase in the objective vector, i.e.,
max ‖�f+‖ and the second optimization subproblems obtains the worst case constraint
value, i.e., max[max g].
The nested RMOGA works as follows: MOGA first generates a population of points in

the upper level problem. In order to assign fitness to each point, MOGA needs to calculate
the value of objective and constraint functions. Since the multi-objective and feasibility
robustness constraint in Equation 6.5 needs to be evaluated in the lower level subproblems,
MOGA must forward the nominal value of a current point (from the population), as
denoted by a vector x, to the lower-level. Once the lower-level sub-problems receive x,
the optimization problems in Equation 6.6 and Equation 6.7 are solved with respect to
�x and �p using a single-objective GA. The optimal value from the two subproblems,
i.e., max ‖�f+‖ and max[max g] are obtained and returned to the upper level problem to
complete constraint evaluation for the current point x. The same procedure (solving the
two lower-level subproblems) is repeated for all other points in the MOGA population.
Next, MOGA ranks each point in the current population based on the values of objective
and constraint functions (including multi-objective and feasibility robustness constraints).
Finally, the fitness of each point is determined, and this completes one MOGA generation.
Subsequently, MOGA continues with many generations until some stopping criteria have
been satisfied. Typical stopping criteria in the nested RMOGA are: (i) maximum number
of generations or function calls is completed; (ii) no improvement in the Pareto solutions
from one generation to the next is obtained. Note that in MOGA as well as in RMOGA,
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one function call refers to a single instance of evaluating the optimization model—that is,
a single instance of evaluating together all objective and constraint functions.
The RMOGA presented in this section is called ‘nested’ because the two lower level

subproblems are nested within an upper level problem. With a population-based approach
used in the nested RMOGA, the computational effort required by the nested approach grows
exponentially as the number of points in the population increases, which is the case when
the number of variables increases. In the next section, a sequential RMOGA is presented,
which is more efficient than the nested RMOGA approach.

6.3.2 Sequential RMOGA

The sequential RMOGA (Hu et al., 2011) is developed to improve the computational
efficiency of the nested RMOGA. This approach is iterative and each iteration involves two
steps. In the first step, a deterministic multi-objective optimization problem is solved to
obtain a set of optimal solutions; while in the second step, the robustness is evaluated for
each optimal solution obtained from the first step. These two steps are alternated iteratively
to obtain the robust optimum solutions. The formulation for the optimization problems in
the two steps is given in the equations below:
First-step problem:

min
x

f(x, p)

s.t.
∥∥[f(x + �x, p + �p)− f(x, p)]+

∥∥ ≤ ηf ,∀�x,�p ∈ Sf

g(x + �x, p + �p) ≤ 0,∀�x,�p ∈ Sg

x ∈ [xl , xu]

(6.8)

Second-step problems:

max
�x,�p

∥∥[f(x + �x, p + �p)− f(x, p)+]
∥∥ ≤ ηf

s.t �x ∈ [−�xl , �xu],�p ∈ [−�pl , �pu]
(6.9)

max
�x,�p

[max
n

g(x + �x, p + �p] ≤ 0
s.t. �x ∈ [−�xl , �xu],�p ∈ [−�pl , �pu]

(6.10)

Suppose that the deterministic optimization problem of Equation 6.8 obtains np number
of Pareto-optimum solutions. After robustness evaluation is performed for each Pareto-
optimum solution, there will be np number of �x, �p values obtained from Equation 6.9.
These�x,�p values are returned to the deterministic problem in Equation 6.8 and inserted
in the set Sf . Likewise, np number of �x, �p values are inserted in the set Sg . These are
defined as: Sf = {0,�xf

1 ,�pf

1 , . . . ,�xf
s ,�pf

s } and Sg = {0,�xg

1,�pg

1, . . . ,�xg

k ,�pg

k },
where s and k represent the total number of �x, �p values in Sf and Sg , respectively.
The improved MORO repeats the first and second step for a number of iterations and the
�x, �p values in either Sf or Sg are accumulated, so both s and k can be larger than
np. In this way, the number of constraint functions defined by ‖[f(x + �x, p + �p)−
f(x, p)]+‖ ≤ ηf ,∀�x,�p ∈ Cf is m × (s + 1) and the number of constraints defined by
g(x + �x, p + �p) ≤ 0,∀�x,�p ∈ Sg is n × (k + 1) wherem and n represent the number
of objective and constraint functions, respectively. Notice that the robustness evaluation
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in Equation 6.9 and Equation 6.10 is similar to the lower-level subproblems in the nested
RMOGA, as defined in Equation 6.6 and Equation 6.7.
The iterative process for the sequential RMOGA is as follows:

• First iteration: at the beginning, Sf = Sg = {0}, which means that in the first step, Equa-
tion 6.8 reduces to the original multi-objective optimization problem in Equation 6.1.
The Pareto-optimal solutions from Equation 6.8 are obtained. In the second step, the
robustness for the Pareto optimum solutions from the first step is evaluated. This robust-
ness evaluation is performed by solving Equation 6.9 and Equation 6.10 for each of
the Pareto optimum solutions obtained. Solving each of the maximization problems in
Equation 6.9 and Equation 6.10 globally, the optimum value of�x,�p is obtained. This
essentially is the worst value of �x, �p considering the variation in the objective and
constraint functions. The two pairs of worst values of �x, �p, one from Equation 6.9
and the other from Equation 6.10, are inserted in Sf and Sg , respectively. The robustness
evaluation is performed for the remaining Pareto optimum solutions one by one. By the
end of the second step for all Pareto optimum points in the first iteration, there are an
equal number of worst values of �x, �p in Sf and Sg . Finally, based on the robustness
evaluation—whether the inequality in Equation 6.9 and Equation 6.10 are satisfied, the
robust solutions are identified while the nonrobust ones are discarded. This completes a
single iteration in the improved MORO.

• Second iteration: sequential RMOGA repeats the previous steps in the first iteration
except that both Sf and Sg now contain the worst values of �p, from the previous
iteration. In this way, the problem in Equation 6.8 has more constraints and becomes
more restricted compared to that the one in the first iteration. As a result, the Pareto-
optimal solutions from Equation 6.8 may be different from those obtained in the first
iteration.Again, the robustness for eachPareto optimumsolution obtained in this iteration
is evaluated, and additional worst values of �x, �p are added to Sf and Sg . The robust
Pareto solutions obtained from the second iteration are combined with those from the
first iteration, and this completes the second iteration in the sequential RMOGA.

• Remaining iterations: the same procedure as in the above iterations is repeated for a
number of iterations until the following stopping criteria are satisfied: (i) a maximum
number of function calls is reached; (ii) no improvement in the Pareto solutions from
one iteration to the next is obtained.

Ideally the number of worst values of �x, �p in Sf and Sg should be the same. This
is because in the second step, Equation 6.9 and Equation 6.10 are used to evaluate multi-
objective and feasibility robustness constraints respectively for the same set of Pareto
optimum solutions. Let np be the number of Pareto optimum solutions, then the total
number of optimum solutions obtained from either Equation 6.9 and Equation 6.10 should
be equal to np. Although the number of �x, �p in Sf and Sg can be equal, the value
of �x, �p obtained from Equation 6.9 is not the same as the values of �x, �p from
Equation 6.10. Therefore, the set Sf must be different from Sg . Furthermore, some values
of �x, �p in either Sf or Sg can be redundant. Therefore, duplicate copies of �x, �p
values are eliminated by the end of each iteration, and thus the total number of �x, �p
values, as represented respectively by s and k, are also different.
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6.3.3 Comparison between Nested and Sequential RMOGA

There are several differences between the nested and sequential RMOGA: (i) by comparing
Equation 6.5 with Equation 6.8, it is noted that all constraints in the first-step problem
of the sequential RMOGA are explicitly defined as the sample sets κ , μ and λ, ν are
already known. However, this is not the case in the upper level problem in the nested
RMOGA where the constraint values (the left-hand side of multi-objective and feasibility
robustness constraints, i.e., max ‖�f+‖ and max[max g]) must be evaluated by solving
two lower-level subproblems. In this way, solving the first-step problem in Equation 6.8
is much more efficient than solving the upper level problem in Equation 6.5. (ii) In the
nested RMOGA, the upper level problem in Equation 6.5 is solved by MOGA only once
during the entire procedure. Because the upper level problem evaluates multi-objective
and feasibility robustness constraints for all intermediate points in the population, the
solutions from upper level problems include only robust solutions. In the sequential
RMOGA, the first-step problem in Equation 6.8 is solved by MOGA and produces
some candidate optimal solutions. Because the first-step problem does not evaluate
multi-objective and feasibility robustness constraints, the solutions from the first-step
problem are not necessarily robust solutions. Therefore, the second-step problems are
used to evaluate robustness for the candidate optimal solutions obtained from the first-step
problem. (iii) In the nested RMOGA, the lower level subproblems defined in Equation 6.6
and Equation 6.7 does not evaluate multi-objective and feasibility robustness constraints;
they just provide max ‖�f+‖ and max [max g] values for the upper-level problem. On the
other hand, the second-step problems in Equation 6.9 and Equation 6.10 in the sequential
RMOGA evaluate multi-objective and feasibility robustness constraints. In addition, the
second-step problems provide the optimal solutions—�x̃ and �p̃ as sample values to the
first-step problem.
Because of the differences between the two RMOGA approaches as listed above, the

sequential approach requires considerably less computational effort and can be more effi-
cient than the nested approach. On the other hand, and in general, the sequential RMOGA
may not be able to obtain all robust solutions that can be obtained by the nested RMOGA.
One can compare the required number of function calls by the nested and sequential
RMOGA as follows: suppose all optimization problems in both nested and sequential
RMOGA use the same number of generations and population size for MOGA and GA. Let
ng be the generation and nps be the population size. In the sequential RMOGA, let nt rep-
resents the number of iterations and ns represents the average number of optimal solutions
obtained from the first-step subproblems. Then the total number of function calls for the
nested RMOGA is of the order�(n2g × n2ps) while the total number of function calls in the
sequential RMOGA is of the order�[nt × (ng × nps + ns × ng × nps)] which has the same
order of magnitude as �[nt × ns × ng × nps)]. The number of iterations in the sequential
RMOGA is much smaller than the number of generations of GA, for example as shown in
the case-study section, the iteration of sequential RMOGA is 5 while the GA generation
is 50. The average number of optimal solutions must also be smaller than the population
size. Since nt < ng and ns < nps , it follows that �(nt × ns × ng + nps) < �(n2g × n2ps).
Therefore, the number of function calls by the sequential RMOGA can be significantly less
than that by the nested RMOGA.
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Nevertheless, both the nested and sequential RMOGA can become computationally
expensive. To reduce their computation effort, an online approximation approach is devel-
oped and combined with both the nested and sequential RMOGA, as described next.

6.4 Online Approximation-Assisted RMOGA

In general, an approximation technique consists of three main steps: sampling, metamodel-
ing and verification. The sample space is a multi-dimensional space in which the coordinate
axes represent the variables of an optimization. In sampling, a number of points are selected
from the sample space and then their objective and constraint function values are obtained
(or “observed”). Approximation can be done both offline or online. For example, offline
sample points can be selected based on space-filling criteria (Koehler, 1996) and done
before the optimization process is initiated; while online sample points are determined
adaptively in order to satisfy certain goals. In RMOGA one important goal is to locate and
observe a limited number of sample points while satisfying the accuracy for all objective
and constraint functions. Typically, an online sampling technique requires fewer number of
sample points than an offline technique to achieve the same accuracy. Based on the sample
points, the next step is metamodeling, which constructs metamodels to approximate the
objective and constraint functions. Many metamodeling techniques have been successfully
applied in engineering optimization problems (Wang and Shan, 2007), for example Kriging,
radial basis function, neural network, multivariate adaptive regression splines etc. Specially,
Kriging is a Gaussian interpolation method that is reliable and consistent in building accu-
rate metamodels (Sacks et al., 1989). Using the metamodels of the objective and constrain
functions, the approximation-assisted optimization is able to obtain an estimate of the opti-
mum solutions. The final step in approximation is to verify the accuracy of these estimated
solutions. In the following, the steps in online approximation assisted RMOGA approaches
are first presented. The sampling in online approximation in discussed in section 6.4.2 and
metamodeling and verification are presented in section 6.4.3. Finally, in section 6.4.4, the
sample selection and filtering strategy in online approximation in RMOGA is provided.

6.4.1 Steps in Approximation-Assisted RMOGA

The flowcharts for approximation assisted RMOGA approaches are illustrated with the flow
diagram in Figure 6.3(a) for the nested approach and in Figure 6.3(b) for the sequential
approach.
For the nested RMOGA, Figure 6.3(a), initially the metamodels for the objective and

constraint functions are generated in the “Offline approximation” block based on a space-
filling (offline) technique. The metamodels are forwarded to the “Nested RMOGA” block
in which upper- and lower-level problems, as defined in Equation 6.5 and Equation 6.6
are solved. When the nested RMOGA obtains an estimated set of optimum solutions, it
sends them to the ‘Online approximation’ block, in which the online sample points are
determined (discussed in section 6.4.2). Next, the online samples are combined with the
previous (offline) samples and used to update the metamodels. While the stopping criteria
(discussed in section 6.3.1) are not satisfied, the updated metamodels are returned to the
‘Nested RMOGA’ block and the previous steps are repeated. For the sequential RMOGA,
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Figure 6.3 Flow diagram for online approximation assisted RMOGA: (a) nested approach,
(b) sequential approach.

as in Figure 6.3(b), it also starts with the “offline approximation” block. However, because
the sequential RMOGA needs to iterate between its first-step and second-step problems,
the “online approximation” step is performed at the end of each iteration of sequential
RMOGA as shown in Figure 6.3(b). Notice that this is different in the nested RMOGA
where online approximation is performed after nested RMOGA obtains the final estimated
optimum solutions.
One comment in online approximation is that the sample space in RMOGA is a combina-

tion of both variables and uncertain parameters space. To determine the values of variables
for each online sample point, the approximation technique uses the optimum value of
variables from each optimal solution. The values of uncertain parameters for the sample
points are determined in two different ways in the nested and sequential RMOGA. In the
nested RMOGA, samples for the parameters are generated in a Latin Hypercube around
each nominal point. However in the sequential RMOGA, the first-step problem determines
the optimum values of variables and the second-step problem obtains the optimum values
for the parameters. The optimum value for parameters from the second step are paired with
the optimum value of variables and used for online sampling.

6.4.2 Sampling

The online approximation in both RMOGA approaches is based on a two-stage sampling
strategy which combines both offline and online sampling. The first-stage samples are
placed offline in the entire sample space using a space-filling sampling method before
RMOGAstarts. The second-stage samples are placed online based on the optimum solutions
generated by RMOGA. The detail of the two-stage sampling strategy is presented below.
The offline samples are generated initially based on a commonly used space-filling

sampling technique called Latin Hypercube Sampling (LHS) (Koehler and Owen, 1996).



170 Multi-Objective Optimization in Chemical Engineering

These sample points are used to construct a metamodel for each objective and constraint
function required by RMOGA. Note that each sample point needs to be observed once for
all functions. Using the metamodels of the objective and constraint functions, RMOGA
obtains a set of estimated optimal solutions. From these estimated optimal solutions, a few
solution points are selected (the selection scheme is presented in section 6.4.4) and observed,
which are designated as the online samples. Both online and (previously obtained) offline
samples are combined and used to reconstruct/update the metamodels for the objective and
constraint functions. Once the metamodels are updated, online sampling is repeated until
RMOGA progressively approaches the true optimum solutions.
One motivation to use the estimated optimum solution for online sampling is that they

are potentially located close to the true optimum solutions. By observing the online sample
points, the accuracy for all objective and constraint functions in the nearby region can be
expected to be significantly improved. This will be beneficial for RMOGA to obtain a good
estimate of the Pareto optimum solutions.

6.4.3 Metamodeling and Verification

In the online approximation-assisted RMOGA, Kriging is used as the metamodeling tech-
nique for all the objective and constraint functions. Let y(x) represents an objective or
constraint function that should be approximated; the Kriging model is presented as:

y(x) = δ + Z(x) (6.11)

where x is a point (vector) in the sample space, δ is a known global function and Z(x) is
the realization of a Gaussian random process with mean zero and variance σ 2 (Koehler
and Owen, 1996). While δ captures the overall trend of the Kriging model, Z(x) is used
to represent a local deviation from the global function. Typically, the sample points are
interpolated with the Gaussian random function to estimate the stochastic process. Given a
total number of n sample points, the covariance of Z(x) at two sample points xi and xj can
be expressed as in Equation 6.12:

Cov[Z(xi), Z(xj )] = σ 2R(xi , xj ) (6.12)

where R(xi , xj ) is the Gaussian correlation function between sample points xi and xj . The
Kriging predictor is given in Equation 6.13:

ŷ(x) = δ̂ + r′R−1(y − 1δ̂) (6.13)

where ŷ is the predicted (metamodel) value (predictor) of y and δ̂ is the predicted value of
δ, which is the expected value of the posterior process. R is a n × n matrix whose (i, j)
element is Cov[Z(xi), Z(xj )], r (with prime superscript for transpose) is the vector whose
ith element expressed as:

ri(x) = Cov[Z(x), Z(xi)] (6.14)

Based on the Kriging model, an estimated mean square error (mse) at an unobserved
point is given in Equation 4.5:

mse(x) = σ 2(1+ cRc′ − 2cr) (6.15)

where c is a vector ofKriging coefficients. Based onEquation 6.15, theKrigingmse accounts
for the correlations between an unobserved point and the sample (observed) points. Since the
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correlation between points decreases as the distance between them increases, an unobserved
point with a large Kriging mse indicates a poor correlation with the existing sample points.
In this way, the predicted function values at such a point can be inaccurate. In the online
approximation assisted RMOGA approaches, the mse at the estimated optimal solutions
are calculated using Equation 6.15. In case that the error is larger than a user-specified
tolerance value, additional sample points should be considered and observed in order to
increase the accuracy of the metamodel.

6.4.4 Sample Selection and Filtering

According to the steps of the approximation assisted RMOGA, as in section 6.4.1, a
large number of (intermediate) estimated optimum solutions are generated from the online
approximation. It is impractical to observe all the estimated optimum solutions, so it is
necessary to prioritize the optimum solutions and only observe a subset among them. One
way to rank the optimum solutions is by using the mse, which can be calculated from
Equation 6.15. From a sampling point of view, it is more desirable to observe a sample with
relatively larger mse in order to improve the overall accuracy of the approximation.
On the other hand, as multiple functions (objective and constraint) need to be approx-

imated through Kriging at each unobserved point, it is important to define a scalar as a
measure of the overall accuracy for the estimated functions as shown in Equation 6.16:

error =
(∑

mse2f +
∑

mse2g
)1/2

(6.16)

where msef and mseg represent the Kriging mse’s of the objective and constraint functions
respectively. It should be mentioned that the values of the objective and constraint functions
must be normalized so their Kriging mse calculated from Equation 6.15 are in the same
scale—for example, the values of objective and constraint functions can be normalized
using the largest absolute values for corresponding functions. Based on the calculation
from Equation 6.16, an estimated optimum solution with the largest error is ranked first
followed by the one with the second largest error, and so on. Based on the ranking of
the optimum solutions, one can select (using the error-based ranking) one or a number of
solution points to observe during the online approximation in RMOGA.
In addition to the scheme in selecting the estimated optimum solutions, a sample filtering

is also included in the online approximation to prevent clustering of sampled points. When
the distance (measured in the sample space) between a new sample and a previous sample
point is less than a threshold value, the new sample point is eliminated. In approximation
assisted RMOGA, the following filtering criterion can be used: ‖xn − xe‖ ≥ ε, where xn

refers to a new sample point and xe refers to any existing sample points. ‖·‖ denotes the
Euclidean norm (distance) between two vectors in the sample space, and ε is a user defined
threshold value specifying the minimum acceptable distance between two sample points.
As a general rule, the threshold is selected such that it is at least larger than half of the
shortest distance among existing sample points (measured pairwise). The computational
costs of the optimization models must also be considered in selecting the threshold ε.
When the objectives and constraint functions are computationally expensive to compute,
the value of ε needs to be increased in order to reduce the number of online samples. After
additional sample points are determined and the actual simulations are evaluated to obtain
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Table 6.1 Genetic algorithm parameter settings.

Parameter Upper level/first step Lower level/second step

Population size 15i 15j
Maximum generation 50 50
Elite numbera 1(i < 5)2(i > 5) 1
Crossover probability 0.9 0.9
Mutation probability 0.1 0.1

a i and j are the number of variables and uncertain parameters, respectively

the response values, these sample points are added to the current set of sample points.
Finally, the updated sample points are used to update the metamodels.

6.5 Case Studies

In this section the results for the application of RMOGA to one numerical and one engi-
neering example are presented. For both nested and sequential RMOGA, the maximum
number of iterations is set equal to 5 to allow a sufficient number of robust solutions
is obtained. The multi-objective genetic algorithm of MATLABTM “Global Optimization
Toolbox” version 2010a (Mathwork, 2010) is used as the optimizer. Parameter settings for
the genetic algorithm in all examples are shown in Table 6.1.
Kriging (Koehler and Owen, 1996) is used for constructing metamodels in all examples,

where a second order polynomial function is selected to build the regression model and
a Gaussian function is used for the correlation model. The initial offline samples are
generated using a Latin Hypercube Sampling (LHS) (Koehler and Owen, 1996) technique
with (N+1)(N+2)/2 number of samples (minimum requirement), where N is the total
number of variables and uncertain parameters.

6.5.1 Numerical Example

The first example, well known in the literature as ‘TNK’, is a numerical bi-objective
optimization problem adapted from a previous work (Deb, 2001). The problem formulation
is shown in Equation 5.1:

min f1 = x1
min f2 = x2

s.t g1 = 1+ 0.1 cos
(
16 arctan

x1

x2

)
+ 0.2 sin(p1) cos(p2)− x21 − x22 ≤ 0

g2 = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5
0 < x1, x2 ≤ π

(6.17)

This optimization problem has two design variables and two uncertain parameters. The
nominal values for both parameters are 1, i.e., p1 = p2 = 1. The feasible domain is defined
by the non-convex area within two inequality constraints g1 and g2. The optimum solutions
to the problem in Equation 6.17 are obtained using a deterministic MOGA and shown as in
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Figure 6.4 Optimum solutions in numerical example (TNK).

Figure 6.4. Notice that these solutions are located along the boundary of constraint g1. Due
to the non-convexity of g1, as shown in Figure 6.4, the Pareto frontier of the deterministic
MOGA solutions consists of three discontinuous sections.
By considering interval uncertainty in the parameters, the optimization problem in Equa-

tion 6.17 can be formulated using the nested RMOGA as an upper level problem and a
lower-level sub-problem in Equation 6.18 and Equation 6.19 respectively:

min f1 = x1
min f2 = x2

s.t g1 = 1+ 0.1 cos
(
16 arctan

x1

x2

)
+ 0.2 sin(p1) cos(p2)− x21 − x22 ≤ 0

g2 = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5
max
�p
[max(g1, g2)] ≤ 0

0 < x1, x2 ≤ π

(6.18)

max
�p
[max(g1, g2)] = max

�p
1+ 0.1 cos

(
16 arctan

x1

x2

)
+ 0.2 sin(p1 + �p1) cos(p2 + �p2)− x21 − x22

s.t �p1,�p2 ∈ [−2, 2]
(6.19)

where�p1 and�p2 represent the uncertainty in the parameters and their uncertainty ranges
are both between ±2, as specified in Equation 6.18. Notice that the upper level problem in
Equation 6.18 reduces to the original formulation in Equation 6.17 when�p1 = �p2 = 0.



174 Multi-Objective Optimization in Chemical Engineering

Because there is no uncertainty in the objective functions and constraint g2, only feasibility
robustness for constraint g1 is considered in this example. The lower level subproblem in
Equation 6.19 is essentially a single-objective maximization of g1. On the other hand, the
optimization problem in Equation 6.17 can also be formulated using the sequential RMOGA
as first- and second-step problems in Equation 6.20 and Equation 6.21 respectively:

min f1 = x1
min f2 = x2

s.t. g1 = 1+ 0.1 cos
(
16 arctan

x1

x2

)
+ 0.2 sin(p1 + �p1) cos(p2 + �p2)

− x21 − x22 ≤ 0,∀�p1,�p2 ∈ Sg

g2 = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5
0 < x1, x2 ≤ π

(6.20)

max
�p

1+ 0.1 cos
(
16 arctan

x1

x2

)
+ 0.2 sin(p1 + �p1) cos(p2 + �p2)

− x21 − x22 ≤ 0
s.t. �p1,�p2 ∈ [−2, 2]

(6.21)

where Sg represents a set of �p1 and �p2 values in the uncertain interval. As mentioned
earlier, Sg is determined after robustness evaluation in Equation 6.21. Next, the optimization
problem defined in Equation 6.18 and Equation 6.19 (nested formulation), and that in
Equation 6.20 and Equation 6.21 (sequential formulation) are solved. For comparison, the
nested and sequential RMOGA approaches are each applied for the numerical example
with and without using the online approximation technique. When online approximation
is used, the metamodels are developed only for the constraint functions but not for the
objective functions due to the simplicity of the objective functions. The number of initial
(offline) sample points is 15. To account for the randomness in GA, all RMOGA approaches
were repeatedly run ten times, among which the best solutions are selected and plotted in
Figure 6.4. Notice that the ‘Nested RMOGA’ and ‘Sequential RMOGA’ in Figure 6.4 refer
to the approaches without using online approximation.
According to Figure 6.4, the optimal solutions from both RMOGA approaches are

inferior to the deterministic solutions, which are expected because the robust solutions are
typically more conservative than the deterministic ones. On the other hand, the optimal
solutions from both nested and sequential RMOGA approaches, either with or without
using the online approximation are generally consistent in the objective space. Table 6.2 and

Table 6.2 Comparison between nested and sequential RMOGA for the numerical example.

Nested RMOGA Sequential RMOGA

Mean Std. Mean Std.

Num. function evaluations 1,897,820 0 11,411 1164
Hyperarea difference (HD) 0.602 0.04 0.534 0.01
Overall Pareto spread (OS) 0.272 0.09 0.445 0.03
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Table 6.3 Comparison between approximation-assisted RMOGA approaches for the
numerical example.

Nested RMOGA Sequential RMOGA

Mean Std. Mean Std.

Num. online samples 95 7.6 26 5.4
Hyperarea difference (HD) 0.587 0.03 0.581 0.04
Overall Pareto spread (OS) 0.392 0.03 0.340 0.08

Table 6.3 compared the obtainedmean value and standard deviation information for different
RMOGA approaches. When online approximation technique is not used (Table 6.2), the
nested RMOGA requires a large number of function calls; while the sequential RMOGA
requires considerably (about two orders of magnitude) less function calls. The quality
metrics (Wu and Azarm, 2001): Hyperarea Difference (HD) and Overall Pareto Spread
(OS) are calculated to measure the goodness of the Pareto solutions. It is found that
the optimal solutions obtained from the sequential RMOGA are slightly better than the
solutions obtained from the nested RMOGA because the lower level subproblem in the
nested RMOGA makes it more restricted.
For the RMOGA approaches with online approximation (Table 6.3), the number of

sample points can be taken as the counterpart of the number of function calls in RMOGA
approaches without using online approximation. It is observed that both approximation-
assisted RMOGA approaches significantly reduce the number of calls for the evaluation of
the constraint functions. On average, the nested RMOGA converges in three iterations with
95 online sample points (excluding the initial 15 samples); while the sequential RMOGA
requires far fewer sample points but needs more iterations to converge. The maximum
root mean square errors calculated from the Kriging model (recall Equation 6.15) for the
final optimal solution in both approximation-assisted RMOGA approaches are reasonably
small. Based on the quality metrics calculated in Table 6.3, it is again observed that the
optimal solutions from the sequential approach are slightly better than the solutions from
the nested approach in online approximation assisted RMOGA. A separate validation using
Monte Carlo simulation on all the final solutions was also performed to ensure feasibility
robustness for the optimal solutions are satisfied. Finally, the mean squared errors for
optimal solutions from both approximation assisted RMOGA approaches are computed,
which are found to be less than the acceptable value (0.01).

6.5.2 Oil Refinery Case Study

In the second case study, a typical crude oil refinery is considered, and the nested and
sequential RMOGA approaches are employed for optimization. The refinery consists of
common unit process/operations, and nonlinear correlations are used to predict the yields
and properties of the products of each unit. The units in this refinery case study are:
(i) crude distillation unit; (ii) delayed coker; (iii) hydrocracker for heavy vacuum gas
oils; (iv) hydrotreater for light vacuum gas oils; (v) fluid catalytic cracking unit (FCCU);
(vi) hydrotreater for heavy straight run naphtha: (vii) catalytic reformer; (viii) light naphtha
hydrotreater; (ix) isomerization unit.
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Figure 6.5 Schematic of refinery model.

The schematic of the oil refinery is shown in Figure 6.5. The flow diagram depicts
various unit processes and flows of intermediate product streams. The products from the
crude distillation unit are lower straight run (LSR) naphtha, higher straight run (HSR)
naphtha, straight run diesel (SRD), kerosene, light vacuum gas oil (LVGO), heavy vacuum
gas oil (HVGO) and vacuum residue (VacResid). The vacuum residue is further processed
in the delayed coker to get the lighter fractions. The heavy vacuum gas oils are hydrocracked
in the hydrocracker to get light naphtha and heavy naphtha fractions. The LVGO, HSR and
LSR are hydrotreated to reduce the sulfur contents and further treated in FCCU, catalytic
reformer and isomerization unit respectively to get the products of interest. All naphtha is
sent to the blending pool to get the gasoline for the required grade.
The simulation of the described refinery is done through MATLAB and simple nonlinear

correlations are used. The flow rate of crude oil to the crude distillation unit is assumed to
be fixed with a value of 100 000 BPD. For simplicity, the schematic in Figure 6.5 does not
include the utility units such as steam, cooling water and electricity. The storage facilities
such as crude oil and intermediate product storage tanks are also not shown.
The refinery model is formulated as a MOO problem as described in Equation 6.22.

The two objectives are to maximize the product flow rate f1 and to minimize the cost f2.
Both objectives can be evaluated from the refinery simulation model for a given set of
design variables. The variables considered for optimization are the six cut temperatures
(ti , i = 1, . . . , 6) in the crude distillation unit. The lower and upper bounds for the cut
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temperatures are given in Equation 6.22. It is assumed that t2 and t3 are uncertain and the
uncertainties are represented by �ti , j = 1, 2, and the range of uncertainties are between
± 10% of their nominal cut temperature values.

max f1(ti) = flow rate of light naphtha(bb1/day)

min f2(ti) = total cost($/day)

s.t.
∥∥[fm(ti , �tj )− fm(ti)]+

∥∥ ≤ ηf

∀�tlj ≤ �tj ≤ �tuj , j = 1, 2,m = 1, 2

162 ≤ t1 ≤ 198
360 ≤ t2 ≤ 440
477 ≤ t3 ≤ 583
585 ≤ t4 ≤ 715
810 ≤ t5 ≤ 950
950 ≤ t6 ≤ 1155

(6.22)

In the refinery example, the absolute value for the two objective functions are not on the
same scale—for example, the flow rate of light naphtha and total cost are in the order of
104 and 106 respectively. As such, the original value of the flow rate and total cost are first
normalized to a value of unity using normalizing factors 105 and 107, respectively. The
advantage of normalization is that using a Euclidean norm to restrict the objective variation
as shown by the inequality constraint in Equation 6.22, will give equal importance for both
objectives. The acceptable variation limit ηf is specified as 0.1 in the refinery example.
The optimization problem given in Equation 6.22 is solved using both the nested and the
sequential RMOGA approaches. For comparison purposes, the deterministic optimal solu-
tions (assuming no uncertainty in the input) are also obtained. Both RMOGA approaches
are run for a total of ten times and a best set of optimal solutions out of the ten runs are
selected for each approach. The best sets of optimal solutions for both RMOGA approaches
are plotted in the objective functions space in Figure 6.6. It can be seen that the optimal
solutions for the refinery example from both RMOGA approaches are consistent as well.
It is also observed that the deterministic optimal solutions are better than both RMOGA
approaches in achieving maximum flow rate of light naphtha, while the uncertainty in the
cut temperature seems to have little effect on the daily total cost.
The average value and standard deviation of the optimal solutions based on the ten runs

for each of the RMOGA approach are shown in Table 6.4. The average number of iterations
for both RMOGA approaches in the refinery example is three. In terms of the quality of
the obtained Pareto frontier, the sequential RMOGA performs slightly better (with a higher

Table 6.4 Comparison between nested and sequential RMOGA for the refinery example.

Nested RMOGA Sequential RMOGA

Mean Std. Mean Std.

Hyperarea difference (HD) 0.676 0.02 0.660 0.01
Overall Pareto spread (OS) 0.177 0.07 0.219 0.05
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Figure 6.6 The optimal solutions for the refinery example.

spread) than the nested approach. The number of total samples in both approaches is 28.
Based on the mean squared error in the approximated objective functions (less than 0.001),
Kriging provides good accuracy in both RMOGA approaches. This is possibly due to the
good characterization of the polynomial relationship between the input and output variables
in the refinery model.

6.6 Conclusions

In this chapter, two RMOGA approaches were presented to address the challenge of opti-
mization under uncertainty and the associated computational cost. Using intervals to repre-
sent the uncertainties in both variables and parameters, RMOGA evaluates the robustness
of solutions in terms of their objective and constraint functions with a worst-case anal-
ysis. It was shown that a sequentially formulated RMOGA can be more efficient than
a nested RMOGA approach. However, the computational cost for applying RMOGA on
many chemical engineering applications can be intractable. To overcome this difficulty,
the online approximation method was integrated with RMOGA to replace a potentially
expensive function with an inexpensive metamodel or surrogate. A specially developed
online sampling technique selects and observes the optimum solutions, and then uses them
as additional samples to improve the accuracy of approximation. This potentially improves
the accuracy of approximated objective and constraint function values at the optimum
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region. Two examples are used to shown the applicability of the RMOGA approaches.
Both approaches in RMOGA are able to obtain a good estimate of the optimum solution
while retaining a reasonably small amount of function calls. In the numerical example, the
optimum solutions from the RMOGA approaches are compared with and without using
online approximation. It is found that using online approximation can significantly reduce
the number of function calls in both RMOGA approaches. The oil refinery case study
shows the applicability of RMOGA in simulation based optimization problems in which
the optimum solutions from both RMOGA approaches are consistent.
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