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7.1 Introduction

The field of deterministic optimization has found many applications in the broad area of
equipment design, the study of various engineering processes, managing supply chain oper-
ations, transportation and logistics from various domains like finance, energy, environment,
telecommunications, drug delivery, molecular design, biological and agricultural sciences,
automobile, engineering and technology, metals, chemicals, textile since the 1960s. A lin-
ear deterministic optimization problem is generally expressed as Minimize “objective”
Cx, subjected to “constraints” Ax ≤ B, where x is the decision variable set, C and A
are the set and matrix of coefficients appearing in the objective function and constraints
respectively and B is a vector of terms of the constraints, which are independent of deci-
sion variable set. The constraints can assume the form of equality or inequality (≤ or ≥)
and the objective function can be of the “Minimize” or “Maximize” type. While solving
the deterministic optimization problems, a general assumption is that the associated data
as well as parameters (A, B and C), other than the decision variables (x), are certainly
known and can be considered as fixed while carrying out optimization. However, during
real-life problem solving, there may be flaws in assuming some or all of these parameters
as constants because they may be exposed to uncertain situations and the results could be
erroneous. Different sources of uncertainties that can change these A, B, Cs with time can
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be categorized as external (for example, fluctuating feed conditions to a process or chang-
ing market demands and prices of products), internal (precision errors during experiments),
and others (for example, modeling errors arising from assumptions due to lack of pro-
cess understanding). The conventional way of handling these uncertainties during design
or operational stage is to overdesign equipment or overestimate operational parameters.
Another popular approach is to solve the uncertain optimization problem in a deterministic
fashion by representing the uncertain parameters by their nominal values. These approaches
generally can lead to solutions that are costly, suboptimal and sometimes infeasible. The
area of stochastic optimization or optimization under uncertainty has, therefore, emerged
in the process systems engineering (PSE) literature with very strong contributions from
various fields [1–6]. Stochastic optimization allows the uncertainty involved in data as well
as parameters to be considered by appropriate methodologies from the field of statistics
and optimization under uncertainty [7–10], which makes it more practical as compared to
deterministic optimization.

7.2 Uncertainty Handling Techniques

There are different methodologies available in the literature for handling uncertainties
[7]. Keeping the scope of this chapter in mind, only a few of them will be discussed
here. Three such commonly used methodologies are stochastic programming (SP), fuzzy
mathematical programming (FMP), and chance constrained programming (CCP) [7]. In
this chapter, CCP will be discussed in details. However, SP and FMP are discussed very
briefly in this section primarily to show the advantages and disadvantages of CCP over
those techniques. Amongst various stochastic programming methodologies, a very popular
method is the two-stage stochastic programming (TSSP) [11–24], where the decision
variables are deployed into two stages. The decision variables in the first stage are to be
decided before the uncertain parameters are realized. So, the decision variables that are
independent of uncertain parameters come under this category. On the other hand, decision
variables that are associated with uncertain parameters belong to the second stage variables,
also known as recourse variables. These decision variables can assume different values for
different realizations of uncertain parameters and can act as a buffer to combat infeasibility
issues appearing because of a particular uncertain parameter realization [25]. Now, the
objective function has both first- and second-stage cost components. Due to the association
of second-stage variables with uncertain parameters, an expectation term appears in the
objective function (second-stage cost component) to take care of different realizations of
uncertain parameters. Moreover, penalty terms are associated with the recourse variable in
the objective function. Minimization of all these cost components as well as penalty terms
becomes the goal in TSSP by appropriately assigning the first stage variables. As the first
stage variables are independent of uncertain parameters, they assume a fixed set of values
as a solution whereas the second-stage variables assume a different set of values, each
one corresponding to different realizations of uncertain parameters. This approach assumes
that the information of variance for the uncertain parameters is available. Distribution of
the uncertain parameters can be discrete or continuous. In case of discrete distribution,
bounded uncertain parameters are divided into several intervals (scenarios) with some
assumed probability of occurrence for each of them and the optimization formulation
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leads to a multiperiod optimization problem. However, the continuous distribution needs
multivariate numerical integration to be performed (either approximate integration through
sampling or direct numerical integration). As the numbers of uncertain parameters and
scenarios increase, the problem size increases exponentially in this approach leading to
unmanageable situations given the finite computational resources. Moreover, dealing with
the recourse variables quite often leads to impractical issues. Sometimes it might not be
easy to decompose the problem into two stage decision variables. On the other hand,
FMP [26–29], proliferated by Zimmermann [30, 31], does not assume prior distribution
information of the uncertain parameters. In this approach, a membership function is defined
representing the extent of constraint violation where a value of 1 for membership function
signifies no violation and a value of zero signifiesmaximumviolationwhereas the values for
intermediate violations are linearly or nonlinearly interpolated in between the two extreme
limits. The demand supply equation (supply ≤ demand) in a chemical engineering supply
chain can be correlated to a situation where the right hand side (demand) is uncertain
and more value of the uncertain parameter (i.e. meeting more demand) is desired from an
enterprise profitability point of view. In this scenario, a decision maker wants to see whether
improvement in the objective function can be achieved by allowing small level of constraint
violation or not—whether more demand can be met by incurring more cost. Here objective
functions are also converted into constraints by introducing auxiliary variables treated in a
similar manner [27]. Incidentally, FMP has control over the problem size when the number
of uncertain parameters increases. Here the challenge lies in utilizing the entire uncertainty
space, which is often reported as only 50% utilization [26, 32].
Unlike SP, CCP [4, 33–37] requires that the constraints should be satisfied with a pre-

defined value of probability, not necessarily for all occasions. The probability of constraint
satisfaction can be linked with the reliability of the solution. To make this complicated
probabilistic formulation more tractable, an equivalent deterministic formulation is derived
that can be tackled using existing optimization techniques. The CCP approaches for tackling
linear systems (uncertain parameters appear in constraints in linear fashion) are achieved
by simple coordinate transformation [38,39]. On the other hand, CCP approaches for non-
linear systems involve calculation of probability of the output constraints when uncertain
parameters appear nonlinearly in the constraints. The use of simulation-based techniques
[40] could be one of the ways to handle this nonlinear issue. Fortunately, CCP also has
control over the problem size when the number of uncertain parameters increases. Gener-
ally, in scenario-based TSSP, a complicated tree structure emerges due to different assumed
realizations of uncertain parameters and their mutual dependencies. This leads to combina-
torial explosion in the number of realized scenarios as the number of uncertain parameter
increases and thereby huge computation time is required to compute the expectation term.
This problem of TSSP is overcome in CCP approach in general by representing uncertainty
in a different manner and the problem size can be kept under control [39]. In a supply-chain
planning problem [39], it has been shown that the problem cannot be solved using TSSP
approach due to an increase in problem size while handling a large number of uncertain
parameters (∼1400) whereas the same problem can be solved using CCP. Emergence of
applications of CCP in PSE literature is relatively recent as compared to its counterpart
(TSSP) [24, 38, 39, 41–48].
In this chapter, several aspects of problem solving using CCP and the underlying theory

will be briefly discussed. The basics of CCP and the treatment of uncertain formulations
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using CCP under different conditions are presented in section 7.3 with simplified examples.
Next, an industrial case study has been presented to demonstrate how a deterministic
formulation of industrial grinding can be adapted to an uncertain formulation to show the
effect of variation in uncertain parameters on optimization results under a multi-objective
scenario in section 7.4. Finally the summary of the work is presented and results are
concluded.

7.3 Chance-Constrained Programming: Fundamentals

In CCP, it is required that the constraints should be satisfied with a predefined probability
value, but not necessarily for all occasions. As uncertain parameters are present in con-
straints, there is no guarantee that the constraint will be satisfied all the time—based on
the realization of uncertain parameters, there is a probability of these constraints being
satisfied. So instead of assuming that the constraints will be satisfied under all realizations
of uncertain parameters, which can be a very conservative approach, there is a certain
probability with which these constraints will be satisfied. In this framework, a standard
optimization formulation with uncertainty parameter vector ξ

Min {f (x) |h (x,ξ ) ≥ 0 } (7.1)

can be expressed as

Min {f (x) |P (hk (x, ξ ) ≥ 0) ≥ p } (k = 1, . . . , u) (7.2)

where f(x), x and ξ represent objective function, decision variable set and uncertain param-
eter set respectively. P is the measure of probability and p∈(0,1] is the level of probability
of constraint satisfaction. A higher p value ensures the system to be more reliable. The set
of feasible x values is progressively reduced when the value of p approaches unity. Based
on the requirements of several constraints being satisfied either individually or together, the
methodology is called individual or joint chance constrained programming respectively.
These two different concepts can be represented as Equations (7.2) and (7.3) respectively.

Min
{
f (x)

∣∣P [(hk (x, ξ ) ≥ 0) (k = 1, . . . , u)
] ≥ p} (7.3)

It is seen that feasibility in the joint chance constrained case entails feasibility in the
individual chance constrained case but the reverse is not true. In the joint chance constrained
case, the deterministic equivalent form incorporates the quantile form on the multivariate
probability distribution considering all the random parameters under consideration. Passing
from joint to individual chance constraints may appear as a complication as that transforms
single inequality into a multiple number (u) of inequalities. As the numerical treatment of
probability functions involving high dimensional uncertain parameters is much more diffi-
cult than in one dimension, the increase in number of inequalities is more than compensated
by a much simpler implementation.
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Assuming (i) a normal distribution for the uncertain parameters, ξ and (ii) uncertain
parameters are separable from the decision variables, the constraints in Equation 7.2 can
be transformed into an equivalent deterministic form:

P (hk (x, ξ ) ≥ 0) ≥ p ⇔ P
(
h̃k (x) ≥ ξk

) ≥ p
⇔ h̃k (x) ≥ ξ̂k := ξ̄k + qpσξk

(7.4)

where ξ k is the random parameter associated with kth constraint, ξ̄k and σξk are the mean and
standard deviation values of the corresponding random parameters and qp is the p-quantile
of the standard normal distribution with zero mean and unit standard deviation (e.g. 97%
probability corresponds to qp = q0.97 = 2.0). The second term in the last equivalence form
of Equation 7.4 (quantile value multiplied by standard deviation) corrects the nominal
requirement, ξ̄k, and provides robustness of the generated optimal operating conditions
under uncertain situations. If the random parameters are not separable from the decision
variable vector x, meaning coefficients of the decision variable vector x in hk(x, ξ ) are also
uncertain, these uncertain parameters in Equation 7.4 should be treated in a similar way. In
such a case, based on whether the uncertain terms are independent or dependent on each
other, the corresponding mean and variance terms are incorporated into the equation in the
same fashion and the deterministic equivalent form is derived. This deterministic equivalent
generally becomes nonlinear as the computation of mean and variance of coefficients of
decision variable leads to nonlinearity in terms of decision variables (see the appendix).
For handling probabilistic constraints efficiently, it is very crucial to have some insight

into their analytical, geometrical and topological structure. Most results in this direction
are concerned with the convexity issues of the resultant deterministic problem in chance
constrained programming approach. It is known that if the individual constraints of the
constraint set h(x, ξ ) is convex and ξ has such a probability density that the logarithm
of which is concave, then P(h(x, ξ ) ≥ 0) is concave and the corresponding probabilistic
constraint may be convex [33, 34]. Otherwise, the resultant deterministic form may not
be convex and issues related to this should be treated either with proper convexification
approaches or with various global optimization techniques, conventional or evolutionary
methods, for handling the resultant nonlinear programming problem (NLP) problems.
Now, we explain the concepts presented above in the form of a simple fleet design

example taken from literature [30,31]. While deciding on the size and structure of its truck
fleet, a certain company wants to minimize cost while supplying all customers who have
strong seasonally fluctuating demand considering the four trucks x1, x2, x3, x4 of different
sizes. The corresponding linear programming problem (the deterministic version) in (Min
Cx, Ax ≥ B) form is

Min 41400x1 + 44300x2+48100x3 + 49100x4
s.t.

0.84x1 + 1.44x2 + 2.16x3 + 2.4x4 ≥ 170
16x1 + 16x2 + 16x3 + 16x4 ≥ 1300
x1 ≥ 6
x2, x3, x4 ≥ 0

(7.5)
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Table 7.1 Solution of the Zimmermann problem under uncertainty.

Attribute
Deterministic

(a)

Uncertainty in
B vector

(b)

Uncertainty in A,
B, C vector

(c)

qp 0 1.0 1.3
x1 0 0 4.99
x2 24.54 26.99 0
x3 6.0 6.6 62.78
x4 50.71 55.78 0.81
w1, w2 0.5, 0.5
Constraint1 170 187 170
Constraint2 1300 1430 1300
Constraint3 6 6.6 6
Objective function 3865575 4252132.5 1784167

Solution of this deterministic problem is given in Table 7.1 (column a). Here we intend
to show how the same problem can be formulated under CCP formulation paradigms. We
consider first the right-hand side terms of the three constraints (i.e. vector B: b1 = 170,
b2 = 1300 and b3 = 6) are uncertain to depict the fact that the uncertain parameters are
separable from the decision variables and uncertainty is present only in the constraints.
Other parameters (vector C: c1 = 41400, c2 = 44300, c3 = 48100, c4 = 49100; matrix A:
a11 = 0.84, a12 = 1.44, a13 = 2.16, a14 = 2.4; a21 = a22 = a23 = a24 = 16; a31 = 1, a32 =
a33 = a34 = 0) are considered to be fixed in this case. We can write the uncertain version of
equation 5 under CCP framework as

Min 41400x1 + 44300x2 + 48100x3 + 49100x4
s.t.

P (0.84x1 + 1.44x2 + 2.16x3 + 2.4x4 ≥ 170) ≥ p
P (16x1 + 16x2 + 16x3 + 16x4 ≥ 1300) ≥ p
P (x1 ≥ 6) ≥ p
x2, x3, x4 ≥ 0

(7.6)

The corresponding deterministic equivalent of Equation 7.6 can be written as

Min 41400x1 + 44300x2+ 48100x3 + 49100x4
s.t.

0.84x1 + 1.44x2 + 2.16x3 + 2.4x4 ≥ b̄1 + qp × σb1

16x1 + 16x2 + 16x3 + 16x4 ≥ b̄2 + qp × σb2

x1 ≥ b̄3 + qp × σb3

x2, x3, x4 ≥ 0

(7.7)
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where b̄1, b̄2, b̄3 are the mean (170, 1300, 6) and σb1 , σb2 , σb3 are standard deviation values
(10% of corresponding mean values i.e. 17, 130, 0.6) for three uncertain parameters in
vector B following normal distribution. Assuming a value for qp = 1 (corresponding to
84% probability of getting those constraints satisfied, p = 0.84), we obtain the results
presented in Table 7.1 (column b).
We now assume that uncertainty exists in all parameters (right-hand side and deci-

sion variable coefficients in constraints and objective function) and investigate the effect
of uncertainty in final quality of the solution. Following is the formulation using CCP
approach assuming the uncertain parameters are independent of each other and follow
normal distribution:

Min w1 × (c̄1x1 + c̄2x2 + c̄3x3 + c̄4x4)+ w2 ×
√(

σ 2C1x
2
1 + σ 2C2x

2
2 + σ 2C3x

2
3 + σ 2C4x

2
4

)
s.t.

ā11x1 + ā12x2 + ā13x3 + ā14x4 − b̄1 + qp
√(

σ 2a11x
2
1 + σ 2a12x

2
2 + σ 2a13x

2
3 + σ 2a14x

2
4 + σ 2b1

) ≥ 0

ā21x1 + ā22x2 + ā23x3 + ā24x4 − b̄2 + qp
√(

σ 2a21x
2
1 + σ 2a22x

2
2 + σ 2a23x

2
3 + σ 2a24x

2
4 + σ 2b2

) ≥ 0

ā31x1 − b̄3 + qp
√(

σ 2a31x
2
1 + σ 2b3

) ≥ 0

x1, x2, x3, x4 ≥ 0

(7.8)

where

c̄1 = 41400.0; c̄2 = 44300.0; c̄3 = 48100.0; c̄4 = 49100.0

ā11 = 0.84; ā12 = 1.44; ā13 = 2.16; ā14 = 2.4

ā21 = 16.0; ā22 = 16.0; ā23 = 16.0; ā24 = 16.0

ā31 = 1

b̄1 = 170.0; b̄2 = 1300.0; b̄3 = 6.0

σC1 = 4140.0; σC2 = 4430.0; σC3 = 4810.0; σC4 = 4910.0

σa11 = 0.084; σa12 = 0.144; σa13 = 0.216; σa14 = 0.24

σa21 = 1.6; σa22 = 1.6; σa23 = 1.6; σa24 = 1.6

σa31 = 0.1

σb1 = 17.0; σb2 = 130.0; σb3 = 0.6

The objective function now has two terms, first one is the corresponding mean and
second one is the corresponding standard deviation of the uncertain parameters which is
a linear combination of four normally distributed random variables (c1–c4), connected by
two weights (w1, w2) signifying the weightages on mean and standard deviation terms. The
choice of these weightages depends on how the decision maker’s interest in considering the
effect of the mean and standard-deviation terms in the objective function. For example, a
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weight of w1 = 0 signifies that mean terms are not going to be considered in the objective
function, only the effect of variance is minimized. Similarly, w2 = 0 signifies that the
decision maker does not want to consider the variance terms in the objective function.
Next, the constraints are also modified where probability of constraint satisfaction defines
the nature of equation (see the appendix) assuming uncertain parameters are independent
of each other. Terms with bar signifies the mean value of the uncertain parameters whereas
σ signifies their standard deviation values. Although Equation 7.5 is a linear system, the
uncertainty formulation of the same leads to different deterministic equivalents of a linear
(Equation 7.7) and nonlinear (Equation 7.8) nature under the CCP paradigm based on
whether uncertain parameters are separable from the decision variables or not. Both the
equations in Equations 7.7 and 7.8 are convex in nature (see the appendix) and can be
solved by any standard convex optimization techniques. The solution of this problem is
given in Table 7.1 (column c).
Next, we investigate the effect of qp and σ on the solution of the problem. First we

change the values for qp. As we increase this quantile value, probability of constraints
in Equation 7.7 being satisfied increases, which in turn says solution reliability increases
with increase in the values for qp. The values for qp have been increased from 1 to 2
which is an indication for increase in solution reliability to the extent of 84% to 97%
respectively. The values for b̄1, b̄2, b̄3 are kept at the same (i.e. 170, 1300, 6) and σb1 ,
σb2 , σb3 are kept at 10% of their corresponding mean values i.e. 17, 130, 0.6 for uncertain
parameters in vector B. We assume the parameters follow normal distribution and can see
the results in Table 7.2(a). Similarly we can generate the results in Table 7.2(b) by varying
qp values from 1 to 2 assuming standard deviation values (σb1 , σb2 , σb3 ) are 20% of their
corresponding mean values i.e. 34, 260, 1.2 for three uncertain parameters in vector B. We
can observe two important findings here: (i) solution reliability has a tradeoff relationship
with solution optimality—in the problem involving Equation 7.7, we want to minimize
the objective function whereas objective value increases as we increase the value of qp in
search of a more reliable solution; this also shows that, with more loosening of constraint
satisfaction, optimal solution quality improves at the cost of solution reliability; (ii) with
an increase in variation in the process, the optimizer becomes more conservative to combat
uncertainty and provide solution of inferior (higher in this case) objective value. The results
of an uncertain case can be compared with those of a deterministic case (Table 7.2(a), first
column) as well. These trends are presented in Figure 7.1.
The significant difference between the deterministic and stochastic optimization formu-

lation is that the latter has some uncertain component in it. Once the deterministic equivalent
of the stochastic formulation is known to us, the main difficulty in the problem is probably
over unless the challenge is to find a global solution for a non-convex formulation, which is
present anyway in any non-convex optimization problem. Leaving the problem of finding a
global solution for an optimization problem, a primary challenge in stochastic optimization
problem is to find the corresponding deterministic equivalent. However, this process is
usually hard to perform and only successful for some special cases, as mentioned above.
For example, if the uncertain parameters are related in nonlinear fashion, propagation of
that uncertainty to the constraints cannot be achieved in a straight forward manner. One of
the ways might be using Taylor series expansion of the nonlinear function around the mean
value and calculate mean and standard deviation of the combined function considering only
the few (say linear) terms in the Taylor series (see the appendix). This approach is generally
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Figure 7.1 Solution optimality and reliability tradeoff in CCP formulation.

adopted for most of the practical problems, to simplify the computation involved though
it has limitation in terms of order of accuracy due to consideration of limited number of
terms in the Taylor series. Moreover, this technique requires the derivatives to be calculated,
which might be time consuming for complex problems. Simulation-based approaches pro-
vide an alternative for calculating the probability of constraint satisfaction where no such
assumption is needed. Most importantly, simulation-based approach can take care of the
case of different inputs following different distributions. A simulation based scheme for
computing a probabilistic constraint is presented below.

7.3.1 Calculation of P (hk (x, ξ ) ≥ 0) ≥ p (k = 1, . . . , u)

1. If Nsamp represents the number of entire sampling set and N′ represents the number of
successful constraint satisfaction cases for different instances of uncertain parameter
realization, set N′ = 0 initially.

2. Following given individual variance information, generate an instance of uncertain
parameter realization (denoted as ξ ′).

3. If the associated constraint is satisfied, i.e. (hk (x, ξ ) ≥ 0) (k = 1, . . . , u),
N′ ← N′ + 1.

4. Repeat steps 2 and 3 for Nsamp times.
5. P = N′/Nsamp.

If uncertain parameters also affect the objective functions in simulation-based
approaches, the optimization problem can be written by introducing an auxiliary variable
[40] f̃ as

Max
x

[max
f̄
f̃]

subject to

P
{
ξ
∣∣f (x, ξ ) ≥ f̃ } ≥ δ

P {ξ |gi (x, ξ ) ≤ 0 } ≥ βi i = 1, 2, . . . , n

(7.9)
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Here, another probability level δ ∈ (0, 1] is defined in the similar fashion as βi. Similarly,
this case can be extended [40] for a multi-objective optimization formulation (with j as the
index for objective functions and δj ∈ (0, 1]) as

Max
x

[
max
f̄1
f̃1,max

f̄2
f̃2, . . . ,max

f̄m
f̃m

]
subject to

P
{
ξ
∣∣fj (x, ξ ) ≥ f̃j

} ≥ δj j = 1, 2, . . . ,m

P {ξ |gi (x, ξ ) ≤ 0 } ≥ βi i = 1, 2, . . . , n

(7.10)

This can be applied for caseswhere even some of themultiple objectivesmay be subjected
to uncertainty. The following scheme can be used for handling uncertainty in parameters
in the objective function.

7.3.2 Calculation of max
{
f̃
∣∣P {f (x, ξ ) ≥ f̃

} ≥ α
}

1. Assume Nsamp represents the number of entire sampling set.
2. Following given individual variance information, generate an instance of uncertain
parameter realization (denoted as ξ ′).

3. Compute new value of objective function (f′) for ξ ′.
4. Repeat above two steps for Nsamp times.
5. N′ = Integer(αNsamp).
6. Return the N′ th largest element from the set of values calculated in step 4.

Thus simulation based approaches can be extremely useful for solving general nonlinear
and complicated CCP constraints without many assumptions. However, this increases the
computational cost required for carrying out the simulation exercises. One should remem-
ber that this might not be a great limitation when we have access to modern age computing
resources and techniques (e.g. parallel processing ability, or function approximation tech-
niques such as artificial neural network) to expedite computation. In the next section, we
are going to use some of the techniques discussed above for the uncertainty analysis of a
complex nonlinear process model.

7.4 Industrial Case Study: Grinding

7.4.1 Grinding Process and Modeling

The industrial grinding circuit under consideration has the following units, which are
connected by different flow streams: rod mill, ball mill, hydrocyclones and water sumps.
Raw ore is fed to the rod mill from the crushing unit and water is added. The resultant
slurry is collected in a sump called the primary sump. The outlet stream of the primary
sump is fed to a bank of hydrocyclones – primary hydrocyclones. The underflow of the
primary hydrocyclones is fed to the ball mill whereas the overflow is taken in another sump
called a secondary sump. The outlet of the ball mill is collected in the primary sump. The
secondary sump feeds to another bank of hydrocyclones, namely secondary hydrocyclones.
The overflow from the secondary hydrocyclone is taken as the final product whereas the
underflow is fed back to the ball mill for further grinding. Water is also added in the two
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Figure 7.2 Industrial grinding circuit schematic. Reprinted with permissions from Modeling of
an industrial wet grinding operation using data-driven techniques by K. Mitra and M. Ghivari,
Computers & Chemical Engineering, 30, 3, 508–520 Copyright (2006) Elsevier Ltd.

sumps to ensure smooth flow of slurry in the circuit. A schematic diagram of the process
can be seen in Figure 7.2.
Each of the unit operations described above ismodeled separately using a hybrid approach

of population balance and empirical correlations. The connection among various units has
been established for the whole circuit with the help of a square connectivity matrix where
each of the unit operations is written in rows and columns and connectivity among various
units is expressed in terms of 0 and 1 (0 denoting no connection and 1 denoting connection
exists). The population balance approach is used for a general material balance across all
unit operationswhereas empirical correlations are used for calculating breakage functions in
the rod and the ball mill and sharpness index, and so forth, in hydrocyclones. The complete
set of equations led to a solution of the differential algebraic equations (DAE) system [49],
which is solved here using DASSL [50], a public-domain software. The model is nonlinear
in nature having exponential (ex type) as well as power term (xy type) nonlinearity present
in it [48, 49].
In this case study, we consider the uncertainty in (i) model parameters, (ii) constraints

bounds and (iii) objective functions, and explore the merits of the simulation-based CCP
approach in analyzing their impact on the multi-objective optimization of the grinding sys-
tem. The need for nonlinear propagation of the uncertain parameters to the output constraints
build the rationale for adopting the simulation based CCP approach. Two mutually con-
flicting objectives considered for this study are simultaneous maximization of throughput
and maximization of percent passing of medium-size particles. The deterministic multi-
objective grinding model of Mitra and Gopinath [49] forms the basis of this work on which
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various impacts of uncertainty have been analyzed. An uncertain version of non-dominated
sorting genetic algorithm, CCPNSGA II, has been proposed for solving the multi-objective
optimization under uncertainty. Apart from many other advantages, one of the reasons
for using derivative free optimization method in this case is to avoid the computation of
derivative of probabilistic constraints, which otherwise could have made the optimization
formulation even more computationally expensive.

7.4.2 Optimization Formulation

7.4.2.1 Deterministic and Stochastic Formulation

Two important goals of the industrial grinding operation are the maximization of productiv-
ity and maximization of the quality of the grinding product. As the grinding circuit’s final
product slurry goes directly to the following flotation circuit, the quality of the grinding can
be measured primarily by the grinding size distribution of the final product stream, which
determines the particle floatability in the flotation circuit. Through laboratory experiments,
it has been established that correct flotation dynamics can be achieved in the following
flotation circuit by supplying grinding product consistently around the mid-size fraction
for the given ore mineralogy and flotation reagent used. The mid-size fraction of a grinding
product is therefore maximized to maintain a quality check on the grinding product whereas
productivity maximization can be directly achieved by maximizing the circuit throughput.
However, there is a tradeoff between these two objectives that is known from our previ-
ous work [49]. Simultaneous maximization of these two objectives, therefore, builds an
ideal platform for deterministic multi-objective optimization. Size distribution (percentage
passing of coarse- and fine-size classes, SC, SF, respectively), percentage solids (PS), and
circulation load (CL) are to be treated as upper bound constraints. Raw ore feed flowrate
to rod mill (FRM), flowrate of water to primary sump (WPS) and secondary sump (WSS)
can be manipulated within their respective upper and lower bounds during optimization
to achieve this task. Other water additions to the grinding circuit are considered as fixed
due to practical limitations. Keeping circulation load within certain upper bound indicates
an effort towards energy saving, whereas keeping the size distribution and percent solids
under bounds indicate correct mineral liberation in the next unit operation. With all justi-
fications, the deterministic multi-objective optimization formulation mentioned above can
be expressed as follows.
Objectives:

Max
FRM,WPS,WSS

T

Max
FRM,WPS,WSS

SM (GRM,GBM,SPS,SSS)

Subject to control variable bounds:

SC (GRM,GBM,SPS,SSS) ≤ SUC
SF (GRM,GBM,SPS,SSS) ≤ SUF
PS (GRM,GBM,SPS,SSS) ≤ PUS
CL (GRM,GBM,SPS,SSS) ≤ CUL
Other model equations
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Decision variables bounds:

FLRM ≤ FRM ≤ FURM
WL
PS ≤ WPS ≤ WU

PS

WL
SS ≤ WSS ≤ WU

SS

(7.11)

where GRM, GBM, SPS and SSS are parameters that are assumed to be known with certainty
for the deterministic optimization formulation and considered as uncertain parameters for
the stochastic optimization formulation (presented later). GRM and GBM are the grindability
indices for the rod mill and ball mill, and SPS and SSS are sharpness indices for primary
and secondary hydrocyclones, respectively. These parameters were initially calculated by
the regression exercise of the steady-state size class data collected from plant and analyzed
through laboratory tests and thus are subjected to uncertainty due to experimental and
regression errors and hence are assumed to be uncertain for the stochastic optimization
study. In this study, we assume that the variance information of the uncertain parameters
are available from the experiments and treat the stochastic optimization formulation using
the simulation based CCP approach.
In the stochastic formulation, we consider different types of uncertainty:

(i) Uncertain parameters present in the left-hand side of the constraint (four parameters
that are considered uncertain are ĜRM, ĜBM, ŜPS and ŜSS).

(ii) Uncertain parameters present in the right hand side of the constraint (upper bounds
for control variables ŜUC, Ŝ

U
F , P̂

U
S and Ĉ

U
L )

(iii) Uncertainty in the objective function (one of the objective functions considered for this
multi-objective optimization study under uncertainty, e.g. percent passing of mid size
classes, ŜM, is exposed to uncertainty due to the uncertainty present in the parameters
ĜRM, ĜBM, ŜPS and ŜSS).

Uncertain parameters presented in (ii) above have linear relationship with the constraints
whereas uncertainty presented in (i) and (iii) above are nonlinear in nature. Based on the
description of the CCP, the stochastic multi-objective grinding optimization problem is
described below.
Objectives:

Max
FRM,WPS,WSS

T

Max
FRM,WPS,WSS

S̃M

Subject to control variable bounds:

P
(
ŜM
(
ĜRM, ĜBM, ŜPS, ŜSS

) ≥ S̃M
) ≥ δ1

P
(
ŜC
(
ĜRM, ĜBM, ŜPS, ŜSS

) ≤ ŜUC
) ≥ β1

P
(
ŜF
(
ĜRM, ĜBM, ŜPS, ŜSS

) ≤ ŜUF
) ≥ β2

P
(
P̂S
(
ĜRM, ĜBM, ŜPS, ŜSS

) ≤ P̂US
) ≥ β3

P
(
ĈL
(
ĜRM, ĜBM, ŜPS, ŜSS

) ≤ ĈUL
) ≥ β4

All model equations
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Decision variables bounds:

FLRM ≤ FRM ≤ FURM
WL
PS ≤ WPS ≤ WU

PS

WL
SS ≤ WSS ≤ WU

SS

(7.12)

where S̃M is the auxiliary variable introduced to handle uncertainty in the second objective
function and β i, δi are the predefined confidence level of getting corresponding constraints
and objective satisfied, respectively.

7.4.2.2 Chance Constrained Programming Simulation

As the uncertain parameters bear a nonlinear relationship with the constraints, the proba-
bility of constraint satisfaction is calculated by a simulation process. Two cases are going
to be discussed: (i) How to calculate the probability of constraint satisfaction and (ii) how
to calculate the probability measure in the objective function term.

7.4.2.2.1 Calculation of P
(

ŜC

(
ĜRM, ĜBM, ŜPS, ŜSS

)
≤ ŜU

C

)
≥ β1

1. If Nsamp represents the number of entire sampling set and N′ represents the number of
successful constraint satisfaction cases for different instances of uncertain parameter
realization, set N′ = 0 initially.

2. Following given individual variance information, generate an instance of uncertain
parameter realization (denoted as G′

RM,G′
BM,S′

PS,S′
SS,S′U

C).
3. If the associated constraint is satisfied, i.e. SC

(
G′
RM,G′

BM,S′
PS,S′

SS
) ≤ S′U

C,
N′ ← N′ + 1.

4. Repeat step 2 and step 3 for Nsamp times.
5. P = N′/Nsamp

7.4.2.2.2 Calculation of max
{

S̃M

∣∣∣P (ŜM

(
ĜRM, ĜBM, ŜPS, ŜSS

)
≥ S̃M

)
≥ δ1

}
1. Assume Nsamp represents the number of entire sampling set.
2. Following given individual variance information, generate an instance of uncertain
parameter realization (denoted as G′

RM,G′
BM,S′

PS,S′
SS).

3. Compute new value of S′
M for (G′

RM,G′
BM,S′

PS,S′
SS).

4. Repeat above two steps for Nsamp times
5. N′ = Integer(δ1Nsamp)
6. Return the N′th largest element from the set of values calculated in step 4.

7.4.2.3 Multivariate Probability Space Sampling

The next step after the uncertain parameters are assigned to their individual probability dis-
tribution functions is to sample the multivariate probability space using effective sampling
techniques that help propagate the uncertainty effects from uncertainty parameters to the
corresponding constraints and objective functions through model simulation. The propaga-
tion of uncertainty effects from uncertainty parameters to the corresponding constraints and
objective functions can also be achieved by means of coordinate transformation which is
only limited to some special results for linear systems [40]. A relatively new quasi-random
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Figure 7.3 Working principle of NSGA II amalgamated with simulation based chance con-
strained programming.

sampling technique based on Hammersley sequence sampling (HSS) proposed by Diwekar
andKalagnanam [51] is used here formultivariate probability space sampling. As compared
to many other popular sampling techniques, HSS shows 3–100 times faster convergence
while determining various statistical properties and therefore requires less number of sam-
ple points [51]. For these reasons, HSS has been our choice for sampling the multivariable
probability space. We assume each of the uncertain parameter is going to follow normal
distribution. If Nsamp numbers of combinations for eight uncertain parameters are generated
by the HSS based sampling method, an inverse transformation over the cumulative proba-
bility distribution acted upon each of these eight uncertain parameters is going to provide
the specific values for each uncertain parameter. These values of uncertain parameters are
going to be used to create specific instances of uncertain parameters for CCP simulation.

7.4.2.4 Simulation Based CCP Amalgamated NSGA II (CCPNSGA II)

A block diagram of the complete real coded NSGA II algorithm amalgamated with the
simulation based CCP approach (CCPNSGA II) is presented in Figure 7.3 and described
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here. The primary difference of CCPNSGA II with actual NSGA II is the presence of a
simulation-based CCP block that calculates the probability associated with a constraint
and objective function. Like many other population-based multi-objective evolutionary
algorithms, CCPNSGA II starts the search process with Npop number of initial candidate
solutions (called population) each having different values of decision variables. For each of
these Npop solutions, probability measures for constraint and objectives are calculated using
the simulation-based CCP block across Nsamp instances of random uncertainty realizations.
Here the HSS based multivariate probability space sampling method is used for creating
Nsamp number of samples each having eight uncertain parameters. Once the fitness and
constraints values are computed for all population members (parent population), the entire
population is sorted using the principles of non-dominated sorting and different Pareto fronts
are identified [52]. A better Pareto front receives a smaller ranking as compared to its inferior
counterpart. Within each Pareto front, different solutions are tagged with different values of
crowding distance signifying how populated that solution is with respect to its neighbors.
A greater value of the crowding distance parameter for a particular solution signifies that
the nearest neighbors of that solution are further away from it. Now a crowding tournament
selection scheme is going to be applied, where two solutions are picked at random and (i) if
both of them are infeasible, the one with less infeasibility wins; (ii) if both of them are
feasible, one with better rank wins and if they are from the same rank the one with more
crowding metric wins; (iii) if one of them is feasible and the other is infeasible, the feasible
solution wins. This builds a selection pressure to find better Pareto-optimal (PO) solutions
with good spread. Next, these selected solutions are allowed to mate with each other at
random to create new solutions (child population) using genetic operators such as crossover
and mutation. This completes a single iteration (Ng) of CCPNSGA II and this continues
until the iteration counter reaches the maximum number of iteration (Nmax) specified in
the beginning. As NSGA II is an elitist approach, merging of parent and child population
before carrying out non-dominated sorting (2Npop) and then controlling the population
during selection (Npop) is a regular feature in CCPNSGA II [53]. The following parameters
are used for this study: Nmax = 50; Npop = 50; crossover and mutation probabilities of 0.9
and 0.01 respectively; SBX distribution index = 0.01; polynomial mutation distribution
index = 0.01; sampling size in CCP simulation = 300. The probability computation with
300 simulations was reported to be sufficient enough for this case. Different sampling sizes
were tried and finally it is kept at 300. This sampling size could have been increased to some
number higher than 300. However, it is observed that it has increased the computational
burden further without significantly contributing towards accuracy of the results.

7.4.3 Results and Discussion

The industrial grinding example discussed here has been extracted from a leading vertically
integrated lead-zinc multinational company. First the grinding circuit model is validated
against steady-state industrial data taken from several representative operating regimes
covering the entire span of operation. Interested readers can find these validation results
elsewhere [49]. Four out of the eight uncertain parameters (ĜRM, ĜBM, ŜPS and ŜSS) rep-
resent the parametric uncertainty whereas the remaining parameters (ŜUC, Ŝ

U
F , P̂

U
S and Ĉ

U
L )

represent the decision maker’s choice to present them in an uncertain way. Assuming
that the uncertainty in all these parameters can be described reasonably well by the normal
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Figure 7.4 PO points between normalized objectives as a function of probabilities of con-
straint satisfaction.

distribution, we assume normal distribution for all uncertain parameters with standard devi-
ation value 5% of its nominal value and nominal values of these parameters are kept same
as our earlier work of deterministic formulation [49]. The value of extent of uncertainty was
chosen from the experience of the plant practitioners. All the parameters are varied simul-
taneously and the results are investigated. The multi-objective PO fronts for the stochastic
formulation described earlier are presented in Figure 7.4 where tradeoffs between two
objectives (throughput and mid-size percentage passing) are shown at a normalized scale
for different extents of constraint satisfaction probabilities. Effects of different extents of
constraint satisfaction on Pareto front were shown by assuming different probability levels
of constraint satisfaction. Here they were selected based on some measure of reliability
associated with the chosen probability extent (in case of normal distribution, probability
measure of 0.9 gives the reliability of that constraint being satisfied to the extent of 90%,
etc.). The primary purpose was to establish and quantify the improvement in the PO front by
sacrificing the reliability of the solution first and then decide from the higher level business
experience where to draw the line between the two. Single-chance constraints were con-
sidered because the joint probability distribution information of the uncertain parameters
was very difficult to make available in this case. More stringent requirements come with
an increase in value of probability measures for constraint satisfaction leaving relatively
fewer alternative solutions. The recommended solutions for higher probability values (0.9
in this case) are most reliable as well as conservative compared to the solutions of lesser
probability values. The span of the PO fronts increases on both sides as the probability value
decreases and it is at its minimum for the probability value 0.9. Probability of constraint
satisfaction can be linked with the reliability of the obtained solution [39]. Figure 7.4
also shows that better PO fronts can be achieved by compromising on the reliability of
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Figure 7.5 Three dimensional PO points between normalized objectives as a function of
probabilities of constraint satisfaction.

the solution. This means that any point chosen from the PO front corresponding to the
probability value 0.4 can lead to better throughput as well as quality of grinding product
compared to a solution from the PO front corresponding to the probability value 0.9; how-
ever, running a plant with the former solution may not always be optimal (or sometimes
infeasible with certain realization of uncertain parameters) as the reliability associated with
this solution is much less compared to the latter solution. There is therefore a tradeoff
among two objectives and reliability of the solution obtained (Figure 7.5). The span of
increase in PO front with the decrease in probability value is clearly visible in Figure 7.5
(look at the bounded search space in the probability-normalized throughput plane). The
effect of change of standard deviation can be seen in Figure 7.6 where the standard deviation
value is changed from 5% to 10% for probability of constraint satisfaction value of 0.4.
As the standard deviation value is increased, more variation in the values of the uncertain
parameters is considered, leading to marginally better PO front keeping the reliability of
the solutions at the same level. The hypothesis is verified with the PO solutions of other
reliability levels as well. This shows that if different realizations of uncertain parameters
are handled in similar fashion, using nominal values of the uncertain parameters where each
of these realizations can be tackled by different optimal conditions, there will be ample
cases where either the system will not be able to extract the best out of the situation (it will
underperform) or it will overperform to pile unnecessary inventory. As compared to tedious
deterministic sensitivity analysis, this methodology provides a systematic way of carrying
out the sensitivity analysis by controlling the constraint violations through defining prob-
ability of constraint satisfaction for those constraints and allowing variations in different
uncertain parameters.
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Each of the PO solutions shown so far carries information about the decision variables
concerned. The Fritz–John conditions for multi-objective optimization [52] say that PO
solutions must obey certain mathematical conditions. So, if the solutions obtained are near
to the true PO solutions, Fritz–John necessary conditions would be applicable to them and
some similarity or dissimilarity among the solutions would be visible as they all obey the
necessary conditions. It was therefore decided to search for such properties in the present
real-world application problem [54, 55]. Considering the PO points for probability 0.9 in
Figure 7.4, manipulated variables are plotted in ascending order of throughput with the
purpose of finding trends in the decision variables. Three different trends are found out (see
Figure 7.7): (i) raw ore feed flowrate to rod mill (FRM) shows a monotonically increasing
trend within its given range; (ii) water flowrate to primary sump (WPS) gradually increases
from its lower bound to upper bound (0.2–0.4 in the normalized scale), and (iii) flowrate
of water to the secondary sump (WSS) is found to be very close to the middle of the
given bound (0.2–0.4 in the normalized scale). Relatively different trends are found for
probability 0.4 PO points for gradually increasing values for throughput (see Figure 7.8):
(i) FRM shows a monotonically increasing trend within its given range, however, this curve
is relatively more stiff, (ii) WPS hovers around the upper bound of the given range (0.2–0.4
in the normalized scale), and (iii) WSS is found to be varying between the lower to the
medium values of the given bound (0.2–0.4 in the normalized scale). This kind of mapping
information between PO points and decision variables that is derived here as a result of
the analysis of a multi-objective optimization problem under uncertainty can clearly guide
a plant operator to improve the grinding operation as per requirement, which can only be
achieved otherwise through an extensive as well as prolonged expertise over the process.
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Many other instances of deterministic multi-objective optimization studies such as design
of gearbox and truss-structure [54, 55], grinding [49], sintering [56], continuous casting
[57], polymerization of epoxy [58, 59], Poly-propylene Terepthalate (PPT) [60], iron-ore
induration [61] shown similar trends. Control variable values corresponding to the PO
solutions of probability 0.9 and 0.4 are presented in Figures 7.9 and 7.10, respectively. As
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Figure 7.8 Manipulated variable trends corresponding to PO points for probability value 0.4
in Figure 7.4.
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Figure 7.9 Control variable trends corresponding to PO points for probability value 0.9 in
Figure 7.4.

the value of reliability is allowed to be reduced, a greater degree of freedom is available
in the decision variable space leading to a better variety of control variable values. As is
evident from Figures 7.9 and 7.10, more variations in alternative solutions with broader
range of control variable values (circulation load, percent solids, percent passing coarse
size etc.) is available for PO solutions of probability value 0.4.
Some important streams that are constantlymonitored for consistent operation of grinding

circuit are ball-mill discharge (BMD), rod-mill discharge (RMD), primary cyclone overflow
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Figure 7.10 Control variable trends corresponding to PO points for probability value 0.4 in
Figure 7.4.

(PCO), primary cyclone underflow (PCU), secondary cyclone overflow (SCO), secondary
cyclone underflow (SCU). The entire Pareto front for probability value 0.9 in Figure 7.4
is divided into three regions: lower (0.65–0.7 on a normalized scale), medium (0.7–0.75
in normalized scale) and upper throughput region (0.75–0.8 on a normalized scale). A
representative PO point from each of these regions is chosen and the corresponding size
distributions for the 0.9 and 0.4 probability streams mentioned above are presented in
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Figures 7.11, and 7.12, respectively. These figures show the change in extent of grinding
(coarser or finer) in the process under different conditions. Considering the distribution of
SCO (secondary Cyclone overflow) in Figure 7.11(a), (b) and (c), it is clear that the ground
particle in Figure 7.11(a) is coarser as compared to that in Figure 7.11(c). As we move
from lower to upper throughput regions, a greater percentage passing value for different
size classes is reported (see Figure 7.11). A similar trend is also visible as we move towards
higher probability values (from 0.4 to 0.9) for higher and medium throughput ranges;
however, the trend reverses for the lower throughput range (see Figures 7.11 and 7.12).
This kind of problem of optimization under uncertainty can be solved at the top level of

decision making where the higher level decision makers can decide the operating PO front
based on the risk appetite in prevailingmarket conditions.We should remember here that the
study of optimization under uncertainty provided us with several PO fronts with different
solution reliability level. Once a PO front gets identified, the next target is to identify one
solution out of several alternatives that can be treated as a target given to a model-based
predictive control (MPC) algorithm to control the plant around it. The identification of a
single solution is generally carried out based on the operational constraints at a particular
situation. For example, in case of the grinding problem, the selection of the point of
operation from the plethora of alternative solutions can be narrowed down by defining
various thresholds of values for throughput or mid-size fraction beyond which either the
operation is not cost effective or the quality is unacceptable. Here our target is to increase
productivity after meeting quality standards. The plant can, therefore, be operated at higher
productivity by slightly compromising the quality for some time and vice versa based
on slightly stringent / lenient quality requirements of different vendors based on the end
applications. This basically involves working with different alternative solutions at different
times. In fact, information like the source of ore, the impact of which is very difficult to
quantify inside the model, can also determine the operating point because sometimes a
particular region of a mine can lead to inferior ore type (with difficult kinetics of ore
liberation) for which even excellent plant operation can produce only a limited benefit. In
these cases, increasing throughput and compromising quality has no meaning whereas the
same principle makes perfect sense when the handled ore is very easy to liberate in the
following flotation unit and therefore pushing for more throughput and compromising on
mid size cumulative percent passing is a good strategy. The operating target for MPC in this
case, therefore, can be a set of alternative solutions instead of a single solution for different
operating regimes.

7.5 Conclusions

This chapter presented the fundamentals of chance-constrained programming, a preventive
uncertainty-handling technique. First the treatment of linear constraintswith uncertain terms
separable from decision variables was examined, and this was extended to the case when
uncertain and decision variables are inherently embedded with each other. These concepts
were demonstrated with a simple example taken from the literature. A simulation-based
chance-constrained programming approach was then presented for handling uncertainty
for constraints that have a nonlinear relationship with the associated uncertain parameters
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because the deterministic equivalents of these complicated constraints are not as straight-
forward as their linear counterparts. The case study considered for this was taken from a
real-world example of an industrial grinding operation where uncertainty was considered
in parameters (e.g. grindability indices of rod mill and ball mill, sharpness indices of pri-
mary and secondary cyclones) that were derived from experiments as well as curve-fitting
exercises leading to uncertainty (related to experimental and regression errors) present in
obtaining their values. Uncertainty was also considered for parameters that are used as
bounds to the constraints and parameters present in objective functions. The flavor of sin-
gle and multi-objective optimization under uncertainty was demonstrated through various
examples in this chapter, which can be solved using appropriate optimization solvers. The
probability measure used in uncertainty formulation uses solution reliability as an addi-
tional dimension for this problem and this information can be utilized to show the tradeoff
between optimality and reliability of solutions. This chapter also demonstrated how an
effective postanalysis of multi-objective optimization under uncertainty can lead to intelli-
gent plant operating rules as an outcome of Pareto characterization, which otherwise can be
learnt only through extensive and elaborate operational experience on the shop floor over
a very long time. A way of identifying solutions of interest from a plethora of alternatives
from the chosen PO front has also been discussed.

Nomenclature

ρ = ore density.
δi, β i = premeditated confidence levels to the respective constraints.
ρw = water density.
f̄ = auxiliary variable for handling uncertainty in objective function f.
S̃M = auxiliary variable for handling uncertainty in objective function ŜM.
FLRM,FURM = upper and lower bounds for throughput to the grinding circuit.

WL
PS,W

U
PS = upper and lower bounds for water flowrate at primary sump.

WL
SS,W

U
SS = upper and lower bounds for water flowrate at secondary sump.

SUC = upper bound for percentage passing for the coarse size class.
SUF = upper bound for percentage passing for the fine size class.

PUS = upper bound for percentage solids of the final ground product.
CUL = upper bound for recirculation load of the grinding circuit.
C = solids per unit volume (slurry).
CL = recirculation load of the grinding circuit.
d(i) = size (in microns) of ith size class.
F = mass fraction of solids in slurry.
f = objective function in optimization problem.
FRM = solid mass flowrate for rod mill.
GBM = grindability index for ball mill.
gi = ith constraint in optimization problem.
GRM = grindability index for rod mill.
H, H(i) = solids holdup, solids holdup in ith size class.
M = mass flowrate (solids).
m(i) = mass fraction of ith size class in a stream.
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Nmax = maximum number of generations in NSGA II.
Npop = population size in NSGA II.
Nsamp = sampling size in CCP simulation.
P = probability measure.
pc = crossover probability in NSGA II.
pm = mutation probability in NSGA II.
PS = percent solids of the final ground product.
Q = volume flowrate (slurry).
SC = percentage passing for the coarse size class.
SF = percentage passing for the fine size class.
SM = percentage passing for the mid size class.
SPS = sharpness index for primary hydrocyclone.
SSS = sharpness index for secondary hydrocyclone.
T = grinding circuit product throughput.
V = slurry volume.
W = volume flowrate (water).
WPS = water flowrate at primary sump.
WSS = water flowrate at secondary sump.
x = decision variable set.
ξ = set of uncertain parameters.

Subscripts

ff fresh feed to the unit.
m mill.
mf mill feed (ore + recycle).
mp mill product.
of overflow of a unit.
s sump.
sf sump feed.
sp sump product.
uf underflow of a unit.

Appendices

A.1 CCP for Normally Distributed Uncertain Parameters

In this subsection, we describe how to transform a linear chance constraint into its deter-
ministic equivalent. To illustrate this, we consider the following chance constraint:

P

[
n∑
i

aifi (x) ≤ 0
]

≥ α (7.A1)

Here ai represents the uncertain parameters (normal) and fi(x) are a set of functions of
the deterministic variables x. Denoting μ(ai), Var(ai) = E[ai − μ(ai)]

2, and Cov(ai, ai′ ) =
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E[ai−μ(ai)][ai′−μ(ai′ )] as the mean, variance and covariance of the uncertain parameter ai,
the chance constraint in equation 7.A1 can be written as:

P

⎡
⎢⎢⎢⎣

n∑
i
aifi (x)− μ

[
n∑
i
aifi (x)

]
{
Var

[
n∑
i
aifi (x)

]}1/2 ≤
−μ

[
n∑
i
aifi (x)

]
{
Var

[
n∑
i
aifi (x)

]}1/2
⎤
⎥⎥⎥⎦ ≥ α (7.A2)

As the uncertain parameter follows a normal distribution, the expression

n∑
i
aifi (x)− μ

[
n∑
i
aifi (x)

]
{
Var

[
n∑
i
aifi (x)

]}1/2 (7.A3)

is the standardized form of a normally distributed random variable with a mean of zero and
a variance of unity. Denoting� as the standardized normal cumulative density distribution,
equation 7.A2 can be written as:

�

⎛
⎜⎜⎜⎝

−μ

[
n∑
i
aifi (x)

]
{
Var

[
n∑
i
aifi (x)

]}1/2
⎞
⎟⎟⎟⎠ ≥ α (7.A4)

Application of inverse on both sides changes equation 7.A4 into

−μ

[
n∑
i
aifi (x)

]
{
Var

[
n∑
i
aifi (x)

]}1/2 ≥ �−1 (α) (7.A5)

Rearranging terms yields

μ

[
n∑
i

aifi (x)

]
+ �−1 (α)

{
Var

[
n∑
i

aifi (x)

]}1/2
≤ 0 (7.A6)

where

μ

[
n∑
i

aifi (x)

]
=

n∑
i

μ (ai)fi (x) (7.A7)

and

Var

[
n∑
i

aifi (x)

]
=

n∑
i=1
Var (ai)fi (x)

2 + 2
n∑
i=1

n∑
i′=i+1

fi (x) Cov (ai, ai′ )fi′ (x) (7.A8)

Deterministic equivalent, therefore, consists of the mean term augmented by quantile
times standard deviation value of the uncertain parameter. For α greater than 0.5, �−1 (α)
≥ 0 in which case the standard deviation term penalizes the deterministic constraint.
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A.2 Calculation of Mean and Variance for General Function

In this subsection, we will present certain known results that can be useful in understanding
the material presented in this chapter.
Approximate mean and variance of a function of several random variables (Y = g(X1,

X2, . . . , Xn), where X1, X2, . . . , Xn are random variables) can be obtained by expanding
the function g following Taylor series about the mean values of the random variables:

Y = g
(
X̄1, X̄2, . . . , X̄n

)+
n∑
i=1

(
Xi − X̄i

) ∂g

∂Xi
+ 1

2

n∑
i=1

n∑
j=1

(
Xi − X̄i

) (
Xj − X̄j

) ∂2g

∂Xi∂Yi
+ . . . . . (7.A9)

Here the derivatives are to be evaluated at
(
X̄1, X̄2, . . . , X̄n

)
. Considering only the linear

terms, we can obtain the following

E (Y) = g
(
X̄1, X̄2, . . . , X̄n

)

Var (Y) =
n∑
i=1
c2i Var (Xi)+

n∑
i=1

n∑
j=1
cicjCov

(
Xi,Xj

)
i 	= j (7.A10)

where ci, cj terms represent the partial derivatives
∂g

∂Xi
,

∂g

∂Xj
respectively evaluated

at
(
X̄1, X̄2, . . . , X̄n

)
. Assuming Y as a linear function of several random variables(

Y =
n∑
i=1
aiXi

)
, the following can be written:

E (Y) =
n∑
i=1
aiE (Xi)

Var (Y) =
n∑
i=1
a2i Var (Xi)+

n∑
i=1

n∑
j=1
aiajCov

(
Xi,Xj

)
i 	= j (7.A11)

When random variables are independent of each other, the covariance term equals zero.
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