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8.1 Introduction

The complexity of biological systems means that it is hard to study their behavior using
experimental data alone. With the integration of experimental data and computational
methods, the study of complex biological systems is now feasible. Computational biology,
part of systems biology, focuses on the development of mathematical tools and aims to
provide a powerful foundation for addressing critical biology questions. The optimization
of metabolic reaction networks is an up-to-date approach in biotechnology [1–5]. Much
research has discussed the applications of model-based optimization strategies in analyz-
ing and designing a metabolic reaction network. Most published articles have focused on
the mathematical foundations of optimization approaches [6–10] and their applications to
processes [11–14]. Most metabolic models are nonlinear due to the complexity of reaction
kinetics. The indirect optimizationmethod (IOM) converts a nonlinear kineticmodel, which
is in GMAorMichaelis–Menten format, into an S-system formulation to facilitate progress.
The optimization problem for the S-system model can be solved by a linear programming
(LP) solverwith logarithmic transformation [6,8,9,15]. Stochastic optimizationmethods are
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used to obtain a global optimum of nonlinear models [16]. Mixed-integer linear program-
ming (MILP) methods were successfully applied to the identification of optimal regulatory
structure of E. coli and the computation of production rate after metabolic engineering
[17, 18]. After the regulatory structure was found by the MILP optimization approach, the
next question was what the minimum set of manipulated enzymes in a metabolic system
is given considerations regarding strain viability and maximum flux or yield of a desired
product. To answer this question, a multi-objective optimization problem (MOOP) can be
formulated and solved using efficient multi-objective optimization methods.
Many methods can be used to obtain the Pareto front of MOOPs [19–21]. Their advan-

tages and disadvantages have been discussed in several articles [19–21]. These methods
were classified into two categories: generating methods and preference-based methods.
By using the scalarization approach, generating methods convert an MOOP into a single-
objective optimization problem (SOOP) with different factors, and solve the SOOP to find
one optimal Pareto solution. A series of SOOP with various factors can be solved to obtain
the Pareto front of original MOOP. Although fitness evaluation in evolutionary algorithms
is very time consuming, it is easy to implement for the identification of the Pareto front of
MOOPs. After the Pareto front has been obtained, a solution can be selected from the Pareto
front by decision makers (DM). In contrast, preference-based methods require the DM to
give preferences in advance and then try to find a solution that satisfies the preference con-
straints. In general, it is difficult to specify preferences in advance without any information
on the values of objective functions. An interactive algorithm is therefore necessary to find
a compromise solution.
Experiments have shown that a strain may reveal resilience phenomena in response to

environmental pressure and genetic perturbations [22,23]. A mutant strain may respond to
genetic perturbations with rapid and dramatic alterations in the distribution of metabolic
fluxes. However, the mutant finally adapts to a new steady state that is only slightly different
from that before the perturbation. The resilience phenomenon indicates that a mutant
strain tries to recover from its original “wild-type” characteristics. To find the optimal
modulation strategy that will result in a mutant that has survived, it is necessary to consider
qualitative effects on metabolic reaction networks, for example the resilience phenomenon
and cell viability constraints. In the practical optimization of metabolic reaction networks,
designers have to manage the nature of uncertainty resulting from the qualitative character
of metabolic reactions. Different types of uncertainty, such as imprecision, credibility,
preference, possibility, and necessity, are described by different methods. For example, the
imprecision of experimental data can be described by interval arithmetic, and the possibility
of enzyme effects can be represented using probability methods. A deterministic approach
does not give an adequate representation for metabolic reaction networks with uncertain
characters. Fuzzy optimization formulations can be applied to cope with this problem, and
the most widely used method for handling uncertainties is the fuzzy set method because of
its generality and flexibility [24–26].
This chapter introduces a generalized fuzzy multi-objective optimization problem

(GFMOOP) for finding the optimal engineering interventions onmetabolic network systems
considering the resilience phenomenon. This approachfirst formulates a constrainedMOOP,
that considers the resilience effects and minimum set of manipulated enzymes simulta-
neously by combining the concepts of minimization of metabolic adjustment (MOMA)
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[22] and regulatory on/off minimization (ROOM) [23] into an optimization framework.
In addition, nonlinear kinetic equations were directly applied to the optimization formula-
tion, so it was formulated as a constrained mixed-integer nonlinear programming (MINLP)
problem. In practice, this type of MINLP problems is highly nonlinear and nondifferen-
tiable due to the discontinuous property of integer-valued variables. Most of the well known
methods to solve MINLP optimization problems, including the cutting plane, branch-and-
bound, and decomposition approaches, heavily depend on a good starting point and gradient
information to yield an optimal solution. To overcome this drawback, many evolutionary
algorithms (EAs) were developed and have been applied successfully to many practical
problems. The mixed-integer hybrid differential evolution (MIHDE), a population-based
evolution algorithm, was proposed to solve unconstrained MINLP optimization problems
[27, 28]. It was extended to solve constrained MINLP problems through the implemen-
tation of constraint-handling techniques [29]. The MIHDE has been implemented as an
optimization tool and will be used to solve GFMOOPs for the identification of optimal
genetic manipulation strategies on metabolic reaction networks.

8.2 Problem Formulation

8.2.1 Primal Multi-Objective Optimization Problem

The dynamics of a metabolic reaction network can be represented generically using a set
of nonlinear differential equations with the following structure:

dx
dt

= Sv(x, e;θ)

where x ∈ Rn is a vector of concentrations of metabolites or pools, e ∈ Rm is a vector
of enzyme levels that correspond to the enzyme activities, θ ∈ Rp is a vector of system
parameters, S ∈ Rn×m is the stoichiometric matrix describing the interconnecting fluxes,
and v ∈ Rm is a vector of reaction rates. In the field of biological systems each reaction
rate can be expressed by the power-law functions or Michaelis–Menten-based rate laws. To
analyze the full dynamic behavior of a metabolic reaction network, its nonlinear differential
equations have to be solved and evaluated numerically. It is time consuming when the
nonlinear differential equations are complex. This problem can be addressed based on the
assumption of a pseudo steady state. In general, most natural biological systems operate
close to a steady state. Even in a disease state, a metabolic reaction network is still in a
steady state with some of the steady-state concentrations different from normal [30]. In
the following, we discuss the optimization problems for metabolic reaction networks at a
steady state. All derivatives must be zero for a steady state, which implies

Sv(x, e;θ) = 0 (8.1)

Multi-objective optimization for a metabolic reaction network aims to determine the
minimum set of allowable manipulation enzymes and the corresponding changes of enzyme
activities and internal metabolite concentrations, so that the synthesis rates of the desired
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products aremaximized in steady state. The objective functions for thisMOOP are generally
expressed as follows:

max
e,x,y

vi

vbasal
i

, i ∈ �O (8.2)

min
e,x,y

m∑
j=1

yj (8.3)

where vbasal
i is the basal value of the ith flux vi ∈ v,�O ∈ Nr is the set of indices of synthesis

rates to be maximized, r is the number of target fluxes to be maximized, the binary variable
yj ∈ y is used to indicate whether the jth enzyme should be modulated, and is defined as
follows:

yj =
{
1, if enzyme j is modulated
0, otherwise

Equation (8.2) is a general formulation for maximizing a set of metabolite synthesis rates
simultaneously. Several researchers have introduced genetic manipulations to redistribute
various metabolic fluxes in a metabolic network to enhance the desired synthesis rates
[18, 31]. Equation (8.3) is used to obtain the minimum set of modulated enzymes in the
metabolic reaction network.
Some additional constraints should be considered in metabolic reaction networks to

obtain realizable solutions. The concentration of each enzyme should be bounded and is
expressed as the following inequality constraints:

yie
LB
i + (1− yi) e

basal
i ≤ ei ≤ yie

UB
i + (1− yi) e

basal
i , i = 1, . . . , m (8.4)

m∑
j=1

yj ≥ 1 (8.5)

where ebasal
i is the basal value for the modulated enzyme i, eLB

i = γ LB
ei

ebasal
i and eUB

i =
γ UB

ei
ebasal
i are the lower and upper bounds for each modulated enzyme, respectively. The

lower bounded factor γ LB
ej
is less than 1 and the upper bounded factor γ UB

ej
is greater than

1. Both factors should be provided by the designer in advance. The concentration for each
metabolite is practically restricted by its lower and upper bounds:

γ LB
xi

xbasal
i ≤ xi ≤ γ UB

xi
xBasal

i , i = 1, . . . , n (8.6)

where γ LB
xi

and γ UB
xi

are the lower and upper bounded factors for each metabolite,
respectively.
An abnormally high protein or intermediate concentration in a metabolic system ren-

ders a cell non-viable. This is because the burden on cellular metabolism is too high for
the cell to survive or the cellular osmolarity constraint is violated. Several researchers
have introduced constraints on the total enzyme concentration to overcome this issue and
ensure that it never reaches an unacceptable value for the cell’s viability [8,11,12,15].More-
over, the cell viability and optimal synthesis rates effectively limit the total intermediate
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metabolite concentration. The total metabolite and enzyme concentration constraints for
cell viability are expressed as follows:

n∑
i=1

xi ≤ γx

n∑
i=1

xbasal
i (8.7)

m∑
i=1

ei ≤ γe

m∑
i=1

ebasal
i (8.8)

where γ x and γ e are the restriction factors for the constraints on total metabolite concen-
trations and total enzyme concentrations, respectively.
The primal multi-objective optimization problem formulated by Equations (8.1) to (8.8)

is a multi-objective mixed-integer nonlinear programming problem. The objective function
defined by Equation (8.3) can be straightforwardly converted into an ε-constraint, because
it is easy to assign the ε-values. After the transformation, the primal MOOP is expressed
as follows:

max
e,x,y∈�

vi

vbasal
i

, i ∈ �O (8.9)

subject to
m∑

j=1
yj ≤ ε (8.10)

where the allowable number ε of the manipulated enzymes is provided by the designer in
advance, and the feasible set� consists of all feasible solutions that satisfy the constraints in
Equations (8.1) and (8.4)–(8.8). The primal MOOP described by Equations (8.9) and (8.10)
is still a multi-objective problem. The optimality of this transformation will be discussed
in next section. If the lower and upper bounds for each objective value can be obtained
in advance, the weighted infinite norm method, one of the reference-goal methods, can
be used to determine a tradeoff solution. Based on this assumption, the MOOP defined
by Equations (8.9) and (8.10) can be transformed into a weighted infinite-norm problem
defined as follows:

min
e,x,y∈�ε

max
i∈�O

{
vi

vUB
i − vLB

i

}
(8.11)

where the lower bound vLB
i is equal to its basal flux vbasal

i , the upper bound vUB
i can be

estimated by SOOP that maximizing vi only, and the extended feasible set �
ε consists of

the original feasible set � and the ε-constraint in Equation (8.10).

8.2.2 Resilience Problem

A strain may reflect resilience phenomena after genetic interventions. Segrè et al. [22]
introduced a method, called MOMA, to obtain the flux distribution for a mutant strain by
minimizing the distance between the flux vectors for the mutant strain and the original
wild-type strain. Shlomi et al. [23] applied ROOM to calculate the flux distribution of a
mutant with minimum number of component changes between the mutant flux vector and
the original flux vector. However, the solutions obtained from both of these approaches are
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based on the stoichiometricmodel and derive from the flux balance analysis (FBA). Lee et al.
[32] present an MOMA kinetic model for the analysis of metabolic control mechanisms
of transgenic plants on monolignol biosynthesis. Here, we introduce a generalized fuzzy
multi-objective optimization formulation with a kinetic model to cope with the resilience
effects and to minimize the enzyme manipulation set. The formulation combined both
concepts of MOMA and ROOM with the primal MOOP. The primal MOOP is therefore
extended to be a GFMOOP that can be expressed as follows:

m̃ax
e,x,y

vi

vbasal
i

= m̃ax
e,x,y

fi �∼
[
f LB

i , f UB
i

]
, i ∈ �O (8.12)

ẽqual
e,x,y

(
xj ≈ xbasal

j

)
, j ∈ �X (8.13)

ẽqual
e,x,y

(
ek ≈ ebasal

k

)
, k ∈ �E (8.14)

min
e,x,y

m∑
j=1

yj (8.15)

where �X ∈ Nn is the set of metabolite indices and �E ∈ Nm is the set of enzyme indices.
Here, the symbols, “�∼” and “≈” denote a relaxed or fuzzy version of the ordinary inequality
“≥” and equality “=”, respectively. The fuzzy maximization, “m̃ax”, in Equation (8.12)
means that the enzymemanipulation is completely acceptable if the ith flux ratio exceeds its
upper bound f UB

i , which can be estimated from the primal MOOP. Conversely, the design
is completely unacceptable if the ith flux ratio is less than the lower bound f LB

i . The lower
bound is generally equal to 1, meaning that the modified flux should exceed its basal value.
Equations (8.13) and (8.14) are the “fuzzy equal (ẽqual)” objective functions that represent
the fuzzy goals. For example, the metabolite concentration xj and enzyme activity ek should
be restored to a state that is as close to the wild type as possible. Equation (8.15) is the crisp
objective function, the same as Equation (8.3).
The cell viability constraints in Equations (8.7) and (8.8) are crisp limits, indicating that

all cells die when any of the inequality constraints is violated. These constraints are not so
strict in practical situations according to the growth patterns and kinetics of cells in culture
[33]. In general, cells can survive when each total amount of metabolites and enzymes is
within a wide interval over the critical value. The fuzzy inequality constraint can be applied
to handle this practical situation. The restrictions for cell viability are softened as follows:

n∑
i=1

xi ≺∼
[
ζ LB
x , ζ UB

e

] n∑
i=1

xbasal
i (8.16)

m∑
i=1

ei ≺∼
[
ζ LB
e , ζ UB

e

] m∑
i=1

ebasal
i (8.17)

where the symbol “≺∼” denotes a fuzzy version of the ordinary inequality “≤”. Here, ζ LB
x/e

and ζ UB
x/e are the lower and upper restriction factors, respectively, for the fuzzy constraints

on total metabolite/enzyme concentrations. The interval bound [ζ LB
x/e, ζ

UB
x/e] indicates that

the microbes have some degree of satisfaction if each metabolite/enzyme concentration is
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within its boundary. The lower bounds of the fuzzy inequality constraints mean that the
microbes completely survived if both total metabolite/enzyme concentration constraints in
Equations (8.16) and (8.17) are less than their lower limits. Conversely, the microbes died
if one of the total metabolite/enzyme concentration constraints exceeded its upper limit.
This situation indicates that the solution is infeasible.
The objective functions of GFMOOP are defined in the fuzzy and crisp domains. This

is the reason why we call it a general fuzzy MOOP. Almost no studies discuss how to
obtain a Pareto-optimal solution of the GFMOOP. This problem is first converted into
a fuzzy MOOP with ε-constraints, abbreviated as ε-FMOOP, by transforming the crisp
objective function into an ε-constraint. The optimality of the ε-FMOOP problem will
be discussed in next section. To solve the ε-FMOOP, each fuzzy objective function, fuzzy
equal objective function, and fuzzy inequality constraint functionwas quantified by eliciting
their corresponding membership function. Sakawa [20] proposed five types of membership
functions: linear, exponential, hyperbolic, inverse, and piecewise linear functions to evaluate
the membership grades. Having elicited the membership functions for each fuzzy objective
function, fuzzy equal objective, and fuzzy inequality constraints, the ε-FMOOP can be
expressed as the goal attainment problem:

min
e,x,y

ηD = min
e,x,y

{
max
i∈�

[η̄i − ηi (fi)]+ δ
∑
i∈�

[η̄i − ηi (fi)]

}
(8.18)

where η̄i is the ideal preferred goal, � = �O ∪ �X ∪ �E , and ηD denotes an aggrega-
tion function defined on the crisp domain �, which consists of the feasible solutions
satisfied equation (8.1), the crisp bounds in equations (8.4)–(8.5) and the ε-constraint in
equation (8.10). Sakawa introduced several aggregation functions in which the value of the
aggregation function can be interpreted as an overall degree of satisfaction with user’s fuzzy
goals [20]. Here, the first term of the aggregation function in the brace of Equation (8.18) is
applied to determine the optimal tradeoff solution that is nearest to the ideal preferred goal,
η̄i , which indicates 100% satisfaction. The second term is introduced to avoid uniqueness
testing for optimality of the solution and the constant δ is a small positive value between
10−3–10−5. The fuzzy goal attainment approach can find a satisfactory solution directly in
the Pareto set without yielding the Pareto frontier of the problem.

8.3 Optimality

Here, we discuss the optimality of the primal MOOP and GFMOOP. A general MOOP
problem can be rewritten in a compact form as follows:

MOOP:

min
u∈�

fi(u), i ∈ � (8.19)

where � ∈ Nr is a set of indices of objective functions, r is the number of objective
functions, fi is the ith objective function, the vector u, an n-dimensional mixed-integer
vector, consists of an nI -dimensional vector of integer variables and an nC-dimensional
vector of continuous variables, and n = nI + nC . The feasible domain � consists of all
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feasible solutions that satisfy the equality and inequality constraints and can be expressed
as the following compact form:

� = {
u ∈ ZnI × RnC |hi(u) = 0, i = 1, . . . , m; gj (u) ≤ 0, j = 1, . . . , p

}
(8.20)

where m and p are the number of equality constraints h and inequality constraints g,
respectively. Without loss of generality, any maximization of objective functions can be
transformed to a minimization form by changing the sign of the objective functions. There-
fore, any MOOP can be expressed as Equation (8.19).
The MOOP is a natural extension of a traditional optimization of a single-objective

function. If the multiple-objective functions are commensurate, minimizing one objec-
tive function will minimize all objectives and the problem can be solved using traditional
optimization techniques to obtain a complete optimal solution. However, if the objec-
tive functions are incommensurate, or competing, then the minimization of one objective
function requires a compromise in another objective function. The competition between
multiple-objective functions gives rise to the distinction between the MOOP and a tradi-
tional SOOP. The problem is further complicated by the lack of a complete priority order
for multiple objectives. Therefore, the concept of Pareto optimality or noninferiority is
used to characterize an optimal solution to MOOPs. In order to explain the Pareto-optimal
solution concisely, we introduce the following definition [19–21].

Definition 1: Pareto-optimal solution
A vector u∗ is said to be a Pareto-optimal solution of the MOOP, if and only if there does

not exist another u ∈ � such that fi(u) ≤ fi(u∗) for all i and fj (u) �= fj (u∗) for at least
one j.
The ε-constraint method finds the Pareto-optimal solutions of an MOOP by transferring

it into a traditional SOOP. One of the objective functions in the MOOP is selected as the
objective function of the SOOP and the others are transferred into inequality constraints.
By this transformation, the ε-constraint formulation for the general MOOP is expressed as
follows:

min
u

fi(u)

subject to fj (u) ≤ εj , j ∈ �; i �= j

u ∈ �

(8.21)

Sakawa and Sawaragi et al. [20,21] have demonstrated that a Pareto-optimal solution of
the general MOOP problem is also an optimal solution of its corresponding ε-constraint
formulation for a specific objective function and some εj , and vice versa.
Like the ε-constraint method, the weighted min-max method determines the Pareto-

optimal solutions of an MOOP by transferring it into a weighted min-max formulation that
is expressed as follows:

min
u∈�

max
i∈�

{wifi(u)} (8.22)

where the weighting factor wi is used to normalize each corresponding objective function
fi and can be defined as 1/(f UB

i − f LB
i ). The lower and upper bounds, f LB

i and f UB
i , are

assigned by the user in advance. Sakawa and Sawaragi et al. [20,21] have also demonstrated
that a Pareto-optimal solution of the general MOOP problem is also an optimal solution
of its corresponding weighted min-max formulation for some weighting factors, and vice
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versa. Many tools, including MIHDE, can be used to solve the ε-constraint and weighted
min-max problems transferred from the general MOOP.
In traditional ε-constraint methods, only one of the objective functions is retained as the

criterion and the others are converted into inequality constraints. In the followingwe discuss
a hypothetical condition that some objective functions of the general MOOP can be easily
transformed into ε-constraints, but others cannot. As a result, the transformed problem is still
an MOOP, but its feasible domain is changed. Without loss of generality, this partial trans-
formed MOOP, we call it ε-MOOP, from the general MOOP can be expressed as follows:

ε-MOOP:

min
u∈�ε

fi(u), i ∈ �I ,�
ε = � ∩ {u|fj (u) ≤ εj , j ∈ �J } (8.23)

where � = �I ∪ �J and �I ∩ �J = Ø (empty set).
Here we prove that the general MOOP and its corresponding ε-MOOP problem with an

extended feasible domain have the same optimality.

Lemma 1 If u∗ ∈ �ε is a Pareto-optimal solution of the ε-MOOP problem with objective
functions fi , i ∈ �I and some εj , j ∈ �J , then u∗ is a Pareto-optimal solution of the
corresponding MOOP.

Proof. Assume u∗ ∈ �ε is a Pareto-optimal solution of the ε-MOOP problem with
objective functions fi , i ∈ �I and some εj , j ∈ �J , but it is not a Pareto-optimal
solution of the corresponding MOOP. According to the definition of a Pareto-optimal
solution, there exists at least a u ∈ � such that fk(u) ≤ fk(u∗) for all k ∈ � and
fl(u) �= fl(u∗) for at least one l ∈ �. Without loss of generality, let l ∈ �I and fk(u∗) = εk

for all k ∈ �J , then u ∈ � is a feasible solution such that fj (u) ≤ εj for all j ∈ �J ,
fi(u) ≤ fi(u∗) for all i ∈ �I , and fl(u) �= fl(u∗) for at least one l ∈ �I . This contradicts
the fact that u∗ is a Pareto-optimal solution of the ε-MOOP problem. So u∗ is a Pareto-
optimal solution of the corresponding MOOP problem.

Lemma 2 If u∗ ∈ � is a Pareto-optimal solution of theMOOP, then u∗ is a Pareto-optimal
solution to the corresponding ε-MOOP for some εj , j ∈ �J .

Proof. Assume u∗ ∈ � is a Pareto-optimal solution of the MOOP, but it is not a Pareto-
optimal solution of the ε-MOOP. According to the definition of a Pareto-optimal solution,
there exists at least a u ∈ �ε ⊂ � such that fi(u) < fi(u∗) for some i ∈ �I , fk(u) ≤ fk(u∗)
for all k ∈ �I and i �= k, and fj (u) ≤ εj = fj (u∗) for all j ∈ �J . Here fj (u∗) is an
upper bound of the objective functions fj for all j ∈ �J and can be used as the value
of εj . Therefore, there exists at least a u ∈ � such that fi(u) < fi(u∗) for some i ∈ �I ,
fk(u) ≤ fk(u∗) for all k ∈ � and i �= k, and fj (u) ≤ fj (u∗) for all j ∈ �J . This contradicts
the fact that u∗ is a Pareto-optimal solution of the MOOP. We conclude that u∗ is also a
Pareto-optimal solution of the corresponding ε-MOOP for some specific εj , j ∈ �J .
When the primal MOOP described by equations (8.1) to (8.8) is solved, it is transferred

into an ε-MOOP problem by converting the objective function in Equation (8.3) into
an inequality constraint. By lemmas 1 and 2, the primal MOOP and its corresponding
ε-MOOP have the same optimality. The ε-MOOP with an extended feasible domain is a



226 Multi-Objective Optimization in Chemical Engineering

specific case of the general MOOP. A Pareto-optimal solution of the ε-MOOP problemwith
an extended feasible domain can be obtained using the ε-constraint method or weighted
min-max method according to the demonstration from Sakawa and Sawaragi et al. So we
have the following remark.

Remark 1. A Pareto-optimal solution of the primal MOOP can be obtained by solving
its corresponding ε-constraint problem or weighted min-max problem with an extended
feasible domain.
If the designer considers the fuzzy metabolite adjustment issue and has the preference

goals in advance, he or she can apply a fuzzy optimization method to achieve the goals.
Such a fuzzymulti-objective optimization problem (FMOOP) can be formulated as follows:

FMOOP:

m̃in
u∈�

fi(u), i ∈ �O

ẽqual
u∈�

fj (u), j ∈ �E

(8.24)

where�O is the set of indices of minimizing objectives and�E is the set of indices of equal
objectives. When the membership functions ηi(fi(u)) for each objective function has been
determined, the FMOOP can be converted into the goal-attainment or min-max problem.
The goal-attainment problem (GAP) is defined as follows:

min
u∈�

max
i∈�

{[η̄i − ηi (fi(u))] , i ∈ �} (8.25)

where η̄i is the reference value of membership function fi , � = �O ∪ �E , and
�O ∩ �E = Ø.
Sakawa [20] defines the following definition for explanations of the optimality relation-

ship between the FMOOP and the GAP problem.

Definition 2: M-Pareto-optimal solution
The vector u∗ ∈ � is said to be an M-Pareto-optimal solution of the FMOOP if and only

if there does not exist another u ∈ � such that ηi(fi(u)) ≥ ηi(fi(u∗)) for all i ∈ � and
ηj (fj (u)) �= ηj (fj (u∗)) for at least one j.
Sakawa [20] has demonstrated that a local M-Pareto-optimal solution of the FMOOP is

also a unique optimal solution to the GAP for some reference membership levels.
Let us consider the GFMOOP as discussed in equations (8.12)–(8.15), i.e., the problem

includes fuzzy and crisp objective functions, and is therefore rewritten as follows:

GFMOOP:

m̃in
u∈�

fi(u), i ∈ �O

ẽqual
u∈�

fj (u), j ∈ �E

min
u∈�

fk(u), k ∈ �C

(8.26)

where �C is the set of indices of crisp objective functions fk . Like the primal MOOP, the
GFMOOP is converted to an FMOOP by transferring each crisp objective function into an
ε-constraint. This transferred FMOOP with ε-constraint, abbreviated as ε-FMOOP, is an
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FMOOP defined in domain�ε = � ∩ {u|fk(u) ≤ εk, k ∈ �C}. In the following, we define
the generalized M-Pareto-optimal solution of GFMOOP and prove the following lemmas.

Definition 3: Generalized M-Pareto-optimal solution
The vector u∗ ∈ � is said to be a generalizedM-Pareto-optimal solution of theGFMOOP,

if and only if there does not exist another vector u ∈ � such that ηi(fi(u)) ≥ ηi(fi(u∗)) for
all i ∈ �O ∪ �E , ηj (fj (u)) �= ηj (fj (u∗)) for at least one j ∈ �O ∪ �E , and fk(u) ≤ fk(u∗)
for all k ∈ �C .

Lemma 3 If u∗ ∈ �ε is an M-Pareto-optimal solution to the ε-FMOOP for some εk ,
k ∈ �C , then u∗ is a generalized M-Pareto-optimal solution to the GFMOOP.

Proof. Assume u∗ ∈ �ε is an M-Pareto-optimal solution of the ε-FMOOP problem with
fuzzy objective functions fi , i ∈ �O ∪ �E and some εj , j ∈ �C , but it is not a generalized
M-Pareto-optimal solution to the GFMOOP. According to the definition of a generalizedM-
Pareto-optimal solution, there exists at least a u ∈ � such that ηk(fk(u)) ≥ ηk(fk(u∗)) for all
k ∈ �O ∪ �E , ηl(fl(u)) �= ηl(fl(u∗)) for at least one l ∈ �O ∪ �E , and fm(u) ≤ fm(u∗)
for all m ∈ �C . Without loss of generality, let fk(u∗) = εk for all k ∈ �C , then u ∈ �

is a feasible solution such that fk(u) ≤ εk for all k ∈ �C , ηi(fi(u)) ≥ ηi(fi(u∗)) for all
i ∈ �O ∪ �E , and ηl(fl(u)) �= ηl(fl(u∗)) for at least one l ∈ �O ∪ �E . This contradicts
the fact that u∗ is an M-Pareto-optimal solution of the ε-FMOOP problem, so u∗ is a
generalized M-Pareto-optimal solution to the GFMOOP.

Lemma 4 If u∗ ∈ � is a generalized M-Pareto-optimal solution to the GFMOOP with
0 < ηi(fi(u∗)) < 1 for all i ∈ �O ∪ �E , and there exists εk , k ∈ �C , such that fk(u∗) ≤ εk ,
k ∈ �C , then u∗ is an M-Pareto-optimal solution to the ε-FMOOP.

Proof. Assume u∗ ∈ � is a generalized M-Pareto-optimal solution of the GFMOOP, but it
is not anM-Pareto-optimal solution of the ε-FMOOP for some εk , k ∈ �C. According to the
definition of generalized M-Pareto-optimal solution of the ε-FMOOP, there exists at least a
u ∈ �ε ⊂ � such that ηi(fi(u)) ≥ ηi(fi(u∗)) for all i ∈ �O ∪ �E , ηj (fj (u)) �= ηj (fj (u∗))
for at least one j ∈ �O ∪ �E , and fk(u) ≤ εk , k ∈ �C . Since u∗ is a feasible solution of
GFMOOP, fk(u∗) is an upper bound of objective function fk for all k ∈ �C and can be used
as the value of εk . Therefore, there exists at least a u ∈ � such that ηi(fi(u)) ≥ ηi(fi(u∗))
for all i ∈ �O ∪ �E , ηj (fj (u)) �= ηj (fj (u∗)) for at least one j ∈ �O ∪ �E , and fk(u) ≤
fk(u∗), k ∈ �C . This contradicts the assumption that u∗ is a generalized M-Pareto-optimal
solution of the GFMOOP, so we conclude that u∗ is an M-Pareto-optimal solution of the
corresponding ε-FMOOP for some εk , k ∈ �C .
By Lemmas 3 and 4, the GFMOOP and its corresponding ε-FMOOP have the same

optimality. An ε-FMOOP is a general FMOOP defined on a domain different from that of
its original GFMOOP. According to the demonstration from Sakawa, an M-Pareto-optimal
solution of the ε-FMOOP can be obtained by solving the corresponding GAP. So we have
the following remark.

Remark 2. A generalized M-Pareto-optimal solution of a GFMOOP problem can be
obtained by solving the corresponding goal-attainment problem.
Figure 8.1 depicts the steps to find a Pareto-optimal solution for the primal MOOP and

GFMOOP by Remark 1 and Remark 2, respectively.
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Lemma 1

Lemma 3

Lemma 4

Lemma 2

(A) Optimality relationship for the primal multiobjective optimization problem

(B) Optimality relationship for generalized fuzzy multiobjective optimization problems

A Pareto-optimal
solution for PMOOP

min  fi (u), i ∈ ΣI
u∈Ω

u∈Ω
min  fj (u), j ∈ ΣJ

A Pareto-optimal
solution for ε-MOOP

An optimal solution for the
ε-constraint problem

An optimal solution for the
weighted mix-max problem

min max {wi fi (u), i ∈ΣI}

min      max     [η–i − ηi ( fi (u))]

u∈Ωε

u∈Ωε

u∈Ωε

u∈Ωε

u∈Ωε    i∈ΣO ∪ ΣE

u∈Ω̂

Ωε = Ω∩{u | fk (u) ≤ εk, k ∈ΣC}
Ωε = Ω∩{u | fk (u) ≤ εk, k ∈ΣC}

Ωε = Ω∩{u | fj (u) ≤ εj, j ∈ΣJ}

Ω̂  = Ω∩{u | fj (u) ≤ εj, j∈Σ\{i}}

min  fi (u)

min  fi (u), i ∈ ΣI

u∈Ω

u∈Ω

min  fi (u), i ∈ ΣO

u∈Ω
min  fk (u), k ∈ ΣC

equal  fj (u), j ∈ ΣE

A generalized M-Pareto-
optimal solution for

GFMOOP

An M-Pareto-optimal
solution for ε-FMOOP

An optimal solution for
goal attainment problemmin  fi (u), i ∈ ΣO

equal  fj (u), j ∈ ΣE

Figure 8.1 Optimality relationships for the primal MOOP and GFMOOP problems.

8.4 Mixed-Integer Hybrid Differential Evolution

The primal MOOP and GFMOOP were converted into a goal-attainment or min-max prob-
lem that is a constrained SOOP and is easy to solve. Most of the objective functions
discussed here are nonlinear, and some integer decision variables are included in the objec-
tive and constraint functions. The constrained SOOP transferred from the primal MOOP
or GFMOOP is reformulated as a constrained MINLP problem. Because the continuity
and differentiability of integer decision variables, EAs are the best choice for solving
unconstrained MINLP problems. Here we introduce a mixed encoding EA, the MIHDE,
which can be used to solve constrained MINLP problems through the implementation of
constraint-handling techniques.

8.4.1 Algorithm

Let us consider an unconstrained MINLP problem as follows:

min
u∈(x,y)⊂RnC ×ZnI

f (u) (8.27)

where x represents an nC-dimensional vector of continuous variables and y is an nI -
dimensional vector of discrete or integer variables. The vector u = (x, y) is composed of
real and integer variables simultaneously.
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Table 8.1 The basic operations for the evolutionary algorithm and MIHDE.

Evolutionary algorithm Mixed-integer hybrid differential evolution

1. Representation and initialization 1. Mixed-coding representation and initialization
2. Mutation 2. Mutation with rounding operation
3. Crossover operation 3. Crossover operation
4. Selection and evaluation 4. Restriction operation
5. Repeat steps 2 to 4 5. Selection and evaluation

6. Acceleration operation if necessary
7. Migration operation performed naturally or

enforced if necessary
8. Repeat steps 2 to 6

TheMIHDE is a population-based stochastic function optimizationmethod. This method
was extended from a real-valued version of hybrid differential evolution (HDE) [34] that
was extended from the original algorithm of differential evolution (DE) introduced by
Storn and Price [35, 36]. Differential evolution and HDE are unable to handle MINLP
problems because they represent genes using a real number encoding strategy. In MIHDE,
a rounding operator was embedded into the mutation operation for each integer gene. The
basic operations for MIHDE and original DE are expressed in Table 8.1.
MIHDE is a parallel direct-search algorithm that utilizes all Np individuals (x, y) in the

population. Each encoded individual (x, y) inMIHDE is composed of real decision variables
and integer/discrete decision variables. The initialization process randomly generates Np

individuals to cover the entire search space uniformly.
Unlike conventional evolutionary algorithms, the mutation operation of MIHDE uses

the difference between two randomly chosen individuals as a search direction. The ith
mutant individual (x̄G, ȳG)i in generation G is obtained through the difference of two or
four random individuals as expressed in the following form:

(x̄G, ȳG)i = (xG, yG)p + ⌊
ρm

{
(xG, yG)k − (xG, yG)l

}⌋
= (xG, yG)p + {

ρm(xG
k − xG

l ), INT[ρm(yG
k − yG

l )]
}

(8.28)

where random indices k, l ∈ {1, 2, . . . , Np} are mutually different. The operator INT[b =
ρm(yG

k − yG
l )] in Equation (8.28) is employed to find the integer vector nearest to the

real vector b. The mutation factor ρm is a real random number and ranges between 0
and 1. This factor is used to control the step length along the searching direction. The
DE provided five strategies to select a parent individual (xG, yG)p in Equation (8.28). The
HDE/MIHDE implements an additional mutation strategy that applies a linear crossover
for the ith individual and the best individual (xG, yG)b to generate the parent individual.
The parent individual is therefore expressed as follows:

(xG, yG)p = ρp(xG, yG)b + (1− ρp)(xG, yG)i (8.29)

where the factor ρp is a real random number that ranges between zero and one. Themutation
operation may cause the mutant individual to escape from the search domain. If a mutant
individual is outside the search domain, then it is replaced by its lower bound or upper
bound so that each individual is restricted on the search domain.
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The choice of mutation factor for the MIHDE is heuristic and random. While the popu-
lation diversity is small, the candidate individuals will cluster together rapidly so that the
individuals cannot be further improved, and this may result in a premature convergence.
To increase the local diversity of the mutant individuals, a binomial crossover is applied to
increase the population diversity locally.
The survivor selection operation for the HDE/MIHDE is a one-to-one competition

between the parent and its offspring. The competitionmeans that any parent will be replaced
by its offspring if its fitness is worse than that of its offspring. On the other hand, any parent
will be retained in the next generation if it has a better fitness than its offspring. Two phases
are performed in the survivor selection. The first is one-to-one competition. The next phase
is to determine the best individual in the population.
When an evolutionary algorithm is used to optimize a function, an acceptable tradeoff

between convergence and diversity must be determined. Fast convergence is important,
although it may lead to a local optimum. On the other hand, high diversity guarantees the
probability of obtaining a global optimum. When population diversity is low, candidate
individuals may be tightly clustered. In this case, the mutation and crossover operations of
DE will no longer generate a better individual because a premature solution is achieved.
HDE/MIHDE includes acceleration andmigration operators that act as a tradeoff operation.
The acceleration operation is used to speed up convergence. Generally, the best fitness
does not descend continuously from generation to generation; it usually improves after
several generations. In this situation, the acceleration operation can be used to speed up
the convergence. When the mutation and crossover operators no longer improve the best
fitness in the present generation, a descent method is applied to move the best individual
toward a better solution.
The rate of convergence can be improved by the acceleration operator. However, faster

convergence usually results in a premature solution. Performing this operation can also
frequently cause candidate individuals to cluster gradually around the best individual, so
that population diversity is decreased and cannot reproduce better individuals through the
mutation and crossover operators. As a result, a migration operator was used to avoid local
clustering. It is performed only if the measure of population diversity fails to satisfy the
desired tolerance. Lin et al. [37] proposed the population diversity degree ζ to checkwhether
the migration operation should be performed. In order to define the degree of population
diversity, Lin et al. introduced the following gene diversity index for each real-valued gene
xG+1

ji and integer-valued gene yG+1
ji at the (G+1) generation:

dxji =

⎧⎪⎪⎨⎪⎪⎩
0, if

∣∣∣∣∣x
G+1
ji − xG+1

jb

xG+1
jb

∣∣∣∣∣ < ε2, j = 1, . . . , nC ; i = 1, . . . , NP ; i �= b

1, otherwise

(8.30)

dyji =
{
0, if yG+1

ji = yG+1
jb , j = 1, . . . , nI ; i = 1, . . . , Np; i �= b

1, otherwise
(8.31)

where xG+1
jb and yG+1

jb are the jth gene of the best individual at the (G+1)th iteration, dxji

and dyji are the gene diversity indices, and ε2 ∈ [0, 1] is a tolerance value for real-valued
genes provided by the user. According to Equations (8.30) and (8.31), we set the jth gene
diversity index for the ith individual to zero if this gene clusters around the best gene.
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The population diversity degree ζ is defined as the ratio of the total diversified genes to
the overall genes except the individual. From Equations (8.30) and (8.31), we have the
population diversity degree as follows:

ζ =

Np∑
i=1,i �=b

(
nC∑

j=1
dxji +

nI∑
j=1

dyji

)
(nC + nI ) (Np − 1) (8.32)

From Equations (8.30)–(8.32), we observe that the value of population diversity degree
ranges between 0 and 1.Avalue of 0 implies that all of the genes are clustered around the best
individual. On the other hand, a value of 1 indicates that the current candidate individuals
are a completely diversified population. The desired tolerance for population diversity is
assigned by user. A tolerance value of 0 implies that the migration operation in MIHDE is
switched off, and a tolerance value of 1 implies that the migration operation is performed at
every generation. Consequently, the user can set a tolerance value for population diversity
degree, ε1 ∈ [0, 1], to assess whether migration should be performed. If ζ is smaller than
ε1, then MIHDE performs migration operations to regenerate a new population in order to
escape a local point. On the other hand, if ζ is not less than ε1 then MIHDE suspends the
migration operation and maintains a constant search direction toward a target.

8.4.2 Constraint Handling

MIHDE can be used to solve a constrained MINLP problem through the implementation
of constraint-handling techniques. A general constrained MINLP problem is composed of
the unconstrained MINLP problem defined in Equation (8.27) and equality and inequality
constraints as follows:

hj (x, y) = 0, j = 1, . . . , me (8.33)

gj (x, y) ≤ 0, j = 1, . . . , mi (8.34)

Penalty function methods are some of the most popular techniques for handling con-
straints [38]. Such techniques convert original constrained problem into an unconstrained
problem by penalizing those solutions which are infeasible. A square penalty function is
given as follows:

P (u) = f (u)+
me∑
k=1

αkh
2
k(u)+

mi∑
k=1

βk 〈gk(u)〉2+ (8.35)

where αk and βk are the positive penalty parameters and the bracket operation in Equa-
tion (8.35) is defined as 〈gk〉+ = max{gk, 0}. The penalty terms associated with equality
and inequality constraints are added to the objective function. As a result, the penalty terms
reflect violations of the constraints and assign a high cost of the penalty function to a
candidate individual that is far from the feasible region. When we apply MIHDE or EA to
solve constrained MINLP problems using the square penalty function as Equation (8.35),
any candidate individual that violates the constraints should inherit poorer fitness. As a
result, the candidate individual with a higher penalty value should be abandoned in the
survivor selection operation.
The penalty function methods are easy to implement. However, the main limitation is the

decision of the penalty degree for each constraint. Powell [39] has noted that the classical
optimization methods employing penalty functions have certain weaknesses when the
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penalty parameters are large. Large penalty parameters in the penalty function strongly
distort the objective function of the corresponding unconstrained problem. As a result, the
optimal solution of the original constrained problem is difficult to achieve by solving its
corresponding unconstrained problem. On the other hand, small penalty parameters may
result in an unfeasible solution. Therefore, how to choose appropriate penalty parameters
is not trivial.
Gradient-basedmethods have usedLagrange transformationmethods to solve real-valued

constrained optimization problems. The transformationmethods can significantly overcome
the weaknesses for penalty methods. Lin et al. [29] have implemented a multiplier updating
method into the MIHDE to solve constrained MINLP problems. The augmented Lagrange
function for constrained MINLP problems is defined as

La(u, ν, υ) = f (u)+
me∑
k=1

αk

{
[hk(u)+ νk]

2 − ν2k
} +

mi∑
k=1

βk

{〈gk(u)+ υk〉2+ − υ2k
}
(8.36)

where αk and βk are positive penalty parameters, and the corresponding Lagrange multipli-
ers are defined as λk = 2αkνk and μk = 2βkυk . The penalty parameters in Equation (8.36)
are generally fixed for the evolutionary iterative procedures. However, small penalty param-
eters for the augmented Lagrange function may still result in an infeasible solution. To over-
come this drawback, Lin et al. have used a multiplier updating method to enforce global
convergence for constrained MINLP problems. Box 8.1 shows the algorithm for MIHDE
with a multiplier updating method, including adaptive penalty parameters. Steps 3, 4 and
6 in Box 8.1 are used to improve constraint violation and update the penalty parameters.
In Step 4, if the constraint violation is not improved, i.e., ε̃K ≥ εK , then we increase the
penalty parameters by the factor ω2 (e.g., ω2 = 10) and reduce the corresponding multipli-
ers by the same factor, thus keeping the multipliers unchanged. In Step 6, we use the factor
ω1 (e.g., ω1 = 4) to check whether the constraint violation has been improved by the factor
ω1. The penalty parameters and the corresponding multipliers are updated in this step only
when the constraint violation is not improved by the factor ω1.

Box 8.1 MIHDE with multipliers updating and adaptive penalty
parameters.

Step 1: Set the initial iteration l = 0, the initial multipliers, νl
k = ν0k = 0, k =

1, . . . , me and υl
k = υ0k = 0, k = 1, . . . , mi , and the initial penalty parameters,

αk > 0, k = 1, . . . , me and βk > 0, k = 1, . . . , mi . Set the tolerance of the maximum
constraint violation, εK (e.g., εK = 1032), and the scalar factors, ω1 > 1 and ω2 > 1.
Step 2: Use the MIHDE algorithm to find a minimum solution of the augmented
Lagrange function La(u, νl, υl). Let ul

b = (xl
b, yl

b) be a minimum solution of the
problem La(u, νl, υl).
Step 3: Evaluate the maximum constraint violation as

ε̃K = max

{
max

k
|hk| ,max

k
|max (gk,−υk)|

}
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and establish the following sets of equality and inequality constraints, violation of
which will not be improved by the factor ω1:

IE = {k : |hk| > εK/ω1, k = 1, . . . , me} ,

II = {k : |max (gk,−υk)| > εK/ω1, k = 1, . . . , mi} .

Step 4: If ε̃K ≥ εK , then let αk = ω2αk and νl+1
k = νl

k/ω2 for all k ∈ IE , and let
βk = ω2βk and υl+1

k = υl
k/ω2 for all k ∈ II , and go to Step 7. Otherwise, go to Step

5.
Step 5: Update the multipliers as follows:

νl+1
k = hk

(
ul

b

) + νl
k,

υl+1
k = 〈

gk

(
ul

b

) + υl
k

〉
+ = υl

k +max {
gk

(
ul

b

)
,−υl

k

}
.

Step 6: If ε̃K ≤ εK/ω1, then let εK = ε̃K and go to Step 7. Otherwise, let αk = ω2αk

and νl+1
k = νl+1

k /ω2 for all k ∈ IE , and let βk = ω2βk and υl+1
k = υl+1

k /ω2 for all
k ∈ II . Let εK = ε̃K and go to Step 7.
Step 7: If the maximum iteration is achieved, stop. Otherwise, repeat Steps 2 to 6.

8.5 Examples

A test-constrained MINLP optimization problem was used to evaluate the performance of
MIHDE with different penalty functions. The MIDHE with the best penalty function was
applied to an FMOOP to maximize ethanol and glycerol production rates in the metabolic
network of yeast with fuzzy cell viability and metabolic adjustment as considerations. All
the computations were performed on a personal computer using Microsoft Windows 7. The
MIHDE algorithm was implemented using Intel Visual Fortran, and required four setting
factors provided by the user. These setting factors used for all runs in all computations
are listed as follows: The crossover factor is set to be 0.5. Two tolerances used in the
migration are set to be 0.05. The population size of five is used in the computations.
The maximum iteration of 5000 is used for the inner loop of MIHDE solver. However,
we use various maximum iterations in the outer loop for multiplier updating to inspect the
solution progress.

Example 1: a test-constrained MINLP optimazation problem
This test-constrained MINLP optimization problem about chemical process design was
expressed by Floudas [40] and includes two equality constraints and 21 inequality con-
straints. The problem involves minimizing the objective function as follows:

min
x,y

f (x, y) = 5y1 + 8y2 + 6y3 + 10y4 + 6y5 + 7y6 + 4y7 + 5y8
− 10x1 − 15x2 + 15x3 + 80x4 + 25x5 + 35x6 − 40x7
+ 15x8 − 35x9 + exp(x1)+ exp(x2/12)− 65 ln(x3 + x4 + 1)
− 90 ln(x5 + 1)− 80 ln(x6 + 1)+ 120
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subject to

h1(y) = y1 + y2 − 1 = 0
h2(y) = −y4 + y6 + y7 = 0
g1(x) = −1.5 ln(x5 + 1)− ln(x6 + 1)− x8 ≤ 0
g2(x) = − ln(x3 + x4 + 1) ≤ 0
g3(x) = −x1 − x2 + x3 + 2x4 + 0.8x5 + 0.8x6 − 0.5x7 − x8 − 2x9 ≤ 0
g4(x) = −x1 − x2 + 2x4 + 0.8x5 + 0.8x6 − 2x7 − x8 − 2x9 ≤ 0
g5(x) = −2x4 − 0.8x5 − 0.8x6 + 2x7 + x8 + 2x9 ≤ 0
g6(x) = −0.8x5 − 0.8x6 + x8 ≤ 0
g7(x) = −x4 + x7 + x9 ≤ 0
g8(x) = −0.4x5 − 0.4x6 + 1.5x8 ≤ 0
g9(x) = 0.16x5 + 0.16x6 − 1.2x8 ≤ 0
g10(x) = x3 − 0.8x4 ≤ 0
g11(x) = −x3 + 0.4x4 ≤ 0
g12(x, y) = exp(x3)− 10y1 − 1 ≤ 0
g13(x, y) = exp(x2/1.2)− 10y2 − 1 ≤ 0
g14(x, y) = x7 − 10y3 ≤ 0
g15(x, y) = 0.8x5 + 0.8x6 − 10y4 ≤ 0
g16(x, y) = 2x4 − 2x7 − 2x9 − 10y5 ≤ 0
g17(x, y) = x5 − 10y6 ≤ 0
g18(x, y) = x6 − 10y7 ≤ 0
g19(x, y) = x3 + x4 − 10y8 ≤ 0
g20(y) = y4 + y5 − 1 ≤ 0
g21(y) = y3 − y8 ≤ 0
{0, . . . , 0} ≤ xk ≤ {2, 2, 1, 2, 2, 2, 2, 1, 3}, k = 1, . . . , 9
yk ∈ {0, 1}, k = 1, . . . , 8

Here xk represents a real variable, and yk a binary variable. A given minimum solution
is 68.0097 for this problem. One hundred trials were carried out. To investigate the test
result, the following terms are introduced: fb and fw are the best and the worst optimal
objective function value, respectively, in the 100 trials; fm is the mean value of the optimal
objective function values in the 100 trials; and σf is the standard deviation of the 100
optimal solutions. The sum of the constraint violations SCV (= ∑me

k=1 |hk| + ∑mi

k=1〈g〉+)
is defined to inspect the feasibility of a solution. σ SCV is the standard deviation of SCVs
in the 100 trials. The success rate Rs denotes the percentage of convergence to the exact
global optimum in all trials. In the computations, the so-called exact global optimum needs
to satisfy the following conditions: (i) fb ≤ VTR (optimal value to reach), (ii) |hk| ≤ 10−8,
k = 1, . . . , me, and (iii) 〈gk〉+ ≤ 10−8, k = 1, . . . , mi . Nfe is the mean number of objective
function evaluations. To improve the diversity of the population, we encoded all binary
decision variables together as an integer variable as follows:

z = ynI
2nI −1 + ynI −12

nI −2 + · · · + y22
1 + y12

0

The MIHDE with multipliers updating and adaptive penalty parameters (referred to as
MIHDE-APP), MIHDE with multipliers updating and fixed penalty parameters (referred
to as MIHDE-FPP), and MIHDE using the fixed-penalty function method (referred to
as MIHDE-PFM) were applied to solve this artificial problem. Each trial contains 5000
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iterations for the inner loop of MIHD-APP and MIHDE-FPP and 50 iterations for the
outer loop as shown in Box 8.1. The maximum of 250 000 iterations were used in the
MIHDE-PFM. Table 8.2 shows the computational results. The global minimum solution
could be obtained by MIHDE-APP using small initial penalty parameters. Moreover, the
SCV values were near to zero. The MIHDE-APP could get a premature solution and the
success rate was reduced to 0.6, if we used a larger initial penalty parameter, such as
106. In this situation, the migration operation in MIHDE-APP cannot avoid a premature
solution using a larger initial penalty parameter. A smaller fixed-penalty parameter results
in MIHDE-FPP failing to reach the global minimum, as observed in Table 8.2. The success
rate was 0.77 in the case of 103, but it declined to 0.46 in the case of 106. MIHDE-PFM has
difficulty in achieving the global minimum as observed in Table 8.2. All objective function
values were smaller than the “value to reach” (VTR) but the large SCV values show that
the solutions were infeasible.

Example 2: maximization of the ethanol/glycerol production by yeast
Saccharomycescerevisiae is still the most important microorganism for ethanol/glycerol
production to date. Many strategies have been developed to enhance the ethanol/glycerol
productivity using yeast, because its metabolic network is well studied. Figure 8.2 shows
a scheme of the simplified central metabolic network of S. cerevisiae. For more details on
the simplifications, assumptions, and experimental evidences used to build this model, the
reader can refer to the previous papers [7, 8, 41–43].
The dynamics of the simplified central metabolic network are governed by the following

equations [42]:

ẋ1 = 0.9023x−0.2344
2 x6 − 3.1847x0.74641 x0.02535 x7

ẋ2 = 3.1847x0.74641 x0.02535 x7 − 0.5232x0.73182 x−0.3941
5 x8 − 0.0009x0.73182 x11

− 1.76898x0.05262 x0.964615

ẋ3 = 0.5232x0.73182 x−0.3941
5 x8 − 0.011x0.61593 x0.13085 x9x

−0.6088
14

− 0.0516x0.053 x0.5334 x−0.0822
5 x12

ẋ4 = 0.022× (
x0.61593 x0.13085 x9x

−0.6088
14

) − 0.0947x0.053 x0.5334 x−0.0822
5 x10

ẋ5 = 0.022× (
x0.61593 x0.13085 x9x

−0.6088
14

) + 0.0947x0.053 x0.5334 x−0.0822
5 x10

− 3.1847x0.74641 x0.02435 x7 − 0.0009x0.73182 x11 − 0.5232x0.73182 x−0.3941
5 x8

− 0.937905x5x13

(8.37)

The model consists of five nonlinear ordinary differential equations, nine nonlinear rate
equations, and ten independent variables. The rate equations, fluxes, metabolites and their
corresponding basal values are shown in Table 8.3.
MIHDE-APP and the commercial software GAMS 23.6 with seven solvers were applied

to solve the metabolic network for finding the optimal enzyme manipulations in S. cere-
visiae. The feasible region for each metabolite and enzyme can be estimated through
biological understanding or determined by global optimization techniques [42, 44]. Here,
the feasible region for each metabolite and enzyme is set to expand/shrink fivefold based on
the basal value. The primal optimization problem for maximizing the ethanol and glycerol
productivity in S. cerevisiae was respectively solved by MIHDE-APP to obtain the Pareto
solution with various allowable manipulated enzymes from one to five.



Ta
bl

e
8.

2
C

om
pa

ris
on

of
re

su
lts

fo
r

M
IH

D
E-

A
PP

,M
IH

D
E-

FP
P

an
d

M
IH

D
E-

PF
M

w
ith

va
rio

us
in

iti
al

pe
na

lty
pa

ra
m

et
er

s
α

k
an

d
β

k.
V

TR
=

68
.0

09
8.

α
k
an
d

β
k

M
et

ho
d

Ite
m

0.
1

10
10

3
10

6

M
IH

D
E-

A
PP

f
b
,
SC

V
68

.0
09

71
,5

.4
24

E-
9,

68
.0

09
71

,2
.0

11
E-

9
68

.0
09

71
,1

.3
63

E-
9

68
.0

09
74

,2
.0

97
E-

8
f

m
,
SC

V
68

.0
09

75
,8

.7
84

E-
9

68
.0

09
76

,7
.0

76
E-

9
68

.1
78

02
,6

.2
67

E-
9

71
.8

94
75

,5
.1

48
E-

9
f

w
,
SC

V
68

.0
09

78
,9

.5
97

E-
10

68
.0

09
79

,1
.1

72
E-

10
76

.4
19

37
,3

.2
89

E-
13

98
.6

95
19

,2
.7

19
E-

15
σ

f
,

σ
SC

V
1.

04
9E

-5
,6

.1
52

E-
9

2.
42

4E
-5

,5
.5

42
E-

9
1.

17
7,

5.
67

7E
-9

6.
72

6,
6.

66
1E

-9
R

s
1.

0
1.

0
0.

97
0.

6
N

f
e

91
24

1
80

29
8

17
17

50
66

01
97

M
IH

D
E-

FP
P

f
b
,
SC

V
−5

4.
04

61
,1

9.
51

8
49

.8
58

73
,0

.9
46

68
.0

09
71

,2
.1

46
E-

9
68

.0
09

71
,6

.8
65

E-
9

f
m
,
SC

V
−4

4.
37

31
,1

7.
29

1
55

.0
36

25
,0

.8
22

68
.0

09
74

,6
.4

26
E-

9
68

.8
50

71
,9

.6
23

E-
9

f
w
,
SC

V
−3

8.
28

11
,1

3.
35

7
62

.2
98

49
,0

.5
73

68
.0

09
76

,1
.2

62
E-

10
76

.4
19

37
,1

.7
44

E-
11

σ
f
,

σ
SC

V
3.

09
0,

1.
74

4
1.

98
1,

0.
26

9
7.

77
9E

-6
,5

.2
72

E-
9

2.
52

3,
6.

82
9E

-9
R

s
0.

0
0.

0
0.

77
0.

46
N

f
e

12
68

52
1

12
70

21
9

14
28

54
39

05
50

M
IH

D
E-

PF
M

f
b
,
SC

V
−2

01
.1

81
64

,3
1.

49
1

−1
4.

51
01

7,
4.

04
9

66
.2

54
76

,5
.9

75
E-

2
68

.0
07

93
,6

.0
58

E-
5

f
m
,
SC

V
−2

01
.1

81
64

,3
1.

49
1

−1
4.

51
01

7,
4.

04
9

66
.2

54
76

,5
.9

75
E-

2
68

.1
76

11
,6

.0
91

E-
5

f
w
,
SC

V
−2

01
.1

81
64

,3
1.

49
1

−1
4.

51
01

7,
4.

04
9

66
.2

54
76

,5
.9

75
E-

2
76

.4
16

99
,7

.7
24

E-
5

σ
f
,
σ

SC
V

0.
0,

8.
53

1E
-8

0.
0,

2.
33

3E
-8

0.
0,

3.
16

7E
-9

1.
17

7,
2.

33
3E

-6
R

s
0.

0
0.

0
0.

0
0.

0
N

f
e

12
67

82
6

12
56

83
7

12
59

64
5

12
59

43
4



Fuzzy Multi-Objective Optimization for Metabolic Reaction Networks by MIHDE 237

GLK

PFK

PYK

glycerol

HXT

TPS

GOL

ATPase

Membrane

TDH

PFKGLK

TPS
PYK

TDH

atp

atp
g6p

nadp+ nadph

atp

atp
pep

atp

ethanol

atp

adp

adp

f6p
adp

adp

adp

glucose (external)

glycogen
trehalose

G6PDH

glucose

ribu5p

Figure 8.2 Schematic representation of the central metabolism of yeast.

The larger the allowable number of manipulated enzymes in the metabolic network, the
higher the improved ethanol/glycerol flux ratio, vPYK/vbasal

PYK or vGOL/vbasal
GOL . Tables 8.4(a)

and 8.4(b) show the optimal enzymatic modulations for maximizing ethanol and glycerol
flux ratio, respectively, when various manipulated enzymes are allowable. Table 8.4(a)
shows that the best modulated enzymes were glucose uptake (HXT) and glyceraldehyde-
3-phosphate dehydrogenase (TDH) if two modulated enzymes are allowed. This result is
different from that (HXT and PFK) obtained by Polisetty et al. [41] due to the consideration
of cell viability constraints. Sorribas et al. [42] have shown that increasing HXT above

Table 8.3 Basal metabolite concentrations and enzyme activities.

Symbol Name Value

x1 Internal glucose 0.0345 mM
x2 Glucose-6-phosphate 1.011 mM
x3 Fructose-1,6-diphosphate 9.144 mM
x4 Phosphoenolpyruvate (PEP) 0.0095 mM
x5 ATP 1.1278 mM
x6 Glucose uptake (HXT) 19.7 mM/min
x7 Hexokinase 68.5 mM/min
x8 Phosphofructokinase (PFK) 31.7 mM/min
x9 Glyceraldehyde-3-phosphate dehydrogenase (GAPD) 49.9 mM/min
x10 Pyruvate kinase (PYK) 3440 mM/min
x11 Polysaccharide production (glycogen + trehalose) 14.31 mM/min
x12 Glycerol production (GOL) 203 mM/min
x13 ATPase 25.1 mM/min
x14 NAD+/NADH ratio 0.042
x15 Glucose 6-phosphate dehydrogenase (G6PDH) 1.0 mM/min
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Table 8.4 The optimal enzymatic modulations for maximizingethanol/glycerol flux ratio by
S. cerevisiae obtained by solving the primal optimization problem using MIHDE-APP and
various GAMS solvers (AlphaECP, BARON, BONMIN, COUENNE, DICOPT, LINDOGlobal,
and SBB).

(a) maximization of the ethanol flux ratio, max
x,y,e

(vPYK/vbasal
PYK )

ε v∗
PYK/vPYK,basal vGOL/vGOL,basal Modulated enzymes

1 1.607 1.750 HXT
2 2.267 2.468 HXT, TDH
3 2.577 2.806 HXT, TDH, ATPase
4 3.832 2.018 HXT, PFK, PYK, NAD_ratio

4.444
4.405†

2.341
2.324

HXT, GLK, PFK, PYK, NAD_ratio
HXT, GLK, PFK, TDH, PYK

5

(b) maximization of the glycerol productivity, max
x,y,e

(vGOL/vbasal
GOL )

ε vPYK/vPYK,basal v∗
GOL/vGOL,basal Modulated enzymes

1 0.851 4.633 GOL
2 0.746 8.660 PYK, GOL
3 1.130 15.111 HXT, PYK, GOL

1.139
1.136

15.267
15.119†

HXT, PYK, GOL, NAD_ratio
HXT, PFK, PYK, GOL4

1.135
1.136

15.230
15.119†

HXT, PFK, PYK, GOL, NAD_ratio
HXT, GLK, PFK, PYK, GOL

5

†denotes that the optimal solution obtained by GAMS is a premature result and ε is the number of allowable
manipulated genes.

4.86-fold and PFK above 3.16-fold simultaneously led to unfeasible solutions. A smaller
optimal ethanol flux ratio was predicted in our results because we expect to obtain a viable
strain. The third column of Table 8.4(a) lists the corresponding glycerol flux ratios when
maximizing the ethanol flux ratio. Similarly, the second column of Table 8.4(b) shows the
corresponding relative changes for ethanol fluxwhenmaximizing the glycerol flux ratio.We
also apply seven MINLP solvers in GAMS to solve the primal optimization problem with
various allowable manipulated enzymes, and the optimal results obtained are also shown
in Table 8.4. Most of the maximum ethanol/glycerol flux ratios and modulated enzymes
are identical to those obtained by MIHDE-APP, but some premature solutions (shown in a
different row) were obtained by GAMS, such as the maximum ethanol flux ratio of 4.405
and the maximum glycerol flux ratio of 15.119 for five allowable manipulated enzymes.
Each premature solution can be improved if the convergent solution obtained by MIHDE
is provided as the initial point for the GAMS solvers. However, more computation time is
required for MIHDE to obtain a feasible solution.
Table 8.5 shows the results for the resilience optimization problem.Themaximumethanol

flux ratio for different allowable numbers of manipulated enzymes is reduced by 10–40%.
The best modulated enzymes appear to be HXT and TDH if two modulated enzymes are
allowed. These two best modulated enzymes are exactly the same in the primal optimization
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Table 8.5 The optimal enzymatic modulations for maximizing ethanol/glycerol flux ratio by
S. cerevisiae obtained by solving the resilience optimization problem using MIHDE-APP and
various GAMS solvers (AlphaECP, BARON, BONMIN, COUENNE, DICOPT, LINDOGlobal,
and SBB).

(a) fuzzy maximization of the ethanol flux ratio, m̃ax
x,y,e

(vPYK/vbasal
PYK ) with

n∑
i=1

xi ≺∼ [1.6, 2]
n∑

i=1
xbasal

i ,

m∑
i=1

ei ≺∼ [1.6, 2]
m∑

i=1
ebasal
i

ε v∗
PYK/vPYK,basal vGOL/vGOL,basal Selected enzymes

1 1.443 1.572 HXT
2 1.701 1.852 HXT, TDH
3 1.857 2.022 HXT, TDH, ATPase
4 2.481 1.459 HXT, PFK, TDH, PYK
5 2.773 1.830 HXT, GLK, PFK, TDH, PYK

(b) fuzzy maximization of the glycerol flux ratio, m̃ax
x,y,e

(vGOL/vbasal
GOL ),

n∑
i=1

xi ≺∼ [1.6, 2]
n∑

i=1
xbasal

i ,

m∑
i=1

ei ≺∼ [1.6, 2]
m∑

i=1
ebasal
i

ε vPYK/vPYK,basal v∗
GOL/vGOL,basal Selected enzymes

1 0.920 2.906 GOL
2 1.458 4.794 HXT, GOL
3 1.073 7.056 HXT, PYK, GOL

1.357
2.036

7.228
7.219†

HXT, PYK, GOL, ATPase
HXT, TDH, GOL, ATPase4

1.391
1.403

7.243
7.245†

HXT, PFK, PYK, GOL, ATPase
HXT, PFK, PYK, GOL, ATPase

5

†denotes that the optimal solution obtained by GAMS is a premature result and ε is the number of allowable
manipulated genes.

problem, but the maximum ethanol flux ratio is reduced from 2.267 to 1.701. In contrast,
the maximum glycerol flux ratio for different allowable numbers of manipulated enzymes
is reduced by 37%–55%. In this case, the best modulated enzymes are HXT and GOL if two
modulated enzymes are allowed. The modulated enzymes are different from those obtained
from the primal optimization problem (PYK and GOL) and the maximum glycerol flux
ratio is reduced from 8.66 to 4.794.
The results shown in Tables 8.5(a) and 8.5(b) are obtained for maximizing the ethanol

flux ratio and glycerol flux ratio, respectively. As a result, we could obtain the maximum
ethanol flux ratio, but the glycerol flux ratio was enhanced a little, and vice versa. Suppose
that wewant to maximize ethanol flux ratio and glycerol flux ratio simultaneously. Table 8.6
shows the optimal enzymatic modulations for maximizing ethanol and glycerol flux ratios
simultaneously obtained byMIHDE-APP and GAMS solvers. Two different optimal Pareto
solutions with identical improvement ratio were found when three manipulated enzymes
were allowed.
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Table 8.6 The optimal enzymatic modulations for maximizing ethanol and glycerol flux
ratios simultaneously by S. cerevisiae obtained by solving the resilience optimization problem
using MIHDE-APP and various GAMS solvers (AlphaECP, BARON, BONMIN, COUENNE,
DICOPT, LINDOGlobal, and SBB).

f0 = m̃ax
x,y,e

(vPYK/vPYK,basal) f1 = m̃ax
x,y,e

(vGOL/vGOL,basal),
n∑

i=1
xi ≺∼ [1.6, 2]

n∑
i=1

xbasal
i ,

m∑
i=1

ei ≺∼ [1.6, 2]
m∑

i=1
ebasal
i

ε v∗
PYK/vPYK,basal v∗

GOL/vGOL,basal Selected enzymes

1 1.565
1.361†

1.704
1.482†

HXT
PFK (GAMS)

2 1.493 3.980 HXT, GOL
3 1.807

1.807‡
6.674
6.674‡

HXT, TDH, GOL
HXT, GOL, NAD_ratio

4 2.106
1.979†

7.884
7.794†

HXT, TDH, GOL, ATPase
HXT, PFK, GOL, NAD_ratio

5 2.402 6.820 HXT, PFK, TDH, PYK, GOL

†denotes that the optimal solution obtained by GAMS is a premature result.
‡denotes the Pareto-optimal solution where the improvement ratios are identical to the results modulated
by {HXT, TDH, GOL}, and ε is the number of allowable manipulated genes.

8.6 Conclusions

To capture experimentally observed data of metabolic networks, it is essential to develop
a kinetic model. The accuracy of optimal solutions depends heavily on the exactness of
kinetic models used in metabolic engineering problems. In general, this type of metabolic
engineering problem is formulated as a constrained MINLP problem. The challenge for
solving constrainedMINLP problems stems from the fact that they are highly nonlinear and
nondifferentiable due to the combinatorial nature of the associated integer-valued decision
variables. The results from performance evaluations show that MIHDE-APP is a good
candidate approach to solve constrained MINLP problems.
The optimization of biological systems, which is a branch of metabolic engineering,

has generated much industrial and academic interest for a long time. The ultimate goal
of this optimization is to find the optimal modulation strategy for improving productivity.
Model-based optimization strategies have been applied to analyze and design metabolic
networks during the 2000s. To address the issues of optimizing the regulatory structure
of metabolic networks, it is necessary to consider qualitative effects, for example, the
resilience phenomena and cell viability constraints. The combination of qualitative and
quantitative descriptions for metabolic networks makes it possible to design a viable strain
and accurately predict the maximum possible flux rates of desired products. The analysis
report of the GFMOOP shows that the maximum synthesis rates of target products by
enzyme modulations are always overestimated in metabolic networks that do not consider
the resilience effects.
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Exercises

8.1. Global optimization is a technique most frequently encountered in the design of
pressure vessels. Sandgren formulated a pressure-vessel design problem as a mixed-
integer nonlinear programming problem [45]. The design variables are the dimensions
required for the specifications of the vessel. The objective function is the combined
costs of material, forming and welding of the pressure vessel. The constraints are set in
accordance with the respective ASME codes. The problemwas formulated as follows:

min
x,y

f (x, y) = 0.6224 (0.0625y1) x1x2 + 1.7781 (0.0625y2) x21
+ 3.1661 (0.0625y1)2 x2 + 19.84 (0.0625y1)2 x1

subject to

g1(x, y) = 0.0193x1 − 0.0625y1 ≤ 0,
g2(x, y) = 0.00954x1 − 0.0625y2 ≤ 0,
g3(x, y) = 750× 1728− πx21x2 − 4π

3
x31 ≤ 0,

g4(x, y) = x2 − 240 ≤ 0,
0 ≤ x1, x2 ≤ 120.0, 1 ≤ y1, y2 ≤ 99, x ∈ R2, y ∈ Z2.

8.2. Find the global optimal solution of the following system:

min f (x, y) = 7.5y1 + 5.5y2 + 5x3 + 7x4 + 6x5
subject to

y1 + y2 − 1 = 0
x6 − 0.9x1[1− exp(−0.5x4)] = 0
x7 − 0.8x2[1− exp(−0.5x5)] = 0
x6 + x7 − 10 = 0
x1 + x2 − x3 = 0
x6y1 + x7y2 − 10 = 0
x4 − 10y1 ≤ 0
x5 − 10y2 ≤ 0
x1 − 20y1 ≤ 0
x2 − 20y2 ≤ 0
x ≥ 0, y ∈ {0, 1}

The global minimum is (x3, x4, x5, y1, y2; f ) = (13.362272, 3.514237, 0, 1, 0;
99.245209).

8.3. The central carbon metabolism plays essential roles in many organisms, such as E. coli
and C. glutamicum, providing energy metabolism and precursors for aromatic amino
acids and serine syntheses. Chassagnole et al. [46] developed a nonlinear dynamic
model for part of central carbon metabolism of E. coli. This model links the kinetics
of sugar transporter PTS (phosphor-transferase system) with glycolysis and pentose-
phosphate pathways and is used to support the exploration of the central carbon
metabolism of E. coli. It consists of 18 nonlinear ordinal differential equations and
30 nonlinear rate equations. For brevity, details of the model and rate equations can
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be found in additional file 2 of [26]. Seven co-metabolites (amp, adp, atp, nad, nadh,
nadp, and nadph) are included in the model and their concentrations are assumed
to be (0.955, 0.595, 4.27, 1.47, 0.1, 0.195, and 0.062). The maximum reaction rates
can be found from the model database of JWS Online Cellular Systems Modeling
at http://jjj.biochem.sun.ac.za (accessed 4 December 2012). Formulate the resilience
problem for the central carbon metabolism of E. coli mentioned above and use a
linear membership function for each fuzzy objective function, fuzzy equal objective,
and fuzzy inequality constraint. Apply fuzzy inequality constraints to handle the
cell viability constraints and use the lower and upper restriction factors of 1.6 and
2.0, respectively. Find the optimal enzyme manipulation strategies to maximize the
flux ratios of DAHPS, PEPC, and SERS simultaneously in a variety of allowable
manipulated enzyme numbers and check out the effects of the resilience phenomenon.
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