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Université de Toulouse, Laboratoire de Génie Chimique, France

12.1 Introduction

Since the early 2000s, due to increasingly stringent environmental concerns, environmental
objectives have been considered together with classical technical and/or economic criteria,
in most engineering fields, particularly in chemical engineering [1]. So traditional single
objective process optimization has been progressively transformed into multi-objective
optimization,where the problemconsists of optimizing a vector [f1, f2, . . . , fk]T of objectives
under a set of constraints. As far as the set Rk is not provided with an order relation,
classical techniques of single objective optimization field, like gradient methods, cannot be
implemented to solve a multi-objective optimization (MOO) problem.
According to [2], multi-objective optimization procedures can be broadly classified

into two categories –scalarization methods on the one hand, and genetic and evolutionary
methods on the other hand. Scalarization methods apply in mathematically well defined
problems with explicit formulations of objectives and constraints, whereas genetic and
evolutionarymethods based on evolutionary strategies mainly apply in black-box problems,
where objectives and/or constraints are evaluated by a computer code for each value of the
optimization variable set. Besides black-box problems, the possibility to mutate out of a
local optimum and the ability to compute the entire Pareto front in one run make this type of
method attractive. In the former group ofmethods, themulti-objective optimization problem
is transformed into a single (or a series of) single objective problem(s). An interesting review
of various techniques is given in [3]. Seven types of scalarization methods are presented
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in [4], but the two most popular ones are undoubtedly the weighted sum (WS) [5] and the
ε-constraint (ε-C) [6] procedures.
In the latter class of genetic and evolutionary methods, each objective function is con-

sidered separately during the optimization phase; these approaches typically implement the
notion of dominance to distinguish between dominated and non-dominated solutions.
Both classes of methods have their own drawbacks: scalarization methods need to check

mathematical properties such as convexity, which may be very difficult to implement for
complex engineering problems; for problems involving crisp equality constraints (like
balance equations for example), an external solver has to be used for each point generated
by a genetic and evolutionary method.
Moreover, the efficiency of a given method for a particular example is hardly predictable,

and according to the no free lunch (NFL) theory [7], there is no method that surpasses all
the other ones for any considered problem. Insofar as industrial packages (ARIANETM) [8]
are used for computing environmental objectives in the second example of this chapter, the
problem is a black-box one, and an evolutionary strategy has been adopted to solve it.
After the complete set of solutions of the MOO problem (i.e. the Pareto front) is found,

the next step consists in identifying the best ones. There are a variety of multiple choice
decision–making (MCDM) procedures to aid the decision maker in a multiple criteria
situation. In chemical engineering field, one of the most popular MCDM methods is
TOPSIS for identifying solutions from a finite set of alternatives based upon simultaneous
minimization of distance from an ideal point and maximization of distance from the nadir
point. The acronym TOPSIS stands for technique for order preference by similarity to
the ideal solution. The first TOPSIS developments were carried out by Hwang and Yoon
(1981) [9] and later by Lai et al. (1994) [10]. Among the MCDM methods, TOPSIS is
attractive because it requires limited subjective inputs from decision makers. The only
subjective inputs needed are weights assigned to objectives. This may explain why TOPSIS
[11] is very popular in chemical engineering applications; it has been adopted in this study
together with a simple code based on Pareto ranking, called FUCA, as an alternativeMCDM
technique.
The numerical tools and methods used in this chapter will be briefly presented in section

12.2. Then, two typical chemical engineering problems will illustrate the concepts. The
first chemical engineering MOO problem tackled in section 12.3 is related to the Williams
and Otto process (WOP). This small-sized fictitious plant first proposed in [12] is realistic
and involves many of the features of a real process. It has served as a benchmark for
many researchers (for instance, [13] [14] [15]). An interesting contribution to the case of
multi-objective optimization is proposed in [16] in which the problem is analysed from
an economic viewpoint with profitability criteria as objective functions. In this chapter,
economic objectives are optimized together with an environmental criterion, namely the
flow rate of the heavy oil FG considered as a waste. Two tri-objective MOO problems are
solved, i.e., [Max NPW, Max PBT, Min FG] and [Max NPW, Min PBP, Min FG], where
NPW is the net present worth value, PBT, the profit before taxes and PBP, the payback
period respectively. An analysis of the influence of the third environmental criterion on the
two first economic objectives is carried out.
In section 12.4, the second illustration example is devoted to the presentation of the

HDA process revisited here in a multi-objective way with some of the criteria involved
in sustainable assessment. It must be emphasized that optimization for sustainability is a
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complex and challenging task, both due to the number of criteria that may be involved and
also to the subjective criteria that may be difficult to formulate mathematically. This chapter
only considers two pillars of sustainable development: the economic and environmental
components.

12.2 Numerical Tools

12.2.1 Evolutionary Approach: Multi-Objective Genetic Algorithms

The two most popular evolutionary methods in the chemical engineering field are MGA
(multi-objective genetic algorithm [17]), and MOSA (multi-objective simulated annealing,
[18]). Neither method is perfect and selecting one depends on the requirements of the
particular design situation considered. From [19], [20] and [21], it appears that MGA is
generally preferred toMOSA. One of the most efficient genetic algorithms is NSGA II [22],
an upgrade of NSGA, which estimates the density of solutions surrounding a particular
one, in order to perform an efficient scanning of the solution space. Its performance is so
good that it has gained a lot of popularity in recent years [23].
The MOO procedure implemented in this chapter is the NSGA II-modified SBX

described in [24]. This crossover operator differs from that in the first NSGA II ver-
sion by the crossover probability allocation for each gene. Compared with the classical
NSGA II version, the global probability of crossover per gene is higher in the modified
SBX. Consequently, this new crossover operator performs more efficient gene mixing [24].
Furthermore, when clones are generated by the crossover operation, the modified SBX

implements a forced mutation of children. The goal is to avoid unnecessary calculations of
clones. All the children generated by the reproduction scheme are statistically different.

12.2.2 Choice of the Best Solutions

The next step consists, then, of identifying the best ones among those of the Pareto front.
This MCDM issue is also a complex problem, mainly because of its more subjective nature.
Some generic tools like ELECTRE [24], PROMETHEE [25] [26] and TOPSIS [11] are
commonly used in many engineering and economic fields. However, TOPSIS remains one
of the most popular methods in chemical engineering applications.
The fundamental concept of the TOPSIS method is the use of Euclidian distances to

choose the best alternative. TOPSIS is a synthetic evaluation method, where the distance
between available solutions and the “optimized ideal reference point” is calculated. The
optimized ideal reference point is a theoretical point where objectives are at their optimal
values. The method calculates the distance between the ideal reference and each point of
the Pareto curve, and ranks them by increasing order of distances. The procedure starts
with a decision matrix that contains all the alternatives ordered by the criteria and a
weight vector is defined. The following step is to calculate the normalized decision matrix,
after the positive and negative ideal solutions are defined from the standardized matrix.
Then, the separation measures of each alternative are calculated and, finally, a ratio for
each alternative is estimated. The alternatives are ranked according to their ratio. Unless
explicitly mentioned, TOPSIS has been adopted in this study.
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12.3 Williams–Otto Process (WOP) Optimization for Multiple Economic
and Environmental Objectives

This engineering problem was first proposed in [12] and used by many researchers as a
benchmark for constrained NLP studies [27] [28] and recently in bi-objective economic
optimization [16] [29]. This fictitious process [15] contains many of the characteristics
of a typical chemical plant while being realistic enough. The plant is to manufacture a
given amount of a chemical product P per year; it consists of a perfectly stirred reactor, a
heat exchanger, a decanter and a distillation column in series (see Figure 12.1). There is a
recycle stream from the column reboiler to the reactor, where three second-order irreversible
reactions occur. Reactants A and B are fed separately to the reactor in pure form, together
with the recycled stream, where the desired product P is produced. Component C is an
intermediate product (with no sale value), component E is a byproduct and component G
is a heavy oil considered as a waste material. To prevent accumulation of byproduct E, a
part of the column bottom is purged (purge rate ξ ), while the most of it is recycled to the
reactor. As the purged stream has a substantial fuel sale value, it is sold. The production of
the desired product P (FP) is assumed to be set at 2160 kg/h.

12.3.1 Process Modelling

The reactions occurring in the reactor are:

A + B
k1−→ C

C + B
k2−→ P + E

P + C
k3−→ G
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Figure 12.1 Williams–Otto process.
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Table 12.1 Arrhenius constants.

i = 1 i = 2 i = 3

Ai (h−1) 5.9755 109 2.5962 1012 9.6283 1015

Bi (K) 6,666.67 8,333.33 11,111.11

where constants k1, k2 and k3 are determined from the Arrhenius law (see Table 12.1):

ki = Aiexp(−Bi/1.8T ) (12.1)

The modelling equations can be expressed as:

• Mass balance on component A

h1 = FA + (1− ξ )FRA − (k1WAWB)Vρ − FRA = 0 (12.2)

• Mass balance on component B

h2 = FB + (1− ξ )FRB − (k1WA + k2WC)WBVρ − FRB = 0 (12.3)

• Mass balance on component C

h3 = (1− ξ ) FRC + (2 k1WAWB − 2 k2WBWC − k3WP WC) Vρ − FRC = 0 (12.4)

• Mass balance on component E

h4 = (1− ξ ) FRE + (2 k2WBWC) Vρ − FRE = 0 (12.5)

• Mass balance on component P

h5 = [k2WBWC − 0, 5 k3WP WC) Vρ − 0, 1ξFRE − FP = 0 (12.6)

• Mass balance on component G

h6 = (1− ξ ) FRC + (2 k1WAWB − 2 k2WBWC − k3WP WC) Vρ − FRC = 0 (12.7)

• with:

Wi = FRi∑
i

FRi
i = A,B,C,E,P,G (12.8)

12.3.2 Optimization Variables

The mathematical model involves 10 variables, FA, FB, FG, FRA, FRB, FRC, FRE, η, V et T,
and six nonlinear equations (12.2 to 12.7), that is to say four degrees of freedom. Based on
the work proposed in [16], the chosen decision variables are the mass flow rate of reactant
B (FB), the reactor volume (V), the reactor temperature (T), and the purge rate (ξ ).
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12.3.3 Objectives for Optimization

12.3.3.1 Economic Objectives ([15], [16])

Fixed capital cost FCI is the capital necessary for the installed process equipment with all
components needed for complete operation process:

FCI = 600Vρ

0.453
($) (12.9)

where V is the reactor volume (m3) and ρ the density of the material. Operating cost Cop is
the cost corresponding to the plant in operation, excluding the depreciation cost:

Cop = 1

0.453
(168FA + 252FB + 2.22(Frecycle + FA + FB)+ 84FG)+ 1, 041.6 ($)

(12.10)

The total annual cost TAC is the sum of operating cost Cop and the depreciation cost.
This depreciation cost is computed by the so-called straight-line method by dividing the
fixed capital cost FCI over the lifetime of the project (assumed to be 10 years):

TAC = Cop + FCI

10
($) (12.11)

The profit before taxes PBT is the difference between the annual revenue and TAC, without
accounting for taxes. The annual revenue is made up of the sale prices of product P and the
purged column bottom:

PBT = 1

0.453
(2, 207FP + 50Fpurge)− TAC ($/an) (12.12)

The annual cash flow CF is the sum of profit after taxes and depreciation, where the tax
rate rt is fixed at 30% per year. Depreciation and CF are assumed to be the same every year
during the project life.

CF = (1− rt )

[
1

0.453
((0.453PBT + TAC)− 168FA − 252FB)

−2.22(Frecycle + FA + FB)− 84FG)− 1, 041.6
]

+ 0.3rt

[
60Vρ

0.453

]($/an) (12.13)

The payback period PBP, to be minimized, is the length of time necessary to pay out the
capital investment by using the annual net cash flow that returns to the company’s capital
reservoir FCI.

PBP = FCI

CF
(year) (12.14)

The net present worth valueNPW, to bemaximized, is the present value of all investments
and cash flows during the project lifetime. NPW considers the time value of the earned
money. In the expression of NPW, TCI is the total capital investment and fPA(i) is the
present worth annuity factor, the expected rate of return i (also called discount rate) is taken
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as 0.12 year−1. The net present value takes into account all expected annual earnings—the
annual net cash flows—and discounts them to today’s value.

NPW = −TCI + fPA(i)CF ($) (12.15)

fPA(i) = (1+ i)10 − 1
i(1+ i)10

(year) (12.16)

For performing theWOP optimization, a constantCF and noworking capital are assumed
(in that case, TCI = FCI).
Among the three economic objectives NPW, PBT and PBP, NPW is the more important

one because it considers the cash flows over the project lifetime and the time value of the
money; so solutions with a larger NPW would be better.

12.3.3.2 Environmental Objective

The consideration of the environmental aspects of the process and the plant plays an ever
increasing role. So other objectives linked to the environmental impact must be simultane-
ously considered together with the economic objectives. In the WOP, we assume that all
the pollutants generated by the process are concentrated in the heavy oil obtained at the
decanter bottom. So the WOP MOO problem consists of optimizing economic objectives
together with the environmental criterion, that is to say, the flow rate Fg, to be minimized.

12.3.4 Problem Constraints

According to [16], the four independent variables are bounded as follows:

10 000 ≤ FB ≤ 15 000 kg/h
0.85 ≤ V ≤ 10 m3
322 ≤ T ≤ 378 K
0 ≤ η ≤ 0.99

The six nonlinear constraints correspond to the set of equations (12.2–12.7).

12.3.5 Implementation

The MOO problem is implemented under the MS Excel environment interfaced with the
Matlab toolbox for solving the set of the six nonlinear constraints (Equations 12.2 to 12.7),
as displayed in Figure 12.2. The initial values used for solving the nonlinear system are
obtained from [27] (see Table 12.2). The parameters of the genetic algorithm are indicated
in Table 12.3.

12.3.6 Procedure Validation

The procedure was validated by performing, as a first step, economic bi-objective opti-
mizations, and the results were compared with those of [16]. For the problem [Max NPW,
Max PBT] (respectively [Max NPW, Min PBP]) the Pareto front is displayed in Figure 12.3
(respectively Figure 12.4), where the point A1 (respectively B1) is the best solution accord-
ing to the TOPSIS ranking. The corresponding variable and objective values are listed in
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Figure 12.2 Strategy for optimizing the WOP.

Table 12.4, where those obtained in [16] are also reported. The relative difference d between
two values a and b (a value obtained in this study, b value reported in [16]) is computed as:

d = 100× |a − b|
0.5× (a + b)

(12.17)

For the problem [Max NPW, Max PBT] (respectively [Max NPW, Min PBP]) the mean
relative difference between both investigations is 1.51% (respectively 5.47%). This is
mainly due to the difference in reactor volume. From a numerical point of view, the genetic
algorithms used in the two studies are different (NSGA II aJG [16] and NSGA II-modified

Table 12.2 Initial values used for solving the
nonlinear equations.

Initial values

FA (kg/h) 6136
FRA (kg/h) 8239
FRB (kg/h) 27 594
FRC (kg/h) 1509
FRE (kg/h) 27 426
FG (kg/h) 1635

Table 12.3 Parameters of the genetic algorithm.

Population size 200
Number of generations 1000
Crossover probability 0.75
Mutation probability 0.20
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Figure 12.3 Pareto front for the problem [Max NPW, Max PBT].

SBX in this work), so the solutions generated are slightly different. Yet, the differences
remain very acceptable.
In this study, the flow rate FG of pollutant G is 1,135.18 kg/h, while in [16], this value

is 1,211.36 kg/h. The aim of the tri-objective optimization of the WOP presented in the
following section is to reduce this pollutant flow rate, while maintaining a good economic
efficiency for the process.

12.3.7 Tri-Objective Optimization

This study was carried out in a PhD thesis by A. Ouattara (2011) [30]. The economic
objectives are now optimized together with the environmental criterion, namely the flow
rate of heavy oil FG.
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Table 12.4 Values obtained from bi-objective optimizations.

[Max NPW, Max PBT] [Max NPW, Min PBP]

Variable This study Lee et al. [16] Diff.% This study Lee et al. [16] Diff.%

FB, kg/h) 11,519.87 11,600 0.69 12,090.32 12,100 0.08
V (m3) 4.70 4.41 6.37 2.28 3.09 30.17
T (K) 347.86 348.90 0.30 354.78 354.70 0.02
η 0.11 0.11 0 0.11 0.11 0
NPW (M$) 7.20 7.26 0.83 7.21 7.23 0.28
PBT (M$) 2.37 2.35 0.85 1.72 1.76 2.30

12.3.7.1 Case 1: [Max NPW, Max PBT, Min FG]

As can be observed on the three-dimensional Pareto front displayed in Figure 12.5, when
NPW and PBT increase, FG increases too. When the economic efficiency of the WOP
increases, its environmental impact becomes worse. As it is well known in industrial
practice, economic and environmental objectives are most of the time antagonistic. In
order to determine a good tradeoff between economic and environmental point of view, a
TOPSIS ranking was carried out on the set of points of the Pareto front. Assuming the same
weight for the three objectives, the best solution identified by TOPSIS is C1 as displayed
in Figure 12.5.
The differences between the results obtained in the bi and tri-objective optimizations are

reported in Table 12.5. For variables FB, V, T, η and objectives NPW and PBT, the mean
difference is 8.41%. As expected, the reactor volume becomes higher, leading to a decrease
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Figure 12.5 Pareto front for the problem [Max NPW, Max PBT, Min FG].
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Table 12.5 Differences between bi and tri-objective optimizations for the problem [Max
NPW, Max PBT, Min FG].

Variable Bi-objective Tri-objective Diff.%

FB (kg/h) 11 519.87 11 728.10 1.79
V (m3) 4.70 5.56 16.76
T (K) 347.86 340.37 2.18
η 0.11 0.10 9.52
NPW (M$) 7.20 6.25 14.13
PBT (M$) 2.37 2.23 6.09
FG (kg/h) 1135.18 750.89 40.7

in the economic objectives NPW and PBT, while the flow rate FG of pollutant strongly
decreases (40.7%).

12.3.7.2 Case 2: [Max NPW, Min PBP, Min FG]

From the three-dimensional Pareto fronts shown in Figure 12.6, when FG decreases, PBP
increases. When PBP decreases, NPW becomes higher, and FG and NPW increase together.
This behaviour shows, as in the first case, the antagonistic nature of economic and environ-
mental objectives. Assuming always the same weight for the three objectives, a TOPSIS
ranking was carried out and the best solution identified by TOPSIS is C2 in Figure 12.6.
Table 12.6 shows the differences between the results obtained in the bi- and tri-objective

optimizations. For the variables FB, V, T, η and objectives NPW and PBP, the mean
difference is 11.73%.
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Figure 12.6 Pareto front for the problem [Max NPW, Min PBP, Min FG].
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Table 12.6 Differences between bi and tri-objective optimizations for the problem [Max
NPW, Min PBP, Min FG].

Variable Bi-objective Tri-objective Diff.%

FB (kg/h) 12 090.32 12 725.31 5.12
V (m3) 2.28 2.68 16.13
T (K) 354.78 351.63 0.89
η 0.11 0.10 9.52
NPW (M$) 7.21 6.32 13.16
PBT (M$) 1.72 1.75 1.73
FG (kg/h) 1211.36 845.62 35.56

12.3.8 Discussion

The tri-objective optimization highlights the well-known antagonism between economic
and environmental concerns. Compared to bi-objective economic optimization, in the for-
mer case related to [MaxNPW, MaxPBT, MinFG], themore important economic objective,
which is the net present worth value NPW, decreases by 14% and the secondary economic
criterion, the profit before taxes PBT, falls by 6%, while the waste rejection is decreased
by 40%. In the latter case concerning [Max NPW, Min PBP, Min FG] (where PBP is the
payback period), these values are respectively equal to 13%, 2% and 36%. So from an envi-
ronmental point of view, tri-objective optimization yields big savings, while not affecting
the economic criteria too adversely.

12.4 Revisiting the HDA Process

The so-called HDA process is dedicated to the production of benzene by hydrodealkylation
of toluene. This plant is a hypothetical study, based on the type of design project set by
the Institution of Chemical Engineers (IChemE). Due to its hypothetical nature, some of
the assumptions and design decisions may not be realistic. Moreover, the data concerning
the production capacity, the market prices of raw materials, utilities and products may not
correspond to the actual situation. We think that this limitation is not prejudicial, as our
goal is to illustrate how multi-objective optimization strategies can be useful for taking into
account sustainability criteria at the preliminary design phase. It must be also emphasized
that this example is far from being the best example to demonstrate the wide spectrum
of applications that can be deduced from a multi-objective optimization study: indeed the
HDA processing route being well established, only few choices concerning the process,
technologies and raw materials can be made at the first design stage.

12.4.1 HDA Process Description and Modelling Principles

The hydrodealkylation process [31] is a classical method for benzene production. This
process involves two reactions, i.e., the conversion of toluene to benzene (Equation 12.18)
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and the equilibrium between benzene and diphenyl (Equation 12.19).

toluene + H2 → benzene + CH4 (12.18)

2benzene ↔ diphenyl + H2 (12.19)

Based on a hierarchical design/synthesis approach, this process has been studied exten-
sively by Douglas (1988) [31]. The purity of the hydrogen-feed stream is 95% and it
involves 5% of methane. Fresh inlet stream of toluene, recycled toluene, and recycled
hydrogen are mixed with this feed stream. The feed mixture is heated in a furnace before
being fed to an adiabatic reactor. Unreacted hydrogen and toluene, benzene (the desired
product), biphenyl, and methane constitute the reactor effluent, which is quenched and
subsequently cooled in a high-pressure flash separator to separate the aromatics from the
noncondensable hydrogen and methane. The vapour steam produced by the high-pressure
flash unit contains hydrogen and methane that is recycled. Traces of hydrogen and methane
from the liquid stream are separated from the aromatics in a low-pressure flash drum. This
drum produces a stream composed of benzene, biphenyl and toluene that are separated
in two distillation towers. The first column isolates the product, benzene, from biphenyl
and toluene, while the second one separates the biphenyl from toluene, which is recycled
at the reactor entrance. Energy is saved by using the outlet stream leaving the reactor as
its temperature is 620 ◦C, to preheat the feed stream coming from the mixer via a heat
exchanger (Fehe); in that way, some energy integration is achieved. Figure 12.7 presents
the process flow diagram (PFD) for the production of benzene via HDA.
Tomodel theHDAprocess, commercial design and flow-sheeting packages could be used

to predict the performance of the processes in order to compute the objective functions that
will be used further during the optimization step. However, rather than using such packages,
the equations proposed by Douglas (1988) [31] have been directly implemented and solved
by the Excel R© solver. The main objective is to solve material and energy balances to obtain
the flow rates and enthalpies in each stream of the process. Diphenyl has been considered
as a pollutant.
When considering environmental impacts generated by a process, it is necessary to

broaden the frontier of the system, thus embedding the primary energy requirement of the
given process. Of course, the approach would be more environmentally sound if a life-cycle
assessment (LCA)methodology is developed for analysing and assessing the environmental
impact of the benzene product throughout the entire life cycle.
A complete life cycle includes all processes from the cradle to the grave—raw material,

extraction, processing, transportation, manufacturing, distribution, use, reuse, maintenance,
recycling and waste treatment. This holistic approach is very tedious because it is difficult
to consider a LCA approach based on the only value of benzene, which is, however, an
important commodity chemical used in a large range of applications. This is why the
approach developed here, which is an oriented LCA approach, only focused on the impact
generated by both the process and its associated utility production. Following sustainability
guidelines, a set of metrics or indicators have been developed by IChemE (2003) [32],
AIChE (1988) [33] and CSD (1996) [34]. Environmental burdens, defined as quantitative
measures of the potential contributions of substances released to a particular environmental
potential impact, are used to define these indicators. They are often limited to a cradle-to-
gate or gate-to-gate study.
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Figure 12.7 HDA process and its associated utility system.

The environmental impacts in some strategies like theWasteReductionAlgorithm (WAR)
[35] [36], the IChemE sustainabilitymetrics [37] [38] or the Sustainable Process Index (SPI)
[39] [40] are evaluated from the environmental burdens. For a given process, the potential
environmental impacts are calculated from stream mass flow rates, stream composition and
emissions from utility systems and a relative potential environmental score (index) for each
chemical compound can be deduced. In this study, the objective is to consider the direct
impacts associated with the production of benzene together with the energy production
process and its consequent emissions. The analysis therefore refers to a ‘cradle-to-gate’
approach. It must be emphasized that the inventory phase of extraction for the rawmaterials
is not included to avoid counting twice their impact since our analysis is based on a process
approach.
The utility system of an industrial site is of strategic importance and is generally difficult

to design because a number of processes are linked to the same utility system. A typical
system is proposed in this study. Three levels of steam are distributed around the site and
are used by the HDA process. The HDA process has also a local fired heater for the reaction
step. The primary energy requirements are computed by the use of the ARIANETM package,
a decision support tool dedicated to the management of plant utilities (steam, electricity,
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simulator ARIANETM

Figure 12.8 Interaction between variables and simulation tools.

hot water . . . ). This tool is also implemented to quantify the pollutant emissions (CO2,
SO2, NO, etc.), due to energy production. This energy production system, coupled with the
HDA process, is described in Figure 12.7.

12.4.2 Optimization Variables

From the studies of Douglas (1988) [31] and Turton et al. (2009) [41] and due to their
influence on the economic and environmental criteria, seven variables were chosen for
optimizing the HDA process. They are first used to establish the overall material balance
of the various chemical compounds as well as the associated thermodynamic properties
(enthalpy, density, heat capacity, and so forth) at process nodes, with use of the calculation
server of thermodynamic properties Simulis R© Thermodynamics [42]. Then they are used to
design all equipment items for carrying out the required unit operations. Figure 12.8 shows
the interaction between the variables of the HDA process and the utility production system.
Operation of the HDA process requires both thermal and electrical utilities. The thermal
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demand is expressed in terms of fuel-flow rate to meet the need of heating the mixture in the
furnace as well as of steam to meet the heating demands for the exchangers, reboilers and
other process elements. These requirements obtained from the energy balances given by the
HDA simulator are given to ArianeTM as shown in Figure 12.8. Then, the fuel oil flow rate,
the natural gas flow rate and steam flow rate become secondary variables for ArianeTM,
which returns typical results concerning the thermal power plant – the power produced by
the turbine and the flow rates of all the pollutants resulting from fuel combustion.
The furnace modelling is carried out by considering it as a bi-fuel reboiler fed with both

natural gas and fuel oil. Their flow rates are linked by the so-called energetic ratio and the
furnace energetic demand. The consumed natural gas flow rate in the furnace is calculated
as follows:

•
mNG = QFurnace

η · LHVNG · ratio
(12.20)

The consumed fuel oil flow rate in the furnace is equal to:

•
mFO = QFurnace

η · LHVFO · (1− ratio)
(12.21)

The energetic ratio is expressed by:

ratio = Energy provided by natural gas

Total energy of natural gas and fuel oil|
(12.22)

The mono-fuel reboiler is used to produce on the one hand superheated vapour, for the
operation of the turbine and on the other hand, hot water for the other units.

•
mNG = QBoiler

η · LHVNG· (12.23)

A reboiler is used to generate high level of pressure and temperature steam, and then this
steam is expanded through a backpressure and condensing turbine to produce power. The
turbine is modelled according to the formalism implemented in ARIANETM.

12.4.3 Objective Functions

12.4.3.1 Economic Assessment

In this section, a brief description is provided of economic assessments for the cost and
profitability analysis that was applied. A number of books dealing with cost and profitabil-
ity assessment in detail appear in chemical engineering field—for instance Peters et al.
(2003) [43]. In this study, the retained objectives are the benzene production (ProdB) to be
maximized and the annual cost (Annual cost) to be minimized. The benzene production is
computed by the HDA process simulator, while the annual cost is deduced from relations
(12.24) to (12.27).

Annual Cost = 0.1FCI + CRM + CUT (12.24)

FCI: fixed capital investment ($).
FCI: Depreciation cost ($/y) : although there are several methods to compute depreciation,
the simple straight-line method which allocates the same amount of money to every year
of the recovery period, i.e. 10 years, is adopted here.
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CRM: Cost of raw materials ($/y).
CUT: Cost of utilities ($/y).

The equipment cost provides the basis for the capital cost estimation and is classically
expressed in terms of the main characteristics of the plant unit.

FCI = ∑
i

(Purchase cos ti + Installed cos ti) (12.25)

CRM = ∑
i

•
m RMi PRMi (12.26)

CUT = ∑
i

•
m UTi PUTi (12.27)

•
m RMi : Mass flow rate of raw material i (kg/h).
PRMi : Unit price of raw material i ($/kg).
•
m UTi: Flow rate of utility i (kg/h, std m3/h, m3/h or kW).
PUTi : Unit price of raw material i ($/kg, $/std m3, $/m3 or $/kWh).

Classical Guthrie’s correlations (1969) (see Table 12.7) [44] were used for computing
the purchase and installed costs of the main equipment items. For the utility system, capital
cost estimation was carried out by means of expressions given in [45] (see Table 12.8).
Finally, the costs of raw materials and utilities obtained from Turton et al. (2009) [41]
are reported in Table 12.9. The consumption of raw materials is given by the material and
energy balances for the process. For convenience, the annual cost is expressed in M$/y in
what follows.

Table 12.7 Capital cost estimation for main items (M&S: Marshall & Swift Equipment Cost
(Index = 1468.6 (2009)) from Chemical Engineering, January 2010.

Equipment Investment cost ($) Nonlinear form

Column cost
D: column diameter (m)
H: column height (m)
Fc: material pressure
F ′

c: material, tray space,
tray type

Purchase cost = 9.201
(

M&S

280

)
(101.9D1.066H0.802Fc)

Installed cost = 9.202
(

M&S

280

)
D1.066H0.802(2.18+ Fc)

+ 20.69
(

M&S

280

)
4.7D1.55HF

′
c

Exchanger cost
A: heat exchanger area (m2)

Purchase cost =
(

M&S

280

)
(474.7A0.65Fc)

Installed cost =
(

M&S

280

)
(474.7A0.65) (2.29+ Fc)

Furnace cost
Q: furnace absorbed power

(293 kW)

Purchase cost =
(

M&S

280

)
(5.52 × 103)Q0.85Fc

Installed cost =
(

M&S

280

)
(5.52 × 103)Q0.85 (1.27+ Fc)
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Table 12.8 Capital cost for the utility system.

Equipment investment cost (1,000 $) Nonlinear form

Field erected reboiler
F: steam flow rate (kg/s);
P: pressure (bar)

8.09 F0.82 fp1

With, fp1=0.6939+0.01241P-3.7984Exp(-3P2)
Steam turbine

Wst: power (MW) 25.79Ws t
0.41

Deaerator
F: BFW flow rate (kg/s) 0.41F0.62

Condenser
Q: heat dissipated (MW) 4.76Q0.68

12.4.3.2 Environmental Assessment

Many methods for environmental assessment have been published (e.g. the so-called WAR
algorithm [46] [47]). The purpose of the environmental assessment is to identify the envi-
ronmental ‘hot spots’ in the process, meaning that special attention must be paid to those
materials or steps causing most of the potential environmental burdens. The method was
developed to be applied from early stages of the process development, so these environmen-
tal burdens can be significantly reduced from the beginning. Thus, the process is designed
in a more sustainable way and end-of-pipe costs and consequent regulatory penalties can
be avoided, or at least decreased. If there is a particular substantial environmental problem
that cannot be solved, the goal of the multi-objective strategy is to identify it as soon as
possible.
The environmental burden (EB), due to the emission of a range of substances, is obtained

by adding the weighted emissions of each substance. The potential factor of the impact is
identified as the impact factor of each substance. Let us note that a substance may contribute
to different environmental burdens and may have different impact factors.

Table 12.9 Cost of raw materials and utilities used in HDA process.

Raw materials and utilities Cost

Toluene 0.648 ($/kg)
Hydrogen 1.0 $/kg
Fuel oil $549/m3

Natural gas $0.42/std m3

Electricity $0.06/kWh
High pressure steam
Medium pressure steam
Low pressure steam

$29.97/1000 kg
$28.31/1000 kg
$27.70/1000 kg

Cooling water (30 ◦C to 40 ◦C) $14.8/1000 m3
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An environmental burden EBi is computed as:

EBi =
n∑

j=1
ecj

i Bj (12.28)

where ec
j

i is the impact potential factor of the substance j related to the environmental
burden i and Bj is the amount (mass unit) of the emitted substance j. Environmental burdens
are determined with respect to a reference substance (for instance SO2 for atmospheric
acidification).
From previous studies on the environmental burdens generated by the HDA process, the

five following categories have been taken into account:

• Global warming potential (GWP in t CO2 equivalent/y).
• Acidification potential (AP in t SO2 equivalent/y) dealing with the contributions of SO2
and NOx to potential acid deposition—on their potential to produce H+ protons.

• Photochemical ozone creation potential (POCP in t C2H4 equivalent/y) (or PCOP),
known as summer smog in popular language, is the result of reactions occurring between
nitrogen oxides NOx and VOCs exposed to UV radiations.

• Human toxicity potential (HTP in t C6H6-equivalent/y) expresses the potential harm of
chemicals released into the environment. It includes both inherent toxicity and generic
source-to-dose relationships for pollutant emissions. It uses amargin-to-exposure ratio to
evaluate the potential for health impact from exposure to harmful agents, including both
carcinogens and noncarcinogens effects. It involves release of human toxic materials
into three different media, air, water and soil.

• Eutrophication Potential (EP in t PO3−4 equivalent/y) is the potential of nutrients to cause
overfertilization of water and soil, which in turn can result in an increased growth of
biomass.

The impact potential factors considered for the HDA case are presented in Table 12.10.
As benzene is the required product, however, no associated impact has been considered in
the computations.

Table 12.10 Impact potential factors for the different impacts considered in the case of
HDA.

HTP EP GWP ODP POCP AP

Hydrogen 0 0 0 0 0 0
Methane 0 0 21 0 0.034 0
Benzenea 1 0 0 0 0.334 0
Toluene 0 0 0 0 0.771 0
Diphenyl 3.2 1.67 0 0 0 0
CO2 0 0 1 0 0 0
SO2 0 0 0 0 0.048 1
CO 0 0 3 0 0.027 0
NOx 0.7 0.13 40 0 0.028 0.7
Dust 0 0 11 0 0.5 0

a Final product, the impact is not considered.
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Figure 12.9 General framework of the simulation-optimization-MCDM architecture.

12.4.4 Multi-Objective Optimization

12.4.4.1 Ecodesign Framework

The general structure of the ecodesign assessment method is displayed in Figure 12.9.

12.4.4.2 Multi-Objective Optimization with NSGA II

In its more general form and using the previous economic and environmental objective
functions defined above, the following multi-objective nonlinear optimization problem
related to the HDA process ecodesign, is formulated as follows:

Determine decision variables (process operating conditions) in order to:

Minimize (annual cost) (12.29)

Minimize (EBi) , i = 1, 5 (12.30)

s.t.

Mass and energy balances (Excel R©and ARIANETM)
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Bounds on decision variables: the additional bounding constraints have been introduced in
the Multigen interface, the numerical values come from the studies of Douglas (1988) [31]
and Turton et al. (2009) [41].

• The lower bound on the benzene product is fixed at 99.97%.
• The hydrogen feed purity is assumed to be of 95%.
• The upper bound on the reactor outlet temperature is 704.50 ◦C.
• The quencher outlet temperature cannot exceed 621.16 ◦C.
• The conversion rate C lies in the range [0.5, 0.9].
• The hydrogen flow rate purged (kmol/h) is bounded between 30 and 300.
• Positive values are assumed for all pollutants, CO2, NOx, CO, SO2 and dusts flow rate
(kg/h).

As in the previous case study, presented in the first part of this chapter, the optimization
procedure implements a multi-objective optimization genetic algorithm involving a variant
of the classical NSGA II algorithm. The numerical values of the main parameters are as
follows: population size = 200, number of generations = 200, crossover rate = 0.75 and
mutation rate = 0.2. Douglas (1988) [31] and later Turton et al. (2009) [41] have defined
bounds on the HDA variables (see Table 12.11). The initial population was randomly gen-
erated according to these bounds, and a randomly chosen set of variables has been extracted
from the initial population for further comparison purposes (solution I in Table 12.12).
A preliminary study on the redundancy of objective was performed in [48]. In what

follows, the production of benzene was set at 300 kmol/h, as justified in [47]. It was
demonstrated in this study that the environmental impacts GWP, HTP and POCP can be
expressed in terms of annual cost, EP and AP. From 200 randomly generated values of
the independent variables, all six objectives were computed and multilinear regressions
were carried out between annual cost, EP and AP as independent terms, and GWP, HTP
and POCP as dependent ones. In all cases, the correlation coefficients were very good.
So environmental impacts GWP, POCP and HTP being explicit functions of the annual
cost, EP and AP objectives, they can be suppressed from the following multi-objective
optimization phase, which is reduced to a three criteria optimization problem. A further
analysis of coefficients of the multilinear equations shows that GWP and POCP are mainly
increasing functions of annual cost, while HTP depends principally on EP.

Table 12.11 Decision variables for the HDA process.

Decision variables Lower bound Initial value Upper bound

Conversion rate (%) 0.5 0.75 0.9
Hydrogen purge flow rate (kmol/h) 31 198 308
Flash pressure (bar) 30 34 34
Stabilization column pressure (bar) 4 10 10
Column 1 pressure (bar) 2 2 4
Column 2 pressure (bar) 1 1 2
Ratio (bi-fuel furnace) (%) 0.1 0.85 0.9
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Figure 12.10 Tri-objective optimization (Annual cost, EP, AP).

12.4.4.3 Tri-Objective Optimization

Only three independent objectives remain for themulti-objective optimization phase: annual
cost, EP and AP. They are now simultaneously optimized, and the results are displayed in
Figure 12.10. For each set of decision variables generated by the genetic algorithm, the
values of the dependent environmental criteria are also computed. It must be emphasized
that two MCDM methods, namely TOPSIS and FUCA, are used after the optimization
phase.
‘FUCA’ is the French acronym for ‘Faire Un Choix Adéquat’ (Making An Adequate

Choice). The method relies on individual rankings of objectives; for a given criterion, rank
one is assigned to its best value and rank n (n being the number of points of the Pareto
front) to the worst one. Then, for each point on the front, a weighted summation (the
weights representing the preferences of the decision maker) of ranks is carried out, and
the choice is performed according to the lowest values of the weighted sum. Recently,
the good performance of the FUCA method was established [49] by comparing it with
classical engineering MCDM procedures (TOPSIS, ELECTRE, PROMETHEE). In the
MCDM phase, all the criteria, either dependent or independent, are taken into account
since they can influence decision-making. Only the independent criteria are represented in
Figure 12.10.
In this study, the ranking was performed with the same weight assigned to each objective.

The two best solutions obtained with TOPSIS (respectively FUCA) are named TT1 and
TT2 (respectively TF1 and TF2) in the 3D curve (TT for Tricriterion-TOPSIS and TF
for Tricriterion-FUCA). All the solutions are located in the same region of the 3D Pareto
front. Tables 12.12 to 12.14 present the results obtained for the whole set of independent
and dependent criteria. For each objective, the gain is expressed in percentage terms (%)
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Table 12.15 Decision variables corresponding to solutions TT1, TT2, TF1, TF2 and Douglas.

Decision variables TT1 TT2 TF1 TF2 Douglas

Toluene conversion rate 0.80 0.79 0.75 0.76 0.75
Hydrogen flow rate at the purge (kmol/h) 300 300 300 300 198
Flash pressure HP (bar) 33.98 33.94 33.94 33.89 34.45
Flash pressure BP (bar) 9.96 10 9.66 9.97 10.33
Column 1 pressure 1 (bar) 3 3 3 3 1.034
Column 2 pressure 2 (bar) 1.15 1.71 1.13 1.02 1.034

(denoted as Gain-I and, Gain-E and Gain-D respectively) relative to a reference solution
that can be: (i) a solution randomly chosen in the initial population of the GA, referred to
as solution I for initial; (ii) one obtained from a single objective optimization based on the
economic criterion, referred to as solution E for economic; (iii) the solution corresponding
to the conditions of Douglas (1988) [31] with the production adopted in this study (i.e.,
300 kmol/y) to be consistent, referred to as solution D [34]. The values corresponding to
these solutions are reported in Table 12.15.
The results show that the global gain for all the objectives is higher with FUCA. A closer

look at solutions TF1 and TF2 leads to the final selection of TF2 because it gives only
one negative gain over all the environmental impacts, which corresponds to a degradation
of 1.95% of the annual cost. The values of the optimization variables corresponding to
solutions TT1, TT2, TF1 and TF2 are compared to the solution obtained by Douglas (1988)
[31] in Table 12.15. The corresponding design is proposed in Table 12.16.
A radar chart (Figure 12.11) is also proposed to compare the solutions with the reference

ones. All the values are normalized to make easier the representation, by dividing each
value by its maximal one.
Information can be obtained about environmental impacts generated by the various unit

operations. They are represented in Figure 12.12 for the TF2 and Douglas solutions. The

Table 12.16 Design variables corresponding to solutions TT1, TT2, TF1, TF2 and Douglas.

Equipment TT1 TT2 TF1 TF2 Douglas

Furnace power (GJ/h) 93.12 93.35 98.41 97.77 121.46
Volume of the reactor (m3) 173.32 173.03 170.29 170.39 251.61
Flash HP : volume (m3) 22.86 22.97 24.83 24.62 38.65
Flash BP: volume (m3) 2.26 2.25 2.50 2.42 2.93
Column 1 : height (m) 42.37 42.37 42.98 42.98 36.88

diameter (m) 2.89 2.89 2.93 2.93 3.68
Column 2 : height (m) 17.98 18.59 17.98 17.98 17.98

diameter (m) 1.66 1.54 1.88 1.89 1.91
Heat exchanger B :

exchange surface(m2)
525.91 527.13 554.44 550.97 668.72

Power compressor (kW) 100.00 100.30 107.07 106.21 145.10
Pump power (kW) 2.50 2.50 2.63 2.61 2.63
Recycling pump power (kW) 11.05 11.04 14.53 14.18 14.58
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Figure 12.11 Radar charts corresponding to solutions TT1, TT2, TF1, TF2, initial, economic
and Douglas solutions.

impacts of HTP and EB are mainly due to the output of column 2, because they are
caused by the emissions of diphenyl by the HDA process. Methane at the purge contributes
significantly to the high value of GWP. The very important value of GWP computed for tye
Douglas solution can be attributed to the assumption made concerning furnace modeling
that uses only fuel. This is a penalizing hypothesis that was not specified in the work of
Douglas (1988) [31] but is made here to show how the choice of an energy solution can be
detrimental to environmental performances.
By using this simplified assessment method, decision making based on a multi-objective

optimization strategy and multicriteria decision making can help in the search for a good
solution at the early stages of a process design phase. This method can identify the ‘hot
spots’ of the system and concentrates on the process and its associated energy production
unit. To be more precise, as far as the resource extraction phase is concerned and to perform
inventory more accurately, other methods relevant to the life–cycle assessment field must
be applied and may help to a certain extent. However, such methods are time-consuming,
particularly with regard to data collection and reconciliation and can be used after this
preliminary grass-root design stage.

12.5 Conclusions

This chapter presented two examples showing growing interest in using multi-objective
optimization techniques at the early stages of process ecodesign. The first was the didactic
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Figure 12.12 Environmental impacts per unit operation for solutions TF2 and Douglas.

case of the so-called Williams and Otto process revised in a tricriteria optimization mode
with two economic criteria and one environmental objective, based on the minimization of
a pollutant flow rate. This corresponds to a traditional approach in chemical engineering
where direct waste from a process has to be minimized.
The approachwas then extended to treat the combined influence of release andwaste flow

rates via objective functions involving indicators based on environmental impacts. For this
purpose, a more general methodology was proposed for the ecodesign and optimization of a
chemical process taking into account the contribution of utility generation, via the industrial
software ARIANETM. This chapter outlined a systematic methodology for evaluating envi-
ronmental and health-based impacts of chemical process designs. Multiple impact indexes
are included for process evaluation because of the complexity of pollutant interaction with
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the environment and with human health. The impacts are considered as linear functions rel-
ative to each category of the emitted substance’s amount. The benchmarkHDAprocess, first
developed by Douglas (1988) [31], illustrates the approach. In many published papers, this
process was optimized considering classical engineering objectives, particularly benzene
production and total annual cost. The problem is revisited here also considering engineering
criteria and classical environmental burdens: global warming potential, acidification poten-
tial, photochemical ozone creation potential, human toxicity potential and eutrophication
potential. An upgrade version of the well-known multi-objective genetic algorithm NSGA
II is implemented for solving the various multi-objective problems.
A preliminary study on the objectiveswas performed for identifying a subset of dependent

criteria (GWP, POCP and HTP) expressed as multilinear functions in terms of the three
remaining independent ones (annual cost, AP and EP). In that way, the multi-objective
problem was reduced to a tri-criteria one. This reduction of the number of objectives can be
applied to a wide spectrum of design problems in chemical engineering, involving multiple
and environmental objectives and makes explicit the tradeoffs between them.
During the tri-objective optimization phase, the values of the dependent objectives were

computed for each set of independent variables generated by the genetic algorithm, and
MCDM analyses based on TOPSIS and FUCA were carried out on the whole set of
objectives.
Finally, multi-objective optimization alone or combined with MCDM methods consti-

tutes an interesting framework to integrate green engineering concepts into process synthesis
and design. The areas of green engineering represent a balance between several competing
objectives. A promising theory for the integration of green engineering and sustainabil-
ity principles in the process optimization is the inclusion of sustainability and life-cycle
assessment metrics into the design using a life cycle framework in the formulation of
multi-objective design and synthesis for chemical plants.
Another issue to consider is the uncertainties involved in the assessment of environmental

risk. It is important to study whether the order of magnitude of the uncertainty associated
with the evaluation of the various impacts is quite different and how it can influence
process operating conditions and the choice of process technologies. Uncertainty analysis
for environmental impact assessment is an active research area that has now to be integrated
into multi-objective optimization and multiple criteria decision making for process design.
Fuzzy concepts, Monte Carlo simulation and propagation of error analyses are possible
ways to address the uncertainties in environmental assessment for process ecodesign.

Acronyms

AP atmospheric acidification potential (eq t SO2/y).
EBi ith environmental burden.
EP eutrophication potential (eq t PO4 3−/y).
FUCA French acronym for ‘Faire Un Choix Adéquat’ (‘Make an Adequate Choice’).
GWP global warming potential (eq t CO2/y).
HDA benzene production from toluene hydrodealkylation.
HTP human toxicity potential (t C6H6/y).
LCA life cycle assessement.
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MCDM multiple choice decision making.
NLP nonlinear programming.
NPW net present worth.
NSGA nonsorted genetic algorithm.
PBP pay back period.
PBT profit before tax.
POCP photochemical oxidation or smog formation potential (eq t C2H4/y).
SBX simulated binary crossover operator.
TOPSIS technique for order preference by similarity to ideal solution.
WAR waste reduction algorithm.
WOP Williams and Otto Plant.
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jectif et aide à la decision multicritère, PhD Thesis, Toulouse University, (2011).

[31] J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, NewYork,
1988.

[32] IChemE, The sustainability metrics: sustainable development progress metrics recom-
mended for the use in process industries, Institution of Chemical Engineers, available
at http://www.icheme.org/sustainability/ (2003).

[33] AIChE. Sustainability Metrics, Center for Waste Reduction Technologies (CWRT),
Focus Area: Sustainability Metrics, New York (1998).

[34] CSD. Indicators of Sustainable Development, New York (1996).
[35] C. Heriberto, C.B. Jane and K.M. Subir, Pollution prevention with chemical process

simulators: The generalized waste reduction (WAR) algorithm-full version. Comput-
ers and Chemical Engineering, 23, 623–634 (1999).

[36] M.M. Teresa, L.S. Raymond, M.Y. Douglas and A.V.C. Carlos, Evaluating the
environmental friendliness, economics and energy efficiency of chemical pro-
cesses: heat integration. Clean Technologies and Environmental Policy, 5, 302–309
(2003).

[37] J.C. Diniz da Costa and R.J. Pagan, Sustainability metrics for coal power gener-
ation in Australia, Process Safety and Environmental Protection, 84 (2), 143–149
(2006).

[38] C. Labuschagne, A.C. Brent and R.P.G. van Erck, Assessing the sustainability perfor-
mances of industries. Journal of Cleaner Production, 13 (4), 373–385 (2005).

[39] M. Narodoslawsky and Ch. Krotscheck, What can we learn from ecological valuation
of processes with the Sustainable Process Index (SPI)—the case study of energy
production systems. Journal of Cleaner Production, 12, 111–115 (2004).

[40] D. Sandholzer and M. Narodoslawsky, SPIonExcel—Fast and easy calculation of
the sustainable process index via computer. Resources, Conservation and Recycling,
50 (2), 130–142 (2007).

[41] R. Turton, R.C. Bailie, W.B. Whiting and J.A. Shaeiwitz, Analysis, synthesis and
design of chemical processes, (3rd ed.), Prentice Hall, Upper Side River, NJ (2009).

[42] Simulis R© Thermodynamics, http://www.prosim.net/fr/logiciels-simulis-thermo
dynamics-3.php (accessed 18 December 2012).

[43] M. Peters, K. Timmerhaus and R. West, Plant Design and Economics for Chemical
Engineers, McGraw-Hill, Boston (2003).

[44] K.M. Guthrie, Capital cost estimating. Chemical Engineering, 76, 114–142 (1969).
[45] J.C. Bruno, F. Fernandez, F. Castells and I.E. Grossmann, RigorousMINLPmodel fort

he optimal synthesis and operation of utility plants. Chemical Engineering Research
and Design, 76, 246–258 (1998).

[46] D. Young, R. Scharp and H. Cabezas, The waste reduction (WAR) algorithm: Envi-
ronmental impacts, energy consumption, and engineering economics. Computers and
Chemical Engineering, 20, 605–615 (2000).

[47] J.B. Guinée and R. Heijungs. Life cycle assessment In: Kirk-Othmer Encyclopedia of
Chemical Technology. Concise, 5th edn, John Wiley & Sons, Inc., New York (2007).



Ecodesign of Chemical Processes with Multi-Objective Genetic Algorithms 367

[48] A. Ouattara, L. Pibouleau, C. Azzaro-Pantel, S. Domenecha, P. Baudet and B. Yao,
Economic and environmental strategies for process design, Computers and Chemical
Engineering, 36, 174–188 (2012).

[49] L.F. Moralez-Mendoza, J.L. Perez-Escobedo, C. Azzaro-Pantel, L., Pibouleau, S.
Domenech,A.Aguilar-Lasserre, Selecting the best alternative based on a hybridmulti-
objective GA-MCDM approach for new product development in the pharmaceutical
industry. Computational Intelligence in IEEE Symposium on Multicriteria Decision-
Making (MDCM), ISBN: 978-1-61284-068-0, 159–166 (2011).




