
17
New PI Controller Tuning Methods
Using Multi-Objective Optimization

Allan Vandervoort, Jules Thibault and Yash Gupta
Department of Chemical and Biological Engineering, University of Ottawa, Canada

17.1 Introduction

Efficient process control is an essential element in ensuring industrial chemical plants
operate economically and optimally in a safe manner, while meeting product specifications
and environmental regulations [1]. Despite tremendous advances in process control and
the development of numerous control algorithms, the PI controller still remains the most
commonly used control algorithm in industrial applications [2, 3, 4, 5]. The reason for its
widespread industrial utilization is its simplicity and ease of implementation. In addition,
when significant dead time is present the derivative term in a PID controller leads to an
incorrect response such that a PI controller is favored [4, 5]. The development of efficient
and robust tuning methods for PI controllers is therefore very important.
A properly configured controller for a chemical process should be robust, minimize

excessive controller action, and produce a stable response with no final offset [6]. Many
controller correlations have been developed for tuning PI controllers such as those proposed
by Ziegler and Nichols [7], Cohen and Coon [8], Chien and Fruehauf [9], and Skogestad
[10]. Although these and many other correlations have been implemented in process-
control systems, no controller correlation can achieve all of the desired performance criteria
simultaneously because they inherently involve conflicts and tradeoffs [6].
In recent years, themulti-objective optimization (MOO) of PI controllers has been studied

in an attempt to better understand the tradeoff between various controller objectives. In
many of these studies, MOO is performed for the control of specific processes [11, 12]. In
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other studies, general tuning rules have been developed by considering multiple objectives
[13, 14] but in these methods only one set of controller parameters was suggested for a
given process. Although the tradeoffs between each performance objective were considered
by the authors during the development of these tuning methods, they cannot be considered
by the decision maker when the tuning methods are applied to industrial control systems.
In this investigation, new PI controller-tuning methods based on MOO are proposed. The
tuning methods in this study, where multiple objectives are simultaneously optimized, were
developed to improve the decision maker’s understanding of the tradeoff associated with
each objective, before optimum controller parameters are chosen.

17.2 PI Controller Model

In this study, a first-order plus dead time (FOPDT) process model was used for the develop-
ment of the PI controller tuning methods. A FOPDT process transfer function is frequently
used for controller optimization, as it adequately represents a large number of higher-order
systems and industrial processes [15, 16, 17]. A FOPDT process can be represented in the
Laplace domain by Equation (17.1) [18].

y(s)

u(s)
= Kp e−θs

τ s + 1 (17.1)

Equation (17.1) is solved numerically using finite differences. The resulting expression
is shown in Equation (17.2).

yt = yt−�t + �t

τ

[
Kput−�t−θ − yt−�t

]
(17.2)

where ut represents the manipulated variable at time t, Kp represents the process gain, τ
represents the process time constant, �t represents the small integration time step used in
the calculation, yt represents the controlled variable at time t, and θ represents the time
delay.
For a PI controller the equation describing the response of the manipulated variable is

shown in Equation (17.3) [18] for a bias term of zero.

ut = Kc εt + Kc

τI

t∫
0

εt dt (17.3)

Equation (17.3) is again solved numerically using finite differences as shown in Equation
(X.4), which represents the velocity form of the PI controller.

ut = ut−�t + Kc (εt − εt−�t )+ Kc

τI

εt�t (17.4)

where εt is the error at time t, Kc is the controller gain, and τ I is the integral time.
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17.3 Optimization Problem

Although several variables affect the controller performance, only the integral time τ I

and the controller gain Kc can be varied when tuning a PI controller. In this study, relative
controller parameters were used to ensure that the optimization results could be generalized
for all possible FOPDT processes. Specifically, the relative controller gain (KcKp) and
relative integral time (τ I/τ ) were used as input variables. The feasible region for each input
variable was set between 0.1 and 10.
For the tuning of a PI controller, many performance criteria can be used alone or as a

weighted sum of two ormore. In this investigation,MOO is performed for a FOPDT process
subject to a unit set point change in the controlled variable. Three controller performance
criteria were considered in the optimization: the integral of the time weighted absolute
error (ITAE), the integral of the squares of the differences in the manipulated variable
(ISDU) and the settling time. The mathematical expressions of ITAE and ISDU are given
in Equations (17.5) and (17.6), respectively. The ITAE measures the cumulative deviation
of the controlled variable from the set point, and penalizes deviations that are not resolved
in a short period of time. ISDU measures the changes in the manipulated variable and
favours a smooth response [6].

ITAE =
tf∫
0

t |εt |dt �
tf /�t∑
k=1

t |εk| �t (17.5)

ISDU =
tf∫
0

�u2t dt �
tf /�t∑
k=1

(uk − uk−1)2 �t (17.6)

The settling time is defined in this investigation as the time that the process takes to
stabilize within ± 5% of the final steady state value following a step change in the
controlled variable. The settling time for a typical response from a unit step change in the
controlled variable is demonstrated in Figure 17.1.
To further ensure that the controller optimization results can be generalized for all

possible FOPDT processes, relative objective criteria were chosen for this optimization.
The objectives chosen were the relative ITAE (ITAE/τ 2), the relative settling time (tset/τ )
and the ISDU. The ISDU objective did not directly depend on the response time of the
controller and was not placed in relative form because the tuning methods in this study were
developed for a unit step set point change. The optimization was performed for varying
values of the relative dead time (θ /τ ). The optimization problem is shown schematically in
Figure 17.2.

17.4 Pareto Domain

Before ideal values of the relative integral time and relative controller gain are chosen
by considering the tradeoffs between the three competing criteria specified in this study,
the domain of potentially optimal solutions should be circumscribed so that the search for
the optimal solution only needs to consider solutions that are located within this domain.
This set of potentially optimal solutions or non-dominated solutions is known as the Pareto
domain.
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Figure 17.1 Graphical illustration of the settling time for a typical response.

17.4.1 Dominated and Non-Dominated Solutions

In Figure 17.3, a graphical representation of dominated and non-dominated solutions and
an associated Pareto domain is presented using two objective functions, f1 and f2, to be
maximized and corresponding to two input or decision variables, x1 and x2. Four solutions
are used to illustrate the concept of dominance. The values for both objective functions for
point A are lower than the other three points such that point A is dominated relative to these
three points and, of course, point A will never be considered optimum. Point B dominates
point A, both its objective function values are lower than those of points C and D such that
point B is also a dominated solution relative to C and D. On the other hand, comparing
solutions of points C and D, each solution is at least better for one objective such that points
C and D are non-dominated solutions. Normally, to adequately define the Pareto domain,
a similar comparison is performed on a large number of solutions and only non-dominated
solutions are retained potentially optimal solutions.

Relative integral
time (τl /τ)

Relative controller
gain (Kc Kp)

ISDU

Optimization
problem

Relative ITAE (ITAE/τ2) 

Relative settling
time (tset /τ) 

Figure 17.2 Optimization problem showing input variables and objective functions.
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Figure 17.3 Graphical representation of the concept of dominance used to determine Pareto-
optimal solutions.

For a description of the concept of dominance, consider two solutions, points P1 and P2,
consisting of n decision variables (x1, x2, x3 . . . xn) and m values of objective functions or
performance criteria (f1, f2, f3 . . . fm). Point P1 dominates point P2, if the following two
conditions prevail [19]:

• All objective function values of P1, f1 to fm, are not worse than the corresponding
objective function values of P2, f1 to fm. In other words, if all performance objective
criteria need to be maximized then all objective function values of P1 need to be equal
to or greater than the corresponding objective function values of P2.

• At least one performance criterion for P1 is better than the corresponding performance
criterion for P2.

The Pareto domain is therefore the set of solutions within the set of all feasible solutions
containing exclusively the non-dominated points. Solutions located outside of the Pareto
domain are the set of dominated points, and therefore not Pareto-optimal.

17.4.2 Few Methods for Approximating the Pareto Domain

17.4.2.1 Non-dominated Sorting Genetic Algorithm II

The non-dominated sorting genetic algorithm II (NSGA-II) is anMOO technique developed
by Deb et al. [20], based on a genetic algorithm. The first step in using NSGA-II is to
create randomly an initial population of solutions. For successive generations, all solutions
in the current population are assessed based on the number of times each solution is
dominated and the most fit individuals of the population, in an attempt progressively
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to improve the degree of fitness of the population, are allowed to procreate to generate
new individuals using a process based on random variation and combination of solutions.
NSGA-II is one of the most popular MOO method and used in numerous applications
[21, 22, 23, 24, 25].

17.4.2.2 Grid Search Approach

The GSA is a technique used to approximate the Pareto domain that involves the construc-
tion of a grid in the input space of an optimization problem. The objective functions are
then calculated at the grid points, and the best points are chosen based on the concept of
dominance. The search begins from a coarse grid, and is refined at each iteration. The full
GSA procedure is described below.

1. Initially a grid is formed in the feasible region of the input space. The number of initial
divisions for each input is specified before beginning the GSA, with five initial divisions
being used for each input in this study.

2. The values of the objective functions are then calculated for each point in the grid. The
procedure generates

∏n
i=1 (Mi + 1) points, where Mi equals the number of divisions for

input i, and n equals the total number of inputs in the specified optimization problem.
3. Next, all points in the grid are compared to other points in the grid one at a time, and the
number of times a given point is dominated by another is determined.

4. Using the domination count, the best points are then selected to determine the range in
the input variables for the construction of the next grid. The minimum and maximum
values of the input variables, that contain the non-dominated points, are used as the range
for the next grid. As the accuracy of the Pareto domain increases with each iteration,
the number of divisions is also increased. In this study, the number of divisions was
increased by 5 at each iteration.

5. Steps 1–4 are repeated, gradually producing a finer grid in the input space. Once the
grid interval for an input variable reaches a predetermined minimum value, the number
of divisions is no longer increased for that input variable. Once all of the input variables
have reached the predetermined minimum grid interval, the approximation of the Pareto
domain is complete.

17.4.3 Application of Principal Component Analysis to the Grid
Search Approach

Of the MOO techniques used to approximate the Pareto domain, a grid-based search is one
of the simplest and easiest to implement. The GSA also ensures a Pareto domain that evenly
and fully spans the input space. However, the GSA can lead to an approximation of the
Pareto domain with limited accuracy, requiring high computation time [26]. In the study by
Vandervoort [27], modifications were made to the GSA using principal component analysis
(PCA). These modifications were performed with the goals of increasing the accuracy of
the Pareto domain obtained, and reducing the required computation time.
When the GSA is used to approximate the Pareto domain, a large number of dominated

points can be generated at each iteration, even as the grid interval decreases and the proce-
dure nears convergence. An example of an optimization problem where this is especially
important is demonstrated in Figure 17.4, which shows the input space of the Pareto domain
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Figure 17.4 Input space of the Pareto domain for the example problem.

for a problem involving two input variables. The grid search region is also shown in the
figure. In this example, the Pareto domain represents only a very small fraction of the grid
search region. Decreasing the grid size will lead to a more accurate Pareto domain, but will
also produce an increasing number of points in the grid search region that are not part of the
Pareto domain. This limitation of the GSA leads to high computation time as each iteration
generates many redundant points for which the objective functions must be calculated.
Principal component analysis (PCA) is a statistical tool that is most often used to convert

a set of possibly correlated variables into a set of uncorrelated variables [28]. The example
in Figure 17.4 is used below to demonstrate how PCA can benefit the GSA, and the required
calculation procedure is described [28].

1. The first step in the procedure is to calculate the covariance matrix. The data set used for
this calculation is the input space of the Pareto domain, i.e. the set of x1 and x2 values
for the example problem. This calculation is given in Equation (17.7):

[
Cov(x1, x1) Cov(x1, x2)
Cov(x2, x1) Cov(x2, x2)

]
=

⎡
⎢⎢⎢⎢⎢⎣

N∑
j=1

(
x1,j − x̄1

)2
N − 1

N∑
j=1

(
x1,j − x̄1

) (
x2,j − x̄2

)
N − 1

N∑
j=1

(
x2,j − x̄2

) (
x1,j − x̄1

)
N − 1

N∑
j=1

(
x2,j − x̄2

)2
N − 1

⎤
⎥⎥⎥⎥⎥⎦

(17.7)

where N is equal to the number of points in the input space and x̄1 and x̄2 are the average
values of each input variable.
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2. Next the eigenvalues are calculated. All optimization problems in this study consisted
of two input variables. When two input variables are used, Equation (17.8) gives the
eigenvalues of the dataset (λA and λB) using the quadratic formula:

λA = T + (T 2 − 4D)0.5
2

λB = T − (T 2 − 4D)0.5
2

(17.8)

where T is the trace of the covariance matrix, and D is the determinant of the covariance
matrix.

3. Next the eigenvectors are calculated. The definition of an eigenvector V (with elements
v1 and v2) corresponding to an eigenvalue λ for a system with two input variables is
shown in Equation (17.9).

[
Cov(x1, x1) Cov(x2, x1)
Cov(x1, x2) Cov(x2, x2)

] [
v1
v2

]
= λ

[
v1
v2

]
(17.9)

Equation (17.9) always yields two dependent equations for the eigenvector V. The
process of finding vector V can therefore be simplified by setting v2 to 1, and solving
for v1 from Equation (17.10):

v1 = Cov(x2, x1)

λ − Cov(x1, x1)
or v1 = λ − Cov(x2, x2)

Cov(x1, x2)
(17.10)

The calculation described by Equations 17.9 and 17.10 is performed for both eigen-
values λA and λB, corresponding to the two eigenvectors VA and VB, each with distinct
values for elements v1 and v2.

4. The principal component projection of the data set is then calculated. This calcula-
tion consists of multiplying the data set by the matrix composed of the eigenvectors
VA and VB.

The calculation procedure outlined in steps 1–4 was performed on the data set shown in
Figure 17.4. The projected dataset is shown in Figure 17.5.
In Figure 17.5, the data set is certainly ideal for the application of a grid. For this example

the grid search region includes only a small fraction of redundant points, and the dataset
has essentially been reduced from a two-variable system into a one-variable system. For
a given optimization problem the number of dimensions may not be reduced, but unlike
previous MOO studies involving PCA a significant reduction in the search space may still
be obtained. This reduction in the search space demonstrates the benefit of projecting the
input space using PCA before each grid is produced following the first standard grid search.
Once the grid has been formed, it must be projected back to the original frame of

reference. This calculation consists of multiplying the grid by the inverse of the eigenvector
matrix. The resulting grid for this problem is shown in Figure 17.6. This figure demonstrates
a final resulting grid with a much smaller grid search region, and a smaller fraction of
redundant points relative to the standard grid shown in Figure 17.4.
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Figure 17.5 Principal component projection of the input variable space for the example
problem.
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17.4.3.1 Principal Component Grid Algorithm

The general procedure for the algorithm proposed by Vandervoort [27], the principal
component grid algorithm (PCGA), is shown below:

1. Initially a small number of iterations are conducted strictly using the procedure discussed
in section 17.4.2.2 to generate a rough estimate of the Pareto domain. In this study, two
iterations of the original GSA were used before PCA was implemented.

2. The next iteration begins by determining the eigenvalues and eigenvectors for the input
variable space. Only the non-dominated points are used in this calculation as they
represent the most current approximation of the Pareto domain.

3. The principal component projection is then calculated for the input-variable space, and a
grid is formed with the projected data set. The grid is then projected back to the original
frame of reference, and the corresponding objective functions are evaluated.

As was described in section 17.4.2.2, the number of divisions is increased at each
iteration, and the calculation continues until all of the input variables have reached the
predetermined minimum grid size.
In Vandervoort [27] it was demonstrated that for the wide range of optimization problems

considered in the study, the PCGA led to a Pareto domain with higher accuracy than both
the standard grid procedure [26] and NSGA-II [20], which is commonly used in MOO
studies. The PCGA also led to a reduction in the required computation time relative to these
two algorithms. As well as several theoretical and practical case studies, this high accuracy
and increased efficiency were observed for MOO of a PI controller. The PCGA is therefore
the MOO technique used in this study to approximate the Pareto domain.

17.5 Optimization Results

In order to determine ideal controller parameters, the Pareto domain for the generalized
controller model discussed in section 17.3, subject to a unit step change in the set point, was
approximated using the PCGA. The approximation was performed until the grid interval
for both input variables was equal to 0.05. Multiple Pareto domains were approximated
by varying the value of the relative dead time. Figure 17.7 shows the Pareto domains for
varying values of the relative dead time, with Pareto domains corresponding to a relative
dead-time of 0.2 to 2.0 shown. It should be noted that regardless of the specific values of
the dead time, time constant and process gain, each value of the relative dead time led to
one unique Pareto domain. For example, the Pareto domain for a time constant of 100 s, a
dead time of 20 s and any value of the process gain was identical to the Pareto domain for
a time constant of 5 s, a dead time of 1 s and any value of the process gain when relative
variables as specified in section 17.3 were considered.
Figure 17.7 shows that the relative dead time has a significant effect on the input space

of the generalized controller Pareto domain. Increasing the relative dead time leads to an
increase in the slope of the Pareto domain input space and to changes in the range of the
input variables defining the Pareto domain. Despite these variations, the input space of
each Pareto domain is visually very narrow and follows closely a straight line. This is an
important observation which suggests that if the relative controller gain is chosen, only a
very narrow range in the relative integral time will lead to optimum controller performance,
and vice versa. The strong correlation between the two controller parameters implies that
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Table 17.1 Slope, intercept and input variable ranges for the generalized controller
Pareto domain.

θ /τ Slope (η) Intercept (b) Optimum range of KcKp Optimum range of τ I/τ

0.2 0.325 0.317 0.247–1.30 0.407–0.952
0.4 0.479 0.447 0.223–1.42 0.466–1.10
0.6 0.841 0.351 0.106–1.09 0.280–1.26
0.8 1.13 0.335 0.109–0.876 0.321–1.31
1.0 1.30 0.382 0.236–0.748 0.679–0.748
1.2 1.57 0.373 0.199–0.572 0.638–1.25
1.4 1.87 0.294 0.186–0.483 0.645–1.33
1.6 2.09 0.370 0.214–0.527 0.790–1.47
1.8 2.30 0.392 0.252–0.507 0.961–1.57
2.0 2.55 0.351 0.289–0.491 1.13–1.68

when configuring a PI controller, only one of the two parameters needs to be specified,
as the other can be obtained based on this strong correlation. Any selection of controller
parameters outside of the narrow bands shown in Figure 17.7 will lead to a dominated
point, which corresponds to deteriorated controller performance as all three performance
criteria would be worse than at least one particular point within the Pareto domain.
Figure 17.7 also shows the effect of changing the relative dead time on the objective

functions. It is apparent that both the relative ITAE and the relative settling time are highest
at larger values of the relative dead time, whereas the ISDU is smallest at larger values of
the relative dead time.

17.6 Controller Tuning

17.6.1 Method 1

Using the Pareto domain, optimal controller parameters can be determined for a given set of
process parameters. The first tuning method involves setting one of the controller parame-
ters, the gain or the integral time, such that the corresponding relative parameter falls within
the Pareto domain. One Pareto domain was generated for each value of the relative dead
time. The ranges of values for both relative controller parameters for each Pareto domain are
presented in Table 17.1. The second controller parameter can then be specified graphically
or using the linear relationship between the two relative controller parameters as defined
by Equations (17.11)–(17.13). The values of both the slope and the intercept for each value
of the relative dead time are given in Table 17.1. Equations (17.11)–(17.13) along with the
information found in Table 17.1 allow for the calculation of the integral time for a prespeci-
fied value of the controller gain, and vice versa, to achieve optimum controller performance.

τI

τ
= [

η
(
KcKp

) + b
]

(17.11)

KcKp =
(τI

τ
− b

) 1
η

(17.12)

η = 1.256
θ

τ
+ 0.06280 (17.13)
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17.6.2 Method 2

Method 1 ensures that an optimum set of controller parameters will be obtained, but the
values of the objective functions are not specified a priori. An alternative method for
configuring a PI controller is to first choose the desired values of the relative objective
functions. For this tuning method, a well defined relationship must exist between each
relative objective function and each relative controller parameter, to ensure that once a
point is chosen in the objective space the corresponding input variables (controller tuning
parameters) can be calculated. To confirm that this relationship does exist, the values of
each objective performance criterion were plotted against the values of the two relative
controller parameters. These plots are shown in Figures 17.8 and 17.9 for different values
of the relative dead time. Figures 17.8 and 17.9 show that the relationship between each
objective performance criterion and each relative controller parameter is well defined, and
can therefore be used for controller tuning.
The first step in the second tuning method is choosing the desired values of the relative

controller performance criteria for a given relative dead time. Using Figure 17.7, a desired
point is first chosen in the output space. This point should be chosen to balance the tradeoff
between each of the three objectives based on the preferences of the user. From the relative
objective function values of the chosen point, the corresponding values of both the relative
controller gain and the relative integral time can be determined from Figures 17.8 and 17.9.
The optimum controller parameters are then calculated for the known process gain and
time constant based on the relative input variables. Using this tuning method ensures that
controller tuning parameters will be located within the Pareto domain and therefore optimal
for the selected performance criteria. The two tuning methods use a different approach to
achieve optimum controller performance.

17.7 Application of the Tuning Methods

17.7.1 First-Order Plus Dead Time System

The developed tuning method was first applied for a specific FOPDT system charac-
terized by a process gain (Kp) of 1.5, a time constant (τ ) of 5 and a dead time (θ ) of
3. Results obtained were compared to several previously developed PI controller tuning
methods.
The simulated FOPDT process corresponds to a relative dead time of 0.6. The Pareto

domain for this specific value of the relative dead time was compared to the optimum
controller parameters and objectives identified by several previously developed controller
correlations. The controller correlations used for comparison along with the objective
criteria used in each correlation are shown in Table 17.2. The results from the comparison
are shown in Figure 17.10.
Figure 17.10 clearly demonstrates that the tuning method developed in this investigation

provides a general framework for selecting PI controller parameters that would system-
atically be based optimally on the three performance indicators used to circumscribe the
Pareto domain. The choice of the PI controller parameters depends on the performance
specifications of control engineers. The PI control parameters of the two earlier control
algorithms, Ziegler–Nichols and Cohen–Coon, lie outside the Pareto domain and all three
performance criteria are therefore worse than a particular point located within the Pareto
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Table 17.2 Controller correlations used for comparison, and their objective criteria.

Method Objective criteria

Chien and Fruehauf [9] IMC
Cohen and Coon [8] One quarter decay ratio
Hägglund and Åström [29] IAE
Skogestad [10] IMC
Smith and Corripio [30] ITAE
Tavakoli et al. [14] MOO
Ziegler and Nichols [7] One quarter decay ratio
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Figure 17.10 Comparison of the PI controller Pareto domain with other PI controller tuning
methods.
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domain. Of course, the control parameters from these earlier control algorithms were not
obtained by minimizing one or more of the three criteria used in this investigation and it
would have been surprising to find them located in the Pareto domain. The Ziegler–Nichols
tuning method is a heuristic method of tuning a PID controller to achieve a response having
a quarter decay ratio. The controller parameters for the Cohen–Coon tuning method are
obtained from an open-loop process response curve. On the other hand, the other five tuning
methods provide controller parameters that are located on the Pareto domain, as they min-
imize at least one of the objective criteria used in this investigation. These results clearly
show that the Pareto domain offers an enhancement to previously developed controller
correlations, because all possible optimum values for the PI controller parameters can be
considered before choosing final controller parameters.

17.7.2 Fourth-Order Plus Dead Time System

To test the proposed tuning method for higher order systems, it was implemented for
the control of an open-loop stable fourth-order system (with all real poles) with dead
time. Although the tuning method was developed for a FOPDT system, a fourth-order
system can be adequately approximated using a FOPDT model, and the tuning procedure
developed in this study can be applied. The fourth-order system used in this study and the
approximated FOPDT system are given in Equations (17.14) and (17.15), respectively. The
FOPDT parameters were obtained by minimizing the squares of the differences between
the FOPDT open-loop response and the fourth-order open loop response to a unit input step
change. In this investigation, Solver in Excel was used to obtain the FOPDT parameters
but any optimization software could be used. The responses of both systems are shown in
Figure 17.11.

y(s)

u(s)
= 1.5e− s

(3.5s+ 1)(2.5s+ 1)(1.5s+ 1)(0.75s+ 1) (17.14)

y(s)

u(s)
= 1.51e

− 4.29s

(5.32s+ 1) (17.15)

Figure 17.11 clearly shows that the FOPDT system fits the fourth-order response very
closely. The tuning method discussed in section 17.6.2 was next performed using the
FOPDT process parameters. The relative dead time for this system is equal to 0.8. Two
sets of PI controller parameters corresponding respectively to relative ITAE values of 3 and
5 were determined from Figures 17.8 and 17.9. To demonstrate more clearly how these
controller parameters are determined, the middle upper panels of Figures 17.8 and 17.9
for a relative dead time of 0.8 have been reproduced in Figure 17.12. From these graphs,
it is possible to estimate the relative controller gain (KcKp) and the relative integration
time (τ I/τ ). For a relative ITAE value of 3, the corresponding values of Kc and τ I were
found to be 0.274 and 4.56 based on Figure 17.12 whereas, for a relative ITAE value of
5, these values are 0.156 and 3.16. It can be verified that these values are Pareto-optimal
parameters as can be validated using in Figure 17.7. The closed-loop responses of both
the fourth-order system and the corresponding FOPDT system were obtained using these
controller parameters for a unit set point change. The closed-loop responses of both systems
for relative ITAE values of 3 and 5 are presented in Figure 17.13(a) for the first 50 s and the



496 Multi-Objective Optimization in Chemical Engineering

0

0 10 20

Time (s)

C
on

tr
ol

le
d 

va
ria

bl
e

30 40 50

0.4

0.8

1.2

1.6

4th order response
1st order response

Figure 17.11 Open loop response for the simulated fourth-order system and FOPDT
system.

0

Time (s)

4th order response
1st order response

0 20 40 60 80

0.4

0.8

1.2

C
on

tr
ol

le
d 

va
ria

bl
e

Figure 17.12 Determination of the relative gain and relative integral time of a PI controller
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Figure 17.13 Closed-loop responses for the simulated fourth-order system (solid line) and
FOPDT system (dotted line) for relative ITAE values of 3 and 5 for (a) a unit set point change
and (b) a first-order disturbance.

corresponding objective function values are listed in Table 17.3. The dynamic responses
were calculated for a total of 100 s using an integration step of 0.001 s.
Figure 17.13(a) and Table 17.3 clearly demonstrate that the controller configuration

determined using the developed tuning method was effective in controlling the fourth-order
system. Both systems showed very similar responses, with all three performance criteria
very similar in value. These results show that the proposed tuning method can be applied to
higher order systems as well as FOPDT systems. The obvious limitation is that the process
can be represented adequately by a FOPDT and its open-loop behavior does not oscillate.

17.7.3 Application to a Process with a First-Order Disturbance

The proposed tuning method was also evaluated for the case of a disturbance. The con-
troller parameters determined in section 17.7.2 were used to control the same fourth-order

Table 17.3 Performance criteria for the simulated fourth-order and FOPDT systems for a
unit set point change corresponding to Figure 13.12(a).

Relative ITAE System ISDU ITAE Settling time

3 Fourth-order system 7.51 × 10−5 78.62 19.95
FOPDT system 7.51 × 10−5 85.71 20.70

5 Fourth-order system 2.44 × 10−5 132.13 25.28
FOPDT system 2.44 × 10−5 143.53 25.65
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Table 17.4 Parameters of the first-order disturbance and the resulting objective functions.

Relative ITAE System ISDU ITAE Settling time

3 fourth-order system 8.80 × 10−8 163.73 25.15
FOPDT system 8.90 × 10−8 175.83 25.83

5 fourth-order system 5.80 × 10−8 256.84 30.24
FOPDT system 5.84 × 10−8 274.61 30.48

system subject to a unit set point change for a first-order disturbance. The first-order dis-
turbance transfer function had a gain of 1.5 and a time constant of three time units as
shown in Table 17.4. The closed-loop responses of the fourth-order and FOPDT systems
are shown in Figure 17.13(b) and the associated performance criteria are presented in
Table 17.4.
Figure 17.13(b) and Table 17.4 show that the developed tuning method performed well

for the fourth-order process with a first-order disturbance. A similar settling time was
realized for this simulation as for both responses shown in section 17.7.2. The ITAE was
larger for the response to a disturbance, but the ISDU was reduced. All of the results from
section 17.7.0 clearly show that the tuning method developed by approximating the Pareto
domain leads to excellent controller performance, and is applicable to a wide variety of
processes.

17.8 Conclusions

In this study, PI controller tuning methods were developed considering multiple objectives.
Themethods were developed by optimizing the ITAE, ISDU, and settling time for a FOPDT
system. The Pareto domain identifying the region of optimal solutions was approximated
using the PCGA due to its demonstrated high level of accuracy and efficiency. It was
found that a strong correlation exists in the Pareto domain between the two controller input
parameters, the relative controller gain, and the relative integral time. This implies that when
configuring the controller, only one of the controller parameters needs to be specified, as
the other is obtained via the strong correlation.
Using the controller optimization results, two methods were proposed for tuning the

PI controller. The first tuning method allows for optimum controller performance to be
obtained by initially specifying either one of the controller input parameters. The second
tuning method involves first specifying the preferred relative objective function values
from the Pareto domain, which correspond to specific values of the controller parameters.
The developed controller tuning methods were compared to several previously developed
controller correlations. It was found that all previously developed controller correlations
showed equal or worse performance than that identified by the Pareto domain, but with the
limitation of not allowing for enhanced understanding of the many optimal solutions and
the tradeoff between each performance criterion. Finally, the tuning methods were applied
to a fourth-order process and a process with a disturbance, and were shown to perform well
for these two applications.
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Nomenclature

Variable Definition Unit
b Controller input space intercept Dimensionless
Cov Element in Covariance Matrix Dimensionless
D Determinant Dimensionless
f Objective function in optimization problem Varies
ISDU Integral of the squares of the differences in the manipulated

variable
Varies

ITAE Integral of the time-weighted absolute error Varies
Kc Controller gain Units of u/y
Kp Process gain Units of y/u
M Number of divisions in PCGA grid Dimensionless
m Number of objective criteria Dimensionless
n Number of input variables Dimensionless
N Number of points in Pareto domain Dimensionless
P Point in the Pareto domain Dimensionless
T Trace Dimensionless
tset Settling time s
u Manipulated variable Varies
x Input function in optimization problem Varies
y Controlled variable Varies

Greek Symbols

�t Time step s
ε Error Varies
η Controller input space slope Dimensionless
θ Dead time s
τ Time constant s
τ I Integral time s

Subscripts

Subscript Definition
f Final
t Time
j Point in the Pareto domain
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Exercises

17.1. Starting with Equation (17.14), show that the FOPDT that best represents this fourth-
order process is indeed given by Equation (17.15).

17.2. The transfer function of a chemical process can be accurately represented with the
following equation in the Laplace domain:

y(s)

u(s)
= 0.82e− 0.6s

(5s+ 1)(4s+ 1)(2s+ 1) (17.16)

Approximate this transfer function with a FOPDT and calculate the parameters Kc
and τ I of a PI controller using Method 2 for a relative ITAE of 2.5.

17.3. For the previous problem, usingMethod 1, determine the value of τ I of a PI controller
if the controller gain Kc is 0.43. What are the approximate values of the three
performance criteria (ITAE, ISDU and settling time) associated with these controller
parameters?
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