Madhvanand N. Kashid, Albert Renken, and Lioubov Kiwi-Minsker

Microstructured Devices for Chemical Processing

Related Titles

Wirth, T. (ed.)

Microreactors in Organic Chemistry and Catalysis Second Edition

2013 ISBN 978-3-527-33299-1 (Also available in digital formats)

Hessel, V., Kralisch, D., Kockmann, N.

Novel Process Windows Innovative Gates to Intensified and Sustainable Chemical Processes

2015 ISBN 978-3-527-32858-1 (Also available in digital formats)

Beller, M., Renken, A., van Santen, R.A. (eds.)

Catalysis

From Principles to Applications

2013 ISBN 978-3-527-32349-4 Moulijn, J.A., Makkee, M., van Diepen, A.E.

Chemical Process Technology Second Edition

2013 ISBN 978-1-444-32025-1 (Also available in digital formats)

Hessel, V., Renken, A., Schouten, J.C., Yoshida, J. (eds.)

Micro Process Engineering A Comprehensive Handbook

2009 ISBN 978-3-527-31550-5 (Also available in digital formats) Madhvanand N. Kashid, Albert Renken, and Lioubov Kiwi-Minsker

Microstructured Devices for Chemical Processing

The Authors

Dr. Madhvanand N. Kashid

Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-GGRC 1015 Lausanne Switzerland

and

Syngenta Crop Protection Monthey SA Route de l'Ile au Bois 1870 Monthey Switzerland

Prof. Dr. Albert Renken

Ecole Polytechnique Fédérale de Lausanne EPFL-SB ISIC-LGRC, Station 6 1015 Lausanne Switzerland

Prof. Dr. Lioubov Kiwi-Minsker

Ecole Polytechnique Fédérale EPFL-SB ISIC-LGRC, Sation 6 1015 Lausanne Switzerland All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33128-4 ePDF ISBN: 978-3-527-68519-6 ePub ISBN: 978-3-527-68518-9 Mobi ISBN: 978-3-527-68523-3 oBook ISBN: 978-3-527-68522-6

Cover Design Formgeber, Mannheim, Germany Typesetting Laserwords Private Limited, Chennai, India Printing and Binding Markono Print Media Pte Ltd., Singapore

Printed on acid-free paper

Contents

Preface XI List of Symbols XIII

1 Overview of Micro Reaction Engineering 1

- 1.1 Introduction 1
- 1.2 What are Microstructured Devices? 2
- 1.3 Advantages of Microstructured Devices 2
- 1.3.1 Enhancement of Transfer Rates 2
- 1.3.2 Enhanced Process Safety 5
- 1.3.3 Novel Operating Window 7
- 1.3.4 Numbering-Up Instead of Scale-Up 7
- 1.4 Materials and Methods for Fabrication of Microstructured Devices 9

۱v

- 1.5 Applications of Microstructured Devices 10
- 1.5.1 Microstructured Reactors as Research Tool 11
- 1.5.2 Industrial/Commercial Applications *11*
- 1.6 Structure of the Book 13
- 1.7 Summary *13*
 - References 14

2 Basis of Chemical Reactor Design and Engineering 19

- 2.1 Mass and Energy Balance 19
- 2.2 Formal Kinetics of Homogenous Reactions 21
- 2.2.1 Formal Kinetics of Single Homogenous Reactions 22
- 2.2.2 Formal Kinetics of Multiple Homogenous Reactions 24
- 2.2.3 Reaction Mechanism 25
- 2.2.4 Homogenous Catalytic Reactions 26
- 2.3 Ideal Reactors and Their Design Equations 29
- 2.3.1 Performance Parameters 29
- 2.3.2 Batch Wise-Operated Stirred Tank Reactor (BSTR) 30
- 2.3.3 Continuous Stirred Tank Reactor (CSTR) 35
- 2.3.4 Plug Flow or Ideal Tubular Reactor (PFR) 39
- 2.4 Homogenous Catalytic Reactions in Biphasic Systems 45

VI Contents

2.5	Heterogenous Catalytic Reactions 49
2.5.1	Rate Equations for Intrinsic Surface Reactions 50
2.5.1.1	The Langmuir Adsorption Isotherms 51
2.5.1.2	Basic Kinetic Models of Catalytic Heterogenous Reactions 53
2.5.2	Deactivation of Heterogenous Catalysts 57
2.6	Mass and Heat Transfer Effects on Heterogenous Catalytic
	Reactions 59
2.6.1	External Mass and Heat Transfer 60
2.6.1.1	Isothermal Pellet 60
2.6.2	Internal Mass and Heat Transfer 69
2.6.2.1	Isothermal Pellet 69
2.6.2.2	Nonisothermal Pellet 77
2.6.2.3	Combination of External and Internal Transfer Resistances 79
2.6.2.4	Internal and External Mass Transport in Isothermal Pellets 79
2.6.2.5	The Temperature Dependence of the Effective Reaction Rate 81
2.6.2.6	External and Internal Temperature Gradient 82
2.6.3	Criteria for the Estimation of Transport Effects 83
2.7	Summary 84
2.8	List of Symbols 86
	References 87
3	Real Reactors and Residence Time Distribution (RTD) 89
3.1	Nonideal Flow Pattern and Definition of RTD 89
3.2	Experimental Determination of RTD in Flow Reactors 91
3.2.1	Step Function Stimulus-Response Method 92
3.2.2	Pulse Function Stimulus-Response Method 93
3.3	RTD in Ideal Homogenous Reactors 95
3.3.1	Ideal Plug Flow Reactor 95
3.3.2	Ideal Continuously Operated Stirred Tank Reactor (CSTR) 95
3.3.3	Cascade of Ideal CSTR 96
3.4	RTD in Nonideal Homogeneous Reactors 98
3.4.1	Laminar Flow Tubular Reactors 98
3.4.2	RTD Models for Real Reactors 100
3.4.2.1	Tanks in Series Model 100
3.4.2.2	Dispersion Model 101
3.4.3	Estimation of RTD in Tubular Reactors 105
3.5	Influence of RTD on the Reactor Performance 107
3.5.1	Performance Estimation Based on Measured RTD 108
3.5.2	Performance Estimation Based on RTD Models 110
3.5.2.1	Dispersion Model 111
3.5.2.2	Tanks in Series Model 112
3.6	RTD in Microchannel Reactors 115
3.6.1	RTD of Gas Flow in Microchannels 117
3.6.2	RTD of Liquid Flow in Microchannels 118
363	RTD of Multiphase Flow in Microchannels 122
0.0.0	

- 3.7 List of Symbols *126* References *127*
- 4 Micromixing Devices 129
- 4.1 Role of Mixing for the Performance of Chemical Reactors *129*
- 4.2 Flow Pattern and Mixing in Microchannel Reactors 136
- 4.3 Theory of Mixing in Microchannels with Laminar Flow 137
- 4.4 Types of Micromixers and Mixing Principles 143
- 4.4.1 Passive Micromixer 144
- 4.4.1.1 Single-Channel Micromixers 144
- 4.4.1.2 Multilamination Mixers 146
- 4.4.1.3 Split-and-Recombine (SAR) Flow Configurations 148
- 4.4.1.4 Mixers with Structured Internals 149
- 4.4.1.5 Chaotic Mixing 149
- 4.4.1.6 Colliding Jet Configurations 150
- 4.4.1.7 Moving Droplet Mixers 151
- 4.4.1.8 Miscellaneous Flow Configurations 153
- 4.4.2 Active Micromixers 154
- 4.4.2.1 Pressure Induced Disturbances 154
- 4.4.2.2 Elektrokinetic Instability 155
- 4.4.2.3 Electrowetting-Induced Droplet Shaking 156
- 4.4.2.4 Ultrasound/Piezoelectric Membrane Action 156
- 4.4.2.5 Acoustic Fluid Shaking 157
- 4.4.2.6 Microstirrers 157
- 4.4.2.7 Miscellaneous Active Micromixers 158
- 4.5 Experimental Characterization of Mixing Efficiency 158
- 4.5.1 Physical Methods 158
- 4.5.2 Chemical Methods 159
- 4.5.2.1 Competitive Chemical Reactions 159
- 4.6 Mixer Efficiency and Energy Consumption 171
- 4.7 Summary *172*
- 4.8 List of Symbols 173
- References 173
- 5 Heat Management by Microdevices 179
- 5.1 Introduction 179
- 5.2 Heat Transfer in Microstructured Devices 181
- 5.2.1 Straight Microchannels 181
- 5.2.2 Curved Channel Geometry 189
- 5.2.3 Complex Channel Geometries 191
- 5.2.4 Multichannel Micro Heat Exchanger 191
- 5.2.5 Microchannels with Two Phase Flow 193
- 5.3 Temperature Control in Chemical Microstructured Reactors 195
- 5.3.1 Axial Temperature Profiles in Microchannel Reactors 197
- 5.3.2 Parametric Sensitivity 201

VIII Contents

5.3.3	Multi-injection Microstructured Reactors 212
5.3.3.1	Mass and Energy Balance in Multi-injection Microstructured
	Reactors 213
5.3.3.2	Reduction of Hot Spot in Multi-injection Reactors 218
5.4	Case Studies 221
5.4.1	Synthesis of 1,3-Dimethylimidazolium-Triflate 221
5.4.2	Nitration of Dialkyl-Substituted Thioureas 222
5.4.3	Reduction of Methyl Butyrate 223
5.4.4	Reactions with Grignard Reagent in Multi-injection Reactor 224
5.5	Summary 226
5.6	List of Symbols 226
	References 228
6	Microstructured Reactors for Fluid–Solid Systems 231
6.1	Introduction 231
6.2	Microstructured Reactors for Fluid–Solid Reactions 232
6.3	Microstructured Reactors for Catalytic Gas-Phase Reactions 233
6.3.1	Randomly Micro Packed Beds 233
6.3.2	Structured Catalytic Micro-Beds 235
6.3.3	Catalytic Wall Microstructured Reactors 238
6.4	Hydrodynamics in Fluid–Solid Microstructured Reactors 239
6.5	Mass Transfer in Catalytic Microstructured Reactors 243
6.5.1	Randomly Packed Bed Catalytic Microstructured Reactors 244
6.5.2	Catalytic Foam Microstructured Reactors 245
6.5.3	Catalytic Wall Microstructured Reactors 246
6.5.4	Choice of Catalytic Microstructured Reactors 253
6.6	Case Studies 255
6.6.1	Catalytic Partial Oxidations 255
6.6.2	Selective (De)Hydrogenations 257
6.6.3	Catalytic Dehydration 259
6.6.4	Ethylene Oxide Synthesis 259
6.6.5	Steam Reforming 260
6.6.6	Fischer – Tropsch Synthesis 261
6.7	Summary 261
6.8	List of Symbols 262
	References 262
7	Microstructured Reactors for Fluid-Fluid Reactions 267
7.1	Conventional Equipment for Fluid – Fluid Systems 267
7.2	Microstructured Devices for Fluid – Fluid Systems 268
7.2.1	Micromixers 269
7.2.2	Microchannels 271
7.2.2.1	Microchannels with Inlet T, Y, and Concentric Contactor 271
7.2.2.2	Microchannels with Partial Two-Fluid Contact 271

7.2.2.3 Microchannels with Mesh or Sieve-Like Interfacial Support Contactors 271 7.2.2.4 Microchannels with Static Mixers 272 7.2.2.5 Parallel Microchannels with Internal Redispersion Units 272 7.2.3 Microstructured Falling Film Reactor for Gas-Liquid Reactions 272 7.3 Flow Patterns in Fluid – Fluid Systems 273 Gas-Liquid Flow Patterns 273 7.3.1 7.3.1.1 Bubbly Flow 273 Taylor Flow 274 7.3.1.2 7.3.1.3 Slug Bubbly Flow 279 7.3.1.4 Churn Flow 279 7.3.1.5 Annular and Parallel Flow 280 Liquid – Liquid Flow Patterns 280 7.3.2 Drop Flow 281 7.3.2.1 7.3.2.2 Slug Flow 281 7.3.2.3 Slug-Drop Flow 282 Deformed Interface Flow 7.3.2.4 282 7.3.2.5 Annular and Parallel Flow 283 Slug-Dispersed Flow 283 7.3.2.6 7.3.2.7 Dispersed Flow 283 7.4 Mass Transfer 284 7.4.1 Mass Transfer Models 285 Characterization of Mass Transfer in Fluid – Fluid Systems 7.4.2 286 7.4.3 Mass Transfer in Gas-Liquid Microstructured Devices 287 7.4.3.1 Mass Transfer in Taylor Flow 287 7.4.3.2 Mass Transfer in Slug Annular and Churn Flow Regime 292 7.4.3.3 Mass Transfer in Microstructured Falling Film Reactors 293 7.4.4 Mass Transfer in Liquid-Liquid Microstructured Devices 296 Slug Flow (Taylor Flow) 296 7.4.4.1 7.4.4.2 Slug-Drop and Deformed Interface Flow 297 7.4.4.3 Annular and Parallel Flow 297 Slug-Dispersed and Dispersed Flow 298 7.4.4.4 7.4.5 Comparison with Conventional Contactors 299 7.5 Pressure Drop in Fluid – Fluid Microstructured Channels 300 7.5.1 Pressure Drop in Gas-Liquid Flow 301 7.5.2 Pressure Drop in Liquid – Liquid Flow 304 Pressure Drop – Without Film 304 7.5.2.1 7.5.2.2 Pressure Drop – With Film 305 7.5.2.3 Power Dissipation in Liquid/Liquid Reactors 307 7.6 Flow Separation in Liquid – Liquid Microstructured Reactors 307 7.6.1 Conventional Separators 308 Types of Microstructured Separators 308 7.6.2 7.6.2.1 Geometrical Modifications 309 7.6.2.2 Wettability Based Flow Splitters 310

- X Contents
 - 7.6.3 Conventional Separator Adapted for Microstructured Devices *315*
 - 7.7 Fluid Fluid Reactions in Microstructured Devices *315*
 - 7.7.1 Examples of Gas–Liquid Reactions 317
 - 7.7.1.1 Halogenation 317
 - 7.7.1.2 Nitration, Oxidations, Sulfonation, and Hydrogenation 318
 - 7.7.2 Examples of Liquid Liquid Reactions 319
 - 7.7.2.1 Nitration Reaction *319*
 - 7.7.2.2 Transesterification: Biodiesel Production 320
 - 7.7.2.3 Vitamin Precursor Synthesis 320
 - 7.7.2.4 Phase Transfer Catalysis (PTC) 321
 - 7.7.2.5 Enzymatic Reactions 322
 - 7.8 Summary 323
 - 7.9 List of Symbols 324
 - References 325

8 Three-Phase Systems 331

- 8.1 Introduction 331
- 8.2 Gas-Liquid-Solid Systems 331
- 8.2.1 Conventional Gas-Liquid-Solid Reactors 331
- 8.2.2 Microstructured Gas-Liquid-Solid Reactors 333
- 8.2.2.1 Continuous Phase Microstructured Reactors 333
- 8.2.2.2 Dispersed Phase Microstructured Reactors 334
- 8.2.2.3 Mass Transfer and Chemical Reaction 336
- 8.2.2.4 Reaction Examples 341
- 8.3 Gas-Liquid-Liquid Systems 346
- 8.4 Summary 347
- 8.5 List of Symbols 347
 - References 348

Index 351

Preface

This book is written based on the potential use of microstructured devices in chemical equipment and the intensification of chemical processes. The term "microstructured devices" is coined based on their characteristic dimensions that are in the submillimeter range and on their different types such as mixers, reactors, heat exchangers, and separators. Owing to the small characteristic dimensions, diffusion times are short and the influence of transport phenomena on the rate of chemical reactions is efficiently reduced. Heat transfer is greatly enhanced compared to conventional systems, allowing a strict control of temperature and concentration gradients leading to an improved product yield and selectivity. In addition, safe reactor operation is possible under unconventional conditions such as high reaction temperatures and reactant concentrations. As a consequence, novel process windows can be opened, but not accessible with traditional systems. Therefore, microstructured devices are versatile tools for the development of sustainable chemical processes.

This book focuses on reaction engineering aspects, such as design and characterization, for homogeneous and multiphase reactions. On the basis of chemical reaction engineering fundamentals, it addresses the conditions under which these devices are beneficial, how they should be designed, and how such devices can be integrated or applied in a chemical process.

Designed as a pedagogical tool with target audience of university students and industrial professionals, it seeks to bring readers with no prior experience of these subjects to the point where they can comfortably enter into the current scientific and technical developments in the area. However, this book does not include the cross-disciplinary subjects such as fabrication techniques of these devices, integration of sensors and actuators, and their use for biological applications.

To facilitate comprehension, the topics are developed beginning with fundamentals in chemical reaction engineering with ample cross-referencing. The understanding of concepts is facilitated by clear descriptions of examples, supplied by exercises including solutions, and provided by figures and illustrations.

XI

XII Preface

Finally, the authors want to highlight the complexity of microreaction engineering in particular. Therefore, this book must be viewed as a tool for stimulation of novel and meaningful solutions for the complex chemical reaction realities. It is also important to note that the growing interests and complementary developments of this subject require periodic updates.

Lausanne, Switzerland May 2014 Madhvanand Kashid, Albert Renken, Lioubov Kiwi-Minsker

List of Symbols

Commonly Used Symbols

This is a list of commonly used symbols. Besides, there are some special symbols used for each chapter which are listed chapterwise.

Symbols	Significance	Unit
A	Exchange or surface area	m ²
а	Specific interfacial area or catalytic surface	$\mathrm{m}^2\mathrm{m}^{-3}$
A _{cs}	Cross-section area	m ²
Bo	Bond number	_
Bo	Bodenstein number	_
Bi _m , Bi _{th}	Biot number (mass), Biot number (thermal)	_
С	Dimensionless concentration	_
Ca	Capillary (=) or Carberry (=) number	_
c_i	Concentration of molecule A _i	$ m molm^{-3}$
c _p	Heat capacity of fluid or mixture	$\rm Jkg^{-1}K^{-1}$
ĎaI	First Damköhler number	_
Dall	Second Damköhler number	_
Dall _{mx}	Second Damköhler number for mixing	_
$D_{\rm ax}$	Axial dispersion coefficient	$m^2 s^{-1}$
De	Dean number	_
D_{eff}, D_m	Effective molecular diffusion coefficient,	$\mathrm{m}^2~\mathrm{s}^{-1}$
	molecular diffusion coefficient	
d_{h}	Hydraulic diameter	m
d_t	Diameter of channel (or tube)	m
E, E _a	Intrinsic activation energy, apparent	J mol ⁻¹
	activation energy of reaction <i>j</i>	
f	Ratio of residual concentration to initial	_
Fo	Fourier number	_
g	Gravitational acceleration	$m^2 s^{-1}$
Н	Height	m

(continued overleaf)

Symbols	Significance	Unit
h	Heat transfer coefficient	${ m W}{ m m}^{-2}{ m K}^{-1}$
На	Hatta number	_
I,	Molar flux of species i	$mol m^{-2} s^{-1}$
, k, k_, k;	Reaction rate constant for homogeneous and	variable (s ⁻¹
r j	guasi-homogenous, constant of	$(mol m^{-3})^{-(n-1)}$
	heterogenous reaction, constant of reaction <i>i</i>	(
k.	Pre-exponential or frequency factor	variable (s ⁻¹
×0	The exponential of frequency factor	$(mol m^{-3})^{-(n-1)}$
K	Reaction equilibrium constant	variable
С К	thermodynamic equilibrium constant	
	Mass transfor coefficient in gas phase	
G	Mass transfer coefficient in gas plase	m a ⁻¹
GL	Mass transfer coefficient in gas-liquid	ms ⁻
	system	_1
⁵ L	Mass transfer coefficient in liquid phase	m s ⁻¹
$c_L a$	Volumetric mass transfer coefficient	s ⁻¹
⁵ m	Mass transfer coefficient of heterogeneous reactions	$\mathrm{ms^{-1}}$
r	Overall mass transfer coefficient	m s ⁻¹
ov	Length characteristic length length of	m
$, L_{c}, L_{e}, L_{t}$	entrance zone, length of tube or channel	111
1	Mass flow rate	$\rm kgs^{-1}$
u	Nusselt number	_
i	Reaction order with respect to species A_i	_
	Overall reaction order	_
	No of moles of molecule A.	mol
	Molar flow rate of molecule A_i	$mol s^{-1}$
!	Pressure	Pa
	Rate of production	mol s ⁻¹
i M	Prandtl number	11101 3
2	Péclet number	
~	Fnorgy	T.
2	Data of heat flow)
<	Rate of fleat now	w 1 1
, q_r , q_{ex}	Specific neat rate, of reaction, of neat)m [°] s ⁻
	exchange/transfer	• • 1 • • 1
	Ideal gas law constant	J mol ⁻¹ K ⁻¹
2	Radius	m
le	Reynolds number	—
i	Overall reaction/transformation rate of molecule A_i	$mol m^{-3} s^{-1}$
$_{j}, r_{\rm eff}$	Rate of reaction/transformation of reaction <i>j</i> , effective reaction rate	$ m molm^{-3}s^{-1}$
r	Rates of adsorption of desorption	_
ads' des	Calastivity of must be with your ast to	_
k, i	selectivity of product K with respect to reactant <i>i</i>	_
k i	Instantaneous selectivity of product k with	_
ς, ι	respect to reactant i	

Symbols	Significance	Unit
Sc	Schmidt number	_
Sh	Sherwood number	_
T , T_b , T_s	Temperature, bulk temperature, surface	К
	temperature	
$t, t_{c}, t_{D}, t_{r}, t_{m},$	Time, characteristic cooling time, diffusion	S
$t_{\rm mx}$, $t_{\rm ax}$, $t_{D, {\rm ax}}$,	time, reaction time, mass transfer time,	
$t_{D, \rm rad}$	mixing time, axial dispersion time, axial	
	molecular diffusion time, radial diffusion	
_	time	
\overline{t}	Mean residence time	S
U	Overall heat transfer coefficient	$W m^{-2} K^{-1}$
U_i	Internal energy	J
U_{ν}	Overall volumetric heat transfer coefficient	$W m^{-3} K^{-1}$
и, и _b , и(r),	Superficial velocity, velocity of gas bubble	${ m ms^{-1}}$
u_G, u_L	(slug), velocity at radial position <i>r</i> , superficial	
	flow velocity of gas phase, superficial velocity	
	of liquid phase	
V, V_R	Volume, internal (reaction) volume	m ³
<i>V</i> − <i>V</i>	Volumetric flow rate	$m^3 s^{-1}$
W	Width	m
\dot{W} , \dot{W}_{f} , \dot{W}_{s}	Rate of work done, by flow, by shaft	$J s^{-1}$
X	Conversion	_
$Y_{k,i}$	Yield of product <i>k</i> with respect to reactant <i>i</i>	_
Ζ	Dimensionless length	_
Z	Length	m
Greek symbols		
α	Thermal diffusivity	$m^2 s^{-1}$
β	Prater number	_
$\delta(z)$	Dirac pulse	—
δ	Film thickness, catalytic layer or boundary	m
	layer	
γ	Arrhenius number	_
Ϋ́	Shear rate	s ⁻¹
Δ	Symbol of difference	_
ΔG	Gibbs free energy	J mol ⁻¹
$\Delta H_r, \Delta H_a$	Heat of reaction, heat of adsorption	J mol ⁻¹
Δp	Pressure drop	Pa
ΔS	Entropy	J mol ⁻¹ K ⁻¹
$\Delta T_{\rm ad}$	Adiabatic temperature rise	K
ε	Specific power dissipation	W kg ⁻¹
$\varepsilon_p, \varepsilon_{\mathrm{bed}}$	Porosity of catalyst pallet, of randomly	_
	packed bed	
η	Emciency factor	—
<i>θ</i>	Dimensionless time	
$\Lambda, \Lambda_{\text{eff}}, \Lambda_f,$	inermal conductivity, effective, of fluid, of	W m ' K ⁻¹
^wall	wan	

(continued overleaf)

Symbols	Significance	Unit
μ	Dynamic viscosity	Pas
ν	Kinematic viscosity	$m^2 s^{-1}$
V _{i,j}	Stoichiometric coefficient of species <i>i</i> in reaction <i>j</i>	_
ζ	Geometric factor	_
ρ	Density	$kg m^{-3}$
σ	Interfacial tension	$ m Nm^{-1}$
τ , $\tau_{\rm PFR}$, τ_R	Residence time, of plug flow reactor, of reactor, residence time referred to reaction volume	S

Common Indices

Subscript		
0	Initial value	
00	Asymptotic or infinite value	
app	Apparent or observed	
av	Average	
Ax	Axial	
b	Bulk	
с	Cooling	
cap	Hemispherical cap	
cat	Catalyst	
eff	Effective	
eq	Equilibrium	
ex	External	
film	Wall film	
gen	General	
Ι	Phase I	
II	Phase II	
in	Inlet	
max	Maximum	
min	Minimum	
out	Outlet	
ор	Optimum	
ov	Overall	
Р	Pallet	
S	Surface	
ν	Volumetric	
Superscript		
0	Values at standard condition	

Dimensionless Numbers

Dimensionless number	Significance	Definition
Adiabatic temperature	Property of reaction mixture, represent temperature rise in worst case and is	$\Delta T_{\rm ad} = \frac{(-\Delta H_r)cb}{\rho c_p}$
rise Arrhenius number	independent of reactor type/reaction rate Relative importance of activation temperature (E/R) to system bulk temperature (T_h)	$\gamma = \frac{E}{RT_b}$
Biot number (mass)	Relates external mass or heat transfer rates at catalyst pallet surface to diffusion or conduction inside the pallet	$Bi_m = \frac{t_D}{t_m} = \frac{L_c^2}{D_e} k_m a_p$
Biot number (thermal)		$Bi_{\rm th} = \frac{\pi B}{\lambda_e}$
Bodenstein number	Ratio of convective transport rate to (axial) diffusion transport rate	$Bo = \frac{u \cdot L}{D_{ax}}$
Carberry number	It gives effective reaction rate over mass transfer rate in catalytic reactions where no internal (pellet) mass and heat transfer resistances are considered	$Ca = \eta_{\rm ex} Dall$
Capillary number	Used in fluid – fluid systems. It is ratio of viscous forces to <i>surface tension</i> acting across an interface, that is, interfacial tension	$Ca_i = \frac{u_b \cdot \mu_i}{\sigma}$
First Damköhler number	Used to set design criteria – ratio of residence time in the reactor to the characteristic reaction time	$DaI = \frac{\tau}{t_r}$
Second Damköhler number	Used to set design criteria – ratio of reaction rate to mass transfer rate	$DaII = \frac{t_m}{t_r}$
Second mixing Damköhler number	Used to set design criteria – ratio of reaction rate to mixing rate	$DaII_{\rm mx} = \frac{t_{\rm mx}}{t_r}$
Dean number	Used to characterize the flow in curved channels – it is product of <i>Re</i> and square root of channel diameter to curvature radius	$De = Re\left(\frac{d_h}{R''}\right)^{0.5}$
Efficiency (reactor) factor (fluid-fluid system)	Ratio of effective reaction rate and the maximal rate referred to the reactor volume corresponding to the maximum concentration in the reacting phase	$\eta = \frac{r_{\rm eff}}{r_{\rm max}}$
Effectiveness factor (porous catalyst)	Ratio of effective reaction rate and the rate of reaction at bulk concentration and temperature	$\begin{split} \eta_p &= \frac{J_{\text{eff}}}{J_s} = \\ \frac{D_e c_s / L \cdot \varphi \tanh(\varphi)}{k_r c_s L} \\ &= \frac{\tanh \varphi}{\varphi} \end{split}$

(continued overleaf)

XVIII List of Symbols

Dimensionless number	Significance	Definition
Effectiveness factor (mass transfer) or trade-off index	Used to access mass transfer performance with energy input	$\eta_m = \frac{DaI_m}{Eu} = \frac{k_m a_R \cdot L}{u_s} \cdot \frac{\rho \cdot u_s^2}{\Delta p}$
Euler number	It is ratio of pressure drop in a given reactor length to kinetic energy.	$Eu = \frac{\Delta p}{\rho \cdot u^2}$
Fourier number	It is ratio of residence time to diffusion time	$Fo = \frac{\tau}{t_D}$
Hatta number	Used for fluid – fluid systems and signifies whether the reaction takes place in the bulk or near the interface (of reaction phase). It is ratio of reaction rate to interfacial mass transfer rate	$Ha = \sqrt{\frac{t_m}{t_r}} = \delta_{II} \sqrt{\frac{k'_r}{D_{i,II}}} = \frac{\sqrt{k'_r D_{i,II}}}{k_{I,II}}$
Nusselt- number	Use to characterize relative importance of convective heat transfer over conductive heat transfer	$Nu = \frac{h \cdot d_h}{\lambda}$
Peclet number	Ratio of rate of convection to rate of diffusion/dispersion	$Pe_{ax} = \frac{u \cdot d_t}{D_{ax}} (\text{tube})$ $Pe_{ax} = \frac{u \cdot d_p}{\varepsilon_{bed} D_{ax}}$ (packed bed)
Prandtl number	Used to characterize momentum and heat diffusion – ratio of momentum (viscous) diffusion to molecular diffusion	$Pr = \frac{v}{\alpha} = \frac{v}{\lambda/(\rho c_p)}$
Prater number	Ratio of maximum temperature difference catalyst center and surface temperature to the surface temperature	$\beta = \frac{\Delta T_{\max}}{T_s} = \frac{(-\Delta H_r)c_s}{T_s} \frac{D_e}{\lambda_e}$
Reynolds number	Most commonly used to characterize the fluid flow – gives relative importance of inertial forces over viscous forces	$Re = \frac{\rho u d_t}{\mu}$
Reynolds number (particle)		$Re_p = \frac{(u \ d_p)}{v}$
Reynolds number (foam)		$Re_{foam} = \frac{u \cdot d_s \cdot \rho}{\mu}$
Schmidt number	Used to characterize momentum and mass diffusion – ratio of momentum (viscous) diffusion to molecular diffusion	$Sc = \frac{v}{D_m}$
Sherwood number (particle)	Use to characterize relative importance of convective mass transfer over diffusional mass transfer	$Sh_p = \frac{d_p k_m}{D_m}$
Sherwood number		$Sh = \frac{k_m \cdot d_h}{D_m}$

Dimensionless number	Significance	Definition
Thiele modulus	Ratio of characteristic diffusion time in the catalyst and the characteristic reaction time	$\varphi^{2} = \frac{t_{D}}{t_{r}} = \frac{L^{2}}{D_{e}}k$ $\varphi = L\sqrt{\frac{k_{r}}{D}}; \text{ first}$ order reaction; $\varphi_{\text{gen}} = \frac{V_{p}}{\sqrt{\frac{k_{r}c_{s}^{(p-1)}}{L}}}.$
Weisz modulus	Used to measure influence of transport process on reaction kinetics experimentally – ratio of effective reaction rate to (effective) diffusion rate	$A_{p} \bigvee D_{e}$ $\sqrt{\frac{n+1}{2}}$ $\psi_{s}^{2} = \frac{t_{D}}{t_{r,\text{eff}}} =$ $\frac{R_{\text{sphere}}^{2}}{D_{e}} \frac{c_{s}}{r_{p,\text{eff}}} =$ $\eta_{p} \varphi_{s}^{2}$ $\psi_{\text{gen}}^{2} = \frac{t_{D}}{t_{r,\text{eff}}} =$ $\left(\frac{V_{p}}{4}\right)^{2} \frac{n+1}{2} \frac{r_{p,\text{eff}}}{D_{e}} =$
Bond number First Damköhler number (mass transfer)	Relates body forces to surface tension forces Ratio of residence time in the reactor to the characteristic mass transfer time	$ \begin{pmatrix} \gamma_{p} \end{pmatrix}^{2} De_{e} t_{s} \\ \eta_{p} \varphi_{gen}^{2} \\ BO = \frac{\rho g d_{h}^{2}}{\sigma_{t}} \\ DaI_{m} = \frac{\tau_{R}}{t_{m}} = \frac{k_{m} a_{R} \cdot L}{u} $

Abbreviations

BSTR	Batchwise-operated stirred tank reactor
CSTR	Continuously-operated stirred tank reactor
CVD	Chemical vapor deposition
LIGA	Lithography, galvanization, and molding
MASI	most abundant surface intermediate
MSR	Microstructured reactors
PFR	Plug flow reactor
PRL	Power rate law
PVD	Physical vapor deposition
RTD	Residence time distribution
SMF	Sintered metal fiber
SLPC	Supported liquid phase catalyst
SCR, SAR, SHR	Serpentine channel reactor, split and recombine reactor, staggered
	herringbone reactor