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XI

Preface

This book is written based on the potential use of microstructured devices in

chemical equipment and the intensification of chemical processes. The term

“microstructured devices” is coined based on their characteristic dimensions

that are in the submillimeter range and on their different types such as mixers,

reactors, heat exchangers, and separators. Owing to the small characteristic

dimensions, diffusion times are short and the influence of transport phenomena

on the rate of chemical reactions is efficiently reduced. Heat transfer is greatly

enhanced compared to conventional systems, allowing a strict control of tem-

perature and concentration gradients leading to an improved product yield and

selectivity. In addition, safe reactor operation is possible under unconventional

conditions such as high reaction temperatures and reactant concentrations. As

a consequence, novel process windows can be opened, but not accessible with

traditional systems. Therefore, microstructured devices are versatile tools for the

development of sustainable chemical processes.

This book focuses on reaction engineering aspects, such as design and charac-

terization, for homogeneous and multiphase reactions. On the basis of chemical

reaction engineering fundamentals, it addresses the conditions under which these

devices are beneficial, how they should be designed, and how such devices can be

integrated or applied in a chemical process.

Designed as a pedagogical tool with target audience of university students and

industrial professionals, it seeks to bring readers with no prior experience of these

subjects to the point where they can comfortably enter into the current scientific

and technical developments in the area. However, this book does not include the

cross-disciplinary subjects such as fabrication techniques of these devices, inte-

gration of sensors and actuators, and their use for biological applications.

To facilitate comprehension, the topics are developed beginning with fun-

damentals in chemical reaction engineering with ample cross-referencing. The

understanding of concepts is facilitated by clear descriptions of examples, sup-

plied by exercises including solutions, and provided by figures and illustrations.



XII Preface

Finally, the authors want to highlight the complexity of microreaction engineer-

ing in particular. Therefore, this book must be viewed as a tool for stimulation of

novel and meaningful solutions for the complex chemical reaction realities. It is

also important to note that the growing interests and complementary develop-

ments of this subject require periodic updates.

Lausanne, Switzerland Madhvanand Kashid,

May 2014 Albert Renken,

Lioubov Kiwi-Minsker
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List of Symbols

Commonly Used Symbols

This is a list of commonly used symbols. Besides, there are some special symbols

used for each chapter which are listed chapterwise.

Symbols Significance Unit

A Exchange or surface area m2

a Specific interfacial area or catalytic surface

area per reactor volume

m2 m−3

Acs Cross-section area m2

Bo Bond number —

Bo Bodenstein number —

Bim, Bith Biot number (mass), Biot number (thermal) —

C Dimensionless concentration —

Ca Capillary (=) or Carberry (=) number —

ci Concentration of molecule Ai molm−3

cp Heat capacity of fluid or mixture J kg−1 K−1

DaI First Damköhler number —

DaII Second Damköhler number —

DaIImx Second Damköhler number for mixing —

Dax Axial dispersion coefficient m2 s−1

De Dean number —

Deff, Dm Effective molecular diffusion coefficient,

molecular diffusion coefficient

m2 s−1

dh Hydraulic diameter m

dt Diameter of channel (or tube) m

E, Ea Intrinsic activation energy, apparent

activation energy of reaction j

Jmol−1

f Ratio of residual concentration to initial —

Fo Fourier number —

g Gravitational acceleration m2 s−1

H Height m

(continued overleaf)



XIV List of Symbols

Symbols Significance Unit

h Heat transfer coefficient Wm−2 K−1

Ha Hatta number —

Ji Molar flux of species i molm−2 s−1

k, kr, kj Reaction rate constant for homogeneous and

quasi-homogenous, constant of

heterogenous reaction, constant of reaction j

variable (s−1

(molm−3)−(n−1))

k0 Pre-exponential or frequency factor variable (s−1

(molm−3)−(n−1))

KC Reaction equilibrium constant variable

K thermodynamic equilibrium constant —

kG Mass transfer coefficient in gas phase m s−1

kGL Mass transfer coefficient in gas–liquid

system

ms−1

kL Mass transfer coefficient in liquid phase m s−1

kLa Volumetric mass transfer coefficient s−1

km Mass transfer coefficient of heterogeneous

reactions

m s−1

kov Overall mass transfer coefficient m s−1

L, Lc, Le, Lt Length, characteristic length, length of

entrance zone, length of tube or channel

m

ṁ Mass flow rate kg s−1

Nu Nusselt number —

ni Reaction order with respect to species Ai —

n Overall reaction order —

ni No of moles of molecule Ai mol

ṅi Molar flow rate of molecule Ai mol s−1

p Pressure Pa

Pi Rate of production mol s−1

Pr Prandtl number —

Pe Péclet number —

Q Energy J

Q̇ Rate of heat flow W

q̇, q̇r , q̇ex Specific heat rate, of reaction, of heat

exchange/transfer

Jm−3 s−1

R Ideal gas law constant Jmol−1 K−1

R Radius m

Re Reynolds number —

Ri Overall reaction/transformation rate of

molecule Ai

molm−3 s−1

rj, reff Rate of reaction/transformation of reaction j,

effective reaction rate

molm−3 s−1

rads, rdes Rates of adsorption, of desorption —

Sk, i Selectivity of product k with respect to

reactant i

—

sk, i Instantaneous selectivity of product k with

respect to reactant i

—

Se Semenov number —



List of Symbols XV

Symbols Significance Unit

Sc Schmidt number —

Sh Sherwood number —

T , Tb, Ts Temperature, bulk temperature, surface

temperature

K

t, tc, tD, tr, tm,

tmx, tax, tD, ax,

tD, rad

Time, characteristic cooling time, diffusion

time, reaction time, mass transfer time,

mixing time, axial dispersion time, axial

molecular diffusion time, radial diffusion

time

s

t Mean residence time s

U Overall heat transfer coefficient Wm−2 K−1

Ui Internal energy J

Uv Overall volumetric heat transfer coefficient Wm−3 K−1

u, ub, u(r),

uG, uL

Superficial velocity, velocity of gas bubble

(slug), velocity at radial position r, superficial

flow velocity of gas phase, superficial velocity

of liquid phase

m s−1

V , VR Volume, internal (reaction) volume m3

V̇ Volumetric flow rate m3 s−1

W Width m

Ẇ , Ẇf , Ẇs Rate of work done, by flow, by shaft J s−1

X Conversion —

Yk, i Yield of product k with respect to reactant i —

Z Dimensionless length —

z Length m

Greek symbols

𝛼 Thermal diffusivity m2 s−1

𝛽 Prater number —

𝛿(z) Dirac pulse —

𝛿 Film thickness, catalytic layer or boundary

layer

m

𝛾 Arrhenius number —

�̇� Shear rate s−1

Δ Symbol of difference —

ΔG Gibbs free energy Jmol−1

ΔHr, ΔHa Heat of reaction, heat of adsorption Jmol−1

Δp Pressure drop Pa

ΔS Entropy Jmol−1 K−1

ΔTad Adiabatic temperature rise K

𝜀 Specific power dissipation Wkg−1

𝜀p, 𝜀bed Porosity of catalyst pallet, of randomly

packed bed

—

𝜂 Efficiency factor —

𝜃 Dimensionless time —

𝜆, 𝜆eff, 𝜆f,

𝜆wall

Thermal conductivity, effective, of fluid, of

wall

Wm−1 K−1

(continued overleaf)
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Symbols Significance Unit

𝜇 Dynamic viscosity Pa s

𝜈 Kinematic viscosity m2 s−1

𝜈i,j Stoichiometric coefficient of species i in

reaction j

—

𝜁 Geometric factor —

𝜌 Density kgm−3

𝜎 Interfacial tension Nm−1

𝜏, 𝜏PFR, 𝜏R Residence time, of plug flow reactor, of

reactor, residence time referred to reaction

volume

s

Common Indices

Subscript

0 Initial value

∞ Asymptotic or infinite value

app Apparent or observed

av Average

Ax Axial

b Bulk

c Cooling

cap Hemispherical cap

cat Catalyst

eff Effective

eq Equilibrium

ex External

film Wall film

gen General

I Phase I

II Phase II

in Inlet

max Maximum

min Minimum

out Outlet

op Optimum

ov Overall

P Pallet

s Surface

v Volumetric

Superscript

0 Values at standard conditions



List of Symbols XVII

Dimensionless Numbers

Dimensionless

number

Significance Definition

Adiabatic

temperature

rise

Property of reaction mixture, represent

temperature rise in worst case and is

independent of reactor type/reaction rate

ΔTad = (−ΔHr )cb
𝜌cp

Arrhenius

number

Relative importance of activation

temperature (E/R) to system bulk

temperature (Tb)

𝛾 = E

RTb

Biot number

(mass)

Relates external mass or heat transfer rates at

catalyst pallet surface to diffusion or

conduction inside the pallet

Bim = tD
tm

=
L2c
De

kmap

Biot number

(thermal)

Bith = h⋅L
𝜆e

Bodenstein

number

Ratio of convective transport rate to (axial)

diffusion transport rate

Bo = u⋅L
Dax

Carberry

number

It gives effective reaction rate over mass

transfer rate in catalytic reactions where no

internal (pellet) mass and heat transfer

resistances are considered

Ca = 𝜂exDaII

Capillary

number

Used in fluid–fluid systems. It is ratio of

viscous forces to surface tension acting across

an interface, that is, interfacial tension

Cai =
ub⋅𝜇i
𝜎

First

Damköhler

number

Used to set design criteria – ratio of

residence time in the reactor to the

characteristic reaction time

DaI = 𝜏

tr

Second

Damköhler

number

Used to set design criteria – ratio of reaction

rate to mass transfer rate

DaII = tm
tr

Second

mixing

Damköhler

number

Used to set design criteria – ratio of reaction

rate to mixing rate

DaIImx =
tmx

tr

Dean number Used to characterize the flow in curved

channels – it is product of Re and square root

of channel diameter to curvature radius

De = Re
(

dh
R′′

)0.5

Efficiency

(reactor)

factor

(fluid–fluid

system)

Ratio of effective reaction rate and the

maximal rate referred to the reactor volume

corresponding to the maximum

concentration in the reacting phase

𝜂 = reff
rmax

Effectiveness

factor

(porous

catalyst)

Ratio of effective reaction rate and the rate of

reaction at bulk concentration and

temperature

𝜂p = Jeff
Js

=
Decs∕L⋅𝜑 tanh(𝜑)

krcsL

= tanh𝜑

𝜑

(continued overleaf)
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Dimensionless

number

Significance Definition

Effectiveness

factor (mass

transfer) or

trade-off

index

Used to access mass transfer performance

with energy input

𝜂m = DaIm
Eu

=
kmaR⋅L

us
⋅
𝜌⋅u2s
Δp

Euler number It is ratio of pressure drop in a given reactor

length to kinetic energy.

Eu = Δp
𝜌⋅u2

Fourier

number

It is ratio of residence time to diffusion time Fo = 𝜏

tD

Hatta

number

Used for fluid–fluid systems and signifies

whether the reaction takes place in the bulk

or near the interface (of reaction phase). It is

ratio of reaction rate to interfacial mass

transfer rate

Ha =
√

tm
tr

=

𝛿II

√
k′r
Di,II

=√
k′rDi,II

kL,II

Nusselt-

number

Use to characterize relative importance of

convective heat transfer over conductive heat

transfer

Nu = h⋅dh
𝜆

Peclet

number

Ratio of rate of convection to rate of

diffusion/dispersion

Peax =
u⋅dt
Dax

(tube)

Peax =
u⋅dp

εbed Dax

(packed bed)
Prandtl

number

Used to characterize momentum and heat

diffusion – ratio of momentum (viscous)

diffusion to molecular diffusion

𝑃𝑟 = 𝜈

𝛼
= 𝜈

𝜆∕(𝜌cp)

Prater

number

Ratio of maximum temperature difference

catalyst center and surface temperature to

the surface temperature

𝛽 = ΔTmax

Ts
=

(−ΔHr )cs
Ts

De

𝜆e

Reynolds

number

Most commonly used to characterize the

fluid flow – gives relative importance of

inertial forces over viscous forces

Re = 𝜌udt
𝜇

Reynolds

number

(particle)

Rep = (u dp)
𝜈

Reynolds

number

(foam)

Refoam = u⋅ds⋅𝜌
𝜇

Schmidt

number

Used to characterize momentum and mass

diffusion – ratio of momentum (viscous)

diffusion to molecular diffusion

Sc = 𝜈

Dm

Sherwood

number

(particle)

Use to characterize relative importance of

convective mass transfer over diffusional

mass transfer

Shp = dp km

Dm

Sherwood

number

Sh = km⋅dh
Dm



List of Symbols XIX

Dimensionless

number

Significance Definition

Thiele

modulus

Ratio of characteristic diffusion time in the

catalyst and the characteristic reaction time

𝜑2 = tD
tr

= L2

De
k

𝜑 = L

√
kr
D
; first

order reaction;

𝜑gen =
Vp

Ap

√
krc

(n−1)
s

De
⋅√

n+1
2

Weisz

modulus

Used to measure influence of transport

process on reaction kinetics

experimentally – ratio of effective reaction

rate to (effective) diffusion rate

𝜓2
s = tD

tr,eff
=

R2
sphere

De

cs
rp,eff

=

𝜂p𝜑
2
s

𝜓2
gen = tD

tr,eff
=(

Vp

Ap

)2
n+1
2

rp,eff

De cs
=

𝜂p𝜑
2
gen

Bond number Relates body forces to surface tension forces BO =
𝜌gd2

h

𝜎

First

Damköhler

number

(mass

transfer)

Ratio of residence time in the reactor to the

characteristic mass transfer time

DaIm = 𝜏R

tm
=

kmaR⋅L
u

Abbreviations

BSTR Batchwise-operated stirred tank reactor

CSTR Continuously-operated stirred tank reactor

CVD Chemical vapor deposition

LIGA Lithography, galvanization, and molding

MASI most abundant surface intermediate

MSR Microstructured reactors

PFR Plug flow reactor

PRL Power rate law

PVD Physical vapor deposition

RTD Residence time distribution

SMF Sintered metal fiber

SLPC Supported liquid phase catalyst

SCR, SAR, SHR Serpentine channel reactor, split and recombine reactor, staggered

herringbone reactor




