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Basis of Chemical Reactor Design and Engineering

This chapter presents the fundamentals of chemical reaction engineering. It

includes the basis of mass and energy balances, kinetics of homogenous reac-

tions, including homogenous catalytic reactions in mono- and biphasic systems

and kinetics of heterogenous catalytic reactions with special attention to the mass

and heat transfer effects. Finally, the main design equations and comparative

performance of three types of ideal reactors (Batch, Plug Flow, and Continuously

Stirred Tank) are shortly summarized and discussed.

2.1

Mass and Energy Balance

The interactions between the chemical reaction and the simultaneously occur-

ring transport processes for mass, energy, and impulse can be described by the

fundamental conservation laws. At first the system boundaries must be specified.

The volume enclosed by these boundaries is called system volume. The size of the

system volume can be defined by natural boundaries, such as those of the phase

boundary, the reactor, or by a small volume element of a phase through the defined

limits of which mass, energy, and impulses can be exchanged (see Figure 2.1). For

an unambiguous description, however, it is necessary to select the system volume

in such a way that the conditions in it can be considered as uniform (e.g., constant

temperature and concentrations).

The design of any chemical reactor is based on material and energy balance. A

material balance has to be set for all species participating in the reactions taking

place within the selected system volume. The material balance for a component

Ai can be formulated in the following manner:

⎧⎪⎨⎪⎩
accumulation

ofAi in

the system

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
rateof flow

ofAi into

the system

⎫⎪⎬⎪⎭ −
⎧⎪⎨⎪⎩
rateof flow

ofAi outof

the system

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩
rateof productionor

disappearanceofAi

into the system

⎫⎪⎬⎪⎭
dni
dt

= ṅi,0 − ṅi + Pi (2.1)
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Figure 2.1 System volumes with differing selected sizes.

where ni represents the number of moles of species Ai in the system at time t, ṅi
is the molar flow rate, and Pi is the rate of Ai production or disappearance. The

last term in the above equation is often referred to as source term. The rate of Ai

production/disappearance corresponds to the product of the system volume, ΔV,
and the transformation rate Ri of the component Ai(Equation 2.2). The size of the

system volume is chosen in such a way that inside the volume, concentrations and

temperatures are constant.

Pi = Ri ⋅ ΔV (2.2)

The rate of Ai transformation (Ri) is the sum of the rates (rj) of the reactions in

which Ai participates:

Ri =
∑
j

𝜈i,j ⋅ rj (2.3)

Much of this book deals with the finding of the expression that relates thePi with

different contacting patterns and various reaction parameters (intrinsic kinetic,

reaction enthalpy, adiabatic temperature, etc.).

Concerning the classification of chemical reactions, different principles can be

applied. One of the most useful for the reactor design is the classification based

on the amount and types of the phases involved, such as homogenous reactions

(takes place only in one phase) and heterogenous reactions (involves two or more

phases). Treating the kinetics of homogenous reactions in order to optimize the

performance of an eventual reactor is easier than treating heterogenous reactions.

If for homogenous reactions the temperature, pressure, and composition are the

main variables affecting the rate of transformations, for the heterogenous reac-

tions the situation becomes more complex. The reaction can take place within

one or multiple phases, at the interface, and reactants and products may be dis-

tributed between different phases. This implies that material has to move from

phase to phase influencing the overall rate of transformation. In addition, the heat

transfer may also play an important role and for highly exothermic/endothermic

reactions may limit the overall transformation rates. The mass and heat trans-

fers become increasingly important with the increase in temperature where the

intrinsic reaction rates are very high.

The kinetics of homogenous and heterogenous reactions is discussed later in

this chapter with a special attention on mass and heat transfer influence on the

kinetics of heterogenous reactions.

Applying the principle of conservation of energy leads to the energy balance that

can be described as follows:
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⎧⎪⎪⎨⎪⎪⎩
rate of energy

accumulation

within

the system

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

rate of flow

of heat

to the system

from the

surroundings

⎫⎪⎪⎬⎪⎪⎭
−

⎧⎪⎪⎨⎪⎪⎩

rate of work

done by

the system

on the

surroundings

⎫⎪⎪⎬⎪⎪⎭
+

⎧⎪⎪⎨⎪⎪⎩

rate of energy

added to

the system

by mass flow

into the system

⎫⎪⎪⎬⎪⎪⎭
−

⎧⎪⎪⎨⎪⎪⎩

rate of energy

leaving the

system

by mass flow

out of the system

⎫⎪⎪⎬⎪⎪⎭
dEsys

dt
= Q̇ − Ẇ + Ėin − Ėout (2.4)

The work term Ẇ is generally separated into flow work, Ẇf , and shaft work,

Ẇs. Shaft work is, for example, from the stirrer in a stirred tank or a turbine in a

tubular reactor. When the shear stress can be neglected, the work term is

Ẇ = −
∑
i

ṅipV̂i|in +∑
i

ṅipV̂i|out + Ẇs (2.5)

with V̂i, the molar volume of the reactant Ai.

Introducing these in Equation 2.4 results in

dEsys

dt
= Q̇ − Ẇs −

∑
i

(Ėi + ṅipV̂i)|in +∑
i

(Ėi + ṅipV̂i)|out (2.6)

The energy Ei is the sum of the internal energy, the kinetic energy, the potential

energy, and all other energies such as electric, magnetic, or light. For the descrip-

tion of the majority of chemical reactors, the kinetic, potential, and other energies

can be neglected, resulting in

Ėi ≅ ṅiÛi (2.7)

Introducing the enthalpy

Ĥi = Ûi + pV̂i (2.8)

we obtain finally:

dEsys

dt
= Q̇ − Ẇs −

∑
i

ṅi,0Ĥi,0 +
∑
i

ṅiĤi (2.9)

The subscript “0” indicates inlet conditions while Ĥi and Ûi are the molar

enthalpy and molar energy, respectively.

2.2

Formal Kinetics of Homogenous Reactions

Kinetics is a key discipline for chemical reaction engineering. It relates the rate at

which a chemical transformation occurs to macroscopic process parameters, like

pressure, concentrations, temperature. Moreover, it enables to find a link between

the observed transformation rates to a reactionmechanism that describes intimate

interactions between individual molecules. For solving chemical reaction engi-

neering problems we are mostly interested in practical situations, where relatively

large quantities of matter are transformed.
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In order to quantify the rate of a chemical transformation, we need to introduce

some definitions. First, we distinguish between different types of reactions based

on the form used to describe eventual chemical transformation, as single ormulti-

ple reactions. Usually this can be done from material balance after examining the

stoichiometry between reacting materials and products. If a single stoichiometric

equation can present the transformation, this is a single reaction. If more than one

equation is necessary to present all observed components and their transforma-

tions, this it is a case ofmultiple reactions. The examples are as following:

Single irreversible reaction: A1 + A2 → A3 + A4

Consecutive reactions (or reactions in series): A1 → A2 → A3

Parallel reactions:
A1 → A2

A1 → A3

Parallel-consecutive:
A1 + A2 → A3

A3 + A2 → A4

More complicated schemes are also possible and present a combination of the

listed reactions.

According to the International Union of Pure and Applied Chemistry (IUPAC)

[1] the reaction rate in homogenous system is the change in the number of moles

per unit of time and unit of volume because of the reaction divided by the stoi-

chiometric coefficients. The reaction rate is always positive.

2.2.1

Formal Kinetics of Single Homogenous Reactions

Experimentally it was observed that the reaction rate depends on the concentra-

tions of the reacting species and temperature. Very often a simple Power Rate Law

(PRL) can be applied to describe this dependency. For the single irreversible reac-

tion: A1 + A2 → products, the following equation results:

r = k ⋅ cn1
1
⋅ cn2

2
(2.10)

The exponents in Equation 2.10 are called the reaction orders.The reaction is n1
order with respect to reactant A1 and n2 with respect to A2. The overall reaction

order is given by:

n = n1 + n2

The decomposition of N2O5 in the gas phase is the example of a formal first

order reaction [2]:

N2O5 → NO2 +NO3

A1 → A2 + A3

r = k1 ⋅ c1 (2.11)

An example for second order reactions is the formation of HI from hydrogen

and iodine [2]
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H2 + I2 → 2HI

A1 + A2 → 2A3

r = k2 c1 c2 (2.12)

In general, formal kinetic equations are empirical, valid only within a limited

domain of concentrations and temperatures.

The reaction rate constant (or coefficient) in Equation 2.10 is independent of

the composition of the reaction mixture, but is strongly influenced by the tem-

perature. In practically all cases, the rate constant can be described by the Arrhe-

nius law:

k = k0 ⋅ exp
(−Ea

RT

)
(2.13)

where k0 is the preexponential or frequency factor, and Ea is the apparent activa-

tion energy of the reaction. This expression fits well with the experiments over

a wide range of temperatures. The frequency factor is much less temperature-

sensitive than the exponential term, and, therefore, its variation with temperature

is masked allowing in the Arrhenius law to consider k0 = const.

For most reactions, the activation energy lies in the range of 40–300 kJmol−1.

Its value can be estimated (provided that Ea remains constant) from the reaction

ratesmeasured at constant concentrations but at two different temperatures using

the Arrhenius law:

ln
k2
k1

= ln
k (T2)
k (T1)

=
Ea

R

(
1

T1

− 1

T2

)
(2.14)

The knowledge of Ea allows to predict the kinetic rate constant at different oper-

ation temperature (see example 2.1).

Example 2.1: Estimation of reaction rate constants at different tempera-

tures.

What will be the increase of the rate constant for a temperature rise of 10K?

Calculate for the reactionwith the activation energy of 100 kJmol−1, supposing

a base temperature of (a) 25 ∘C and (b) 100 ∘C.
Solution:

k(T2) = k(T1) exp
(−Ea

R

[
1

T2

− 1

T1

])
ln

k(T2)
k(T1)

=
−Ea

R

[
1

T2

− 1

T1

]
= −1 ⋅ 105

8.31

[
1

308
− 1

298

]
= 1.31

k(T2)
k(T1)

= 3.71 for a temperature increase from 25 to 35 ∘C

⇒
k(T2)
k(T1)

= 2.32fora temperature increase from 100 to 110 ∘C
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2.2.2

Formal Kinetics of Multiple Homogenous Reactions

As it has already been mentioned, often more than one chemical equation is nec-

essary to present all observed components and their transformations. In this case

one talks about complex or multiple reactions. One of the simple examples of

multiple reactions is a reversible reaction occurring in the reactor, which can

be presented in the following way:

j = 1 ∶ 𝜈1,1A1 + ν2,1A2
−−−−−−−→←−−−−−−− 𝜈3,1A3 + 𝜈4,1A4

j = 2 ∶ 𝜈3,2A3 + 𝜈4,2A4
−−−−−−−→←−−−−−−− 𝜈1,2A1 + 𝜈2,2A2 (2.15)

The transformation rates (see Equation 2.3) for the species A1,A3; are given by:

R1 = 𝜈1,1r1 + 𝜈1,2r2; R3 = 𝜈3,1r1 + 𝜈3,2r2 (2.16)

The reaction rates depend on the concentrations of the reacting species and can

be described by a PRL:

rj = kj ⋅
∏
i

c
ni
i

(2.17)

where ci is the concentration of reactantAi andni is the reaction orderwith respect

to Ai.

If |𝜈i| = 1 and both reactions are of first order for all the reactants Ai,

Equation 2.16 can be rewritten:

R1 = −1 ⋅ k1c1c2 + 1 ⋅ k2c3c4; R3 = +1 ⋅ k1c1c2 − 1 ⋅ k2c3c4 (2.18)

A chemical reaction proceeds in the direction in which the free Gibbs energy,

G, of the reaction mixture diminishes. When equilibrium is reached:

R1 = R3 = 0 (2.19)

k1c
∗
1c

∗
2 = k2c

∗
3c

∗
4; Kc =

k1
k2

=
c∗
3
c∗
4

c∗
1
c∗
2

(2.20)

If the thermodynamic activities of the reactants correspond to their concen-

trations, the equilibrium constant Kc can be estimated from the second law of

thermodynamics:

Kc(T) ≅ K(T) = exp

(
−ΔG0

RT

)
(2.21)

Taking the derivative of Equation 2.21, where

ΔG0 = ΔH0 − TΔS0 (2.22)

the van’t Hoff equation can be obtained:

d lnK

dT
= d

dT

(
−ΔG0

RT

)
= ΔH0

RT2

By integrating from the standard temperature (273K) to the desired tem-

perature T , we obtain the dependence of the equilibrium constant on the
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reaction enthalpy (the superscript “0” indicates standard conditions: T st = 273K,

pst = 105 Pa):

lnK = lnK(273) + ∫
T

273

ΔH0

RT2
dT (2.23)

For gas phase reactions, the PRL can be expressed in partial pressures. If the

ideal gas law can be applied, the reaction rate constants are related as follows:

kj,c ⋅
∏
i

c
ni
i
= kj,p ⋅

∏
i

p
ni
i
; kj,p ⋅ (RT)ni = kj,c

with pi =
ni
V

⋅ RT = ci ⋅ RT (2.24)

where V is the volume occupied by the reaction mixture, ni – is the total number

of moles of Ai in the mixture, R is the gas constant, and T is the reactor tempera-

ture in Kelvin, ci is the concentration of Ai in the reactor.

2.2.3

Reaction Mechanism

The reaction mechanism describes intimate interactions between individual

molecules and represents a network of elementary reactions involved in an

overall transformation. It is often much more complex than the stoichiometry

of the reaction as its formal kinetics in the form of PRL suggests. An example

is the gas phase reaction between NO2 and CO described by the following

stoichiometric equation:

NO2 + CO → NO + CO2 (2.25)

Experimentally, a second order with respect to NO2 and a zero order with

respect to CO is found:

r = k c2
NO2

c0
CO

= k c2
NO2

(2.26)

This PRL expression indicates that the reaction is not elementary meaning that

it does not proceed via a collision between NO2 and CO molecules. The mech-

anism has been studied and proposed to consist of two consecutives elementary

steps [3]:

NO2 +NO2 → NO3 +NO; r1 = k1 c
2
NO2

NO3 + CO → NO2 + CO2 ; r2 = k2 cNO3
cCO

NO2 + CO → NO + CO2 (2.27)

The experimentally obtained formal kinetic equation (Equation 2.26) can be

explained by a very fast second step compared to the first one (r2 ≫ r1). In this case

the overall transformation rate will be controlled by the rate of the first step as the

slowest one being in agreement with the experimentally observed PRL equation.

This method to derive a concentration term in the rate expression is called the

“rate-determining step” approach.
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Another useful and widely used approach is called the “quasi steady-state

approximation” (QSSA). In this case we hypothesize the existence of at least one

(ormore) intermediates involved in the reactionmechanismwhose concentration

in the reacting mixture is very low and can be considered as quasi constant.

In general, formal kinetic models are valid only within a limited domain of con-

centrations and temperatures.

2.2.4

Homogenous Catalytic Reactions

The following types of homogenous catalytic reactions can be distinguished:

• Acid/base catalysis: substrate activation by protonation or deprotonation

• Nucleophilic/electrophilic catalysis: substrate activation by Lewis bases via elec-

tron pair donor complexes or by Lewis acids via electron pair acceptor com-

plexes

• Organometallic complex catalysis: substrate activation via coordinative interac-

tion [4]

• Enzyme catalysis: substrate activation by multifunctional interactions [5].

The kinetics of homogenous catalytic reactions are presented here for the

acid/base and enzymatic catalysis as examples.

Acid/base catalysis is probably the oldest type of homogenous catalytic reac-

tions. Following the definitions by Brønstedt [6] and Lowry [7], the acids are pro-

ton donators and the bases are proton acceptors. Let us consider a bimolecular

catalytic reaction with the equation presented as following:

A1 + A2

HA
−−−→A3 (2.28)

The mechanism of this acid catalyzed reaction is depicted in Scheme 2.1

If the product formation is slow compared to the protonation reactions

(k2 ≪ k1, k−1) the transformation depends only on the concentration of protons

cH+ and a fast preequilibrium can be considered.

r2 = k2 ⋅ cX+ ⋅ c2 therate-determining step

with ∶ cX+ =
k1
k−1

cH+

Ka

c1

r = k2
k1
k−1

1

Ka

cH+ ⋅ c1 ⋅ c2 = k′ ⋅ cH+ ⋅ c1 ⋅ c2 (2.29)

HA + A1

X+ + A2

H+ + A− HA

k1

k2

k−1

A3 + H+ : irreversible rection of the protonated substrate with A2 (slow)

X+ + A− : formation of activated substrate X+ (protonation) (fast)

: equilibrium (fast)

Scheme 2.1 Acid catalyzed bimolecular reaction A1, A2: reactants; A3: product; HA: acid as

catalyst.
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If the protonation of the substrate is rate determining (k2 ≫ k1), the reaction

rate is directly proportional to the concentration of the Brønstedt acid.

r = r1 = k1 ⋅ cHA ⋅ c1 (2.30)

Examples for reactions of fast protonations (Equation 2.29) are ester hydrol-

ysis and alcoholysis, inversion of sucrose, and the hydrolysis of acetals. The

mutarotation of glucose and the dehydration of acetaldehyde hydrate are

examples of slow protonations described with Equation 2.30.

In systems, homogenously catalyzed by organometallic complexes, the selectiv-

ity of the reaction can be controlled by the appropriate choice of ligands on the cat-

alytic metallic center. Combining a catalytic active metal with ligands often allows

the synthesis of organic compounds that are otherwise accessible only through

complex multistep synthesis.

Kinetics of homogenously catalyzed reactions is mostly described with the

Michaelis–Menten model [8]. The model was first published in the field of

enzyme kinetics in the beginning of the twentieth century. According to this

model, the catalyst reacts with the substrate, A1 in a preequilibrium to form

a catalyst substrate complex, X#, which reacts usually irreversibly to form the

product, A2.

Besides enzymatic reactions, many homogenously catalyzed hydrogenations

follow Scheme 2.2. An example is the asymmetric hydrogenation dehydroamino

acid derivatives with rhodium or ruthenium catalysts. On the basis of Scheme 2.2

the following rate equation can be derived:

r =
k2 ⋅ ccat,0 ⋅ c1
KM + c1

with KM =
k−1 + k2

k1
=

ccat ⋅ c1
cX#

;

KM ≅
k−1
k1

if k2 ≪ k−1;KM ≅
k2
k1

if k2 ≫ k−1 (2.31)

For k2 ≪ k−1, the Michaelis constant KM corresponds to the inverse stability

constant of the catalyst substrate complex.

Cat + A1

Ccat,0 + Ccat + CX#

equilibrium (fast)

X#

X#
k1

k2

k−1

A2 + Cat the rate determining step (slow)

Scheme 2.2 Reaction sequence and catalyst mass balance of the simple Michaelis–Menten

model.
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For c1 ≫KM, Equation 2.31 reverts to a zero order kinetics with regard to the

reactant. For this situation the concentration of free catalyst is near zero and the

reaction rate attains a maximum.

rmax = k2 ⋅ ccat,0; cX# ≅ ccat,0 (2.32)

If, on the other hand, c1 ≪KM, the rate of the product formation depends on

the concentration of the catalyst as well as the reactant A1, both of the first order.

This is illustrated in example 2.2.

r = k2 ⋅ ccat,0 ⋅ c1 = rmax ⋅ c1 (2.33)

Example 2.2: Enzyme catalysis (Michaelis-Menten model).

The kinetics of glucose formation from lactose by means of ß-galactosidase

was studied in a wide range of variables by Flaschel et al. [9]. The dependence

of the reaction rate as the function of the lactose concentration is shown in

Figure 2.2.

Lactose concentration, c1 (mol l–1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.05

0.10
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0.20

0.25

0.30

KM

r
max

R
e
a

c
ti
o

n
 r

a
te

, 
r 

(m
m

o
l 
g

–
1
 s

–
1
)

rmax = 0.2442 mmol g–1s–1

KM   = 0.0483 mol L–1

Figure 2.2 Initial rate of enzymatic lactose hydrolysis [10] (T = 50 ∘C, pH= 3.5;

ccat, 0 = 0.125 g l−1).

The experimental results fit well to the rate equation derived from a

Michaelis–Menten model as seen in Figure 2.2. The two-model parameters

are easily obtained by fitting the model (Equation 2.31) to the experiments.

For c1 =KM, the reaction rate corresponds to half of the maximum value.

rc1=KM
=

k2 ⋅ ccat,0 ⋅ c1
KM + c1

=
k2 ⋅ ccat,0 ⋅ c1

c1 + c1
= 1

2
k2 ⋅ ccat,0
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2.3

Ideal Reactors and Their Design Equations

Most chemical reactors used in practice can be classified according to some com-

mon criteria and assigned to the so-called basic or ideal reactor types. On the

basis of the characteristics of ideal reactors, the complex interactions of chemical

reaction kinetics, mass, heat, and impulse transport can be discussed in a gen-

eral way. The behaviors of many actually used reactors approach the ideal types

so that their fundamental relationships can be applied at least for a first reac-

tor design. In other cases, the reactor behavior of real systems must be described

with the help of models often containing the ideal reactors as individual elements

(see Chapter 3).

For ideal reactors, highly simplified assumptions are used as the starting point,

such as an ideal mixing down to the molecular level or a plug flow (piston type

flow pattern). We distinguish between:

• the ideally mixed, batch-wise operated stirred tank reactor (BSTR),

• the ideally mixed, continuously operated stirred tank reactor (CSTR), and

• the ideal plug flow reactor (PFR).

2.3.1

Performance Parameters

Several terminologies are used in the chemical reaction engineering literature to

represent the performance of both catalytic and noncatalytic chemical processes.

The definitions that are commonly used are given as follows:

Conversion: It indicates the progress of the reaction and is defined as the ratio

of the amount of the limiting reactant transformed and the total amount fed

to the reactor. For the following parallel reactions

j = 1 ∶ v1,1A1 + v2,1A2 → v3,1A3 + v4,1A4

j = 2 ∶ v1,2A1 → v4,2A4 (2.34)

the conversion of A1 is given by

X1 = X =
n1,0 − n1

n1,0
(2.35)

where, n1,0 and n1 are the initial and final numbers of moles of A1, respec-

tively.

Yield: It is the amount of product formed in the reaction referred to the amount

of the reactant fed to the reactor. Considering the reactions indicated in

Equation 2.34 the yield of A3 with respect to reactant A1 is defined as:

Y3,1 =
n3,0 − n3

n1,0

𝜈1,1

𝜈3,1
(2.36)
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The yield of A3 referred to the reactant A2 is defined as

Y3,2 =
n3,0 − n3

n2,0

𝜈2,1

𝜈3,1
(2.37)

Selectivity: The selectivity corresponds to the amount of the desired product

formed with respect to the amount of the compound reacted:

S3,1 =
n3,0 − n3

n1,0 − n1

𝜈1,1

𝜈3,1
(2.38)

Thus, from Equations 2.35, 2.36, and 2.38 one can find that

Y3,1 = X1 ⋅ S3,1 (2.39)

Instantaneous selectivity: As the reaction rates depend on the reactant con-

centrations, the instantaneous yield and selectivity can change with time or

the location in the reactor. The instantaneous or differential selectivity is

defined as the ratio between the rate of product formation and the rate of

reactant transformation:

s3,1 =
𝜈1
𝜈3

R3

R1

=
𝜈1
𝜈3

dc3
dc1

(2.40)

2.3.2

Batch Wise-Operated Stirred Tank Reactor (BSTR)

In a batch reactor, there is no inflow or outflow of reactants. It is a commonly

used apparatus in the fine and pharmaceutical industry as well as in laboratories

because of its flexibility and multifunctionality. The ideal stirred tank reactor is

characterized by completemixing down to themolecular level.Therefore, no con-

centration or temperature gradients exist. The system volume (Figure 2.1) corre-

sponds to the volume occupied by the reaction mixture as indicated in Figure 2.3.

As reactants are neither added nor removed during the reaction time (batch time),

the mass balance Equation 2.1 simplifies to{
rate of reactant

accumulation

}
=
{
rate of reactant

transformation

}
dni
dt

= V ⋅ Ri = V ⋅
∑
j

vijrj (2.41)

The volume V occupied by the reaction mass may change, if the density of the

reaction mixture varies during the reaction time as a result of the changing prod-

uct composition and of physical processes like heating or cooling.

In contrast to mass, the BSTR can exchange heat through the reactor wall with

the surroundings, resulting in a heat balance as:

(Cw +mcp)
dT

dt
= U ⋅ A ⋅ (Tc − T) + V

∑
j

rj(−ΔHr,j). (2.42)
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V ci

Tc,0

Tc, out

Figure 2.3 Batch-wise operated stirred tank reactor (BSTR).

with U the global heat transfer coefficient, A the heat exchange surface area of

the reactor, Tc the mean temperature of the cooling/heating medium, and T the

temperature of the reaction mixture.

The total heat capacity of the reactor is designated as Cw and is assumed to be

independent of temperature. The same holds for the average specific heat cp of

the reaction mixture, for which it is additionally assumed that it does not change

with the product composition. Equations 2.41 and 2.42 are used to describe the

behavior of the reactor during the reaction period and to determine the reactor

performance.

The reactor performance Lp is defined as the amount of product Ai produced

per unit time. In batch-operated reactors, Lp depends on the entire reaction cycle

tcycle. The cycle consists of the reaction time tR required to reach a desired degree

of conversion and the shut-down time ta needed for charging, emptying, cleaning,

heating, and cooling of the reactor.

Lp =
ni − ni,0

ta + tR
=

ni − ni,0

tcycle
(2.43)

The term ni,0 corresponds to the product present at the start of the cycle (usually

ni, 0 = 0).

The reaction time tR, which is needed to achieve the desired degree of con-

version, is obtained by integrating Equation 2.45. For a single reaction (Ri = 𝜈i⋅r)
follows with Xf, the final degree of conversion of the key compound A1:

Xf =
n1,0 − n1,f

n1,0
(2.44)

tR = n1,0∫
Xf

X0

dX

(−R1) ⋅ V
. (2.45)
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The density of the reaction mixture may change during the transformation

process. Examples are polymerizations, where often the density of the polymeric

product is higher than the monomer. Density changes lead to a variation of the

volume occupied by the reaction mixture, V, in the reactor.

If the reaction volume is a linear function of the conversion, we obtain the fol-

lowing relationship:

V = V0 ⋅ (1 + αX) (2.46)

The expansion factor α corresponds to the fractional volume change on com-

plete conversion as defined in Equation 2.47.

𝛼 =
VX=1 − VX=0

VX=0
(2.47)

Introducing the expansion factor in Equation 2.45 we obtain:

tR = n1,0∫
Xf

0

dX

(−R1) ⋅ V0 ⋅ (1 + 𝛼X)
= c1,0∫

Xf

0

dX

(−R1) ⋅ (1 + 𝛼X)
(2.48)

For an irreversible nth order reaction with −R1 = k ⋅ cn
1
= k ⋅ cn

1,0
(1 − X)n, the

reaction time is given by:

tR = 1

k ⋅ cn−1
1,0

∫
Xf

0

(1 + 𝛼X)n−1

(1 − X)n
dX,

or DaI =
tR
tr

= tR k c
n−1
1,0 = ∫

Xf

0

(1 + 𝛼X)n−1

(1 − X)n
dX

(2.49)

DaI is the first Damköhler number, which is defined as the ratio of the resi-

dence time in the reactor (tR) to the characteristic reaction time tr as defined in

Equation 2.50.

tr =
c1,0

(−R1,X=0)
; tr =

1

k ⋅ cn−1
1,0

(nth-order reaction) (2.50)

For a first order reaction the necessary reaction time, respectively, the Damköh-

ler number for a required conversion, is independent of the expansion factor and

we obtain with

R1 = −kc1 = −kc1,0(1 − X); dX

dt
= k(1 − X) (2.51)

tR =
n1,0

V

1

k ⋅ c1,0 ∫
Xf

0

dX

(1 − X)
=−1

k
ln(1 − Xf ) (2.52)

or

Xf = 1 − exp(−k ⋅ tR) = 1 − exp(−DaI) (2.53)

The situation is different for reaction orders n≠ 1. For a second order reaction,

integration of Equation 2.49 results in

DaI = tR k c1,0 = ∫
Xf

0

(1 + αX)
(1 − X)2

dX =
(1 + 𝛼)Xf

1 − Xf

+ α ln(1 − Xf ) (2.54)
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Figure 2.4 Conversion as function of the Damköhler number and the expansion factor.

In Figure 2.4 the influence of the expansion on the conversion in BSTR is

illustrated for a second order reaction. The expansion has no influence on first

order reactions in BSTR. Selectivity and yield obtained in BSTR are discussed in

Examples 2.3 and 2.4 for parallel and consecutive reactions.

Example 2.3: Selectivity in BSTR for parallel reactions.

How the selectivity toward A2 changes with the conversion of A1 for parallel

reactions and which value it will have if the rate constants are equal (k1 = k2)?

𝜈11A1

k1
−−→ 𝜈21A2 𝜈11 = 𝜈12 = −1; 𝜈21 = 𝜈32 = +1

𝜈12A1

k2
−−→ 𝜈32A3

n = 1

Solution:

S2,1 =
k1c1

k1c1 + k2c1
=

k1
k1 + k2

The selectivity toward A2, S2,1 does not depend on the conversion and if the

constants are equal, S2,1 = 0.5.

Example 2.4: Yield of the intermediate product as function of conversion.

Derive an expression and plot the concentration profiles for consecutive reac-

tions (both of first order) with k2/k1 = 0.5. How the concentration and yield

of A2 changes with the conversion of A1 and which value it will have if the
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constants are equal?

A1

k1−−→A2

k2−−→A3 Also propose an expression to estimate the yield of A3.

Solution:
A1

k1
−−→A2 r1 = k1c1

A2

k2
−−→A3 r2 = k2c2

−
dc1
dt

= k1c1 c1 = c1,0 exp(−k1t); ⇒ X = 1 − f
1
= 1 −

c1
c1,0

dc2
dt

= k1c1 − k2c2

c2 = c1,0
k1

k2 − k1
[exp(−k1t) − exp(−k2t)]

Y2,1 =
c2
c1,0

= 1

κ − 1
[exp(−DaI1) − exp(−κ ⋅ DaI1)] for κ =

k2
k1

≠ 1

c2 = k1t ⋅ c1,0 exp(−k1t)

Y2,1 =
c2
c1,0

= DaI1 ⋅ exp(−DaI1) for 𝜅 =
k2
k1

= 1

The yield of the intermediate product passes through a maximum value

as function of the time and the first Damköhler number, respectively. This

is shown for first order consecutive reactions in Figure 2.5.

DaI1 = t k1

0 2 4 6 8 10
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f1 = c1/c1,0
Y3 = c3/c1,0

Y2 = c2/c1,0

c
i/
c

1
,0

Figure 2.5 Product yields and unreacted fraction of the key reactant f1 as function of

the first Damköhler number. First order irreversible reaction, 𝜅 = 0.5.
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Themaximum yield of the intermediate depends only on the ratio of the rate

constants 𝜅 = k2∕k1 as shown in Figure 2.6. Decreasing 𝜅 results in an increas-

ing maximum yield.

Y2,1,max =
c2,max

c1,0
=
(
k1
k2

) k2
k2−k1

= 𝜅
𝜅

1−𝜅 ; for 𝜅 ≠ 1

Y2,1,max =
c2,max

c1,0
= 1

exp(κ)
≅ 0.368; for 𝜅 = 1
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Figure 2.6 Yield of the intermediate product as function of the conversion and the ratio

of rate constants. Irreversible first order reactions.

The yield of A3 may be found from the mass balance:

c1 + c2 + c3 = c1,0 ⇒ Y3,1 = 1 − f1 − Y2,1

2.3.3

Continuous Stirred Tank Reactor (CSTR)

One of the most important parameters to characterize continuous flow reactors

is the degree of backmixing. In the ideal mixed reactor the concentrations and the

temperature within the reactor volume are uniform. In consequence, the whole

volume occupied by the reaction mixture can be taken as the system volume for

the mass balance (see Figure 2.1).

In an ideal CSTR, the reactants fed to the reactor are instantaneously mixed

up to the molecular level. The concentrations in the reactor correspond to the

concentrations at the reactor outlet (Figure 2.7).
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V ci
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Tc, out

V0, c1,0
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Vout, c1,out = c1

Tout = T

Figure 2.7 Continuous stirred tank reactor (CSTR).

When the molar flow ṅi is replaced by the volumetric flow V̇ and the concen-

tration ci, we obtain:

dni
dt

= ṅi,0 − ṅi + V ⋅ Ri = V
dci
dt

= V̇0ci,0 − V̇outci,out + V
∑
j

vijrj; (ci,out = ci)

(2.55)

The volume occupied by the reaction mixture is designated with V. In general,

V corresponds to about three-fourth of the nominal reactor volume.

The ratio of the reaction volume to the volumetric inlet flow V̇0 is known as the

space time:

τ = V

V̇0

(2.56)

The reciprocal value of 𝜏 is often designated as the space velocity or, in biotech-

nology, the dilution rate.

After a transient period that corresponds to about five times the space time, the

reactor operates at steady state, that is, the composition of the reaction mixture is

time invariant and the mass balance is reduced to a simple algebraic expression.

V̇0ci0 − V̇outci,out + V
∑
j

vijrj = V̇0ci0 − V̇outci,out + V ⋅ R1 = 0 (2.57)

Introduction of the degree of conversion for the key reactant A1 leads to

X =
ṅ1,0 − ṅ1,out

ṅ1,0
=

−V ⋅
∑
j

v1,jrj

V̇0 ⋅ c1,0
=

V ⋅ (−R1)
V̇0 ⋅ c1,0

or
V

V̇0

=
c1,0

⋅(−R1)
X (2.58)
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The space time necessary to achieve a required conversion is:

𝜏 =
c1,0X

−R1

(2.59)

For reactions with constant density (𝜌0 = 𝜌 = 𝜌out) the volumetric inlet flow is

identical to the volumetric flow at the outlet (V̇0 = V̇out) and the design equations

for irreversible nth order reactions are readily found.

First order reaction Second order reaction

A1

k1−−−→A2; r = k1 ⋅ c1 A1

k1−−−→A2; r = k2 ⋅ c
2
1

V̇0 ⋅ (c1,0 − c1) = V ⋅ k1 ⋅ c1 V̇0 ⋅ (c1,0 − c1) = V ⋅ k2 ⋅ c
2
1

1 − X = c1
c1,0

= c1,out

c1,0
= 1

1+k1𝜏
1 − X =

−1+
√

1+4k2c1,0𝜏
2k2c1,0𝜏

1 − X = 1

1+DaI (2.60) 1 − X = −1+
√
1+4DaI

2DaI
(2.61)

The necessary volume of the reaction mixture for a required performance (LP,

kmol s−1) depends on the conversion of the key reactant A1. This is summarized

in Equations 2.62 and 2.63 for single reactions with a product selectivity of S2,1 =
1 ⇒ LP = ṅ2,out = ṅ1,0(1 − X) = V̇0c1,0(1 − X)

V =
LP

k1c1,0(1 − X)
(2.62)

V =
LP

k1c
2
1,0
(1 − X)2

(2.63)

For reactions with changing density because of the transformation, the rela-

tions between conversion and space time depend also on the expansion factor 𝛼

(Equation 2.47). For continuous flow reactors 𝛼 is defined as follows:

𝛼 =
V̇X=1 − V̇X=0

V̇X=0
(2.64)

The volume occupied by the reaction mixture depends on the arrangement of

the outlet tubes and is, therefore, independent of the density. But, the outlet flow

V̇out is a function of the expansion factor.

V̇out = V̇0(1 + αX) (2.65)

In consequence, because of the density change, the mean residence time of the

reaction mixture t is not identical to the space time (t ≠ 𝜏).

The design equations for CSTR with density change of the reaction mixture is

based on the mass balance (Equation 2.57).

For single nth order reaction follows:

V̇0ci0 − V̇outci,out + V ⋅ R1 = V̇0ci0 − V̇outci,out + V ⋅ (−k cn1) = 0 (2.66)



38 2 Basis of Chemical Reactor Design and Engineering

The concentration of A1 at the reactor outlet, which is identical with the con-

centration within the reactor, corresponds to the ratio between the molar outlet

flow and the volumetric outlet flow.

c1 = c1,out =
ṅ1,out

V̇out

=
ṅ1,0 ⋅ (1 − X)
V̇0 ⋅ (1 + αX)

= c1,0
(1 − X)
(1 + αX)

(2.67)

With the mass balance Equation 2.58, we can now determine the necessary

space time, respectively, the necessary Damköhler number, for obtaining a

required conversion.

𝜏 = V

V̇0

=
c1,0

−R1

X =
c1,0(1 + 𝛼X)n

k cn
1,0
(1 − X)n

X

DaI = 𝜏 k cn−11,0 = (1 + 𝛼X)n

(1 − X)n
X (2.68)

It is important to emphasize the fact that even for first order reactions the den-

sity change influences the performance of continuously operated reactors in con-

trary to batch reactors. In Figure 2.8 the influence of the expansion factor on the

conversion of first order reactions is demonstrated.

The heat balance at the steady state of the CSTR is expressed as:

V̇0𝜌0cp0T0 − V̇𝜌cpT +U ⋅ A(Tc − T) + V
∑
j

rj(−ΔHr,j) = 0. (2.69)

For the simple case of a single reaction we obtain with the mass balance for the

key component A1

− R1V = r ⋅ V = Xc1,0V̇0

V̇0𝜌0cp0T0 − V̇𝜌cpT +U ⋅ A(Tc − T) + V̇0c1,0X(−ΔHR) = 0 (2.70)
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Figure 2.8 Conversion in a CSTR as function of the Damköhler number and the expansion

factor for first order reactions.
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or, at constant specific heat capacity (cp = cp,0)

V̇0𝜌0cp0(T − T0) +U ⋅ A(T − Tc) = V̇0c1,0X(−ΔHR). (2.71)

Together with the mass balance, Equation 2.71 serves for the design of the reac-

tor, that is, to determine the operating parameters (V̇0,T0, ci,0) for a required reac-
tor performance. It is important to note that CSTR, operating at steady state, can

be operated isothermally. The cooling temperature Tc and the heat exchange area

A can be adapted for known inlet temperatures T0, and the required temperature

inside the reactor, T (Figure 2.7).

2.3.4

Plug Flow or Ideal Tubular Reactor (PFR)

In contrast to the ideal CSTR, backmixing is excluded in an ideal tubular reactor,

characterized by a plug flow pattern of the fluid, with uniform radial composition

and temperature. The material balance for a small volume system element (ΔV )

shown in Figure 2.9 at the reactor steady state is written as

−
d(ciV̇ )
dV

+
∑
j

vijrj = −
d(ciu)
dz

+ Ri = 0 (2.72)

Any disturbance in the inlet flow travels with the linear velocity u through the

reactor. Therefore, a novel stationary axial concentration profile is reached after

the space time 𝜏 = V∕V̇0.

For a single, stoichiometrically independent reaction we obtain

dṅi
dV

=
d(ciu)
dz

= vir = Ri. (2.73)

After the introduction of the conversion for the key component A1, the design

equations for irreversible nth order reactions are readily found:

dX

dV
=

−R1

ṅ1,0
=

−R1

V̇0 ⋅ c1,0
. (2.74)

The reactor volume required to achieve a target conversion can be calculated by

integration.

V = ṅ1,0∫
XL

X0

dX

−R1

(2.75)

ΔV ΔV

z z + Δz

z

ni,0 ni
ni,Lni +

∂ni

∂V

Figure 2.9 Ideal plug flow reactor.
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Figure 2.10 Space time in CSTR and PFR.

The space time in the reactor is then given by

𝜏 = V

V̇0

= c1,0∫
XL

X0

dX

−R1

. (2.76)

The space time necessary for a required conversion corresponds to the hatched

surface under the curve c1,0∕(−R1) = f (X) shown in Figure 2.10, which is for a

reactionwith positive order (n> 0).The space time in aCSTR is represented by the

whole gray rectangle. Because of the low reactant concentration within a CSTR,

the space time in the latter is considerably higher leading to a poor reactor perfor-

mance.

For reactions with zero order (n= 0), the performance of CSTR and PFR are

equal for any conversion. For the reactions with negative order, the transformation

rate increases with decreasing reactant concentration and the performance of a

CSTR will be higher compared to a PFR.

Reactions with constant density (𝜌0 = 𝜌 = 𝜌out):
If the density of the reaction mixture does not change throughout the reactor,

the linear velocity of the reactionmixture remains constant and Equation 2.73 can

then be transformed with d𝜏 = dz/u to

u
dci
dz

=
dci
d𝜏

=
∑
j

vijrj = Ri.; with u =
V̇0

Acs

= constant. (2.77)

For single irreversible reactions we obtain:

dc1
d𝜏

= R1 = −k cn1 ; 𝜏 = −1

k∫
c1,L

c1,0

1

cn
1

dc; 𝐷𝑎𝐼 = 𝜏 ⋅ k c(n−1)
1,0

= ∫
XL

0

1

(1 − X)n
dX

(2.78)
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Integration leads to:

𝜏 k = 𝐷𝑎𝐼 = − ln
(

c1,L

c1,0

)
= − ln(1 − XL) forn = 1; 𝛼 = 0

𝜏 k cn−1
1

= 𝐷𝑎𝐼 = 1

n−1

[(
c1,L

c1,0

)1−n
− 1

]
= (1−XL)1−n−1

n−1
forn ≠ 1; 𝛼 = 0 (2.79)

The derived expressions for the ideal tubular reactor are the same as those for

an ideal, batchwise operated stirred tank reactor. The reaction time tR is replaced

by the space time 𝜏 , that is, the conversion achieved in a batch reactor is identical

to that in an ideal flow tube when the reaction time tR and the space time 𝜏 are

equal.

However, this comparison is no longer valid when the reaction is accompanied

by a density change, which leads to variations in the linear velocity.

Because of the volume change of the reaction mixture, the reactant concentra-

tion changes not only by chemical transformation, but also by expansion. Suppos-

ing a linear dependency between reaction volume and conversion (Equation 2.64),

the concentration of reactant A1 at any point of the reactor is given by:

c1 =
ṅ1

V̇
=

ṅ1,0 ⋅ (1 − X)
V̇0 ⋅ (1 + 𝛼X)

= c1,0
(1 − X)
(1 + 𝛼X)

(2.80)

The concentration has to be introduced in the transformation rate expression

and in the general design equation (Equation 2.76) for determining the space time

for a required conversion. The space time can always be found by numerical or

graphical integration. However, for simple kinetics analytical integration is possi-

ble. For the following nth order reactions analytical solutions are obtained:

General expression (Equation 2.76): 𝜏 = V

V̇0

= c1,0∫
XL

X0

dX

−R1

.

Zero order reaction: −R1 = k; 𝜏 = c1,0∫
XL

X0

dX

k
.

𝐷𝑎𝐼 = k 𝜏

c1,0
= X (2.81)

First order reaction: A1

k
−−→ products;

− R1 = k c1 = k c10
(1 − X)
(1 + 𝛼X)

; 𝜏 = k c1,0∫
XL

X0

(1 + 𝛼X)
(1 − X)

dX

𝐷𝑎𝐼 = k𝜏 = −(1 + 𝛼) ln(1 − X) − 𝛼X (2.82)

Second order reaction: 2A1

k
−−→ products;

− R1 = k c21 = k c21,0
(1 − X)2

(1 + 𝛼X)2
; 𝜏 = k c1,0∫

XL

X0

(1 + 𝛼X)2

(1 − X)2
dX

𝐷𝑎𝐼 = k c1,0 𝜏 = 2𝛼 (1 + 𝛼) ln(1 − X) + 𝛼2X + (1 + 𝛼)2 X

1 − X
(2.83)

The designs of reactors with volume change are illustrated in Example 2.5

and 2.6.
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Example 2.5: Design of a plug-flow reactor for reactions with increasing

volumetric flow.

According to K. M. Watson [11] the noncatalyzed dehydrogenation of butene

to butadiene can be described by the following expressions:

C4H8 → C4H6 +H2

−R1 = k ⋅ p1(kmol ⋅ h−1 ⋅m−3)

k = 1.75 ⋅ 1015 exp
(−30200

T

)
kmol ⋅m−3 ⋅ h−1 ⋅ 10−5 Pa−1

Determine the space time in an isothermal plug flow reactor to achieve 90%

conversion (X = 0.9) of butene under the following conditions:

T = 923K ṅ10 = 1 kmol ⋅ h−1 butene

p = 105 Pa ṅ1 = 1 kmol ⋅ h−1 water vapor

Solution:
Thereaction is accompanied by a change in volume, as it is performed at con-

stant pressure. The reaction mixture is assumed to behave as an ideal gas, so

that the volume changes linearly with increasing butene conversion. As a mix-

ture of butene and inert water vapor is employed, we obtain for the expansion

factor:

𝛼 =
VX=1 − VX=0

VX=0
= 3 − 2

2
= 0.5.

The partial pressure of butene is then given by

p1 =
ṅ1 ⋅ RT

V̇
= RT

ṅ10(1 − X)
V̇0(1 + 𝛼X)

= c10 ⋅ RT
1 − X

1 + 𝛼X
∶

Substitution in the rate equation and the mass balance leads to

𝜏 = c10∫
XL

0

dX

−R1

= 1

k ⋅ RT ∫
XL

0

(1 + 𝛼X)
(1 − X)

dX

𝜏 = 1

k ⋅ RT
[−𝛼XL − (1 + 𝛼) ln(1 − XL)].

Thus, after the insertion of the numerical values, we obtain:

𝜏 = 105

1.75 ⋅ 1015 exp(−30200∕923) ⋅ 8313J ⋅ 923
⋅ 3.00 = 3.62 ⋅ 10−3 h = 13s.
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Example 2.6: Design equation for 1/2 order reaction with volume change.

The kinetics of a homogenous cracking reaction A1

k
−−→ 3A2 can be described

with the following rate equation:

−R1 = k c0.51 ; 450K ≤ T ≤ 550K; 4 ⋅ 105 Pa ≤ p ≤ 6 ⋅ 105 Pa

A PFR is operated at 500K and 6 ⋅ 105 Pa with pure A1 at the entrance. The

initial concentration is c1,0 = 0.528kmolm−3 and the rate constant is found to

be k = 0.02 kmol1/2 m−3/2 s−1 under the reaction conditions.

Find the space time needed for a conversion of X = 0.8.

Solution:
For the given stoichiometry and with the pure reactant at the reactor entrance,

one volume of the feed gas will give three volumes of product gas at full con-

version. The expansion factor is 𝛼 = (3 − 1)∕1 = 2.

Therefore, the transformation rate is given by:

−R1 = k c
1∕2
1,0

(
1 − X

1 + 2 ⋅ X

)1∕2
For the design equation (Equation 2.76) we obtain

𝜏 = c1,0∫
XL

0

1

k c
1∕2
1,0

(
1 + 2X

1 − X

)1∕2
dX

or, by introducing the Damköhler-number:

𝐷𝑎𝐼 = 𝜏k c
−1∕2
1,0

= ∫
XL

0

(
1 + 2X

1 − X

)1∕2
dX

The necessary Damköhler number for a required conversion can be

obtained by plotting
√
(1 + 2X) ∕ (1 − X) as function of X and determining

the area under the curve between the initial and final conversion as shown in

Figure 2.11a.

A simple way to estimate the area under the curve is to use the trapezoidal

rule. In this case we break up the function into a number of trapezoids and

calculate their areas. The area under the curve is then approximated by the

sum of the trapezoids as shown in Figure 2.11b.The accuracy of the numerical

integration increases with decreasing spaces between the points.

In the present example with four trapezoids, the area under the curve is esti-

mated to be𝐷𝑎𝐼 = ∫
0.8

0

√
(1 + 2X)∕(1 − X)dX ≅ 1.54.

The required space time for obtaining a conversion of X = 0.8 is:

𝜏 = 𝐷𝑎𝐼 ⋅

√
c1,0

k
≅ 1.54 ⋅

√
0.528

0.02
= 56s
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Figure 2.11 (a, b) Determining the Damköhler number for a given conversion.

The heat balance for a volume element in an ideal PFR at steady state can be

formulated as follows:

ṁcp
dT

dV
=
∑
j

rj(−ΔHr,j) +U(Tc − T) dA
dV

. (2.84)

In accordwith the previouslymade assumptions, the temperature over the cross

section is constant and only a function of the axial position. The term (dA∕dV )
corresponds to the reactor surface per volume element (specific surface area, a).

For circular tubes with a constant diameter dt follows:

a = dA

dV
= 4

dt
(2.85)

In general, the heat exchanged through the tube wall will be different from the

heat generated or consumed by the reaction at the same axial position. As a con-

sequence, an axial temperature profile develops. Exceptions are reactions with

formally zero order, which doesn’t depend on the reactant concentration.

To determine the axial temperature and concentration profiles, heat and

mass balances must be solved simultaneously. For a single, stoichiometrically

independent reaction and under stationary conditions, we obtain for the key

component A1

dX

dZ
=

−R1 ⋅ 𝜏

c1,0
(2.86)

𝑈𝑎(Tc − T) + r(−ΔHr) − ṁcp
dT

dV
= 0

dT

dZ
= U ⋅ 𝜏

𝜌0 ⋅ cp

(
dA

dV

)
(Tc − T) + ΔTad

r ⋅ 𝜏
c1,0

(2.87)

Z= z/L (relative length of the reactor)

The heat management of tubular reactors is discussed in detail in Chapter 5.
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2.4

Homogenous Catalytic Reactions in Biphasic Systems

A drawback of homogenous catalytic processes is often the complex and costly

separation and recycling of the catalyst. Therefore, considerable efforts are made

to combine the easy separation of heterogenous catalysts with the high potential

activity and selectivity of homogenous molecular catalysts.

Different methods are proposed to facilitate the recovery of the catalyst. A very

successful way is to use biphasic systems of two immiscible liquids. The catalyst

should be soluble only in one phase, in which the transformation takes place, while

the products and sometimes the reactants should be preferentially soluble in the

second. The catalyst is thus “immobilized” within a “liquid support.” The immis-

cible liquids can be separated after the reaction and the catalyst is recycled. This

can be done without any thermal or chemical treatment. As the reaction is carried

out in the presence of dissolved catalyst, the advantages of homogenous catalysis

are fully preserved.

The liquid support may be water, supercritical fluids, ionic liquids, organic liq-

uids or fluorous liquids [12]. The Shell higher olefin process (SHOP) and the Oxo

synthesis (hydrofomylation) are examples of important industrial processes based

on biphasic catalytic systems.

As the reaction takes place in the catalyst containing phase, the reactants must,

first of all, be transferred from the second and eventually gas phase to the reaction

phase. Therefore, special attention has to be paid to the mixing and dispersion of

one phase within the other andmass transfer efficiency between phases.Themass

transfer rate between the different phases depends on the area of the interface and

the mass transfer coefficient. Whether the reaction will take place in the bulk of

the reaction phase or near the interface depends on the ratio between the char-

acteristic reaction time (tr) and the characteristic time for mass transfer (tm). This

ratio is known as the Hatta number (Ha).

The discussion can be facilitated on the basis of the filmmodel and by supposing

a first order irreversible reaction in the reaction phase and neglecting the mass

transfer resistance in the non-reactive phase I [13–15].

𝐻a =

√
tm
tr

= 𝛿II

√
k′

D1,II

=
√
k′D1,II

kL,II
(2.88)

With 𝛿II: the thickness of the boundary layer; k
′: the reaction rate constant, which

is a function of the catalyst concentration (k′ = k ⋅ ccat); D1,II : the diffusion coef-

ficient for the compound 1 in the second liquid phase; and kL: the mass transfer

coefficient in this liquid phase (phase II).

Depending on the value of Ha, different regimes can be distinguished

(Figure 2.12): For Ha≤ 0.3 the reaction rate is slow compared to the mass

transfer and the reaction takes place in the bulk phase (Figure 2.12a). In this case,

the mass transfer can be considered as an additional resistance in series to the
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Figure 2.12 Concentration profiles for

mass transfer with pseudo first order chem-

ical reaction (film model) (a) slow chemical

reaction: Ha≤ 0.3; (b) moderate chemical

reaction: 0.3≤Ha≤ 3.0; and (c) fast chemical

reaction: Ha≥ 3.0. (Adapted from Ref. [15],

Figure 4.20 Copyright © 2012, Wiley-VCH

GmbH & Co. KGaA.)

reaction. The effective (observed) reaction rate is given by:

rov =
(

1

kLa
+ 1

k′

)−1

c1,II (2.89)

For values of theHatta number of0.3≤Ha≤ 3, the reaction takes place partially

in the boundary layer and in the bulk of phase II. This leads to the deformation of

the concentration profile in the stagnant film from the straight line as presented

in Figure 2.12b. The overall rate of reaction is given by the reaction in the bulk at

reactant concentration c1,II and in the boundary layer. This leads to the following

expression for the observable effective rate:

reff = Ha

tanh𝐻a

[
1 −

c1,II

c∗
1,II

⋅
1

coshHa

]
⋅ kLa ⋅ c∗1,II (2.90)
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Thebulk concentration c1,II is a rather complex function of the intrinsic reaction

rate, the mass transfer coefficient, and the area of the interface [15].

c1,II

c∗
1,II

= 1

coshHa[1 +Ha(1∕B − 1) ⋅ tanhHa]
(2.91)

where B = A ⋅ 𝛿II∕VII = Vfilm∕VII corresponds to the ratio between the film vol-

ume (V film) and the volume of the reacting phase (VII). Practical values for B are

found to be in the range betweenB= 0.1 (for highly efficient fluid/fluid contactors)

and B= 2 ⋅ 10−4. Therefore, for Ha> 1 the concentration in the bulk phase can be

neglected (c1,II∕c∗1,II ≅ 0) and the effective rate becomes:

reff ≅ Ha

tanhHa
⋅ kLa ⋅ c∗1,II ,Ha > 1 (2.92)

A further increase of the intrinsic reaction rate at constant volumetric mass

transfer coefficient (kL,II⋅a) results in Hatta numbers greater than 3 (Ha> 3). The

reaction rate can be considered as very fast compared to themass transfer rate. As

a consequence, the reactants do not reach the bulk phase (c1,II ≈ 0); the reaction

takes place only in the boundary layer (Figure 2.12c). Under these conditions, the

reaction rate increases proportionally with the specific interfacial area between

the phases (a), the square root of the reaction rate constant, and the catalyst con-

centration as indicated in Equation 2.93.

reff = kL,II ⋅ a ⋅Ha ⋅ c∗1,II =
√

k′ ⋅ D1,II ⋅ a ⋅ c∗1,II =
√

k ⋅ ccat ⋅ D1,II ⋅ a ⋅ c∗1,II , Ha ≥ 3

(2.93)

Example 2.7: Influence of catalyst concentration on the effective reaction

rate.

Catalytic hydrogenation is carried out in a two-phase batch reactor, with the

rate proportional to the catalyst concentration in the reaction phase.

The intrinsic reaction rate was found to be k′ = k ⋅ ccat = 1.12 ⋅ 102 s−1.
From the literature data it was found: kL = 5 ⋅ 10−4ms−1 D1 =

5 ⋅ 10−9m2 s−1

If one wants to double the effective hydrogenation rate, how should the con-

centration of the catalyst be changed?

Solution:

Ha =
√
D1 ⋅ kccat
k
L

= 1.5 reff ≅ Ha

tanhHa
⋅ kLa ⋅ c∗1,II , reff ≅ 1.5

0.91
⋅ kLa ⋅ c∗1,II

To double the hydrogenation rate, we obtain (From Equation 2.92 and 2.93):

reff ,2 = 2 ⋅ reff ,1;
reff ,2

reff ,1
=

Ha2 ⋅ kLa ⋅ c∗
1,II

Ha1
tanhHa1

⋅ kLa ⋅ c∗
1,II

= 2
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Ha2 = 2 ⋅
Ha1

tanhHa1
= 2 ⋅

1.5

0.91
= 3.3

⇒
Ha2
Ha1

= 2.2 =

√
ccat,2

ccat,1
⇒ ccat,2 = 4.84 ⋅ ccat,1

So, the catalyst concentrationmust be approximately fivefold higher in order

to double the hydrogenation rate.

In summary, high Ha values lead to low reactant concentration in the reacting

bulk phase and, as a consequence, the available volume of the reacting phase is less

and less utilized. This situation can be characterized by introducing an efficiency

factor 𝜂. The efficiency factor is defined as the ratio between the observed effec-

tive rate and the maximum production rate (controlled by the intrinsic kinetics)

referred to the reactor volume (VR) and corresponding to the maximum reactant

concentration in the reacting phase (c1,II = c∗
1,II

):

𝜂 =
reff
rmax

; rmax = k′
VII

VR

c∗1,II (2.94)

The reactor efficiency depends on the Ha-number and the specific interfacial

area. For a first order irreversible reaction the following relationship is obtained:

𝜂 = B

𝐻𝑎

[
tanh (𝐻𝑎) + (B−1 − 1)𝐻𝑎

1 + (B−1 − 1)𝐻𝑎 tanh(𝐻𝑎)

]
with B =

a ⋅ VR ⋅ D1,II

VII ⋅ kL
(2.95)

The parameter B can be interpreted as the ratio between the film volume (V film)

and the volume of the reacting phase (VII). In Figure 2.13 the efficiency factor as
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Figure 2.13 Effectiveness factor for fluid/fluid reactions as function of Ha and B. (Adapted

from Ref. [16], Figure 4.21 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)
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Figure 2.14 Schematic presentation of the concept of supported liquid phase catalysis.

(Adapted from Ref. [16], Figure 4.22 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)

function of Ha and B is shown. It clearly demonstrates that the reactor efficiency

decreases with increasing Ha and with decreasing specific interfacial area a.

These relations are strictly valid only for simple irreversible first order reactions,

but appropriate models for more complex kinetics can accordingly be developed

based on the film model.

As shown above, fast chemical transformations characterized by Ha≥ 3 occur

mainly near the interface and thus are limited by the interfacial area, which must

be continuously generated by vigorous stirring of the multiphase mixture.

A possibility to overcome this drawback consists of immobilizing the liquid on a

highly porous support. In this way a thin liquid layer is formed on the solid support

leading to the desired high fluid/fluid interface. This approach is called supported

liquid phase catalyst (SLPC) and combines the advantages of homogenous cataly-

sis with a heterogenous fluid/solid systemdiscussed in the following section. SLPC

can be used like traditional heterogenous catalysts in packed bed reactors or even

in fluidized beds. A schematic representation is shown in Figure 2.14.

The main problem related to SLPC is the loss of solvent because of evaporation

in a continuously operated catalytic reactors. This problem can be overcome by

using ionic liquids as solvent [17–20]. Ionic liquids are molten salts and their par-

tial pressure is low under conditions commonly used for hydroformylation and

hydrogenation reactions. As generally observed for SLPC, the catalytic activity

and product selectivity depends on the liquid loading and the nature of the porous

support [21]. A detailed discussion can be found in [22]. In order to diminish

internal diffusion resistances within the supported liquids by using microstruc-

tured supports with high porosity like foams or fibrous materials, are proposed

for SLPC [23].

2.5

Heterogenous Catalytic Reactions

The advantage of the heterogenous catalysis over homogenous is the easy postre-

action separation of the catalyst which can further be used after regeneration and
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the possibility to apply open reactors (flow processes). The chemical transforma-

tion occurs through new reaction pathways, which usually have lower energies

of activation compared to the noncatalyzed reaction, and through formation of

adsorption complexes.

In a few cases, the kinetics of heterogenous catalyzed reactions is based on a

complete knowledge of the underlying reactionmechanisms. Generally, the kinet-

ics of many commercially important reactions are derived from experimental

investigations and are often based on simplified reaction models.

2.5.1

Rate Equations for Intrinsic Surface Reactions

No catalytic reaction can be elementary as at least three steps are always involved:

adsorption of the reactant, surface reaction and desorption of the formed product.

For a simple monomolecular reaction, for example, an isomerization, the steps

involved are shown in Figure 2.15.

To describe the catalytic reaction, the catalyst must be included in the catalytic

cycle as a participating species. The simplest way to do so is to consider a solid

catalyst as an ensemble of single active sites (*).The transformation from A1 to A2

can be presented as a sequence of elementary steps:

A1+ ∗
k1−−−−−−−→←−−−−−−−
k−1

A∗
1 reactant adsorption∕desorption

A∗
1

k2−−−−−−−→←−−−−−−−
k-2

A∗
2 reversible surface reaction

A∗
2

k3−−−−−−−→←−−−−−−−
k−3

A2+ ∗ product desorption∕adsorption

A1
−−−−−−−→←−−−−−−− A2

(2.96)

The adsorption of the reactant is herein considered as a reaction with an empty

site (*) to give an adsorbed intermediate A∗
1
. All sites are considered as equivalent

and each can be occupied by a single species only.

Considering all steps as elementary reactions, expressions for the rate of each

step can be obtained:

Rad = r1 − r−1 = k1p1Ztot𝜃v − k−1Ztot𝜃1 (2.97)

A1 A1

A1 A2

A2 A2

∗ ∗

Solid catalyst

Figure 2.15 Schematic presentation of a catalytic reaction.
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Rrx = r2 − r−2 = k2Ztot𝜃1 − k−2Ztot𝜃2 (2.98)

Rdes = r3 − r−3 = k3Ztot𝜃2 − k−1p2Ztot𝜃v (2.99)

The total concentration of active sites is represented by Ztot, and 𝜃1, 𝜃2, 𝜃v are

the fractions occupied by A1, A2 and the fraction of vacant sites, respectively.

In order to derive the overall rate equation of this isomerization reaction, one

should know the fraction of the sites occupied by each species, 𝜃1 and 𝜃2, which

is called fractional surface coverage:

𝜃i =
Zi

Ztot

(2.100)

The coverage of a catalyst surface by gaseousmolecules at constant temperature

depends on the partial pressure of this gas above the surface. The quantitative

relationships are called isotherms.

2.5.1.1 The Langmuir Adsorption Isotherms

For describing the kinetics of heterogenous catalytic reactions, the Lang-

muir adsorption isotherms are used mainly. We now derive them for associative,

dissociative, and competitive adsorption.Themain assumptions are the following:

• The solid surface is uniform and contains a number of equivalent sites, each can

be occupied by only one species of adsorbate;

• A dynamic equilibrium exists between the gas and the adsorbed molecules at

constant temperature and pressure; adsorbate molecules from the gas phase are

continually colliding with the surface. If they impact a vacant adsorption site,

they may form a bond with the site and stick. If they strike a filled site, they are

reflected back into the gas phase;

• Once adsorbed, the molecules are localized

• The enthalpy of adsorption per site remains constant irrespective of coverage

(no lateral interaction between the adsorbed species).

When molecules are hitting the surface, they can interact by bonding with an

active site being attached for some time.This process can be considered as chemi-

cal reaction and are characterized by the rates of adsorption, rads, and desorptions,

rdes.

A1+∗ → A∗
1 rads = k1p1𝜃v

A∗
1 → A1+∗ rdes = k−1𝜃1 (2.101)

When the equilibrium is attained, rdes = rads , and after introducing the adsorp-

tion equilibrium constant K1 = k1∕k−1, we can write the Langmuir adsorption

isotherm for associative adsorption of gas A1 (without any dissociation on inter-

action with the surface) and only one adsorbing gas present (Example 2.8):

𝜃1 =
K1 ⋅ p1

1 + K1 ⋅ p1
(2.102)
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Example 2.8: Adsorption isotherm.

Determine the fraction of a catalyst surface occupied under equilibrium for a

species A1 at the partial pressure of 1, 2, and 5 bar (K = 5 bar−1).

Solution:
The amount of surface occupied can be calculated using Langmuir adsorp-

tion isotherms given by Equation 2.102.

𝜃1 (p1 = 1bar) =
K1 ⋅ p1

1 + K1 ⋅ p1
= 5 ⋅ 1

1 + 5 ⋅ 1
= 0.83

𝜃1 (p1 = 2bar) = 0.9

𝜃1 (p1 = 5bar) = 0.96

The common form to present this equation as a linear dependence of 1/𝜃1
against 1/p1 allows to find experimentally the constant of adsorption equilibrium,

K1, and to verify a consistency of the Langmuir assumptions:

1

𝜃1
= 1

K1 ⋅ p1
+ 1 (2.103)

For dissociative adsorption (when molecules break their bonds on interaction

involving two surface sites) the same considerations can be applied leading to the

corresponding isotherm:

A2 + 2 ∗ −−−−−−−→←−−−−−−− 2 A∗
1

𝜃1 =
√
K1 ⋅ p1

1 +
√
K1 ⋅ p1

(2.104)

This is a very important case because molecules like H2 or O2 (participating

in catalytic hydrogenation and oxidation reactions) often dissociate on the cat-

alytic surface adsorbing with fragmentation. This brings some consequences for

the observed kinetics and optimization of the reaction conditions.

Competitive adsorption takes place when two (or more) different molecules are

in the gas phase and compete for the same sites. If each species adsorbs on one site

only without dissociation, the corresponding Langmuir isotherm is as follows:

𝜃i =
Kipi

1 +
∑
i

Kipi

(2.105)

where 𝜃i is the fractional coverage; Ki, the constant of adsorption equilibrium of

molecule Ai.

Data for the isotherm can be obtained experimentally from the equilibrium cov-

erage of the surface at a particular temperature over a range of pressures and

then presented in a linear form allowing finding Ki. From the Ki at different tem-

peratures, the heat of adsorption (ΔHa,i) can be estimated using the van’t Hoff
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equation:

Ki,T2
= Ki,T1

exp

(
−ΔHa,i

(
T1 − T2

)
RT1T2

)
(2.106)

As the adsorption is always exothermic, Ki decreases with temperature.

2.5.1.2 Basic Kinetic Models of Catalytic Heterogenous Reactions

In general, a mechanism for any complex reaction (catalytic or non-catalytic) is

defined as a sequence of elementary steps involved in the overall transforma-

tion. To determine these steps and especially to find their kinetic parameters is

very rare if at all possible. It requires sophisticated spectroscopic methods and/or

computational tools.Therefore, a commonway to construct amicrokinetic model

describing the overall transformation rate is to assume a simplified reactionmech-

anism that is based on experimental findings. Once the model is chosen, a rate

expression can be obtained and fitted to the kinetics observed.

Some basic models often used for heterogenous catalytic reactions are

described and the overall rate expressions are developed.

Langmuir-Hinshelwood Model The main assumption of this model is that the cat-

alytic reaction proceeds only via chemical adsorption of all reactants on the cat-

alytic surface and the transformation takes place as a series of surface reactions

ending up with a desorption of the products.

Let’s first consider a monomolecular transformation, like the catalytic isomer-

ization of hydrocarbons, as a simple example.

A1
−−−−−−−→←−−−−−−− A2 (2.107)

The transformation can be described by considering three surface processes as

shown in Equation 2.108: adsorption of the reactant, surface reaction, and desorp-

tion of the product. If the reaction is carried out in an open reactor under constant

conditions, for example, in a catalytic packed bed reactor, the fractions occupied

by A1 and A2 are time invariant
(

d𝜃1
dt

= d𝜃2
dt

= 0
)
. With Equations 2.97–2.99 we

obtain:

d𝜃1
dt

= k1Ztotp1𝜃v − k−1Ztot𝜃1 − k2Ztot𝜃1 + k−2Ztot𝜃2 = 0

d𝜃2
dt

= k2Ztot𝜃1 − k−2Ztot𝜃2 − k3Ztot𝜃2 + k−3Ztotp2𝜃v = 0 (2.108)

As the open reactor operates under stationary conditions, accumulation of

products and reactants are excluded. In consequence, the transformation rate of
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A1 corresponds to the production rate of A2.

− R1 = R2

or

− k1p1𝜃v + k−1𝜃1 = k3𝜃2 − k−3p2𝜃v (2.109)

with

𝜃1 + 𝜃2 + 𝜃v = 1 (2.110)

We can eliminate the different occupied fractions of active sites and we get

finally the dependence of the production rate as function of the partial pressures

of A2 and A1.

R2 =
kZtot(p1 − p2∕K)
1 + kIp1 + kIIp2

(2.111)

With:

k =
k1k2k3

k−1(k−2 + k3) + k2k3

kI =
k1(k2 + k−2 + k3)

k−1(k−2 + k3) + k2k3

kII =
k−3(k−1 + k2 + k−2)
k−1(k−2 + k3) + k2k3

K =
k1k2k3

k−1k−2k−3
(2.112)

It is evident that the six individual rate constants cannot be obtained under

steady-state reaction conditions. To estimate their values, independent measures

of the adsorption and reaction behavior under transient (non-steady-state) con-

ditions are necessary.

The Quasi-Surface Equilibrium Approximation If we suppose that the adsorption

and desorption processes are fast compared to the surface reaction, we can

estimate the surface concentrations from the equilibrium constants. With the

Langmuir adsorption isotherm, the following relations result for the simple

monomolecular reaction presented in Equation 2.107.

𝜃1 =
K1p1

1 + K1p1 + K2p2

𝜃2 =
K2p2

1 + K1p1 + K2p2

with ∶ K1 ≃
k1
k−1

;K2 ≃
k2
k−2

(2.113)
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The transformation rate is then simply given by:

−R1 = k2Ztot𝜃1 − k−2Ztot𝜃2 =
k2ZtotK1

(
p1 − p2∕Keq

)
1 + K1p1 + K2p2

, Keq =
k2
k−2

K1

K2

(2.114)

For a quasi-irreversible reaction and negligible product adsorption (Keq →
∞,K2 ≪ K1), Equation 2.114 is further simplified to give:

−R1 =
k2ZtotK1p1
1 + K1p1

(2.115)

If we divide denominator and nominator by K1 we obtain the Michaelis–

Menten equation, where KM corresponds to 1/K1.

The Most Abundant Surface Intermediate (MASI) Approximation Catalytic transfor-

mations may include the formation of many intermediates on the catalyst surface,

which are difficult to identify. In these cases, it is impossible to formulate a kinetic

model based on all elementary steps. Often, one of the intermediates adsorbs

much more strongly in comparison to the other surface species, thus occupying

nearly all active sites. This intermediate is called themost abundant surface inter-

mediate “masi” [24]. For a simplemonomolecular reaction,A1 → A2, the situation

can be illustrated with the following scheme:

A1 + ∗ k1−−→A∗
1

A∗
1

k2−−→ I∗2

⋅

⋅

I∗n−1
kn−1−−−−→ I∗n (masi)

I∗n
kn−−→A2 + ∗ (2.116)

Neglecting all intermediates having a very short lifetime on the catalyst results

in:

𝜃v + 𝜃masi ≃ 1 (2.117)

The transformation rate of reactant A1 corresponds to the first step in

Equation 2.116:

−R1 = k1Ztotp1𝜃v = k1Ztotp1(1 − 𝜃masi) (2.118)

The final product is formed in the nth step and corresponds to the transforma-

tion to A2 and its desorption:

R2 = knZtot𝜃masi (2.119)

As steady state holds, R2 =−R1, and 𝜃v can be easily calculated and the final

expression for describing the production rate is given by:

R2 =
k1Ztotp1
1 + Kp1

;with K =
k1
kn

(2.120)
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It is important to underline that the mathematical form of the obtained kinetic

equations (Equations 2.111, 2.114, and 2.120) are quite similar, whereas the inter-

pretation of the correspondingmodel parameters and the physical meaning of the

constants are very different.

Bimolecular Catalytic Reactions Supposing that the surface reaction is the rate-

determining step, we obtain for an irreversible bimolecular reaction the following

relations:

A1 + A2 → A3

− R1 = kZtot𝜃1𝜃2 (2.121)

The surface fractions occupied by the reactantsA1 andA2 are given by the Lang-

muir isotherm, supposing competitive adsorption and neglecting the coverage by

the product.

𝜃1 =
K1p1

1 + K1p1 + K2p2

𝜃2 =
K2p2

1 + K1p1 + K2p2

𝜃3 ≃ 0 (2.122)

−R1 = R3 = k3 ⋅ Ztot𝜃1 ⋅ 𝜃2 =
k3 ⋅ ZtotK1p1 ⋅ K2p2
(1 + K1p1 + K2p2)2

(2.123)

At constant pressure of the reaction partnerA2, the transformation rate as func-

tion of p1 passes through a maximum (demonstrated in Example 2.9). The max-

imum depends on p2 and the values of the adsorption constants K1 and K2. The

optimum pressure for A1 can easily be calculated with Equation 2.124.

p1,op =
1 + K2p2

K1

(2.124)

Example 2.9: Maximum rate of bimolecular catalytic reaction.

Investigate the surface coverage and normalized transformation rate

(R1/R1, max) as a function of the mole fraction of A1 for a reaction given

by Equation 2.121. The constants are K1 = 2 bar−1 and K2 = 3 bar−1 while

p2 = 1 bar.

Solution:
The transformation rate is maximal for 𝜃1 = 𝜃2. The surface coverage 𝜃1 and

𝜃2 can be calculated using Equation 2.122. To calculate the unknown p1, the

mole fraction, y1 = p1/(p1 + p2), in the range of 0–1 can be assumed.The trans-

formation rate is given by Equation 2.121. However, we have to also calculate
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the maximum transformation rate R1, max. As the R1 is directly proportional to

product 𝜃1𝜃2, the maximum rate can be achieved when the product is maxi-

mum.Thus,

R1

R1,max

=
𝜃1𝜃2

𝜃2
1

(2.125)

The results are illustrated in Figure 2.16.
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Figure 2.16 Surface coverage of A1 and A2 and the normalized transformation rate as

function of the mole fraction of A1.

2.5.2

Deactivation of Heterogenous Catalysts

In heterogenous catalytic reactions, a decrease in catalyst activity is often

observed with increasing operation time. There are many reasons for this; the

most important factors can be classified into three groups:

• Poisoning of the catalyst surface by irreversible adsorption and/or reaction of a

chemical species, thusmaking the active centers required for the catalyzed reac-

tion inactive. Example is CO adsorption on iron catalysts used for the ammonia

synthesis.

• Coverage of the surface with substances that leads to a mechanical blockage of

the catalytically active surface. Example is deposition of coke in various hydro-

carbon reactions such as isomerization, cyclization, and cracking.
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• Decreasing of the active surface by sintering and recrystallization processes.

Example is the decrease of the active nickel surfaces through recrystallization

on alumina-supported nickel catalysts in hydrogenation reactions.

For the course of a catalytic reaction whose kinetics can be described as:

r =
k′rZtotK1p1
1 + K1p1

=
k1p1

1 + K1p1
(2.126)

the number Ztot of active surface sites can decrease with the operating time (also

known as lifetime) t′ of the catalyst, for example, by poisoning through compo-

nents present in the system that do not take part in the reaction. The decreasing

catalyst activity can be taken into account in the kinetic model by introducing an

activity factor, a(t′), which is a function of the operation time t′.

a(t′) =
kr(t′)

kr(t′ = 0)
(2.127)

Thus, the activity factor corresponds to the ratio between the rate constant after

a certain time of operation referred and the initial value. It is important to under-

line that this way of including the deactivation is possible only if the deactivation

kinetics is separable from the transformation kinetics, viz. the kinetic model for

the transformation is not altered by the deactivation process.

In the present case, the rate of deactivation rd corresponds to the change in

the number of active surface sites with time of operation. The rate constants for

catalysts undergoing deactivation can be formulated as follows:

kr(t′) = kr(t′ = 0) ⋅ a(t′). (2.128)

The rate of deactivation can depend on the temperature, the activity factor a(t′)

of the catalyst, the concentration of a component cdea (causing deactivation), and

on the activation energy Ed of the deactivation process.

−rd = k0
d
e

(
− Ed

RT

)
f (a, cdea) (2.129)

If the deactivation process is slow compared to the rate of transformation, the

activity is quasi uniform in the reactor and Equation 2.129 can be formulated sim-

ply as a power term, and we obtain

−rd = − da

dt′
= kda

ncm
dea

. (2.130)

For the case thatm= 0, that is, there are no poisoning components in the reac-

tion mixture but rather a sintering process is the cause of the deactivation, and

n= 1, then Equation 2.129 simplifies to

−rd = k0
d
e

(
− Ed

RT

)
a (2.131)

If under the intrinsic conditions (without transport disguises) of a catalytic pro-

cess, rd depends only on cdea, the poisoningmay be supposed to be the main cause

of deactivation. For more complex situations, like in the case of fast deactivation,

“a” becomes not only a function of time but also a function of location within



2.6 Mass and Heat Transfer Effects on Heterogenous Catalytic Reactions 59

an eventual reactor. For detailed studies on deactivation kinetics, the reader is

referred to [25, 26].

2.6

Mass and Heat Transfer Effects on Heterogenous Catalytic Reactions

Heterogenous catalytic reactions involve by their nature a combination of reaction

and transport processes, as the reactants must be first transferred from the bulk

of the fluid phase to the catalyst surface, where the reaction occurs.The combined

reaction and transport processes are shown schematically in Figure 2.17. We sup-

pose a porous catalyst particle with a large specific surface area surrounded by

liquid or gaseous reaction mixture.

For the transformation of the reactant A1 to the product A2, the following steps

are necessary:

1) external diffusion of reactants (film diffusion)

2) internal diffusion of reactants (pore diffusion)

3) adsorption of the reactants on the surface

4) catalytic reaction on the surface

5) desorption of the products

6) internal diffusion of products (pore diffusion)

7) external diffusion of products (film diffusion).

Boundery layer

A1

A2

3

2

6

1

7

4
5

Porous catalyst

Reaction:
reactant A1 →product A2

Figure 2.17 Physical and chemical steps involved in heterogenous catalytic reactions.

(Adapted from Ref. [16], Figure 4.1 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)
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If the rates of the chemical steps 3–5 are comparable or higher than the trans-

port processes 1, 2 and 6, 7, significant concentration profiles of A1 and A2 inside

the catalyst particle or in the surrounding layer will occur. If the intrinsic rates are

very high as compared to the diffusion process in the pores, the reaction will take

place only near the external surface, and the observed transformation rate will be

controlled by the external mass transfer. The same situation is observed for non-

porous pellets or so-called “egg-shell” catalysts, where the active phase is placed

in a layer near the outer pellet surface. If the intrinsic reaction rate is comparable

with the diffusion rate within the pores, a pronounced concentration profile of the

reactant A1 within the pellet will develop.

Simultaneously to the chemical transformation, heat is released or consumed in

the case of exothermic or endothermic reactions. Consequently, temperature gra-

dients inside and outside of the catalyst pellet will develop.The different situations

are illustrated in Figure 2.18.

As a consequence of the concentration profiles caused by the transfer phenom-

ena, the observed (effective) reaction rates are modified compared to the rate,

which would occur at constant bulk phase concentration.This effect is commonly

characterized by an effectiveness factor as defined in Equation 2.132:

𝜂ov =
observed rate of reaction

rate of reaction at bulk concentration and temperature
(2.132)

Besides themodification of the overall reaction rate, the product selectivity may

be changed. This is discussed in detail in the following subsections.

2.6.1

External Mass and Heat Transfer

The first step in heterogenous catalytic processes is the transfer of the reactant

from the bulk phase to the external surface of the catalyst pellet. If a nonporous

catalyst is used, only external mass and heat transfer can influence the effective

rate of transformation.The same situation will occur for very fast reactions, where

the reactants are completely consumed at the external catalyst surface. As no inter-

nal mass and heat transfer resistances are considered, the overall catalyst effec-

tiveness factor corresponds to the external effectiveness factor, 𝜂ex. For a simple

irreversible reaction of nth order, the following relation results:

𝜂ov = 𝜂ex =
k(Ts) ⋅ cni,s
k(Tb) ⋅ cni,b

=
k(Ts)
k(Tb)

(
ci,s

ci,b

)n

(2.133)

2.6.1.1 Isothermal Pellet

The external mass transfer process can be described by the so-called filmmodel as

shown in Figure 2.19. According to the film model, a stagnant fluid layer of thick-

ness 𝛿 surrounds the external surface, where the total resistance tomass transfer is

located. Accordingly, the concentration profile is confined to this layer.Themolar

flux of reactant Ai is proportional to the difference in concentration (the driving
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Figure 2.18 Concentration profiles in porous catalysts for different reaction regimes.

(Adapted from Ref. [16], Figure 4.5 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)
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Figure 2.19 External concentration profile according to the film model. (Adapted from Ref.

[16], Figure 4.6 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)

force) as given in Equation 2.134.

Ji = km(ci,b − ci,s) (2.134)

with km the mass transfer coefficient and ci, s, ci, b the concentration of Ai at the

external surface and the bulk of the fluid, respectively. At steady-state condition,

the molar flux of Ai is equal to the rate of transformation at the outer catalyst

surface:

Ji = km(ci,b − ci,s) = −Ri,p ⋅
Vp

Ap

=
−Ri,p

ap
;

with Ri,p = 𝜈irp (2.135)

where Ri is the transformation rate of Ai, per volume of catalyst pellet, rp, the

intrinsic reaction rate, Vp,, Ap the pellet volume and outer surface, respectively,

and ap the specific external surface area of the pellet.

ap =
Ap

Vp

; ap =
6

dp
(sphere) (2.136)

For an irreversible first order surface reaction with 𝜈1 =−1, we obtain for the

reactant A1:

J1 = km(c1,b − c1,s) =
−R1,p

ap
=

krc1,s

ap
(2.137)

The reactant concentration on the surface is given by:

c1,s =
kmap

kmap + kr
⋅ c1,b (2.138)
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and for the effective (observed) transformation rate follows:

−R1,eff = kr
kmap

kmap + kr
⋅ c1,b (2.139)

A similar development can be observed for irreversible nth order reactions. At

steady state follows:

kmap(c1,b − c1,s) = −R1,p = krc
n
1,s (2.140)

Dividing by kmapc1,b leads to

1 −
c1,s

c1,b
=

krc
n−1
1,b

kmap

(
c1,s

c1,b

)n

= 𝐷𝑎𝐼𝐼

(
c1,s

c1,b

)n

(2.141)

The second Damköhler number, DaII, is defined as the ratio between the char-

acteristic mass transfer time tm = 1∕(kmap) and the characteristic reaction time,

tr = 1∕(krcn−11,b
).

𝐷𝑎𝐼𝐼 =
tm
tr

=
krc

n−1
1,b

kmap
(2.142)

With Equation 2.133 we find for the external effectiveness under isothermal

conditions:

𝜂ex =
(
c1,s

c1,b

)n

(2.143)

The external effectiveness factors as function of the second Damköhler number

are obtained by solving Equation 2.141. This is done for reaction orders n= 1, 2,
1∕2, and −1 and displayed in Figure 2.20 [27].

n = 1 ∶ 𝜂ex =
1

1 +𝐷𝑎𝐼𝐼

n = 2 ∶ 𝜂ex =

(√
1 + 4𝐷𝑎𝐼𝐼 − 1

2𝐷𝑎𝐼𝐼

)2

n = 1

2
∶ 𝜂ex =

[
2 +𝐷𝑎𝐼I2

2

(
1 −
√

1 − 4

(2 +𝐷𝑎𝐼I2)2

)] 1

2

n = −1 ∶ 𝜂ex =
2

1 +
√
1 − 4𝐷𝑎𝐼𝐼

; for𝐷𝑎𝐼𝐼 < 0.25 (2.144)

From Figure 2.20 we see that

• The effectiveness factor diminishes for the same DaII with increasing reaction

order

• An effectiveness factor higher than one is obtained for reaction with reactant

inhibition (negative reaction order)
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Figure 2.20 Isothermal external effectiveness factor as function of the Damköhler number.

(Adapted from Ref. [16], Figure 4.7 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)

• For large values ofDaII the effectiveness is inversely proportional toDaII (𝜂ex ≃
1∕𝐷𝑎𝐼𝐼) for all reactions with positive reaction order.

The observed reaction rate is given by:

rp,eff = keffc
n′

1,b
= 𝜂exkrc

n
1,b

(2.145)

With increasing intrinsic reaction rate (increasing DaII) the observed rate con-

stant approaches the volumetric mass transfer coefficient (keff → kmap) and the

reaction order changes from n to unity.

Whereas Figure 2.20 is quite instructive, it is not of practical use for estimat-

ing the importance of the mass transfer influence from experimental data, as the

intrinsic rate constant is normally unknown. Replotting the effectiveness factor

as function of the ratio between observed reaction rate to the maximum mass

transfer rate called as Carberry number (Ca) allows estimating the external effec-

tiveness factor plotted in Figure 2.21.

rp,eff

kmapc1,b
= 𝜂ex

krc
n−1
1,b

kmap
= 𝜂ex𝐷𝑎𝐼𝐼 = 𝐶𝑎 (2.146)

Isothermal Yield and Selectivity For a network of parallel and/or consecutive reac-

tions mass transfer may affect drastically the target product yield. For consecutive

first order reactions and in the absence of mass transfer influence we obtain for

the transformation rate of the reactant and the production rate of the intermediate

(the target product):

A1

k1−−→A2

k2−−→A3 (2.147)

−R1 = k1c1,b

R2 = k1c1,b − k2c2,b (2.148)
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Figure 2.21 Effectiveness factor as function of the observable variable: the Carberry num-

ber (Adapted from Ref. [15], Figure 4.8 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA)

The instantaneous or point selectivity for the intermediate product is obtained

by dividing R2 by (−R1):

s2,1 = −
R2

R1

= 1 −
k2c2,b

k1c1,b
, |v1| = |v2| = 1 (2.149)

Anticipating the mass transfer phenomena in the extreme case results in:

kmap(c1,b − c1,s) = k1c1,s (2.150)

kmap(c2,s − c2,b) = k1c1,s − k2c2,s (2.151)

Solving for the surface concentrations c1, s and c2, s we obtain for the instanta-

neous selectivity the following relations:

(s2,1)eff = −
R2,s

R1,s

= 1 −
k2c2,s

k1c1,s

(s2,1)eff = 1

1 +𝐷𝑎𝐼I2
−

k2
k1

(1 +𝐷𝑎𝐼I1)
(1 +𝐷𝑎𝐼I2)

c2,b

c1,b
(2.152)

with𝐷𝑎𝐼I1 = k1∕(kmap) and𝐷𝑎𝐼I2 = k2∕(kmap).
Under the initial conditions at the reactor entrance the product concentrations

are zero and the instantaneous selectivity becomes:

(s2,1)eff ,0 =
1

1 +𝐷𝑎𝐼I2
= 1

1 + (k2∕kmap)
(2.153)

Obviously, the effective selectivity of the intermediate product depends on the

ratio of the escape rate from the surface to its rate of the transformation to the

consecutive product A3 on the catalytic surface. Low mass transfer rates as com-

pared to the rate of the consecutive reaction is detrimental for the selectivity and
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yield of the intermediate product. At contrast, high mass transfer rates (km ≫ k2)

increase the initial selectivity of the intermediate product approaching unity.

For parallel reactions the influence of mass transfer depends on the individual

reaction orders:

A1

k1
−−→A2; R2 = k1cn1−1 (2.154)

A1

k2
−−→A3; R3 = k2cn2−1 (2.155)

The ratio between the products A2 and A3 depends on the rate constants and

the reactant concentration.

R2

R3

=
k1
k2
c
(n1−n2)
1

(2.156)

As the concentration gradient around the catalyst leads to a lower surface con-

centration compared to the bulk, the observed alteration of rate ratio depends on

the individual reaction order:

(R2,s∕R3,s)
(R2.b∕R3,b)

=
(
c1,s

c1,b

)(n1−n2)

(2.157)

As c1, s < c1, b we see that diffusion intrusion leads to

• a reduced selectivity for A2, if n1 > n2
• an increased selectivity for A2, if n1 < n2
• no change of the selectivity for n1 = n2.

Nonisothermal Pellet For highly endothermic or exothermic reactions, the tem-

perature of the catalyst surface can be considerably different from the temperature

of the surrounding fluid.

We evaluate the surface temperature by the heat balance at steady state condi-

tions:

(−ΔHr) ⋅ rp,eff = h ⋅ ap(Ts − Tb) (2.158)

with h, the heat transfer coefficient.

We divide Equation 2.158 by kmapc1,b

h ⋅ ap
kmapc1,b

(Ts − Tb) = (−ΔHr) ⋅
rp,eff

kmapc1,b

or

h ⋅ ap
kmapc1,b

(Ts − Tb) = (−ΔHr) ⋅ 𝜂ex𝐷𝑎𝐼𝐼 = (−ΔHr) ⋅ 𝐶𝑎 (2.159)

Invoking Chilton-Colburn analogy between heat and mass transfer:

h

𝜌 ⋅ cp
Pr2∕3 = kmSc

2∕3 (2.160)
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we obtain the ratio between heat and mass transfer coefficient:

h

km
= 𝜌cp

(
Sc

Pr

)2∕3
(2.161)

and finally with Equation 2.159:

Ts = Tb + ΔTad

(
Pr

𝑆𝑐

)2∕3
𝐶𝑎

Ts

Tb

= 1 +
ΔTad

Tb

(
Pr

Sc

)2∕3
𝐶𝑎 = 1 + 𝛽ex ⋅ 𝐶𝑎 (2.162)

WithΔTad =
(−ΔHr)c1,b

𝜌cp
the adiabatic temperature rise, Pr = 𝜈

𝛼
= 𝜈

𝜆∕(𝜌cp)
the Prandtl

number, and 𝑆𝑐 = 𝜈

Dm

the Schmidt number.

For a given system the temperature difference between bulk and surface

depends on the reactant concentration via ΔTad, the ratio between Prandtl

and Schmidt number, and the Carberry number. The temperature difference

is maximum for reactions limited by mass transfer (Ca=>1). As for gases

the Schmidt and Prandtl numbers are approximately unity (Pr ≃ 𝑆𝑐 ≃ 1), the
temperature difference can reach the adiabatic temperature (Ts − Tb ≃ ΔTad).
The nonisothermal external effectiveness factor is

𝜂ex =
rp,eff

rp,b
=

k(Ts)
k(Tb)

(
c1,s

c1,b

)n

(2.163)

On the basis of Equations 2.143 and 2.144 we can estimate the surface concen-

tration and obtain for a first order reaction: c1.s∕c1,b = (1 +𝐷𝑎𝐼𝐼)−1.
The rate constant at the surface temperature, k(T s), is given by the Arrhenius

law:

k(Ts) = k(Tb) exp
(
− E

RTb

(
Tb

Ts

− 1

))
= k(Tb) exp

(
−𝛾
(
Tb

Ts

− 1

))
(2.164)

with 𝛾 = E

RTb

, the Arrhenius number. The surface temperature is determined by

the adiabatic temperature rise and the ratio of Schmidt and Prandtl number as

shown in Equation 2.162. In summary, the external effectiveness factor for a given

Ca depends on the Arrhenius number, 𝛾 and the parameter 𝛽ex =
ΔTad

Tb

(
Pr

Sc

)2∕3
.

The nonisothermal effectiveness as function of the Ca for different Arrhenius

numbers and 𝛽ex are shown in Figures 2.22 and 2.23.
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Figure 2.22 Nonisothermal external effectiveness factor as function of the parameter 𝛽ex
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We see that

• the effectiveness factor can be greater than unity for exothermic reactions
• the Arrhenius number 𝛾 is more important than the parameter 𝛽ex in determin-

ing 𝜂ex.
• at high values of Carberry number the effectiveness factor falls well below unity

even for highly exothermic reactions.

2.6.2

Internal Mass and Heat Transfer

For most catalytic processes, porous catalysts with a high inner specific surface

area are used. Therefore, the reactant has to be transported through the pores to

the catalytically active sites as described in Figure 2.17. Because of the chemical

reaction, a gradient of the reactant concentration in the fluid (gas or liquid) may

develop from the outside to the center of the pellet. For the following discussion

we assume isotropic particles and that the transport process can be represented

by molecular diffusion. The molar flux of reactant A1 can be described by:

J1 = −De

dc1
dz

(2.165)

where De is the effective diffusion coefficient for reactant A1, and z is the parti-

cle coordinate, defined as the distance from the center. Formally, Equation 2.165

corresponds to first Fick’s law. As the diffusion occurs within a porous media,

an effective diffusion coefficient is introduced. The effective diffusion coefficient

takes into account that pores occupy only fraction, 𝜀p, of the particle volume, and

that the pores are not linear in z-direction. As a consequence, the diffusion path

through the pores is longer than z. This is accounted for by introducing a tor-

tuosity factor 𝜏p. With both corrections the effective diffusion coefficient can be

estimated with the following expression:

De = D1

𝜀p

𝜏p
(2.166)

with D1, the molecular diffusion coefficient of reactant A1.

The particle porosity is in the order of 0.3<𝜀p <0.6, and the tortuosity is found

to be in the range of 2<𝜏p < 5.

2.6.2.1 Isothermal Pellet

To illustrate the simultaneous diffusion/reaction processes occurring in a porous

catalyst, we consider a catalyst in the form of a flat slab of semi-infinite dimension

on the outer surface, and of a half thickness L as shown in Figure 2.24.

An irreversible, first order reaction takes place in the porous matrix. The mass-

transport is represented by a molecular diffusion. A steady-state mass balance

over a differential volume element yields:

De

dc1
dz

− (−R1) = 0 (2.167)
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Figure 2.24 (a,b) Diffusion and reaction in a semi-infinite flat slab. (Adapted from Ref. [15],

Figure 4.11 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)

Theboundary conditions define the concentration on the outer surface and have

symmetry at the slab center.

z = L ∶ c1 = c1,s; z = 0 ∶
dc1
dz

= 0 (2.168)

For first order kinetics with –R1 = k c1 Equation 2.167 can be rewritten in a

nondimensional form as follows:

d2f

dZ2
− L2
(

kr
De

)
f = 0 (2.169)

with f = c1
c1,s

;Z = z

L
.

The group L2
kr
De

corresponds to the ratio between the characteristic diffusion

time tD in the slab and the characteristic reaction time. This ratio is commonly

calledThiele modulus, 𝜑.

𝜑2 =
tD
tr

= L2

De

k;𝜑 = L

√
kr
De

; first order reaction (2.170)

The solution of Equation 2.169 for the concentration profile in the slab is:

f =
c1
c1,s

= cosh(𝜑Z)
cosh(𝜑)

(2.171)

The effective rate of reaction corresponds to the molar flux at the external sur-

face J1,L. Using the concentration profile evaluated for Z= 1 from Equation 2.171

we obtain.

J1,L = −De

(
dc1
dz

)
z=L

(2.172)
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which results in an effective reaction rate per external area of:

J1,eff =
Dec1,s

L
𝜑 tanh(𝜑) (2.173)

The overall reaction rate per external area in the absence of an internal concen-

tration profile is J1,s = krc1,sL. From Equation 2.132, the effectiveness factor in the

porous catalyst, 𝜂p, is as follows:

𝜂p =
J1,eff

J1,s
=

Dec1,s∕L ⋅ 𝜑 tanh(𝜑)
krc1,sL

= tanh𝜑

𝜑
(2.174)

The effective transformation rate per volume of the catalyst is then given by

−R1,eff = 𝜂pkrc1,s =
tanh𝜑

𝜑
krc1,s (2.175)

If the influence of internal diffusion is big (L2/De ≫ kr), the Thiele modulus

becomes large and tanh 𝜑=> unity. Therefore, the effectiveness factor for strong

diffusional resistances is

𝜂p ≃
1

𝜑
(2.176)

Concentration profiles in slabs for different values of 𝜑 are shown in

Figure 2.24b.

The results presented above are specific for a first order reaction and a catalyst

in the form of a slab. For spherical particles the corresponding equation is

𝜂p =
3

𝜑s

[
1

tanh𝜑s

− 1

𝜑s

]
(2.177)

The corresponding solution for a cylinder is

𝜂p =
2

𝜑c

I1(𝜑c)
I0(𝜑c)

(2.178)

where I1(𝜑) and I0(𝜑) denote the modified Bessel functions of first and zero order,

respectively.

In Figure 2.25 the effectiveness factor as function of the Thiele modulus for

different pellet shapes is shown. For small values of the Thiele modulus the effec-

tiveness factor reaches unity in all cases. The reaction rate is controlled by the

intrinsic kinetics, and the reactant concentration within the pellet is identical to

the concentration at the outer pellet surface. This situation may be observed for

low catalyst activity or very small particles as used in fluidized beds or suspension

reactors. For large values of theThiele modulus the dependency of 𝜂p approaches

an asymptotic solution: 𝜂p = m∕𝜑 with m= 1, 2, 3 for a slab, a cylinder, and a

sphere, respectively. This situation may occur for very fast reactions or large cata-

lyst particles. The concentration in the center of the catalyst particles approaches

zero for 𝜂p < 0.2.

Theobservation that the slope of the asymptotic solution for 𝜂(𝜑) becomes inde-

pendent of the particle geometry suggests that the dependence of the effectiveness

factor on theThiele modulus can be described by a generalized relationship, valid
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Figure 2.25 Effectiveness factor as function of the Thiele modulus for different pellet

shapes. (Adapted from Ref. [28], Figure 5 Copyright © 2008, Wiley-VCH GmbH & Co. KGaA.)

for arbitrary pellet shapes.This was in fact demonstrated by Aris [29] by defining a

generalThielemodulus𝜑gen based on the ratio of pellet volume to external surface

as characteristic diffusion length. A further correction was proposed by Petersen

to get a general effectiveness factor for a nth order reaction with a characteristic

reaction time tr = (krc
(n−1)
1,s

)−1. The final definition is given in Equation 2.179.

𝜑gen =
Vp

Ap

√√√√krc
(n−1)
1,s

De

⋅

√
n + 1

2
(2.179)

The effectiveness factor as function of the generalizedThiele modulus is shown

in Figure 2.26 for a slab and a sphere. Both curves coincide exactly for 𝜑gen → ∞.

The maximum deviations are in the order of 10–15%.

In general, the intrinsic kinetic parameters of a catalytic reaction under study

are unknown.Therefore, the relationships based on theThiele modulus cannot be

used to estimate the influence of innermass transfer on themeasured overall reac-

tion rate. Observed is the experimentally accessible efficient reaction rate, rp, eff. In

addition, the characteristic diffusion time in the porous pellet can be estimated.

This allows to define a newmodulus based on the characteristic effective reaction

time tr, eff and the characteristic diffusion time in the particle, tD.The ratio of these

two values is known asWeisz modulus. We obtain for spherical pellets:

𝜓2
s =

tD
tr,eff

=
R2
sphere

De

cs
rp,eff

= 𝜂p𝜑
2
s (2.180)
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Figure 2.26 Effectiveness factor as function of the generalized Thiele modulus for different

pellet geometries. (Adapted from Ref. [16], Figure 4.13 Copyright © 2012, Wiley-VCH GmbH

& Co. KGaA.)

In analogy with the generalizedThiele modulus, we can define aWeisz modulus

that applies to arbitrary pellet shapes and different reaction orders, n:

𝜓2
gen =

tD
tr,eff

=

(
Vp

Ap

)2

n + 1

2

rp,eff

De cs
= 𝜂p𝜑

2
gen (2.181)

In Figure 2.27 a plot of the effectiveness factor against the generalized Weisz

module for different reaction orders is shown. Using this relation, the effective-

ness factor can be estimated based on the experimental kinetic results and the

estimated diffusion coefficient.

Generalized Weisz modulus, ψgen
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Figure 2.27 Effectiveness factor as function of the generalized Weisz modulus for different

reaction orders. (Adapted from Ref. [16], Figure 4.14 Copyright © 2012, Wiley-VCH GmbH &

Co. KGaA.)
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Isothermal Yield and Selectivity The influence of transport phenomena on selec-

tivity and yield is often more important than on the effective catalyst activity. The

following analysis is restricted to two important schemes for complex reactions

[28]:

parallel reactions: A3

k2
←−−A1

k1−−→A2 and

consecutive reactions: A1

k1−−→A2

k2−−→A3.

We also neglect the effect of external mass transfer resistances and assume that

the concentration at the pellet surface is identical to the bulk concentration (ci,s =
ci,b).
In the case of parallel reactions the rate equations for the consumption of the

reactant A1 and concomitant formation of the desired product A2 are given by:

−R1 = k1c
n1
1
+ k2c

n2
1

R2 = k1c
n1
1

(2.182)

with k1 and k2 as the intrinsic rate constants.The instantaneous or point selectivity

is defined as the ratio of the A2 production rate to the rate of reactant consump-

tion:

s2,1 =
R2

−R1

= 1

1 + k2∕k1 ⋅ c
(n2−n1)
1

= 1

1 + 𝜅c
(n2−n1)
1

(2.183)

There is no influence of the concentration profile on selectivity in the case of

equal order kinetics for the two reaction paths. If n1 ≠ n2, the effective selectiv-

ity will be influenced by internal diffusion. As the influence of the internal con-

centration profile becomes more pronounced with increasing reaction order, the

product selectivity will diminish, if the desired reaction has a higher order than

the undesired. Otherwise, if the desired reaction has a lower kinetic order, the

selectivity will be improved with increasing internal mass transfer resistance.

To discuss the influence of internal transport processes on consecutive reac-

tions, we assume simple irreversible first order reactions. With k1 and k2 being

the intrinsic rate constants, the production rate ofA2 and the disappearance of A1

are given by:

R2 = k1c1 − k2c2

−R1 = k1c1 (2.184)

We obtain for the instantaneous selectivity in the kinetic regime:

s2,1 =
R2

−R1

= 1 −
k2
k1

c2,b

c1,b
= 1 − 𝜅

c2,b

c1,b
; with 𝜅 =

k2
k1

(2.185)

If transport resistances can be neglected, the concentration inside the catalyst

pellet corresponds to the bulk concentration ci = ci, b. The instantaneous selectiv-

ity decreases with increasing conversion, X. In a catalytic fixed bed reactor with
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plug flow behavior (see Section 2.3.4), the product yield can be determined by

integration:

Y2,1 = ∫
XL

0

s2,1dX

Y2,1 =
1

1 − 𝜅
[(1 − X)𝜅 − (1 − X)] (2.186)

The yield increases up to amaximum and finally reaches zero forX = 1 as shown

in Figure 2.28. The maximum depends on the ratio of the two rate constants and

is given by

Y2,1,max = 𝜅𝜅∕(1−𝜅) atXop = 1 − 𝜅1∕(1−𝜅); for𝜅 ≠ 1 (2.187)

To evaluate the influence of internalmass transfer on the product selectivity and

yield, we have to solve the material balance for A1 and A2 in the porous catalyst.

Assuming a flat plate and equal diffusion coefficient (D1, e =D2, e =De), we obtain

with ci,s = ci,b:

d2f1
dZ2

= 𝜑2
1f1; f1 =

c1
c1,s

=
c1
c1,b

; Z = z

L
; 𝜑1 = L

√
k1
De

d2f2
dZ2

= 𝜑2
2

(
f2 −

1

𝜅

c1,s

c2,s
f1

)
; 𝜅 =

k2
k1

𝜑2 = L

√
k2
De

(2.188)
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tion of conversion for consecutive reac-
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[16], Figure 4.15 Copyright © 2012, Wiley-
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With the concentration profile for the reactant A1 given by Equation 2.171, the

solution of the differential equation leads to:

f1 =
cosh (𝜑1Z)
cosh (𝜑1)

;𝜑1 = L

√
k1
De

f2 =
(
1 +

c1,s

c2,s

1

1 − 𝜅

)
cosh (𝜑2Z𝜅)
cosh (𝜑2𝜅)

−
c1,s

c2,s

1

1 − 𝜅

cosh (𝜑1Z)
cosh (𝜑1)

; 𝜑2 =
√
𝜅 ⋅ 𝜑1

(2.189)

The efficient instantaneous catalyst selectivity is given by the ratio of the effi-

cient production rate of A2 and the rate of reactant A1 disappearance (see also

Equation 2.172).

s2,1,eff =
R2,eff

−R1,eff

= −
(dc2∕dZ)Z=1
(dc1∕dZ)Z=1

= 1

1 − 𝜅
−
(
c2,s

c1,s
+ 1

1 − 𝜅

)
⋅
√
𝜅
tanh(𝜑2

√
𝜅)

tanh(𝜑2)
(2.190)

For strong diffusion resistance within the catalyst pellet, Equation 2.190 can be

simplified to:

s2,1,eff = 1

1 +
√
𝜅
−
√
𝜅
c2,s

c1,s
for𝜑2

√
𝜅 > 3 (2.191)

The overall product yield is obtained by integration of Equation 2.190 over a

range of conversion. For a product concentration at the reactor inlet c2, b, 0 = 0 the

result is:

Y2,1,eff = 1

1 − 𝜅
[(1 − X)Δ𝜑 − (1 − X)]; c2,b,0 = 0

with Δ𝜑 =
√
𝜅
tanh(𝜑2)
tanh(𝜑1)

=
√
𝜅

tanh(𝜑2)
tanh(𝜑2∕

√
𝜅)

(2.192)

For very strong diffusional resistance Equation 2.192 can be simplified and the

yield may be estimated from:

Y2,1,eff = 1

1 − 𝜅
[(1 − X)

√
𝜅 − (1 − X)]; c2,b,0 = 0 (2.193)

The integral product yield as function of conversion for different values of the

Thiele modulus is shown in Figure 2.28 for 𝜅 = k2∕k1 = 1∕4. It is obvious that
internal diffusional resistance leads to a drastic decrease of the target product

selectivity and yield. In the domain of practical interest with 𝜅 < 1, the maximum

obtainable yield for strong diffusion resistance (𝜑2 ≥ 3, Equation 2.194) drops

roughly to 50% of the value reached in the kinetic regime (Equation 2.187). At

the same time the efficiency factor in the porous catalyst drops to ηp<0.2 as indi-
cated. This demonstrates the dramatic impact of pore diffusion limitation on the

overall productivity of the catalytic process.

(Y2,1,max)𝜑2≥3 =
𝜅[0.5

√
𝜅∕(1−

√
𝜅)]

1 +
√
𝜅

; at Xop = 1 − 𝜅[0.5∕(1−
√
𝜅)] (2.194)



2.6 Mass and Heat Transfer Effects on Heterogenous Catalytic Reactions 77

2.6.2.2 Nonisothermal Pellet

A large number of catalytic reactions are exothermic and are accompanied by ther-

mal effects. For relatively fast intrinsic kinetics as compared to the mass and heat

transfer phenomena, the development of internal temperature gradients can be

expected. Heat and mass transfer balances have to be solved simultaneously to

estimate concentration and temperature profiles under steady-state conditions.

As the reaction rate depends exponentially on temperature, the resulting temper-

ature and concentration profiles have to be calculated by numerical methods.

De

d2c1
dz2

− (−R1) = 0

𝜆e
d2T

dz2
− (−R1)(−ΔHr) = 0 (2.195)

where (−ΔHr) is the reaction enthalpy and 𝜆e is the effective thermal conductivity

in the porous pellet. As the reaction rate is the same in both balances, we obtain:

De(−ΔHr)
𝜆e

d2c1
dz2

= d2T

dz2
(2.196)

With the surface concentration and temperatures c1, s and Ts, we obtain after

integration a linear relationship between internal temperature and reactant con-

centration:

T − Ts = (−ΔHr)
De

𝜆e
(c1,s − c1) (2.197)

The largest possible temperature difference in the particle is attained, when the

concentration in the particle center becomes c1, center =>0.

(Tcenter − Ts)max = (−ΔHr)c1,s
De

𝜆e
(2.198)

Obviously, the maximum temperature difference will depend on the reaction

enthalpy and the ratio between effective diffusion and effective thermal conduc-

tivity.

If we refer the maximum temperature difference to the surface temperature, we

get the dimensionless so-called Prater number, 𝛽.

𝛽 =
ΔTmax

Ts

=
(−ΔHr)c1,s

Ts

De

𝜆e
(2.199)

For exothermic reactions the temperature inside the pellet will be higher than

the surface temperature. Because of the exponential increase of the reaction rate,

the temperature effect can overcompensate the lower concentration in the pellet.

An example is shown in Figure 2.29 where the effectiveness factor is plotted ver-

sus the Thiele modulus for an Arrhenius number of 𝛾 = 20 and different Prater

numbers.

The curves shown were obtained by numerical integration by Weisz and Hicks

[30]. Efficiency factors higher than one can be expected at relatively low Thiele

modulus and high Prater and Arrhenius numbers. At large values of 𝜑, the
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Figure 2.29 Effectiveness factor as function of the Thiele modulus. Nonisothermal sphere,

first order reaction [30]. (Adapted with permission from Elsevier.)

effectiveness factor becomes inversely proportional to the Thiele modulus, as

observed at isothermal conditions. Besides the increase of the observed reaction

rate because of the high internal temperature, multiple steady states are predicted

for reactions with high Arrhenius numbers and high Prater numbers. In the

region of multiple steady states, different temperature and concentration profiles

for the same Thiele modulus may exist leading to different effectiveness factors.

This behavior is shown in Figure 2.29 for 0.2<𝜑< 1 and 𝛽 > 0.2.

For majority of industrial catalysts the effective heat conductivity is in the order

of 0.2<𝜆e < 0.5 and efficient diffusion coefficients for gas phase reactions are in

the order of 10−5 to 10−6 m2 s−1. Therefore, Prater numbers seldom exceed values

of 𝛽 = 0.1 and themaximum temperature in the pellet center is seldomhigher than

ΔTmax = 10K.

In summary, temperature differences between gaseous bulk and catalyst surface

are much more important as discussed in Section 2.6.1.2.
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2.6.2.3 Combination of External and Internal Transfer Resistances

In the previous chapters we discussed the influence of internal mass and heat

transfer by neglecting external transport phenomena. Hence, we assumed that

concentrations and temperature at the outer surface of the catalyst particle and

the bulk of the fluid are the same. But this assumption is not justified under cer-

tain conditions and concentration and temperature profiles inside and outside the

porous catalyst must be considered.

2.6.2.4 Internal and External Mass Transport in Isothermal Pellets

If the efficient reaction rate is high enough, the reactant concentration drops sig-

nificantly across the external boundary layer as indicated in Figure 2.18. In this

case the surface concentration is lower compared to the bulk of the fluid phase

(c1, s < c1, b). First we will neglect eventual heat effects and assume equal tempera-

tures in the fluid and the catalyst particle (T =Ts =Tb). To determine the concen-

tration profile in the particle, we first have to calculate the concentration at the

external surface. This will be done based on the mass balance for the reactant A1.

At steady state, the molar flux of A1 from the bulk to the external surface must be

equal to the effective rate of transformation (see Equation 2.137).

J1 = km(c1,b − c1,s) =
−R1,p,eff

ap
(2.200)

For a simple irreversible first order reaction we obtain:

km(c1,b − c1,s) =
𝜂pkrc1,s

ap
with𝜂p the internaleffectiveness factor (2.201)

Solving Equation 2.201 for the unknown surface concentration:

c1,s =
c1,b

1 + 𝜂pkr∕(kmap)
(2.202)

If we introduce the ratio between the characteristic diffusion time in the pellet

tD and the external mass transfer time tm wewill get a clear physical interpretation

of this relationship. The mentioned ratio is known as themass Biot number, Bim.

Bim =
tD
tm

=
L2c
De

kmap with Lc the characteristic length of the pellet (2.203)

Introducing the Biot number in Equation 2.202 yields:

c1,s =
c1,b

1 + 𝜂p
krL

2
c

De

⋅ 1

Bim

=
c1,b

1 + 𝜂p
𝜑2

Bim

(2.204)

The overall effectiveness factor is defined as the ratio between the effective

transformation rate and the rate at constant bulk concentration.

𝜂ov =
−R1,eff

−R1,b

=
−R1,eff

krc1,b
=

𝜂pc1,s

c1,b
(2.205)
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In combination with Equation 2.204 we obtain:

𝜂ov =
𝜂p

1 + 𝜂p
𝜑2

Bim

= 1
1

𝜂p
+ 𝜑2

Bim

(2.206)

For a catalyst in the form of a flat plate the effectiveness factor is given by 𝜂p =
tanh𝜑L∕𝜑L (Equation 2.174) and the overall effectiveness factor can be expressed

as a function of theThiele modulus and the Biot number.

𝜂ov =
tanh𝜑

𝜑
(
1 + 𝜑⋅tanh𝜑

Bim

) (2.207)

The relationship shown in Equation 2.207 suffers from the fact that the Thiele

modulus must be specified to estimate the catalyst efficiency. This is, in general,

not possible as the intrinsic kinetics is not known. It is, therefore, more convenient

to relate the overall effectiveness factor to theWeisz modulus, which is based only

on observable parameters.

The catalyst efficiency decreases strongly at small mass Biot numbers as seen in

Figure 2.30. This is because of the reduced reactant concentration on the exter-

nal pellet surface. In contrast, external mass transfer influences can be neglected

at Bim > 100. In practice, catalytic particles are in the range of several millime-

ters and the mass Biot numbers are in the order of 100–200. Hence, the overall

effectiveness factor is almost entirely determined by the intraparticle diffusion.

0.1

0.1

1

1 10 100

n = 1

T = const.

Flat plate

Bim = 1 Bim = 10 Bim = 100
Bim = ∞

ψ = = 𝜂ov𝜙2
–R1,eff

c1,b

L2

De

𝜂 o
v

Figure 2.30 Overall effectiveness factor as a function of the Weisz modulus for different

mass Biot numbers (isothermal, irreversible first order reaction in a porous slab). (Adapted

from Ref. [16], Figure 4.17 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)



2.6 Mass and Heat Transfer Effects on Heterogenous Catalytic Reactions 81

2.6.2.5 The Temperature Dependence of the Effective Reaction Rate

As pointed out, the influence of mass transfer on the observed reaction rate

depends on the ratio between the characteristic reaction time and the character-

istic time for mass transfer. By increasing the temperature, the intrinsic reaction

rate increases more strongly (exponentially) than the rates of external and internal

mass transfer. Consequently, the Thiele modulus and the second Damköhler

number augment with increasing temperature, and transport phenomena

become more and more important and will finally control the transformation

process. In addition, the temperature dependence of the observed reaction rate

will change as indicated.

At low temperatures the process is controlled by the intrinsic chemical kinetics

and the rate constant increases exponentially following Arrhenius law:

k = k0 exp
(−E
RT

)
(2.208)

with k0 the frequency factor and E the intrinsic activation energy.

The temperature dependence of the diffusion process is represented by propor-

tionality to T3/2 but can be also approximated by an Arrhenius equation:

De = De,0 exp

(−ED

RT

)
; with5 < ED < 10kJmol−1 (2.209)

This is not a theoretical dependence of De on temperature but is useful for the

following discussions. At strong influence of internal diffusion on the reaction

rate, the effectiveness factor was found to be inversely proportional to the Thiele

modulus (e.g., Equation 2.176). Accordingly, the effective rate constant is given

by:

keff = k

L
√
k∕De

= 1

L

√
k ⋅ De (2.210)

For the temperature dependence follows:

keff =
√
k0De,0

L
exp

(
−
E + ED

2 ⋅ RT

)
(2.211)

Normally E≫ED, as diffusion is not very temperature sensitive, so the observed

apparent activation energy is about one-half of the true value when pronounced

internal concentration profiles are present (Figure 2.31).

Further temperature increase will diminish the reactant concentration on the

outer pellet surface as the influence of external mass transfer becomes impor-

tant. Finally, interphase mass transfer will be the rate controlling step and the

surface concentration drops to zero. Under those conditions, the apparent acti-

vation energy corresponds to ED.

Besides the apparent activation energy, the effective reaction order changes dur-

ing the transition from the kinetic to the diffusion controlled regime. A first order

reaction will be observed under external mass transfer control.The effective reac-

tion order observed approachesnapp = (n + 1)∕2 for severe influence of intraparti-
cle diffusion.
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Figure 2.31 Arrhenius plot for heterogenous catalytic reactions. Transition from the kinetic

regime to mass transfer controlled regime.

2.6.2.6 External and Internal Temperature Gradient

In the case of fast highly exothermic or endothermic reactions, temperature gra-

dients inside the porous catalyst and temperature differences between the fluid

phase and catalyst surface cannot be neglected. Depending on the physical prop-

erties of the fluid and the solid catalyst, important temperature gradients may

occur. The relative importance of internal to external temperature profiles can

be estimated based on the relationships presented in Sections 2.6.1.2 and 2.6.2.2.

According to Equation 2.158 the temperature difference between bulk and outer

pellet surface is:

Ts − Tb =
(−ΔHr)
h ⋅ ap

⋅ reff with reff = kmap(c1,b − c1,s)

Ts − Tb = (−ΔHr)
km
h
(c1,b − c1,s) (2.212)

With the Chilton-Colburn analogy we can replace the ratio km∕h and obtain

(see Equation 2.161)

Ts − Tb = (−ΔHr)
1

𝜌cp

(
Pr

Sc

)2∕3
(c1,b − c1,s) (2.213)

For large internal diffusional resistance, the concentration of the reactant in the

pellet center drops to zero. In this situation the temperature difference between

the outer surface and the center of a porous catalyst pellet is maximal and given

by Equation 2.198.

In Equation 2.214 the temperature difference between bulk and pellet surface

is compared with the maximum internal temperature gradient.The ratio between
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Table 2.1 Physical properties of fluid/solid systems [13].

Gas Liquid Porous solid

D or De (m
2⋅s−1) 10−5–10−4 10−10–10−9 10−7–10−5

𝜆 or 𝜆e (W⋅m−1 K−1) 10−3–10−1 10−2–10 10−2–1

𝜌 cp (J⋅m−3 K−1) 102–105 105–107 106–107

these two temperature differences depends on the ratio of the mass Biot to the

thermal Biot numbers.

Ts − Tb

(Tcenter − Ts)max

=
km
h

𝜆e
De

c1,b − c1,s

c1,s
=

Bim
Bith

c1,b − c1,s

c1,s

withBith = h ⋅ L
𝜆e

;Bim =
km ⋅ L

De

(2.214)

In Table 2.1 the order of magnitude of some physical properties of fluid/solid

systems are summarized. On the basis of these values we can conclude that for

gas/solid systems the ratio of Bim/Bith is in the range of 10–104. Hence, the tem-

perature gradient in the external boundary layer is much more important than

within the pellet under usual reaction conditions:

(Ts − Tb) >> (Tcenter − Ts); gas∕solid system (2.215)

In contrast, we expect a higher temperature difference within the pellet in liq-

uid/solid systems.

2.6.3

Criteria for the Estimation of Transport Effects

For the catalyst development and optimization as well as for the correct reactor

design, it is important to ascertain the influences of transport phenomena on the

reaction kinetics. It is essential that criteria for estimating transport effects are

based on what is measurable or observable [31, 32].

One way to estimate the influence of transport processes is to use directly

experimental results observed under given experimental conditions. In general,

the experimentalist has information concerning observed reaction rates, bulk

reactant concentrations, and temperature, as well as the catalyst pellet form and

dimensions. With these details at hand, the Weisz module can be estimated. For

example, for spherical catalytic particles, see Equation 2.180.

Each of the 𝜓 s values is experimentally accessible and the effectiveness factor

can be computed such as shown in Figure 2.32. Hence, a set of graphs can be

prepared relating 𝜓 s to 𝜂 with the Arrhenius and Prater numbers as parameters

and allowing estimation of the effectiveness factors directly from experimental

results. An important number of criteria for estimating the influence of transport
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Figure 2.32 Effectiveness factor in terms of the experimentally observable Weisz modulus.

First order reaction, sphere [30]. (Adapted with permission from Elsevier.)

phenomena on catalytic reaction rates are published in the open literature. In gen-

eral, these criteria are derived assuming that transport effects do not alter the true

rate by more than ±5%. Because of the uncertainty involved in estimating the dif-

ferent parameters, the application of the criteria should be done in a conservative

manner. The observed values should be at least several times or even an order of

magnitude better than those proposed.

Themost general of the criteria (Equation 6 in Table 2.2) ensures the absence of

any internal and external concentration and temperature gradient. But a problem

may arise because of compensation between mass and heat transport. This situ-

ation will occur if 𝛾 ⋅ 𝛽 ≅ n. Therefore, it may be better to respect separately the

criteria for isothermicity.

It is disturbing that criteria for the absence of heat effects are based on the true

activation energy, which is not observable, if mass transfer affects the rate of reac-

tion. A critical discussion of the experimental results and a prudent application of

the criteria are, therefore, indispensable.

2.7

Summary

In this chapter, the fundamentals of chemical reaction engineering are presented.

The basic definitions along with the material balance of different types of ideal

reactors and their design equations are discussed.
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Table 2.2 Experimental criteria for the absence of inter and intra transport phenomena

(0.95<𝜂 < 1.05) for simple irreversible reactions.

1 Absence of interphase

concentration gradients in

isothermal systems

rp,effdp

2kmci,b
< 0.15|n|

2 Absence of interphase

temperature gradients. The

criterion is independent whether

intraparticle gradients exist or not

(−ΔHr )rp,effdp
2h⋅Tb

E

RTb
< 0.15

3 Absence of

intraparticle/interphase gradients

rp,effd
2
p

4ci,bDe
<

1+𝛾⋅𝜒|n−𝛾⋅𝛽|(1+0.33 n⋅w)
𝜒 = (−ΔHr )rp,effdp

2h⋅Tb
,w = rp,effdp

2ci,bkm

4 Absence of concentration profiles

within an isothermal porous

catalyst pellet

< 6 n = 0

rp,effd
2
p

4Deci,s
< 0.6 n = 1

< 0.2 n = 2

5 Absence of intraparticle

temperature profile

(−ΔHr )rp,effd2p
4𝜆eTs

<
RTs
E

6 Absence of combined effect of

temperature and concentration

gradients

rp,effd
2
p

4 c1,bDe
< 1|n−𝛾⋅𝛽| ; 𝛾 = E

RTb
, 𝛽 = (−ΔHrDec1,b)

𝜆Tb

Adapted from Ref. [13].

The homogenous reactions are defined as the reactions taking place in gas

or liquid phase. The rates of the homogenous reactions are usually determined

experimentally and their dependence on the reactant concentration is rep-

resented by a power rate law. In general, it is assumed that the temperature

dependence of the rate constant for most homogenous reactions obeys Arrhenius

equation. Catalytic reactions are discussed based on different types of catalysts

used: a substance dissolved in reaction mixture (homogenous catalysis), an

enzyme (enzymatic catalysis), or a solid substance (heterogenous catalysis). In

homogenous and enzymatic catalysis, it is assumed that a complex is formed

between the reactant and a dissolved catalyst and the product is then formed

from this complex. This simplified kinetic scheme allows to obtain a generalized

rate equation also known as Michaelis–Menten equation. In heterogenously

catalyzed reactions, it is important to identify the rate-determining step in order

to obtain a rate equation. Generally, the surface reaction between adsorbed

reactants is considered as the rate-limiting step.

The kinetics of the many commercially important reactions is derived from

experimental investigations that are further simplified with substantive assump-

tion on reaction mechanism. During the kinetics study of heterogenous catalytic

reactions, mass and heat transfer may affect the observed kinetics and must be

avoided.
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2.8

List of Symbols

a Activity factor —

Ap Pallet outer surface m2

ap Specific external surface area of the pellet m2 m−3

cb, ccat, c∗i , cs Bulk concentration, concentration of catalyst,

concentration of species Ai at equilibrium,

concentration at surface

molm−3

cdea Concentration of deactivating component which

cause deactivation

molm−3

Cw Total heat capacity of the reactor J K−1

Ed, ED Activation energy of deactivation, of diffusion Jmol−1

Esys Energy of system J

Ėin, Ėout Rate of energy in, rate of energy out J s−1

Ĥ Molar enthalpy Jmol−1

I0, I1 Bassel functions of zero and first order —

ki Adsorption rate constant variable

k−i Inverse adsorption rate constant variable

kd Deactivation constant varibale

KM Michaelis constant molm−3

Lc Characteristic length of pallet m

m Mass kg

rads, rdes Rates of adsorption, rates of desorption mol m−2 s−1

rd Rate of deactivation —

rp Rate of reaction per unit volume of catalyst pallet molm−3 s−1

S Entropy J K−1

t′ Operating time (or lifetime) of the catalyst s

ta, tR, tcycle Shut-down time, reaction time, batch cycle time s

Ûi Molar energy Jmol−1

Vfilm Film volume m3

V̂i Molar volume of species Ai m3 mol−1

X# Catalyst substrate complex —

y Mole fraction —

Ztot Total concentration of active sites —

𝛼 Expansion factor —

𝛿i Interfacial film thickness in phase i m

ΔHa Heat of adsorption Jmol−1

𝜃i, 𝜃v Fractional surface coverage by species Ai, fraction of

vacant sites

—

𝜅 Ratio of reaction rates —

𝜂ov, ηex, 𝜂p Overall effectiveness factor, external, of porous

catalyst

—

𝜏p Tortuosity —

𝜑 Thiele modulus —

𝜓s, 𝜓gen Weisz modulus, generalWeisz modulus —
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