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Real Reactors and Residence Time Distribution (RTD)

InChapter 2, the design of the so-called “ideal reactors” was discussed.The reactor

“ideality” was based on defined hydrodynamic behavior.We had assumed two flow

patterns: plug flow (piston type) where axial dispersion is excluded and completely

mixed flow achieved in ideal stirred tank reactors. These flow patterns are often

used for reactor design because the mass and heat balances are relatively simple

to treat. But real equipment often deviates from that of the ideal flow pattern. In

tubular reactors radial velocity and concentration profiles may develop in laminar

flow. In turbulent flow, velocity fluctuations can lead to an axial dispersion. In

catalytic packed bed reactors, irregular flow with the formation of channels may

occur while stagnant fluid zones (dead zones) may develop in other parts of the

reactor. Incompletely mixed zones and thus inhomogeneity can also be observed

in CSTR, especially in the cases of viscous media.

The abovementioned phenomena lead to a nonuniform residence time of the

fluid elements in tubular reactors, which may have a detrimental effect on the

reactor performance and product yield.

In this chapter, residence time distribution (RTD) of ideal and nonideal reactors

along with the method of determination are described in detail. The influence of

nonideality and RTD on the reactor performance, the target product yield, and

selectivity, including complex reactions, is presented.

3.1

Nonideal Flow Pattern and Definition of RTD

Herein, only the steady-state flow without any reaction and without density

changes (V̇0 = V̇out) of a single fluid flow through an open vessel is considered.

In order to design a flow reactor rationally, one needs to know how long the

individual molecules stay in the vessel (the residence time). If for the ideal plug

flow reactor all molecules come in and go out together (piston type flow pattern)

meaning that the residence time is the same for the whole reacting mixture, in

real reactors some elements of the fluid may have different pathways resulting in

Microstructured Devices for Chemical Processing, First Edition.
Madhvanand N. Kashid, Albert Renken and Lioubov Kiwi-Minsker.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.



90 3 Real Reactors and Residence Time Distribution (RTD)

different time to pass through the reactor.The distribution of these times is called

the residence time distribution (RTD). The RTD of a fluid can be characterized

by the age distribution of volume elements E(t), which have left the reactor. A

typical RTD characterized by the functionE(t) is shown in Figure 3.1.The function

E(t) indicates the probability that a fraction of the total amount (n0) entering the

reactor at t= 0 has left the reactor after the time t.The dimension of E(t) is s−1.

E(t) = ṅ(t)
n0

= V̇ c(t)

∫
∞

0

V̇ c(t)dt
(3.1)

After an infinitely long observation time, the probability that all volume elements

fed into the reactor at the time t= 0 have left is equal to one.

∫
∞

0

E(t)dt = 1 (3.2)

The fraction of the fluid in the exit stream, which is younger than t1, corresponds

to

∫
t1

0

E(t)dt (3.3)

and that which is older to

∫
∞

t1

E(t)dt = 1 − ∫
t1

0

E(t)dt (3.4)

It is often advantageous to relate the distribution functions to the mean residence

time in order to be able to compare reactors of different sizes and with different

throughputs. Thus, a dimensionless time referred to the mean residence time is

introduced.

𝜃 = t∕t (3.5)

t

E(t)

t1t = t + Δt

Figure 3.1 Residence time distribution, or exit age distribution curve, E(t).
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We then obtain the following relationships for the distribution functions

E(𝜃) ≡ E = t ⋅ E(t) (3.6)

For practical purposes, it is beneficial to characterize distribution functions by

a few characteristic terms as the mean residence time and the variance around

the mean. The mean residence time (t) corresponds to the first moment of the

distribution function, E(t).

𝜇1 = t = ∫
∞

0

t ⋅ E(t)dt (3.7)

If the density of the fluid does not change in the reactor (V̇0 = V̇out), the mean

residence time corresponds to the space time.

t = 𝜏 = V∕V̇0; 𝜌 = const (3.8)

The variance of the distribution is obtained from the second moment of the dis-

tribution function.

𝜎2 = 𝜇2 − 𝜇2
1 = ∫

∞

0

t2 ⋅ E(t)dt − t
2 = ∫

∞

0

(t − t)2E(t)dt (3.9)

The skewness (sk) is a measure for the deviation from the symmetrical distri-

bution. It is characterized by the third moment of the distribution defined with

Equation 3.10 [1].

sk = (𝜇3 − 2𝜇3
1 − 3𝜇1𝜇2)∕𝜎3 = ∫

∞

0

(t − t)3E(t)dt∕𝜎3 (3.10)

The higher moments of the RTD are of little practical interest because they are

difficult to obtain experimentally with the required accuracy.

3.2

Experimental Determination of RTD in Flow Reactors

To determine the RTD experimentally, widely used stimulus-response methods

are applied. For this an inert tracer is introduced at the inlet of the reactor. The

response of the system to the imposed inlet perturbation is obtained bymeasuring

the tracer concentration at the reactor outlet as function of time. It is important

that the tracer does not change the physical properties of the fluid, that is, viscos-

ity and density of the fluid must remain constant. In addition, the tracer should

not take part in the reaction process, not be adsorbed at parts of the reactor; fur-

thermore, it should be easy to measure even in low concentrations.

Usually, the tracer is injected in the form of a well-defined function: as a step

or impulse function, and sometimes in the form of a sinus function. The first two

functions are used mostly and are discussed in detail.
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3.2.1

Step Function Stimulus-Response Method

At the inlet of the reactor, the concentration of a tracer is abruptly changed at

time t= 0. In practice, the stepwise change should be faster than a hundreds of

the space time in the reactor (𝛥tstep < 0.01𝜏). The response of the system at the

reactor outlet is measured. The momentary tracer concentration c(t) is referred

to the constant inlet concentration c0. The response curve is thus dimensionless

and is designated as an F-curve according to Danckwerts [2, 3]; it thus has values

between 0 and 1 (see Figure 3.2) and corresponds to the cumulative curve of the

RTD.

F(t) = c(t)
c0

(3.11)

The following relationship between the external RTD and the F-curve holds:

F(t) = ∫
t

0

E(t′)dt′ = ∫
𝜃

0

Ed𝜃′ = F (3.12)

E(t) = dF(t)
dt

= dF

dt
(3.13)

Themean residence time in the reactor is obtained from the F-curve according to

t = ∫
∞

0

t ⋅ E(t)dt = ∫
1

0

t ⋅ dF (3.14)

or with discrete measurement points

t ≃
∑
i

ti ⋅ ΔFi (3.15)

F(t)

t′ t

1

0
0

Step-function

Figure 3.2 Response at the reactor outlet on a tracer introduced as a step function at the

reactor inlet.
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In analogy, the variance is obtained with

𝜎2 = ∫
∞

0

(t − t)2E(t)dt = ∫
∞

0

t2E(t)dt − t
2

𝜎2 = ∫
1

0

(t − t)2dF (3.16)

or with discrete measured points

𝜎2 ≃
∑
i

(ti − t)2ΔFi (3.17)

In general the tracer concentrations are measured at constant time intervals, Δt.
Therefore, it may be preferable to carry out the integration over the time. Trans-

formation of Equation 3.14 leads to [4]:

t = ∫
1

0

t ⋅ dF = −∫
1

0

t ⋅ d(1 − F) = ∫
∞

0

(1 − F)dt (3.18)

Equation 3.16 can be transformed accordingly.

𝜎2 = ∫
1

0

(t − t)2dF = ∫
1

0

t2dF − t
2 = 2∫

∞

0

t ⋅ (1 − F)dt − t
2

(3.19)

3.2.2

Pulse Function Stimulus-Response Method

The entire amount of the tracer is fed to the reactor inlet within a very short time

to approach the Dirac delta function as close as possible. The Dirac function has

the following properties:

t = 0 𝛿(t) = ∞
t ≠ 0 𝛿(t) = 0

∫
+∞

−∞
𝛿(t)dt = 1 (3.20)

In practice, the input time Δtpulse should be small compared to the space time

(Δtpulse ≤ 0.01𝜏). The response at the reactor outlet to the pulse-like tracer injec-

tion is called theC-curve.TheC-curve is experimentally determined bymeasuring

the tracer concentration at the outlet following the inlet pulse. The measured val-

ues are referred to the total amount of tracer injected.

C(t) = ṅ(t)
ninj

=
V̇outc(t)

∫
∞

0

V̇outc(t)dt
= c(t)

∫
∞

0

c(t)dt
; V̇out = const. (3.21)

The experimental C-curve corresponds to the RTD defined in Equation 3.1 for

systems closed for dispersion (see Section 3.4.2). In this case C(t)=E(t).

The same holds for the mean residence time:

tC = ∫
∞

0

t ⋅ C(t)dt =t = 𝜏;

closed for dispersion, constant density (3.22)
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The same is true for the variance around the mean:

𝜎2
C
= ∫

∞

0

(t − tC)2 ⋅ C(t)dt = 𝜎2;

closed for dispersion, constant density (3.23)

The estimation of mean residence time and variance are illustrated in Example

3.1. The situation is different for systems open for dispersion as discussed in

Section 3.4.2. Under these conditions the experimentally determined C-curve is

not identical with E(t):

C (t) ≠ E(t)
tc ≠ t

}
systems open for dispersion (3.24)

Example 3.1: Experimental determination of RTD
The RTD of a tubular reactor is measured with the pulse function stimulus-

response method. The experimental results are summarized in Table 3.1:

Table 3.1 Experimental response to a pulse function.

t (s) 0 120 240 360 480 600 720 840 960

c(t) (kg ⋅m−3) 0 6.5 12.5 12.5 10.0 5.0 2.5 1.0 0

Calculate the values of tC and 𝜎2
C
and plot the C(t) and F-curve versus 𝜃C.

Solution:

1) ∫
∞

0

c(t)dt ≅
∑

ciΔti = 6000kgm
−3
s using themean concentrations in the

various Δt intervals
2)

∫
∞

0

tc(t)dt ≅
∑

ticiΔti = 2 246 400kgm−3 s2

3)

∫
∞

0

t2c(t)dt ≅
∑

t2
i
ciΔti = 1.025.109 kgm−3 s3.

tC =

∑
ticiΔti∑
ciΔti

= 374.4s

𝜎2
c =

∑
t2
i
ciΔti∑
ciΔti

− t
2

c = 3.061⋅104 s2
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Convert t to 𝜃c by dividing each value by tC . Convert c(t) to C(𝜃c) by dividing

each value by
∑

ciΔti and multiplying with tC . Integrate C(𝜃c) by using the

mean values for each interval Δ𝜃c to get F(t)= F(𝜃c) (Figure 3.3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

C
(𝜃

c
)

𝜃c = t / tc
F

(𝜃
c
)

𝜃c = t / tc

Figure 3.3 Experimental C- and F-curve as function of the dimensionless time.

3.3

RTD in Ideal Homogenous Reactors

Before we consider the RTD in real systems, we first examine the behavior of the

ideal reactors presented in Chapter 2.

3.3.1

Ideal Plug Flow Reactor

The ideal plug flow reactor acts solely as a delaying element without changing the

form of the input signal. In the case of an impulse function at the inlet, the same

pulse function is obtained at the outlet after a time delay corresponding to the

mean residence time t.

E(t) = 𝛿(t − t) (3.25)

The same is true for the step function and its response F(t).

3.3.2

Ideal Continuously Operated Stirred Tank Reactor (CSTR)

If the amount n0 of a tracer is added in the form of a pulse to an ideally mixed

stirred tank, the maximum concentration is established instantaneously

c0 =
n0
V
, t = 0 (3.26)
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The concentration time course can then be predicted from the mass balance by

integration

V
dc(t)
dt

= −V̇ c(t); dc(t)
dt

= − V̇

V
c(t) = −1

t
c(t); constant density

and

c(t)
c0

= exp

(
− t

t

)
= exp(−𝜃) = E(𝜃) (3.27)

With Equation 3.6 we obtain for the RTD:

E(t) = 1

t
E(𝜃) = 1

t
exp

(
− t

t

)
(3.28)

From this it follows by integration for the cumulative RTD (curve F(t)):

F(t) = ∫
t

0

E(t′)dt′ = 1 − exp

(
− t

t

)
(3.29)

In Figures 3.4 and 3.5, the RTDs of ideal reactors are presented together with the

RTDof a real reactor.The ideal, continuously operated stirred tank reactor (CSTR)

has the broadest RTDbetween all reactor types.Themost probable residence time

for an entering volume element is t= 0. After a mean residence time (t = t), 37%

of the tracer injected at time t= 0 is still present in the reactor. After five mean

residence times, a residue of about 1% still remains in the reactor.This means that

at least five mean residence times must pass after a change in the inlet conditions

before the CSTR effectively reaches its new stationary state.

3.3.3

Cascade of Ideal CSTR

The cascade consists of a series of ideal continuously operated stirred tank reac-

tors, CSTR, connected one after the other. The outlet function of one CSTR is

F(t)

0

Real reactor

Ideal plug flow reactor

Ideal
CSTR

t t

Figure 3.4 Cumulative RTD of ideal and real reactors.
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E(t)

0

Ideal plug flow reactor

Real reactor

Ideal CSTR

t t

Figure 3.5 RTD curves of ideal and real reactors.

thus simultaneously the input function of the next one. As the transfer functions

of each reactor are identical and known, the distribution function of a cascade of

N tanks can be determined by successive convolution [4].

For a cascade of N tanks of equal space time 𝜏 i we obtain for the RTD:

E(t) = 1

ti

(
t

ti

)N−1

⋅
1

(N − 1)!
exp

(
− t

ti

)
(3.30)

With t = N ⋅ ti as mean residence time of the cascade:

tE(t) = E = N(N ⋅ 𝜃)N−1

(N − 1)!
exp(−N𝜃) (3.31)

The cumulative RTD curve can be calculated from this by integration.

F(t) = ∫
t

0

E(t′)dt′=
c(t)N
c0

= 1 − exp(−N𝜃)
[
1+N ⋅ 𝜃+ (N ⋅ 𝜃)2

2!
+ · · · (N ⋅ 𝜃)N−1

(N − 1)!

]
(3.32)

The RTD of ideal cascades with different numbers of tanks in series are given in

Figures 3.6 and 3.7. With increasing subdivision of the entire reactor volume into

ideally mixed individual elements, the residence time becomes more and more

uniform and the RTD curves become more symmetrical. The RTD of the cascade

of the total volume V approaches that of an ideal plug flow reactor of the same

volume and becomes identical with this when N goes toward infinity.
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Figure 3.6 Residence time distribution in a cascade of stirred tanks, parameter: number of

tanks. (Adapted from Ref. [4], Figure 4.20 Copyright © 2013, Wiley-VCH GmbH & Co. KGaA.)
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Figure 3.7 Cumulative residence time distribution curves of a cascade of stirred tanks,

parameter: number of tanks. (Adapted from Ref. [4], Figure 6.30b Copyright © 2013, Wiley-

VCH GmbH & Co. KGaA.)

3.4

RTD in Nonideal Homogeneous Reactors

3.4.1

Laminar Flow Tubular Reactors

Laminar flow is characterized by a parabolic velocity profile according to the

Hagen–Poisseuille law:

u(r) = umax

(
1 − r2

R2

)
= 2u(1 − y2); y = r

R
= radial distance

tube radius
(3.33)
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with umax, velocity in the center of the tube, and u the average value over the cross

section, which is equivalent to superficial velocity (u). If diffusion processes are

neglected (Dm = 0), the residence time, which a volume element spends in the

reactor, depends on its radial position in the tube.

t = L

u
= L

u0(1 − y2)
=

tmin

(1 − y2)
(3.34)

With tmin = 𝐿∕umax and t = 2 ⋅ tmin

The fraction of the total liquid that is in the position y and thus has a residence

time t can be deduced from the area of a circular ring with the radius R.

dV̇

V̇
= u(r) ⋅ 2𝜋 ⋅ r ⋅ dr

𝜋R2u
= 2 ⋅ u(r) ⋅ r ⋅ dr

u ⋅ R2
= E(t)dt (3.35)

With tmin/t= 1− y2, it follows that

E(t)dt =
2t2

min

t3
dt = t

2

2t3
dt (3.36)

and in dimensionless form

E = τ ⋅ E(t) = t ⋅ E(t) = 0.5𝜃−3 (3.37)

The F-curve is obtained by integration from tmin to final time t

F = ∫
t

tmin

E (t) dt = 1−
( τ
2t

)2

= 1 −
(

t

2t

)2

= 1 − 1

4𝜃2
(3.38)

The RTD in laminar flow reactor without radial diffusion is shown in Figure 3.8.

The first volume elements reach the reactor outlet after t∕2 (𝜃 = 0.5) and

approaches zero slowly.

Laminar flow

No diffusion

Real reactor

CSTRE
(θ

)

0.0
0.0

0.5

1.0

1.5

2.0

E
(θ

)

0

1

2

3

4

0.5 1.0 1.5 2.0

θ
2.5 3.0 3.5 4.0

Figure 3.8 Residence time distribution in a laminar flow reactor (without radial diffusion).



100 3 Real Reactors and Residence Time Distribution (RTD)

3.4.2

RTDModels for Real Reactors

The experimental determination of the RTD in real reactors has two purposes: to

characterize the reactor and to compare the behavior with that of an ideal system.

Unwanted short-circuit flows or dead zones within a reactor can be recognized

and can possibly be eliminated by constructional modifications. First of all, a real

reactor is classified according to the degree of backmixing. The degree of back-

mixing is between that of the ideal plug flow reactor (no backmixing) and the

ideal CSTR (complete backmixing). The proposed RTD model serves, in combi-

nation with the kinetic model, for the prediction of the reactor performance and

the achievable selectivity and yield of the target product.

3.4.2.1 Tanks in Series Model

During the discussion of RTD in a cascade of identical ideal stirred tank reactors,

we showed that the RTD becomes more narrow with the increasing number of

tanks and that forN approaching infinity, the RTD corresponds to that of an ideal

plug flow reactor. It is, therefore, possible to describe the RTD of a real system by

the imaginary subdivision of the total volume into N identical, completely mixed

cells as illustrated in Figure 3.9. As the degree of backmixing can be neglected

outside the cascade, the tanks in series model can be applied only for systems

closed for dispersion as shown in Figure 3.11b.

The RTD according to the cell model is described by Equation 3.39.

E(𝜃) = E = t ⋅ E(t) = N(N ⋅ 𝜃)N−1

(N − 1)!
exp(−N ⋅ 𝜃), 𝜃 = t∕t

E(t) = 1

t

(
t

t

)N−1
NN

(N − 1)!
exp

(
−N ⋅ t

t

)
(3.39)

The only model parameter is the number N of the cells in series, which can be

determined by a direct fitting of the measured and calculated distribution curves

or from themoments of the distribution.Themain properties of the tanks in series

model are presented in Figure 3.10.

The relationship between N and the variance according to the cell model is

given by

𝜎2
𝜃 = 1

N
(3.40)

V0
& V out

&

Vi = V /N;  = V /V0; i =  /N
•

   

Figure 3.9 The tanks in series model (schematic).
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Figure 3.10 Properties of the RTD curve for the tanks in series model.

The mean residence time obtainable from the first moment of the distribution

corresponds to the space time, if the density of the fluid is constant.

t = V

V̇0

= 𝜏 (ρ = constant) (3.41)

3.4.2.2 Dispersion Model

On the basis of an ideal plug flow reactor, a term considering the effective axial

dispersion is added to the model. The axial dispersion does not take place solely

throughmolecular diffusion, which is usually negligibly small, but mainly through

deviations from ideal plug flow, caused by turbulent velocity variations and eddies.

As all of these processes are linearly dependent on concentration gradients, they

can be lumped together and treated in analogy to Fick’s law. The axial dispersion

processes is described with Equation 3.42.

J = −Dax

dc

dz
(3.42)

with Dax as the axial dispersion coefficient.

TheRTDas described by the dispersionmodel can be derived from themass bal-

ance of a nonreacting species (tracer) over a volume element,ΔV = AcsΔz, where
Acs is the cross sectional area of the tube and z the axial coordinate. For constant

fluid density and superficial velocity u, we obtain:

AcsΔz
∂c
∂t

= u(cz − cz+Δz))Acs +
(
−Dax

∂c
∂z

||||z + −Dax

∂c
∂z

||||z+Δz
)
Acs

and with Δz → 0

∂c
∂t

= −u∂c
∂z

+ Dax

∂2c
∂z2

(3.43)

In dimensionless form Equation 3.43 becomes:

∂C
∂𝜃

= −∂C
∂Z

+ 1

Bo

∂2C
∂Z2

(3.44)
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with: 𝜃 = t

𝜏
; 𝜏 = L

u
; Z = z

L
; C = c

c0
; c0 =

n0
VR

; Bo = u⋅L
Dax

The total amount of a nonreactive tracer injected as a Dirac pulse at the reactor

entrance is given byn0.TheBodenstein number,Bo, is defined as the ratio between

the axial dispersion time, tax = L2∕Dax, and themean residence time, t = 𝜏 = L∕u,
which is identical to the space time for reaction mixtures with constant density.

For Bo → 0 the axial dispersion time is short compared to the mean residence

time resulting in complete backmixing in the reactor. For Bo → ∞ no dispersion

occurs. In practice, axial dispersion can be neglected for Bo ≥ 100.

To predict the response curve to an ideal pulse tracer injection at the entrance

of the tubular reactor, the boundary conditions at both ends have to be known.

Suppose the flow is undisturbed as it passes the inlet and the outlet boundaries

of the reactor. This situation is depicted in Figure 3.11a and called an open/open

system to dispersion. In contrary to this situation, ideal plug flow (Dax = 0) is con-

sidered outside of the boundaries as illustrated in Figure 3.11b. A sudden change

of the axial dispersion occurs at the inlet and the outlet of the reactor. This situa-

tion corresponds to a closed/closed system. In addition to these situations, vessels

open for dispersion at only one site can be discussed.

Only for an open/open system, an analytical expression exists to describe the

experimental response on a tracer pulse at the reactor inlet. The C-curve (see

Equation 3.27) is given in Equation 3.45 as function of the dimensionless time.

C(𝜃c) =
1

2

√
Bo

𝜋𝜃c
exp

(
−
(
1 − 𝜃c

)2
Bo

4𝜃c

)
; open∕open system (3.45)

with 𝜃c = t∕tc.

Open/open

system

Open/closed
system

(a)

(b)

(c)

Closed/closed
system

z = 0 z = L

z = 0 z = L

z = 0 z = L

z = 0 z = L

Figure 3.11 (a–c) Boundary conditions for a tubular reactor.
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The relation between the mean value of the measured distribution curve com-

pared to the mean of the E-curve, respectively, the space time for constant density

is given in Equation 3.46:

𝜃c =
tc
𝜏

=
tc

t
= 1 + 2

Bo
(constant density) (3.46)

The variance of the distribution E(t) is given by:

𝜎2
𝜃 =

𝜎2
c

𝜏2
=

𝜎2
c

t
2
= 2

Bo
+ 8

Bo2
(3.47)

Replacing t by themean value from the experimental curve leads to (Example 3.2):

t =
tc

(1 + 2∕Bo)
;⇒

𝜎2
c

t
2

c

= 𝜎2
𝜃c =

2∕Bo + 8∕Bo2

(1 + 2∕Bo)2
(3.48)

The predicted response curves to tracer pulse are shown in Figure 3.12 for differ-

ent values of the Bo. In contrast to the C-curves, E-curves are experimentally not

directly measurable. For the open/open boundary conditions follow [5]:

E(𝜃) = 1

2𝜃

√
Bo

𝜋𝜃
exp

(
−(1 − 𝜃)2Bo

4𝜃

)
; open∕open system (3.49)

With decreasing dispersion, increasing values of Bo, the distribution curves

become more and more symmetric and for Bo≥ 100 a Gaussian distribution

results with

C(𝜃) = E(𝜃) = 1

2

√
Bo

𝜋
exp

(
−(1 − 𝜃)2Bo

4𝜃

)
;Bo ≥ 100 (3.50)
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3.0

𝜃c = t / tc

Figure 3.12 Residence time distribution according to the dispersion model. (Adapted from

Ref. [6], Figure 27.23 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)
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Mean and variance are given by the following simple relations:

𝜃 = t

𝜏
= 1

𝜎2
𝜃 = 𝜎2

𝜏2
= 2

Bo
Bo ≥ 100, 𝜌 = const (3.51)

In addition, the distribution curves calculated by the dispersion and the cell mod-

els coincide, and the following equivalence between themodel parameters results.

N ≈ Bo

2
(3.52)

For closed/closed and closed/open vessels, analytical expressions for calculating

the response curves are not available. But the mean and the variance of the distri-

bution can be calculated with the following relations:

• Closed/closed system, constant density

𝜃 = t∕𝜏 = 1

𝜎2
𝜃 = 𝜎2

𝜏2
= 2

Bo
− 2

Bo2
(1 − exp(−Bo)) (3.53)

• Open/closed system, constant density

𝜃c =
tc
τ
=

tc

t
= 1 + 1

Bo

𝜎2
𝜃 =

σ2c
τ2

=
σ2c
t
2
= 2

Bo
+ 3

Bo2
(3.54)

To avoid errors because of the nonideal inlet pulses, the injected tracer can be

measured at the reactor inlet and outlet. The model parameter can be obtained

by the convolution of the inlet signal, g(t)in, with the RTD function and parameter

fitting.

g(t)out = g(t)in ⋅ E(t) (3.55)

Flow

Reactor length

Tr
a
ce

r 
co

n
ce

n
tr

a
tio

n

Signal input Signal: in Signal: out

Figure 3.13 RTD characteristics from two measurements (open/open system). (Adapted

from Ref. [6], Figure 27.24 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)
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The additive property of variances also allows to treat any measured tracer pulse

input and to extract from it the mean residence time and the variance of the mea-

sured outlet curve as indicated in Figure 3.13 and Equation 3.56.

Δt = tout − tin

Δ𝜎2 = 𝜎2
out − 𝜎2

in

Δ𝜎2

Δt2
= Δ𝜎2

𝜃 = 2

Bo
(3.56)

Example 3.2: Estimation of Bo-number frommeasured response curves.
On the basis of the experimental results presented in Example 3.1, estimate the

Bo supposing that the tubular reactor can be considered as (a) a system closed

for dispersion and (b) open for dispersion on both sides.

1) For a closed system experimental mean residence time corresponds to the

real residence time in the reactor and, for constant density of the fluid, to

the space time (Equation 3.53): tc = t = 𝜏 . The Bo can be calculated with

Equation 3.53:

𝜎2
c

t
2

c

= 𝜎2

t
2
= 𝜎2

𝜏2
= 𝜎2

𝜃 = 2

Bo
− 2

Bo2
(1 − exp(−Bo))

with
𝜎2
c

t
2

c

= 34, 208.6

(374.4)2
= 0.2184

Bo can be estimated by trial-and-error or by using an equation solver:

Bo= 8.0

2) For an open/open system we found the following relationship between

tc and t (Equation 3.48): t = 𝜏 = tc
(1+2∕Bo)

constant density. The Bo can be

obtained from:
𝜎2
c

t
2

c

= 0.2184 = 2∕Bo+8∕Bo2

(1+2∕Bo)2
. Estimation with an equation

solver results in Bo= 8.85 and t = 𝜏 = 374.4

1+2∕8.85
= 305.4s.

3.4.3

Estimation of RTD in Tubular Reactors

For the design of tubular reactors an a priori estimation of the axial dispersion

is indispensable. The dispersion in tubular reactors depends on the flow regime,

characterized by the Reynolds number, Re, and the physical properties of the fluid,

characterized by the Schmidt number, Sc. In addition, the presence of internal

packings influences the flow behavior and, in consequence, the axial dispersion of

the fluid.



106 3 Real Reactors and Residence Time Distribution (RTD)

In the literature, a large number of experimental data are available correlating

the axial Péclet number (Pe) with the Re and Sc. The axial Pe has as characteris-

tic parameter the diameter dt in tubular reactors, or the particle diameter dp in

packed bed reactors.

Peax =
u ⋅ dt
Dax

(tube) Peax =
u ⋅ dp

𝜀bed ⋅ Dax

(packed bed);u ∶ superficial velocity

(3.57)

The relation between the Bo characterizing the dispersion in the chemical reactor

and the Pe becomes:

Bo = Peax
L

dt
(3.58)

Correlations betweenPeax andRe, respectivelyRe ⋅ Sc, are summarized inTable 3.2

together with the definitions of the model parameters.The presented correlations

are compared with experimental results, indicated as gray area, in Figures 3.14

and 3.15.

In general, axial dispersion decreases with increasing values for Re and Re ⋅ Sc.
An exception is the behavior of empty tubes under laminar flow conditions.

For laminar flow a parabolic velocity profile develops. Under these conditions,

molecular diffusion in axial and radial directions plays an important role in

RTD. The diffusion in the radial direction tends to diminish the spreading

effect of the parabolic velocity profile, while in the axial direction the molecular

diffusion increases the dispersion. As a result the axial dispersion passes through

a minimum (Peax passes through a maximum) as function of Re ⋅ Sc = u ⋅ dt∕Dm

at Re ⋅ Sc =
√
χ (see Equation 3.59).

Table 3.2 Estimation of axial dispersion in tubular reactors [6].

Definitions: Peax =
u⋅dp

𝜀bed⋅Dax
;Rep = u⋅dp

ν ; dp = 6
Vp

Ap
;Re = u⋅dt

ν ; Sc = ν
Dm

;

Empty tube, laminar flow:

Dax = Dm + χ u2d2
t

Dm

1

Peax
= 1

Re⋅Sc
+ Re⋅Sc

χ ; L

dt
> 0.04

u⋅dt
Dm

; χ = 1

192
for circular tubes (3.59)

Empty tube, turbulent flow:

1

Peax
= 3⋅107

Re2.1
+ 1.35

Re1∕8
;Peax =

u⋅dt
Dax

(3.60)

Packed bed, gas flow:

1

Peax
= 0.3

Rep⋅Sc
+ 0.5

1+ 3.8
Rep ⋅Sc

; dt
dp

> 15; 0.008 < Rep < 400 (3.61)

0.28 < Sc < 2.2

Packed bed, liquid flow:

𝜀bed ⋅ Peax = 0.2 + 0.011 ⋅ Re0.48p ; dp

dt
> 15; 10−3 < Rep < 103 (3.62)
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Figure 3.14 Axial dispersion in fixed-bed reactors: (a) liquid flow and (b) gas flow [6]. Gray

area represents experimental results. (Adapted from [6], Figure 27.24 Copyright © 2012,

Wiley-VCH GmbH & Co. KGaA.)
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Figure 3.15 Axial dispersion in tubular reactors: (a) laminar flow and (b) turbulent flow.

Gray area represents experimental results. (Adapted from [6], Figure 27.25 Copyright © 2012,

Wiley-VCH GmbH & Co. KGaA.)

3.5

Influence of RTD on the Reactor Performance

For reactions with positive reaction order, the reactor performance will decrease

with the broadening of the RTD at constant mean residence time. This can easily

be demonstrated with Figure 3.16, where the conversion obtained in an ideal plug

flow reactor is plotted as function of the residence time. For a residence time of

15min the conversion in the ideal tubular reactor corresponds to X = 0.78 (point

A in Figure 3.16). Supposing the fluid is distributed in two equal parts in plug

flow reactors with residence times of 5 and 25min, resulting in the same mean

residence time of 15min.The corresponding conversions obtained are 0.39 (point

B1) and 0.92 (point B2). The mean conversion is indicated by point M on the line

relating B1 and B2. The mean conversion dropped to X = 0.66 as a result of the
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Figure 3.16 Influence of RTD on the performance of tubular reactors. First order reaction,

k= 0.1min−1.

RTD. The result can be generalized: RTD will diminish the conversion and the

specific reactor performance for reactions with a positive reaction order (n> 0).

3.5.1

Performance Estimation Based onMeasured RTD

In the case of known formal kinetics, the reactor performance can be determined

directly from the RTD. We can imagine, for example, that the RTD in the reactor

under consideration can be represented by a series of ideal plug flow reactors of

different lengths arranged in parallel through which the reaction mass flows at

equal rates (see Figure 3.17).

The conversion at the end of an individual tube with a defined residence time

can then be calculated easily. At the exit of the tubes, the various flows having

different residence times are mixed; the result is an average conversion or, respec-

tively, an average reactant concentration. When RTD and kinetics are known, it

follows that:{
average conversion

at reactor outlet

}
=
∑⎧⎪⎨⎪⎩

conversion in

volume element

with residence time ti

⎫⎪⎬⎪⎭ •
⎧⎪⎨⎪⎩

fraction of

total flow with

residence time ti

⎫⎪⎬⎪⎭
(3.63)

Figure 3.17 Real reactor behavior modeled by ideal tubular reactors arranged in parallel.
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X = ∫
1

0

X(t)⋅dF ≅
1∑
0

X(ti) ⋅ ΔFi

orwithdF = E(t)dt

X = ∫
∞

0

X(t) ⋅ E(t)dt ≅
∞∑
0

X(ti) ⋅ E(ti)Δti (3.64)

The presented method leads to exact values only for first order reaction (demon-

strated in Examples 3.3–3.5) or for reactions in completely segregated systems

(see Chapter 4). But, the proposedmethods can be used also for a good estimation

of reactor performances for reactions with n≠ 1.

Example 3.3: Estimation of conversion in real reactors.
Estimate the conversion for the first order reaction in a nonideal tubular flow

reactor. The residence time distribution is characterized by measured F func-

tion. The mean residence time can be calculated with Equation 3.14 applying

the trapezoidal method. Compare the result with the conversion that could

be obtained in ideal PFR and CSTR for the same mean residence of 10min.

−R1 = k ⋅ c1; k = 0.15min−1

Solution:

1) In Figure 3.18 the conversion is plotted as function of F(t) with values of

Table 3.3. The mean conversion is obtained estimating the area under the

X-F-curve. Numerical integration using the trapezoidal method results in

X =
1∑
0

X(t) ⋅ ΔFi = 0.72

F(t)
0.0 0.2 0.4 0.6 0.8 1.0

X
(t

)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.18 Conversion as a function of F(t).
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2) Ideal plug flow reactor:

X = 1 − exp(−k ⋅ 𝜏) = X = 1 − exp(−0.15 ⋅ 10) = 0.777

3) Continuous stirred tank reactor:

X = k ⋅ 𝜏
1 − k ⋅ 𝜏

= 0.15 ⋅ 10
1 + 0.15 ⋅ 10

= 0.6

Table 3.3 Residence time of a tubular reactor.

t (min) 0 5 7 8.75 10 15 20 25 30

F [−] 0 0.10 0.22 0.40 0.57 0.84 0.94 0.98 0.99

X [−] 0 0.394 0.503 0.583 0.632 0.777 0.865 0.918 0.950

Example 3.4: Conversion in laminar flow tubular reactors.
Estimate the conversion obtainable in a tubular reactor under laminar

flow conditions neglecting radial diffusion for the reaction presented in

Example 3.3. The mean residence time is t = 10min.

Solution:

The RTD in laminar flow reactors is given in Equations 3.36 and 3.38.

E(t)dt = t
2

2t3
dt;

F = ∫
t′

tmin

E(t)dt = 1−
(

t

2t

)2

With Equation 3.64 we obtain:

X = ∫
∞

0

X(t) ⋅ E(t)dt = ∫
∞

0

(1 − exp(−k ⋅ t) ⋅ t
2

2t3
dt

Numerical integration between 0< t< 100min leads to a mean conversion of

X = 0.69.

3.5.2

Performance Estimation Based on RTDModels

In the case of identical mean residence times for different tubular reactors, the

conversion and selectivity of a complex reaction will depend on the RTD in the

reactor. With increasing backmixing, the reactor approaches the behavior of an

ideal CSTR. Accordingly, the performance of any tubular reactor will decrease

with increasing RTD at a constantmean residence time for reactionswith formally

positive reaction orders.
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3.5.2.1 Dispersion Model

Backmixing in a tubular reactor has a direct influence on the axial concen-

tration profile. With decreasing axial dispersion time compared to the space

time (decreasing Bo) the concentration profile flattens and finally a uniform

concentration results (Bo=> 0). This is demonstrated in Figure 3.19 for an

irreversible first order reaction at DaI = k ⋅ τ= 3.

For reactions with positive reaction order, the flattening of concentration profile

diminishes the mean reaction rate in the tubular reactor and the conversion will

decrease at constant space time, constant DaI, respectively.

On the basis of the dispersion model, the following mass balance for a small

volume element results:

u
dc1
dz

− Dax

d2c1
dz2

− R1 = 0 (3.65)

or, respectively, in dimensionless form:

−dX

dZ
−

𝜏(R1)
c1,0

+
Dax

u ⋅ L
d2X

dZ2
= 0 (3.66)

Applying Danckwerts’ boundary conditions [2] Equation 3.66 can be solved for an

irreversible first order reaction (Equation 3.67) [6].

1 − X =
4a exp(Bo∕2)

(1 + a)2 exp(aBo∕2) − (1 − a)2 exp(−aBo∕2)
with a =

√
1 + 4DaI∕Bo (3.67)

The conversion is a function ofDaI and the axial dispersion characterized by Bo as

shown in Figure 3.20. With decreasing Bo the conversion diminishes at constant

DaI (constant space time). At DaI = 5 a conversion of X = 0.99 is attained in a

plug flow reactor (Bo=∞), whereas the conversion drops to X = 0.83 for Bo= 0

(continuous stirred tank reactor).
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Figure 3.19 Influence of Bo on the axial concentration profile. First order reaction, DaI= 3.

(Adapted from Ref. [6], Figure 27.26 Copyright © 2012, Wiley-VCH GmbH & Co. KGaA.)
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Figure 3.20 Conversion as function of DaI and Bo (first order reaction).

3.5.2.2 Tanks in Series Model

In Section 3.4.2, it was shown that the RTD in real reactors can be described with

a series of ideally continuous stirred tank reactors. The scheme of such a cascade

of continuous stirred tanks is shown in Figure 3.21.The total volume is divided in

N equal sized stirred vessels.

For reactions with positive order, the performance of such a cascade reactor

has a specific function between an ideal plug flow reactor and a single CSTR.This

can easily be understood comparing the reactant concentration as function of the

reactor volume. In a PFR the concentration and, therefore, the transformation rate

diminishes with increasing volume from the reactor entrance to the outlet. The

low specific performance of a CSTR can be explained by the overall low concentra-

tion corresponding to the outlet concentration. In the cascade, the concentration

diminishes stepwise from one vessel to the next. This is shown schematically for

a series with N = 5 vessel in Figure 3.22. With increasing number of equal sized

vessels the concentration profile approaches that of a PFR.

The conversion in each vessel can be determined with the material balance for

continuous ideally mixed vessels (see Section 2.2.3).

V̇0 c1,0 − V̇out c1,out = V (−R1) (steady state) (3.68)

V0

•

c1,0

Vi, 𝜏i Vi, 𝜏i Vi, 𝜏i Vi, 𝜏i

V0

•

c1,1

V0

•

c1,2

V0

•

c1,i

V0

•

c1,(N–1)

V0

•

c1,N

Figure 3.21 Cascade of continuous stirred tank reactors.
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Figure 3.22 Concentration profile in a cascade with five stages in comparison with a PFR

and a single CSTR.

Supposing an irreversible first order reaction and constant fluid density (𝛼 = 0),

we get for the first vessel:

V̇0(c1,0 − c1,1) = V1 ⋅ k c1,1; c1,0 − c1,1 =
V1

V̇0

⋅ k c1,1

c1,1

c1,0
= 1

1 + k𝜏1
(3.69)

The outlet concentration of the first vessel corresponds to the inlet concentration

of the second one. We finally find:

c1,1

c1,0
=

c1,2

c1,1
=

c1,3

c1,2
=

c1,i

c1,i−1
· · ·

c1,N

c1,N−1
= 1

1 + k𝜏i
; 𝜏1 = 𝜏2 = · · · = 𝜏i =

𝜏

N
(3.70)

c1,N

c1,0
= 1 − X = 1

(1 + k𝜏∕N)N
= 1

(1 + DaI∕N)N
(3.71)

In Figure 3.23 the unreacted fraction of the key reactant (f1 = 1 − X) is plotted

against the Damköhler number for different stirred tanks in series. For N → ∞
the final conversion corresponds to that of an ideal PFR.

0 2 4 6

(a) (b)

PFR

Dal

8 10

N = 20

N = 10

N = 5

N = 3

N = 2

N = 1

12
0,0001

0,001

0,01

0,1

1

f 1
 =

 1
 –

 X

0 20 40 60

PFR

Dal = kc1,0 𝜏

80 100

N = 10
N = 5

N = 3

N = 2

N = 1

120
0,01

0,1

1

f 1
 =

 1
 –

 X

Figure 3.23 Unreacted fraction as function of DaI and N: (a) first order reaction and (b)

second order reaction.
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Example 3.5: Estimation of conversion based on RTD-models.
A first order reaction is carried out in the real reactor with an RTD character-

ized in Examples 3.1 and 3.2. Under reaction conditions the rate constant is

found to be k = 2.67 ⋅ 10−3 s−1. Estimate the conversion based on the kinetics

and the experimental RTD and compare the results with predictions based on

the cell-in-series and the dispersion model.

Solution:

Following the model of parallel arranged plug flow reactors, the mean con-

version in a real reactor can be estimated with Equation 3.64

X = ∫
∞

0

X(t)⋅E(t)dt ≅
∑

X(ti)⋅E(ti)Δti

In Example 3.1 we calculated C(𝜃) and plotted it in Figure 3.3. To apply

Equation 3.64 we have to multiply C(𝜃) with the mean residence time and

to calculate the conversion as function of time with the given kinetics. We

suppose a closed/closed system. Thus C(t)=E(t). The result is shown in the

following table:

T (s) 0 120 240 360 480 600 720 840 960

E(t) ⋅ 103 0 1.083 2.083 2.083 1.667 0.833 0.417 0.167 0

X(t) 0 0.274 0.473 0.618 0.722 0.799 0.854 0.894 0.923

Applying Equation 3.64 results in X = 0.59.

For a first order reaction the conversion can be calculated with the disper-

sion model (Equation 3.67). As the model supposes a closed/closed system, we

obtain with Bo= 8 and t = 374.4 s ⇒ DaI = 2.67 ⋅ 10−3 ⋅ 374.4 = 1; X = 0.60.

For the tanks in series model we estimate the number of cells with the Bo:

N ≅ Bo∕2 = 4. Applying Equation 3.71 for N = 4 tanks in series we obtain

with DaI = 1:

f1,N = 1 − X = 1(
1 + k𝜏

N

)N
= 1(

1 + 1

3.5

)3.5
= 0.415;X = 0.59

The results demonstrate that the predicted mean conversion can be calculated

with one of the discussed methods giving roughly identical results.

In complex reaction systems, axial dispersion will also affect the product yield

and selectivity attainable in real tubular reactors. This will be demonstrated for

first order consecutive reactions.

A1

k1
−−→A2

k2
−−→A3; κ =

k2
k1
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Figure 3.24 First order consecutive reactions. Yield of the intermediate as function of

space time.

The yield of the intermediate product Y2 =
c2
c1,0

depends on the space time and the

ratio of the rate constants, 𝜅. It followswithDaI1, theDamköhler number referred

to the first reaction (Figure 3.24):

Y2 =
1

κ − 1
[exp(−DaI1) − exp(−κDaI1)] (3.72)

The product yield first increases up to amaximum value (Y 2, max) and falls down

to zero forDaI1 =>∞.Themaximum is attained at the optimal time, respectively,

Da-number DaI1, op. At higher or lower values the yield diminishes. Therefore, it

is evident that the highest yield can be reached only in an ideal plug flow reactor

with a space time corresponding toDaI1, op. Any RTD in real tubular reactors will

never allow themaximumyield of the intermediate.This is demonstrated for three

different values of 𝜅 = k2/k1 in Figure 3.25. The real tubular reactor is modeled

with the cell model.

3.6

RTD in Microchannel Reactors

Flow in microchannels with diameters between 10 and 1000 μm is mostly laminar

and has a parabolic velocity profile. Therefore, the molecular diffusion in axial

and radial directions plays an important role in RTD. The diffusion in the radial

direction tends to diminish the spreading effect of the parabolic velocity profile,

while in the axial direction the molecular diffusion increases the dispersion [7, 8].

With the so-called Taylor-Aris correlation the axial dispersion coefficient can be

predicted based on the molecular diffusion coefficient Dm, the mean velocity of

the stratified flow, the hydraulic diameter of the microchannel, and the geometry
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Figure 3.25 Maximum yield of intermediate product referred to maximum yield in PFR as

function of axial dispersion (cell model).

of the cross section:

Dax = Dm + χ ⋅
u2d2

h

Dm

(3.73)

with 𝜒 = 1/119 for square and 𝜒 = 1/192 for circular cross section.

The dispersion in tubular reactors can be estimated for stratified flow in

microchannels by introducing Equation 3.73 in the Bo-number.

1

Bo

Dax Dm L

Dm L

dh
2

L2

u

u · L u
τ/ tD,ax tD,rad/τ

= = +–
χ

(3.74)

The first term in Equation 3.74 corresponds to the ratio between space time and

characteristic axial molecular diffusion time (tD,ax = L2∕Dm). The second term

corresponds to the ratio between radial diffusion time and space time. Molecu-

lar diffusion coefficients are in the order of 10−5 m2 s−1 for gases and 10−9 m2 s−1

for liquids. For microchannels with the length of several centimeter and mean

residence times of seconds, axial diffusion can be neglected. In consequence, the

dispersion in the channel is determinedmainly by the ratio between themean res-

idence time in the reactor and the characteristic radial diffusion time. It follows:

Bo ≅ 1

χ
⋅
Dm

d2
h

⋅
L

u
;

Bo ≅ 192 ⋅
Dm

d2
t

⋅
L

u
= 48

𝜏

tD,rad
, circular tube

Bo ≅ 119 ⋅
Dm

d2
h

⋅
L

u
= 30

𝜏

tD,rad
, square channels (3.75)
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3.6.1

RTD of Gas Flow in Microchannels

Axial dispersion can be neglected (Bo ≥ 100), if the space time is at least two times

the radial diffusion time. Accordingly, axial dispersion of gases in microchannels

can be neglected, if their diameters are less than 1000 μm and the space time is

longer than 0.1 s. This could also be proved experimentally.

The approach can also be used for multichannel reactors. Because of the small

volume of a single channel, many channels have to be used in parallel to obtain

sufficient reactor throughput. A uniform distribution of the reactionmixture over

thousands ofmicrochannels is necessary to obtain an adequate performance of the

microstructured reactor. Flow maldistribution will enlarge the RTD in the multi-

tubular reactor and lead to a reduced reactor performance along with reduced

product yield and selectivity. Therefore, several authors have presented design

studies of flow distribution manifolds [9–13].

Besides maldistribution, small deviations in the channel diameter introduced

during the manufacturing process cause an enlargement of the RTD. The devi-

ations may also be because of a nonuniform coating of the channel walls with

catalytic layers. If the number of parallel channels is large (N > 30), a normal dis-

tribution of the channel diameters with a standard deviation 𝜎 can be assumed.

The relative standard deviation, 𝜎d = 𝜎d∕dt influences the pressure drop over the

micro-reactor [11]:

Δp =
128 ⋅ 𝜂 ⋅ V̇tot ⋅ L

𝜋 ⋅ N ⋅ d
4

t ⋅ (1 + 6𝜎2
d
)

(3.76)

The relation (3.76) shows that a variation of the channel diameter leads to a

decrease of the pressure drop at a constant overall volumetric flow. As the

pressure drop for each channel is identical, the variation of the diameter results

in a variation of the individual flow rates, V̇i
, and the residence time, 𝜏i = Vi∕V̇i.

Supposing plug flow in each channel (Boi → ∞), the overall dispersion is

inversely proportional to the relative standard deviation and can be estimated by

Equation 3.77 [11]:

Boreactor ≅
d2
t

2𝜎2
d

(3.77)

In consequence, the plug flow behavior in a multichannel micro-reactor

(Boreactor ≥ 100) can be assumed only if the relative standard deviation is
𝜎d
dt

≤ 0.07.

In conclusion, narrowRTD inmultichannelmicroreactors can only be expected,

when the design of gas distributer in front of the microchannel array and the

design of the collector behind the channels are optimized.

A difficulty for the experimental characterization is the fact that the fluid distri-

bution in the distributer and collector are comprised in the experimental distri-

bution curve. As the flow in the inlet and outlet regions can be complex, correct
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modeling of the complete microdevice with the presented models is hardly possi-

ble [14].

An example for measured RTD of gas flow in a stainless steel microstructured

device (Figure 3.26) is shown in Figure 3.27.The experimentswere carried outwith

an array of 340 rectangular channels of 300× 240 μm, which were coated with an

alumina catalyst. The results prove that the coating was very regular and did not

deteriorate the flow behavior. The experimental results can be described satisfac-

torily with the dispersion model with a Bodenstein number of Bo= 70. Compared

to predicted RTD for single channels with the Taylor-Aris correlation, the Bo is

quite low.This indicates the important influence of the inlet and outlet regions on

the overall dispersion. A detailed study of the influence of the gas distributer and

collector design on the RTD confirms the discussed findings [14].

3.6.2

RTD of Liquid Flow in Microchannels

Whereas radial diffusion times for gases (Dm ≅ 10−5 m2 s−1) inmicrochannels is in

the order of 10−2 s, the radial diffusion time for liquids (withDm ≅ 10−9 m2 ≅s−1) is
in the order of seconds even in microchannels with diameters of 100 μm. To reach

a narrow RTD (Bo≥ 100) in stratified flow, long residence times of 𝜏 ≥ 8 ⋅ 108 ⋅ d2
h

(in seconds) are necessary. But, in contrast to the estimations based on the Taylor-

Aris correlation (Equation 3.75), experimentally determined RTD are often much

20 mm 2.5 mm

2
0
 m

m
 

Inlet

Outlet

Microchannel
array

Collector Distributor

E(t)coll E(t)distE(t)channel

Figure 3.26 Drawing of a microstructured multichannel reactor. Channel: 300× 240 μm. 34

channels/plate; 10 plates. (Institut für Mikrotechnik Mainz, IMM) [15]. (Adapted with permis-

sion from Elsevier.)
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Figure 3.27 Measured residence time distribution in a microstructured device (Figure 3.26):

340 microchannels, space time 𝜏 = 2.5 s. [14] (Adapted with permission from Elsevier.)
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4 4
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T

Figure 3.28 Set-up of a microchannel system for ionic liquid synthesis. 1. Syringe pump,

2. preheating coil, 3. micromixer, 4. delaypipe. Adapted from Ref. [16] with permission from

Elsevier.)

more narrow. An example is the experimentally determined RTD obtained in a

microstructured device for the synthesis of ionic liquids [16]. The experimental

set-up used is shown in Figure 3.28.The installation is typical for small-scale con-

tinuous chemical synthesis. It consists of high-precision pumps for dosing the

reactants, preheater, amicromixer, and a delay channel. An efficientmicromixer is

essential to ensure fast mixing down to themolecular scale at very short residence

times to avoid preliminary reactions eventually accompaniedwith an uncontrolled

temperature increase.The transformation of the reactants occurs in the following

delay pipe, where residence times of several minutes can be attained. The micro-

tubular reactor consists of a 1.13m long capillary in the formof a coil with an inner

diameter of 1.8mm. As the studied reaction is of second order and high conver-

sion is warranted, uniform residence time is indispensable for high product yield

and reactor performance.
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Figure 3.29 F-curve measured by a step-stimuli response and predicted with dispersion

model (Equation 3.78. Experimental values taken from Ref. [16].)

The RTD in the tubular reactor was determined experimentally with water as

fluid and Brilliant Blue dye as tracer. The tracer was introduced at the reactor

inlet in the form of a step function. The concentration of the dye was measured

with an UV-vis spectrometer and the response curve is given as F-curve. As the

experimental F-curve shown in Figure 3.29 is very steep, a low axial dispersion

can be expected. Therefore, RTD will be described with the dispersion model

supposing small deviation from plug flow (Equation 3.50). The F-curve valid for

small dispersion (Bo≥ 100) can be obtained by integrating the RTD given by E(𝜃)

(Equation 3.50).

F = ∫
𝜃

0

E(𝜃′)d𝜃′ = 1

2

{
erf

[√
Bo∕4 ⋅

(
t

t
− 1

)]
− erf(

√
Bo∕4)

}
(3.78)

The mean residence time, t, and the Bo can be obtained by fitting the F-curve

(Equation 3.78) to the experimental results.

For the example shown in Figure 3.29 a mean residence time of 402 s± 0.5%

and a Bo of 150± 13% is obtained. This confirms the small dispersion and allows

considering the reactor as an ideal plug flow reactor.

On the basis of theTaylor-Aris correlation (Equation 3.75) a Bodenstein number

ofBo≅ 24 is expected.The experimental results suggest that efficient radialmixing

occurs, which may be explained by the used capillary shaped as a coil provoking

enhanced radial mixing.

Narrow RTD in an array of plastic capillaries coiled in a spiral form were

reported by Hornung andMackley [17].The array consisted of up to 19 capillaries

in parallel with an inner diameter of 223 μm and a length of 10m. The space

time was varied between 30 s and 1.5 h. Experiments using optical fibers for the

detection of a tracer dye at the entrance and outlet of the capillaries confirmed

near plug flow behavior with Bo up to 220 depending on the flow rate, which

could be predicted from the Taylor-Aris correlation for single tubes. Remarkable
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is that the inlet flow is evenly distributed over the 19 capillaries thus avoiding

maldistribution and broadening of the RTD (Figure 3.30).

As mentioned above, radial mixing is crucial to get narrow RTD. Therefore,

the use of passive mixer helps equalizing the radial concentration in the laminar

flow domain. It is known that static mixer allows to obtain narrow RTD in

tubular reactors even with high viscous media [18]. The beneficial effect of radial

mixing can also be expected in microstructured mixers. Bošković et al. [19,

20] studied the RTD in three different mixing devices: serpentine channel, split

and recombine, and staggered herringbone reactors (SHR) (Table 3.4). They

developed and applied an impulse-response technique to characterize the mixers

in a wide range of Re between 0.3<Re< 110. Serpentine channel reactor (SCR)

and split and recombine reactor (SAR) demonstrated a similar behavior. With

increasing volumetric flow the variance diminishes. This is shown for the SCR in

Figure 3.31 as an example.

Radial mixing in SCR and SAR becomes important mainly at Re> 30. The

Bo-number at Re< 30 is relative low with values in the range of 20<Bo< 30

(Figure 3.32). Within this domain, radial mixing seems to be mainly governed

by molecular diffusion. For Re> 30 Bo increases drastically and reaches values

of Bo≅ 100 at Re≅ 100. In spite of the fact that the space times under these

conditions are in the order of 1 s, plug flow behavior is obtained. This fact is quite

important for fast chemical transformations leading to high conversions at short

residence times.

The SHR shows different RTD characteristics compared to the previous dis-

cussedmicromixers. Even at very low Re, themain peak of the distribution is quite

narrow and symmetric. But, a flat and long tailing is observed [20]. The behavior

suggests the presence of a dynamic phase with near plug flow behavior and a
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θ = t /τ

Figure 3.30 Cumulative RTD in a 19-capillary spiral microdevice at 1mlmin−1. Experimen-

tal results compared to the dispersion model. (Values taken from Ref. [17].)
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Table 3.4 Characteristics and flow conditions for RTD studies [20].

Split and recombine

reactor

Serpentine channel

reactor

Staggered herringbone

reactor

Hydraulic diameter

dh (μm)

400 600 400

Total channel length

Lc (mm)

164 233 100

Flow rate V̇o

(mlmin−1)

0.025 ≤ V̇o ≤ 3 0.01 ≤ V̇o ≤ 3 0.01 ≤ V̇o ≤ 3

Re [−] 0.3≤Re≤ 83 0.4≤Re≤ 111 0.4≤Re≤ 111

Adapted with permission from Wiley.

3.000 ml min–1

1.500 ml min–1

0.500 ml min–1

0.250 ml min–1

0.010 ml min–1
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 (

θ)
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Figure 3.31 Experimentally obtained RTDs of the serpentine channel reactor (SCR).

(Adapted from Ref. [20] with permission from Wiley).

very small stagnant phase located in the grooves of the structure. The exchange

between these dead zones and the dynamic phase is governed by molecular diffu-

sion, which explains the long tailing.

3.6.3

RTD of Multiphase Flow in Microchannels

Because of the laminar flow in microchannels and the small diffusion coefficient

in the order of 10−9 m2 s−1, narrow RTD in straight channels at low Re-numbers

are not easy to obtain. As the radial diffusion time is long, high axial dispersion is

particularly important at short residence times.
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Figure 3.32 Evolution of Bo as function of Re for SAR and SCR micro-mixer. (Data taken

from Ref. [20].)

A way to overcome problems related to RTD is the use of multiphase flow

(gas–liquid, liquid–liquid). Laminar flow in microchannels permits the easy

formation of fluid–fluid slugs (see Chapter 7). Under these conditions, the

reaction mixture is present in the form of segments, which are separated by gas

bubbles or by a second liquid, immiscible with the reaction phase. In this way,

the reacting segments behave as a series of small batch reactors traveling through

the channel, thus eliminating the problem of axial dispersion as found in laminar

single-phase flow reactors at short residence times. But, the indicated situation is

strictly true only if the different segments are completely disconnected from each

other. Therefore, the reacting phase must be dispersed in a continuous carrier

phase, which is wetting the microchannel walls. This situation is illustrated in

Figure 3.33. A cross-junction with three inlets and one outlet is a suitable device

for generating regular slug flow. The reactants are introduced in two opposite

inlets while the immiscible carrier fluid is introduced through the third inlet

generating slug flow.

The experimental proof of this concept is presented by Trachsel et al. [22].They

used a microstructured device composed of meandering channels with rectan-

gular cross section, 0.4mm wide, 0.115mm high, and 1063mm long as shown in

Figure 3.34.

The authors used a fluorescently labeled tracer, which was injected as impulse.

The response of the inlet signal could be followed at different distances down-

stream from the injection point. Two-phase experiments were carried out by

injecting gas as a separating fluid and the results were compared with RTD

obtained with single-phase flow. Typical RTD curves for single and multiphase

flow are reproduced in Figure 3.35. The experimental results are fitted to the

dispersion model supposing open/open boundary conditions (see Figure 3.11,

Equation 3.45).
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circulations
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(b)

Figure 3.33 Biphasic flow in microchannel for narrow RTD: (a) schematic illustration and

(b) monochrome snapshot of slug flow. (Adapted from Ref. [21] with permission from

Elsevier.)

Liquid inletOutlet Gas inlet

10 mm

Figure 3.34 Scheme of the microchannel device for RTD studies. (Adapted from Ref. [22]

with permission from Elsevier.)

The two-phase flow leads to significant narrower RTD with a Bodenstein num-

ber of Bo= 308± 3, whereas Bo= 83± 2 was estimated from the results obtained

for single cell flow (Figure 3.35).

In the presented study, liquid segments are separated by gas bubbles. But the

liquid wets the channel wall and forms a small film, which allows communication

between the segments and, as a consequence, enables axial dispersion.

The influence of wall film on the RTD in segmented flow was studied in detail

by Kuhn et al. [23]. The authors used microreactors with a square section of

0.4× 0.4mm and a length of 750mm.The walls of the silicon-based microdevices

were modified by growing a thin silicon oxide layer to get a hydrophilic surface
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Figure 3.35 Comparison of mea-

sured RTD with dispersion model

(Equation 3.45). Segmented flow:

superficial velocity uliquid = 3.6mms−1,

ugas = 25.2mms−1, 𝜏 = 59 s. Single-phase

flow: uliquid = 14.9mms−1, 𝜏 = 71 s. (Adapted

from Ref. [22] with permission from Elsevier.)
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Figure 3.36 Sketch of the phase behavior depending on the wettability of the surface.

or by coating it with a thin PTFE (polytetrafluoroethylene) layer for obtaining

a hydrophobic surface. Toluene and water were used as biphasic system. The

RTD of the water phase was studied by injecting a pulse of a sodium benzoate

solution at the reactor entrance. The response curve was determined by UV-vis

spectroscopy. In the silicon-oxide-coated microchannels, water constitutes the

continuous phase in which toluene is dispersed.Thewater segments, separated by

toluene slugs, form an aqueous wall film, which allows communicating with each

other through axial dispersion. In contrast, in the PTFE-coated microchannel,

water is dispersed in the continuous toluene phase. In consequence, the water



126 3 Real Reactors and Residence Time Distribution (RTD)

θ
0.6 0.8 1.0 1.2 1.4

E
(θ

)

0

1

2

3

4

5

6

Bo = 330 ± 18

(a)
θ

0.6 0.8 1.0 1.2 1.4

E
(θ

)

0

1

2

3

4

5

7

6 Bo = 520 ± 33

(b)

Figure 3.37 Residence time distributions

for (a) silicon oxide and (b) PTFE coated

microchannels. Flow rate: 12.5 μl min−1 water,

12.5 μl min−1 toluene. Solid lines represent

the fit of the dispersion model Equation 3.50.

(Values taken from Ref. [23]. Adapted with

permission Kuhn et al. [23]. Copyright (2011)

American Chemical Society.)

segments are isolated and can no longer communicate with each other. The

described situations are illustrated schematically in Figure 3.36.

In Figure 3.37 the measured RTD for hydrophilic and hydrophobic microchan-

nels are shown. The experimental results can be described with the dispersion

model valid for small dispersion (Equation 3.50).

The resulting Bo-numbers estimated by curve fitting was found to be

Bo= 300± 18 for the hydrophilic channels and Bo= 520± 33 for the hydrophobic

channels.

The results confirm the beneficial use of segmented flow for realizing plug flow

behavior inmicrostructured reactors. NarrowRTD can be obtained even for short

residence times, allowing high performance and product yields for fast chemical

reactions.

3.7

List of Symbols

Symbols Significance Unit

c(t) Concentration at time t molm−3

E(t) Probability function s−1

E Dimensionless probability function —

F F-curve in RTD —

g(t) Convolution function —

N Number of tanks in cascade —

n, ninj Number of moles, amount of non-reacting tracer

injected

mol
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Symbols Significance Unit

ṅi, ṅi,0, ṅi,L Molar flow rate of species i, at reactor inlet, at
length L (outlet)

mol s−1

sk Skewness —

t, tc Mean residence time, mean residence time from

measured RTD curve for open or semi-open systems

s

u, u(r), umax Average velocity over cross section, velocity at radial

position r, velocity in the center of the tube in

laminar flow

ms−1

X Mean conversion for multichannel reactor —

y Ratio of radial distance to tube radius —

Δt Time interval s

𝜇1, 𝜇2 Moments of the distribution density function —

𝜎2, 𝜎2c variance of the distribution, variance from

measured RTD curve for open or semi-open systems

s2

𝜎2𝜃 , 𝜎
2
𝜃c variance of the distribution, variance from

measured RTD curve for open or semi-open systems

—

𝜃c Dimensionless time from measured RTD curve for

open or semi-open systems

—

𝜏 i Space time of reactor i s

𝜒 Geometrical constant —
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