SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE

WILEY SERIES IN SYSTEMS ENGINEERING AND MANAGEMENT

Andrew P. Sage, Editor

A complete list of the titles in this series appears at the end of this volume.

SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE

SECOND EDITION

Alexander Kossiakoff William N. Sweet Samuel J. Seymour Steven M. Biemer

A JOHN WILEY & SONS, INC. PUBLICATION

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Systems engineering : principles and practice/Alexander Kossiakoff ... [et al.].—2nd ed. p. cm.—(Wiley series in systems engineering and management; 67) Rev. ed. of: Systems engineering: principles and practices/Alexander
Kossiakoff, William N. Sweet. 2003.
ISBN 978-0-470-40548-2 (hardback)
1. Systems engineering. I. Kossiakoff, Alexander, 1945– II. Title. TA168.K68 2010 620.001'171–dc22

2010036856

Printed in the United States of America

oBook ISBN: 9781118001028 ePDF ISBN: 9781118001011 ePub ISBN: 9781118009031

10 9 8 7 6 5 4 3 2 1

To Alexander Kossiakoff,

who never took "no" for an answer and refused to believe that anything was impossible. He was an extraordinary problem solver, instructor, mentor, and friend.

Samuel J. Seymour

Steven M. Biemer

CONTENTS

LIST	of I	LLUSTRATIONS	xiii
LIST	of t	ABLES	xvii
PRE	FACE	TO THE SECOND EDITION	xix
PRE	FACE	TO THE FIRST EDITION	xxiii
PAR	RT I	FOUNDATIONS OF SYSTEMS ENGINEERING	1
1	SYS	TEMS ENGINEERING AND THE WORLD OF MODERN	
		TEMS	3
	1.1	What Is Systems Engineering?	3
	1.2	Origins of Systems Engineering	5
	1.3	Examples of Systems Requiring Systems Engineering	10
	1.4	Systems Engineering as a Profession	12
	1.5	Systems Engineer Career Development Model	18
	1.6	The Power of Systems Engineering	21
	1.7	Summary	23
		Problems	25
		Further Reading	26
2	SYS	TEMS ENGINEERING LANDSCAPE	27
	2.1	Systems Engineering Viewpoint	27
	2.2	Perspectives of Systems Engineering	32
	2.3	Systems Domains	34
	2.4	Systems Engineering Fields	35
	2.5	Systems Engineerng Approaches	36
	2.6	Systems Engineering Activities and Products	37
	2.7	Summary	38
		Problems	39
		Further Reading	40
			vii

3	STRI	JCTURE OF COMPLEX SYSTEMS	41
	3.1	System Building Blocks and Interfaces	41
	3.2	Hierarchy of Complex Systems	42
	3.3	System Building Blocks	45
	3.4	The System Environment	51
	3.5	Interfaces and Interactions	58
	3.6	Complexity in Modern Systems	60
	3.7	Summary	64
		Problems	66
		Further Reading	67
4	THE	SYSTEM DEVELOPMENT PROCESS	69
	4.1	Systems Engineering through the System Life Cycle	69
	4.2	System Life Cycle	70
	4.3	Evolutionary Characteristics of the Development Process	82
	4.4	The Systems Engineering Method	87
	4.5	Testing throughout System Development	103
	4.6	Summary	106
		Problems	108
		Further Reading	109
5	SYS	TEMS ENGINEERING MANAGEMENT	111
	5.1	Managing System Development and Risks	111
	5.2	WBS	113
	5.3	SEMP	117
	5.4	Risk Management	120
	5.5	Organization of Systems Engineering	128
	5.6	Summary	132
		Problems	133
		Further Reading	134
PAR		CONCEPT DEVELOPMENT STAGE	137
6		DS ANALYSIS	139
	6.1	Originating a New System	139
	6.2	Operations Analysis	146
	6.3	Functional Analysis	151
	6.4	Feasibility Definition	153

	6.5	Needs Validation	155
	6.6	System Operational Requirements	158
	6.7	Summary	162
		Problems	163
		Further Reading	164
7	CON	CEPT EXPLORATION	165
	7.1	Developing the System Requirements	165
	7.2	Operational Requirements Analysis	170
	7.3	Performance Requirements Formulation	178
	7.4	Implementation of Concept Exploration	185
	7.5	Performance Requirements Validation	189
	7.6	Summary	191
		Problems	193
		Further Reading	194
8	CON	CEPT DEFINITION	197
	8.1	Selecting the System Concept	197
	8.2	Performance Requirements Analysis	201
	8.3	Functional Analysis and Formulation	206
	8.4	Functional Allocation	212
	8.5	Concept Selection	214
	8.6	Concept Validation	217
	8.7	System Development Planning	219
	8.8	Systems Architecting	222
	8.9	System Modeling Languages: Unified Modeling Language (UML) and Systems Modeling Language (SysML)	228
	8.10	Model-Based Systems Engineering (MBSE)	228 243
	8.10	System Functional Specifications	243 246
	8.12	Summary	240 247
	0.12	Problems	250
		Further Reading	250
9		ISION ANALYSIS AND SUPPORT	255
)			
	9.1 9.2	Decision Making Modeling throughout System Development	256 262
	9.2 9.3	Modeling for Decisions	262
	9.3 9.4	Simulation	203
	2.4	Sinulanon	212

CONTENT	S
---------	---

282

	9.6	Review of Probability	295
	9.7	Evaluation Methods	299
	9.8	Summary	308
		Problems	311
		Further Reading	312
PAR	T III	ENGINEERING DEVELOPMENT STAGE	315
10	ADV	ANCED DEVELOPMENT	317
	10.1	Reducing Program Risks	317
	10.2	Requirements Analysis	322
	10.3	Functional Analysis and Design	327
	10.4	Prototype Development as a Risk Mitigation Technique	333
	10.5	Development Testing	340
	10.6	Risk Reduction	349
	10.7	Summary	350
		Problems	352
		Further Reading	354
11	SOF	WARE SYSTEMS ENGINEERING	355
	11.1	Coping with Complexity and Abstraction	356
	11.2	Nature of Software Development	360
	11.3	Software Development Life Cycle Models	365
	11.4	Software Concept Development: Analysis and Design	373
	11.5	Software Engineering Development: Coding and Unit Test	385
	11.6	Software Integration and Test	393
	11.7	Software Engineering Management	396
	11.8	Summary	402
		Problems	405
		Further Reading	406
12	ENG	INEERING DESIGN	409
	12.1	Implementing the System Building Blocks	409
	12.2	Requirements Analysis	414
	12.3	Functional Analysis and Design	416
	12.4	Component Design	419
	12.5	Design Validation	432

9.5

Trade-Off Analysis

	12.6	CM	436
	12.7	Summary	439
		Problems	441
		Further Reading	442
13	INTE	GRATION AND EVALUATION	443
	13.1	Integrating, Testing, and Evaluating the Total System	443
	13.2	Test Planning and Preparation	450
	13.3	System Integration	455
	13.4	Developmental System Testing	462
	13.5	Operational Test and Evaluation	467
	13.6	Summary	475
		Problems	478
		Further Reading	478
PAR	τ ιν	POSTDEVELOPMENT STAGE	481
14	PRO	DUCTION	483
	14.1	Systems Engineering in the Factory	483
	14.2	Engineering for Production	485
	14.3	Transition from Development to Production	489
	14.4	Production Operations	492
	14.5	Acquiring a Production Knowledge Base	497
	14.6	Summary	500
		Problems	502
		Further Reading	503
15	OPE	RATIONS AND SUPPORT	505
	15.1	Installing, Maintaining, and Upgrading the System	505
	15.2	Installation and Test	507
	15.3	In-Service Support	512
	15.4	Major System Upgrades: Modernization	516
	15.5	Operational Factors in System Development	520
	15.6	Summary	522
		Problems	523
		Further Reading	524

LIST OF ILLUSTRATIONS

1.1	Career opportunities and growth	14
1.2a	Technical orientation phase diagram	16
1.2b	Technical orientation population density distribution	16
1.3a	Systems engineering (SE) career elements derived from quality work	
	experiences	19
1.3b	Components of employer development of systems engineers	19
1.4	"T" model for systems engineer career development	20
2.1a	Performance versus cost	29
2.1b	Performance/cost versus cost	29
2.2	The ideal missile design from the viewpoint of various specialists	31
2.3	The dimensions of design, systems engineering, and project planning	
	and control	32
2.4	Systems engineering domains	34
2.5	Examples of systems engineering fields	35
2.6	Examples of systems engineering approaches	36
2.7	Life cycle systems engineering view	37
3.1	Knowledge domains of systems engineer and design specialist	45
3.2	Context diagram	53
3.3	Context diagram for an automobile	54
3.4	Environments of a passenger airliner	56
3.5	Functional interactions and physical interfaces	59
3.6	Pyramid of system hierarchy	63
4.1	DoD system life cycle model	71
4.2	System life cycle model	72
4.3	Principal stages in system life cycle	75
4.4	Concept development phases of system life cycle	76
4.5	Engineering development phases in system life cycle	78
4.6	Principal participants in a typical aerospace system development	86
4.7	DoD MIL-STD499B	90
4.8	IEEE-1220 systems engineering process	90
4.9	EIA-632 systems engineering process	91

4.10	ISO-15288 Systems engineering process	92
4.11	Systems engineering method top-level flow diagram	92
4.12	Systems engineering method flow diagram	94
4.13	Spiral model of the defense system life cycle	104
5.1	Systems engineering as a part of project management	112
5.2	Place of SEMP in program management plans	118
5.3	Variation of program risk and effort throughout system development	121
5.4	Example of a risk mitigation waterfall chart	122
5.5	An example of a risk cube display	124
6.1	Needs analysis phase in the system life cycle	140
6.2	Needs analysis phase flow diagram	147
6.3	Objectives tree structure	150
6.4	Example objectives tree for an automobile	151
6.5	Analysis pyramid	156
7.1	Concept exploration phase in system life cycle	166
7.2	Concept exploration phase flow diagram	170
7.3	Simple requirements development process	171
7.4	Triumvirate of conceptual design	175
7.5	Hierarchy of scenarios	177
7.6	Function category versus functional media	181
8.1	Concept definition phase in system life cycle	198
8.2	Concept definition phase flow diagram	202
8.3	IDEF0 functional model structure	208
8.4	Functional block diagram of a standard coffeemaker	210
8.5	Traditional view of architecture	223
8.6	DODAF version 2.0 viewpoints	227
8.7	UML models	229
8.8	Use case diagram	231
8.9	UML activity diagram	233
8.10	UML sequence diagram	234
8.11	Example of a class association	235
8.12	Example of a class generalization association	236
8.13	Class diagram of the library check-out system	237
8.14	SysML models	237
8.15	SysML requirements diagram	238
8.16	SysML block definition	240
8.17	SysML block associations	241
8.18a	•	242
8.18b	SysML activity diagram	242
8.19	Baker's MDSD subprocesses	244
8.20	Baker's information model for MDSD	244
9.1	Basic decision-making process	256
9.2	Traditional hierarchical block diagram	265
9.3	Context diagram of a passenger aircraft	266
9.4	Air defense functional flow block diagram	267

9.5	System effectiveness simulation	275
9.6	Hardware-in-the-loop simulation	277
9.7	Virtual reality simulation	280
9.8	Candidate utility functions	289
9.9	Criteria profile	290
9.10	Union of two events	297
9.11	Conditional events	297
9.12	AHP example	300
9.13	AHP results	301
9.14	Decision tree example	302
9.15	Decision path	302
9.16	Decision tree solved	303
9.17	Utility function	304
9.18	Decision tree solved with a utility function	304
9.19	Example of cost-effectiveness integration	305
9.20	QFD house of quality	307
10.1	Advanced development phase in system life cycle	318
10.2	Advanced development phase flow diagram	321
10.3	Test and evaluation process of a system element	345
11.1	IEEE software systems engineering process	357
11.2	Software hierarchy	359
11.3	Notional 3-tier architecture	359
11.4	Classical waterfall software development cycle	367
11.5	Software incremental model	369
11.6	Spiral model	370
11.7	State transition diagram in concurrent development model	371
11.8	User needs, software requirements and specifications	376
11.9	Software generation process	376
11.10	Principles of modular partitioning	379
11.11	Functional flow block diagram example	381
11.12	Data flow diagram: library checkout	381
11.13	Robustness diagram: library checkout	384
12.1	Engineering design phase in system life cycle	410
12.2	Engineering design phase in relation to integration and evaluation	411
12.3	Engineering design phase flow diagram	413
13.1	Integration and evaluation phase in system life cycle	445
13.2	Integration and evaluation phase in relation to engineering design	445
13.3	System test and evaluation team	446
13.4	System element test configuration	456
13.5	Subsystems test configuration	459
13.6a	Operation of a passenger airliner	469
13.6b	Operational testing of an airliner	469
13.7	Test realism versus cost	471
14.1	Production phase in system life cycle	484
14.2	Production phase overlap with adjacent phases	485

14.3	Production operation system	494
15.1	Operations and support phase in system life cycle	506
15.2	System operations history	507
15.3	Non-disruptive installation via simulation	510
15.4	Non-disruptive installation via a duplicate system	511

LIST OF TABLES

1.1	Examples of Engineered Complex Systems: Signal and Data Systems	11
1.2	Examples of Engineered Complex Systems: Material and Energy	
	Systems	11
2.1	Comparison of Systems Perspectives	33
2.2	Systems Engineering Activities and Documents	38
3.1	System Design Hierarchy	43
3.2	System Functional Elements	47
3.3	Component Design Elements	49
3.4	Examples of Interface Elements	60
4.1	Evolution of System Materialization through the System Life Cycle	84
4.2	Evolution of System Representation	88
4.3	Systems Engineering Method over Life Cycle	102
5.1	System Product WBS Partial Breakdown Structure	114
5.2	Risk Likelihood	125
5.3	Risk Criticality	125
5.4	Sample Risk Plan Worksheet	128
6.1	Status of System Materialization at the Needs Analysis Phase	143
7.1	Status of System Materialization of the Concept Exploration Phase	168
8.1	Status of System Materialization of Concept Definition Phase	200
8.2	Use Case Example—"Check-out Book"	232
9.1	Decision Framework	259
9.2	Simon's Decision Process	261
9.3	Weighted Sum Integration of Selection Criteria	288
9.4	Weighted Sum of Actual Measurement	289
9.5	Weighted Sum of Utility Scores	290
9.6	Trade-Off Matrix Example	293
10.1	Status of System Materialization at the Advanced Development Phase	320
10.2	Development of New Components	326
10.3	Selected Critical Characteristics of System Functional Elements	329
10.4	Some Examples of Special Materials	335
11.1	Software Types	361

11.2	Categories of Software-Dominated Systems	362
11.3	Differences between Hardware and Software	364
11.4	Systems Engineering Life Cycle and the Waterfall Model	368
11.5	Commonly Used Computer Languages	387
11.6	Some Special-Purpose Computer Languages	388
11.7	Characteristics of Prototypes	390
11.8	Comparison of Computer Interface Modes	391
11.9	Capability Levels	398
11.10	Maturity Levels	399
12.1	Status of System Materialization at the Engineering Design Phase	412
12.2	Configuration Baselines	437
13.1	Status of System Materialization at the Integration and Evaluation	
	Phase	448
13.2	System Integration and Evaluation Process	449
13.3	Parallels between System Development and Test and Evaluation	
	(T&E) Planning	451

PREFACE TO THE SECOND EDITION

It is an incredible honor and privilege to follow in the footsteps of an individual who had a profound influence on the course of history and the field of systems engineering. Since publication of the first edition of this book, the field of systems engineering has seen significant advances, including a significant increase in recognition of the discipline, as measured by the number of conferences, symposia, journals, articles, and books available on this crucial subject. Clearly, the field has reached a high level of maturity and is destined for continued growth. Unfortunately, the field has also seen some sorrowful losses, including one of the original authors, Alexander Kossiakoff, who passed away just 2 years after the publication of the book. His vision, innovation, excitement, and perseverance were contagious to all who worked with him and he is missed by the community. Fortunately, his vision remains and continues to be the driving force behind this book. It is with great pride that we dedicate this second edition to the enduring legacy of Alexander Ivanovitch Kossiakoff.

ALEXANDER KOSSIAKOFF, 1914–2005

Alexander Kossiakoff, known to so many as "Kossy," gave shape and direction to the Johns Hopkins University Applied Physics Laboratory as its director from 1969 to 1980. His work helped defend our nation, enhance the capabilities of our military, pushed technology in new and exciting directions, and bring successive new generations to an understanding of the unique challenges and opportunities of systems engineering. In 1980, recognizing the need to improve the training and education of technical professionals, he started the master of science degree program at Johns Hopkins University in Technical Management and later expanded it to Systems Engineering, one of the first programs of its kind.

Today, the systems engineering program he founded is the largest part-time graduate program in the United States, with students enrolled from around the world in classroom, distance, and organizational partnership venues; it continues to evolve as the field expands and teaching venues embrace new technologies, setting the standard for graduate programs in systems engineering. The first edition of the book is the foundational systems engineering textbook for colleges and universities worldwide.

OBJECTIVES OF THE SECOND EDITION

Traditional engineering disciplines do not provide the training, education, and experience necessary to ensure the successful development of a large, complex system program from inception to operational use. The advocacy of the systems engineering viewpoint and the goal for the practitioners to think like a systems engineer are still the major premises of this book.

This second edition of *Systems Engineering Principles and Practice* continues to be intended as a graduate-level textbook for courses introducing the field and practice of systems engineering. We continue the tradition of utilizing models to assist students in grasping abstract concepts presented in the book. The five basic models of the first edition are retained, with only minor refinements to reflect current thinking. Additionally, the emphasis on application and practice is retained throughout and focuses on students pursuing their educational careers in parallel with their professional careers. Detailed mathematics and other technical fields are not explored in depth, providing the greatest range of students who may benefit, nor are traditional engineering disciplines provided in detail, which would violate the book's intended scope.

The updates and additions to the first edition revolve around the changes occurring in the field of systems engineering since the original publication. Special attention was made in the following areas:

- *The Systems Engineer's Career.* An expanded discussion is presented on the career of the systems engineer. In recent years, systems engineering has been recognized by many companies and organizations as a separate field, and the position of "systems engineer" has been formalized. Therefore, we present a model of the systems engineer's career to help guide prospective professionals.
- *The Systems Engineering Landscape.* The only new chapter introduced in the second edition is titled by the same name and reinforces the concept of the systems engineering viewpoint. Expanded discussions of the implications of this viewpoint have been offered.
- *System Boundaries.* Supplemental material has been introduced defining and expanding our discussion on the concept of the system boundary. Through the use of the book in graduate-level education, the authors recognized an inherent misunderstanding of this concept—students in general have been unable to recognize the boundary between the system and its environment. This area has been strengthened throughout the book.
- *System Complexity.* Significant research in the area of system complexity is now available and has been addressed. Concepts such as system of systems engineering, complex systems management, and enterprise systems engineering are introduced to the student as a hierarchy of complexity, of which systems engineering forms the foundation.
- Systems Architecting. Since the original publication, the field of systems architecting has expanded significantly, and the tools, techniques, and practices of this

field have been incorporated into the concept exploration and definition chapters. New models and frameworks for both traditional structured analysis and objectoriented analysis techniques are described and examples are provided, including an expanded description of the Unified Modeling Language and the Systems Modeling Language. Finally, the extension of these new methodologies, modelbased systems engineering, is introduced.

- *Decision Making and Support.* The chapter on systems engineering decision tools has been updated and expanded to introduce the systems engineering student to the variety of decisions required in this field, and the modern processes, tools, and techniques that are available for use. The chapter has also been moved from the original special topics part of the book.
- *Software Systems Engineering*. The chapter on software systems engineering has been extensively revised to incorporate modern software engineering techniques, principles, and concepts. Descriptions of modern software development life cycle models, such as the agile development model, have been expanded to reflect current practices. Moreover, the section on capability maturity models has been updated to reflect the current integrated model. This chapter has also been moved out of the special topics part and introduced as a full partner of advanced development and engineering design.

In addition to the topics mentioned above, the chapter summaries have been reformatted for easier understanding, and the lists of problems and references have been updated and expanded. Lastly, feedback, opinions, and recommendations from graduate students have been incorporated where the wording or presentation was awkward or unclear.

CONTENT DESCRIPTION

This book continues to be used to support the core courses of the Johns Hopkins University Master of Science in Systems Engineering program and is now a primary textbook used throughout the United States and in several other countries. Many programs have transitioned to online or distance instruction; the second edition was written with distance teaching in mind, and offers additional examples.

The length of the book has grown, with the updates and new material reflecting the expansion of the field itself.

The second edition now has four parts:

- *Part I.* The Foundation of Systems Engineering, consisting of Chapters 1–5, describes the origins and structure of modern systems, the current field of systems engineering, the structured development process of complex systems, and the organization of system development projects.
- *Part II.* Concept Development, consisting of Chapters 6–9, describes the early stages of the system life cycle in which a need for a new system is demonstrated,

its requirements identified, alternative implementations developed, and key program and technical decisions made.

- *Part III.* Engineering Development, consisting of Chapters 10–13, describes the later stages of the system life cycle, in which the system building blocks are engineered (to include both software and hardware subsystems) and the total system is integrated and evaluated in an operational environment.
- *Part IV.* Postdevelopment, consisting of Chapters 14 and 15, describes the roles of systems in the production, operation, and support phases of the system life cycle and what domain knowledge of these phases a systems engineer should acquire.

Each chapter contains a summary, homework problems, and bibliography.

ACKNOWLEDGMENTS

The authors of the second edition gratefully acknowledge the family of Dr. Kossiakoff and Mr. William Sweet for their encouragement and support of a second edition to the original book. As with the first edition, the authors gratefully acknowledge the many contributions made by the present and past faculties of the Johns Hopkins University Systems Engineering graduate program. Their sharp insight and recommendations on improvements to the first edition have been invaluable in framing this publication. Particular thanks are due to E. A. Smyth for his insightful review of the manuscript.

Finally, we are exceedingly grateful to our families—Judy Seymour and Michele and August Biemer—for their encouragement, patience, and unfailing support, even when they were continually asked to sacrifice, and the end never seemed to be within reach.

Much of the work in preparing this book was supported as part of the educational mission of the Johns Hopkins University Applied Physics Laboratory.

Samuel J. Seymour Steven M. Biemer 2010

PREFACE TO THE FIRST EDITION

Learning how to be a successful systems engineer is entirely different from learning how to excel at a traditional engineering discipline. It requires developing the ability to think in a special way, to acquire the "systems engineering viewpoint," and to make the central objective the system as a whole and the success of its mission. The systems engineer faces three directions: the system user's needs and concerns, the project manager's financial and schedule constraints, and the capabilities and ambitions of the engineering specialists who have to develop and build the elements of the system. This requires learning enough of the language and basic principles of each of the three constituencies to understand their requirements and to negotiate balanced solutions acceptable to all. The role of interdisciplinary leadership is the key contribution and principal challenge of systems engineering and it is absolutely indispensable to the successful development of modern complex systems.

1.1 OBJECTIVES

Systems Engineering Principles and Practice is a textbook designed to help students learn to think like systems engineers. Students seeking to learn systems engineering after mastering a traditional engineering discipline often find the subject highly abstract and ambiguous. To help make systems engineering more tangible and easier to grasp, the book provides several models: (1) a hierarchical model of complex systems, showing them to be composed of a set of commonly occurring building blocks or components; (2) a system life cycle model derived from existing models but more explicitly related to evolving engineering activities and participants; (3) a model of the steps in the systems engineering method and their iterative application to each phase of the life cycle; (4) a concept of "materialization" that represents the stepwise evolution of an abstract concept to an engineered, integrated, and validated system; and (5) repeated references to the specific responsibilities of systems engineers as they evolve during the system life cycle and to the scope of what a systems engineer must know to perform these effectively. The book's significantly different approach is intended to complement the several excellent existing textbooks that concentrate on the quantitative and analytical aspects of systems engineering.

Particular attention is devoted to systems engineers as professionals, their responsibilities as part of a major system development project, and the knowledge, skills, and mind-set they must acquire to be successful. The book stresses that they must be innovative and resourceful, as well as systematic and disciplined. It describes the special functions and responsibilities of systems engineers in comparison with those of system analysts, design specialists, test engineers, project managers, and other members of the system development team. While the book describes the necessary processes that systems engineers must know and execute, it stresses the leadership, problem-solving, and innovative skills necessary for success.

The function of systems engineering as defined here is to "guide the engineering of complex systems." To learn how to be a good guide requires years of practice and the help and advice of a more experienced guide who knows "the way." The purpose of this book is to provide a significant measure of such help and advice through the organized collective experience of the authors and other contributors.

This book is intended for graduate engineers or scientists who aspire to or are already engaged in careers in systems engineering, project management, or engineering management. Its main audience is expected to be engineers educated in a single discipline, either hardware or software, who wish to broaden their knowledge so as to deal with systems problems. It is written with a minimum of mathematics and specialized jargon so that it should also be useful to managers of technical projects or organizations, as well as to senior undergraduates.

1.2 ORIGIN AND CONTENTS

The main portion of the book has been used for the past 5 years to support the five core courses of the Johns Hopkins University Master of Science in Systems Engineering program and is thoroughly class tested. It has also been used successfully as a text for distance course offerings. In addition, the book is well suited to support short courses and in-house training.

The book consists of 14 chapters grouped into five parts:

- *Part I.* The Foundations of Systems Engineering, consisting of Chapters 1–4, describes the origin and structure of modern systems, the stepwise development process of complex systems, and the organization of system development projects.
- *Part II.* Concept Development, consisting of Chapters 5–7, describes the first stage of the system life cycle in which a need for a new system is demonstrated, its requirements are developed, and a specific preferred implementation concept is selected.
- *Part III*. Engineering Development, consisting of Chapters 8–10, describes the second stage of the system life cycle, in which the system building blocks are engineered and the total system is integrated and evaluated in an operational environment.

- *Part IV.* Postdevelopment, consisting of Chapters 11 and 12, describes the role of systems engineering in the production, operation, and support phases of the system life cycle, and what domain knowledge of these phases in the system life cycle a systems engineer should acquire.
- *Part V.* Special Topics consists of Chapters 13 and 14. Chapter 13 describes the pervasive role of software throughout system development, and Chapter 14 addresses the application of modeling, simulation, and trade-off analysis as systems engineering decision tools.

Each chapter also contains a summary, homework problems, and a bibliography. A glossary of important terms is also included. The chapter summaries are formatted to facilitate their use in lecture viewgraphs.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the many contributions made by the present and past faculties of the Johns Hopkins University Systems Engineering Masters program. Particular thanks are due to S. M. Biemer, J. B. Chism, R. S. Grossman, D. C. Mitchell, J. W. Schneider, R. M. Schulmeyer, T. P. Sleight, G. D. Smith, R. J. Thompson, and S. P. Yanek, for their astute criticism of passages that may have been dear to our hearts but are in need of repairs.

An even larger debt is owed to Ben E. Amster, who was one of the originators and the initial faculty of the Johns Hopkins University Systems Engineering program. Though not directly involved in the original writing, he enhanced the text and diagrams by adding many of his own insights and fine-tuned the entire text for meaning and clarity, applying his 30 years' experience as a systems engineer to great advantage.

We especially want to thank H. J. Gravagna for her outstanding expertise and inexhaustible patience in typing and editing the innumerable rewrites of the drafts of the manuscript. These were issued to successive classes of systems engineering students as the book evolved over the past 3 years. It was she who kept the focus on the final product and provided invaluable assistance with the production of this work.

Finally, we are eternally grateful to our wives, Arabelle and Kathleen, for their encouragement, patience, and unfailing support, especially when the written words came hard and the end seemed beyond our reach.

Much of the work in preparing this book was supported as part of the educational mission of the Johns Hopkins Applied Physics Laboratory.

Alexander Kossiakoff William N. Sweet 2002