
Chapter 26

Numerical Methods

INTRODUCTION

Chapter 26 is concerned with Numerical Methods. This subject was taught in the past
as a means of providing engineers and scientists with ways to solve complicated math-
ematical expressions that they could not solve otherwise. However, with the advent of
computers, these solutions have become readily obtainable.

A brief overview of Numerical Methods is given to provide the practicing engin-
eer with some insight into what many of the currently used software packages
(MathCad, Mathematica, MatLab, etc.) are actually doing. The author has not
attempted to cover all the topics of Numerical Methods. There are several excellent
texts in the literature that deal with this subject matter in more detail.(1,2)

Ordinarily, discussion of the following eight numerical methods would be
included in this chapter:

1. Simultaneous linear algebraic equations.

2. Nonlinear algebraic equations.

3. Numerical integration.

4. Numerical differentiation.

5. Ordinary differential equations.

6. Partial differential equations, including Monte Carlo methods.

7. Regression analysis.

8. Optimization.

However, because of the breadth of the subject matter, the reader should note that only
the last three numerical methods receive treatment in the chapter. The remaining five
methods are to be found in the literature.(3,4) It should be noted that the Applications
Section contains heat transfer material dealing with the later three topics.
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HISTORY

Early in one’s career, the engineer/scientist learns how to use equations and math-
ematical methods to obtain exact answers to a large range of relatively simple
problems. Unfortunately, these techniques are often not adequate for solving
real-world problems. The reader should note that one rarely needs exact answers in
technical practice. Most real-world solutions are usually inexact because they
have been generated from data or parameters that are measured, and hence represent
only approximations. What one is likely to require in a realistic situation is not an
exact answer but rather one having reasonable accuracy from an engineering point
of view.

The solution to an engineering or scientific problem usually requires an answer to
an equation or equations, and the answer(s) may be approximate or exact. Obviously
an exact answer is preferred, but because of the complexity of some equations, often
representing a system or process, exact solutions may not be attainable. For this con-
dition, one may resort to another method that has come to be defined as a numerical
method. Unlike the exact solution, which is continuous and in closed form, numerical
methods provide an inexact (but reasonably accurate) solution. The numerical method
leads to discrete answers that are almost always acceptable.

The numerical methods referred to above provide a step-by-step procedure that
ultimately leads to an answer and a solution to a particular problem. The method
usually requires a large number of calculations and is therefore ideally suited for digital
computation.

High-speed computing equipment has had a tremendous impact on engineering
design, scientific computation, and data processing. The ability of computers to
handle large quantities of data and to perform mathematical operations at tremendous
speeds permits the examination of many more cases and more engineering variables
than could possibly be handled on the slide rule—the trademark of engineers of
yesteryear. Scientific calculations previously estimated in lifetimes of computation
time are currently generated in seconds and, in many instances, microseconds.(5)

One of the earliest modern day computers (perhaps more appropriately called
a calculator) appeared on the scene in 1914. A new patented indicator or runner for
slide rules, called the “frameless,” was perfected by Keuffel & Esser Co. The “framless”
was unique in that every figure on the rulewas clearly visible at all times such therewas no
side piece(s) to the metal holder of the glass indicator. In 1968, Hewlett-Packard
announced the development of a calculator that could “deftly handle arithmetically
large numbers”; the calculator weighted 40 lbs and cost nearly $5000.

A procedure-oriented language (POL) is a way of expressing commands to a com-
puter in a form somewhat similar to such natural languages as English and mathemat-
ics. The instructions that make up a program written in a POL are called the source
code. Because the computer understands only machine language (or object code), a
translator program must be run to translate the source code into an object code. In
terms of input, processing, and output, the source code is the input to the translator
program, which processes (translates) the code. The output is the object code. It is
the object code that is actually executed in order to process data and information.
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The first POL to be widely used was FORTRAN, an acronym that was coined
from the words “FORmula TRANslation.” FORTRAN was designed initially for
use on problems of a mathematical nature and it is still used for solving some problems
in mathematics, engineering, and science.

PASCAL is a POL designed by Niklaus Wirth in 1968. The motivation behind its
design was to provide a language that encouraged the programmer to write programs
according to the principles of structured programming. An important aspect of the
PASCAL design philosophy is that it is a “small” language. The purpose of this is
to provide the programmer with a language that can be easily learned and retained.
PASCAL is also most commonly used in mathematics, engineering and science.

BASIC is an acronym for Beginner’s All-purpose Symbolic Instruction Code.
J. G. Kemeny and T. E. Kurtz developed BASIC in 1967 to give students a simple
language for learning programming. BASIC is an interactive language; i.e., the
programmer sees an error or output as soon as it occurs. The simplicity of BASIC
makes it easy to learn and use. Many versions of BASIC have been written since
the late 1960s. BASIC can be used effectively for a variety of business and scientific
applications.

Two types of translator programs—compilers and interpreters—are used to con-
vert program statements to a machine-readable format. A compiler first translates the
entire program to machine language. If any syntax or translation errors are encoun-
tered, a complete listing of each error and the incorrect statement is given to the pro-
grammer. After the programmer corrects the errors, the program is compiled again.
When no errors are detected, the compiled code (object code) can be executed. The
machine-language version can then be saved separately so that the compiling step
need not be repeated each time the program is executed unless the original program
is changed. Compiled programs run much faster than the interpreted ones. An
interpreter translates and executes one source code instruction of a program at a
time. Each time an instruction is executed, the interpreter uses the key words in the
source code to call pre-written machine-language routines that perform the functions
specified in the source code. The disadvantage of an interpreter is that the program
must be translated each time it is executed.

The general availability of computers has been followed by a near infinite number
of application programs, promising relief from the aforementioned slide rule. Many of
these programs deal with design optimization for heat exchangers as well as other pro-
cess equipment and full scale plant applications. Today, many powerful commercial
mathematical applications are available and widely used in academia and industry.
Some of these programs include MathCad, Matlab, Mathematica, etc. These user-
friendly programs allow engineers and scientists to perform mathematical calculations
without knowing any programming. In addition, new programs, for example, Visual
Basic, .NET, JAVA, Cþþ, etc., are constantly evolving. These software packages
are the modern day slide rule for the 21st century engineer and the numerical methods
listed below provide the “instructions” on how to properly use this new slide rule.

With commercial mathematical application’s powerful computing ability, learn-
ing the numerical procedures involved does little for the practicing engineer in terms
of interpreting and analyzing answers. For example, instead of performing a numerical
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integration using the trapezoid rule, one can use one of the programs mentioned above
to do the calculation. However, the job of the engineer then becomes that of assessing
if the answer given by the computer program seems reasonable. If it does, one can be
fairly certain the numbers are correct (providing the rest of the input was correct), but
if the answer seems unreasonable, the engineer’s job is to figure out what technique the
program is using and what might cause it to return an incorrect answer (or, more pre-
cisely, a correct answer to the equation, but not to the problem).

PARTIAL DIFFERENTIAL EQUATIONS

Many practical problems in engineering involve at least two independent variables;
that is, the dependent variable is defined in terms of (or is a function of) more than
one independent variable. The derivatives describing these independent variables
are defined as partial derivatives. Differential equations containing partial derivatives
are referred to as partial different equations (PDEs).

Contrary to a widely accepted myth, an engineer’s mathematical obligations do
not end after formulating a problem, where it may be given to a mathematician to
solve. Even if such an ideal situation should exist, it is still necessary for engineers
to have a reasonable understanding of the mathematical methods and their limitations
in order to interpret results.

It has been said that “the solution of a partial differential equation is essentially a
guessing game.” In other words, one cannot expect to be given a formal method that
will yield exact solutions for all partial differential equations.(6) Fortunately, numerical
methods for solving these equations were developed during the middle and latter part
of the 20th century.

The three main PDEs encountered in engineering practice are briefly introduced
below employing T (e.g., the temperature as the dependent variable) with t (time) and
x, y, z (position) the independent variables.

The parabolic equation:

@T

@t
¼ a

@2T

@z2
(26:1)

The elliptical equation:

@2T

@x2
þ
@2T

@y2
¼ 0 (26:2)

The hyperbolic equation:

@2T

@t2
¼ a

@2T

@x2
(26:3)

The preferred numerical method of solution involves finite differencing. Only the
parabolic and elliptical equations are considered below.
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Parabolic PDE

Examples of parabolic PDEs include

@T

@t
¼ a

@2T

@x2
(26:4)

and (the two-dimensional)

@T

@t
¼ a

@2T

@x2
þ
@2T

@y2

� �
(26:5)

Ketter and Prawler,(2) as well as many others, have reviewed the finite difference
approach to solving Equation (26.4). This is detailed below.

Consider the (t, x) grid provided in Figure 26.1. The partial derivatives may be
replaced by

@T

@t
ffi

DT

Dt
¼
�T4 þ T2

2(Dt)
¼
�T4 þ T2

2k
; Dt ¼ k (26:6)

and

@2T

@x2
ffi

D

Dx

DT

Dx

� �
¼

T3 � 2T0 � T1

h2
; Dx ¼ h (26:7)

Substituting Equations (26.6) and (26.7) into Equation (26.4) leads to

�T4 � T2

2k
¼

T3 � 2T0 � T1

h2
(26:8)

T0T3

T4

T1

T2

t

x

Δx = h

Δt = k

Figure 26.1 Parabolic grid.
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Solving for T2:

T2 ¼ T4 þ 2r(T3 � 2T0 � T1) (26:9)

where r ¼ k=h2;
Thus, T2 may be calculated if T0, T1, T3, and T4 are known. Unfortunately, stab-

ility and error problems arise employing the above approach. These can be removed
by replacing the central difference term in Equation (26.6) by a forward difference
term, that is,

@T

@t
ffi

DT

Dt
¼
�T0 þ T2

(Dt)
¼
�T0 þ T2

k
(26:10)

With this substitution, Equation (26.9) becomes

T2 ¼ T0 þ r(T3 � 2T0 þ T1) (26:11)

It can be shown that the problem associated with the central difference derivative is
removed if r � 0.5.

An unsteady-state heat conduction experiment conducted at Manhattan College’s
Unit operations laboratory is concerned with the application of this equation. In the
experiment, a 316 stainless steel rod is heated at each end with steam at temperature
TS. The initial temperature of the rod is TA. The describing equation and Ba/o IC(s)
for this system are

@T

@t
¼ a

@2T

@x2
(26:1)

BC(1): T ¼ TS at x ¼ 0

BC(2): T ¼ TS at x ¼ L

IC: T ¼ TA at t ¼ 0, 0 � x � L

The solution to this equation can be shown(7) to be:

T ¼ TS þ (TA � TS)
X1
n¼1

2
(�1)nþ1 þ 1

np

� �
e�a np=2ð Þ

2t sin
np x

2

� �( )
(26:12)

The reader may choose to (again) review this essentially same problem in Illustrative
Example 8.3.

Elliptical PDE

For this equation, examine the grid in Figure 26.2. Using finite differences in
Equation (26.2) ultimately leads to

T0 ¼
1
4

(T1 þ T2 þ T3 þ T4); Dx ¼ Dy (26:13)
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In effect, each T value reduces to the average it its four nearest neighbors in the square
grid. This difference equation may then be written at each interior grid point, resulting
in a linear system of N equations, where N is the number of grid points. The system can
then be solved by one of several methods provided in the literature.(1,2,7)

Another method of solution involves applying the Monte Carlo approach, requir-
ing the use of random numbers.(7) Considered the square pictured in Figure 26.3. If the
describing equation for the variation of T within the grid structure is

@2T

@x2
þ
@2T

@y2
¼ 0 (26:14)

T0T3

T4

T1

T2

y

x

Δx

Δy

Figure 26.2 Elliptic grid.

y

y = a

y = 0

x = 0

1 2 3

6 5 4

7 8 9

x = a
x

Figure 26.3 Monte Carlo grid.
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with specified boundary conditions (BC) for T(x, y) of T(0, y), T(a, y), T(x, 0), and
T(x, a) one may employ the following approach.

1. Proceed to calculate T at point 1 (i.e., T1).

2. Generate a random number between 00 and 99.

3. If the number is between 00–24, move to the left. For 25–49, 50–74, 75–99,
move upward, to the right, and downward, respectively.

4. If the move in step 3 results in a new position that is at the outer surface
(boundary), terminate the first calculation for point 1 and record the T value
of the boundary at the new position. However, if the move results in a new pos-
ition that is not at a boundary, and is still at one of the other eight interval grid
points, repeat steps (2) and (3). This process is continued until an outer surface
or boundary is reached.

5. Repeat steps (2–4) numerous times, e.g., 1000 times.

6. After completing step (5), sum all the T values obtained and divided this value
by the number of times steps (2–4) have been repeated. The resulting value
provides a reasonable estimate of T1.

7. Return to step (1) and repeat the calculation for the remaining eight grid points.

This method of solution is not limited to square systems. The general energy
equation for heat transfer in solids is once again presented below for rectangular,
cylindrical, and spherical coordinate systems. See also Chapters 7 and 8.

Rectangular coordinates:

@T

@t
¼ a

@2T

@x2
þ
@2T

@y2
þ
@2T

@z2

� �
(26:15)

Cylindrical coordinates:

@T

@t
¼ a

1
r

@

@r
r
@T

@r

� �
þ

1
r2

@2T

@f2 þ
@2T

@z2

� �
(26:16)

Spherical coordinates:

@T

@t
¼ a

1
r2

@

@r
r2 @T

@r

� �
þ

1
r2 sin u

@

@u
sin u

@T

@u

� �
þ

1

r2 sin2 u

@2T

@f2

� �
(26:17)

ILLUSTRATIVE EXAMPLE 26.1(8)

Consider the two-dimensional problem of a very thin solid bounded by the y-axis (z ¼ 0), the
lines y ¼ 0 and y ¼ 1, and extending to infinity in the z-direction. The temperature T of the
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vertical edge at y ¼ 0 and y ¼ 1 is maintained at zero. T at z ¼ 0 is T0. Obtain the equation
describing the steady-state profile of T in the solid. Refer to Figure 26.4.

SOLUTION: Select rectangular coordinates. Based on the problem statement, T is not a func-
tion of x. Thus, T is solely a function of y and z. Thus, T ¼ T( y, z). The following equation is
extracted from Equation (26.15) provided above.

@2T

@y2
þ
@2T

@z2
¼ 0

One can show that the analytical solution to the describing equation, subject to the boundary
conditions specified is:(9)

T ¼
X1
n¼1

2T0

np
[(�1)nþ1 þ 1]e�(np=1)z sin

np y

1

� �
B

ILLUSTRATIVE EXAMPLE 26.2

Consider the system pictured in Figure 26.5. If the system is solid and the variable T is the temp-
erature, the elliptical equation provided in Equation (26.2) applies. For this system, the tempera-
ture at each location is given by the average temperature of its four neighboring points. Using the
Monte Carlo procedure provided earlier in this section and in Chapter 24 (see Illustrative
Example 26.10 later), generate the temperature profile in the solid.

z

T = 0 T = 0

T = T0z = 0
y = 0 y = 1

y

Figure 26.4 System in Illustrative Example 26.1.
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SOLUTION: Using the Monte Carlo algorithm provided and a random number generator
leads to the following results

T1

T2

T3

T4

T5

T6

T7

T8

T9

¼

¼

¼

¼

¼

¼

¼

¼

¼

7.078C

9.808C

7.168C

18.678C

25.128C

18.778C

42.938C

52.578C

42.808C
B

This procedure can be extended to rectangles; it is not limited to squares. If a rec-
tangle is subjected to the following (somewhat similar) boundary conditions.

T(x ¼ 0, any y) ¼ T0

T(x ¼ b, any y) ¼ 0

T(any x, y ¼ þa) ¼ 0

T(any x, y ¼ �a) ¼ 0

y

y = b

a = b

y = 0

x = 0

1 2 3

4 5 6

0°C
0°C

50°C 100°C 100°C

100°C

100°C 50°C

0°C

0°C

0°C 0°C

0°C

0°C

0°C 0°C

0°C

0°C0°C

0°C
7 8 9

x = a

x

Figure 26.5 Temperature grid for a square.
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The analytical solution for the above rectangle (2a by b) is

T ¼ 2T0

X1
n¼0

(�1)n

lna

� 	
sinh[ln(b� x)]

sinh(lnb)

� 	
cos (lny)

where ln ¼
(2nþ 1)p

2a
; n ¼ 0, 1, 2, 3 . . .

ILLUSTRATIVE EXAMPLE 26.3

Solve Illustrative Example 26.2 using the Gauss-Elimination method.

SOLUTION: (9) The familiar finite difference approach will be employed. For example,

T5 ; (1=4)[T2 þ T4 þ T6 þ T8]

This form of the equation may be applied to the nine points, which sets each T equal to the
average of temperature of its four neighboring points. This produces a set of nine
equations with nine unknowns. Employing Mathematica, Mathcad, Excel or a similar program
leads to

T1

T2

T3

T4

T5

T6

T7

T8

T9

¼

¼

¼

¼

¼

¼

¼

¼

¼

7.148C

9.828C

7.148C

18.758C

258C

18.758C

42.868C

52.688C

42.868C B

ILLUSTRATIVE EXAMPLE 26.4

Comment on the results of the two previous examples.

SOLUTION: As expected the results are in reasonable agreement with each other. In addition,

T8 . T7 . T5 . T4 . T2 . T1
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with,

T1 ffi T3

T4 ffi T6

T7 ffi T9 B

ILLUSTRATIVE EXAMPLE 26.5

Outline how to solve the previous example if the face surface is a rectangle solid (see
Figure 26.6).

SOLUTION: The outline of the calculation presented in the previous examples remains the
same. B

ILLUSTRATIVE EXAMPLE 26.6

A rectangular walled stack (see Figure 26.7) serves as the discharge conduit for flue gases from
an incinerator. If the inner and outer (atmosphere) steady-state temperatures are 17008F and
14008F respectively, calculate the temperature profile in the stack wall.

SOLUTION: Due to symmetric only the local temperatures in the bottom part of Figure 26.7,
i.e., points (nodes) 4–12, will be calculated. First note, that

T1 ¼ T2 ¼ T3 ¼ T4 ¼ 17008F

T13 ¼ T14 ¼ T15 ¼ T16 ¼ T17 ¼ T18 ¼ 14008F

Neglecting “curvature” effects, one notes that the temperature at nodes below points 3 and 4
are approximately equal. Applying the appropriate equation at each node leads to 9 equations

20 19 18

0°C

0°C0°C

100°C

17 16

11 12 13 14 15

10 9 8 7 6

1 2 3 4 5

x

y

Figure 26.6 Rectangular grid; Illustrative Example 26.5.
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and 9 unknowns

4: T4 ¼ (2T5 þ 2T9)=4

5: T5 ¼ (T4 þ T6 þ T10 þ 1700)=4

6: T6 ¼ (T5 þ T7 þ T11 þ 1700)=4

7: T7 ¼ (2T6 þ T12 þ 1700)=4

8: T8 ¼ (2T9 þ 1400þ 1400)=4

9: T9 ¼ (T4 þ T8 þ T10 þ 1400)=4

10: T10 ¼ (T5 þ T9 þ T11 þ 1400)=4

11: T11 ¼ (T6 þ T10 þ T12 þ 1400)=4

12: T12 ¼ (T7 þ 2T11 þ 1400)=4

Employing a suitable numerical method proposed in an earlier example leads to:

T4 ¼ 3128F T7 ¼ 3928F T10 ¼ 2788F
T5 ¼ 3708F T8 ¼ 2278F T11 ¼ 2908F
T6 ¼ 3888F T9 ¼ 2548F T12 ¼ 2928F B

ILLUSTRATIVE EXAMPLE 26.7

Comment on the results of the previous illustrative example.

6

18 18 17 16 15

1400°F

14 13

12 12 11 10 9 8 14

7 7 6 5 4 9 15
1400°F

1700°F

51

2

234 10 16

11 17

Figure 26.7 Stack temperature profile; Illustrative Example 26.6.
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SOLUTION: The results are consistent. As one would expect

T7 . T12

T6 . T11

T5 . T10

T4 . T9 . T8

In addition,

T6 ≃ T7

T11 ≃ T12

B

REGRESION ANALYSIS

The application of statistics in practice during the past several decades is so extensive
that every practicing engineer should posses a basic knowledge of this branch of math-
ematics. In many applications, statistics enables one to obtain the most information out
of his/her data. Although statistical methods are often a poor substitute for rigorous
mathematical analyses, they frequently can be used where too little is known about
a process or system to permit a rigorous mathematical treatment.

Regression analysis is a useful statistical technique for developing a quantitative
relationship between a dependent variable and one or more independent variables. It
usually utilizes experimental data on the pertinent variables to develop a numerical
equation showing the influence of the independent variables on the dependent vari-
able of the system. A simple correlation problem can arise when one asks whether
there is any relationship between smoking and heart ailments, between beauty and
brains, between pressure drop and velocity, between particle drag force and fluid
density, etc. For example, in a tubular flow reactor involving a complex chemical
reaction, regression methods have been used to develop an equation relating the yield
of a desired product to entering concentrations, temperature, pressure, and residence
time.(10)

Consider two random variables x and y and the problem of determining the extent
to which they are related. The investigation of the relationship between two such vari-
ables, based on a set of n pairs of measurements (x1, y1), (x2, y2), . . . , (xn, yn), usually
begins with an attempt to discover the approximate form of the relationship by graph-
ing the data as n points in the x, y-plane. Such a graph is called a scatter diagram. Use
of a scatter diagram allows one to quickly discern whether there is any pronounced
relationship and, if so, whether the relationship may be treated as approximately
linear.(11)

One of the problems of fitting a curve to a set of points in some efficient manner is
essentially that of estimating the parameters of the curve in an efficient manner.
Although there are numerous methods for performing the estimation of such par-
ameters, the best known and most popular method is known as the method of least
squares.
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Since the desired equation is generally used for estimating or predicting purposes,
it is reasonable to expect that it leads to small errors of estimation. An error of esti-
mation or prediction is defined as the difference between an observed value of y
and the corresponding fitted curve value of y. If the value of the variable to be esti-
mated is denoted by y and the corresponding curve value by y0, then the error of
estimation, E, is given by y–y0. Since the errors may be positive or negative and
might add up to a small value for a poorly fitted curve, it will not do to merely require
that the sum of the errors be as small as possible. This difficulty can be removed by
requiring that the sum of the absolute values of the errors be as small as possible.
However, sums of absolute values are not convenient to work with mathematically;
consequently, the difficulty is avoided by requiring that the sum of the squares of
the errors be minimized. The values of the parameters obtained by this minimization
procedure determines what is known as the best fitting curve in the sense of least
squares.(11)

The method of least squares is based on the assumption that the sum of the squares
of the deviations between the assumed function and the given data, i.e., the sum of
these errors, must be a minimum. If the ordinate of the data point is designated as yi

and the value of the approximating function at the same value of xi is f (xi), the error
at xi can be written as

Ei ¼ yi � f (xi) (26:18)

Mathematically, the method of least squares requires that

Xn

i¼1

E2
i ¼

Xn

i¼1

[ yi � f (xi)]
2 ¼ minimum (26:19)

where n is the number of data points.
For illustration, assume a second-order polynomial, as given by Equation (26.20).

f (x) ¼ a0 þ a1xþ a2x2 (26:20)

The error, Ei, at each data point, i, is therefore

Ei ¼ a0 þ a1xþ a2x2 � yi (26:21)

The sum of the errors squared, S, is

S ¼
X

E2
i ¼

X
(a0 þ a1xþ a2x2 � yi)

2 (26:22)

The requirement for this function, S, to be a minimum is given by

@S

@a2






a1,a0

¼ 0;
@S

@a1






a2,a0

¼ 0;
@S

@a0






a2,a1

¼ 0 (26:23)
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These three equations can be shown to reduce to(12) (for Equation (26.20))

Xn

i¼1

2x2
i (a2x2

i þ a1xi þ a0 � yi) ¼ 0

Xn

i¼1

2xi(a2x2
i þ a1xi þ a0 � yi) ¼ 0

Xn

i¼1

2(a2x2
i þ a1xi þ a0 � yi) ¼ 0

(26:24)

Equation (26.24) represents a set of three equations containing unknowns a0, a1,
and a2. Recasting these in matrix form gives

n
Pn
i¼1

xi
Pn
i¼1

x2
i

Pn
i¼1

xi
Pn
i¼1

x2
i

Pn
i¼1

x3
i

Pn
i¼1

x2
i

Pn
i¼1

x3
i

Pn
i¼1

x4
i

2
66666664

3
77777775

a0

a1

a2

2
4

3
5 ¼

Pn
i¼1

yi

Pn
i¼1

xiyi

Pn
i¼1

x2
i yi

2
66666664

3
77777775

(26:25)

Equation (26.25) may then be solved for the regression coefficients a0, a1, and a2.(12)

The above development can easily be extended to other types of polynomials.
Other functions are listed below.

0th degree polynomial: y ¼ a0

1st degree polynomial: y ¼ a0 þ a1x1

2nd degree polynomial: y ¼ a0 þ a1x1 þ a2x2
2

mth degree polynomial: y ¼ a0 þ a0x1 þ � � � þ a0xm
m

(26:26)

The above can also be applied to functions fi(x) that are complex. For example, if

y ¼ a1 f1(x)þ a2 f2(x)þ a3 f3(x) (26:27)

then Equation (26.27) takes the form:
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5 (26:28)

The reader is referred to Illustrative Example 28.4 for additional details.
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Correlation Coefficient

When data is plotted to determine any possible relationship, it is common to try to fit
the data to some sort of curve (typically a line). The correlation coefficient is a measure
of the amount of deviation between the variables. A correlation coefficient of 1.0
indicates a perfect association between the variables; a correlation coefficient of 0.0
indicates a completely random relation. Nothing is said about the dependence or inde-
pendence of the variables, and nothing is said about the nature of the relation between
the variables.

Although the correlation coefficient provides an answer as to how well the model
fits the data, it does not provide an answer as to whether it is the best and/or correct
model. In fact, it can often provide misleading information. For example, if one
where interesting in fitting a model to the four data points presented in Figure 26.8,
one could apply a zero, first, second or third order model to the data. These four
models are superimposed on the figure. The zero order polynomial would provide
the worst correlation coefficient while the third order polynomial (which exactly
passes through each data point) would correlate perfectly with a corresponding corre-
lation coefficient of 1.0. Obviously, the latter is almost certainly not the “correct” or
“best” model.(12)

To obtain information on the “best” model, one must resort to a statistical tech-
nique referred to as ANOVA, an acronym referring to Analysis Of Variance. This
topic is beyond the scope of this text; however, information is available in the
literature.(12,13)

y = a + bx–cx2

y = a + bx

y = a + bx + cx2 + dx3

y = 0

y

x

Figure 26.8 Regression models.
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ILLUSTRATIVE EXAMPLE 26.8(14)

Species A is undergoing a reaction in a tubular flow unit. The following data (see Table 26.1)
have been obtained for the rate, 2rA, versus concentration, CA. Using this data, estimate the
coefficient kA and a in the equation below.

�rA ¼ kACa
A

SOLUTION: Linearize the describing equation

ln(�rA) ¼ ln(kA)þ a ln(CA)

Change the variables to Y and X.

Y ¼ Aþ BX

where

Y ¼ ln(�rA)

A ¼ ln(kA)

B ¼ a

Substitute the above data.

ln(3) ¼ Aþ B ln(2)

ln(12) ¼ Aþ B ln(4)

ln(27) ¼ Aþ B ln(6)

ln(48) ¼ Aþ B ln(8)

Generate the linear coefficients A and B using any convenient method:

A ¼ �0:2878

B ¼ 2:0

Therefore,

kA ¼ 0:75

a ¼ 2:0

and the equation for the rate of reaction is

� rA ¼ 0:75C2
A

Table 26.1 Rate Data; illustrative Example 26.8

2rA, lbmol/ft3 . s CA, lbmol/ft3

48 8
27 6
12 4
3 2
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Obviously, the regression of data has been greatly simplified through the use of software
packages. B

ILLUSTRATIVE EXAMPLE 26.9

The viscosity of air as a function of temperature is provided below in Table 26.2. Assuming a
linear relationship, obtain the viscosity as a function of temperature.

SOLUTION: For a linear model,

m ¼ Aþ BT

Regressing the data using the method of least squares gives

A ¼ 1:7456

B ¼ 0:0083

Therefore,

m ¼ 1:7456þ 0:0083T

with m in kg/m . s � 105 and T in 8C.

B

Table 26.2 Viscosity–Temperature Data; Illustrative Example 26.9

Temperature, T, 8C Viscosity, m, kg/m . s � 105

240 1.51
220 1.61
0 1.71
10 1.76
12 1.81
30 1.86
40 1.90
50 1.95
60 2.00
80 2.09
100 2.17
150 2.38
200 2.57
250 2.75
300 2.93
400 3.25
500 3.55
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OPTIMIZATION

Optimization has come to mean different things to different people. However, one
might offer the following generic definition: “Optimization is concerned with
determining the ‘best’ solution to a given problem”. This process is required in the
solution of many problems that involves the maximization or minimization of a
given function.

A significant number of optimization problems face the practicing engineer. The
optimal design of industrial processes as well as heat exchangers has long been of con-
cern to the practicing engineer, and indeed, for some, might be taken as a definition of
the function and goal of applied engineering. The practical attainment of an optimum
design is generally a result of factors that include mathematical analysis, empirical
information, and both the subjective and objective experience of the engineer.

In a general sense, optimization problems can be divided into four categories:

1. The number of independent variables involved.

2. Whether the optimization is “constrained.”

3. Time-independent systems.

4. Time-dependent systems.

In addition, if no unknown factors are present, the system is defined as deterministic
while a system containing experimental errors and/or other random factors is defined
as stochastic.

Perturbation Studies in Optimization

Once a particular heat exchange or process scheme has been selected, it is common
practice to optimize the process from a capital cost and O&M (operation and mainten-
ance) standpoint. There are many optimization procedures available, most of them too
detailed for meaningful application to a heat exchanger analysis. These sophisticated
optimization techniques, some of which are also routinely used in the design of conven-
tional chemical and petrochemical plants, invariably involve computer calculations.
Use of these techniques in heat exchanger analysis is not always warranted, however.

One simple optimization procedure that is recommended is the perturbation
study. This involves a systematic change (or perturbation) of variables, one by one,
in an attempt to locate the optimum design from a cost and operation viewpoint. To
be practical, this often means that the engineer must limit the number of variables
by assigning constant values to those process variables that are known beforehand
to play an insignificant role, Reasonable guesses and simple or short-cut mathematical
methods can further simplify the procedure. Much information can be gathered from
this type of study since it usually identifies those variables that significantly impact on
the overall performance of the heat exchanger or process and also helps identify the
major contributors in the procedure.

More detailed and sophisticated optimization procedures are available, most of
which are located in the literature.(15,16) Three illustrative examples follow, two
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additional illustrative examples that outline the methodology employed in optimiz-
ation calculations can be found later in Chapter 27. As is often the case, both examples
involve an economic analysis.

ILLUSTRATIVE EXAMPLE 26.10

Qualitatively describe the objective of rigorous optimization techniques.(15)

SOLUTION: Formal optimization techniques have as their goal the development of pro-
cedures for the attainment of an optimum in a system which can be characterized mathemat-
ically. The mathematical characterization may be:

1. partial or complete

2. approximate or exact, and/or

3. empirical or theoretical.

The resulting optimum may be a final implementable design or a guide to practical design and a
criterion by which practical designs are to be judged. In either case, the optimization techniques
should serve as an important part of the total effort in the design of the units, structure, and
control of a industrial system, including heat exchangers. B

ILLUSTRATIVE EXAMPLE 26.11

A refinery has two catcrackers that can produce various grades of hydrocarbon products.
Because of consumer fuel demand, the production of gasoline, home heating oil and diesel
must be limited. This information is provided in Table 26.3.

The profit on processing U.S. crude oil is $2.00/gal and on Venezuelan crude is $1.60/gal.
Find the approximate daily processing rate of the two crudes in order to maximize profits.

SOLUTION: Set

q1 ¼ gallons of U.S. crude

q2 ¼ gallons of Venezuelan crude

The objective function for the daily profit, P, that is to be maximized is:

P ¼ 2:0q1 þ 1:6q2

Table 26.3 Cat Cracker Information

Product grades
U.S. crude

(% distribution)
Venezuelan crude
(% distribution)

Max. production rate
(gal/day)

Gasoline 8 11 1500
Home heating oil 29 54 5500
Diesel oil 63 35 11,000
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The constraints are:

0:08q1 þ 0:11q2 � 1500

0:29q1 þ 0:54q2 � 5500

0:63q1 þ 0:35q2 � 11,000

q1 � 0, q2 � 0

The solution to the above from Excel is: 16,820 gal of U.S. crude per day should be pro-
cessed and 1152 gal per day should be derived from Venezuelan crude. This results in a total
daily profit of $35,484.(17) B
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