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LIGHT SCATTERING AND ITS APPLICATIONS
IN POLYMER CHARACTERIZATION

Roberto Alexander-Katz

18.1 INTRODUCTION

Electromagnetic scattering phenomena occur when an
electromagnetic field interacts with a medium that is
heterogeneous at a scale of the wavelength of the incident
field; that is, a material might look perfectly homogenous
to the eye, however, when a laser beam goes across it,
light will scatter in all directions other than those given
by the refraction and reflection laws. Examples of this
can be found in simple liquids such as highly clarified
benzene or carbon disulfide, where density fluctuations
at the scale of the wavelength of visible light give rise
to scattering that is observable by the naked eye. In
the case of polymer solutions or particle suspensions,
the local fluctuations in the dielectric constant take place
due to fluctuations in local concentration as well as the
density fluctuations. The analysis of such fluctuations
gave rise to two popular applications of this technique:
the determination of molecular weights and sizes of
macromolecules by static light scattering (SLS) and particle
sizing by dynamic light scattering (DLS). However, light
scattering together with its sister techniques, namely,
small-angle X-ray scattering (SAXS), small-angle neutron
scattering (SANS), and inelastic neutron scattering (INS),
can give more information about the structure of the
scattering objects, the thermodynamics, and the dynamic
processes taking place in complex systems.

In this chapter, we emphasize on the principles in which
light scattering methods are founded and apply these to
different systems. We also stress the importance of a solid
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theoretical framework in the field of polymers or other
complex systems in expanding the scope of applications
of these tools beyond the standard applications.

Unfortunately, because of space, we have not covered
important new developments in light scattering for the
study of nontransparent systems such as diffusion wave
spectroscopy (DWS), fiber-optic quasi-elastic light scat-
tering (FOQELS), dual-color cross-correlation, 3D cross-
correlation DLS, and improved techniques followed from
these techniques [1–4].

In the first section, we introduce the general theory of
light scattering. The second section is devoted to SLS, and
we give some examples of its application. In the third
section, we discuss the principles of DLS and we apply
these to the study of the dynamics of different systems,
whether dilute or concentrated solutions.

18.2 PRINCIPLES OF STATIC AND DYNAMIC
LIGHT SCATTERING

Let us consider an electromagnetic field incident on a
small volume element on the order of λ3, where λ is
the wavelength of light in the material (solution, particle
suspension, etc.); due to the imbalance of the molecules
that enter and leave such volume, there will be fluctuations
in density, concentration, and others that concomitantly
will produce fluctuations in the local dielectric constant.
Let us denote by �ε(R, t) the deviation of the dielectric
constant from its mean 〈ε〉 at R and time t . Since these
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fluctuations are in most cases very small, we can assume
that the scattered electric field Es will be proportional to
�ε and to the incident electric field E0; that is,

Es ≈ �ε(R, t)E0 (18.1)

However, in the scattering volume V, there are a great
number of volume elements that contribute to the total
scattered electric field. If �ε(R, t) is very small, we can
consider that each molecule in V is sensing the same
incident field, and therefore, we can write the scattering
field just as a superposition of the fields coming from
all elements of our scattering volume. This approximation
is called the Rayleigh-Debye-Gans approximation (RDGA)
and is valid when �ε � 1 and the phase shifts induced
by the fluctuations are very small [5]. This is the case of
any simple fluid or solution away from its critical point
(or critical line). However, there are cases where these
conditions are not met, such as a suspension of latex
particles where the refractive index of the particles differs
substantially from that of the suspending fluid. In the latter
case, the internal field at any point in the domain is not
the same as the applied field, and one has to consider
the contribution of all elements in the domain. There are
a several approaches to this end, some analytical, such
as Mie’s theory for spheres and cylinders, and others
numerical for particles with no particular symmetries,
such as the T-matrix theory [6, 7]. However, for most
of the classical light scattering applications to polymer
characterization in solution, the RDGA is fully satisfied,
and therefore, we discuss it thoroughly in what follows. In
any case, we will point out along the chapter whenever a
Mie-type calculation is required.

The measured quantity is the intensity of the scattered
field, that is, the square of the scattered field,

Is = Es •E∗
s (18.2)

Therefore, the total scattered intensity will be the sum
of the cross products of the scattered electric fields from
different volume elements. Yet, these fields can interfere
between each other in view that they might be out of phase,
due to the difference in optical paths, and the motion of the
molecules can induce frequency changes. This leads finally
to an expression for the scattered intensity

Is (q,�ω) ≈ I0

∫∫ 〈
�ε(R, t)�ε∗(R′, 0)

〉
exp

(−i
[
q(R − R′) + (

ω − ω0

)
t
])

dRdR
′
dt

(18.3)

where I0 is the incident intensity and

q = k − k ′ (18.4)

k • (R − R′)

k k′ • (R−R′)
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′

q

Figure 18.1 Schematics of the changes in optical paths.

while k and k ′ are the wave vectors of the incident and
scattered fields, respectively, as shown in Figure 18.1.
From this figure, it can be seen that q·(R-R ′) corresponds
to the difference in optical paths between the fields that
are scattered by two molecules that are R − R

′
apart.

We have added average brackets to the product of the
local dielectric constant differences (dielectric constant
correlation function) since these are varying randomly,
and therefore, we only observe an average in a typical
measurement.

A formal derivation of Equation 18.3 leads to [8]

Is (q,�ω) = I0V k4 sin2 α

32π3ε2
0r

2

∫∫ 〈
�ε(R, t)�ε∗(0, 0)

〉
exp

(−i
[
q •R + �ωt

])
dRdt (18.5)

where it has been made use of translational invariance; k is
the wavenumber (2π /λ) in the medium, ε0 is the vacuum
dielectric constant, r is the distance from the scattering
volume to the observer, and α is the angle of observation
relative to the linearly polarized incident field, as shown in
Figure 18.2. The r dependence arises because any element
of the scattering volume is a source of spherical waves,
and the irradiance of a point source decays as 1/r2. The
sin 2α factor comes from the transversal nature of the
electromagnetic waves; that is, for a vertically polarized
incident beam, the only component of the field that will
propagate in the direction shown in Figure 18.2 will be
≈ sin α, and therefore, the scattered intensity will be
≈ sin2α. Finally, Rayleigh has shown that the light scattered
by any small volume element (as compared to λ) should
scale as 1/λ4 ≈ k4 [9]. All these front factors are related
to the instrument and not to the optical properties of the
sample. For a given instrument, we will only vary the
scattering angle θ .

If the detecting system does not have any device that can
resolve the frequency (or time) dependence of Is, such as
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Figure 18.2 Scattering geometry.

a correlator, Fabry–Perot interferometer, or, as discussed
later, if the setup of the detecting system is not appropriate
to observe the intensity fluctuations with time, then this
will be equivalent to integrating over all frequencies, and
Equation 18.5 reduces to

Is (q) = I0V k4 sin2 α

16π2ε2
0r

2

∫ 〈
�ε(R)�ε∗(0)

〉
exp (−iq •R) dR

(18.6)
In this case, we will be speaking of SLS since time is
not involved any more. Equation 18.6 actually represents
the point of departure of the classical light scattering
applications: the determination of molecular weights and
radius of gyration of polymer molecules. Since

|q| = 4π

λ
sin

θ

2
(18.7)

this means that varying the angle is equivalent to changing
the wavelength. This fact makes scattering a unique
technique because we can change the scale of our probe
(wavelength) by simply observing our sample at a different
angle. As we approach the incoming beam, θ becomes very
small, and this is equivalent to having a large effective
wavelength of

λeff = λ

sin (θ/2)
(18.8)

If instead of light we use an X-ray source, the only
difference from the previous discussion is that we will
substitute the fluctuations in the dielectric constant by the
fluctuations in the electronic density. X-ray wavelength is
typically on the order of 1.5 Å. However, if we perform
SAXS at angles of the order of 2 min from the incoming
beam, it would be equivalent to change the scale of our
probe by more than 3400 times! This means that using
the same wavelength, the scale of our probe can change
from 1.5 to 5100 Å, overlapping the visible region of the
electromagnetic spectrum. This allows us to explore our
material in a wide range of scales without having absorption
effects, as is the case with spectroscopic techniques. All
this can be extended to neutron sources with the difference
that instead of electron clouds, neutrons interact with
the nucleus of the atoms and the magnetic fields of
their impaired electrons. Thermal neutron sources have
equivalent wavelength as X-rays, and therefore, neutron

scattering at small angles (SANS) is a powerful tool
to explore condensed matter in a wide range of scales.
Neutrons, X-rays, and light scattering are complementary
techniques very much used in the study of polymers in
solution or in solid state [10, 11].

Since both Equations 18.5 and 18.6 depend on instru-
mental variables, it is customary to introduce the so-called
Rayleigh ratio Rθ , so that the results are independent of the
geometry and intensity of the light source used; that is,

Rθ = Is (q)
r2

V I0 sin2 α
= k4

16π2ε2
0

∫ 〈
�ε(R)�ε∗(0)

〉
exp(−iq •R)dR (18.9)

In Equation 18.9, we observe two competing factors:
〈�ε(R)�ε∗(0)〉 and the interference factor exp (−iq · R).
The dielectric constant correlation function will tend to be
zero for distances greater than the correlation length ξ .
For dilute systems, this length is related to a characteristic
length of the heterogeneities in the system, such as the
particle size or the radius of gyration of a macromolecule.
On the other hand, |q|−1 is proportional to the effective
scale (λ/sin(θ /2)) with which we are probing our system.
The ratio between these two lengths defines differences
between the theoretical approaches for the calculation of
Equation 18.9. In the limiting case of q−1/ξ � 1 that
corresponds to θ → 0, the particles or macromolecules
will appear as points without structure since the scale of
observation is much larger than their own size, as shown
schematically in Figure 18.3. We will call this as the
thermodynamic limit because the excess of light scattered is
due to the imbalance between the incoming and exit of the
macromolecules or particles as a whole in a volume element
of the order of q−3, that is, due to the local fluctuations
in the number of molecules in the system, which is a
thermodynamic variable.

l/sin(q/2)

x

Figure 18.3 Small-angle limit. In this limit, all macromolecules
appear as point particles compared to the volume probed.
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Figure 18.4 When ξ is of the order of magnitude of or
greater than the effective wavelength, the partial entrance of
the macromolecule or particle will produce fluctuations in the
scattered intensity.

On the other hand, if q−1 ≈ ξ , the excess in the
fluctuations is due to the imbalance between the entrance
and exit of a fraction of a macromolecule (or particle)
as shown schematically in Figure 18.4. The latter is not
a thermodynamic variable, and for these values of q ,
the scattering will be sensitive to the structure of the
macromolecule.

In the next two sections, we discuss the SLS by dilute
polymer solutions in both cases: in the limit of small angles
and when q−1 is of the order or smaller than ξ .

18.3 STATIC LIGHT SCATTERING BY DILUTE
POLYMER SOLUTIONS

18.3.1 Scattering at Small Angles (qξ � 1):
Determination of Molecular Weights and
Thermodynamic Properties

As shown schematically in Figure 18.3, in the limit of
small angles, the effective volume that we are probing is
very large in comparison with the volume occupied by a
single macromolecule (or particle). Therefore, the number
of polymer molecules within this volume is considerably
large. As we approach θ ≈ 0, this scale becomes
quasi-macroscopic, and we can reduce the calculation
of the fluctuations in the dielectric constant to that
of the fluctuation of the thermodynamic degrees of
freedom of the system. In fact, in the limit where
q−1 � ξ , 〈�ε(R)�ε(0)〉 = 〈

(�ε)2
〉
δ(R), where 〈(�ε)2〉

is the thermodynamic fluctuation in the dielectric constant.
In addition, since | q ξ | � 1, exp (−i q ξ ) ≈ 1. Hence,
when θ → 0, Equation 18.9 can be approximated by

Rθ = k4V

16π2ε2
o

〈
(�ε)2〉 (18.10)

The theory of thermodynamic fluctuations in the context
of light scattering was introduced first by Smoluchowski
and Einstein [12, 13]. Einstein considered that the scattering
of light in a solution arises from local density and
concentration fluctuations. However, it was only till the
late 40s and early 50s that Brinkman and Hermans [14],
Stockmayer [15], and Kirkwood and Goldberg [16] adopted
this approach in the context of light scattering by polymer
solutions. Here, we summarize only the basic results for a
binary mixture.

In a binary mixture, there are 3 degrees of freedom
and it can be proved that the fluctuations in the dielectric
constant can be reduced to the sum of the fluctuation in
the density of the pure solvent plus the fluctuations in the
molar concentration of macromolecules,

〈
(�ε)2〉 = (

∂ε

∂ρs

)2 〈(
�ρs

)2〉+ (
∂ε

∂N1

)2 〈(
�N1

)2〉
(18.11)

where ρs is the density of the pure solvent and N1 is the
number of moles of the solute. However, the first term
corresponds to the contribution of the light scattered by
the solvent and can be measured independently. Therefore,
if we subtract this term from 〈(�ε)2〉, we will obtain the
excess in the fluctuation in the dielectric constant due to
the fluctuation in concentration of the solute, that is,

〈
(�ε)2〉

ex =
(

∂ε

∂N1

)2 〈(
�N1

)2〉 =
(

∂ε

∂N1

)2
kBT(

∂μ1/∂N1

)
TP

(18.12)
where μ1 is the chemical potential of the solute and kB
is the Boltzmann constant. If we write this expression in
terms of the solute weight concentration c1 (in g/cc), then

〈
(�ε)2〉

ex = M1

NAV

(
∂ε

∂c1

)2
kBT(

∂μ1/∂c1

)
TP

= kBT c1

N0V0

(
∂ε

∂c1

)2 1(
∂π/∂c1

)
TP

(18.13)

where N0 is the number of moles of the solvent, V0 is the
molar volume of the solvent, and π is the osmotic pressure.
Hence, the excess Rayleigh factor will be

Rex
θ = k4kBT c1

16π2ε2
0

(
∂ε

∂c1

)2 1(
∂π/∂c1

)
TP

(18.14)

where we have made the approximation N0V0 ≈ V since
we are in the limit of dilute solution. Equation 18.14
establishes a relation between light scattering and the
osmotic pressure, valid in the limit θ → 0. This relation
constitutes the basis for the determination of the molecular
weight and other thermodynamic properties by light
scattering.
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Using the virial expansion for the osmotic pressure, we
can write π as

π = RTc1

(
1

M
+ A2c1 + A3c

2
1 + · · ·

)
(18.15)

where A2, A3, . . . are the virial coefficients. Then,

Rex
θ = k4c1

16π2ε2
0

(
∂ε

∂c1

)2 1

NA

(
1/M + 2A2c1 + · · ·) (18.16)

It is common to regroup all constants into one constant
as1

K = 4π2

λ4NA

[
n0

(
∂n

∂c1

)]2

(18.17)

where n and n0 are the refractive indexes of the solution
and the solvent, respectively, and we have used the relation

n =
√(

ε/ε0

)
. Equation 18.16 then takes the form

Kc1

Rex
θ

= 1

M
+ 2A2c1 + 3A3c

2
1 + · · · (18.18)

The generalization of Equation 18.18 to polydisperse
homopolymers is

Kc

Rex
θ

= 1

〈M〉w
+ 2

〈
A2

〉
w c + · · · (18.19)

where c is the polymer concentration (in g/cc) and 〈M〉w
and 〈A2〉w are given by

〈M〉w =
∑

i

Miwi (18.20)

and

〈
A2

〉
w = 1

〈M〉2
w

∑
i

∑
j

MiMjAij wiwj (18.21)

where wi and Mi are the weight fraction and molecular
weight of species i , respectively. The difference between a
direct determination of the molecular weight by osmometry
and that with light scattering is that they average differently.
The former averages number wise while the latter does it by
weight. This also applies to the virial coefficients. Further-
more, in Equation 18.16, there is a front factor (∂ε/∂ci )

2

for each species, which in the case of homopolymers are
the same, independently of molecular weight, and can be

1This expression for K is valid for vertically polarized light. In what
follows in this chapter, we assume that the incident field is vertically
polarized and that we are observing in the plane of incidence, that is,
sin α = 1. For light that is polarized horizontally, Equation 18.17 should
have a factor cos 2 θ , and for unpolarized light, the factor should be
(1 + cos 2 θ )/2.

factored out as in Equation 18.19. However, if the species
in question differ also in composition, the (∂ε/∂ci )

2 term
will be different for each species and cannot be factored out,
giving rise to an apparent molecular weight as in the case of
copolymers. The same occurs when we have a solution of
mixed solvents and a homopolymer; again the extrapolation
at c → 0 and θ → 0 will give rise to an apparent molecular
weight because of the preferential sorption of each solvent
component in the polymer molecule [17]. In these cases,
different authors have proposed alternative methodologies
to determine the weight-average molecular weight [18–20].
To illustrate this, let us consider the case of copolymers. If
we define the Ki as

Ki = K∗
(

∂n

∂ci

)2
∣∣∣∣∣
c=0

= K∗ν2
i (18.22)

where

K∗ = 4π2n2
0

NAλ4
(18.23)

and

νi =
(

∂n

∂ci

)∣∣∣∣
c=0

(18.24)

Then,

K∗ν2c

Rex
θ

∣∣∣∣
c→0
θ→0

= 1
1
ν2

∑
i

ci

c
Miν

2
i

= 1

Mapp
(18.25)

where c is the concentration of the copolymer in the
solution and ν is the specific increment in the refractive
index of the copolymer solution extrapolated to c → 0.
This means that if we followed the same procedure as
with homopolymers, we are actually measuring a molecular
weight given by

Mapp = 1

ν2

∑
i

ci

c
Miν

2
i (18.26)

Since νi depends of the solvent used, the molecular
weight determined in this way is necessarily apparent.

If we assume that the specific refractive index increments
follow a weight sum rule, then for copolymers made of
two monomers A and B, the relationship between Mapp and
〈M 〉w can be expressed as

Mapp =
(νAνB

ν2

)
〈M〉w +

[
νA

(
νA − νB

)
ν2

]
W
〈
MA

〉
w

+
[

νB

(
νB − νA

)
ν2

]
(1 − W)

〈
MB

〉
w (18.27a)
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〈MA〉w and 〈MB〉w being the weight averages of the
components A and B of the copolymer, respectively, while
νA and νB are the specific refractive index increments of
the solution with homopolymer types A and B, respectively.
W is the average weight fraction of A in the copolymer.
The relationship can alternatively be expressed as

Mapp = 〈M〉w + 2P

(
νA − νB

ν

)
+ Q

(
νA − νB

ν

)2

(18.27b)
P and Q are given by

P =
∑

i

ci

c
MiδWi (18.28)

Q =
∑

i

ci

c
Mi

(
δWi

)2
(18.29)

with δWi = Wi − W, where Wi is the weight fraction of
monomer A in the copolymer of the species i .

According to Equation 18.27b, the molecular weight
measured depends on 〈M 〉w as well as on the first two
moments of the distribution in composition. In principle,
by index matching with a single solvent, we could obtain
〈M 〉w, 〈MA〉w, 〈MB〉w, and Q .

A common procedure to determine 〈M 〉w is to perform
several light scattering experiments to measure Mapp with
different solvents with a reasonably range of values of
(νA − νB)/ν and finally obtain by regression methods
the parameters of the parabola in Equation 18.27b. The
latter procedure will provide not only 〈M 〉w but also P
and Q , which give us information about the first two
moments of the distribution in composition. However, to
have a reasonable accuracy, at least νA or νB should
be large in order to increase the overall intensity of
the scattered light. Unfortunately, it is difficult to find
a one-component solvent to index match or fulfill the
requirements of the regression method. Therefore, we are
forced to use mixed solvents, which in turn will add an
extra complication due to preferential sorption. Casassa and
Eisenberg have shown that in the case of mixed solvents, we
can use one-component solvent light scattering relationships
if we substitute the conventional refractive index increment
measured at constant composition of the mixed solvents
by ν’s measured at constant chemical potential (νμ) for
all diffusible components of the solvent, that is, after the
establishment of osmotic equilibrium between the polymer
solution and the polymer-free mixed solvents [21, 22]. The
experimental procedures to determine νμ’s are described by
Tuzar et al. [23, 24]. A thorough test of the Bushuk–Benoit
theory was conducted by Podešva et al. [25].

On the other hand, since, in the case of mixed solvent,
light scattering is sensitive to preferential sorption by
polymers, it has been used as a tool in the study of

such important phenomena [26–33]. An elegant example
of the study of preferential sorption by light scattering is
that of Marchal and Strazielle who studied the thermal
transitions from coil to helix of poly(l-benzyl glutamate)
in a mixture of dichloro acetic acid (DCA) and heptane;
they found an unusual variation in the apparent molecular
weight (Fig. 18.5) as the conformation changed from coil
to helix, indicating that the helical structure adsorbed fewer
DCA molecules than the coiled form [32].

Finally, as per Equation 18.27b, if a copolymer has a
very narrow composition distribution, Mapp will be very
close to 〈M 〉w using a single solvent; the same applies
to mixed solvents if we follow the procedure mentioned
earlier. This can be the case, for instance, of a radical
copolymerization in a true azeotrope composition or of
a block copolymer synthesized by a controlled anionic or
living radical polymerization.

18.3.2 Application of SLS for the Determination of
Structure When |q ξ | ≥ 1

In this section, we discuss the application of the RDGA
for arbitrary q’s. When the scale with which we are
probing our system is on the order of the radius of
gyration of our macromolecule (Fig. 18.4), the calculation
of 〈�ε(R)�ε(0)〉 will not reduce to the thermodynamic
fluctuations since the number of monomers in a volume
element is not a thermodynamic variable and, additionally,
in this case, exp(−iq · R) is an oscillating function in the
probing volume element.

However, we can still follow the steps from the previous
section if we assume that the dielectric constant depends on
R through the local volume fraction occupied by the solvent
ϕ(R), the number of monomers in that volume element
N1(R), and the local temperature T (R), that is,

ε(R) = ε
[
ϕ(R), N1(R), T (R)

]
(18.30)

Here, ϕ(R) and T (R) are the thermodynamic variables,
while N1(R) is not. However, we can still assume that
N1(R) is not correlated with ϕ(R) and T (R) and thus
calculate the excess in the fluctuations in the dielectric
constant as

〈
�ε (R) �ε

(
R

′)〉
ex

=
(

∂ε

∂N1

)2 〈
�N1 (R) �N1

(
R

′)〉
(18.31)

We can write Equation 18.31 in terms of the number
density of monomers ρ1 = N1/V as

〈
�ε (R) �ε

(
R

′)〉
ex

=
(

∂ε

∂ρ1

)2 〈
�ρ1 (R) �ρ1

(
R

′)〉
(18.32)

The Fourier transform of correlation function of the local
number densities of monomers can be written in terms of
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Figure 18.5 Helix–coil transitions of poly(l-benzyl glutamate) in a mixture of dichloroacetic acid
and heptane showing the variation of the apparent molecular weight (M∗

w in their notation) and
the radius of gyration. Source: Reprinted with permission from Cowie JMG. Pure Appl Chem
1970;23:355 [33]. Copyright 1970 International Union of Pure and Applied Chemistry (after
Marchal E, Strazielle C. Compt Rendu 1968;C267:135. Academie Française de Science).

G(R, c), the joint probability of finding any monomer at R
when any other is at the origin, as

∫∫ 〈
�ρ1 (R) �ρ1

(
R

′)〉
exp

(
−iq

[
R − R

′])
dRdR

′

= nNp

∫ (
G(R, c) − 〈ρ1〉

)
exp (−iq •R) dR (18.33)

where n is the number of monomers per chain, Np is
the number of polymer chains, and 〈ρ1〉 is the average
number density of monomers. We have explicitly written
the dependence of G(R, c) on polymer concentration
because the average

〈
�ρ1(R)�ρ1(R

′
)
〉

depends on the
actual polymer concentration. It is common to divide G(R,
c) in terms of the intramolecular and the intermolecular
contributions, Gintra(R, c) and Ginter(R, c), respectively, as

G(R, c) = Gintra(R, c) + Ginter(R, c) (18.34)

where Gintra(R, c) is the joint probability of finding any
monomer at R when any other of the same macromolecule
is at the origin, while Ginter(R, c) is the joint probability of
finding any monomer at R when any monomer of a different
macromolecule is at the origin.

Substituting Equations 18.32, 18.33 and 18.34 into
Equation 18.9, we obtain a generalization of the Rayleigh
ratio of a monodisperse sample for an arbitrary q and

polymer concentration as

Rex
θ

Kc
= M

{
1

n

∫
Gintra (R, c) exp (−iq •R) dR

}

+ NAc

{∫ (
ginter (R, c) − 1

)
exp (−iq •R) dR

}
(18.35)

where ginter(R, c) = Ginter(R, c)/
〈
ρ1

〉
and c is the concen-

tration in g/ml of the polymer in the solution. In dilute
solutions, the only relevant correlation length is related to
the size of a single polymer chain, and therefore, the only
surviving correlation function will be Gintra(R, c). In the
dilute limit, to first order in concentration, Equation 18.35
reduces to the well-known result [34]

Kc

Rex
θ

= 1

M P (θ)
+ 2A2c + . . . (18.36)

where P (θ ) is the normalized Fourier transform of
Gintra(R, c),

P(θ) = 1

n

∫
Gintra (R) exp (−iq •R) dR (18.37)

usually called the form factor . Equation 18.36 contains
information on solution properties (polymer molecular
weight, second virial coefficient, and so on) as well as
structural information contained in P (θ ), such as size
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(radius of gyration), shape, and even internal structure of the
macromolecule depending on how large is ξ relative to q−1.
In the limit of θ → 0 and P (θ ) = 1, Equation 18.36 reduces
to Equation 18.18 for a monodisperse dilute polymer
solution.

Writing Gintra(R) in terms of the distribution of polymer
segments Pij (R) (the probability of finding monomer j in
R when i is at the origin), we can rewrite Equation 18.37 as

P(θ) = 1

n2

n∑
i

n∑
j

∫
V

P
(
Rij

)
e−iq • Rij dRij (18.38)

Integrating, we arrive at the famous Debye expression for
P (θ ) [35]:

P(θ) = 1

n2

n∑
i

n∑
j

〈
sin qRij

qRij

〉
(18.39)

Debye introduced this in the context of X-ray scattering
where the RDGA is commonly valid; he derived the general
expression for the intensity of X-rays scattered by an
ensemble of randomly oriented particles. Later on, Debye
himself applied it to the scattering by polymer solutions
[36, 37]. If the particle is rigid then distance between the
elements that conforms to the object aij will be constant
and Equation 18.39 reduces to

P(θ) = 1

n2

n∑
i

n∑
j

sin qaij

qaij
(18.40)

This expression applies to any rigid object independent of
its shape. The only assumption made was that Pij (R) =
P
(
Rij

)
.

Instead, we can write P (θ ) in terms of the moments of
the distribution polymer segments as

P(θ) =
∞∑

p=0

(−1)p

(2p + 1)!
q2p

⎡
⎣ 1

n2

n∑
i<j

〈
R

2p

ij

〉⎤⎦ (18.41)

If q is small compared with the inverse of the term in
brackets, we can only recover up to the second moment of
the distribution polymer segments, that is,

P(θ) ∼= 1 − 1

3
q2

⎡
⎣ 1

n2

n∑
i<j

〈
R2

ij

〉⎤⎦ = 1 − 1

3
q2 〈R2

g

〉
(18.42)

where
〈
R2

g

〉
is the mean square radius of gyration of the

polymer chain (or particle). As q becomes larger, we can
recover in addition higher moments of the distribution
and therefore more information about the scattering object.

Substituting Equation 18.42 into Equation 18.36, we get in
terms of the scattering angle

Kc

Rex
θ

= 1

M

[
1 + 16π2n2

s

3λ2

〈
R2

g

〉
sin2

(
θ

2

)
+ · · ·

]
+2A2c + · · · (18.43)

where ns is the refractive index of the medium.
The generalization to polydisperse polymer solutions is

straightforward, leading to

Kc

Rex
θ

= 1

〈M〉w

[
1 + 16π2n2

s

3λ2

〈
R2

g

〉
z

sin2
(

θ

2

)
+ · · ·

]

+ 2
〈
A2

〉
w c + · · · (18.44)

where

〈
R2

g

〉
z
=

∑
i

NiM
2
i

〈
R2

g

〉
i∑

i

NiM
2
i

(18.45)

Equation 18.44 constitutes the main expression of
classical light scattering polymer characterization. This
suggests the form of plotting scattering data named after
Zimm [38], the Zimm plot , 18.37 an example of which
is shown in Figure 18.6 [39]. However, there are other
forms to plot scattering data depending on the form and
size of the particle and the type of information that has
to be extracted from the experiments. Examples of some
of these will be given later in the chapter. Using either
Equation 18.37 or 18.39, we can derive the form factor for
different geometries, as shown in Table 18.12 [40].
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Figure 18.6 Zimm’s plot of an alternating copolymer of ethylene
and tetrafluoroethylene (PETFE) in diisobutyl adipate at 240 ◦C.
Source: Reprinted with permission from Chu B, Wu C. Macro-
molecules 1987;20:93–98. Copyright 1987 American Chemical
Society.

2For a sphere, the conditions of the RDGA might not be matched because
the refractive index of the sphere could be substantially different from
that of the suspension medium. If so, P (θ ) should be calculated by Mie’s
theory. This is the case of PS (polystyrene) latex spheres in water.
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TABLE 18.1 Form Factors for Different Geometries in the RDGA

Sphere Rod Gaussian Coil

x = qa x = qL

2
x = q2

〈
R2

g

〉

P(θ) =
[

3

x3
(sin x − x cos x)

]2

P(θ) = 1
x

2x∫
0

sin y

y
dy −

(
sin x

x

)2

P (θ ) = (2/x2)(x − 1 + e−x )

P
(q

)−1

(qRg)2

4.5

3.5

3

2.5

2

1.5

1
0 1 2 3 4 5 6 7 8

Gaussian chain
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4

Figure 18.7 Calculated form factors for a Gaussian chain, sphere
and a rod. The Rg’s used were: for a homogenous sphere of radius

a , R2
g = 3/5 a2 and for a rod of length L, R2

g = L2/12.

Figure 18.7 shows the effects of structure on P (θ )−1.
In the case of a rod, P (θ )−1 tends to grow slower with
q2
〈
R2

g

〉
. Therefore, for a wormlike chain, P (θ )−1 will lie

between a flexible Gaussian chain and a rod. A similar
effect occurs for a polydisperse sample of flexible chains
because light scattering from the large molecules decays
more rapidly with increasing angle than the scattering from
small molecules, and therefore, their contribution becomes
more significant at larger angles; hence, polydispersity and
rigidity have qualitatively equivalent effects. The same
applies to solvent effects; in good solvents, chains tend to
swell and deviate from the Gaussian distribution and this
concomitantly will make P (θ )−1 grow slower with q2

〈
R2

g

〉
.

The opposite happens for a homogenous sphere where
P (θ )−1 tends to grow faster with q2

〈
R2

g

〉
. Chain branching

tends to give, for the same molecular weight, more compact
structures, and therefore, P (θ )−1 will have a shape between
a linear Gaussian chain and a sphere [41]. The influence
of such factors on P (θ )−1 does not allow a unique
interpretation of the structure of the macromolecule or the
particle shape; one should have additional information from
complementary independent characterization methods. It is
interesting to note that independently of the shape, the
initial slope is always 1/3.

In the opposite limit, for qξ � 1, Benoit proved, for
a Gaussian chain, that P (θ )−1 is still linear with q2. In
fact, in this limit, P(θ)−1 = 1/2

(
1 + q2

〈
R2

g

〉)
[42]. For a

polydisperse sample, in the limit q
〈
R2

g

〉1/2 � 1, Equation
18.44 becomes[

Kc

Rex
θ

]
c = 0

q
〈
R2

g

〉1/2 � 1

= 1

2 〈M〉n

(
1 + Bq2) (18.46)

where B = 〈N〉n �2/6, with � and 〈N 〉n being the monomer
size and the number-average degree of polymerization,
respectively, and 〈M 〉n is the number-average molecular
weight, defined as

∑
NiMi/

∑
Ni . This result was ex-

tended to rods by Holtzer, except that instead of q2 depen-
dence, he found a linear behavior with q [43]. In principle,
this implies that for large q’s one can obtain also the first
moment of the distribution in molecular weight. However,
in practice, for the wavelengths used in light scattering ex-
periments, in the majority of the cases, this asymptotic limit
will never be reached. Nevertheless, if instead, we do a
scattering experiment with X-rays (with enough electron
density contrast) or neutrons, using a deuterated polymer
in solution, then we will certainly reach this asymptotic
limit.

As an illustration of SLS, in what follows, we give some
interesting examples of the application of this technique
to study the structure of complex systems. Figure 18.8
shows the experimental results of Galinsky and Burchard
[44] on the determination of P (θ ) for a collection of seven
samples of branched macromolecules in a solution of 0.5 N
NaOH, prepared from potato starch by controlled acid
degradation. Previously, Burchard [45] had derived a form
factor for trifunctional polycondensation model without
excluded volume effects, namely,

P(q) = 1 + (C/3)
(
qRg

)2
[
1 + ( (1+C)/6)

(
qRg

)2]2 (18.47)

The parameter C increases with the molar mass and is
related to the branching probability p. For self-similar
structures, one expects that the particle topology does not
vary with molar mass, that is, the form factor should be
independent of molar mass. These nonrandomly branched
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Figure 18.8 Kratky’s plot of the form factor of samples of
branched polymers derived from potato starch by controlled
acid degradation. The upper continuous line corresponds to a
linear chain (C = 1) while the lower one to a homogenously
branched polymer (C = 0). Source: Reprinted with permission
from Galinsky G, Burchard W. Macromolecules 1997;30:4445
[44]. Copyright 1997 American Chemical Society.

samples show only very limited intermediate range power
law behavior. Furthermore, the various samples of different
molar masses are not self-similar to each other, but each
sample exhibits its own exponent in the asymptotic region.
The Kratky representation of the data emphasizes the
behavior at large qRg and shows how well Equation 18.47
fits the experimental data with a single parameter.

Another interesting application, relevant to controlled
drug release, is the determination of the outer diameter d
and the membrane thickness δ as a function of pH of
a sample of large polydisperse microcapsules (∼10 μm)
made of poly(l-lysine-alt-terephthalic acid). Dobashi et al.
[46] showed that it is possible to measure P (θ ) for
individual particles with a new design of the sample cell
(capillary tubing cell) and detecting system that could cover
a range of q’s from 0.5 to 6 μm−1. By comparing the
experimental P (q) with the form factor for a spherical thin
shell, they determined the values of d and δ as illustrated
in Figure 18.9. The authors found that the lowest values
for d and δ corresponded to pH 4 and increase as the
pH differs from 4. They also established that d and δ

change approximately proportional to each other suggesting
an isotropic volumetric phase transition.

In the previous example, the microspheres were far
greater than q−1, and therefore, Dobashi et al. were able to
resolve fine details. However, this is not always the case and
we have to use complementary techniques such as SAXS
or SANS to cover a wider range of q’s.3 An example of

3The theoretical framework of both techniques is the same as the one
discussed for light scattering except for the front factor. For SAXS or
SANS, the intensity will be related to the correlation of electron densities
or nuclei densities, respectively.

this is the study by Lonetti et al. [47] of wormlike micelles
of a block copolymer of poly(butadiene-co-ethylene oxide)
(PB-PEO) in water; these structures have a very broad range
of length scales ranging from the contour and persistence
length to the core/corona diameter and aggregation number
per unit length (number of copolymer molecules per PB-
core length of the worm). For the weight fraction of PEO
wPEO between 0.47 and 0.59, this system self-assembles
in water as wormlike micelles with a core of PB and a
corona of PEO, while for wPEO > 0.6 and wPEO < 0.47,
they form spherical micelles and bilayers, respectively.
However, a different way of tuning these morphological
transitions is through solvent selectivity using a mixture
of solvents. Lonetti et al. used in their work a mixture
of N, N-dimethylformamide (DMF) and water and studied
the relation between the smallest relevant length scale, as
the diameter and aggregation number per unit length, to
changes in the mesoscopic structure, that is, the contour
and persistent lengths of the wormlike micelles; they also
analyzed the transition from wormlike to spherical micelles.
Figure 18.10 shows the experimental scattering intensities
as a function of q for different solvent compositions of
d-DMF and D2O. The filled symbols correspond to SLS
data, while the open symbols refer to SANS. For high water
content, at low q values, the scattering intensity scales as
q−1 (SLS region), corresponding to rigid rods, independent
of the micelle length, polydispersity, and flexibility. No
sign of q−2 dependence typical of wormlike micelles is
observed in view that the persistence length is larger than
500 nm. At d-DMF mole fraction, fd-DMF > 0.09, the
low q data shows a change in q dependence allowing to
obtain information about the persistence length. We also
observe that as the DMF content increases, the minima
of the oscillation in the form factor move toward larger
q’s indicating a smaller overall cylinder diameter. From
Figure 18.10, they could infer qualitatively a transition to
spherical micelles. By adding DMF until fd-DMF = 0.5,
a 50% decrease in the scattering intensity is reported,
with no change in slope. From fd-DMF = 0.7, the intensity
becomes independent of q forming a plateau, representative
of the scattering by spherical objects. Using the Kholodenko
model to fit the data and other complementary techniques,
Lonetti et al. were able to obtain information about the
core/corona diameter, the aggregation number per unit
length, the density gradient of the shell, the contour, and
the persistence length [48].

These examples show the potential that scattering tech-
niques have in determining thermodynamic and structural
features of rather complex polymeric systems. However,
they also show that if we want to go beyond the determi-
nation of molecular weight and average radius of gyration,
theoretical modeling is necessary to interpret the scattering
data and obtain more information about the system. More
examples of the application of SLS and DLS, including a
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Figure 18.9 Observed (solid curve) and calculated (dotted curve) scattering pattern of
microcapsules with (a) pH = 2, (b) pH = 4, and (c) pH = 10. Source: Reprinted with permission
from Dobashi T, Narita T, Masuda J, Makino K, Mogi T, Ohshima H, Takenaka M, Chu B.
Langmuir 1998;14:745 [46]. Copyright 1998 American Chemical Society.

discussion of experimental details, can be found in Schärtl’s
book [49].

18.4 DYNAMIC LIGHT SCATTERING

18.4.1 General Concepts: Determination of Particle
Sizes in Dilute Solutions

In order to observe the time dependence of the scattered
intensity, certain experimental conditions must be met.
First, the characteristic time of a fluctuation is rather short
and therefore requires special detectors that can respond
to such timescale. Second, the scattering volume should
be small and the angle subtended on the detector should
also be small so that the area seen by the detector is
on the order of one coherence area (which is the zone
where the light is almost in phase producing constructive
interference). Rephrasing the previous statements, if we
illuminate with a laser a cell filled with a sample of
a suspension of scattering particles, we will observe a
“speckle pattern”(bright spots) that is constantly changing
due to the motion of the particles; experimentally, we

should observe a volume on the order of a single “speckle.”
The timescale of the fluctuations depends on the time that
takes a particle to move a distance of the probing effective
wavelength (λ/sin(θ /2)). This time depends on the size and
geometry of the scattering objects, the fluid viscosity, the
temperature, and the concentration.

There are basically two approaches for the measurement
of the time dependence of the scattered intensity. The first
one is addressed to processes that are rather fast, which
require the Fabry–Perot interferometers or diffraction
gratings to obtain the spectral decomposition of the
scattered light. These devices are placed in between the
scattering cell and the detecting system and act as a filter.
By varying the spacing or other setting parameter, we can
make a spectral decomposition of the scattering intensity
and obtain I (q,�ω), as in Equation 18.5. However,
these techniques do not have the resolution to study
processes slower than 10−6 s. Diffraction gratings resolve
adequately when the dynamics is faster than 10−10 s,
while Fabry–Perot interferometer is the right choice for
the process in between 10−6 and 10−10 s. On the other
hand, in common applications, the timescale ranges from



378 LIGHT SCATTERING AND ITS APPLICATIONS IN POLYMER CHARACTERIZATION

107

105

103

101

10 −1

0.01 0.1

q (nm−1)

I/Φ
·N

A
·Δ

r
2 )

(c
m

3 
/m

ol
e−1

)

1

q −1

109

1011

Figure 18.10 Experimental and fitted lines as a function of
q of the scattered intensity by PB-PEO block copolymer in
different solvent whose compositions go from d-DMF to D2O.
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with permission of Lonetti B, Tsigkri A, Lang PR, Stellbrink
J, Willner L, Kohlbrecher J, Lettinga MP. Macromolecules
2011;44:3583 [47]. Copyright 2011 American Chemical Society.

10−7 to 1 s. If this is the case, we use the so-called optical
mixing techniques (OMTs), also called photon correlation
spectroscopy (PCS ). In PCS, the scattered light is directly
collected by the detector; if the previously discussed
experimental conditions are met, then we will have a highly
fluctuating scattered intensity with time as the output. In the
homodyne (or self-beat) method, only the scattered light is
collected, while in the heterodyne method, we mix in the
detector the scattering light with another nonscattered light,
normally a small portion of the incident beam. Furthermore,
the statistical analysis of the fluctuating scattered intensity
is done by means of a digital correlator. For the homodyne
arrangement, the final output will be then the correlation
function between intensities

G2 (q, τ ) = lim
T →∞

1

T

T∫
0

Is(q, t)Is(q, t + τ)dt (18.48)

If the process is stationary and ergodic, the time
average can be replaced by an ensemble average,
G2(q, τ ) = 〈

Is(q, τ )Is(q, 0)
〉
. Experimentally, G2(q, t) is

determined by recording Is(t) at time intervals much shorter
than the timescale of typical fluctuations and accumulating
the products of the intensities as a function of the sampling
time τ . The sampling can be chosen to be linear or exponen-
tial. Actually, the exponential sampling is the best choice.

If we assume the scattered electric field as a superposi-
tion of a large number of statistically independent random
electric fields, then according to the central limit theorem,
the scattered field will be a random field with a Gaus-
sian distribution. This is called the Gaussian approxima-
tion , which is valid in many cases. However, this will
not be satisfied, for example, in strongly interacting par-
ticles, or in nonergodic systems such as gels. Within the
Gaussian approximation, G2(q, t) can be written in terms
of the autocorrelation function between the scattered fields
G1(q, t) = 〈

Es(q, τ )Es(q, 0)
〉

as

G2(q, t) = B + f
∣∣G1(q, τ )

∣∣2 (18.49)

which is known as the Siegert relationship. Here, B is the
baseline

〈
Is(q)Is(q)

〉
and f is the spatial coherent factor that

depends on the number of coherent areas in the detector and
will be equal to 1 for a single coherent area or less [50–52].

Although homodyne is the most used method in PCS,
we describe shortly also the heterodyne method, which
is widely used for Doppler velocimetry experiments or
when the Siegert relation is not applicable. Heterodyning
means that we mix in the detector the scattered light with
a strong nonscattered signal (named commonly as the local
oscillator), that is,

〈
Is(q, t)Is(0)

〉 = 〈∣∣ELO + Es(q, t)
∣∣2 ∣∣ELO + Es(q, 0)

∣∣2〉
(18.50)

Since ELO � Es, we can approximate 〈Is (t) Is (0)〉 as

〈
Is(q, t)Is(0)

〉 ∼= [
I 2

LO + 2ILO ReG1 (q, t)
]

(18.51)

This means that in most applications, we can relate
G2(q, t) to G1(q, τ ) = 〈

Es(q, τ )Es(q, 0)
〉

by either homo-
dyne or heterodyne methods. Proceeding in the same way
as in the SLS, we can relate 〈�ε(R, t)�ε(0, 0)〉 with the
dynamic joint probabilities Gintra(R, t) and Ginter(R, t) and
write Equation 18.5 as

Is(q,�ω) ∼=
{

1

n

∫
Gintra (R, t) e(−i(q • R+�ωt)dRdt

}

+NAc

{∫ (
ginter (R, t) − 1

)
e(−i(q • R+�ωt)dR

}
(18.52)

Equation 18.52 becomes the dynamic equivalent of
Equation 18.35 where Gintra(R, t) is the probability of
finding any monomer at R at time t when any other
of the same macromolecule is at the origin at t = 0,
while Ginter(R, t) is the joint probability of finding any
monomer at R at time t when any monomer of a different
macromolecule is at the origin at t = 0. In Equation 18.52,
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ginter(R, t) = Ginter(R, t)/
〈
ρ1

〉
. For a dilute solution, this

reduces to

Is(q,�ω) ∼=
∫

Gintra (R, t) e(−i(q • R+�ωt)dRdt (18.53)

We have omitted all the front factors since they are not
relevant for the time dependence of the scattering intensity.

Let us now consider the simplest case, a system
consisting of diluted suspension of spheres, such as a latex
particle suspension. As with any rigid body, there will be
only two dynamic modes: a translation of the center of
mass and the rotation around the center of mass. For a
sphere, the only mode that participates in the fluctuations
in concentration will be the translational one since a rotation
around the center of mass will have no effect on mass
transfer in a scattering volume element. This means that
in the case of a sphere, we can factorize Gintra(R, t) as

Gintra(R, t) = Gintra(R
′
)P (rcm, t) (18.54)

where rcm is the position vector of the center of mass and R
′

is the position vector of any point in the sphere relative to
the center of mass

(
R = R

′ + rcm

)
. Substituting Equation

18.54 into Equation 18.53, we can factorize Is(q, �ω) as

Is(q,�ω) ≈ P(θ)

[∫
P(rcm, t)e−i(q • rcm+�ωt)drcmdt

]
(18.55)

P (θ ) is the form factor for a sphere already discussed and
P(rcm, t) is the probability that the center of mass of a
sphere is at rcm at time t when at t = 0 was at the origin.

To illustrate, let us assume that the particles all move at
constant velocity v0. Then P

(
rcm, t

)
is given by

P
(
rcm, t

) ≈ δ
(
rcm − v0t

)
(18.56)

and spectral decomposition of the scattered intensity is

Is(q,�ω) ≈ P(θ)

[∫
ei(±q • v0−�ω)tdt

]

≈ P(θ)
[
δ
(
�ω + q •v0

)+ δ
(
�ω − q •v0

)]
(18.57)

that is, in frequency space, we will observe two sharp spikes
at ω0 ± q · v0, as shown in Figure 18.11. This means that
if we illuminate with a frequency ω0, the scattered light
will suffer a Doppler shift from the incident frequency by
±q · v0. Since we know q, we can determine v0 by DLS.

Now, let us consider the case of spherical particles
diffusing in a medium; the equation governing P

(
rcm, t

)
will be Fick’s law

∂P
(
rcm, t

)
∂t

= D∇2P
(
rcm, t

)
(18.58)

w0-q•v0 w0+q•v0 ww0

Figure 18.11 Spectral decomposition of the scattered light by
spheres moving at constant velocity.

where D is the diffusion coefficient. The solution in q
space is

P(q, t) ≈ e−q2Dt (18.59)

Therefore, the time dependence of the scattered inten-
sity is

Is(q, t) ≈ e−q2Dt (18.60)

This is probably the most emblematic expression in DLS
(Fig. 18.12).

As we can see, the decay time τ = 1/(q2D) is nothing
else than the time that it takes for a Brownian particle to
cross a distance

√
6/q.

Equation 18.60 is valid for any object that follows a
translational diffusion no matter what its actual form is.
If the object is not a rigid sphere then will have other
dynamical modes that contribute to the fluctuations in the
scattered field, such as rotational diffusion, elastic modes,
which will also contribute to the scattered intensity, as
discussed later.

The decay constant can be written in terms of the particle
size using the Stokes–Einstein relationship

D = kBT

ζ
(18.61)

where ζ is the friction coefficient. In the case of a sphere
ζ = 6πηR, where R is the radius of the sphere and η is the
viscosity of the medium. When the diffusing particles are
not hard spheres, it is common to introduce the concept
of the hydrodynamic radius Rh that is the radius of an
equivalent hard sphere with the same translational diffusion
as the scattering object, whether this is a macromolecule, a
rod, or any other form.

Thus, the decay time of the normalized correlation func-
tion g1(q, t) = 〈E(q, t)E(q, 0)〉 /Is(q) for a monodisperse
sample of spheres is

τ = 1

q2D
= 6πηR

q2kBT
(18.62)
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Figure 18.12 Typical G2(t) display for a monodisperse latex
sample of 400 nm particle diameter. (a) Linear plot and (b)
logarithmic plot.

Since q , T , and η are known, we determine R from the
measurement of τ . Actually, most commercial software
calculate the size assuming that the object is spherical.
As mentioned before, the digital correlator gives directly
G2(q, t), and therefore, after subtracting the baseline and
dividing by baseline, we get by the Siegert relationship a
correlation function C (t) given by

C(t) = G2(t) − B

B
= f e−2q2Dt (18.63)

Notice that in a homodyne experiment the decay time is
twice of that in a heterodyne experiment. This means that
when we perform a homodyne experiment, we must be
sure that no stray light reaches the detector, otherwise we
might have a mixture of homodyne–heterodyne output.
A thorough discussion of the instrumental considerations
to be followed when using DSL is found in Reference 52.

In the case of a polydisperse sample of spheres, each
particle size contributes to the scattered intensity following
the time dependence shown in Equation 18.60, giving

rise to a superposition of exponential decays; the specific
contribution of each species to the total light scattered is
proportional to the scattered intensity by the particles of the
species, that is,

Is(q, t) ≈
∑

i

Isi (q)e−q2Dit (18.64)

Writing Equation 18.64 in terms of g1(q, t) we have

g1(q, t) =

∑
i

Isi (q)e−q2Dit

∑
i

Isi (q)
(18.65)

To simplify the notation, we omit in the following
discussion the explicit q dependence in Is and g1 and use a
single parameter � = q2D to identify the species; in that
case, we can rewrite Equation 18.65 as:

g1(t) =
∞∫

0

G(�)e−�td� (18.66)

which is the Laplace transform of G(�) that is given by

G(�) =

∑
i

Isiδ
(
� − �i

)
∑
i

Isi
(18.67)

All the information on the distribution is in G , while
g1(t) is experimentally determined using the Siegert
relation. To extract from g1(t) the size distribution, one
has to invert Equation 18.66; however, this type of linear
transformations are known to be ill-conditioned, that is, if
the experimentally measured g1(t) contains any noise, the
solution for G(�) is not unique. We can only expect to have
a poor-resolution picture of G(�) and we will never retrieve
the fine details of the distribution. The mathematical reasons
for this were studied by McWhirter and Pike [53] who
solved the eigenvalue problem of the Fredholm equation
of the first class with the Laplace kernel. They prove that
the eigenfunctions are mutually orthogonal and form a
complete set; they also obtained the eigenvalue spectrum
for the Laplace transform λ±

μ and found that they decay
exponentially with μ. The latter is the fundamental reason
why it is impossible to recover a high resolution G(�);
any small noise in g1(t) will give rise to a large noise in
G(�). In such circumstances, it is not possible to obtain a
complete and unique result.

In spite of the ill-conditioned inversion problem, there
are a good number of approaches that try to overcome
the inherent limitations by proposing schemes that can
provide some information about the distribution function.
The simplest and oldest of all DSL data analysis methods is



DYNAMIC LIGHT SCATTERING 381

the method of cumulants [54]. The essence of this method
lies in expanding exp(−�t) in Equation 18.66 about the
mean value 〈�〉, where 〈�〉 is defined as

〈�〉 =
∞∫

0

�G(�)d� (18.68)

Then,

g1(t) = exp (−〈�〉 t)

[
1 + μ2t

2

2!
− μ3t

3

3!
+ · · ·

]
(18.69)

where

μi =
∞∫

0

(� − 〈�〉)i G(�)d� (18.70)

are the i th moments about the mean (cumulants) of G(�).
〈�〉 can be obtained directly from g1(t) as

〈�〉 = −
[

dg1(t)

dt

]
t=0

(18.71)

Since the weighting factors in G(�) are the Isi ’s, we
know from the SLS discussion that Isi (q) ≈ NiM

2
i Pi(q),

where Ni and Mi are the number and mass of species i ,
respectively, while Pi (q) is its form factor. Substituting the
expression for Isi in Equation 18.68 leads to

〈�〉
q2

=

∑
i

NiM
2
i Pi(q)Di∑

i

NiM
2
i Pi(q)

(18.72)

This is sometimes called the apparent diffusion coefficients
Dapp(q) since it depends on q . If the particle sizes are small
compared to λ, or if we observe at very small angles, then
P (q) → 1 and Equation 18.72 reduces to

〈�〉
q2

=

∑
i

NiM
2
i Di∑

i

NiM
2
i

= 〈D〉z (18.73)

Normally, 〈D〉z is obtained by taking several measure-
ments of Dapp(q) at different angles and extrapolating
to zero angle. In terms of the hydrodynamic radius,
Equation 18.73 implies that in the limit of q → 0,
〈�〉 /q2 = (

kBT/6πη
) 〈

R−1
h

〉
z
.

From Equation 18.70, μ2 can be written as the variance
of � : μ2 = 〈�2〉 − 〈�〉2. In the limit of small angles, we
can write the so-called polydispersity index (PI), μ2/〈�〉2 as

μ2

〈�〉2
=
〈
D2
〉
z− 〈D〉2

z

〈D〉2
z

(18.74)

In view of McWhirter and Pike’s work, noise will limit
the number of cumulants that we can actually measure. In
most cases, only 〈�〉 and μ2 can be determined. Cumulants
are used for monomodal size distributions that have a PI
not larger than 0.3. In bimodals or other more complex
distributions, cumulant analysis will be meaningless and
will only give some type of rough screening of the data.
Even more, Dapp(q), which is what is usually determined, is
also dependent on the type of correlator, whether linear or
nonlinear correlator, and the number of channels used [55].

Ostrowsky et al. [56] proposed one of the first methods
of inverting Equation 18.66. On the basis of the previous
work of McWhirter and Pike, mentioned before, they sug-
gested replacing Equation 18.66 by a sum of exponentials
whose �’s are spaced exponentially according to

�n+1 = �n exp

(
π

ωmax

)
(18.75)

where ωmax is a parameter determined by the noise level of
the correlation function. The number of exponentials used
in the reconstruction depends also on the noise level.

The amplitudes of the histogram of the distribution
function are calculated by a non-negative least square
method. This procedure is known as the exponential
sampling method and is applicable to both monomodal and
bimodal distributions. However, in view of the limitations
of the Laplace inversion, it is difficult to resolve bimodal
distributions with a ratio between the two particle species
below 2.

Provencher has developed an effective inversion soft-
ware package, CONTIN, which is a generalized inverse
Laplace transform with constraints. CONTIN also turns
g1(t) into a discrete sum of exponentially spaced set of
exponential; however, it includes additional constrains in
order to suppress artificial oscillations. For that purpose, it
uses a constraint regularization term, which limits solutions
with high curvatures (constraints on the second derivatives)
[57, 58]. This software is included in all commercial instru-
ments. Other approaches that have been used are maximum
entropy, Regularized Positive Exponential Sum (REPES),
single value decomposition, multiangle constrained inver-
sion, Bayesian inversion method together with multiangle
DSL (MDSL), to mention some [59–65].

A general comment that applies to all the inversion
methods is that when they are used as a black box (as
they are normally used), one should take the result only as
indicative of the distribution. The ill-conditioned nature of
the inversion problem together with uncontrolled factors
and artifacts of the inversion method used can lead to
false particle size distributions. In any case, in spite of
the inherent limitations of any of these methods, a well-
trained researcher in DLS can profit from these methods as
optimized inversion tools.
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18.4.2 Dynamic Light Scattering by a Dilute Solution
of Thin Rods

Let us consider now a system consisting of thin rods
suspended in a fluid at a concentration regime where the
rods do not interact between each other. This particular
geometry is important since there are many biological
molecules, which, as a first approximation, can be described
as rigid rods, such as helical polypeptides, some proteins,
and tobacco mosaic virus (TMV). Also, important new
nanotechnological products such as organic or inorganic
nanotubes or nanorods with a large aspect ratio are good
examples of rodlike particles. For this geometry, two types
of motions contribute to the fluctuations in the scattered
intensity. The first one is again related to the translational
motion of the rod, while the second dynamic mode is
associated with the rotation of the rod around the center
of mass of the rod.

The first to calculate the time dependence of the
scattering intensity of thin rods was Pecora [66, 67].
He introduced some simplifications assuming that the
translational and the rotational dynamics were not coupled
and that the thickness of the rod is negligible compared with
the wavelength. The mathematical details of his derivation
can be found in Berne and Pecora’s book [50]. His final
result for the scattered intensity time dependence for a VV
configuration is4

IVV
s (q, t) ≈ S0(qL) exp

[−q2Dt
]

+ S1(qL) exp
[− (q2Dt + 6Drt

)]+ · · ·
(18.76)

where L is the length of the rod, D is the translational
diffusion coefficient of the center of mass, and Dr is the
rotational diffusion coefficient. S0(qL), S1(qL), . . . are the
sums of the Bessel functions. What is interesting from his
result is that for qL ≤ 3, S0(qL) is much greater than
any other terms and therefore we can neglect them. This
implies that at very small angles or L small compared with
λ, the time dependence of the scattered intensity will be
fully dominated by the translational diffusion. On the other
hand, for qL ≥ 5, S1(qL) becomes relevant; its contribution
to IVV

s (q, t) for qL = 5.2 is 12% and is 57% for qL = 10.
The rest of the terms in the series are negligible up to
qL ≤ 8. This means that we can determine the translational
diffusion, extrapolating Dapp(q) to zero angle. At higher
angles, the second term becomes relevant and using the
value of D previously determined we can measure the
rotational diffusion coefficient Dr.

4VV stands for an incident beam vertically polarized, and we observe
the vertically polarized component of the scattered field. In the VH
configuration, we observe the cross-polarized component of the scattering
field for a vertical polarization of the incident beam.

In general, the diffusion equation for a rod with
finite thickness contains the coupling of translational and
rotational motions. A lucid account of this topic can be
found in Doi and Edwards’ book [68]. Wilcoxon and
Schurr [69] and, independently, Maeda and Fujime [70]
have studied the theory of DLS by thin rodlike particles.
Although the explicit autocorrelation function can only be
obtained numerically, the first cumulant can be derived
readily

〈�〉
q2

= D − �

[
1

3
− f2

(
qL

2

)]
+ L2

12
Drf1

(
qL

2

)
(18.77)

where D = (1/3)(D‖ + 2D⊥) is the translational diffusion
coefficient of the center of mass; D‖ and D⊥ are the trans-
lational diffusion coefficients parallel and perpendicular to
the axis of the rod, respectively; and � = D‖ − D⊥. The
functions f1(qL/2) and f2(qL/2) are given numerically by
Maeda and Fujime and analytically by Hammouda [71].
When qL � 1, f1(qL/2) and f2(qL/2) tend to be 0 and 1/3,
respectively, and we recover Pecora’s result for small qL
values where translational diffusion of the center of mass
is the dominant dynamical mode. In contrast, for qL � 1,
f1(qL/2) and f2(qL/2) approach 1 and 0, respectively, and
〈�〉/q2 → D⊥ + (L2/12)Dr.

D ‖ and D⊥ and Dr are related to the length L and the
diameter d of the rod as

D‖ =
(

kBT

2πηL

) [
ln(p) + ν‖(p)

]
(18.78)

D⊥ =
(

kBT

4πηL

) [
ln(p) + ν⊥(p)

]
(18.79)

Dr =
(

3kBT

πηL3

) [
ln(p) + νr(p)

]
(18.80)

where p is the aspect ratio of the rod p = L/d , η is the
viscosity of the solvent, and the functions ν’s are end-effect
corrections and have been calculated by several authors
[72]. This implies that for thin rods that have a length
comparable to the wavelength, it is possible to determine
by DSL all diffusion coefficients and their geometrical
dimensions.

Throughout this discussion, we have implicitly assumed
that the rod is optically homogenous with a single index
of refraction and that the Rayleigh-Debye-Gans theory is
valid, which basically restricts the theory to thin rods, unless
the refractive index of the cylinder is close to that of the
solvent used [73].

In a depolarized dynamic light scattering (DDLS)
experiment in the VH configuration, we observe the cross-
polarized component of the scattering field produced by
a vertically polarized incident beam with respect to the
scattering plane. In this case, the purely translational
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particle motion does not contribute to IsVH and for small
qL values, the only term that survives will be

IsVH(q, t) ≈ SVH(qL) exp
[− (q2D + 6Dr

)
t
]

(18.81)

Therefore, by plotting 〈�〉 against q2 and extrapolating
to q = 0, we can determine Dr, whereas the slope of the
linear regression of the fitted data gives us the value of D .

A drawback of DDLS experiments is the low intensity
of the depolarized signal that requires the use of high power
lasers; however, heating of the sample will be the limiting
factor on how intense the primary beam can be. Therefore,
special care must be taken to avoid all types of possible
extra signals that could enter the detecting system. DDLS
experiments can have very short decay times, depending
on the timescale of the motion of the particles in solution.
For timescales of 50 ns and faster, which is usually valid
for molecules with a molecular weight of less than 50,000
Da, interferometric methods are recommended. For larger
particles, the usual homodyne photon correlation techniques
can be applied.

Lehner et al. [74] have compared DLS and DDLS
methods in the determination of D , Dr, and � for TMV,
a well-characterized biological model for these types of
techniques. TMV is a rigid cylinder of 300 nm length and
18 nm diameter with a molecular weight of 4 × 10−7 Da
and it is highly uniform in size with a normalized variance
(PI) much less than 0.1. In a dilute concentration sample
(0.245 g/l of TMV in pure water), it is necessary to add
a small concentration of salt (2 × 10−3M NaCl solution)
to screen out the surface charges of TMV. Figure 18.13
shows a comparison of the DDLS results with and without
the addition of salt. While the Dr value remains almost
unchanged after addition of salt, a significant increase in
the slope, and hence in D , is observed. With the added salt
solution, the authors obtained values of 299 ± 9 s−1 and
(4.05 ± 0.09) × 10−12 m2/s for Dr and D , respectively.

Furthermore, they compared the DDLS results with
a DLS measurement fitting the experimental data with
Equation 18.77. Figure 18.14 shows a plot of 〈�〉/q2(=Deff)
against q2; the solid line corresponds to a fit where they
fixed Dr to the value obtained by DDLS and left D and
� as free-fitting parameters. Following this procedure, they
found D to be around 5% higher than the value obtained by
DDLS and � was close to the value reported by Wilcoxon
and Schurr by DLS [69]. They also followed a different
procedure where D and Dr were taken from the DDLS
measurements and only left � as a free-fitting parameter
(dashed line); however, in this case, the � obtained
was 40% lower than that obtained by the first method.
Hydrodynamic theories lead to a � of approximately
1.8 × 10−12 m2/s, which is close to the value obtained by
the first method (1.79 × 10−12 m2/s) [72]. They attributed
this difference to the lowest angle considered in the second
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procedure (20◦) and suspected that some stray light coming
from dust could contaminate the detected signal.

18.4.3 Dynamic Light Scattering by Flexible Polymers

Following the line of discussion, the next step is to
consider a system with more degrees of freedom, such
as a deformable body, which besides the translational and
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rotational “modes,” can also have elastic modes. This can be
a gel, a polymer melt, or a single polymer chain to mention
some. As in the previous sections, in order to understand the
nature of the time dependence of the scattered intensity we
must understand the dynamics of the objects that scatter
light. The polymer dynamics at different concentration
regimes or in constrained systems such as permanent gels
is beyond the scope of this chapter; the reader interested
in this field can consult a classical modern treatise on the
subject such as Doi and Edwards’ [75] or de Gennes’ books
[76]. In any case, in what follows, we illustrate the main
results as far as DLS is concerned, from the single chain
(dilute solutions) to cooperative diffusion process at higher
concentrations and other diffusion processes that occur in
polymers with a microstructure, such as block copolymers.

Let us consider a dilute polymer solution of flexible
macromolecules. The dynamics of a single Gaussian chain
has been around for many years in the context of the molec-
ular theory of transport phenomena in polymer solutions
and has been fully reviewed in textbooks or articles in this
subject [77]. Rouse’s theory is about the simplest of all
them and helps understand the basic ingredients of the the-
ory [78]. Rouse proposed a simplification of the problem
by representing a polymer chain as a collection of beads
connected by springs (the bead and spring model). The sol-
vent interacts with the chain through the beads and it is
assumed to freely drain through the chain. The only in-
teraction between the beads is through the springs. The
spring constant will be given as an effective entropic elastic
constant produced by a collection of monomers whose end-
to-end distance is the bead size b, that is, k = 3kBT /b2. The
total friction exerted by the fluid on the chain is ζ R = Nζ ,
where N is the number of beads and ζ is the friction coef-
ficient of each bead. Since the model is already a coarse-
grained picture of the chain, it can only give a reasonable
answer for the slow long “wavelength” motions. In sum-
mary, the Rouse model reduces the problem to the dynamics
of Brownian motion of coupled oscillators. The solution to
the dynamics problem is well known and can be expressed
as a superposition of normal modes.5 The correlation func-
tion of these modes decays exponentially with time, and
the relaxation time of the p-mode is given by

τp = τ1

p2
for p = 1, 2 . . . (18.82)

where

τ1
∼= ζN2b2

3π2kBT
(18.83)

5A normal mode is an independent collective motion. The equation that
describes the dynamics of a normal mode is not coupled to the other
modes. A general motion of the chain can be written as a superposition
of its normal modes.

The zero mode is the self-diffusion of the center of mass
whose diffusion coefficient is given by the Stokes–Einstein
relation D = kBT /Nζ . The time τ 1 will be proportional
to the time required for a chain to diffuse an end-to-end
distance, that is, ≈ 〈R2〉/D = ζN 2b2/kBT . This means that
for time scales longer than τ 1 the motion of the chain
will be purely diffusive. On timescales shorter than τ 1, it
will exhibit viscoelastic modes. However, the dynamics of
a single chain in a dilute solution is more complex due
to long-range forces; hydrodynamic interactions between
distant monomers through the solvent are present and, in
good solvents, excluded volume interactions also have to
be taken into account. The correction of the Rouse model
for hydrodynamic interaction was done by Zimm [79].
From a mathematical point of view, the problem becomes
harder and requires approximations to arrive at some useful
results. In this case, the translational diffusion coefficient
obtained is

D ≈
(

kBT

ηb

)
N−ν ≈ kBT

ηRg
(18.84)

where ν in good solvents is close to 3/5 and in θ -solvents
is 1/2. The relaxation time of mode p is

τp = τ1p
−3ν (18.85)

where

τ1
∼= η

〈
R2
〉3/2

kBT
∼= ηb3

kBT
N3ν (18.86)

which is close to the experimentally observed molecular
weight dependence for D and τ 1 in both θ -solvents and
good solvents. If we compare the Rouse models with those
of Zimm for θ -solvents, we see that while in the former,
D and τ 1 scale with M as D ≈ M −1 and τ 1 ≈ M 2

and in Zimm’s theory D and τ 1 scale as D ≈ M −1/2

and τ 1 ≈ M 3/2. From these results, we can conclude
that the Rouse chain suffers a larger frictional force
than the corresponding Zimm chain. In fact, according to
Equation 18.84, the chain moves as a solid sphere of radius
Rg, which means that the chain is dragging the solvent
within the chain, whereas in the Rouse model, the chain is
fully free draining and all the beads suffer the same friction.

Pecora analyzed g1(q, t) for the Rouse model and found
that this could be written in the form

g1(q, t) ≈ S0

(
q2R2

g

)
exp

(−q2Dt
)

+ S2

(
q2R2

g

)
exp

[
−
(

q2D + 2

t1

)]
+ · · ·

(18.87)

He arrived at the conclusion that for small qRg
values, the first term was fully dominant and only the
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diffusion of the center of mass (D) could be observed
[80]. However, for qRg ≥ 1.73, the first relaxation time
starts to influence g1(q, t). A simple calculation tells
us that in order to observe the first internal relaxation
mode, the polymer chain must have an extremely high
molecular weight. In fact, most dynamic light experiments
in the dilute regime that tried to observe the first
internal relaxation mode were performed with very high
molecular polymers on the order of several million
Daltons [81, 82]. In the intermediate q region defined
as qRg � 1 but q� < 1 where � is an effective
monomer length, Dubois-Violette and de Gennes [83]
showed that g1(q, t) scaled as g1(q, t) ≈ exp

(
f
[
ωc(q)t

])
where ωc(q)t is a dimensionless time. They obtained
explicitly the form of f for the case of an unperturbed
Gaussian chain and found that ωc(q) ≈ (kBT /η)q3. Akcasu
and Benmouna [84] obtained the first cumulant 〈�(q)〉
for all q regions, including the transition zone, for
different models of chain and without preaveraging the
hydrodynamic interactions. They found, in the intermediate
region, the same scaling law for ωc(q) than Dubois-
Violette and de Gennes. For qRg � 1, they recovered
the usual diffusive behavior. Lodge et al. (82b) confirmed
experimentally this scaling law in the intermediate q
region in a temperature range going from θ -solvent to
a good solvent. However, the authors found a small
and systematic deviation of the experimentally found
〈�(q)〉 with that predicted by Akcasu and Bemouna
without preaveraging approximation. Recently Li et al.
(82c) found experimentally that for temperatures below the
θ temperature, this scaling law no longer holds.

As the concentration increases and reaches the local con-
centration of a single chain c*, the chains start to overlap
each other. The limiting concentration c* can vary de-
pending on solvent quality and temperature. Concentration
higher than c* but lower than the entanglement concentra-
tion ce is called the semidilute regime. When c > ce, we
refer it as a concentrated solution. When c > ce, all chains
entangle with each other. Each chain could be visualized as
being for a short time within a tube made of the surround-
ing chains and whose diameter depends on concentration.
In fact, at a particular instant we can picture the entangled
mesh, with an average mesh size ξ (the correlation length)
and therefore the tube diameter will be on the order of
ξ and will only depend on concentration. In an athermal
solvent, a portion with average size ξ (blob) of the chain
inside the tube will not interact with other chains. So we
can imagine the chain inside the tube as formed of a collec-
tion of blobs of g monomers each. Since the first cumulant
in only related to the short time dynamics, the motion that
we will be concerned at high concentrations is that pro-
duced by the thermally excited monomers inside the blobs
that will concomitantly produce Brownian motion of their
center of mass.

At higher concentrations, besides a fast mode (cooper-
ative diffusion), other modes are present by DLS even for
lower molecular weight polymers, since other cooperative
phenomena occur that involve more chains or aggregates
of these.

Recently, Li et al. [85] reexamined the slow relaxation
mode and found that in dust-free samples of monodisperse
PS, the solvent quality was a definitive factor in observing
or not observing the slow mode. For athermal solvents
for PS such as benzene, they showed that even at
concentrations as high as 20% only one fast diffusive mode
was observed (Fig. 18.15a). In contrast, they showed that
the slow mode for c > c * is enhanced as the solvent quality
decreases. In cyclohexane, in which solvent quality for PS
decreases when temperature decreases from 50 to 32 ◦C,
they observed a slow mode, in addition to the cooperative
diffusion (fast mode). In Figure 18.15b, G2 (q, t) shows
a single fast mode for a PS with Mw = 1.83 × 106 Da
in cyclohexane at 50 ◦C for c/c* ≈ 1; however, when
c/c* > 1, a second mode appears. All samples in this study
were prepared in the same way, except the solvent used and
the concentration. Cyclohexane is a good solvent of PS at
50 ◦C, but it is not athermal. They concluded that if c is only
a few times larger than the overlap concentration (c*) but
lower than the entanglement concentration (ce), the slow
mode is related to transient interchain segment–segment
interaction induced clusters. Actually, for c/c* = 1. 4, they
were able to observe the slow mode with molecular weights
as low as 4.6 × 10−4 Da; reinforcing their conclusion was
the fact that this mode was more notorious at small angles .
For c > ce, it is attributed to the confinement of each chain
inside an inhomogenous tube with a “band”-like structure
due to relatively stronger segment–segment interaction near
the entanglement points.

In fact, having all chains entangled with each other they
form a large cluster and, at short times, only the blobs can
jiggle around in the tube; their motion will depend on how
close they are to an entanglement point. In contrast with
the semidilute regime, for c > ce, the slow mode is most
pronounced when observed at large angles , implying that
it is not related to the scattering of some large object. They
also pointed out that in the athermal solvent, there is no
interaction between the chain blobs and the tube so that they
experience the same microenvironment resulting in only a
diffusive relaxation mode. Finally, in their study, the scaling
law of 〈�〉slow with q depended on the concentration, going
from q3 for dilute solutions to q0 at high concentrations,
suggesting that the origin of the slow mode is different for
each concentration regime.

Following the same line of thought, Yuan et al. [86]
applied DLS to thermally responsive systems such as
poly(N-isopropylacrilamide) (PNIPAM) or poly(ethylene
oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)
(PEO-PPO-PEO) in water. Similar to the PS/cyclohexane



386 LIGHT SCATTERING AND ITS APPLICATIONS IN POLYMER CHARACTERIZATION

PS in benzene T = 25 °C Mw = 5.3 × 10
5
 g/mol

C = 0.18 g/mL C/C
∗ 

= 30

103

0
0

5

10

15

20 G
(t

)

2 4 6 8 10

0.8

C/C∗ ~ 1

C/C∗ ~ 4

(a)

0.4
T = 50 °C

in cyclohexane

T = 50 °Ci
in cyclohexane

G (t)

G (t) PS3

0.0

0.4

0.0

(b)

100

10−1

10−2

10−3

104 105 10−6 10−4 10−2 100

q
15
60
90
120

tq2 (S/cm2)

q2 (1010/cm−2)

Γ 
(1

05 /s
1 )

[G
2(

t)
 −

 A
]/A

t (s−1)

[G
2(

t)
 −

 A
]/A
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system, they were able to use the temperature dependence
of the solvent–polymer interaction in both systems to inves-
tigate the temperature-induced shrinkage of polymer chains.
The difference in nature of the slow mode in these two sys-
tems is that as the solvent becomes poorer, PNIPAM/H2O
aggregates, whereas PEO-PPO-PEO/H2O forms micelles.

Another interesting application of DLS is the work by
Pan et al. [87] on the dynamics of block copolymers
in the vicinity of an order–disorder transition (ODT).
Motivated by the phenomena encountered near the ODT,
such as chain stretching and large amplitude concentration
fluctuations, Pan et al. studied the polymer dynamics of
solutions of symmetric block copolymers of poly(styrene-
b-isoprene) (PSI) from dilute, semidilute, and concentrated
regimes. Previously, Benmouna and coworkers [88] had
predicted two dynamical modes: a cooperative diffusion,
with a diffusion coefficient DC (C-mode) corresponding
to the relaxation of fluctuations in polymer concentration,
and an internal mode (�I), reflecting relative motion of
the centers of mass of the two blocks on a single chain.
Semenov et al. [89], in addition, predicted a third mode:
the heterogeneity mode (H-mode) due to chain-to-chain
fluctuations in composition and that relaxes by translational
diffusion with a diffusion coefficient DH. They assumed that
these modes are uncoupled, and therefore, g1(q, t) can be
written as a sum of exponentials. The decay constants for
the cooperative diffusion and heterogeneity mode are of the
form q2D , given their diffusive character, as we shall see,
whereas the internal mode has a decay constant �I ≈ τ−1

1 ,
where τ 1 is the longest viscoelastic relaxation time of the
chain.

In semidilute and concentrated solutions, DC and DH are
cleanly resolved; however, in these concentration regimes,
the internal mode �I was only observed in the higher
molecular weight blocks used in the study (3.4 × 105 Da
and referred to as SI(170-170) with a number fraction
of 0.5 for the PS block). In all the systems used in this
study, qRg < 1. In the semidilute regime, they confirmed
that DC scaled with concentration as ≈ c0.70, independent
of the molecular weight (M ). It was also observed that
translational diffusivity was unaffected by the ODT. The
relative amplitudes of DC and DH also scaled with c, M ,
and the refractive index of the solvent, ns, as predicted by
the theory. Figure 18.16a shows a representative intensity
correlation function at 90◦ for the SI(170-170) copolymer at
various weight fractions (w). For this block copolymer, the
limiting concentration c* between the dilute and semidilute
regimes corresponds to w = 0.0169. Using the Siegert
relation to obtain g1(q, t) and CONTIN to perform the
Laplace inversion, they resolved the modes’ contribution
to g1(q, t), as shown in Figure 18.16b. In dilute solutions,
as expected, only one diffusive mode is present and is
attributed to a superposition of DC and DH. As we reach
the semidilute regime, the H- and C-modes are clearly
resolved, with the C-mode being dominant. As we increase
the concentration furthermore (w = 0.049), an intermediate
mode appears, which was assigned to the internal mode, and
the contribution of H-mode overpasses that of the C-mode
as predicted by the theory. At higher concentrations only the
H-mode is well resolved; this data correspond to a solution
close to the ordered state. As stated above, the Laplace
inversion methods do not give us a high resolution G(�),
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and if two modes are not well separated, as is the case with
�I and �C, then they might appear as a single mode; this is
even worse if one of the modes has comparatively a smaller
contribution to G(�) such as �I. Finally, Figure 18.16c
shows the q2 dependence of �H and �C, proving their
diffusive character, whereas �I has a mild q dependence
for qRg < 0.5.

The study of internal modes by DLS has led to
many interesting applications, for example, the effect of
crosslinking on dynamics during sol–gel transition [90], the
study of the apparent diffusion coefficient on hyperbranched

starch samples [55], structural relaxation in glassy polymers
[91], diffusion in concentrated colloidal suspensions and
glasses [92], and many more that we cannot review in this
chapter because of space constraints.
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