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SMALL-ANGLE X-RAY SCATTERING OF POLYMER
SYSTEMS

Carlos A. Avila-Orta and Francisco J. Medellı́n-Rodrı́guez

19.1 INTRODUCTION

Semicrystalline thermoplastic polymers are widely used for
a number of applications in food packaging, automotive
parts, textiles, medical devices, etc., because of their
excellent physical and chemical properties. In turn, these
properties depend on the morphology developed by these
crystalline systems. Unit cell, lamellar structure, and
microstructure show different morphological features at
different scales. In the nanoscale, the lamellar structure
formed by alternating crystalline and amorphous layers
predominates. Because of the length scale and the electron
density difference between the crystalline and amorphous
phases, this type of morphology is well suited to be
studied by means of small-angle X-ray scattering (SAXS).
This technique is useful to determine the crystalline and
amorphous thicknesses and their distributions, as well as
the crystal perfection. In this chapter, we describe the
fundamentals of polymer morphology, one-dimensional
data analysis in the reciprocal space as well as their
possibilities in real space, and an application example.

19.2 POLYMER MORPHOLOGY

Polymers are considered macromolecular chains of high
molecular weight formed by monomers bonded covalently.
They can be obtained from natural sources or from syn-
thetic processes through different polymerization routes [1].
A number of both natural and synthetic polymers are able to
form regular arrangements, that is, crystalline entities, under
either quiescent or deformed states. Cellulose and natural
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rubber are examples of natural polymers, while polyethy-
lene (PE), isotactic polypropylene (iPP), and poly(ethylene
terephthalate) (PET) are common synthetic polymers that
can crystallize. The size, shape, and organization of the
crystals depend on the chemical and molecular structure
(stereoregularity, tacticity, molecular weight, chain flexi-
bility) and crystallization conditions (quiescent, deformed,
melt, solution). Although thermosets and rubbers can show
crystalline behavior, thermoplastic polymers offer a wide
range of possibilities, and so we focus our attention on this
type of polymers.

Thermoplastic polymers are synthetic polymers that
become plastic on heating and harden on cooling. PE, iPP,
PET, and polyamides, among others, are typical examples
of this type of polymers. Depending on the chemical and
molecular structure and processing variables, they may
or may not crystallize. Thermoplastic polymers that are
able to crystallize have a significant amount of amorphous
material, and therefore they are known as semicrystalline
thermoplastic polymers .

The study of polymer morphology aims to elucidate
the organization of crystalline domains [2]. Polymer
morphology depends on the intrinsic properties of the
polymer (chemical and molecular structure) as well as
on the processing conditions (crystallization conditions,
temperature, pressure, deformation, state). Besides, polymer
morphology has a hierarchical structure. Polymer single
crystals, spherulites, and shish kebabs are common polymer
morphologies on the micrometer size, formed of lamellae
on the nanometer scale (thickness), with unit cells in
angstroms. These entities are the dimensional levels for the
morphology of crystalline polymers.
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19.2.1 Single Crystals, Spherulites, and Shish Kebabs

Polymer crystals can be obtained from either dilute
solutions or amorphous states (glassy or molten) [2, 3].
Crystallization from dilute solutions usually gives polymer
single crystals. Fischer, Keller, and Till reported the
formation of polymer single crystals from dilute solutions
[4]. On the other hand, three-dimensional polycrystalline
structures named spherulites are usually obtained during
polymer crystallization from the glassy or the molten state
[5]. Bunn and Alcock and Keller found that polymers show
this type of organization [6]. Finally, when the polymer
solution or the amorphous state is under stress, long
chains extend, serving as nuclei (shish), whereas smaller
chains crystallize (kebab), usually in the form of a disk.
Shish kebab structures were first observed by Mitsuhashi,
Pennings, and Binsbergen [7].

19.2.2 Lamellae

Polymer chains form regular arrangements while extended
(extended chain crystals) or when they fold (chain-folded
crystals or lamellae). The former is usually observed
when crystallization conditions are near the thermodynamic
conditions (near the equilibrium melting point), while the
latter is governed by the kinetics at temperatures far away
from the equilibrium conditions, where most industrial
processes take place. In this case, polymer chains fold,
forming thin lamellae with thicknesses ranging from 5 to 20
nm and widths in the range of micrometers. Keller inferred
the existence of a chain-folded molecular conformation
within polyethylene single crystals obtained from dilute
solutions (4b). These thin crystals are known as chain-
folded crystals when polymers are crystallized from dilute
solutions, while they are named chain-folded lamellae or
lamellae when they are crystallized from the amorphous
(glassy or molten) state [8]. A scheme of a chain-folded
crystal is shown in Figure 19.1, where the crystal thickness
is denominated lc.

The lamella is recognized as the component that
imparts texture to most semicrystalline polymers. Besides,
the surface regions of lamellae combine two different
characteristics [2]. On one hand, there is evidence of
order, and on the other, disorder. Both characteristics
must be accommodated in the space of a crystalline
unit. Therefore, the amorphous material alternates with
lamellar crystals, resulting in the formation of lamellar
structures (Fig. 19.2). Under quiescent conditions, lamellar
crystals grow from a common radiating center forming
spherulites, while for stressed melts cylindrical crystals
alternate with amorphous material along an elongated
nucleus to form shish kebab structures. Even when lamellar
and spherulitic morphologies of crystallized polymers are
different, lamellae should be inside spherulites, as is
schematized in Figure 19.3 [8].

Ic

Figure 19.1 Scheme of unique crystal of folded chain for PE.
Source: After Hoffman JD, Davis GT, Lauritzen JI. The rate of
crystallization of linear polymers with chain folding. In: Hannay
NB, editor. Treatise Solid State Chemistry, Volume 3, p 418, 508,
520 [8]. Copyright 1976 Plenum Press.

Crystalline phase

Amorphous phase

Figure 19.2 Scheme of lamellar structure.

19.2.3 Unit Cells

Chain-folded molecules ordered in a regular arrangement
are three-dimensional crystals. A three-dimensional crystal
is formed by a large number of smaller, hypothetical, three-
dimensional crystals with sizes a , b, and c, named unit
cells . Each unit cell contains a complete representation of
the entire crystalline structure and gives the information
needed to describe the whole arrangement. Depending on
the conformation of the molecular chains and its own
arrangement, any structure can be assigned to one of the
six systems characterized by the ratios of the unit cell
edges (a, b, and c) and their angles (α, β, and γ ). The
values of the unit cell constants are in general in the range
of angstroms, which make them suitable to be studied
by wide-angle X-ray scattering (WAXS). Semicrystalline
polymers produce a mixed interference pattern, sharp and
diffuse at the same time, when analyzed by WAXS [9].
This evidences the existence of a two-phase system, that
is, a three-dimensional crystalline network with amorphous
zones.
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Spherulite
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Figure 19.3 Spherulitic structure model. Note the growth
direction and points of lamellar ramification, to fill void space
with crystals in a uniform way. Source: After Hoffman JD, Davis
GT, Lauritzen JI. The rate of crystallization of linear polymers
with chain folding. In: Hannay NB, editor. Treatise Solid State
Chemistry, Volume 3, p 418, 508, 520 [8]. Copyright 1976 Plenum
Press.

19.3 SMALL-ANGLE X-RAY SCATTERING

SAXS is a powerful tool to study the morphology of
semicrystalline systems. The application of this technique
is based on the electron density difference between the
crystalline and amorphous phases (lamellar structure) in
polymer systems. The crystalline (lc) and amorphous (la)
thicknesses can be obtained using this technique. Besides,
the distance from one crystalline region to the next provides
the size of a lamellar structure, also known as the long
period (L). Other morphological features are the interface
thickness (E ), the thickness distribution (σ c, σ a, σ L),
the size of the lamellar stacking (t), and the dispersion
capacity or invariant (Q). A schematic representation of
some of these parameters is shown in Figure 19.4. Lamellar
thicknesses lc and la correspond to the average size of
each phase. Since the technique cannot differentiate which
thickness corresponds to the crystalline phase and which
one to the amorphous phase, we denominate them as l1 and
l2. The long period L is the distance between phases of the
same type. Each of these thicknesses has a size distribution,
typically Gaussian. The interface thickness E is the distance
when the interface is not sharp, that is, the interface is finite.
The lamellar stacking size can be finite or infinite.

19.3.1 Interaction of X-Rays with Matter

SAXS is determined by interference phenomena, where the
waves are coherent and therefore their amplitudes can be
added even if the emerging waves are not in phase as in the
case of WAXS [10]. SAXS intensity is given by the absolute
square of the resulting amplitude, which is obtained by
summing all secondary waves. All amplitudes have the
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Figure 19.4 Physical representation of morphological parame-
ters: (a) characteristic distances, (b) statistical features, (c) stacking
size, and (d) interfaces planarity.

same magnitude and differ only in their phase φ, which
depends on the electron position in space. The secondary
scattering wave can be represented as eiφ , where φ is 2π /λ
times the optical path δ and a reference point. Considering
the number of electrons implied in the dispersion process,
and the fact that an electron cannot be localized exactly,
it becomes convenient to introduce the concept of electron
density as described next.

19.3.2 Electron Density Function

Electron density function is defined as the number of
electrons per unit volume and it is denoted as ρ(r). Electron
density function of a semicrystalline polymer consists of
a series of alternating steps, positive ρ1 and negative ρ2,
which represent phases, and fluctuate around an average
value ρm . If, for example, an r vector is passed along
the semicrystalline structure (Fig. 19.5), it can be seen that
ρ(r) = ρ1 if ρ(r) > ρm . On the other hand, ρ(r) = ρ2 if
ρ(r) < ρm , where ρ1 is a high density region (crystalline)
and ρ2 is a low density region (amorphous).

19.3.3 Scattering Vector

Because of the inverse relation existing between the size of
the scatterer and the distance of incidence of the source,
experimental effects are observed in reciprocal space.
Therefore, in order to obtain estimates in the reciprocal
space, the geometry of a system with two dispersion centers
which is impacted by X-ray beam is defined, determining
a scattering vector in the reciprocal space, q .

In order to calculate the scattering vector q , it is nec-
essary to calculate the phase φ. As previously mentioned,
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Figure 19.5 Schematic representation of the electron density
function.
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Figure 19.6 A (left). Geometry to obtain the scattering vector
q . B (right). Wave enlargement: a, Reference wave; b, wave
displaced δ(0 < δ < 1); c, wave displaced 1π (δ < 1/2); and
d, wave displaced 2π (δ = 1).

φ = 2π /λ · δ. The distance from one dispersion center to
another is called r , as shown in Figure 19.6A, where the
unit vector s0 has the direction of the incident beam and the
unit vector s represents the vector of the dispersed wave.
Bearing in mind this idea, δ = −r(s − s0) can be de-
fined, and therefore φ = − 2π /λ · r(s − s0). The magnitude
(s − s0) = 2 · sinθ , where θ is the angle of the scatter-
ing vector. A new q vector can be defined with direction
(s − s0) and magnitude 4π /λ · sinθ as

q = 4π

λ
• sinθ (19.1)

for which the phase φ = q · r . Then, the representation of
a dispersed secondary wave in the complex form is e−iqr .
The vector product qr means that only the component of
r in q is relevant for the phase, so that all the points in a
plane perpendicular to q will have the same phase [10].

When the emergent waves of a scattering center in small
angles are displaced in the range (0 < δ > 1, δ �= 1/2)
with respect to a reference wave, a dispersion phenomenon
occurs (Fig. 19.6B, case b). If the emergent wave is

displaced by δ = 1/2, then widths of the waves cancel out
and dispersion does not take place (Fig. 19.6B, case c).
These two cases do not produce diffraction (WAXS) since
the condition for the diffraction phenomenon to take place is
that the waves must be in phase, thas is, δ = 1, as illustrated
in case (d) of Figure 19.6B.

Additionally, this condition is also necessary in order to
produce the phenomenon of scattering. In short, WAXS and
SAXS techniques depend on the value of δ. In the range
(0 < δ ≤ 1, δ �= 1/2) this condition is fulfilled, so that the
scattering phenomenon (SAXS) is produced; the diffraction
phenomenon (WAXS) is produced if and only if δ = 1.

19.3.4 Scattering Intensity

Assuming a unique dispersion process and the applicability
of the theory of kinematic dispersion, the intensity of
dispersion I (q) is given by

I (q) = I
[
�p∗2(r)

]
(19.2)

where �ρ(r) is the difference between the local and the
average electronic densities (ρ(r) − ρm ), I represents
the three-dimensional Fourier transform, and the term *2
indicates an autoconvolution or autocorrelation [11]. Then
Equation 19.2 can be rewritten as

I (q) =
∫
v

�p∗2(r) • e– iqrdV (19.3)

In Equation 19.3, it is observed that the real space (r) and
the reciprocal space (q) are connected by the phase qr , and
naturally q will diminish when r increases, and vice versa,
with the same factor. In this way, large particles will give a
concentrated scattering pattern in small angles. Especially
with particles or heterogeneities of colloidal dimensions,
and with a wavelength of 1.5 Å, the dispersion pattern is
limited to 1◦ or 2◦ of the scattering angle. This is the typical
domain of SAXS.

In SAXS, two restrictions are generally present which
simplify the analysis of scattering:

1. The system is statistically isotropic. Because of this
restriction, the distribution ρ* 2(r) depends only on
the magnitude of the distance r . Additionally, the
phase factor e−iqr can be replaced by its average taken
in all directions and it is expressed as [12]

〈
e−iqr

〉 = sin(qr)

qr
(19.4)

Then Equation 19.3 can be written as

I (q) =
∫
V

4πr2�p∗2(r) •
sin(qr)

qr
dr (19.5)
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2. Long-range order does not exist [12]. This means
that correlation between two widely separated points
does not exist. In accordance with the above, at
large values of r , the electron densities would be
independent, and they could be replaced by the
average value ρm . In this way, the structure is
represented by the finite region where ρ* 2(r) deviates
from the mean value, and therefore values of r widely
separated do not provide information.

19.4 ANALYSIS IN RECIPROCAL SPACE

An experimental intensity curve as a function of the
scattering vector is produced in SAXS. From the isotropic
patterns of a melt-crystallized polymer, a slice is taken
and, when projected in the plane I (q) against q , it shows
a scattering maximum with a wide statistical distribution.
The evaluation of structural parameters from the intensity
curve requires the whole scattering curve. Nonetheless, the
lower and upper ends of the curve cannot be determined
because of the nature of the scattering process. Therefore,
mathematical approximations are used to access both ends
of the curve. According to the characteristics of the
dispersion function measured experimentally, the intensity
curve is divided into three parts, which are described in the
following sections.

19.4.1 Scattering Intensity when q → 0

As previously mentioned, it is not possible to obtain the
experimental intensity data for q values near zero; therefore,
it is desirable to extrapolate the obtained data down to
q = 0. This can be done by means of models or using
arbitrary extrapolations (straight lines, polynomials, etc.).
When using models in this region, it is possible to obtain
information about the average radius of gyration and the
radius for a spherical domain, as well as the size of the
inhomogeneities [13]. For a system of isolated domains at
high dilutions, Guinier and Fournet (13a) proposed

I (q)
q→0

= KGe
[(

–R2
/3

)
q2

]
(19.6)

where KG is a constant and R is the average radius of
gyration, given by R = (3/5)l /2Rd for a spherical domain of
radius Rd. Then, by means of a plot of ln[I (q)] versus q2,
it will be possible to obtain the parameters KG and R.

Debye et al. (13b) developed a model for random
scatterers, which is given by the expression

I (q)
q→0

= A(
1 + ε2q2

)2 (19.7)

where A is a constant and ε is the length of the inho-
mogeneity. By means of a plot of 1/I (q)1/2 versus q2, it
will then be possible to obtain the parameters A and ε.
Equations 19.6 and 19.7 can be used for extrapolating the
intensity I (q) at q = 0 if there is enough data near q = 0.

19.4.2 Scattering Intensity at Intermediate Angles

Most semicrystalline polymers give rise to SAXS patterns
that are characterized by one or more maxima in the
dispersion curve. These patterns have been interpreted in
terms of a simple model of crystalline and amorphous
regions that alternate regularly [14]. The angular position of
the maximum of diffraction (Bragg’s law) and its correction
for time of collection (the Lorentz factor) can be interpreted
to provide the average structural period (periodicity L) of
the polymer. In the following paragraphs, the possibilities
for this region are given.

19.4.2.1 Bragg’s Law In the analysis of semicrystalline
polymers, in a first approach, it can be assumed that L
is associated with the distance between the lamellar planes.
These distances can be related through the Bragg’s law with
the diffracted waves that are in phase and are reinforced in
certain directions (angles) [15]. This analysis give values
that qualitatively coincide with the structure observed by
means of electron microscopy and with sizes of crystals
indicated by means of WAXS [16]. The periodicity L is
related to the vector q in the maximum of dispersion
according to [17]

L = 2π

qmax
(19.8)

However, in most cases the structural sizes inferred from
this treatment do not agree with the structures observed by
means of electron microscopy [18]. For instance, polymers
crystallized from the molten state rarely have orders
of multiple dispersion (as required by diffraction) and,
moreover, they present a wide first-order peak as shown
in Figure 19.7 [19]. Then, when applying the Bragg’s law,
the obtained period will be distorted considerably from the
average period of the structure [14]. This discrepancy of
values can decrease, but not vanish, when applying the
Lorentz factor to the curve of observed intensity.

19.4.2.2 The Lorentz Factor L0 The factors that rule
the diffraction intensity I (hkl ) are the structure factor for
atomic dimensions F (hkl ), the polarization factor P , the
Lorentz factor L0, and the multiplicity factor j . However,
in studies of SAXS, all factors except the Lorentz factor
can be omitted [9].

In diffraction, the Lorentz factor depends basically
on the reflection time, that is, the time during which a
family of planes reflects X-rays under certain experimental
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Figure 19.7 Scheme of a typical SAXS curve of I (q) versus q
of a semicrystalline polymer.

conditions. The time of reflection originates partly because
of the lack of parallelism and monochromaticity of the
incident beam [9].

In SAXS studies of a real sample, all the lamellar
layers or stacks are oriented at random with respect
to the incident beam; therefore the intensity function
I (q)obs which corresponds to the measured intensity
shows spherical symmetry [20]. However, when using
theoretical one-dimensional models (where the lateral width
of the lamellae is much greater than the periodicity), the
dispersion intensity is calculated assuming that the lamellar
stacks are correctly oriented (perpendicular) with respect
to the incident beam [21]. This implies that the observed
intensity (with spherical symmetry) should be corrected to
a perpendicular intensity to the lamellar stacks. Because of
this, the Lorentz factor that is described for lamellar systems
is also used.

The nature of the inhomogeneities of semicrystalline
polymers can be expressed for spherically symmetric
dispersion by means of a structure factor F (q). For X-ray
dispersion, this can be represented as

Iobs(q) = |F(q)|2 • L0 (19.9)

where L0 plays a similar role as the Lorentz factor in
classical X-ray crystallography.

The form of L0 in Equation 19.9 depends on the
experimental conditions used, the form of the scatterers,
and the searched parameters. For instance, it is proportional
to q−2 for point collimation and to q−1 when collimation
is made through a grid [9]. On the other side, independent
of the collimation system utilized, L0 is proportional to q−1

when the section of a cylindrical particle is determined,
while it is proportional to q−2 when the thickness of a
laminar particle is determined [22].

On the other hand, it is well known that the ideal
intensity generated by the structure with a factor F (q)

is given by the absolute square of this factor [9, 10],
that is,

Iid(q) = |F(q)|2 (19.10)

Considering that the factor L0 for point collimation
and for laminar particles (one-dimensional model) is
q−2, substituting Equation 19.10 in Equation 19.9 and
rearranging gives

Iid(q) = Iobs(q) • q2 (19.11)

Equation 19.11 means that the observed intensity must be
multiplied by a factor q2 to obtain a better estimation
of the periodicity in lamellar systems of semicrystalline
polymers. The factor q2 is related to the change from the
scatterers oriented at random to dispersers perfectly aligned
(Fig. 19.8). This correction is implied, for instance, in the
use of models of one-dimensional stacking [19]. As Iid(q)
has been obtained from a one-dimensional model, it can be
written as I 1(q) [19].

In summary, the purpose of the Lorentz factor is
to allow the comparison of an anisotropic intensity (in
reciprocal space) calculated from a model with the obtained
experimental intensities of samples whose symmetry (due
to static or time-averaged disorientations) is generally
different from that of the model [22]. It also takes into
account the fact that only the intensity in reciprocal
space that intersects the Ewald sphere can be observed
experimentally [23]. Also, the time-averaged orientations
may be related to the collimator type and the particle shape.
This region in general has a well-defined shape, therefore
only polynomial adjustments are made if necessary in order
to avoid experimental noise.
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of incident
beam

r3
r1 r

r2

qmax qmax
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I(
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) 
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2

q q

Figure 19.8 Rearranging of scatterers from random orientation
to perfectly oriented with respect to the incident beam.
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19.4.3 Scattering Intensity when q → ∞
The third region of the scattering intensity curve is known
as Porod’s region and it contains information on the
phase limits. This region is located at large scattering
angles and after the first-order maximum for semicrystalline
polymers. By analyzing this region, it is possible to
determine the interface thickness between the phases and
whether the polymer has fluctuations of electronic density
inside the phases [11]. The possible types of calculation in
this region are described below.

19.4.3.1 Ideal System without Interface (Porod’s Law)
According to the Equation 19.2, the intensity of dispersion
for an ideal structure will be the Fourier transform of the
autoconvolution of the difference between the local and the
average electronic densities, that is,

Iid(q) = I
[
�ρ∗2

id (r)
]

(19.12)

Porod predicted that, for an ideal lamellar system of
two phases (Fig. 19.5) in which neither fluctuations of
density within phases nor interfacial thickness of finite
wide are present, the intensity of dispersion diminishes
proportionally to the reciprocal of the fourth power of q ,
which is mathematically expressed as

Iid (q)
q→∞

= Kp

q4
(19.13)

where Kp is the Porod constant, and Equation 19.13 is called
Porod’s law [24]. The determination of Kp is important
because of the fact that it is related to certain structural
parameters of the system, that is,

Kp =
(

S

V

) (
Q

8π3φ1φ2

)
= Q

2π3lp
(19.14)

where Q is known as the three-dimensional Porod invariant
and it is given by

Q =
∞∫

0

q2I (q)dq = V φ1φ2

(
ρ1 − ρ2

)2
(19.15)

S /V is the area of the interface per unit volume, φ1
and φ2 are the volume fractions of the phases ρ1 and
ρ2, respectively, and lp is the longitude of the Porod
inhomogeneity, a parameter that serves as a measure of the
average size of the phases in all the directions of densities
ρ1 and ρ2.

If the interfaces of the lamellae are totally flat and the
lateral dimensions are very large compared to the thickness
of the lamellae, the total interfacial area S0/V is given by

S0

V
= 2

L
(19.16)

where the parameter L is called periodicity or long period .
If the interfaces are not flat, the obtained interfacial area
S obtained from lp is larger than S0 obtained from L.
Therefore, the relationship

S

S0
= 2φ1φ2L

lp
= 2l1l2

Llp
(19.17)

is a measure of the planarity of the interfaces.

19.4.3.2 System with Finite Interface (Negative Devia-
tions of Porod’s Law) Tsvaskin and Blundell were the
first to consider that polymers show a transition area be-
tween the crystalline and amorphous phases of length E ,
which was taken into account in theoretical models [21, 25].
This finite thickness (E ) of the amorphous–crystalline in-
terface causes semicrystalline polymers to exhibit devia-
tions from the ideality dictated by the Porod’s law [11]. This
thickness can be represented through a smoothing function
in real space, that is, h(r). According to Ruland (1971),
this function convolutes with the Fourier transform of the
autoconvolution of the difference between the local and
the average electronic densities to reproduce the gradient
profile of the interfacial density of a structure with finite
thickness, that is,

�ρE(r) = �ρid(r) ∗ h(r) (19.18)

where �ρE(r) is the difference between the local and
the average electronic densities for a structure with finite
thickness [11]. The Fourier transform of a convolution
product in real space is equivalent to the product of those
Fourier transforms in reciprocal space. From Equations 19.2
and 19.18, one can obtain the scattering intensity for this
particular case as

IE(q) = I
[
�ρ∗2

id (r)
]
I

[
h∗2(r)

]
(19.19)

or
IE(q) = Iid(q) • H 2(q) (19.20)

IE(q) is the intensity of dispersion for a structure with finite
thickness, and H2(q) is the Fourier transform of h* 2(r) in
the reciprocal space. Because the width of the function h(r)
should be small compared to the average regions of constant
density (for a two-phase system), the width of the function
H (q) will be considerably larger than that of the intensity.
In this way, the intensity of dispersion is affected essentially
only at large q values, that is, in the Porod’s region. As a
consequence, and using Equation 19.13, the result is

IE(q) = Kp

q4
• H 2(q) (19.21)



398 SMALL-ANGLE X-RAY SCATTERING OF POLYMER SYSTEMS

1

0.606

0
−3 −2 −1 0 1 2 3

s
Smoothing function

rabc (r ) = r(r )∗h (r )

r (r )

Figure 19.9 Sigmoidal model of gradient of interface. Source: Reproduced with permission from
Koberstein JT, Morra B, Stein RS. J Appl Crystallogr 1980;13:34 [27]. Copyright 1980 IUCr
(International Union of Crystallography) (http://dx.doi.org/10.1107/S0021889880011478).

where the shape of the smoothing function is defined by
the geometric model used for the interfacial gradient.

The sigmoidal model for the interfacial gradient was
introduced by Ruland and consists of a Gauss-type change
of the electron density, as shown in Figure 19.9 [11]. The
smoothing function is then Gaussian and H (q) is given by

H(q) = e

[
– (σ2q2)

2

]
(19.22)

where σ is the standard deviation of the smoothing
Gaussian function related to the finite thickness [26].
Inserting Equation 19.22 into Equation 19.21, the resulting
scattering intensity is given by

IE(q) = Kp

q4
• e

[
–

(
σ 2q2

)]
(19.23)

The value of σ can be defined using the curve of
ln[IE(q)q4] versus q2. This represents a linear relationship
with negative slope where Porod’s law is fulfilled (negative
deviation of Porod’s law). By expanding the exponential
function, the intensity can be approximately calculated by

IE(q) = Kp

q4
• e

[
1–

(
σ 2q2

)]
(19.24)

Therefore, in a curve of IE(q)q4 versus q2, a linear
region with negative slope should be located where Porod’s
law is fulfilled. The slope obtained by Equations 19.23 and
19.24 is related to the structural parameters through the
expression [11]

Slope = −Qσ 2q2

2π3lp
(19.25)

The straight line extrapolated to q = 0 intersects the
IE(q)q4 axis at Q /(2π3lp), which enables the calculation of
the value of Kp. On the other hand, σ and E are related by
[26]

E = (2π)1/2σ (19.26)

Another model for the electron density gradient was
proposed by Blundell and analyzed by Vonk; it consists
of a linear density change in the interface [21, 28]. In this
model, called the geometric linear model , the smoothing
function is of rectangular type (Fig. 19.10) and its Fourier
transform is given by

H(q) = sin(Eq)

Eq
(19.27)

where E is the interfacial thickness. The dispersion of
intensity is given by

IE(q) = Kp

q4
•

sin2(Eq)

(Eq)2
(19.28)

A drawback of this equation is that it cannot be treated in
graphical form. However, by expanding the sine function
in a power series truncated after the second term, a more
manageable form can be obtained as follows:

IE(q) = Kp

q4
•

⌊
1–

E2q2

3

⌋
(19.29)

From this, by plotting IE(q)q4 versus q2, a linear region
of negative slope can be located where the Porod’s law is
fulfilled if the thickness is finite.
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Figure 19.10 Linear model of the interface gradient. Source: Reproduced with permission from
Koberstein JT, Morra B, Stein RS. J Appl Crystallogr 1980;13:34 [27]. Copyright 1980 IUCr
(International Union of Crystallography) (http://dx.doi.org/10.1107/S0021889880011478).

19.4.3.3 System with Fluctuations within the Phases
(Positive Deviations of Porod’s law) Besides presenting
interfacial thicknesses of finite width, semicrystalline poly-
mers generally have electron density fluctuations inside the
phases denoted FL [11]. Such electron density fluctuations
are associated with thermal and density fluctuations. These
fluctuations cause a global increment in the scattering inten-
sity, which is denoted IFL. This effect is different from that
exhibited at high values of the dispersion vector where it is
also observed that the intensity curve grows because of the
beginning of the WAXS region [27]. The increment in the
scattering intensity caused by the presence of fluctuations
inside the phases, which is limited by the beginning of the
WAXS region, is known as the background intensity IB(q)
[29].

With the aim of determining the value of IB(q), Vonk
proposed that the function IB(q) can be expanded in a power
series truncated at the first or second term, according to

IB(q) = IFL + b1q
n (19.30)

where b1 is a constant, n is an integer, and IFL is the value
of the intensity extrapolated to q = 0 [28].

According to Ruland, IB(q) can also be approximated by
an exponential function, which is expressed as

IB(q) = IFL • eb2q2
(19.31)

where b2 is a constant and IFL is the value of the intensity
extrapolated to q = 0 [30].

If the background intensity IB(q) is added to the intensity
produced by systems with interfacial thickness, IE(q), the
following expression can be obtained:

IEXP(q) = Iid(q) • H 2(q) + IB(q) (19.32)

which is the fundamental equation that describes the
experimental intensity in semicrystalline polymers [11]. As
a good approximation, it is possible to consider IB(q) a
constant and equal to IFL. In this case, it is possible to
evaluate IB(q) from the positive slope of a plot of IEXP(q)
versus q4 (positive deviation of Porod’s law) if it is assumed
that H 2(q) is constant as a first approximation [11, 31].

Equation 19.32 can be modified to outline the intensity
of an ideal system, Iid(q):

Iid(q) = IEXP(q) − IB(q)

H 2(q)
(19.33)

where IB(q) can be a constant, an exponential, or a power
series, H 2(q) can be unity (E = 0; σ = 0), geometric
sigmoidal, sigmoidal expanded, linear geometric, or linear
expanded. The ideal intensity curve can be produced by
different ways. Siemann and Ruland proposed a method
of trial and error adjusting the parameters KP, σ , and
IB; Medellin and Avila applied a technique of numerical
parameter fitting using the quasi-Newton method for PET
[26, 32].

19.5 ANALYSIS IN REAL SPACE

19.5.1 Correlation Function, γ (r)

Debye and Bueche introduced the correlation function when
studying porous solids [33]. The correlation function is
based on the fluctuations of local densities with respect
to an average value (η1 = [ρ1(r) − ρm ]) where ρ1(r)
is a local value and ρm is the average value. Since this
function depends only on density fluctuations, it can be
used for semicrystalline polymers where strong density
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deviations exist [20]. The correlation function can be seen
in the following way: consider two neighboring points in the
system, located at a distance r [33, 34]. Take the product of
both fluctuations η1 = ρ1(r) − ρm and η2 = ρ2(r) − ρm ,
the first taken at point 1 and the second taken at point 2.
Move points 1 and 2 through the material, maintaining
a fixed distance r . If a large number of values of the
product η1η2 are obtained, then the average value of this
product indicated by 〈η1η2〉m can be found. According to
this discussion, this product depends on the distance r .
If r = 0 then η2(0) = η1(0), and therefore, the previous
product is given by 〈η1η2〉m = η2 . For large r values,
the product will be zero because the fluctuations will vary
independently. In general, 〈η1η2〉m will be a function of
the distance r , starting at η2 for r = 0 and decaying
to zero when increasing the value of r . Then, it can be
concluded that the average extension of the heterogeneities
is given by the relationship 〈η1η2〉m /η2, which is known
as the correlation function and does not have physical
dimensions; that is, it is a dimensionless number that varies
with the distance and indicates the average extension of the
heterogeneities.

γ (r) =
〈
η1η2

〉
m

η2
(19.34)

19.5.1.1 Experimental Correlation Function γ (r) Fol-
lowing a similar process, Vonk and Kortleve introduced
the correlation function for semicrystalline polymers, but
in a single dimension (Fig. 19.8) [20]. If the cosine Fourier
transform of the correlation function is obtained, then

γ1(r) =
∫ ∞

0 I1(q) cos(qr)dq∫ ∞
0 I1(q) cos(0)dq

(19.35)

where cos 0 = 1. Replacing the value of I1(q) by its
equivalent in I (q) (Eq. 19.11), the function γ 1(r) becomes

γ1(r) =
∫ ∞

0 q2I (q) cos(qr)dq∫ ∞
0 q2I (q)dq

(19.36)

where γ 1(r) is the one-dimensional correlation function and
the denominator is the invariant Q (Eq. 19.15). In this way,
the correlation function γ 1(r) is normalized by the invariant
Q , having an initial value of 1. This function shows a
series of maxima and minima of diminishing height, which
finally become zero at large values of r . This behavior
suggests a periodicity in the structure; the position of the
first maximum corresponds to the average value of the
distance of periodicity, in other words, the long period L.

In many cases, γ (r) depends only on the distance r and
not on the direction in the space of this vector; therefore,
integration over all directions can be done [33]. In the cases

of polyethylene and polytetramethylene, Fulcher et al . used
the following relation [35]:

γ3(r) =
∫ ∞

0 q2I (q)
(

sin(qr)

qr

)
dq∫ ∞

0 q2I (q)dq
(19.37)

where γ 3(r) is the three-dimensional correlation function
which depends only on the magnitude of the distance r .
The form of this function is similar to the one shown for
the function γ 1(r), but the information that they provide is
not the same.

From the previous paragraph, it follows that r is a
vector perpendicular to the layers of the crystalline and
amorphous regions for γ 1(r) or in any direction for γ 3(r).
In a medium in which γ depends originally on r and
not on their directions, under stress, γ will begin to
depend also on the direction of r [33]. In this case,
the scattering intensity does not have a symmetry center
around the direction of the primary beam. The same thing
happens if the heterogeneities are aligned along a common
axis. Therefore, when carrying out the analysis of the
morphology of lamellar systems, it is advisable to meditate
in an appropriate way the required information for the
system under study.

19.5.1.2 Form and Properties of the One-Dimensional
Correlation Function A periodic structure with a given
electron density function ρ(r) can be described by means
of the long period L, the crystalline thickness lc, and
the difference of electronic densities �η = ρc − ρa.
The effect of different lamellar systems on the form and
properties of the one-dimensional correlation function was
discussed by Strobl and Schneider [36]. Next, systems of
two phases and their impact are presented, giving the form
and characteristics of the correlation function γ 1(r), in
accordance with these authors.

19.5.1.3 Ideal Lamellar System of Two Phases In an
ideal lamellar system, the interface thickness and the
density fluctuations within the phases are negligible, and
the structure can be described by the long period L, the
crystalline thickness lc, and the electron density distribution,
as shown in Figure 19.11a with their corresponding function
γ 1(r) for the irradiated volume. In this case, the form of
the function γ 1(r) consists of a series of autocorrelation
triangles which show a periodicity L. The autocorrelation
triangle centered in the origin has a number of important
characteristics. The value of γ 1(r) at r = 0 is the
invariant Q . The line between the triangles is known as
the baseline. Its negative coordinate is given by

−A = −φ2
c

(
ρc − ρa

)2
(19.38)



ANALYSIS IN REAL SPACE 401

(a)

(b)

(c)

(d)

h

h1 h2

h

h E

h L lc

lc

lc

lcm

lcm

l0

−A

−A

−A

−A

g1 (r )

g1 (r )

g1 (r )

g1 (r )

L r

L r

L

L 2L 3L

r

r

Q

Q

Q

Q

Figure 19.11 Representation of a system of two phases and their impact in the function γ 1(r).
(a) Periodic system of two phases, (b) effect of variations in the period L, (c) effect of additional
thickness fluctuations, (d) effect of the introduction of diffuse frontiers (interface thickness).
Source: Reproduced with permission from Strobl GR, Schneider M. J Polym Sci Polym Phys
Ed 1980;18:1343 [36]. Copyright 1980 Wiley Periodicals, Inc.

Therefore, the height of the triangle becomes

Q + A = φc

(
ρc − ρa

)2
(19.39)

Hence, the slope d[γ 1(r)/dr] = − S 0/2(ρc − ρa)2 (Eq.
19.17)The first intersection of the function γ 1(r) with the
axis r[γ 1(r) = 0] occurs at

r0 = Ic

(
I − φc

)
(19.40)

The function γ 1(r) intersects the baseline at r1 = lc.

19.5.1.4 Ideal Lamellar System of Two Phases with Vari-
ation in the Interlamellar Space Because the autocorre-
lation part remains the same, in this case the only conse-
quence is an enlargement in the width of the peak due to the
closer correlations (Fig. 19.11b). Additionally, the position
of the maximum provides the periodicity, which denotes
the most probable spacing.

19.5.1.5 Ideal Lamellar System of Two Phases with
Variation in the Interlamellar Space and Thickness If
φc and S 0 are kept constant, then the invariant Q , the
slope d[γ 1(r)/dr], and the baseline A are not affected.
Nonetheless, a change occurs near the base of the triangle
where γ 1(r) becomes curved (Fig. 19.11c). The straight
section of γ 1(r) will intersect the axis r at

r0 = −Q

dγ/dr

= (
1 − φc

) φc
S0/2

= (
1 − φc

)
Icm (19.41)

and the baseline at

r1 = Q + A

dγ1/dr

= φc
S0/2

= lcm (19.42)

In these equations, lcm denotes the average (in number)
lamellar thickness and can be defined as

lcm = φcL (19.43)

19.5.1.6 Ideal Lamellar System of Two Phases with
Variation in the Interlamellar Space, in the Lamellar
Thickness, and in the Presence of Interface Thickness
The presence of a transition zone changes the shape of the
correlation function near the origin (Fig. 19.11d). However,
the original straight line does not change. This happens
because the thickness of the transition area E is smaller
than the average thickness for all the lamellae, l c0. In this
case, the original straight line is located between r = E and
r = lc0,min, where lc0,min denotes the average thickness of
the thinnest lamellae of the system.

It is possible to directly derive the parameters of
this system. The extrapolation of the linear section to
r = 0 corresponds to its invariant Q , which is gen-
erally larger than the fluctuation of the square average
electron density γ 1(0) of the real structure. All the basic
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structural parameters of this type of system are obtained by
means of

φc = A

A + Q
(19.44)

lcm = r1 (19.45)

lcm = r0

1 − φc
(19.46)

S0 = 2φc

lcm
(19.47)

(
ηc − ηa

)2 = Q

φc

(
1 − φc

) (19.48)

In another method of graphic analysis, proposed by
Vonk, the average thickness of the lamellae, lcm, is
evaluated from the following equation:

lcm = Qr1 + E

3
•

φc

1 − φc
(19.49)

In this way, the analysis has been restricted to the
autocorrelation in γ 1(r) [28].

Because of the usual experimental ranges of crystallinity,
the appearance of the baselines in the study of semicrys-
talline polymers is not very frequent [36, 37]. Therefore, the
crystalline volume fraction should be obtained by other al-
ternative techniques such as, for example, differential scan-
ning calorimetry. In this way, if the crystallinity in volume
is known, it is possible to obtain the lost baseline [37, 38].
However, if the crystallinity is either low or high, it is pos-
sible to directly obtain the baseline for which it is foreseen
that the morphology is solved [36]. For example, Vonk and
Pijpers and Vonk and Koga worked at high crystallinities
and they observed the aforementioned baselines [39].

The presence of thermal and density fluctuations,
(IB(q)), causes waves in the function γ 1(r) as reported
by Defoor and Avila [40]. After extrapolating both sides
of the intensity curve, the fluctuations that could not be
eliminated using (IB(q)) are suppressed. Also, Avila (40b)
and Medellı́n and Avila (41) determined that the use of
a two-distance sample detector when recording intensity
data provides more detailed information than when data
are taken with a single-distance sample detector. This is
because a greater range of values of q is accessed, which
allows a better estimation, particularly of (IB(q)) and E .

19.5.2 Interface Distribution Function g(r)

A more detailed analysis of data from SAXS can be carried
out by means of the interface distribution function g1(r),
introduced by Ruland [30]. This function is the second
derivative of the one-dimensional correlation function and

is the correlation function derived from the first derivative
of the local electron density function, that is,

g1(r) = y
′′
1 (r) = −

[
ρ

′
(r)

]∗2
(19.50)

The previous function g1(r) requires the determination
of the region in which Porod’s law is valid in the reciprocal
space. According to Ruland, since ρ(r) consists of a
sequence of positive and negatives steps located at the
interfaces of the lamellae (Fig. 19.5), its first derivative
is a series of positive and negative Dirac delta functions
weighted by means of the height of the step (Fig. 19.12a)
[30]. The correlation function of the first derivative consists
of a series of distribution of distances with positive
and negative values that correspond to the neighboring
interfaces (Fig. 19.12b).

19.5.2.1 Experimental Interface Distribution Function
g( r) When the second derivative of γ 1(r) with respect
to r is calculated for one-dimensional two-phase systems,
the result is

∂2

∂r2
γ1(r) = −2Q

dP
δ(r) + g1(r) (19.51)

where Q is the invariant, dP is the average one-dimensional
longitude parameter, δ(r) is the Dirac delta function at the
origin, and g1(r) contains the values for r �= 0. From the
Fourier transform of this equation

q4I (q) = 2Q

dP
–G1(q) (19.52)

where G1(q) is known as the interference function and is
given by

G1(q) = I
[
g1(r)

] = KP − q4I (q) (19.53)

From Equation 19.53, one can obtain

g1(r) = t

V

1

2π2

∞∫
0

G1(q) cos(qr)dq (19.54)

where t is the thickness and V is the volume occupied by
the lamellar stacks. When experimental I (q) data versus q
are collected in an ideal lamellar system without a finite
interface, it is possible to apply this equation to obtain
information about the nature of the system.
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Figure 19.12 Schematic representation of (a) first derivative from ρ(r) and (b) its correlation
function. Source: Reproduced with permission from Ruland W. Colloid Polym Sci 1977;255:417
[30]. Copyright 1977 Springer.

19.5.2.2 Form and Properties of the Interface Distribu-
tion Function According to Stribeck and Ruland [42],
the first distribution h1(r) of distances r1 is positive and
is related to the spacing between adjacent interfaces cor-
responding to the thickness of lamellae of the phase with
the smaller volume concentration. The second distribution
h2(r) of distances r2 is also positive and is related to the
distances between adjacent interfaces that correspond to the
thickness of the lamellae of the phase with the greatest
volume concentration. The following distribution h3(r) for
distances r3 is negative, and is related to the spaces of
the following second interface, for example, that extending
from the beginning of a region of density ρ1 to the follow-
ing region with the same density. Following the sequence,
the fourth distribution h4(r) for distances r4 will be positive
and will be related to the distance of the third following in-
terface with the lowest volume concentration and lamellae
of the phase of maximum volume concentration, etc.

For the evaluation of the functions g1(r), the distribu-
tions h1(r), h2(r), h3(r), etc. should be separated from
the adjacent distributions, and their statistical weights and
momenta should be determined. The weights w of the distri-
butions contain, through the weighting functions (1 − r /t),
the information of the size of the stacking, t . Because the
signs of the weights are alternated, serious errors can be
introduced when the distributions of opposite signs over-
lap. This effect is more severe at large distances, so that
only values of w for the distributions near the origin will
be significant. The same occurs with the determination of

the momenta of the distributions where only the first and
second momenta can be obtained with reasonable accuracy.
However, an exact determination of the weights and the
first and second momenta of the distributions until h4 will
allow the determination of an average value of t , and of
the characteristics of the thickness of lamellae and its vari-
ation. The centers of h1(r) and h2(r) correspond to the
average thicknesses l1m and l2m of the lamellae of density
ρ1 and ρ2, respectively; a comparison of the variances σ 2

1
and σ 2

2 obtained from the second momenta of h1 and h2
with those of h3 and h4 can be used to study the type of
statistic present in the lamellar stacking. If the distributions
of the distances are overlapped even for short distances, so
that an unambiguous evaluation in terms of wi , li , and σ i
is difficult, then the use of theoretical models for the sim-
ulation of lamellar systems is required in order to adjust
them to experimental curves.

19.5.2.3 Simulated Interface Distribution Function
g( r) If Gaussian distributions are assumed to represent
the variation of the interface distances, then theoretical
functions g1(r) can be obtained. In this case, the function
g1(r) is given by

g1(r) =
∞∑
i=1

wihi (19.55)

where wi are the weights for the Gaussian distributions of
distance hi centered at ri . When considering normalized
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distributions, hi is given by

hi = 1

σi

√
2π

exp

⌊
−

(
r − ri

)2

22
i

⌋
(19.56)

where σ i is the standard deviation of the nth distribution
of the distance. The distances ri are given by

ri = n
(
r1 + r2

)
for i = 3n

ri = n
(
r1 + r2

) + r1 for i = 3n + 1

ri = n
(
r1 + r2

) + r2 for i = 3n + 2 (19.57)

In these equations, n is an ascending integer that begins
with 1.

For the size of infinite stacking, the weighting functions
are given by

wi1 = 1 f or i �= 3n

wi = −2 f or i = 3n (19.58)

and a first approximation for finite stacking is given by

wi = exp

(−ri

t

)
for i �= 3n

wi = −2 exp

(−ri

t

)
for i = 3n (19.59)

The statistics by which the phases are related depend
on the theoretical model used. In general, three theoretical
models are considered and these are the homogeneous
lamellar model, the network model, and the lamellar
stacking model. In the following paragraphs, the particular
distribution relationships are presented depending on the
index of the distance.

Homogeneous Lamellar Model (HLM) In this model, the
variation of parameters of the lamellar structure from one
stacking to another is perfectly periodic and contains the
same volume fractions of the two phases. In this case σ i /ri
are constant; for that

σ1

r1
= σ2

r2
= σ3

r3
. . . σi = ri for every i (19.60)

where a single variance and two distances can be fixed in
order to obtain the other related parameters.

Lattice Model (LM) This model consists of the indepen-
dent variation of the thickness l1 and the distance L(L = r3)
between the centers of the lamellae of the same phase within
a given stacking. The change of σ i is given by

σi = n

(
σ 2

1

2
+ σ 2

L

)
for i = 3n and i = 3n ± 1 (19.61)

Lamellar Stacking Model (LSM) In this case, the function
g1(r) results from the independent variation of the quan-
tities σ 1 and σ 2 of the distances r1 and r2, respectively
(equivalent to the thickness l1 and l2 of the lamellae of
phases 1 and 2), within a given stacking. The change of σ i
is given by

σ 2
i = n

(
σ 2

1 + σ 2
2

)
for i = 3n

σ 2
1 = n

(
σ 2

1 + σ 2
2

) + σ 2
1 for i = 3n + 1

σ 2
1 = n

(
σ 2

1 + σ 2
2

) + σ 2
2 for i = 3n + 2 (19.62)

APPENDIX A PROCEDURE TO OBTAIN
MORPHOLOGICAL DATA FROM 1D SAXS
PROFILES

This procedure outlines the main steps used to obtain
morphological data from 1D SAXS patterns of polymer
samples. As an example, an isothermally crystallized
sample of a copolymer containing ethylene/hexane and
ethylene/butene was characterized using time-resolved
synchrotron radiation at the Advanced Polymers Beamline,
X27C, National Synchrotron Light Source, Brookhaven
National Laboratory. The X-ray beam wavelength was
1.366 Å, and the size was circa 0.4 mm in diameter. The
SAXS pattern was collected using a linear position-sensitive
detector (European Molecular Biological Laboratory) with
a sample-to-detector distance of 1788 mm. SAXS scattering
angle was calibrated using silver behenate. Calculations
were performed by the authors using Mathcad™ by the
routine developed for this purpose.

19.A.1 Data Analysis

19.A.1.1 Corrections to the Experimental Data Quali-
tative analysis of SAXS data requires the extrapolation to
both 0 and ∞ of the scattering intensity as a function of
the scattering vector q . In the first case, SAXS data was ex-
trapolated to q → 0 using Debye’s equation (Eq. 19.7). On
the other hand, the density profile as a function of a space
vector r for an ideal two-phase system resembles a squared
function because the boundaries are assumed to be sharp
and the density within the phases is considered as constant.
In this case, Porod established that the intensity decays as
the inverse of the fourth power of the scattering vector at
large q values, mathematically expressed as the Porod’s
law, Equation 19.13. However, two-phase polymer systems
often deviate from the ideality due to the presence of a
density gradient between the phases as well as density vari-
ations within the phases. The latter is often associated with
a background scattering IB, which produces a positive devi-
ation of the Porod’s law, while the former corresponds to a
negative deviation associated with the interface thickness
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E . Assuming finite boundaries, E = 0, Equation 19.13
becomes

I (q)
q→∞

= KP

q4
+ IB (19.A.1)

If enough data is acquired at large q values, Kp and
IB can be determined using nonlinear least-squares fitting
and, therefore, the ideal intensity. However, the problem
arises in the selection of q limits, since the choice of
both the lower and upper limits significantly affects the
validity of the Porod’s law. In this case, the upper limit
was set to qupp = 2, and the lower limit qlow was varied
until the minimum area of the interference function G1(q)
was obtained (Eq. 19.53). Once this criterion is achieved,
the interface distribution function g1(r) (Eq. 19.54) is
calculated from the Fourier transform of G1(q).

19.A.1.2 Correlation Distances and Distributions The
characteristic distances between each interface, as well as
their statistical distributions, were obtained by means of a
lamellar stacking model with infinite size to Lorentz data
(I 2

q )

Iideal(q) • q2 = KP

q2
•Re

[
H1 •H2

1 − H1 •H2

]
(19.A.2)

where

Hi = 1 − exp

(
i •ri

•q − σ 2
i

•q2

2

)
(19.A.3)

ri corresponds to the i th interface distance, and σ i to its
corresponding standard deviation. Interface distances and
their distributions were obtained by means of a nonlinear
least-squares fitting of the Iideal(q) · q2 to Equation (19.A.2).
A weight factor of 1/Iideal(q) · q2 was used. The periodicity
or long period L is the sum of r1 + r2. The resulting
parameters are shown in Tables 19.A.1 and 19.A.2. Finally,
the ideal intensity, the Lorentz intensity, the interference
function, and the interface distribution function were

TABLE 19.A.1 Experimental Parameters Obtained in
Reciprocal-Space Analysis

q → 0 q → ∞ Whole Range

A e KP E (nm) IB Q Area G1(q)
1280 7.91 18.676 0.000 5.709 36.41 0.343

TABLE 19.A.2 Experimental Parameters Obtained in
Real-Space Analysis

Correlation Distance (nm) Standard Deviation (nm)

r1 r2 L s1 s2 sL
6.59 2.06 8.64 2.731 1.472 3.102
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Figure 19.A.1 Intensity plot. (See insert for the color represen-
tation of the figure.)
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Figure 19.A.2 The Lorentz plot. (See insert for the color
representation of the figure.)
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Figure 19.A.3 Interference function. (See insert for the color
representation of the figure.)

simulated and compared with the experimental data to
check for validity of the results (Figs. 19.A.1, 19.A.2,
19.A.3, and 19.A.4).

Finally, and only to show the effect of the statistics,
simulations where performed using different standard
deviations keeping the correlation distances shown in
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Figure 19.A.4 Interface distribution function. (See insert for the
color representation of the figure.)
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Figure 19.A.5 Statistical effect on the intensity plot. (See insert
for the color representation of the figure.)
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Figure 19.A.6 Statistical effect on the Lorentz plot. (See insert
for the color representation of the figure.)

Table 19.A.2. The results are presented in Figures 19.A.5,
19.A.6, 19.A.7, and 19.A.8. These results indicate that the
statistical variation in the distances can have a profound
effect in the shape of the different functions in both
reciprocal and real space.
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Figure 19.A.7 Statistical effect on the interference function. (See
insert for the color representation of the figure.)
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Figure 19.A.8 Statistical effect on the interface distribution
function. (See insert for the color representation of the figure.)
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