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22.1 INTRODUCTION TO POLYMER
RHEOLOGY FUNDAMENTALS

The term rheology comes from the Greek words ρoή

(flow) and λóγ oζ (study) and as such it is the science
that studies the relationships between forces applied to a
material and the resulting deformations. The mathematical
form of these relationships is called constitutive equation or
rheological equation of state. Depending on the rheological
properties, which are described by the relationship between
the applied force and its resulting deformation, materials
can be classified as shown in Figure 22.1.

The limiting cases shown in Figure 22.1 are those of
solids with constant deformation modulus (Hookean solids)
and liquids with constant viscosity (Newtonian liquids).
Viscoelastic materials (solids or liquids) exhibit a rheologi-
cal behavior that is a combination of the behavior of elastic
solids and viscous liquids. There is a wide variety of ma-
terials with viscoelastic behavior, but this type of behavior
is particularly relevant for both solid and molten thermo-
plastic polymers. Understanding the viscoelastic nature of
polymeric materials is of particular importance when deal-
ing with polymer processing operations, such as extrusion,
injection molding, film blowing, and blow molding.

22.1.1 Deformation Response of Polymeric Solids1

Solid synthetic polymers can exhibit a wide variety
of mechanical behaviors depending on physical aspects
such as crystallinity and architectural characteristics such

1This section was adapted with permission of John Wiley & Sons, Inc.,
from section 1.6 of Odian G. Principles of Polymerization. 4th ed. New
York: Wiley-Interscience; 2004 [1].
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as molecular weight (Mw), branching, or degree of
crosslinking. Polymeric materials can be classified as fibers,
elastomers, flexible plastics, or rigid plastics depending on
their mechanical behavior, which is determined by the rela-
tionship between the applied force or stress and the resulting
deformation or strain [1]. In what follows in this section,
a brief overview of the deformation behavior of polymeric
solids under uniaxial loading is discussed. Under this load-
ing condition, fibers exhibit very low deformations, and
elastomers present relatively high deformations and they
fully recover their initial shape on removal of the force
that caused deformation. On the other hand, rigid plastics
present very low deformations at break, whereas flexible
plastics can exhibit large deformations, but their elastic re-
covery is generally very small. The deformation behavior of
elastomers and flexible plastics is relatively different from
one another. This is briefly illustrated by means of the gen-
eral stress–strain curve shown in Figure 22.2.

As observed in Figure 22.2, the tangent modulus of
elastomers (rubberlike materials) has initially low values,
the tangent modulus being defined as the slope of the
stress–strain curve. However, after a certain value of
deformation (strain) experienced by the elastomer, the
modulus increases. An important characteristic of this type
of materials is the fact that their deformation behavior
is reversible. For flexible plastics, from low to moderate
strains, relatively constant values of the tangent modulus
can be observed. However, as the strain is increased, a
change in the behavior of the modulus versus deformation
profile is observed. The convex region of the stress–strain
profile shown in Figure 22.2 is associated with necking
due to the plasticity of flexible plastics. For these types of
materials, only the deformation observed before yield and
necking is reversible.

437



438 POLYMER RHEOLOGY

Hookean
solid

Non-Hookean
solid

Viscoelastic
solid

Viscoelastic
liquid

Viscous
liquid

Newtonian
liquid

Figure 22.1 Classification of solids and liquids depending on their observed rheological behavior.
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Figure 22.2 General description of the uniaxial
load/deformation behavior for: (a) flexible plastics and (b)
elastomers. Source: Adapted with permission of John Wiley &
Sons, Inc., from Odian G. Principles of Polymerization. 4th ed.
New York: Wiley-Interscience; 2004 [1].
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Figure 22.3 Stress versus shear rate behavior for (a) shear
thinning, (b) Newtonian, and (c) shear thickening materials.

22.1.2 Rheology of Polymeric Liquids

Different types of liquid-like behavior can be related
to polymeric liquids. In some cases, polymers are just
dispersed in the bulk of another material, for instance,
in polymeric suspensions such as some types of liquid
paints. In some other cases, the polymer forms the bulk,
as in the case of polymer melts. Models describing the
rheology of the latter type of liquid polymers are needed
to perform numerical analysis of processing operations and

(a) (b)

Figure 22.4 Illustration of (a) the Weissenberg effect and (b)
extrudate swelling.

sizing of equipment, such as extruders and dies used in the
manufacturing of extruded products.

Different types of polymer fluid rheological behaviors
are shown in Figure 22.3. In general, polymeric materi-
als exhibit non-Newtonian behaviors, meaning that their
viscosities are not constant. It is observed in Figure 22.3
that the viscosity of some materials, given by the slope
of the stress versus shear rate curve, decreases as the
stress to which they are subjected increases. Materials
exhibiting this rheological behavior are termed pseudo-
plastic or shear thinning materials . Some other materi-
als called dilatants exhibit a shear thickening behavior.
The viscosity of such materials increases as the stress
increases. This type of behavior can be found in some
ionic polymer solutions [2]. Shear thinning describes well
the rheology of molten polymers for practical engineering
purposes.

There are several aspects of rheological behavior
exhibited by polymeric liquids that set these materials
apart from Newtonian fluids. An excellent summary of
the differences in fluid response between Newtonian
liquids and non-Newtonian polymeric liquids under various
scenarios has been given by Bird and Curtis [3]. Two very
well-known “atypical” phenomena exhibited by polymeric
liquids are the Weissenberg effect (a polymer melt or
solution tends to climb a rotating rod) and extrudate
swelling, which are illustrated in Figure 22.4.

In general terms, both of the aforementioned rheological
phenomena can be related to the viscoelastic nature
of polymeric materials and more specifically to the
development of normal stresses and the deformation history
of such materials. Extrudate swelling has direct implications
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in industrial polymer extrusion operations where extrusion
dies have to be designed to minimize extrudate swelling
effects, for instance, in profile extrusion. For a particular
polymer, its molecular characteristics, such as Mw and
molecular weight distribution (MWD) [4, 5] and type of
branching [6], are related to the extent of extrudate swelling
observed at a particular shear rate. In general terms,
extrudate swelling increases as shear rate increases, up
to a certain value [6]. Some of the implications of the
viscoelastic nature of polymer melts in polymer processing
are addressed in Reference 7.

22.1.3 Mathematical Relationships for Polymer
Rheology

A great deal of the mathematical background for under-
standing rheology is related to vectors and tensors. A com-
prehensive discussion of these subjects is out of the scope
of this work. However, in what follows in this section, a
brief summary of some of the mathematical relationships
and quantities of common use in polymer rheology is pre-
sented. The reader interested in more details may refer to
rheology, fluid, and solid mechanics textbooks [8–13].

The mathematical description of the rheological behavior
of materials can be traced back to the description of solids
and liquids by means of the equations of fluid motion, for
liquids, or the implementation of equations describing the
deformation behavior of solids with continuum mechanics
relationships. To illustrate the type of mathematical rela-
tionships of general use when dealing with the deformation
of solids and liquids, let us consider a linear uniaxial defor-
mation and the deformation resulting from the shearing of
a rectangular material element, as illustrated in Figure 22.5.

A measure of the uniaxial deformation is the linear
strain, which relates the amount of stretching of the material
to its initial length, as stated in the following equation:

γ1 = �L

L
= du1

dx1
(22.1)

In this equation, L is the initial length; �L, the change
in length due to stretching; and u1, the displacement of a
material point in the stretching direction (x1).

On the other hand, a measure of the shear deformation
of the rectangular material element shown in Figure 22.5
is given in terms of shear strain, which is given in the
following equation:

γ12 = �L

h
= du1

dx2
(22.2)

In this case, the shear strain relates the displacement (u1)
in the shearing direction (x1) to a reference length (h) in
the direction (x2), perpendicular to the shearing direction of
the material.

For a three-dimensional deformation, a generalization of
the strain as a measure of deformation when a material
is subjected to deformation is the strain tensor. There are
several ways to express the strain tensor, based on linear
and nonlinear representations of the strain components. In
Equation 22.3, the strain tensor is written by using a linear
representation of the strain components:

γ = ∇u + (∇u)T (22.3)

where

∇u =

⎡
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When one is following the deformation experienced by
solid or liquid materials with respect to time, one deals with
the rate of deformation. As a generalization of the above
results, the strain rate tensor can be written as indicated in
the following equation:

γ̇ = ∇v + (∇v)T (22.4)

L ΔL

ΔL

h

(a)

(b)

Figure 22.5 (a) Linear uniaxial deformation and (b) shearing of a material.
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where γ̇ is the strain rate tensor and v is the velocity
vector.

Taking into consideration the forces that cause the de-
formation of a given material, one invokes the relationships
for the stresses developed in that solid or liquid mate-
rial. Following the generalizations of the strain and strain
rate to express such quantities in terms of tensorial ex-
pressions, the stress tensor is expressed as in Equation
22.5 (index and symbolic notations, Eq. 22.5a and 22.5b,
respectively):

τij = Fj

Ai

, i, j = 1, 2, 3 (22.5a)

τ = F
A

(22.5b)

where τ is the stress tensor, Fj is the force acting in the
j th direction on an area element Ai , which is perpendicular
to the i th direction.

Another important quantity of general use in fluid
mechanics and polymer rheology is the total stress tensor.
This tensor is defined in terms of the stress tensor and the
hydrostatic pressure, as indicated in the following equation:

σ = τ − P I (22.6)

where σ is the total stress tensor; I, the identity tensor; and
P , the hydrostatic pressure.

22.2 LINEAR VISCOELASTICITY

Linear viscoelasticity is the simplest type of viscoelastic
behavior observed in polymeric liquids and solids. This
behavior is observed when the deformation is very small or
at the initial stage of a large deformation. The relationship
between stress and strain may be defined in terms of the
relaxation modulus, a scalar quantity. This is defined in
Equation 22.7 for a sudden shear deformation:

G(t, γ ) = τ (t, γ )

γ
(22.7)

where G(t ,γ ) is the shear relaxation modulus; t , the experi-
mental time; and γ , the shear strain. Under linear viscoelas-
tic conditions, the relaxation modulus is independent of the
magnitude of the strain. This leads to a linear relationship
between stress and strain:

τ (t) = G(t) γ (22.8)

For a solid material, the typical difference in deformation
behavior between a Hookean solid and a viscoelastic solid
can be explained in terms of an applied constant load.

For a Hookean solid, say a metal, the load will produce
a deformation that stays constant over time. On the other
hand, for a polymeric material the same load will produce
an initial deformation, followed by a slow and constant
deformation up to a certain value (creep). This is an
illustration of a retardation process, where the final response
of the material to the load is retarded. On the other hand,
one can also visualize an experiment where a constant strain
is imposed to both, a Hookean solid and a viscoelastic solid.
Under these experimental conditions, a constant stress is
developed in the first case, whereas in the second case, the
stress is nonconstant; it starts at an initial value and then
decreases up to a zero value. This experimental behavior
constitutes a relaxation process.

To illustrate what happens in the case of polymeric
liquids with respect to linear viscoelasticity, let us consider
the following equation, which is a general relationship
between stress and strain rate:

τ (γ̇ ) = η (γ̇ ) γ̇ (22.9)

where η (γ̇ ) is the viscosity of the material as a function of
shear rate, γ̇ .

The time dependency of the stress–strain rate relation-
ship can be omitted for polymeric liquids in many practical
situations. Now, let us consider Figure 22.6, which is a typ-
ical plot for viscosity in terms of shear rate for a polymer
melt. Two different regions can be observed in the figure.
In the first region, which occurs at moderate low shear rate
values, there is a smooth variation of polymer viscosity.
In the second region, there is a more pronounced decrease
of viscosity as shear rate is further increased. This section
of the curve is often described mathematically by a power-
law model that expresses the relationship between shear rate
and the viscosity stated in Equation 22.9, as discussed in

lo
g 

(h
)

log (g)

Region I Region II

Figure 22.6 Variation of viscosity as a function of shear rate for
polymeric melts.
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Section 22.3.1. Polymer processing is generally achieved
at shear rates lying in the shear thinning region of the
viscosity curve (the second region of the curve shown in
Fig. 22.6). Regarding the first region of the curve shown
in Figure 22.6, it can be seen that the viscosity approaches
a plateau at low shear rate values. The value of viscosity
at this plateau is known as the zero-shear-rate viscosity η0,
and it is usually determined by means of experiments in the
linear viscoelastic region [5, 9].

As shown in Figure 22.6, the determination of viscosity
at low shear rates corresponds to measurements in the linear
region of viscoelasticity (additional information regarding
the measurement of viscosity in the linear viscoelastic
regime is presented in Section 22.3.2). In the work by
Meissner [5], several methods used in the evaluation of
linear viscoelasticity are outlined. Measurement of melt
viscosity in the linear viscoelastic region is of great
importance in the characterization of thermoplastics. These
measurements provide information about long branching,
Mw, or filler content of thermoplastic melts [5, 6, 14].

22.3 VISCOMETRIC TECHNIQUES
FOR POLYMER MELTS

As stated earlier, polymer rheology is not confined to the
study of liquid polymers. However, this section is focused
on the analysis of polymer melts, since these materials have
a great relevance in polymer processing. The viscometric
techniques to be discussed in this section may apply not
only to polymer melts but also to other polymeric liquid
systems, such as solutions and suspensions.

22.3.1 The Capillary Rheometer

Different experimental techniques for the evaluation of
the relationship between the shear rate experienced by a
polymeric material and the corresponding polymer viscosity
have to be implemented to determine the flow behavior
of a polymer melt. Figure 22.6 shows the rheological
behavior (shear thinning) of a polymer melt under typical
processing conditions. A very useful and yet relatively easy-
to-understand expression used to describe the shear thinning
behavior of polymer melts is the power-law model, as given
in the following equation:

η (γ̇ ) = Kγ̇ n−1 (22.10)

where K is the consistency index and n is the power-law
index. This equation describes the second region of the
curve shown in Figure 22.6. The description of this region
of the curve with viscometric techniques is performed with
the capillary rheometer. With this instrument, the viscosity

Applied load

Figure 22.7 Schematic representation of a capillary rheometer.

of a polymer melt is evaluated from the flow inside a
long- and small-diameter capillary tube. In a typical way
of operation, the polymer in the solid state is fed to a
cylindrical reservoir where it is melted and forced through
the capillary tube by a piston. A graphical representation
of the capillary rheometer is depicted in Figure 22.7.
The viscosity measurements obtained from the capillary
rheometer are very important as they help to establish a
relationship between shear rate and viscosity of melted
polymers under typical operating conditions in polymer
processing equipment.

There are two main corrections that have to be applied
to the information obtained from the capillary rheometer.
First, there is an entrance pressure drop when the molten
polymer enters the capillary, which is taken into account
through the entrance or Bagley correction. This pressure
drop is related to elastic deformations of the melt at the
entry of the capillary [15]. Secondly, the non-Newtonian
shear rate is expressed in terms of an apparent viscosity
(defined in terms of a Newtonian flow). The relationship
between the non-Newtonian and Newtonian shear rates,
expressed as in the following equation, is known as the
Rabinowitch correction [13, 16]:

γ̇w = 3n + 1

4n
γ̇app (22.11)

where

γ̇app = 4Q

πR3

Here, γ̇w and γ̇app are the shear rate at the wall of the
capillary and the apparent shear rate, respectively; n is the
power-law index; Q is the volumetric flow rate; and R is
the radius of the capillary.
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The Bagley correction is further explained considering
the following equations:

τw = R
(
�Pc

)
2L

(22.12a)

τw = R
(
�Pc

)
2

(
L + Lent

) (22.12b)

τw = �Pc

2 (L/R + |e|) (22.12c)

τw = K ′ (γ̇app

)n
(22.13a)

ln
(
τw

) = ln
(
K ′) + n ln

(
γ̇app

)
(22.13b)

where

K = K ′
(

4n

3n + 1

)n

In these equations, τw is the shear stress at the capillary
wall, �Pc is the total pressure drop in the capillary, L is
the capillary length, Lent is an apparent length, and e is the
Bagley entrance correction.

Equation 22.12a represents the shear stress at the wall
of the capillary in the absence of the pressure drop due
to entrance effects. On the other hand, Equation 22.12b
and 22.12c correspond to the corrected equation when
the entrance pressure drop is taken into account. The
correction parameter e given in Equation 22.12c can be
calculated as the x -intercept in a plot of �Pc versus L/R at
constant γ̇app. The experimental data needed to generate this
plot are obtained from capillary rheometer measurements,
using capillaries of different lengths and constant diameter.
The pressure drop is dependent on the value of γ̇ , or
γ̇app; therefore, different correction factors are needed for
different values of γ̇app [15]. After performing both the
Bagley and Rabinowitch corrections, the consistency and
power-law indexes can be obtained from a regression
analysis of the experimental data using Equation 22.13a and
22.13b. Because of the significant amount of experimental
work associated with the Bagley correction, it is a common
practice to avoid performing this correction when long L/D
diameter capillaries are used in the capillary rheometer. In
this way, negligible flow entrance effects to the die can be
assumed. Although capillaries with L/D ≥ 20 [4, 9, 17, 18]
have been used for such purposes, Macosko [9] points
out that in some cases this approach is not as accurate as
expected.

A variation of a capillary rheometer as the one
previously described can be used to determine the melt
flow index (MFI) of thermoplastic melts. The MFI is the
amount of polymer flowing through a capillary of specific
dimensions under a given weight and at a given temperature
as those are described by international standards, such as
the American Standards for Testing and Materials (ASTM).

The MFI represents one point on the viscosity curve and it
is widely used as an industrial indicator of the processability
of thermoplastic polymers and for quality control purposes.
Although the MFI is not a rigorous indicator of viscosity,
Shenoy et al. [19–21] have proposed and implemented
a methodology for determining the complete viscosity
curve from individual MFI measurements and a reference
viscosity curve.

22.3.2 Rotational Rheometers

The cone-and-plate and parallel-plate rheometers are rota-
tional devices used to characterize the viscosity of molten
polymers. The type of information obtained from these
two types of rheometers is very similar. Both types of
rheometers can be used to evaluate the shear rate–viscosity
behavior at relatively low vales of shear rate; therefore, al-
lowing the experimental determination of the first region
of the curve shown in Figure 22.6 and thus the deter-
mination of the zero-shear-rate viscosity. The rheological
behavior observed in this region of the shear rate–viscosity
curve cannot be described by the power-law model. On the
other hand, besides describing the polymer viscosity at low
shear rates, the cone-and-plate and parallel-plate rheome-
ters are also useful as dynamic rheometers and they can
yield more information about the structure/flow behavior
of liquid polymeric materials, especially molten polymers.

In a dynamic experiment, a small-amplitude oscillatory
shear is imposed to a molten polymer confined in the
rheometer. The shear stress response of the polymeric
system can be expressed as in Equation 22.14. In this
equation, G ′ and G ′′ are dynamic moduli related to the
elastic storage energy and dissipated energy of the system,
respectively. For a viscoelastic fluid, two independent
normal stress differences, namely, first and second normal
stress differences can be defined. These quantities are
calculated in terms of the differences of the components
of the stress tensor, as indicated in Equation 22.15a and
22.15b, and can be obtained, for instance, from the radial
pressure distribution in a cone-and-plate rheometer [5].
Some other experiments used in the determination of the
normal stress differences can be found elsewhere [9, 22]:

τ12 = G′γ0 sin ωt + G′′γ0 cos ω (22.14)

where γ = γ 0 sin ωt

τ11 − τ22 = ψ1γ̇
2 (22.15a)

τ22 − τ33 = ψ2γ̇
2 (22.15b)

The terms on the left-hand side of Equation 22.15a and
22.15b are the first and second normal stress differences,
respectively. ψ1 and ψ2 are the first and second normal
stress difference coefficients, respectively, and γ̇ is the
shear rate.
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22.3.3 Temperature and Pressure Effects on Viscosity

For a polymer of constant composition, it is a common
practice to determine its viscosity curve, as the one shown
in Figure 22.6. The obtained curve is valid for a given
set of experimental conditions, that is, for a given pressure
and temperature. In general terms, the viscosity increases
as temperature decreases or pressure increases. According
to Reference 23 at lower values of shear rate, a decrease of
temperature has a similar effect to an increase of pressure.
There is a method that makes use of a semiempirical
relationship to take into account the effects of temperature
and pressure on the viscosity curve. This method is based
on the concept of a master curve and essentially it allows
for the construction of a viscosity curve from a reference
curve and a single viscosity value [15].

A master curve can be constructed as indicated in
Figure 22.8, where the zero-shear-rate viscosity η0 has to
be evaluated for each one of the indicated viscosity curves.
Both, the effect of temperature and pressure on the viscosity
versus shear rate curve can be addressed by considering a
shift factor that may be related, for instance, to the free
volume of the system by means of the Williams, Landel,
and Ferry (WLF) equation [9, 15, 23, 24]. With the aid of
this shift factor, the new viscosity curve can be constructed
from known viscosity values and the reference curve at
the prescribed values of temperature and a pressure. The
use of shift factors to take into account the temperature
dependence on the viscosity curve was also used by Shenoy
et al. [19–21] in their methodology for producing viscosity
curves from MFI measurements.

22.3.4 Other Viscometric Determinations

In this section, only measurements of shear viscosity have
been addressed. However, some other devices are available
that can assist in the characterization of the rheology
of polymer melts under different types of deformation,
other than shear. For instance, extensional viscosities can

be evaluated from such different experimental devices
[5, 9, 13]. In addition, in some instances, optical determi-
nations are used to complement the information of melt
rheology in relation to the molecular orientation of polymer
systems under flow [5, 16, 25–27].

Optical measurements are applied for both polymeric
melts and molded plastics. In the latter case, polarized light
microscopy (POM) can be used, for example, in performing
analyses of residual stresses [16]. POM analyses of polymer
melts and solids are based on light birefringence caused by
optical anisotropy of oriented polymer systems that can be
characterized by means of this optical technique. In the case
of molten polymers, experimental techniques such as POM,
infrared spectroscopy, and small angle laser light scattering
(SALLS) have been used to investigate the flow behavior
of polymer melts or to correlate experimental results to
rheological parameters [25].

A complementary use of polymer viscometry is the
indirect evaluation of the MWD of a polymer from
dynamic viscosity measurements [28–30]. The methods
used to correlate the MWD of polymers to rheological
data are based on the previous determination of the
polymer relaxation spectrum from linear oscillatory shear
experiments [31, 32]. MWDs obtained from viscometric
data analysis can help in the determination of the MWD
curve from online measurements, or in cases where this
curve cannot be easily determined from size exclusion
chromatography (SEC) [30, 31].

22.4 OVERVIEW OF CONSTITUTIVE
EQUATIONS

As previously indicated, the mathematical relationships
describing the stress–deformation behavior of viscoelastic
polymeric materials are known as constitutive equations.
Different classifications have been given for these types
of equations [12, 33–36]. Here, a classification is given
from a mathematical point of view, similar to that
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)
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log (g) log (h0g)

Figure 22.8 Construction of a viscosity versus shear rate master curve. Source: Adapted with
permission from Michaeli W. Extrusion Dies for Plastics and Rubber. 3rd ed. Munich: Hanser;
2003 [15].
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used by Nassehi [35]. Only constitutive models based
on continuum mechanics principles are addressed in
this chapter, and no equations derived from molecular
considerations [34, 37, 38] are discussed.

22.4.1 The Generalized Newtonian Fluid

Newton’s law of motion for liquids describes a linear
relationship between the deformation of a fluid and the
corresponding stress, as indicated in Equation 22.16, where
the constant of proportionality is the Newtonian viscosity
of the fluid. The generalized Newtonian fluid (GNF)
refers to a family of equations having the structure of
Equation 22.16 but written in tensorial form, in which the
term corresponding to viscosity can be written as a function
of scalar invariants of the stress tensor (τ) or the strain rate
tensor (γ̇). For the GNF, no elastic effects are taken into
account [12, 33]:

τ = ηγ̇ (22.16)

where η is the Newtonian viscosity.
The GNF represents a relatively simple relationship

between the stress and strain rate tensors, which can
account for viscous effects of polymeric flows, such as
temperature increase due to viscous dissipation. Because
of its simplicity, the GNF can be readily incorporated into
the momentum equation, which may be solved by means
of numerical techniques in computational fluid dynamics
(CFD) simulations. In general terms, since the processing
temperature is not constant during a processing operation,
an Arrhenius-type relationship can be assumed for some of
the parameters of the models used to describe the viscosity
of the system. In addition, here it is important to note that
the parameters of the power-law and similar models are
dependent on the Mw of a given polymer. An interesting
case in the description of polymer processing operations
occurs in reactive extrusion. In a reactive extrusion process,
the parameters of the power-law, or similar model, change
during the course of the reaction due to the variation of
both Mw and temperature of the reacting system [39, 40].

Since viscosity can be expressed in terms of strain rate
for the GNF, the stress tensor can be written in terms
of the strain rate tensor and some constant parameters,
as given in Equation 22.17. A power-law relationship for
viscosity in terms of the strain rate has been assumed in
Equation 22.17. In the case of flow between two parallel
plates where one plate is fixed and the other one is moving
with a given velocity, Equation 22.17 reduces to Equation
22.18, a familiar fluid mechanics equation:

τ = K
(
IIγ̇

)n−1
γ̇ (22.17)

Here, IIγ̇ represents the second invariant of the strain rate
tensor, IIγ̇ = |γ̇| =

√
1
2 (γ̇ : γ̇).

τ = Kγ̇ n (22.18)

Note that in this case all the components of the strain rate
tensor, except the one describing shearing of the material
(the shear rate), are zero.

Other equations have been developed to describe the
shear thinning behavior of polymer melts, for instance,
the Yasuda–Carreau equation, which is written here as
Equation 22.19 [41]. In this equation, as in the power-law
model, the effect of temperature on viscosity of the system
can be taken into account by means of an Arrhenius-type
relationship:

η (γ̇ ) = η0(
1 + (λγ̇ )a

)(1−n)/a
(22.19)

where η (γ̇ ) stands for viscosity; η0 is zero-shear-rate vis-
cosity; n the power-law index; a is a fitting parameter
related to the transition between the zero-shear-rate vis-
cosity and the shear thinning regions in the viscosity curve;
λ is a characteristic flow time; and γ̇ is shear rate.

22.4.2 Differential Equations

Mechanical analog models based on a combination of
spring and dashpot elements can be mathematically de-
scribed by means of differential equations. These models
can be used to represent viscoelastic phenomena, such as
relaxation and creep. Two of such models are the Maxwell
and the Voigt models. In particular, the first one of these
models is very suitable to explain stress relaxation. Here, a
brief explanation of the Maxwell model is presented omit-
ting the somehow elegant mathematical formalities used to
provide a more complete explanation of the model [16, 42].
A physical representation of this model is depicted in
Figure 22.9. This physical model is a series arrangement
of a spring element and a dashpot. For small deformations,
the stress–strain behavior of this composed element may
be given in terms of a linear response of its components,
according to Equation 22.20. The explanation of stress re-
laxation in terms of the Maxwell model can be given as
follows. First, when the composed element is subjected to
an initial strain, its stress response is mainly associated with
the spring element, producing an initial stress. However, as
time passes, the initial deformation of the spring decreases
gradually at the expense of viscous dissipation because of
the movement of the piston of the dashpot. This process

gs gd g

t

Figure 22.9 Physical representation of the Maxwell fluid
element.
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continues until the spring is no longer subjected to any
deformation and the stress has completely relaxed.

γ̇s = − τ

G
(22.20a)

γ̇d = −τ

η
(22.20b)

γ̇ = γ̇s + γ̇d (22.20c)

−ηγ̇ = λ
dτ

dt
+ τ (22.20d)

where λ = η

G
is the relaxation time.

Unlike simple differential constitutive equations as
the one previously addressed, constitutive equations may
present special types of derivatives such as the substantial
derivative, or other types of derivatives in which a
hypothetical frame of observation of the flow is allowed
to translate, rotate, and/or deformate [33]. The Criminale-
Ericsen-Filbey (CEF) equation, written here as Equation
22.21, is an example of this type of equations. The CEF
equation is relatively simple, and it is explicit in the stress
tensor. The latter is a feature not shared by all rheological
relationships belonging in the category of equations with
special types of derivatives [35].

τ = −ηγ̇ −
(

1

2
ψ1 + ψ2

)
{γ̇•γ̇} + 1

2
ψ1

dγ̇

dt
(22.21)

Here, �1 and �2 are the first and second stress difference
coefficient functions, and the derivative of the strain rate
is the Jaumann derivative, which is related to a frame of
reference that translates and rotates with the local velocity
of the fluid (this relationship can be numerically evaluated
from the deformation and vorticity tensors).

22.4.3 Integral Constitutive Equations

Integral constitutive equations are explicit in the stress ten-
sor [35], but unlike those equations describing stress only
in terms of strain, for example, GNF type of equations,
these equations involve functions that in general terms
relate to the viscoelastic nature of the flow. Integral con-
stitutive equations are often said to be related to the flow
history of the fluid. This principle very well applies to the
effect of extrudate swelling observed in polymer extrusion,
whose association with the flow history of a material can
be readily understood from practical experience. A simple
relationship that has the form of a more general integral
constitutive equation known as the Goddard–Miller (G-M)
equation [33, 36] is presented here as Equation 22.22.
After some mathematical manipulation, Equation 22.20d
can be analytically integrated yielding a relationship of the
form of Equation 22.22 [12]; therefore, the latter equation

can be used to address the linear viscoelastic response of
polymeric melts.

τ = −
t∫

−∞
G

(
t − t ′

)
γ̇

(
t ′
)

dt ′ (22.22)

Here t is actual time, t ′ refers to previously elapsed
times, related to the flow history of the fluid, and G(t − t ′)
is relaxation modulus.

CFD software has been used to implement integral
constitutive equations in the evaluation of viscoelastic
responses in different polymer flow situations such as
calendering, extrusion die swelling, and blow molding. In
the work by Tadmor and Gogos [36], some applications of
integral viscoelastic models, more specifically of the Kaye-
Bernstein-Kearsly-Zapas (K-BKZ) type, are addressed. This
type of model has been extensively used by Mitsoulis and
coworkers to simulate different polymer flow situations (see
for instance References 43 and 44). A simplified form of
the K-BKZ equation used by Mitsoulis [44] is written here
as follows:

τ = 1

1 − θ

t∫
−∞

N∑
k=1

f
(
t − t ′, ak, λk,M

)

×
[
C−1

t ′
(
t ′
) + θCt ′

(
t ′
)]

dt ′ (22.23)

In this equation, θ is a material parameter related to the
first and second normal stress differences of the polymer;
N is the number of relaxation modes; ak and λk are
relaxation modulus and times, respectively; and C stands
for the Cauchy–Green tensor.

22.5 BRIEF OVERVIEW ON OTHER RELEVANT
POLYMER RHEOLOGY ASPECTS

In this section, some other relevant aspects of the rheology
of polymer melts are addressed in some detail. The case
of filled systems is discussed first. These types of systems
are of significant importance in industrial applications. In
addition, molecular dynamic and fluid dynamic simulations
that have greatly benefited from the significant advances in
computer power are discussed to some extent.

22.5.1 Rheology of Filled Polymeric Melts

In the previous sections, nothing has been said about the
rheology of polymeric melts containing fillers. The latter
type of materials are commonly used in industrial polymer
processing operations and are aimed, for instance, to rein-
force polymers, to improve processability [17], or to obtain
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polymers with enhanced physical properties, such as higher
electrical and thermal conductivities [18]. Among polymer
fillers, one can find carbon black, glass fibers, and some
other types of inorganic materials. Some materials that are
becoming more common as polymer loads are natural fibers
and nanocomposites. For some fillers, such as glass fibers,
a surface treatment is needed for technical reasons [45].

Some modifications of the melt flow behavior of
thermoplastics that can be observed depending on filler
concentration are a yield-like behavior (i.e., in these cases,
there is no flow until a finite value of the stress is reached),
a reduction in die swell, a decrease of the shear rate value
where nonlinear flow takes place, and wall slip or near-
wall slip flow behavior [14, 27, 46]. Other reported effects
of fillers on the rheology of molten polymers are an increase
of both the shear thinning behavior and the zero-shear-
rate viscosity with the filler loading and a decrease in the
dependence of the filler on viscosity near the glass transition
temperature [18, 47–49].

In filled polymer systems, it has been observed that
the effect of filler content on viscosity decreases as shear
rate increases [14, 49]. In the case of nanocomposite
fillers, this effect has been explained in terms of a
detachment/reattachment mechanism [49]. With respect to
the dimensions of the fillers, it has been observed that as the
surface area of the filler increases so does the viscosity of
the filled polymer melt [18, 48]. For particles with similar
shapes, an increase in the surface area means a reduction
in particle size. In this sense, nanofillers are expected to
significantly increase the viscosity of polymer melts in
relation to fillers with sizes in the range of micrometers.
An analysis of filler shape and other relevant aspects of
polymer fillers can be found in the work by Shenoy [50].

22.5.2 Molecular Dynamic Simulations in Polymer
Rheology

On the basis of the length scale of a simulation, one
traditionally deals with micro- or macrosystems, and the
simulations related to these systems are referred to as
micro- or macrosimulations . Macrosimulations relate to
the bulk behavior of materials, while microsimulations are
referred to simulations of systems or parts of a system
with length scales in the order of micro- or nanometers.
Going down in the length scale of physical systems, an area
of increasing interest that has also been facilitated by the
improvement in computational power is the modeling and
simulation at molecular and atomistic length scales for both
low and high Mw materials. In addition, the modeling and
simulation of physical systems involving models addressing
different length scales of the same system (multiscale
modeling), for example, molecular and macromodels, has
been performed [51–56].

Molecular dynamic simulations seem to be very suit-
able to address polymer rheology in systems where the
characteristic dimensions of the polymer chains are of the
same range as some other characteristic lengths of the sys-
tem under study. Examples of this latter scenario are flow
through very thin gaps and the study of interactions between
polymer melts and nanofillers [48, 57]. On the other hand,
molecular dynamic simulations have been used to evalu-
ate the accuracy of rheological models based on molecular
considerations [58]. Since the goals in the implementation
of the latter type of models may include the synthesis or
design of polymeric materials with tailor-made processing
properties [58, 59], their verification or improvement is of
significant importance.

22.5.3 A CFD Perspective on Polymer Rheology

In CFD problems, the geometry of a physical system is
subdivided into small elements, and discretized versions of
the governing differential equations describing the physics
of the system are applied to such elements. The discretized
forms of the differential equations may be obtained, for
instance, by means of Taylor series. The goal of CFD
simulations is the determination of field variables in the
physical geometry of interest. Two numerical methods
widely used in this type of simulations are the finite element
method (FEM) and the finite volume method (FVM).

A practical application of polymer rheology is the
implementation of rheological models in CFD simulations
to address different polymer flow problems. The simulation
of a flow situation, in the case of processing operations, for
example, the flow within an extruder, may present some
geometrical challenges. In some cases, some considerations
to simplify the complexity of the flow problem to provide
reasonable good engineering predictions without involving
the use of CFD techniques can be implemented. On the
other hand, in some cases, especially those dealing with
complex flow geometries, the flow can only be adequately
described by using CFD algorithms. In the following, a brief
overview focused on the application of CFD simulations in
addressing polymer flows is presented.

A convenient way of determining the deformations
experienced by fluid elements, in a particular flow situation,
is the use of the Lagrangian reference frame. In such
reference frame, the position of a material element is
described as a function of time and the initial position of
the material element, as indicated in Equation 22.24. From
the latter equation, the deformation tensor, which, as stated
by Ottino [60], is the basic measure of deformation with
respect to the reference configuration, X, can be obtained.
The relationship between x, X, and the deformation tensor
has been written as Equation 22.25. In general, the solution
of the flow field is determined numerically and, then, the
deformation tensor can be calculated as the fluid element
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travels through the flow field. To perform such calculation,
numerical techniques for solving differential equations are
used [61]. Note here that, in general, in CFD simulations,
the latter statement refers to the evaluation of the flow field
by means of say FEM of FVM software:

x = x (X, t) (22.24)

Here, x is the position of a material element at a time t
and X is the initial position of the material element.

F = (∇xx
)T

Fij =
(

∂xi

∂Xj

)
(22.25)

Where F is the deformation tensor, and ∇x indicates
differentiation with respect to X.

With the use of CFD algorithms, once the flow field has
been determined, some other important characteristics of
a flow system, for instance, an evaluation of distributive
mixing, can be performed, as indicated by the following
equations:

η = lim
|dA|→0

( |da|
|dA|

)
(22.26)

η = (det F)
(
C−1NN

)1/2
(22.27)

where η stands for the area stretch ratio; C ≡ (FT • F) is
the Cauchy–Green tensor; and M and N (the orientation
vectors) are defined by

M ≡ dX

|dX| N ≡ dA

|dA|
Some other predictions such as the amount of dissipated
energy of the system, residence time distributions, and in-
dications of dispersive mixing can be obtained from similar
calculation procedures to those previously addressed.

In flow systems analyzed by means of CFD, other
relevant information can be obtained from numerical
visualization experiments. In this type of experiments, for
instance, a number of particles can be seeded at a particular
position of the flow geometry and their position is tracked
as a function of time. Particle tracking has been used to
analyze the transient behavior (time periodic flow) taking
place in the screw elements of corotating intermeshing twin
screw extruders. In particle tracking analysis, the path of
specific particles is obtained by integrating the Eulerian
velocity field according to the relationship given in the
following equation [62, 63]:

X (t) = X
(
t0

) +
t∫

t0

V (t) dt (22.28)

Here, X(t) and X(t0) are the positions of a particle X at
times t and t0, respectively, and V(t) is the velocity vector
of the particle.

A schematic representation of the tracking of color
particles is shown in Figure 22.10. The flow situation being
described in this figure corresponds to the flow in fully
filled conveying elements of a corotating intermeshing twin
screw extruder. In essence, what happens in the depicted
flow problem is that a polymeric flow takes place in

(a)

(b)

(c)

Figure 22.10 (a) Initial position of around 400 black and 400
white particles located in rectangular boxes near the entrance of
the screw elements and their positions after (b) 2.5 and (c) 7.5
screw revolutions for a screw speed of 100 rev/min. The rotation
and flow directions are indicated by the arrows.
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the indicated screw elements due to the corotating action
(rotation in the same direction) of the shafts of a twin
screw extruder. In the discussion below, only a few of the
conditions for the flow problem presented in Figure 22.10
are addressed. A more detailed description of this flow
problem is discussed in the work by Ortiz-Rodriguez [64].
For the screw elements depicted in Figure 22.10, black and
white particles were seeded on imaginary two-dimensional
boxes near the entrance to the flow geometry. The
corresponding CFD simulations were performed by means
of the commercial FEM based software POLYFLOW®. To
have a better perspective of the visualization experiment
shown in Figure 22.10, the same screw elements are
presented twice with a 180◦ rotation along the coordinate
axis parallel to screws axes. In this case, isothermal
Newtonian flow conditions were used for the simulations.
The use of nonisothermal non-Newtonian flow conditions
is also possible with commercial CFD software, but the
computational time is greatly increased with respect to the
Newtonian case, because the momentum equations become
highly nonlinear due to the non-Newtonian viscosity used
in the GNF model.
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