

جامعــة البصــرة دار العكمــة

الجبر الخطي

تاليف السبتي السبتي كليسة الملسوم كليسة الملسوم

مقدمية

يقدم هذا الكتاب معالجة مبسطة لموضوع الجبر الخطي ومناسبة لطلبة الصف الثاني رياضيات في كليات العلوم. الكتاب يتطلب معرفة بالمواضيع الاساسية في التفاضل والتكامل (المشتقة ، الاستمرارية ، التكامل) وكذلك يتطلب معرفة والمام بالمصفوفات وجبرها وكذلك بالمحددات (وهذا مادرسه الطالب في موضوع طرق رياضية في الصف الاول).

لقد كان هذا الكتاب غمرة خبرة تدريسية في موضوع الجبر الخطي المصف الثاني وموضوع الجبر الخطي المتقدم لطلبة الدراسات العليا، فقد درست الموضوع لاكثر من ستة مرات، حيث من خلالها تعرفت على نقاط الضعف والصعوبات التي يواجهها الطالب وحاولت توضيح وتذليل تلك الصعوبات من خلال تعدد الامثلة الايجابية (التي توضح المفهوم) والامثلة السلبية (التي توضح عدم انطباق المفهوم).

لقد حاولت في هذا الكتاب الجمع بين المفاهيم المعقدة والعامة والشاملة، الجمع بين هذا كله ومجموعة كبيرة من الامثلة التي تداخلت مع تلك المفاهيم لتوضيحها وتبسيطها لكي تبدو خالية من التعقيد والصعوبة. (قارن بين كتب كثيرة في الجبر الخطي واخرى ستجدها اما قليلة الامثلة واما مليئة بالامثلة الكثيرة دون الخوض في المفاهيم الاساسية بصورة عامة وشاملة).

لقد جزأت الكتاب الى ستة فصول يتكون كل فصل منها من بنود صغيرة تلى كل منها مجموعة تمارين شاملة ومتنوعة، يقدم الفصل الاول منها مفهوم فضاء المتجهات والفضاءات الجزيئة وجبرها. ثم يتعمق في دراسة التركيب الخطي للمتجهات والاستقلال الخطى لمجموعة متجهات وهذا يؤدى الى دراسة الفضاءات

المنتهية البعد وقواعدها. لقد كانت معالجتي عامة، اي انني قدمت دراسة فضاءات المتجهات على حقل مجرد وليس حقل الاعداد الحقيقية فقط.

ثم يعالج الفصل الثاني موضوع التحويلات الخطية بين فضائي متجهات ويدرس خصائصها وعلاقتها بالمصفوفات. لابد من الاشارة هنا الى استخدامنا المتجهات الصفية ولذلك تختلف نتائجنا عن النتائج في كتب اخرى عندما تستخدم المتجهات العمودية.

وقد قدمت في الفصل الثالث انظمة المعادلات الخطية فقد كان اهتمامي في قابلية حل النظام وعدد الحلول ولم اذكر الطرق العديدة والمتنوعة لحل انظمة المعادلات الخطية وانما اكتفيت بشرح طريقة واحدة وهي طريقة كاوس للحذف. هذا الاهتمام النظري لم يمنع من تقديم امثلة عديدة وتمارين متنوعة.

وكان الهدف الاساسي من الفصل الرابع هو دراسة مسألة تبسيط مصفوفة تحويل خطي على الفضاء نفسه. هذه المسألة لها تطبيقات كثيرة ولغرض دراستها يجب تقديم مفهوم القيم الذاتيه والمتجهات الذاتية للتحويلات الخطية والمصفوفات.

وقد تخصص الفصل الخامس في موضوع اضافة بنية جبرية جديدة على فضاء المتجهات من خلال الضرب الداخلي . فإن اضافة هذه البنية يؤدي الى دراسة الفضاءات الاقليدي \mathbb{R}^2 (المستوى) والفضاء الاقليدي \mathbb{R}^3 (الفراغ) وما يمكن ان نجريه على متجهاتها من قياس للطول وقياس للمسافة وقياس للزوايا بين المتجهات .

اما الفصل السادس فقد حاولنا فيه تناول مفهوم الدوال ثنائية الخطية بشكل سيء للقارىء تطبيقاً عاماً يمكن توضيحه على الصيغ التربيعية وخصوصاً القطوع الخروضية.

رجو ان اكون قد وفقت في عرض موضوع الجبر الخطي بشكل بسيط ووضح، كم ارجو من زملائي الاساتذة واخواني الطلبة ان لايترددوا في طرح اي اقتراح او الاشارة الى اي خطأ لكي اتجاوز ذلك في طبعات قادمة . هذا ومن الله التوفيق .

المحتويسات

الصفحة	الموضوع
	المقدمــة
	الفصــل الأول
	فضاءات المتجهات
	(1.1) الزمر والحقول
	(1.6) التركيب الخطي
	الفصل الشاني
	التحريلات الخطية
	(2.1) التحميلات الخطبة

(2.2) الرتبة والصفرية
(2.3) التحويلات النظيرة
(2.4) مصفوفة التحويل الخطي
(2.5) تغيير القواعد والصيغ الاعتيادية
الفصيل الثاليث
انظمة المعادلات الخطية
(3.1) الصيغة المصفوفية للانظمة الخطية
(3.2) انظمة المعادلات الخطية المتجانسة
(3.3) انظمة المعادلات الخطية غير المتجانسة
الفصــل الرابــع
القيم الذاتية والمتجهات الذاتية
(4.1) القيم الذاتية والمتجهات الذاتية والمعادلة المميزة
(4.2) الفضاء الذاتي وقابلية تمثيل تحويل خطي بمصفوفة قطرية
(4.3) المصفوفات المتشابهة
(4.3)

(4.4) مبرهنة كيلي ــ هاملتون وتطبيقاتها.....

الفصل الخامس

الفضاءات الاقليدية

(5.1) الفضاءات الاقليدية
(5.3) القواعد المتعامدة الاحادية _ طريقة كرام _ شميدت
(5.4) المتممات العمودية
(5.5) التحويلات العمودية
الفصل السادس الصيغ الثنائية الخطية والصيغ التربيعية (6.1) الدوال ثنائية الخطية
(6.2) الدوال التربيعية والصيغ التربيعية
المصادر باللغة الانكليزية
مناور بالمعارب المعارب ا
المصادر باللغة العربية
معجم المعطلحات (عدبي الكلنور)

الفصل الاول

فضاءات المتجهات Vector Spaces

(1.0) مقدمـة:

لقد تعرف الطالب على المتجهات في المستوى والفراغ في الفيزياء ولاسيما عند دراسة القوة المؤثرة على الاجسام. ان العمليات الجبية الاساسية التي يمكن اجراؤها على تلك المتجهات هي عملية الجمع (جمع المتجهات) وعملية ضرب عدد في عدد في متجه. لقد كانت عملية جمع متجهين تنتج متجهاً وعملية ضرب عدد في متجه هي الاخرى تنتج متجهاً. هاتان العمليتان تحققان خصائص عديدة.

اذا تصورنا المتجه في المستوى عبارة عن نقطة فيه (التفاصيل في المبندالاول) فهذا يعني ان مجموعة نقاط المستوى تكون ببلغة الجبر معلقة تحت عمليتي الجمع والضرب وهما بذلك يحققان خصائص عديدة وكذلك تكون مجموعة تقاط الفراغ. توجد في موضوع الرياضيات مجموعات كثيرة تحقق الخصائص التي ذكرناها مثل مجموعات تحتوي على معددات حدود لذلك سندرس تلك المجموعات التي لها عمليات جبرية تشبه العمليات التي ذكرناها على المستوى والفراغ، وسنطلق اسم فضاء متجهات عليها.

لغرض الدخول في دراسة تفصيلية لهذه المسألة نقدم تعريف الزمرة وتعريف الحقل وامثلة عليهما وذلك في البند الاول. هذه المقدمة عن الحقول والزمر هي عبارة عن تذكير للطالب بما درسه بصورة اكثر تفصيلاً في موضوع اسس الرياضيات بالصف الاول. كذلك فإننا سنذكر القارىء بالمتجهات في المستوى والفراغ وما تتمتع

به من خصائص وكيفية جمعها وضربها بأعداد. هذا ماسنقدمه في البند الثاني وسنقدم في البند الثالث مفهوم فضاء المتجهات بشكل عام معتمدين على معرفة الطالب بخصائص المستوى والفراغ.

البند الرابع قد خصص لدراسة تلك المجموعات الجزيئة من فضاء المتجهات والتي تكون بحد ذاتها فضاء متجهات بالنسبة للعمليات الموروثة من الفضاء الأم وسنسمى هذه المجموعات الجزيئة فضاءات جزيئة.

البند الخامس قد خصص لدراسة جبر الفضاءات الجزيئة كتقاطعها واتحادها وجمعها.

سنتناول في البند السادس مفهوم التركيب الخطي لانه اداة فاعلة في توليد الفضاءات الجزيئة وفي الدخول بدراسة تفصيلية عن فضاء المتجهات.

في البند السابع سنتطرق لمسألة الاستقلال الخطي والارتباط الخطي لمجموعة متجهات في فضاء متجهات حيث ستكون هذه المسألة الحجر الاساس لتطوير دراسة الموضوع.

ان مفهوم قاعدة فضاء المتجهات سيؤدي الى دراسة نوع مهم من فضاء المتجهات هو الفضاء المنتهى البعد. سنتطرق لتلك المفاهيم في البند الثامن.

البند الاخير في هذا الفصل قد خصص لدراسة الاحداثيات وتغيير القواعد.

(1.1) الزمر والحقول Groups and Fields

يحتوى هذا البند على تعريفي الزمرة والحقل مع امثلة تذكر القارىء وذلك لاننا سنكون بحاجة الى خصائص الحقول في كتابنا هذا. سنبدأ بتعريف الزمرة مع ذكر بعض الامثلة.

تعریف :

لتكن S مجموعة غير حالية ولتكن * عملية ثنائية معرفة عليها، فإن الثنائي (*,S) يسمى زمرة اذا وفقط اذا توفرت الشروط الاتية:

1 _ الخاصية التجميعية:

a,b,ceS &

 $a \star (b \star c) = (a \star b) \star c$

2 _ وجود العنصر المحايد:

يوجد عنصر e S بحيث

. $\forall a \in S$, $o_1 a = a_1 e = a$

3 _ وجود نظير العناصر:

لكل a € S يوجد b €S بحيث

a*b = b*a = e

(بهذه الحالة نكتب b = a-1).

مثال (1) :

اذا كانت Z مجموعة الاعداد الصحيحة فأن (+,Z) تكون زمرة لكن Z) ليست زمرة وذلك لعدم وجود نظير للعنصر Z).

مثال (2) :

اذا كانت R مجموعة الاعداد الحقيقية فإن (+ و R) تكون زمرة .

مثال (3) :

اذا كانت $\bf S$ موعة المصفوفات ذات الدرجة $\bf 2 \times \bf 2$ والعناصر المأخوذة من مجموعة الاعداد الصحيحة فأن $\bf S$ تكون زمرة تحت عملية جمع المصفوفات .

تعریف:

اذا كانت (x, *) زمرة فيقال بأنها تبادلية اذا وفقط اذا كان:

لكل a,b∈S يكون a,b∈S

مثال (4):

جميع الزمر المعرفة في الامثلة (1), (2), (3) اعلاه تكون زمراً تبادلية.

مثال (5):

ان مجموعة المصفوفات المربعة ذات الدرجة 3×3 وذات العناصر المأخوذة من مجموعة الاعداد الحقيقية والتي يكون محدد كل منها لايساوي صفر تكون زمرة غير تبادلية تحت عملية ضرب المصفوفات.

تعریف:

لتكن S مجموعة غير خالية ولتكن كل من * ، # عملية ثنائية معرفة على S ، فأن الثلاثي (#, *, S) يسمى حقلاً اذا وفقط اذا توفرت الشروط الاتبة:

- (S, *) (1) زمرة تبادلية.
- (2) ($S-\{0\}$, (#) (2) ومرة تبادلية، حيث $O \in S$ هو العنصر المحايد بالنسبة للعملية *
 - ∀ a,b,c,∈S, a # (b + C) = (a # b) * (a # C) (3) والخاصية اعلاه تسمى خاصية التوزيع.

مثال (6):

الثلاثي (., +, R) هو حقل ويسمى حقل الاعداد الحقيقية.

مثال (7):

الثلاثي (c, +, .) هو حقل ويسمى حقل الاعداد العقدية.

ملاحظة:

سوف نرمز دائماً للعنصر المحايد بالنسبة للعملية الأولى 🗼 بالرمز O

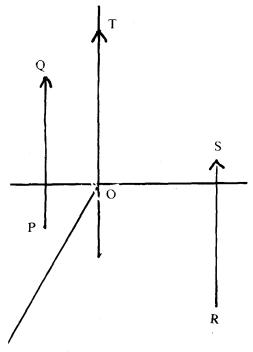
وسوف نرمز للعنصر المحايد بالنسبة للعملية الثانية # بالرمز I وذلك في اي حقل من الحقول (#, *, *).

(2-1) المتجهات في المستوى والفراغ Space

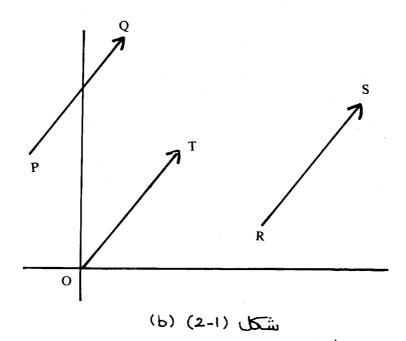
في الفيزياء توجد مفاهيم كالقوة والازاحة والسرعة والتعجيل يحتاج وصفها الى كمية واتجاه. لقد جرت العادة على تمثيل المفاهيم اعلاه بأسهم ذات اطوال ترمز للكمية ورأس السهم يرمز الى الاتجاه.

في المستوى والفراغ يمكن وصف اي متجه على انه وج مرتب من النقاط P وهذا يمثل متجه من P الى Q ويرمز له بالرمز \overline{PQ} بهذه الحالة P تسمى نقطة البداية و Q تسمى نقطة النهاية .

سوف نقول بأن المتجهين متساويان اذا تساويا في الطول وكان لهما نفس الاتجاه (انظر الشكل (1-2)).



(A) 2-11 JCa (A)

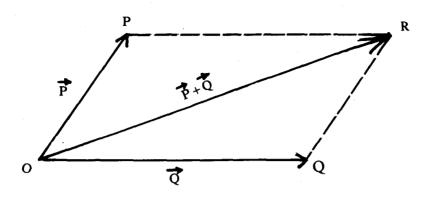


 \overrightarrow{PQ} و \overrightarrow{RS} متساویان ویمثلان نفس \overrightarrow{PQ} المتجه \overrightarrow{OT} المتجه \overrightarrow{OT}

بهذا المفهوم للتساوي يمكننا ان نختار نقطة ثابتة O في المستوى او الفراغ ونعتبرها نقطة بداية لكل المتجهات وبهذا يمكننا ان نختصر المتجه T الى T .

T يسمى متجه الموضع للنقطة T بالنسبة لنقطة الاصل O .

إن المتجهات التي تمثل القوى في الفيزياء يمكن جمعها لتنتج قوة جديدة تسمى محصلة القوى وذلك كالأتي :— \overrightarrow{Q} فإن جمعهما كما مبين في الشكل (2-2) .



شكل (2-2)

اي اننا نكمل متوازي الاضلاع الناشيء من النقاط الثلاث O,P,Q ونرمز للرأس الرابع بالرمز R ثم نضع $\overrightarrow{P}+\overrightarrow{Q}=\overrightarrow{R}$ ميكن التحقق من القوانين الثلاثة الاتية بىساطة .

$$(1)\overrightarrow{P} + \overrightarrow{O} = \overrightarrow{O} + \overrightarrow{P}$$

$$(1)\overrightarrow{P} + \overrightarrow{Q} = \overrightarrow{Q} + \overrightarrow{P}$$

$$(2)(\overrightarrow{P} + \overrightarrow{Q}) + \overrightarrow{R} = \overrightarrow{P} + (\overrightarrow{Q} + \overrightarrow{R})$$

$$(3)\overrightarrow{P} + \overrightarrow{O} = \overrightarrow{O} + \overrightarrow{P} = \overrightarrow{P}$$

$$(3) \overrightarrow{P} + \overrightarrow{O} = \overrightarrow{O} + \overrightarrow{P} = \overrightarrow{P}$$

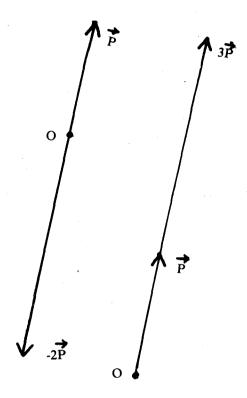
كذلك بالامكان تعريف ضرب متجه بعدد كالاتي:

لنفترض ان P متجهاً وان a عدداً حقيقياً .

 \overrightarrow{P} اذا كان a>0 فنعرف المتجه \overrightarrow{aP} على انه متجه بأتجاه \overrightarrow{P} لكن طوله يساوي طول مضروب في a (انظر الشكل 3-2)

اذا كان $\stackrel{\longrightarrow}{a}$ فنعرف المتجه $\stackrel{\longrightarrow}{aP}$ على انه متجه بعكس اتجاه $\stackrel{\longrightarrow}{P}$ لكن طوله يساوي طول \overrightarrow{P} مضروب في a- (انظر الشكل 2-3).

اذا كان a=0 فنعرف \overrightarrow{ap} على انه يساوي o (المتجه الصفري) .



شكل (2-3)

بذلك يمكن تحقيق القوانين التالية:

(4)
$$\overrightarrow{P} + (-1)\overrightarrow{P} = \overrightarrow{O}$$

(4)
$$\overrightarrow{P} + (-1)\overrightarrow{P} = \overrightarrow{O}$$

(5) $a(\overrightarrow{P} + \overrightarrow{Q}) = a\overrightarrow{P} + a\overrightarrow{Q}$

(6)
$$(a+b)\overrightarrow{P} = a\overrightarrow{P} + b\overrightarrow{P}$$

$$(7) (ab) \vec{P} = a(b\vec{P})$$

(7)
$$(ab)\overrightarrow{P} = a(b\overrightarrow{P})$$

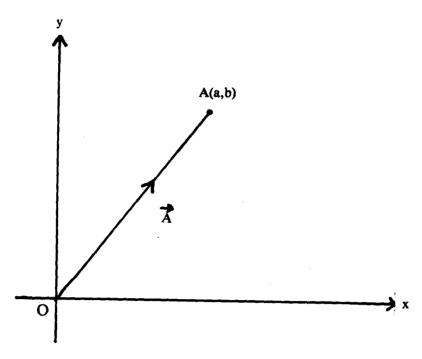
(8) $\overrightarrow{OP} = 0$, $1.\overrightarrow{P} = \overrightarrow{P}$

لاحظ ان القانون (6) يسمح بتوزيع المتجهات على الاعداد كا سمح

القانون (5) بتوزيع الاعداد على المتجهات، كما ان (+) ذكرت في (5) و (6) مرتين الحداهما تعنى الجمع الاعتيادي للاعداد والاخرى تعنى جمع المتجهات.

الآن نستحدث احداثیات فی المستوی بحیث ان کل نقطة P فی المستوی تکتب علی شکل P(x,y) واحداثیات فی الفراغ بحیث ان کل نقطة P فی الفراغ تکتب علی شکل P(x,y,z) حیث P(x,y,z) اعداداً حقیقیة .

اعتبر ان \overrightarrow{A} هو اي متجه في المستوى وافرض، كما في الشكل (2.4) ان \overrightarrow{A} قد وضع بحيث تكون نقطة بدايته عند نقطة الاصل لنظام الاحداثيات والنقطة \overrightarrow{A} تكون نقطة نهايته، عندئذ نكتب: $\overrightarrow{A}=(a,b)=\overrightarrow{A}$. (اي ان \overrightarrow{A} هو متجه الموضع للنقطة \overrightarrow{A}).



شكل (2.4)

اذا وضع متجهان متساویان \overrightarrow{B} , \overrightarrow{A} بحیث تقع نقطتا بدایتهما عند نقطة الاصل فإنه من الواضح ان نقطتی نهایتهما یجب ان تنطبقا (لان المتجهین لهما نفس الطول والاتجاه). ولهذا یکون للمتجهین الاحداثیات نفسها. وبالوضوح نفسه فأن المتجهات التي لها الاحداثیات نفسها یجب ان یکون لها الطول نفسه والاتجاه نفسه ومن ثم تکون متساویة وملخص ذلك هو ان المتجهین

$$\overrightarrow{B} = (b_1, b_2), \overrightarrow{A} = (a_1, a_2)$$

يكونان متساويين اذا وفقط اذا كان:

$$a_1 = b_1, a_2 = b_2$$

ويمكن بسهولة اجراء عمليات جمع المتجهات والضرب في اعداد بدلالة $\overrightarrow{B}=(b_1,b_2), \overrightarrow{A}=(a_1,a_2)$ الاحداثيات وذلك كما يلي : اذا كان $\overrightarrow{A}=(a_1+b_1,a_2+b_2)$ فإن : $\overrightarrow{A}+\overrightarrow{B}=(a_1+b_1,a_2+b_2)$

: ای عدد حقیقی فإنه بالامکان اثبات ان $\overrightarrow{A}=(a_1,a_2)$ واذا کان $\overrightarrow{A}=(ra_1,ra_2)$

غان $\overrightarrow{B} = (-3,0), A = (1,2)$ فإن فمثلاً اذا كان (1,2)

$$\vec{A} + \vec{B} = (1,2) + (-3,0) = (1-3,2+0) = (-2,2)$$

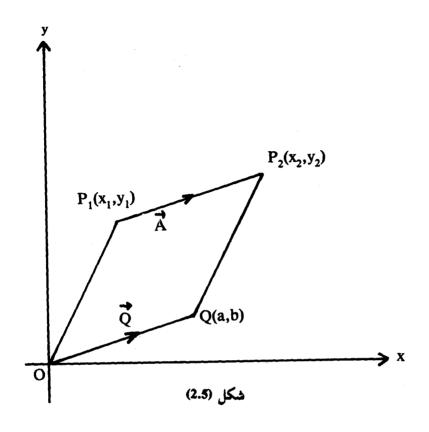
 $5\vec{A} = 5(1,2) = (5.1, 5.2) = (5,10)$

ومثال آخر على العمليات الجبرية على المتجهات في الفراغ:

اذا كان (B=(2,-1,3), A=(0,1,2) نأن

$$(1/2) \overrightarrow{A} \cdot \overrightarrow{B} = (1/2) (0,1,2) + (-1) (2,-1,3)$$
$$= (0,1/2,1) + (-2,1,-3)$$
$$= (-2,3/2,-2)$$

تظهر في بعض الاحيان متجهات نقطة بدايتها ليست عند نقطة الاصل. لايجاد احداثيات متحه \widetilde{A} نقطة بدايته هي $P_1(x_1,y_1)$ ونقطة نهايته \widetilde{A} فإننا $\widetilde{Q}=\widetilde{Q}$ مارياً نقطة بدايته عند نقطة الاصل. في شكل (2.5)، $\widetilde{Q}=\widetilde{Q}$ هو هذا المتحه. وان مركبات $\widetilde{A}=\widetilde{P_1P_2}$ هي الاحداثيات (a,b) للنقطة \widetilde{A}



من شكل (2.5) من شكل (a,b) +
$$(x_1,y_1) = (x_2,y_2)$$
 أو $(a+x_1,b+y_1) = (x_2,y_2)$ بمساواة المركبات المتناظرة والحل بالنسبة الى a,b نعطى كما يلي : $\overrightarrow{A} = \overrightarrow{P_1P_2}$

وبالطريقة نفسها بالنسبة الى المتجهات في الفراغ.

 $a = (x_2-x_1), b = (y_2-y_1)$

مثال (1):

المتجه الذي نقطة بدايته
$$P_1(3,4)$$
 ونقطة نهايته $P_2(-5,7)$ هو $A=P_1P_2=(-5-3,7-4)$ $=(-8,3)$

نستنتج مما تقدم ان عناصر المستوى والفراغ يمكن جمعها بحيث ان الجمع يحقق القوانين , (4) (2), (2), (1) ويمكن ضربها بأعداد حقيقية بحيث تتحقق القوانين , (4) (5), (6), (5) ولاه .

 R^2 هنالك مجموعات كثيرة لها الخصائص نفسها التي توفرت بالمستوى R^3 والفراغ R^3 وسوف نطلق على كل مجموعة تحقق القوانين اعلاه اسم فضاء متجهات. ولكي نضع التعريف العام سوف نقدم مفهوم فضاء المتجهات على اي حقل وذلك في البند القادم.

تماريسن (1.2)

.
$$\vec{C} = (0,3), \vec{B} = (-1,4), \vec{A} = (1,2)$$
 خان _ 1

(أ) جد المتجه ZA- /2B + (1/3) أ

 $\overrightarrow{C} = a\overrightarrow{A} + b\overrightarrow{B}$ اعداد حقيقية a,b تعقق المعادلة (ب)

(ج) جد المتجه À-B-C . √3 À

(د) ارسم المتجه B ثم ارسم المتجهين B- ولاحظ علاقتهما بالمتجه B- ولاحظ علاقتهما

(ه.) جد الاعداد الحقيقية x,y التي تحقق المعادلة

xX+yz=0

حيث ان (٥,٥) =

(و) جد اعداد حقيقية x,y,z تحقق المعادلة (1) والشرط (2) أدناه.

$$\overrightarrow{A} + y\overrightarrow{B} + z\overrightarrow{C} = \overrightarrow{O}$$
.....(1)

 $xyz \neq 0....(2)$

 $\vec{Q} = (-2,3)$ ويكون بأتجاه المتجه (2,3) ويكون بأتجاه المتجه (2,3) و \vec{Q} .

. Q(-1,0,2) ونقطة نهايته في P(2,1,5) وP(2,1,5) ونقطة نهايته في Q(-1,0,2)

P = (0,1,1) عندما (0,1,1) = 4 S = (2,2,2), R = (1,0,-1), Q = (1,0,0)

S = (1,-1), R = (-2,3), Q = (2,3), P = (1,1) 5 _ 5 _ PQ + RS, PQ - RS _ = .

الستوى المتجه P(2,7,1) كحاصل جمع متجهين احدهما يوازي المستوى xy . P(2,7,1)

-Vector Space _ فضاء المتجهات (1-3)

لاحظنا في البند السابق امكانية تعريف عملية الجمع على كل من ${\bf R}^3$ و ${\bf R}^2$ ، وكذلك امكانية تعريف ضرب المتجهات في كل من ${\bf R}^3$ و ${\bf R}^3$ بأعداد حقيقية (عناصر تنتمي الى حقل الاعداد الحقيقية ${\bf R}$) .

ان العمليتين اعلاه تحققان الشروط 1-8 السالفة الذكر.

في هذا البند سنعرف فضاء المتجهات على حقل F ليس بالضرورة ان يكون حقل الاعداد الحقيقية .

تعريث :

بفضاء متجهات على الحقل F نقصد مجموعة V عناصرها تسمى متجهات بمعية عمليتين . العملية الأولى هي عملية جمع المتجهات والتي تعين لكل زوج من المتجهات P, P في P متجه وحيد P في P .

V العملية الثانية هي عملية الضرب القياسي والتي تعين لكل متجه A في V ولكل عدد X في الحقل V متجه يرمز له بالرمز V يسمى الضرب القياسي للعدد V بالمتجه V . العمليتان اعلاه يجب ان تحققان الشروط التالية :

القانون الابدالي) . A+B=B+A لكل زوج من المتجهات A+B=B+A (القانون الابدالي) . A+B=B+A لكل ثلاثي من المتجهات A+B+C=A+(B+C) . (القانون التجميعي) .

A LO = A + O = A LO A

4 _ لكل متجه A في V يوجد متجه A- في V يحقق A + (-A) = O .

ی X عدد (A+B) = xA + xB لکل زوج من المتجهات (A+B) = xA + xB ی (A+B) = xA + xB

 $(x+y)A = xA + yA _ _ 6$ لكل متجه A ولكل زوج من العناصر $(x+y)A = xA + yA _ _ 6$

. F في x,y لكل متجه A ولكل زوج من العناصر (xy)A = x(yA) = 7

8 ـــ A = A لكل متجه A في V .

ان عناصر الحقل F تسمى اعداداً قياسية .

لقد لاحظنا ان كلاً من R^3 و R^3 (المستوى ، الفراغ) على التوالي يكون فضاء متجهات على حقل الاعداد الحقيقية . لكن هنالك فضاءات كثيرة ليست ذات طبيعة هندسية ولكن لها نفس البنية الرياضية والخصائص الجبرية كالفضاءات R^3 و R^3 .

ملاحظة:

لقد عرفنا فضاء المتجهات على اي حقل معين لكي يكون تناولنا للمادة شاملاً وعاماً لكننا سوف نركز في امثلتنا على حقلين فقط هما حقل الاعداد الحقيقية R وحقل الاعداد العقدية C . في بعض المسائل نتطرق الى حقل الاعداد النسبية .

امثلة متنوعة على فضاء المتجهات

1 _ لتكن V مجموعة المصفوفات 2×2 عناصرها اعداد حقيقية.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

فإن الجمع يعرف كالآتي:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

إن V فضاء متجهات على الحقل R بالنسبة للعمليتين اعلاه ويمكن تحقيق ذلك كالاتى:

الشرطان (1)، (2) يتحققان بدون عناء وذلك لان جمع الاعداد الحقيقية يكون ابدالياً وتجميعياً .

بالنسبة للشرط (3) نأخذ

$$O = \begin{pmatrix} 0 & & 0 \\ 0 & & 0 \end{pmatrix}$$

A + O = A

وبذلك يمكن تحقيق لکل **A € V**

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in V$$
 لكل (4) لكل (4) الكلبة للشرط (4) الكل $-a_{11} - a_{12} - a_{21} - a_{22}$

$$A + (-A) = O$$

بذلك يكون لدينا:

الشروط الاخرى يمكن تحقيقها بسهولة.

 $m \times n$ على الحقل $m \times n$ على الحقل $m \times n$ على الحقل $m \times n$ والتي يرمز لها بالرمز $m \times n$ تكون فضاء متجهات على الحقل $m \times n$ والتي يرمز لها بالرمز $m \times n$ تكون فضاء متجهات على الحقل $m \times n$ بالنسبة لعملية جمع المصفوفات وعملية ضرب المصفوفات بأعداد .

: عدداً طبيعياً فإن المجموعة \mathbf{F}^n تعرف بالآتي :

$$F^n = \{(x_1, ..., x_n): x_i \in F \}$$

وتكون فضاء متجهات على الحقل F بالنسبة لعملية الجمع المعرفة بـ $(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$

وعملية الضرب القياسي المعروفة بـ

$$r(x_1,\ldots,x_n)=(rx_1,\ldots,rx_n)$$

ملاحظة:

F=R فعندما R^3 و R^2 الفضاء و R^3 فعندما R^3 و الفضاء R^3 و عندما R=3 و R=1 فعندما R=2 و عندما R=1 فعندما R=1 فعندما و R=1

4 ـــ لاي عدد طبيعي n ولاي حقل F نعرف المجموعة
$$P_n(F) = \{a_0 + a_1 x + + a_n x^n : a_i \in F \}$$

اي ان $P_n(F)$ مجموعة متعددات الحدود بـ x ذات الدرجة التي لاتتعدى $p_n(F)$ تكون فضاء متجهات على الحقل F بالنسبة لعملية الجمع المعرفة بـ

$$(a_0 + a_1x + \dots + a_nx^n) + (b_0 + b_1x + \dots + b_nx^n) =$$

$$(a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

وعملية الضرب القياسي المعروفة ب

$$r(a_o + a_1x + + a_nx^n) = (ra_o) + (ra_1)x + ... + (ra_n)x^n$$

نشير هنا إلى أن متعددة الحدود الصفرية

$$0 = 0 + ox + + ox^n$$

 $A = a_0 + a_1 x + ... + a_n x^n$ تكون المتجه الصفري وإن نظير اي متجه $-A = (-a_0) + (-a_1)x + ... + (-a_n)x^n$ يكون

المثال التالي يوضح تعدد فضاءات المتجهات.

تحداد الحقيقية x التي تعتوي على جميع الاعداد الحقيقية x التي على جميع الاعداد الحقيقية x التي على جميع الاعداد الحقيقية x التي على جميع الاعداد الحقيقية x

 $C(a,b) = \{f: f: (a,b) \rightarrow R : f \}$: لتكن

اي ان (C(a,b تمثل مجموعة الدوال الحقيقية والمستمرة والمعرفة على الفترة المفتوحة (a,b).

C(a,b) تكون فضاء متجهات على حقل الاعداد الحقيقية R بالنسبة لعمليتي الجمع والضرب القياسي المعرفتين كا يلي:

$$f,g \in C(a,b), (f+g)(x) = f(x) + g(x)$$

$$r \in R$$
, $f \in C(a,b)$, $(rf)(x) = rf(x)$

بما ان جمع الدوال اعلاه معرف بواسطة جمع الاعداد الحقيقية فإن الشروط f+g ان جمع الاحظ ان f+g تكون دالة مستمرة وان $f,g\in C(a,b)$ لأي $f,g\in C(a,b)$ ولأي عدد حقيقي f.

 $O:(a,b) \rightarrow R$ ان المتجه الصفري في C(a,b) يكون الدالة

$$x \in (a,b)$$
 لكل $O(x) = 0$

$$(O + f)(x) = O(x) + f(x)$$

$$= O + f(x)$$

$$= f(x)$$

$$O+f=f$$
 فيكون:

لكل (f € C(a,b) ينحقق ولتحقيق الشرط (4) نلاحظ:

$$(f + (-f))(x) = f(x) + (-f)(x)$$

= $f(x) - f(x)$
= 0

إذن:
$$f + (-f) = 0$$
 لكل $f + (-f) = 0$ يناخط:

$$(r(f+g))(x) = r(f+g)(x)$$

= $r(f(x) + g(x))$
= $rf(x) + rg(x)$
= $(rf)(x) + (rg)(x)$
= $(rf + rg)(x)$

فيكون:

$$r(f+g) = rf + rg$$

لكل r €R ولكل f,g €C (a,b) يمكن تحقيق الشروط (6), (7), (8). بصورة مماثلة.

ملاحظة :

ان نوع العملية مهم جداً في بناء فضاء المتجهات والمثال الآتي يوضح ذلك.

6 لتكن R^2 مجموعة نقاط المستوى . انظر الى العمليتين

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $r(x,y) = (rx,y)$

ان ${\bf R}^2$ لاتكون فضاء متجهات بالنسبة للعمليتين اعلاه . وذلك لانه عند اخذ : ${\bf A}=(1,1),\ {\bf r}_2=-2,\ {\bf r}_1=1$ فإن

$$(r_1 + r_2) A = (1-2) A = (-1) (1,1) = (-1,1)$$

$$r_1A = (1,1), r_2A = (-2,1)$$

$$r_1A + r_2A = (1,1) + (-2,1) = (-1,2) = (-1,1)$$

 $, r_1 A + r_2 A \neq (r_1 + r_2) A$ اي ان

امتد حسابية

اذا كان R على الحقل
$$M_{23}(R)$$
 على الحقل اذا كان 1

$$A = \begin{pmatrix} \sqrt{2} & 0 & 1 \\ -1 & 3 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 0 & -1 & \sqrt{3} \\ 2 & 7 & 1/2 \end{pmatrix}$$

$$\sqrt{2}A = \sqrt{2} \begin{pmatrix} \sqrt{2} & 0 & 1 \\ -1 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 0 & \sqrt{2} \\ -\sqrt{2} & 3\sqrt{2} & 5\sqrt{2} \end{pmatrix}$$

$$3B = 3 \begin{pmatrix} 0 & -1 & \sqrt{3} \\ 2 & 7 & 1/2 \end{pmatrix} = \begin{pmatrix} 0 & -3 & 3\sqrt{3} \\ 6 & 21 & \frac{3}{2} \end{pmatrix}$$

$$2A + 5B = 2 \begin{pmatrix} \sqrt{2} & 0 & 1 \\ -1 & 3 & 5 \end{pmatrix} + 5 \begin{pmatrix} 0 & -1 & \sqrt{3} \\ 2 & 7 & 1/2 \end{pmatrix}$$

$$= \begin{pmatrix} 2\sqrt{2} & 0 & 2 \\ -2 & 6 & 10 \end{pmatrix} + \begin{pmatrix} 0 & -5 & 5\sqrt{3} \\ 10 & 35 & 5/2 \end{pmatrix}$$

$$= \begin{pmatrix} 2\sqrt{2} & -5 & 2 + 5\sqrt{3} \\ 8 & 41 & 25/2 \end{pmatrix}$$

$$C$$
 على الحقل C على الحقل C على الحقل C^3 على الخقل $A = (i,1+i,5), B = (2+i,1+3i,-i)$ $iA-(2+3i)B, (1+i)B, 2A$ على الحسب كلاً من $A = (i,1+i,5)$ على الحسب كلاً من الحسب كلاً

$$2A = 2(i, 1+i, 5) = (2i, 2+2i, 10)$$

$$(1+i)B = (1+i)(2+i, 1+3i, -i)$$

$$= ((1+i)(2+i), (1+i)(1+3i), (1+i)(-i))$$

$$= (1+3i, -2+4i, 1-i)$$

$$iA-(2+3i)B = (-1, -1+i, 5i)-(1+8i, -7+9i, 3-2i)$$

$$= (-2-8i, 6-8i, -3+7i)$$

اذا کان $P_2(R)$ علی الحقل $P_2(R)$ علی الحقل $P_2(R)$ علی الحقل $P_2(R)$ اذا کان $P_2(R)$ علی الحقل $P_2($

$$(1/2)A = (1/2)(2 + 3x-x^2) = 1 + (3/2)x-(1/2)x^2$$

$$A + B + 3C = (2 + 3x-x^2) + (5) + 3(\sqrt{2}x)$$

$$= 7 + 3(1 + \sqrt{2})x-x^2$$

4 _ في الفضاء (C(-1,3) على الحقل R ، اذا كان

f:(-1,3)
$$\rightarrow$$
 R, f(x) = 5x-2
g: (-1,3) \rightarrow R, g(x) = Sin TTx

فإحسب كلاً من: 2f-4g, (1/3)g, -f

الحل: بمراجعة المثال (5) يتضح ان:

-f:(-1,3)
$$\rightarrow$$
 R, (-f) (x) = -f(x)
(-f)(x) = -(5x-2)
= -5x + 2
(1/3) g:(-1,3) \rightarrow R, ((1/3)g)(x) = (1/3)g(x)
((1/3)g) (x) = (1/3)Sin \leftarrow x
(2f-4g) (x) = 2f(x)-4g(x)
= 2(5x-2)-4Sin \leftarrow x

 $= 10x-4-4Sin \times x$

بعد استعراض امثلة متنوعة على مفهوم فضاء المتجهات وقبل الدخول في مفهوم الفضاء الجزئي سنذكر المبرهنة التالية .

مبرهنة (1.3.1) :

ای ان:

ليكن V فضاء متجهات على الحقل F. وليكن V متجهاً و $X \in F$ عدداً قياسياً فإن:

$$oA = O_{-1}$$

$$(-1)A = -A - 2$$

$$x.0 = 0 - 3$$

البرهان:

1 _ من خصائص فضاء المتجهات يكون لدينا:

$$oA = (o + o)A$$

= $oA + oA$

$$oA + O = oA + oA$$

إذن :

م بإضافة (oA)- الى طرفي المعادلة اعلاه نحصل على

$$-(oA) + (oA + O) = -(oA) + (oA + oA)$$

 $(-(oA) + oA) + O = (-(oA) + oA) + oA$
 $O + O = O + oA$
 $O = oA$

$$(1+(-1))A = 1A+(-1)A$$
 __ 2
oA = A + (-1) A
O = A + (-1) A

$$x(O+O) = xO + xO$$

$$xO = xO + xO$$

$$O + xO = xO + xO$$

باضافة (xO)- الى طرفي المعادلة اعلاه واجراء خطوات مماثلة لتلك التي اجريناها في برهان (1) نحصل على النتيجة المطلوبة.

(و . هـ . م .)

تماريسن (1.3)

1 ــ اكتب الفضاء الذي ينتمي اليه كل من المتجهات التالية ووضح على اي حقل ممكن ان يكون .

$$(1,2,-1), (2,2+i,5), (1,1,-1,i), -6, 4+2i$$

 $(1/2,1), (\sqrt{2},1/3), \begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix} i + 2x - (1+i)x^2$

$$f'(x) = e^x$$
, $f:(0,1) \rightarrow \mathbb{R}$

: على الحقل $M_{23}(\mathbf{C})$ على الحقل على على الحقل على يلي يلي يا الفضاء ($M_{23}(\mathbf{C})$

$$2i \begin{pmatrix} 1 & 0 & -i \\ 1+i & -5 & 1/2 \end{pmatrix}, \begin{pmatrix} 2 & 2 & 2 \\ i & i & -i \end{pmatrix} + \sqrt{2} \begin{pmatrix} 1/2 & 2-i & 7+i \\ 0 & 1 & -i \end{pmatrix}$$

(ب) في الفضاء $P_3(R)$ على الحقل R ، جد ناتج مايلي :

 $\sqrt{3(2+x-x^2)}-4x^3+(2-7x+4x^2)$

(ج) جد قيم a,b التي تحقق المعادلة:

وذلك في الفضاء (M2(R على حقل الاعداد الحقيقية.

S حقلاً و S مجموعة غير خالية . لتكن V مجموعة كل الدوال من S ليكن $f+g \in V$ على انه الدالة $f+g \in V$ المعرفة $f+g \in V$ على انه الدالة $f+g \in V$ انه الدالة $f+g \in V$ على ا

$$(rf)(x) = rf(x)$$

إثبت ان V تكون فضاء متجهات على الحقل F وذلك بالنسبة للعمليتين اعلاه .

4 ــ لتكن $^+ R = V = V$ مجموعة الاعداد الحقيقية الموجبة. نعرف الجمع والضرب بأعداد قياسية من الحقل R كما يلي :

x + y = xy $rx = x^{r}$

وذلك لاي x,y EV ولاي عدد حقيقي r.

إثبت ان V فضاء متجهات بالنسبة للعمليتين اعلاه.

5 ــ اثبت ان مجموعة حلول نظام المعادلات المتجانسة:

$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n = 0$$

$$a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n = 0$$

$$a_{m1}X_1 + a_{m2}X_2 + \dots + a_{mn}X_n = 0$$

تكون فضاء متجهات على الحقل F علماً بأن a_{ii} €F لكل i,j لكل

 $V = R^2$ نعرف عملیتی جمع وضرب قیاسی کالاتی:

$$(x_1, y_1) + (x_2, y_2) = (3y_1 + 3y_2, -x_1 - x_2)$$

 $r(x, y) = (3ry, -r x)$

هل ان V فضاء متجهات على الحقل R؟.

النسبة R لتكن $V=R^2$, برهن على ان V ليست فضاء متجهات على $V=R^2$ بالنسبة الى كل من عمليتي الجمع والضرب القياسي التالية

(i)
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \cdot r(x, y) = (x, 2ry)$$

(ii)
$$(x_1, y_1) + (x_2, y_2) = (x_1, y_1) \cdot r(x, y) = (rx, ry)$$

. (iii)
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
; $r(x, y) = (r^2x, r^2y)$

8 ــ برهن على ان ${\bf C}^n$ يكون فضاء متجهات على حقل الاعداد الحقيقية ايضاً، وذلك لاى ${\bf n}$.

9 _ اثبت ان المعادلة:

$$x(1+i,1-i) + y(2,5+2i) = (7+i,21+9i)$$

 ${f C}^2$ على الحقل ${f C}^2$ على الحقل ${f C}^2$ على الحقل ${f C}^2$ على الحقل ${f R}$ على الحقل ${f R}$.

(1.4) الفضاءات الجزئية Subspaces

اذا كان V فضاء متجهات على الحقل F فإن بعض المجموعات الجزئية من الفضاء V تكون بدورها فضاءات متجهات بالنسبة الى عمليتي جمع المتجهات والضرب في اعداد قياسية المعرفتين على V سوف ندرس في هذا البند مثل هذه المجموعات الجزئية بالتفصيل.

تعریف:

اي مجموعة جزئية M من فضاء متجهات V على الحقل F تسمى فضاءاً جزئياً من V اذا كانت M فضاء متجهات بالنسبة الى عمليتي الجمع والضرب بأعداد قياسية المعرفتين على V.

لو رجعنا الى تعريف فضاء المتجهات لعرفنا مايلي:

حتى تكون المجموعة V فضاء متجهات على الحقل F يجب ان يعرف عملية جمع على V ، اي انه لاي زوج من العناصر A, B في V يجب ان يكون حاصل الجمع A+B عنصراً في V كذلك فأنه يجب ان تعرف عملية ضرب قياسي ، اي لاي عنصر A في V ولاي عدد X في الحقل A يجب ان يكون حاصل الضرب القياسي X عنصراً في X , بالاضافة الى الشروط الثانية الواردة في التعريف .

الان لو اعطیت لنا مجموعة جزیئة M من فضاء متجهات V علی الحقل F وطلب منا ان نحقق فیما اذا کانت M فضاءاً جزئیاً من V فیجب علینا ان نحقق مایلی:

(أ) لاي زوج من العناصر A , B في M يجب ان يكون A+B عنصراً في M) . M (عندئذ نقول بأن M مغلقة تحت عملية الجمع) .

(Y) (Y)

هذا بالاضافة الى تحقيق الشروط من (1) الى (8) الواردة في تعريف فضاء المتجهات.

V على الرغم من ذلك ، اذا كانت M مجموعة جزيئة من مجموعة اكبر M التي تكون بالفعل فضاء متجهات ، فإن بعض الشروط لاتحتاج الى تحقيق للفضاء M لانها تورث من M فمثلاً لاتوجد حاجة للتأكد من ان M ومن ثم جميع (الشرط (1)) للفضاء M لانها تتحقق لجميع المتجهات في M ومن ثم جميع المتجهات في M .

بهذا تكون بقية الشروط الموروثة من V الى M هي (2)، (5)، (6)، (6)، (7)، (8). اما الشرطان (3)، (4) فيمكن استنتاجهما من الشرطين (أ)، (ب) كما يوضحهما برهان المبرهنة الاتية:

مبرهنة (1-4-1):

اذا كانت M مجموعة جزئية غير خالية من فضاء المتجهات V على الحقل F فإن M تكون فضاء متجهات اذا وفقط اذا تحققت الشروط التالية:

(أ) اذا كان A,B متجهين في M فإن A + B ايضاً في M .

(ب) اذا كان x اي عدد قياسي وكان A اي متجه في M فإن xA ايضاً في M .

البرهان:

اذا كان M فضاءاً جزئياً فإن جميع الشروط تنحقق وبالاحص الشرطين (أ)، (ب) اعلاه .

بالعكس نفرض تحقق الشرطين (أ)، (ب) اعلاه. حتى يكون M

فضاءاً جزئياً نحتاج فقط الى ان نحقق بقية الشروط وكما وضحنا اعلاه نحتاج فقط الى ان نحقق الشرطين (3) ، (4) لان بقية الشروط تورث من V الى M .

اعتبر A اي متجه في M . من الشرط (ب) اعلاه يكون X في X لاي عدد قياسي X . بوضع X=0 ينتج ان X=0 موجود في X ، وبوضع X=0 ينتج ان X=0 ، موجود في X=0 .

(و . هـ . م .)

لكل فضاء متجهات V يوجد على الاقل فضاءان جزيئان. يكون V نفسه فضاءاً جزئياً والمجموعة [6] المكونة فقط من المتجه الصفري تكون فضاءاً جزئياً يسمى بالفضاء الجزئي الصفري. الامثلة الآتية تتناول حالات للفضاءات الجزئية اقل بداهة من الفضائين الجزئيين اعلاه.

مثال (1):

برهن على ان المجموعة : $M = \{(x,y): y = 2x\}$ تكون فضاءاً جزئياً من فضاء المتجهات \mathbb{R} على الحقل \mathbb{R} .

الحل: خذ (x_1, y_1) و (x_2, y_2) و (x_1, y_1) عدد (x_1, y_1) عدد $(x_1, x_2, y_1 + y_2)$ الحل: غياسي $(x_1 + x_2, y_1 + y_2)$ الحل: $(x_1 + x_2, y_1 + y_2)$ الحل: $(x_1 + x_2, y_1 + y_2)$ الحل: $(x_1 + x_2)$ $= 2(x_1 + x_2)$ $= 2(x_1 + x_2)$ $= 2(kx_1)$

 $A+B\in M, kA\in M$

لذلك فإن:

لقد برهنا على ان M مجموعة مغلقة تحت عمليتي الجمع والضرب القياسي فبذلك تكون M فضاءاً جزئياً من R^2 .

مثال (2) :

برهن على ان المجموعة:
$$M = \left\{ \begin{pmatrix} o & a \\ b & o \end{pmatrix} \right\}$$
b, a

تكون فضاءاً جزئياً من فضاء المتجهات $M_{22}(R)$ على الحقل R (فضاء المصفوفات 2×2 التي عناصرها اعداد حقيقية) .

$$B = \begin{bmatrix} o & a_2 \\ b_2 & o \end{bmatrix}$$
 , $A = \begin{bmatrix} o & a_1 \\ b_1 & o \end{bmatrix}$ الحل: خذ

اي متجهين في M و x اي عدد حقيقي ، فيكون :

$$A + B = \begin{pmatrix} 0 & a_1 \\ b_1 & o \end{pmatrix} + \begin{pmatrix} 0 & a_2 \\ b_2 & o \end{pmatrix} = \begin{pmatrix} 0 & a_1 + a_2 \\ b_1 + b_2 & o \\ b_1 & o \end{pmatrix} = \begin{pmatrix} 0 & xa_1 \\ xb_1 & o \end{pmatrix}$$

وعليه يكون $A + B \in M$ و $A + A \in M$ بذلك تكون $A + B \in M$ فضاءً جزئياً .

مثال (3):

برهن على ان المجموعة:

 $M = \{(x_1, x_2, x_3, x_4): x_1 + 3x_4 = 0 \ \ x_2 = x_3\}$. R على الحقل R

 $B = (b_1, b_2, b_3, b_4)$ ، $A = (a_1, a_2, a_3, a_4)$ الحل: خذ

اي متجهين في M و k اي عدد حقيقي.

 $A + B = (a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4)$ $(a_1 + b_1) + 3(a_4 + b_4) = (a_1 + 3a_4) + (b_1 + 3b_4)$ = 0 + 0 = 0

 $a_2 + b_2 = a_3 + b_3$ $A + B \in M$

وعليه يكون

 $kA = (ka_1, ka_2, ka_3, ka_4)$ $ka_1 + 3ka_4 = k(a_1 + 3a_4) = k.o = 0$ $ka_2 = ka_3$

kA € M وعليه يكون

R على الحقل R^4 بذلك يكون M فضاءاً جزئياً من الفضاء

مثال (4):

برهن على ان المجموعة :

 $M = \{a + bx + cx^2: a + 2b - c = 1\}$. R على الحقل $P_2(R)$ على الفضاء أجزئياً من الفضاء

$$A = a_1 + b_1 x + c_1 x^2 : 1$$
 $A = a_1 + b_1 x + c_1 x^2 + b_2 x + c_2 x^2$
 $A = a_2 + 2b_2 - c_2 = 1$, $a_1 + 2b_1 - c_1 = 1$
 $A + B = (a_1 + a_2) + (b_1 + b_2)x + (c_1 + c_2)x^2$
 $A + B = (a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2)x^2$
 $A + B = (a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2)x^2$
 $A + B = (a_1 + a_2) + (a_1 + 2b_2 - c_2) = 1 + 1 = 2 \neq 1$
 $A + B \neq M$
 A

الان:

3(f+g)(4) = 3(f(4)+g(4))

= 3 f(4) + 3 g(4) = f(2) + g(2) = (f+g)(2)

 $f + g \in M_1$ بذلك يكون

$$3(kf)(4) = 3 (kf(4))$$

= $k(3f(4))$
= $k (f (2))$
= $(kf) (2)$

 $kf \in M_1$! بذلك يكون

. C (1,5) من (1,5) فضاء جزئي من M_1

ان الشرط الموضوع على الدوال التي تنتمي الى M_2 هو ان هذه الدوال تكون موجبة لجميع قيم المجال (1,5). انه لمن الواضح ان حاصل جمع اي دالتين موجبتين يكون دالة موجبة وبذلك تكون M_2 مغلقة تحت عملية الجمع. لكن M_2 ليست مغلقة تحت عملية الحمع. لكن M_3 ليست مغلقة تحت عملية الضرب القياسي لانه لو كان M_3 عدداً حقيقياً سالباً فإنه لاي M_3 يكون لدينا:

$$(kf)(x) = kf(x) < 0, x \in (1,5)$$

 $(k < 0, f(x) > 0, x \in (1,5)$

بذلك نستنتج على ان M_2 ليست فضاءاً جزئياً من فضاء الدوال C(1,5) على الحقل R .

إختبار M_3 : M_3 ليست فضاءاً جزئياً وذلك لانها غير مغلقة تحت عملية الضرب القياسي والتوضيح مماثل الى حالة M_2 .

. ای عدد حقیقی M_4 وخد g , f ای عدد حقیقی M_4 وخد g , g

يكون عندنا:

$$g(x) = g(6-x), f(x) = f(6-x)$$

$$(f+g)(X) = f(x) + g(x)$$

$$= f(6-x) + g(6-x)$$

$$= (f+g)(6-x)$$

 $f+g \in M_4$ بذلك يكون

$$(kf)(X) = kf(x) = kf(6-x)$$

= $(kf)(6-x)$

بذلك يكون kf €M4

نستنتج من هذا على ان M_4 تكون فضاءاً جزئياً من الفضاء C(1,5) على الحقل R .

تماريسن (1.4)

. n > 3, R^n من يلى يكون فضاءاً جزئياً من R^n من الم

.
$$x_1 > 0$$
 حيث ، $A = (x_1, ..., x_n)$ حيث ، (أ)

$$X_1 + 5X_2 = X_3$$
 حيث , $A = (X_1, ..., Xn)$ حيث المتجهات (ب)

$$\mathbf{x_1}\mathbf{x_n} = \mathbf{0}$$
 حيث , $\mathbf{A} = (\mathbf{x_1},...,\mathbf{xn})$ حيث المتجهات (ج)

$$X_2 = 2x_1^3$$
 حيث $A = (x_1,...,x_n)$ حيث المتجهات ($A = (x_1,...,x_n)$

. $M_{22}(R)$ من يلي يكون فضاءاً جزئياً من 2 ــ حدد اي مما يلي يكون

رأ) جميع المصفوفات
$$A = \begin{cases} a & b \\ c & d \end{cases}$$
 حيث $A = \begin{cases} a & b \\ c & d \end{cases}$ اعداد صحيحة a,b,c,d عداد صحيحة $A = \begin{cases} a & b \\ c & d \end{cases}$ حيث $A = \begin{cases} a & b \\ c & d \end{cases}$

a-b+2c=0

$$\det(A) = 0$$
 خيع المصفوفات A ذات الدرجة 2×2 بحيث يكون A

. C على الحقل C^3 على الحقل C

.
$$z_1 - z_2 + z_3 = 0$$
 حيث ، $A = (z_1, z_2, z_3)$ حيث (أ)

$$z_1 = 5$$
 حيث $A = (z_1, z_2, z_3)$ حيث $A = (z_1, z_2, z_3)$

- $z_1 = \overline{z_2}$ حيث ، $A = (z_1, z_2, z_3)$ حيث (ج) جميع المتجهات
- $A = (z_1, z_2, z_3) = 4$ حيث $A = (z_1, z_2, z_3)$
 - $P_3(R)$ من فضاءاً من $P_3(R)$.
- $a_0 = 0$ حيث ، $a_0 + a_1 x + a_2 x^2 + a_3 x^3$ حيث ، حيث ، عدادت الحدود
- رب) جميع متعددات الحدود (ب) جميع متعددات الحدود $a_0 + a_1 x + a_2 x^2 + a_3 x^3$. $a_0 a_1 + a_3 = 0$
- $(a_0 + a_1x + a_2x^2 + a_3x^3)$ $(a_0 + a_1x + a_2x^2 + a_3x^3)$ $(a_0 + a_1x + a_2x^2 + a_3x^3)$ $(a_0 + a_1x + a_2x^2 + a_3x^3)$
- 5 _ حدد اي مما يلي فضاءاً جزئياً من فضاء الدوال [0,1] المعرفة على الفترة المغلقة [0,1] .
 - (أ) جميع الدوال f التي تحقق o = (1)
 - رب) جميع الدوال f التي تحقق. 0 € (x) لكل [0,1] .x (ب)
 - . f(1/2) = (f(0) + f(3/4))/2 تحقق f(1/2) = (f(0) + f(3/4))/2
 - (د) جميع الدوال الثابتة.
- (هم) جميع الدوال f التي يمكن كتابتها f(x) = a + bx اعداداً حققة

(1-5) جبر الفضاءات الجزئية Algebra of Subspaces

اذا كان كل من M_1 و M_2 فضاءاً جزئياً من فضاء المتجهات M_1 على الحقل M_2 فإنه بالامكان تكوين المجموعتين

 $M_1 \cup M_2 = \{A \in V : A \in M_2 \text{ if } A \in M_1\}$

 $M_1 \cap M_2 = \{A \in V: A \in M_2, A \in M_1\}$

سنبين في هذا البعد ان الاتحاد $M_1 \cup M_2$ لايكون دائماً فضاءاً جزئياً من V في حين ان التقاطع $M_1 \cap M_2$ يكون دائماً فضاءاً جزئياً ثم نعطي امثلة على كيفية حساب تقاطع فضاءين جزئين . سنتطرق كذلك الى جمع الفضاءات الجزئية وخصائصها .

مبرهنه (1.5.1) :

اذا كان كل من M_1 و M_2 فضاءاً جزئياً من فضاء المتجهات M_1 على الحقل M_2 فإن

(أ) $M_1 \cap M_2$ يكون فضاءاً جزئياً . (ب) $M_1 \cup M_2$ يكون فضاءاً جزئياً اذا وفقط اذا كانت

 $M_1 \subset M_1$ $M_1 \subset M_2$

البرهان: (أ)

. F وخذ \mathbf{k} اي متجهين في $\mathbf{M_1} \cap \mathbf{M_2}$ وخذ \mathbf{A}, \mathbf{B} عدد قياسي في

. kA \in M₁ \cap M₂ و $A+B \in$ M₁ \cap M₂ یجب البرهنة علی ان

. $\mathbf{B} \in \mathbf{M}_1$ من الفرض نستنتج على ان $\mathbf{A} \in \mathbf{M}_1$ و $\mathbf{A} \in \mathbf{M}_1$ من الفرض نستنتج على ان

بما ان كل من M_2 ، M_1 فضاءً جزئياً فنحصل على:

 $A+B \in M_2$, $A+B \in M_1$

 $kA \in M_2$, $kA \in M_1$,

 $A + B \in M_1 \cap M_2$

بذلك يكون لدينا

 $kA \in M_1 \cap M_2$

(ب) إفرض أن M,UM فضاء جزئي من V.

الو كان $M_1 \not\subset M_1$ و $M_2 \not\subset M_1$ لاستنتجنا انه:

 $A \notin M_2$ و $A \in M_1$ يوجد

 $B \not\in M_1$, $B \in M_2$

ورب 2 على اي حال يكون لدينا

 $B \in M_1 \cup M_2$, $A \in M_1 \cup M_2$

 $M_1 \cup M_2$ ان $M_1 \cup M_2$ فضاء جزئي نستنتج

 $A + B = C \in M_1 \cup M_2$

 M_1 فإذا كان $C \in M_1$ فإن $C \in M_1$ تعطي $C \in M_1$ وذلك لان $C \in M_1$ وكون $C \in M_1$ فضاءاً جزئياً ينتج ان $C \in M_1$ - وبذلك يكون $C \in M_1$ فضاءاً جزئياً ينتج اذا كان $C \in M_2$ فإن $C \in M_2$ وهذا غير ممكن $C \not \in M_2$ و $C \not \in M_1$ اذن : $C \not \in M_1$ ك و $C \not \in M_1$ ك اي ان : $C \not \in M_1$

وهذا تناقص $M_2 \subset M_1 \text{ in } M_1 \subset M_2$ اذن $M_1 \subset M_2$ أو $M_1 \subset M_2$ على العكس لو افترضنا أن $M_2 \subset M_1 \text{ in } M_1 \subset M_2$ فإن $M_1 \subset M_2 = M_1$ أو $M_1 \subset M_2 = M_1$ في حالة يكون $M_1 \cup M_2 = M_1$ فضاءاً جزئياً .

(و . هـ . م .) فيما يلي نعطي مثالاً يوضح ان $M_1 U M_2$ لايكون فضاءاً جزئياً بصورة عامة .

مثال (1):

في الفضاء R² على الحقل R ، كل من

 $M_1 = \{(x,y): x + 2y = 0\}$ $M_2 = \{(x,y): 5x + y = 0\}$

يكون فضاءاً جزئياً من R².

 $B = (-1,5) \in M_2$ و $A = (2,-1) \in M_1$ لاحظ ان $A \in M_1 \cup M_2$ و $A \in M_1 \cup M_2$: اي : A + B = (1,4)

 $A+B \not\in M_2$ نلاحظ ان $A+B \not\in M_1$ و $A+B \not\in M_1$ بذلك يكون $A+B \not\in M_1$ UM_2

اي ان $M_1 U M_2$ ليست مجموعة مغلقة تحت عملية الجمع من هذا نستنتج على ان $M_1 U M_2$ ليست فضاءاً جزئياً .

مثال (2):

احسب تقاطع الفضاءين الجزئين :_

$$M_1 = \{(x, y, z): 2x-y+3z=0\}$$

 $M_2 = \{(x, y, z): x+y-z=0\}$

وذلك في الفضاء R³ على الحقل R.

 $M_1 \cap M_2$ النفرض ان المتجه $M_2 = (x,y,z)$ ینتمی الی التقاطع المتجه الحل:

يكون لدينا عندئذ معادلتين:

$$2x-y+3z=0....(1)$$

$$x + y - z = 0....(2)$$

بضرب المعادلة (2) في 2- وجمعها مع المعادلة (1) نحصل على: -3y + 5z = 0.....(3)

$$y = (5/3) z$$

ای ان:

بالتعويض في المعادلة (1) نحصل على

x = (-2/3)z

بذلك يكون حل المعادلتين اعلاه كالاتي:

x = (-2/3)z, y = (5/3)z, z = z

اذا يمكن وصف التقاطع كالاتي:

 $M_1 \cap M_2 = \{(x,y,z): x = (-2/3)z, y = (5/3)z, z = z \}$

مثال (3):

في الفضاء $P_2(R)$ على الحقل R ، احسب التقاطع $P_2(R)$ اذا علمت بأن :

$$M = \{a + bx + cx^2 : a + 2b - c = o\}$$

$$N = \{a + bx + cx^2 : b = o, a + 3c = o\}$$

الحل: افرض ان المتجه A = a + bx + cx² ينتمى الى التقاطع M ∩ N.

يكون لدينا عندئذ ثلاث معادلات:

$$a + 2b - c = 0 ...(1)$$

$$b = 0....(2)$$

$$a + 3c = 0$$
(3)

عند حل المعادلات اعلاه نحصل على : a=b=c=0. ومن هذا ان التقاطع يحتوي على متجه واحد فقط هو $A=o+ox+ox^2=o$

اي متعددة الحدود الصغرية. اذا يمكن وصف التقاطع كالآتي:

MN = { 0 }

جمع الفضاءات الجزئية:

اذا كان كل من M و N فضاءً جزئياً من فضاء المتجهات V على الحقل F فإنه بلامكان ان نكون المجموعة الاتية :

$$M+N=\{A+B: A\in M, B\in N\}$$

اي ان M+N يحتوي على جميع المتجهات في V التي يمكن كتابتها كحاصل جمع متجهين أحدهما في M والآخر في N. المبرهنة ادناه توضح ان المجموعة الجزئية , M+N تكون فضاءاً جزئياً يحتوي على كل من M و N.

مبرهنة (1.5.2) :

اذا كان V فضاء متجهات على حقل F وكان كل من M و N ، فضاءاً جزئياً من V فإن M+N يكون فضاءاً جزئياً من V يحتوي على كل من M و M .

البرهان:

 $X \in M+N$ و $A_1 \in M+N$ اي متجهين في $A_1 \in M+N$ و $A_2 \in M+N$ و $A_1 \in M+N$ اي عدد قياسي . يجب ان نحقق :

 $A_1 + A_2 \in M + N$ (1)

 $xA, \in M+N$ (-)

 C_1 ان B_1 B_1 و A_2 B_1 اذاً يوجد A_1 و A_1 B_1 و A_2 B_1 . A_1 A_2 B_1 . A_2

 $A_2 = B_2 + C_2$ کذلك يوجد $B_2 \in M$ و $B_2 \in M$ کذلك يوجد

 $A_1 + A_2 = (B_1 + C_1) + (B_2 + C_2)$ = $(B_1 + B_2) + (C_1 + C_2)$

نلاحظ ان $\mathbf{B}_1+\mathbf{B}_2$ و $\mathbf{C}_1+\mathbf{C}_2\in \mathbf{N}$ وذلك لان كلاً من \mathbf{M} و فضاء جزئي من \mathbf{V} .

 $A_1 + A_2 \in M + N$ من تعریف M + N ینتج ان

 $xA_1 = x(B_1 + C_1)$ $= xB_1 + xC_1$

. V وذلك لان كلاً من M و $XC_1 \in \mathbb{N}$ وذلك لان كلاً من $XC_1 \in \mathbb{N}$ وذلك وذلك لان كلاً من $XC_1 \in \mathbb{N}$

 $xA_1 \in M + N$: اذا

الان اذا كان A €M فأنه بالامكان كتابة A على الشكل:

A = A + O

اي ان A يمكن كتابته كحاصل جمع متجهين احدهما A€M والاخر O € N

بذلك يكون M + Nبنفس الطريقة فإن كل متجه $B \in \mathbb{N}$ يمكن كتابته على الشكل:

B = O + B

 $B \in M + N$ تنتج $B \in N$ اي ان

 $N \subset M + N$: بذلك يكون

نری من هذا ان M+N فضاء جزئي من V يحتوي على كِل من M و N .

(و. ه. ، م.)

نطلق على الفضاء الجزئي M+N إسم مجموع الفضاءين M و N او جمع الفضاءين M و N .

الان نتناول بعض الامثلة التي توضح فكرة جمع الفضاءات الجزئية.

مثال (4):

في الفضاء R على الحقل R ، اذا كان

 $M = \{(x,o): x \in R\}$ $N = \{(o,y): y \in R\}$

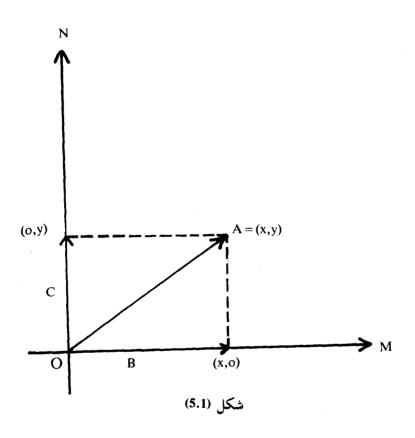
M+N:فإحسب

M = (x,c) في M + Nمن التعريف، يوجد متجه B = (x,c) في B = (x,c) ومتجه اخر C = (o,y) في C = (o,y)

A = B + C A = (x,y) $M + N = \{(x,y): x,y \in R\}$ $M + N = R^{2}$ i)

يمكن توضيح المثال هندسياً كالاتي : الفضاء الجزئي M يمثل محور السينات في المستوى R²

 R^2 الفضاء الجزئي N يمثل محور الصادات في المستوى M+N حاصل جمع M و N اي الفضاء الجزئي M+N يساوي كل المستوى R^2 . انظر الشكل (5.1) أدناه



مثال (5):

: في الفضاء R^4 على الحقل R ، اذا كان

 $M = \{(o,y,z,o): y,z \in R\}$ $N = \{x,o,z,w): x,z,w \in R\}$

M+N فإحسب

اي متجه $\mathbf{B}=(\mathbf{x}_2,0,\mathbf{z}_2,\mathbf{w}_2)$ وخذ $\mathbf{A}=(\mathbf{0},\mathbf{y}_1,\mathbf{z}_1,\mathbf{0})$ اي متجه في \mathbf{A} . N

 $A + B = (x_2, y_1, z_1 + z_2, w_2)$

 $M + N = \{(x,y,z,w): x,y,w \in R\}$

اذن

A = (x,y,z,w)وذلك لان اي متجه في R^4

يمكن كتابته كحاصل جمع متجهين احدهما في M والاخر في N كالاتي:

A = (o,y,z/2,o) + (x,o,z/2,w)

نود هنا ان نبين ان المتجهات في \mathbb{R}^4 يمكن ان نكتب بطرق مختلفة كحاصل جمع متجهات في M ومتجهات في N فمثلاً:

$$(1,2,3,10) = (0,2,3,0) + (1,0,0,10)$$
$$= (0,3/2,0) + (1,0,3/2,10)$$
$$= (0,2,2,0) + (1,0,1,10)$$

في كل مرة كتبنا المتجه M والاخر في كل مرة كتبنا المتجه M والاخر في M لكن بطرق مختلفة .

في بعض الاحيان لايمكننا عمل ذلك ، ولغرض التمييز نورد التعريف الاتي :

تعریف:

N و M نقول عن فضاء المتجهات V انه جمع مباشر لفضائيه الجزئيين M و V ويرمز له:

 $V = M \oplus N$

اذا كان كل متجه $A \in V$ يمكن ان يكتب بطريقة واحدة وواحدة فقط على النحو $C \in N$, $B \in M$ حيث A = B + C . لو نظرنا الى الامثلة السابقة لرأينا ان المثال $R^2 = M \oplus N$ يعطي (4)

اما المثال (5) فيوضح ان

 $R^4 \neq M \oplus N$ لکن $R^4 = M + N$

هذا يحفزنا على التفكير بضرورة وجود علاقة ما او شرط مايجعل من الجمع الاعتيادي جمعاً مباشراً. المبرهنة ادناه توضح ذلك.

مبرهنة (1.5.3):

يكون الفضاء V جمعاً مباشراً لفضائية الجزئيين M و N اذا وفقط اذا كان:

$$V = M + N \quad (1)$$

$$M \cap N = \{0\} (1)$$

البرهان:

افرض ان V یکون جمعاً مباشراً للفضاءین الجزئیین M و N ای ان $V = M \bigcirc N$

اذاً كل متجه A في V يمكن ان يكتب بطريقة واحدة وواحدة فقط على النحو $C \in N$ على A = B + C

V = M + N هذا يعنى ان

الان لو كان M∩N ≠ (0) لوجد متجه M∩N و كان (4)

اي A€N و A≠O و A≠O

عندئذ يمكن كتابة A بأكثر من طريقة واحدة فمثلاً:

 $(O \in N , A \in M \otimes N) A = A + O$

 $(O \in M, A \in N)) A = O + A$

وهذا يناقص كون V جمعاً مباشراً.

اذاً V = M + N وV = M + N اذاً

 $M \cap N = \{0\}, \quad V = M + N$

خذ اي متجه A E V وافرض انه بالأمكان كتابته بطريقتين مختلفتين

$$A = B_2 + C_2$$
, $A = B_1 + C_1$
 $C_1, C_2 \in N$, $B_1, B_2 \in M$
 $B_1 + C_1 = B_2 + C_2$

$$B_1 - B_2 = C_2 - C_1$$

بما ان كل من N و M فضاء جزئي فيكون:

 C_2 - $C_1 \in \mathbb{N}$, B_1 - $B_2 \in \mathbb{M}$

تنتج : B_1 - B_2 لانه يساوي C_2 - C_1 لانه يساوي C_2 - لانه يساوي C_3 - C_1 لانه يساوي C_3 - C_1 لانه يساوي C_3 - C_1 لانه يساوي المنتمى الى C_3 - C_1 لانه يساوي المنتمى الى C_3 - C_1

 C_2 - $C_1 \in M \cap N$, B_1 - $B_2 \in M \cap N$

$$C_1 = C_2$$
 $B_1 = B_2$

من هذا ينتج ان A قد كتب بطريقة واحدة وواحدة فقط.

(و . هـ . م .)

عارين (1.5)

فضائین $M = \{(x_1,y,z): x = 0\}$ و $N = \{(x,y,z): y + z = 0\}$ فضائین $M = \{(x_1,y,z): x = 0\}$ فضائین $M = \{(x_1,y,z): x = 0\}$ فضائین $M = \{(x_1,y,z): x = 0\}$ فضائین الجزئیین $M = \{(x_1,y,z): x = 0\}$

$$M = \{(x,y,z,w): x + 2z - w = o\}$$

 $N = \{(x, y, z, w): x + y + z + w = 0\}$

فضائين جزئيين من R⁴ . جد الفضائين الجزئيين M+N, M∩N .

و $M = \{(2x,x): x \in R\}$ و $N = \{(y,y): y \in R\}$ فضائين جزئيين $M = \{(2x,x): x \in R\}$ فضائين جزئيين $R^2 = M \bigoplus N$ فضائين جزئيين

$$M = \{(z_1, z_2, z_3): z_2 = z_1 - z_3.\}$$

$$N = \{(z_1, z_2, z_3): 2z_1 - z_2 = o\}$$

فضائين جزئيين من الفضاء 3 على الحقل 3 ، فجد 3 مرهن على ان 3 3 وأوجد متجهاً في 3 واكتبه بثلاث طرق مختلفة 3 متجه في 3 واخر في 3 .

$$M = \left\{ \begin{bmatrix} a & o \\ b & c \end{bmatrix} : a + c = b \right\}$$

$$N = \left\{ \begin{bmatrix} a & b \\ o & c \end{bmatrix} : a = 3c \right\}$$

M+N و M+N فجد $M_2(R)$ و M+N

مى حقل $n \times n$ فضاء المتجهات المتكون من المصفوفات المربعة $n \times n$ على حقل الاعداد الحقيقية وليكن:

$$M = \{A \in V: A^T = A\}$$

 $N = \{A \in V: A^T = -A\}$

حيث ان A^T تمثل مدورة المصفوفة A . برهن على ان كلاً من M و N يكون فضاءاً جزئياً من $V = M \oplus N$.

F على الحقل V التجهات برئية من فضاء المتجهات V على الحقل F فبرهن على ان

$$(M \cap N) + (M \cap L) \subset M \cap (N + L)$$

جد فضاءات جزئية من R² لاتصلح من اجلها هذه المساواة .

8 _ لتكن M,N,L الفضاءات الجزئية التالية من R³:

$$N = \{(x,y,z): x = z\}$$
 و $L = \{(0,0,z): z \in \mathbb{R}\}$
 $M = \{(x,y,z): x + y + z = 0\}$

- روه من الجمع المعارب المعارب
- F على الحقل N,N,N' فضاء متجهات N,N,N' على الحقل N,N,N' بكيث ان N+N=M+N' و M+N=M+N' . N=N , برهن ان N=N .

(1.6) التركيب الخطى Linear Combination

سنبحث في هذا البند المسألة التالية:

اذا كانت لدينا مجموعة جزئية معينة $S = \{A_1, \dots, A_n\}$ من متجهات تنتمي الى فضاء متجهات V على حقل V فهل يوجد فضاء جزئي يحتوي على المجموعة V وماهو اصغر تلك الفضاءات الجزئية التي تحتوي على المجموعة V.

إنه لمن المهم جداً ان نعرف اصغر فضاء جزئي يحتوي على مجموعة جزئية معطاة لان الفضاء V نفسه يعتبر فضاءاً جزئياً من V ودائماً يحتوي على اي مجموعة جزئية معطاة .

يقدم لنا التعريف الاتي الاداة الرئيسية لبناء مثل هذه الفضاءات الجزئية.

تعریف:

$${f B_1}, \,, \, {f B_k}$$
 يسمى المتجه A بتركيب خطي من المتجهات ${f A} = {f x_1 B_1} + + {f x_k B_k}$ اذا امكن التعبير عنه بالصورة

اعداداً قياسية . X_1, \dots, X_k

حيث

مثال (1):

اذا كان (2,0,-1) ، A=(1,5,0) متجهين في R^3 فبين ان C=(3,-5,-2) يكون تركيباً خطياً من A, وان C=(3,-5,-2) خطياً من A و A .

 $x_1^{},\,x_2^{}$ من A و B یجب ان توجد اعداد قیاسیة C الحل: لکی یکون $C=x_1A+x_2B$ ای ان

 $(3,-5,-2) = x_1(1,5,0) + x_2(2,0,-1)$

أو

 $(3,-5,-2) = (x_1 + 2x_2, 5x_1, -x_2)$

: بمساواة المركبات المتناظرة نحصل على

$$x_1 + 2x_2 = 3$$

 $5x_1 = -5$
 $-x_2 = -2$

 $x_2 = -2$ و $x_1 = -1$ و $x_2 = -2$ مذا النظام يعطي C = -A + 2B اى ان

 x_2,x_1 بالمثل بالنسبة الى D لكي لايكون تركيباً خطياً يجب ان لاتوجد اعداد قياسية $D=x_1A+x_2B$. خيث: $D=x_1A+x_2B$ ، فلو وضعنا

$$(-2,20,7) = x_1 (1,5,0) + x_2(2,0,-1)$$

 $(-2,20,7) = (x_1 + 2x_2,5x_1,-x_2)$

مساواة المركبات المتناظرة تعطى:

$$x_1 + 2x_2 = -2$$

 $5x_1 = 20$
 $-x_2 = 7$
 $x_2 = -7, x_1 = 4$

المعادلتان الثانية والثالثة تعطيان

لكن هذه القيم لاتحقق المعادلة الأولى اي ان النظام اعلاه غير متوافق، واذن لاتوجد مثل هذه الاعداد القياسية . ومن ثم D ليس تركيباً خطياً من A و B .

مثال (2):

اذا كان: A=1+x, متجهات في $C=2-x+x^3$, $B=x^2-3$, A=1+x متجهات في الفضاء $P_3(R)$ على حقل الاعداد الحقيقية R فهل ان المتجه $D=1-x+x^2$ على حقل الاعداد الحقيقية R فهل ان المتجه $D=1-x+x^2$ يكون تركيباً خطياً من $D=1-x+x^2$.

 a_1 , على يكون D تركيباً خطياً من A و B و C يجب ان توجد اعداد قياسية a_2 , a_3

$$D = a_1 A + a_2 B + a_3 C$$

$$1-x+x^2=a_1(1+x)+a_2(x^2-3)+a_3(2-x+x^3)$$
 او $1-x+x^2=(a_1-3a_2+2a_3)+(a_1-a_3)x+a_2x^2+a_3x^3$: يصاواة معاملات $1+x+x^2=(a_1-3a_2+2a_3)+(a_1-a_3)x+a_2x^2+a_3x^3$

$$a_1-3a_2 + 2a_3 = 1.....(1)$$

 $a_1-a_3 = -1....(2)$
 $a_2 = 1.....(3)$
 $a_3 = 0.....(4)$

ان المعادلات (2) , (3) , (4) تعطى

 $a_1 = -1$, $a_2 = 1$, $a_3 = 0$

لكن هذه القيم لا تحقق المعادلة (1) اي ان النظام اعلاه غير متوافق وبالتالي لاتوجد اعداد قياسية a_1, a_2, a_3 تحقق

$$D = a_1 A + a_2 B + a_3 C$$

وهذا يعني ان D لايكون تركيباً خطياً من C,B,A ملنفرض الآن ان S مجموعة جزئية غير خالية من فضاء متجهات V على الحقل F ولتكن

[S] = $\{x_1A_1 + + x_nA_n : x_i \in F, A_i \in S, n \in N\}$

حيث N = مجموعة الاعداد الطبيعية.

ان المجموعة [S] اعلاه تمثل مجموعة المتجهات في V التي يكون كل منها تركيباً خطياً لعناصر مجموعة جزئية منتهية من المجموعة S. سوف نطلق إسم مجموعة التركيبات الخطية لعناصر S على المجموعة [S]. المبرهنة التالية تجيب على التساؤلات التي طرحناها في مقدمة هذا البند.

ميرهنة (1.6.1) :

ليكن V فضاء متجهات على الحقل F و S مجموعة جزئية غير خالية من V . ان مجموعة التركيبات الخطية لعناصر S والتي يرمز لها بالرمز S تكون اصغر فضاء جزئي يحتوي على S .

البرهان: نبرهن اولاً على ان المجموعة [S] تكون فضاءاً جزئياً ، ولهذا الغرض نأخذ

$$B = y_1 B_1 + \dots + y_m B_m, A = x_1 A_1 + \dots + x_n A_n$$

 $B_1,\dots,B_m,\,A_1,\dots,\,A_n$ اعداد قیاسیة فی S اعداد قیاسیة فی S اعداد قیاسیة فی S اعداد قیاسیة فی S

$$A + B = x_1A_1 + + x_nA_n + y_1B_1 + ... + y_mB_m$$

وهذا ايضاً تركيب خطي لعدد محدود من عناصر S وبالتالي يكون عنصراً في [S] ، اي ان [S] مغلقة تحت عملية الجمع .

والان نأخذ k €F اي عدد قياسي ونلاحظ

 $kA = k(x_1A_1 + ... + x_nA_n)$ = $(kx_1)A_1 + + (kx_n)A_n$

نستنتج من هذا ان kA يكون تركيباً خطياً لعناصر من S وبالتالي يكون عنصراً في [S] ، اي ان [S] مغلقة بالنسبة لعملية الضرب القياسي وبالتالي تكون [S] فضاءاً جزئياً.

لكي نبرهن على ان [S] يحتوي على S اي ان

SC[S]

A = 1.A: نأخذ $A \in S$ ، ونلاحظ ان

لكن £ 1€ . اذن A يكون تركيباً خطياً لعناصر من S وبالتالي [S] A€

لو كان M فضاءاً جزئياً يحتوى على S ، اي ان

 $S \subset M$

فيجب ان يكون M 🗅 [S]

 $\mathbf{B} = \mathbf{x}_1 \mathbf{B}_1 + \dots + \mathbf{x}_n \mathbf{B}_n$ فلو اخذنا

 $x_i \in F$ و $B_i \in S$ عنصراً في [S] عنصراً

i = 1,....,n لكل الستنتجنا مايلي: لكل

 $x_iB_i \in M$ تنتج $B_i \in M$ (Vن ($S \subset M$) کا $B_i \in M$ تنتج $B_i \in S$

(لان M فضاءاً جزئي)، هذا يعني ان المتجه $X_nB_n+\dots+X_n$ ايضاً. ينتمى الى M . بذلك يكون [S] اصغر فضاء جزئي يحتوي على المجموعة الجزئية S .

(و . هـ . م .)

اذا كان V فضاء متجهات على حقل F و S مجموعة جزئية غير حالية V من V فإن الفضاء الجزئي V يسمى الفضاء الجزئي المولد من قبل المجموعة الجزئية V ويقال عن المجموعة V بأنها مجموعة مولدة للفضاء الجزئي V.

مثال (3):

.
$$\mathbb{R}^2$$
 يين ان المجموعة الجزئية $\mathbb{S} = \{(1,0), (0,1)\}$ تولد الفضاء

ان یکت ان نبین علی ان $[S] = R^2$ ای ان کل متجه A = (x,y) فی A = (x,y) ان یکتب کترکیب خطی من متجهات فی A = (x,y) = x(1,0) + y(0,1)

مثال (4):

ماهو اصغر فضاء جزئي يحتوي على المجموعة الجزئية $S = \left\{ (x,y,z) \colon 2x \text{-} y + z = 0 \right\}$ من الفضاء R^3 .

 ${\bf R}^3$ الحلى: نلاحظ بأن المجموعة الجزئية ${\bf S}$ اعلاه تكون بحد ذاتها فضاءاً جزئياً من ${\bf S}$ وبالتالي يكون ${\bf S}={\bf S}$ اي ان اصغر فضاء جزئي يحتوي على ${\bf S}$ هو ${\bf S}$.

مثال (5):

$$S = \{A, B\}$$
اذا كانت $B = (1,2,0)$ ، $A = (0,2,2)$ حيث $B = (0,2,2)$ ، $A = (0,2,2)$ فأثبت ان المجموعة $B = (0,2,2)$ تولد الفضاء الجزئي

 $M = \{(x,y,z): 2x-y+z = o\}$

الحل: المطلوب اثباته هنا ان M = [S]

نلاحظ اولاً ان A EM و B E M اي ان SCM.

وبما ان [S] هو اصغر فضاء جزئي يحتوي على S فنستنتج ان [S] .

من ناحية اخرى لو اخذنا $C = (x,y,z) \in M$ وحاولنا كتابة C = C + C كتركيب خطي لمتجهات في C = C ، اي ان

$$C = (x,y,z) = a(0,2,2) + b(1,2,0)$$

فسيكون لدينا:

$$b = x...(1)$$

$$2a + 2b = y...(2)$$

$$2a = z....(3)$$

 $(x,y,z) \in M$ کا ان

$$2x-y+z=0$$
 اذن

$$y = 2x + z$$

المعادلات (1) , (3) بعطي $a=z/2,\,b=x$ وهذه القيم تحقق المعادلة (2) وذلك لان 2a+2b=z+2x=y

نستنتج من هذا على ان اي متجه C=(x,y,z)=0 في M يمكن كتابته على الشكل: C=(x,y,z)=(z/2)(0,2,2)+x(1,2,0) كتركيب خطى لمتجهات في C=(x,y,z)=0 اي ان كل متجهات في C=(x,y,z)=0

وبذلك يكون لدينا: [S] M

اى ان [S] اى

ملاحظة:

المفاهيم والتسميات التي طرحناها في هذا البند تنص على مايلي: حتى تكون المجموعة S مولدة للفضاء الجزئي M يجب الافتراض مسبقاً بأن S مجموعة جزئية من M وبما ان [S] هو اصغر فضاء جزئي يحتوي على S فإذن M [S].

اي انه عندما يطلب منا ان نثبت ان مجموعة ماتكون مجموعة مولدة لفضاء جزئي معين يجب فقط ان نثبت ان كل متجه في ذلك الفضاء الجزئي يمكن كتابته كتركيب خطي من متجهات تلك المجموعة.

مثال (6):

B على حقل $S = \{A_1, A_2, A_3\}$ و اذا كان $S = \{A_1, A_2, A_3\}$ و فضاء متجهات V

متجه في V بحيث $B \in [S]$ فبرهن على ان المجموعة $T = \{A, A_2, A_3, B\}$ تولد نفس الفضاء الجزئي [S] ، بعبارة اخرى برهن على ان [T] = [S] .

الحل: خذ [S] A €

إذن توجد اعداد قياسية X1,X2,X3 بحيث

 $A = x_1 A_1 + x_2 A_2 + x_3 A_3$

A يمكن كتابته بالصيغة

 $A = x_1 A_1 + x_2 A_2 + x_3 A_3 + 0.B$

وهذه الصيغة تعني ان $A \in [T]$ ، لأن A كتب كتركيب خطي من متجهات المجموعة T .

اذن [S] اذن

لنأخذ الان [T] AE

إذن توجد اعداد قياسية ٧٤, ٧٤, ٧٤ بحيث

 $A = y_1A_1 + y_2A_2 + y_3A_3 + y_4B....(1)$

اي انه توجد اعداد قياسية مثل $B \in [S]$ بحيث: $B = x_1, x_2, x_3$ في (1) اعلاه ينتج $B = x_1 A_1 + x_2 A_2 + x_3 A_3$

 $A = y_1 A_1 + y_2 A_2 + y_3 A_3 + y_4 (x_1 A_1 + x_2 A_2 + x_3 A_3)$ = $(y_1 + y_4 x_1) A_1 + (y_2 + y_4 x_2) A_2 + (y_3 + y_4 x_3) A_3$

وهذا يعني ان À يمكن كتابته كتركيب خطى لمتجهات في S وبذلك

يكون [S] **A €**

اي ان [S] اي

عندئذ يكون لدينا [T] = [S]

ملاحظة:

المثال اعلاه مهم جداً ويعني انه لو اضفنا الى مجموعة معينة متجهاً يمكن كتابته اصلاً كتركيب خطي من متجهات المجموعة المعينة فأن المجموعة الجديدة

الناتجة من اضافة ذلك المتجه تولد الفضاء الجزئي نفسه. الكلام اعلاه نفسه يمكن ان تعاد صياغته بلغة حذف متجه.

عارين (1.6)

،
$$A=(2,3,-5)$$
 من المتجهات التالية يكون تركيباً خطياً من المتجهين $B=(7,0,1)$

$$(-2,0,4)$$
 $(-2,0,4)$

$$(7\sqrt{2},0, 2)(9)$$
 $(11/2, 3, -9/2)(-8)$ -

2 لحاي من المتجهات التالية يكون تركيباً خطياً من المتجهات:

$$A = 1 + x$$
, $B = x-x^2 + x^4$, $C = 5 + x^3$

وذلك في الفضاء $P_4(R)$ على حقل الاعداد الحقيقية .

$$1 + x + x^2 + x^3 + x^4$$
 ()

$$4 + x^3 - x^2 + x^4$$

$$X^2 (\tau)$$

$$17 + x + x^2 + 3x^3 - x^4$$
 (\Rightarrow)

$$-5+x^{3}$$
 ($_{0}$)

 $M_2(R)$ على حقل الاعداد الحقيقية، عبر عما يلي كتركيب خطي من المتجهات :

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} C = \begin{bmatrix} -1 & -1 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 \\ 4 & 4 \end{bmatrix} \begin{pmatrix} 3 & 3 \\ 1 & -8 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$$

$$\begin{bmatrix}
2\sqrt{2} \cdot 3 & \sqrt{2} \cdot 3 \\
-1 & 8
\end{bmatrix}$$
(2)

 R^3 على ، حدد فيما اذا كانت المتجهات المعطاة تولد الفضاء R^3

$$A_1 = (1,1,1), A_2 = (2,5,3), A_3 = (-1,0,4)$$

$$A_1 = (3,0,1), A_2 = (-1,-2,5), A_3 = (2,-2,6)$$

$$A_1 = (2,0,0), A_2 = (0,5,4), A_3 = (3,1,7)$$

ان على ان على حقل الاعداد الحقيقية ثم برهن على ان $z_2 = 2 + 3i$, $z_1 = 1 - 2i$

6 _ برهن على ان المتجهات:

.
$$P_3(R)$$
 تولد الفضاء $A_1 = 1$, $A_2 = 1 - x$, $A_3 = (1 - x)^2$, $A_4 = (1 - x)^3$

7 _ حدد اي مما يلي يقع في الفضاء الجزئي الموّلد من

وذلك في فضاء الدوال C(0,1) على حقل $A = Cos^2x$, $B = Sin^2x$ الأعداد الحقيقية .

.
$$Sinx(-7)$$
 $(3-x^2(-7)$ $(Cos2x(†))$

8 ـ جد الفضاء الجزئي المولد من قبل المتجهين A = (2,1,-5) , B = (4,3,7) وذلك في الفضاء \mathbb{R}^3 .

- و الفضاء A = (2,0,-3) المتقيم المولد من قبل المتجه A = (2,0,-3) وذلك في الفضاء \mathbb{R}^3
- A,B,C ليكن V فضاء متجهات على الحقل F , ولتكن A,B,C ثلاثة متجهات في V بحيث A+bB+cC=O و A+bB+cC=O اعداد قياسية من الحقل A+bB+cC=O برهن على ان المجموعتين A+bB+cC=O تولدان الفضاء الجزئي نفسه من A+c
- A = (1,1,0) , B = (0,0,1) : اثبت ان مجموعتي المتجهات (1,1,0) , B = (0,0,1)

والفضاء الجزئي نفسه من الفضاء
$$\{C = (1,1,1), D = (-1,-1,1)\}$$
 تولدان الفضاء الجزئي نفسه من الفضاء \mathbb{R}^3

- 12 __ اثبت ان اي متجه غير صفري يولد الفضاء F على الحقل F.
 - 13 ـــ في الفضاء R³ على الحقل R، اذا كانت T={(0,3,-3)}, S={(1,0,0), (0,2,0)}
- (أ) جد [S], [T] الفضائين الجزئيين المولدين من قبل T,S على التوالي.
 - (ب) هل ان المتجه (3,0-,5) ينتمي الى [S]؟.
 - (ج) هل ان المتجه (3,2,1) ينتمي الى [S]؟.
 - (د) هل ان المتجه (2,1,1) ينتمي الى [T]؟.
 - (و) ماهي المتجهات التي تنتمي الي [T] [S] [S]
- F غلى الحقل V على الحقل M,N فضاءين جزئيين من فضاء المتجهات M,N على الحقل $M+N=[M\cup N]$ فبرهن على ان : $M+N=[M\cup N]$
- F على الحقل V على الحقل S,T مجموعتين جزئيتين من فضاء المتجهات V على الحقل فيرهن:
 - (أ) اذا كان SCT فإن [S]C[].
 - $.[S \cap T] \subset [S] \cap [T] ()$
 - $.\left[S \cup T\right] = \left[S\right] + \left[T\right]_{\left(\mathcal{T}\right)}$
- 16 ــ اعظ مثالاً على فضاء متجهات ومجموعتين جزئيتين T, S بحيث لايتساوى ضرف (ب) اعلاه.
- V فضاء متجهات على الحقل F و T, بخموعتان جزئيتان من V خيث ان T, افعل ان T, فهل ان T, فعل ان T, فعل ان T
- (F) على حقل A, في فضاء متجهات V على حقل A, اذا وفقط اذا B = rA لبعض A, اذا وفقط اذا A

(1.7) الاستقلال الخطى والارتباط الخطى

Linear Independance and Linear Dependance

سنناقش في هذا البند مسألة الاستقلال والارتباط الخطي التي بدورها ستكون مدخلاً لدراسة قواعد فضاءات المتجهات.

تعريف:

يقال بأن المجموعة الجزئية S من فضاء المتجهات V على الحقل F مجموعة من المتجهات مرتبطة خطياً اذا وفقط اذا وجدت اعداد قياسية X_1,\dots,X_n ليست جميعها مساوية للصفر وكذلك وجدت متجهات مختلفة A_1,\dots,A_n في S بحيث $X_1A_1+x_2A_2+\dots+x_nA_n=0$

مثال (1) :

تكون مجموعة مرتبطة خطياً من المتجهات في الفضاء \mathbb{R}^2 وذلك لان:

$$2(1,2) + (1)(0,1) + (-1)(2,5) = (0,0)$$

مثال (2):

في الفضاء (
$$P_2(R)$$
 على الحقل R ، برهن على ان المجموعة $S = \{5,2+x,x^2,1+4x-x^2\}$ مرتبطة خطباً .

الحل: لكي نبرهن على ان المجموعة اعلاه مجموعة مرتبطة خطياً يجب ايجاد اعداد حقيقية a_1,a_2,a_3,a_4 ليست جميعها مساوية للصفر وتحقق: $a_1(5)+a_2(2+x)+a_3(x^2)+a_4(1+4x-x^2)=0$

بعد تبسيط الطرف الايسر للمعادلة اعلاه نحصل على

$$(5a_1 + 2a_2 + a_4) + (a_2 + 4a_4)x + (a_3 - a_4)x^2 = 0$$

ولكي تكون متعددة الحدود في الطرف الايسر مساوية لمتعددة الحدود الصفرية ابجب ان تكون جميع المعادلات تساوي صفر وبهذا نحصل على المعادلات:

$$5a_1 + 2a_2 + a_4 = 0$$
....(1)

$$a_2 + 4a_4 = 0....(2)$$

$$a_3 - a_4 = 0 \dots (3)$$

حل هذه المعادلات يكون:

 $a_3 = a_4, a_2 = -4a_4, a_1 = (1/5)a_4$

وهذا يعني ان نظام المعادلات اعلاه لديه عدة حلول ولغرض الحصول على حل غير صفري نضع على سبيل المثال $a_4=1$ وبهذا نحصل على :

$$a_1 = 7/5$$
, $a_2 = -4$, $a_3 = 1$, $a_4 = 1$

وهذا يعني ان:

$$(7/5)(5) + (-4)(2+x) + (1)(x^2) + (1)(1+4x-x^2) = 0$$

 $(7/5)(5) + (-4)(2+x) + (1)(x^2) + (1)(1+4x-x^2) = 0$
 $(7/5)(5) + (-4)(2+x) + (1)(x^2) + (1)(1+4x-x^2) = 0$

تعریف:

يقال بأن المجموعة الجزئية S مستقلة خطياً اذا وفقط اذا S مجموعة غير مرتبطة خطياً.

التعريف اعلاه يكافيء مايلي:

اذا كان اي تركيب خطي لمتجهات في S مساوياً للصفر فيجب على جميع المعاملات بأن تساوي صفر . فإذا كانت المجموعة $S = \{A_1, \dots, A_n\}$ ان $S = \{A_1, \dots, A_n\}$ كون مستقلة خطياً اذا كان الحل الوحيد للمعادلة .

$$\mathbf{x}_1 \mathbf{A}_1 + \dots + \mathbf{x}_n \mathbf{A}_n = \mathbf{O}$$

$$x_1 = x_2 = \dots = x_n = 0$$

مثال (3):

برهن على ان المجموعة الجزئية S={(1,1,1), (0,10,1), (0,0,1)}} من الفضاء R³ تكون مجموعة مستقلة خطياً.

الحل: يجب ان نبرهن على ان الحل الوحيد للمعادلة $x_1(1,1,1) + x_2(0,1,1) + x_3(0,0,1) = (0,0,0)$ $x_1 = x_2 = x_3 = 0$: هو الحل الصفري ، اي ان : $x_1 = x_2 = x_3 = 0$: تصبح المعادلة اعلاه بعد التبسيط $(x_1, x_1 + x_2, x_1 + x_2 + x_3) = (0,0,0)$ بذلك نحصل على : $x_1 = 0, x_1 + x_2 = 0, x_1 + x_2 + x_3 = 0$ من هذا نرى ان الحل الوحيد هو $x_1 = 0, x_2 = 0, x_3 = 0$

مثال (4):

C على الحقل C^2 على الحقل $S=\{(1,i),\,(i,-1)\}$ على الحقل S على الحقل S مستقلة خطياً ام مرتبطة خطياً؟

الحل: لغرض الأجابة على السؤال اعلاه يجب ان نحدد فيما اذا كان للمعادلة $z_1(1,i)\,+\,z_2\,(i,-1)\,=\,(0,0)$ حل غير صفري ، حيث ان $z_1,\,z_2$ عددان عقديان . المعادلة اعلاه تكافىء المعادلة . $(z_1+iz_2,\,iz_1-z_2)\,=\,(0,0)$

: z_1, z_2 هما $z_1 + iz_2 = 0....(1)$ $iz_1 - z_2 = 0....(2)$

نلاحظ انه لو ضربنا المعادلة (1) في العدد العقدي i لحصلنا على المعادلة (2) . اي ان المعادلة (2) ليست جديدة وبهذا تبقى معادلة واحدة هي : $z_1 + i z_2 = 0$

 $z_1 = -iz_2$ حل المعادلة اعلاه يكون: $z_1 = -i$ بأخذ $z_2 = 1$ خصل على $z_3 = 1$

اي انه يوجد حل غير صفري. ومن هذا نستنتج على ان المجموعة S مجموعة مرتبطة خطياً.

مثال (5):

برهن على ان المجموعة الجزئية $S = \{1 + x, 1 - x, x^2, 3x^3\}$ من الفضاء $P_3(R)$ تكون مجموعة مستقلة خطياً .

الحل: نلاحظ المعادلة:

$$a(1+x) + b(1-x) + c(x^2) + d(3x^3) = 0$$

ونحاول ان نبرهن على ان الحل الوحيد هو الحل الصفري، حيث ان a,b,c,d

المعادلة اعلاه تكافىء المعادلة

$$(a+b) + (a-b)(x) + c(x^2) + 3d(x^3) = 0$$

a+b=0 : it is a similar to a+b=0

a-b=o

c = 0

3d = 0

 $a=o,\,b=o,\,c=o,d=o$ النظام البسيط للمعادلات نستنتج على ان S مستقلة خطياً .

مثال (6) :

اذا كان V فضاء متجهات على الحقل R وكانت $E = \{A, B, C\}$ مستقلة خطياً من المتجهات في V فبرهن على ان المجموعة $S = \{A + B, B + C, A + C\}$ مستقلة خطياً من المتجهات في V.

الحل: نأخذ المعادلة

 $x_1(A+B) + x_2(B+C) + x_3(A+C) = 0$

ونحاول ان نبرهن على ان الحل الوحيد هو الحل الصفري. تبسيط المعادلة اعلاه ينتج

 $(x_1 + x_3) A + (x_1 + x_2) B + (x_2 + x_3) C = 0$

بما ان المتجهات A, B, C تكون مجموعة مستقلة خطياً بالفرض

اذن يجب ان يكون الحل الوحيد للمعادلة اعلاه هو الحل الصفري اي:

 $x_1 + x_3 = 0$, $x_1 + x_2 = 0$, $x_2 + x_3 = 0$

وهذه المعادلات الثلاثة تنتج:

 $x_1 = 0$, $x_2 = 0$, $x_3 = 0$

سوف نذكر بعض المبرهنات والنتائج التي. تساعدنا كثيراً في معرفة فيما اذا كانت مجموعة ما من المتجهات مستقلة خطياً ام مرتبطة خطياً.

مبرهنة (1.7.1):

. V فضاء متجهات على الحقل F ولتكن V مجموعة جزئية من V اذا كانت المجموعة الجزئية V تحتوي على المتجه الصفري V فإنها تكون مرتبطة خطياً .

البرهان: بما ان: 0=0.1

 $x_1 = 1, A_1 = 0 S, n = 1$

نكون قد حققنا ماورد في تعريف المجموعة المرتبطة خطياً .

(و . هـ . م .)

نتيجة (1.7.2):

اذا كان M فضاءاً جزئياً من فضاء المتجهات V على اي حقل F فإن M يكون مجموعة مرتبطة خطياً .

البرهان:

كل فضاء جزئي يجب إن يحتوي على المتجه الصفري O.

(و . هـ . م .)

تعریف:

يقال بأن المتجه A يعتمد خطياً على المجموعة S اذا وفقط اذا كان: $A \in [S]$

« اي ان A يمكن كتابته كتركيب خطى من متجهات تنتمي للمجموعة S ».

مبرهنة (1.7.3):

المجموعة S تكون مرتبطة خطياً اذا وفقط اذا وجد متجه A في S يعتمد خطياً على باقي المتجهات في S .

البرهان :

لنفترض ان المجموعة S مرتبطة حطياً هذا يعني انه توجد اعداد قياسية X_1, \dots, X_n ومتجهات مختلفة A_1, \dots, A_n في S بحيث

 $\mathbf{x}_1 \mathbf{A}_1 + \ldots + \mathbf{x}_n \mathbf{A}_n = \mathbf{O}$

وليست جميع الاعداد $x_1,...,x_n$ تكون مساوية للصفر . بتغيير الترتيب ان اقتضت الضرورة يمكننا دائماً ان نفترض على ان $x_1 \neq 0$. بهذا يمكننا ان نكتب

 $A_1 = (-x_2/x_1) A_2 + + (-x_n/x_1) A_n$

S المنتمية الى A_1,\dots,A_n المنتمية الى A_1 المنتمية الى A_2,\dots,A_n المنتمية الى A_1 وهذا يعنى ان A_1 يعتمد خطياً على باقي المتجهات في A_1

S على العكس لو افترضنا بأنه يوجد متجه $A \in S$ يعتمد خطياً على باقي متجهات $A \in S$ لكان بأستطاعتنا ان نجد متجهات مختلفة B_1, \dots, B_k في S (تختلف عن S) S . بحيث:

$$\mathbf{A} = \mathbf{x}_1 \mathbf{B}_1 + \dots + \mathbf{x}_k \mathbf{B}_k$$

اي ان:

 $X_1B_1 + \dots + X_kB_k + (-1)A = 0$

والمعادلة اعلاه تعنى وجود متجهات مختلفة في S هي: _

 $A,B_1,...,B_k$ واعداد قياسية $X_1,...,X_k$ تحقق المعادلة. بما ان $X_1,...,X_k$ اذن الاعداد القياسية اعلاه ليست جميعها مساوية للصفر. بهذا تكون المجموعة $X_1,...,X_k$ مرتبطة خطياً.

(و . هـ . م .)

مبرهنة (1.7.4):

لتكن $S=\{A_1,\dots,A_n\}$ تكون مرتبطة $S=\{A_1,\dots,A_n\}$ تكون مرتبطة $A_k=a_1A_1+\dots+a_{k-1}A_{k-1}$ يكتب كتركيب خطي من المتجهات التي تسبقه اي ان

البرهان:

افرض ان S مجموعة مرتبطة خطياً. عندئذ توجد اعداد قياسية a_1,\dots,a_n ليست جميعها مساوية للصفر بحيث ان

$$a_1A_1 + a_2A_2 + \dots + a_nA_n = 0$$
 ...(1)

الان افرض ان $a_m \ne 0$ هذا يعني ان $a_m \ne 0$ هذا يعني ان $a_{m+1} = \dots = a_n = 0$ وبهذا يمكننا ان نكتب المعادلة (1) على الشكل $a_{m+1} = \dots = a_n = 0$

$$A_{m} = (-a_{1}/a_{m})A_{1} + \dots + (-a_{m-1}/a_{m})A_{m-1}$$
 وبذلك يمكننا ان نكتب

وهذا يبرهن على ان A_m يمكن كتابته كتركيب خطي من المتجهات التي تسبقه . على العكس لو افترضنا وجود متجه $A_m \in S$ يمكن كتابته كتركيب خطي من المتجهات التي تسبقه لاصبح A_m يعتمد خطياً على S ، اي ان S محموعة مرتبطة خطياً .

(و . هـ . م .)

ملاحظة:

المبرهنة اعلاه تختلف عن المبرهنة (1.7.3) بنقطتين الأولى هي انها تتحدث عن مجموعة منتهية من المتجهات، في حين أن (1.7.3) تتحدث عن اي مجموعة. النقطة الثانية هي تنظيمية حيث ان المتجه المراد كتابته كتركيب خطي من الاخريات يعاد ترقيمه بحيث يكون ترتيبه في آخر مجموعة المتجهات التي يعتمد عليها.

عارين (1.7)

1 ــ بمجرد النظر الى كل فرع مما يلي اشرح اسباب كون مجموعة المتجهات مرتبطة خطياً.

.
$$R^2$$
 في $A_2 = (-4,0), A_1 = (2,0)$ (1)

.
$$P_1(R)$$
 في $A_2 = -2-2x$, $A_1 = 1 + x$ (ب)

$$M_{2}(R) \stackrel{\cdot}{\cup} A_{2} = \begin{bmatrix} 0 & -3 \\ 3 & 6 \end{bmatrix} A_{1} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} (7)$$

2 __ اي من المجموعات الجزئية التالية من المتجهات في R³ تكون مرتبطة خطياً.

$$(1,2,1), (-1/2,-1,-1/2), (7,\sqrt{2},3)$$

- R^4 من ناحية التالية من المتجهات في R^4 من ناحية الارتباط الخطى والاستقلال الخطى .
 - $(1,1,0,1), (-1,2,\sqrt{2},0), (0,3,\sqrt{2},1)$
 - (-2,0,0,0), (0,1/2,1,1), (1,1,0,0), (0,3,1,0) (-1)
 - . (1,2,1,0), (4,0,1,0), (2,1,3,0), (0,0,1,0) (ح)
 - (د) (2,-3,1,0), (4,0,7,2)
- مستقلة $P_2(R)$ من المجموعات الجزئية التالية من المتجهات في $P_2(R)$ تكون مستقلة خطأً.

$$.1+x,x-x^2,-2+x^2,3$$
 (1)

$$1.-1/2 + \sqrt{2}x + x^2, x-3x^2, 1+x+x^2$$

$$2x + x^2$$
, $1-x + x^2$ (π)

$$1 + x - x^2$$
, $2x + \sqrt{2}x^2$, $2 + 4x + (\sqrt{2}-2)x^2$

C على الحقل C^2 على الحقل C على الحقل C على الحقل C على الحقل C تكون مرتبطة خطياً .

$$(i,1-2i), (1,-3), (0,1+i)$$

$$(1+i,0), (0,1-i)$$

$$.(0,1),(-1,0)$$

$$(1+i,2), (-1+i,2i)$$

- من المجموعات الجزئية التالية من المتجهات في \mathbb{C}^2 على الحقل \mathbb{R} تكون مرتبطة خطياً .
 - (i,1-2i), (1,-3), (0,1+i)

$$(1+i,2), (-1+i,2i)$$

$$(1,0)$$
, $(0,i)$, $(2i,0)$, $(1+i,1-i)$ (7)

$$(1+i,2-3i), (1,0), (0,i), (2i,0), (0,7)$$

 R^3 في S ان مجموعة المتجهات S

$$S = \{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\}$$

تكون مجموعة مرتبطة خطياً لكن اي مجموعة جزئية منها مكونة من ثلاث متجهات تكون مستقلة خطياً.

- 8 ــ تحت اي شرط على العددين الحقيقين a,b يكون المتجهان (1,a) و (1,b) مستقلين خطياً في R².
 - . R^3 قيم a الحقيقية تكون المتجهات التالية مجموعة مرتبطة خطياً في $A_1 = (a,-1,-1), A_2 = (-1,a,-1), A_3 = (-1,-1,a)$
 - R^2 هل ان المجموعة الجزئية من = 10

$$S = \{(x,y): x^2 + y^2 = 1\}$$

مجموعة مرتبطة خطياً ام مستقلة خطياً.

- 11 __ افرض ان V هو فضاء المتجهات المتكون من جميع الدوال ذات القيم الحقيقية والمعرفة على المستقيم الحقيقي بأكمله. اي من المجموعات الجزئية التالية من المتجهات في V تكون مرتبط خطياً.
 - ${3,-\sin^2 x, 2\cos^2 x}(1)$
 - $\{2x, Cosx\}$
 - . {-4, Sinx, Sin2x}(ج)
 - $\{\cos 2x, \sin^2 x, \cos^2 x\}$
 - $\{(1+x)^2, x^2+2x, -2\}$
 - $\{0,x,x^2,x^3\}$
- $P_1(R)$ في البت الله اي مجموعة جزئية مكونة من ثلاث متجهات او اكثر في $P_1(R)$ تكون مرتبطة خطياً.

13 __ إفترض ان V هو فضاء المتجهات المكون من الدوال ذات القيم الحقيقية والمعرفة على المستقيم الحقيقي بأكمله. اذا كانت h,g,f متجهات في V بحيث تكون قابلة للاشتقاق مرتين، فإن الدالة w المعرفة بواسطة:

$$w(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ f(x) & g(x) & h(x) \\ f(x) & g(x) & h(x) \end{vmatrix}$$

تسمى رونسكيان h,g,f. اثبت ان h,g,f تكون مجموعة مستقلة خطياً من المتجهات اذا وفقط اذا لم يكن الرونسكيان هو المتجه الصفري في V (اي ان w(x)

14 _ استحدم الرونسكيان (تمرين 13) لاثبات ان مجموعات المتجهات التالية تكون مستقلة حطياً.

 $.\{1,x,e^{x}\}(1)$

(ب) Sinx, Cosx, xSinx

 $.\{e^x, xe^x, x^2e^x\}(\tau)$

 $\{1, x, x^2\}$

(1.8) القواعد والفضاءات المنتهية البعد

Bases and Finite Dimensional vector Spaces

لاحظنا في البند (1.6) وجود مجموعات جزئية من فضاءات المتجهات بأستطاعتها توليد تلك الفضاءات، اي ان كل متجه في الفضاء يمكن كتابته $S=\{(1,0), (0,1)\}$ المجموعة ، فمثلاً المجموعة الجزئية , $(0,1)\}$ من الفضاء R على الحقل R تولد ذلك الفضاء .

بعض الفضاءات مثل فضاء متعددات الحدود ذات المعاملات الحقيقية ومن اي درجة لايمكن توليدها من قبل مجموعة منتهية من المتجهات. سنركز في هذا الكتاب فقط على الفضاءات التي يمكن توليدها من قبل مجموعة منتهية من المتجهات وسنطلق اسماً معيناً على تلك الفضاءات، ثم نطلق اسم « قاعدة » على اصغر تلك المجموعات، ونناقش هذه المسألة بإسهاب.

تعریف:

ليكن V فضاء متجهات على الحقل F. يقال بأن V فضاء منتهي البعد اذاً وفقط اذا وجدت مجموعة جزئية منتهية S من V بحيث ان S تكون مجموعة مولدة الى V.

مثال (1):

الفضاء R^n على الحقل R يكون فضاءاً منتهي البعد، وذلك لان المجموعة A_1 A_2 A_n : الجزئية : $S = \{(1,0,0,\ldots,0)\,,\,(0,1,0,\ldots,0),\,\ldots,\,(0,0,\ldots,0,1)\}$

منتهية وتولد Rⁿ .

فمثلاً عندما n = 3 ، تكون .

 $S = \{(1,0,0), (0,1,0), (0,0,1)\}$

وان اي متجه $\mathbf{A}=(a_1,a_2,a_3)=\mathbf{A}$ يمكن كتابته كتركيب خطي من متجهات المجموعة \mathbf{S} كلاتي :

 $A = a_1(1,0,0) + a_2(0,1,0) + a_3(0,0,1)$

ملاحظـة:

اذا كان الفضاء منتهي البعد فإنه توجد اكثر من مجموعة جزئية منتهية ومولدة للفضاء فمثلاً المجموعة

 $S = \{(2,0,0), (0,3,0), (0,0,-1), (4,2,7)\}$

تكون ايضاً مولدة الى R³

مثال (2):

ليكن (R) فضاء المتجهات على الحقل R الذي يحتوي على جميع متعددات الحدود بـ X. ان (R) ليس فضاءاً منتهي البعد. فإذا افترضنا ان المجموعة الجزئية $S=\{A_1(x),\dots,A_n(x)\}$ تولد الفضاء لحصلنا على تناقض لان متعددة الحدود $B(x)=xA_n(x)$

تكون متعددة حدود ذات درجة (n+1) ولايمكن كتابتها كتركيب خطي من $A_1(x),\dots,A_n(x)$

في ضوء الملاحظة اعلاه نذكر المبرهنة التالية:

مبرهنة (1.8.1):

اذا كان V فضاء متجهات منتهي البعد فإنه توجد مجموعة جزئية منتهية ومستقلة خطياً S بحيث S بحيث S اي ان S يولد من قبل مجموعة منتهية ومستقلة خطياً S .

البرهان:

بما ان V فضاء منتهي البعد فعليه توجد مجموعة جزئية منتهية $V = S = \{A_1, \dots, A_n\}$

اذا كانت S مجموعة مستقلة خطياً فإنه لايوجد شيىء يستحق البرهان . اما اذا كانت S مجموعة مرتبطة خطياً فحسب المبرهنة (1.7.3)، يوجد متجه $A_k \in S$ يعتمد خطياً على بقية المتجهات وبإعادة الترتيب ان اقتضت الضرورة يمكننا ان نفترض ان A_n يمكن كتابته كتركيب خطي من بقية المتجهات A_{n-1} مستقلة لتكن $S_1 = \{A_1, \dots, A_{n-1}\}$ مستقلة لتكن $S_1 = \{A_1, \dots, A_{n-1}\}$

خطياً فإنتهى البرهان ، اما اذا كانت مرتبطة خطياً فنحذف المتجه الذي يعتمد خطياً على بقية المتجهات ونحصل على مجموعة S_2 تحقق : $[S_1] = [S_1]$ وهكذا الى ان نصل الى مجموعة جزئية $S_k \subset S$ تكون مستقلة خطياً وتحقق $S_k \subset S$ = $[S_1] = [S] = V$

(و . هـ . م .)

ان المجموعات الجزئية التي تنصف بكونها مولدة ومستقلة خطياً مهمة جداً، واساسية في تطوير دراسة الموضوع، لذلك نقدم التعريف الآتي:

تعریف:

يقال بأن المجموعة الجزئية S من فضاء المتجهات V قاعدة الى V اذا وفقط اذا كانت S مجموعة مولدة ومستقلة خطياً.

بما اننا اعطينا امثلة كثيرة في البندين (1.6)، (1.7) على مسألتي توليد الفضاء والاستقلال الخطي فإننا سنكتفي بذكر بعض القواعد لبعض الفضاءات دون التحقيق.

مثال (3):

S={(1,0,...,0), (0,1,0,...,0), (0,0,...,0,1)} المجموعة

المتكونة من n من المتجهات تكون قاعدة للفضاء F^n على الحقل F وذلك لاي عدد طبيعي n ولاي حقل F . هذه القاعدة تسمى القاعدة الطبيعية .

نود الاشارة هنا الى انه بالامكان تواجد قواعد عديدة مختلفة للفضاء نفسه، كما في المثال أدناه.

مثال (4):

, $S_1 = \{(2,0), (0,-1)\}$, $S_2 = \{(1,4), (2,3)\}$ المجموعيات . R على الحقل R^2 على الحقل $S_3 = \{(2,5), (0,1)\}$

مثال (5):

المجموعة

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

تكون قاعدة للفضاء (M2(R) على الحقل R ، وتسمى بالقاعدة الطبيعية .

مثال (6):

المجموعة: $\{1,x,x^2,...,x^n\}$ تكون قاعدة للفضاء $P_n(F)$ وذلك لاي عدد طبيعي n ولاي حقل F. هذه القاعدة تسمى بالقاعدة الطبيعية. راجع مثال (4) من البند (1.3).

مثال (7):

المجموعة $\{(0,1), (0,1)\}$ = S تكون قاعدة للفضاء C على الحقل C . لكنها لاتصلح بأن تكون قاعدة للفضاء C على الحقل C ، وذلك لكونها غير مولدة لذلك الفضاء ولرؤية ذلك نلاحظ بأن المتجه (2i,0) لايمكن كتابته كتركيب خطي من المتجهين (0,1) , (0,1) خصوصاً وان اعدادنا القياسية هي اعداد حقيقية .

المجموعة : $S = \{(1,0), (i,0), (0,1), (0,i)\}$ تكون قاعدة للفضاء C^{2} على الحقل R

الامثلة الاتية تبين كيفية ايجاد القواعد لبعض الفضاءات الجزئية.

مثال (8):

من فضاء $M = \{(x,y,z): 2x-y+z=0\}$ من من فضاء الجن $R = \{(x,y,z): 2x-y+z=0\}$ من فضاء المتجهات $R = \{(x,y,z): x-y+z=0\}$ من فضاء

احل: بعد التعويض عن احد المتغيرات وليكن z مثلاً بدلالة المتغيرين الاخرين، يمكننا وصف الفضاء الجزئي M كالاتي:

$$M = \{(x,y,z): x = x, y = y, z = y-2x'\}$$

وبذلك كتبنا جميع المتغيرات بدلالة المتغيرين الحرين y,x بأخذ y=0 y=0 تكون y=0 وبذلك نحصل على المتجه y=0 وعند اخذ y=0 وعند اخذ y=0 تكون y=0 فينحصل على المتجه y=0 وبذلك حصلنا على متجهين y=0 فينحصل على المتجه y=0 وبذلك حصلنا على متجهين y=0 فينحصل على المتجه y=0 مستقلين خطياً ومولدين للفضاء y=0 وذلك لانه اذا y=0 مستقلين خطياً ومولدين للفضاء y=0 فين y=0 فين y=0 وذلك لانه اذا اخذنا اي متجه في y=0 وليكن: y=0 على النحو التالي y=0 كتابة y=0 كتركيب خطي من y=0 على النحو التالي y=0 كتابة y=0 كتركيب خطي من y=0 على النحو التالي y=0

. M عليه تكون المجموعة $S = \{A_1, A_2\}$ قاعدة للفضاء الجزئي

مثال (9):

جد قاعدة للفضاء الجزئي:

$$M = \{a + bx + cx^2 + dx^3 : a + b = c - 2d = o'\}$$

من الفضاء (P₃(R).

M و b=-a عندئذ يمكننا وصف الفضاء الجزئي b=-a كالاتى :

$$M = {a + bx + cx^2 + dx^3 : a = a, b = -a, c = 2d, d}$$

كتبنا جميع المتغيرات بدلالة المتغيرين d,a عند التعويض: a=1 , d=0 تكون قيمة b=-1 و c=0 وبذلك نحصل على المتجه:

$$A_1 = 1 + (-1)x + 0.x^2 + 0.x^3 = 1-x$$

وعند التعويض: a=0 , d=1 وبذلك نحصل على المتجه:

$$A_2 = 0 + 0.x + 2.x^2 + 1.x^3 = 2x^2 + x^3$$

M مستقلان خطياً ومولدان للفضاء M وذلك لان اي متجه في A_1 , A_2 مستقلان خطياً ومولدان للفضاء A_1 , A_2 عكن كتابته كتركيب وليكن $A=a+bx+cx^2+dx^3$ على النحو التالي : $A=aA_1+dA_2$ على النحو التالي : $A=aA_1+dA_2$ قاعدة للفضاء الجزئي $A=aA_1+dA_2$ عليه تكون المجموعة $A=aA_1+dA_2$ قاعدة للفضاء الجزئي $A=aA_1+dA_2$ عليه تكون المجموعة $A=aA_1+dA_2$ قاعدة للفضاء الجزئي $A=aA_1+dA_2$

مثال (10):

جد قاعدة للفضاء الجزئي $M = \{(x,y): y = ix\}$ من الفضاء C^2 على الحقل R وجد قاعدة له . C^2 على الحقل R وجد قاعدة له .

الحل: نلاحظ هنا وجود متغير واحد حر وهو x، ففي حالة كون M فضاءاً جزئياً من الفضاء C^2 على الحقل C^2 نعوض عن C^2 ونحصل على متجه واحد C^2 الذي بدوره يكون قاعدة الى C^2 . اما في حالة كون C^2 فضاءاً جزئياً من الفضاء C^2 على الحقل C^2 منعوض مرة عن C^2 وغصل على C^2 على C^2 على C^2 على C^2 على C^2 على C^2 عبارة عن C^2 على C^2 على C^2 عبارة عن C^2 وبذلك تكون المجموعة C^2 على الحقل C^2 عبارة عن قاعدة الى C^2 على الحقل C^2 عبارة عن قاعدة الى C^2 على الحقل C^2 عبارة عن معاملات التركيب الخطي تكون اعداداً حقيقية فلو اخذنا C^2 على الحقل C^2 عبارة عبارة عن C^2 عبارة عبارة عبارة عبارة عبارة عبارة التركيب الخطي تكون اعداداً حقيقية فلو اخذنا C^2 على الحقل C^2 عبارة عبارة عبارة عبارة عبارة عبارة عبارة الحالة عبارة عبارة عبارة عبارة عبارة عبارة عبارة عبارة الحالة عبارة عبار

اي ان المجموعة S تكون مولدة للفضاء الجزئي M من الفضاء C^2 على الحقل R . وبما انها مجموعة مستقلة خطياً فإنها ستكون قاعدة الى M .

بعد اعطاء عدد لابأس به من الامثلة على القواعد، نود الان مناقشة الامور النظرية المتعلقة بهذا الموضوع، حيث اننا لاحظنا في المبرهنة (1.8.1) ان اي فضاء منتهي البعد عنده قاعدة مكونة من عدد منتهي من المتجهات. السؤال هنا، هل توجد قاعدتان تختلفان في عدد متجهاتهما؟ الاجابة بالنفي وسنذكر البرهان بعد ذكر بعض النتائج التي تؤدي اليه.

مبرهنة (1.8.2):

V لتكن M من الفضاء $B=\{A_1,...,A_n\}$ من الفضاء $S=\{C_1,...,C_m\}$ على الحقل F ، ولتكن $S=\{C_1,...,C_m\}$ من المتجهات في M ، عندئذ يكون M

البرهان:

لننظر الى المجموعة C_1 M ان $M_1 = \{C_1, A_1, ..., A_n\}$ والمجموعة $A_1, ..., A_n\}$ على $A_1, ..., A_n$ معتمداً خطياً على $A_1, ..., A_n\}$ معتمداً خطياً على المجموعة $A_1, ..., A_n\}$ وبذلك تكون المجموعة $A_1, ..., A_n$ مرتبطة خطياً حسب المبرهنة (1.7.4) احد المتجهات في $A_1, ..., A_n$ ان اقتضت الضرورة ، من المتجهات التي تسبقه بإعادة ترقيم المتجهات $A_1, ..., A_n$ ان اقتضت الضرورة ، يمكننا ان نفترض ان المتجه $A_1, ..., A_n$ يكتب كتركيب خطي من المتجهات التي تسبقه . $A_1, ..., A_n$ ونلاحظ ان المجموعة $A_1, ..., A_n$ تولد الفضاء المجزئي $A_1, ..., A_n$

وللاسباب السابقة نفسها نلاحظ ان المجموعة وللاسباب السابقة نفسها نلاحظ ان المجموعة وللاسباب السابقة نفسها نلاحظ ان المجموعة $B_2 = \{C_2, C_1, A_1, \dots, A_{n-1}\}$ المولدة للفضاء المتجه A_{n-1} والحصول على المجموعة A_{n-2} على المجموعة A_{n-1} المولدة للفضاء المجزئي A_n نستمر هكذا، ففي كل مرة ندخل متجه A_n ونحذف متجه A_n فإذا كانت A_n فإننا سنصل للمجموعة A_n المولدة للفضاء الجزئي كانت A_n المولدة للفضاء الجزئي A_n المولدة للفضاء المجموعة A_n المولدة للفضاء المجموعة A_n المولدة للفضاء المجموعة A_n المولدة للفضاء المحموعة A_n المولدة للمحموعة A_n المولدة للفضاء المحموعة A_n المولدة للفضاء المحموعة A_n المولدة للمحموعة A_n المحموعة A_n

إذن m **∠**n .

(و . هـ . م :)

مبرهنة (1.8.3):

كل فضاء متجهات V منتهي البعد عنده قاعدة ، واي قاعدتين تحتويان على نفس العدد من المتجهات .

البرهان:

المبرهنة (1.8.1) وتعريف القاعدة الذي يليها ينصان على ان لكل فضاء متجهات منتهي البعد توجد قاعدة . لنفرض الآن ان

 $G = \{A_1, \dots, A_n\}, H = \{B_1, \dots, B_m\}$

قاعدتان الى V. بما ان H مجموعة مولدة الى V و G مجموعة مستقلة خطياً فيكون لدينا حسب المرهنة $n \leq m$ (1.8.2).

بما ان G مجموعة مولدة الى V و H مجموعة مستقلة خطياً فيكون لدينا m = n للاسباب نفسها $m \neq n$ بذلك يكون m = n

(و . هـ . م .)

على ضوء المبرهنة (1.8.3) يمكننا ان نقدم التعريف التالي:

تعریف:

V فضاء متجهات منتهي البعد. يسمى عدد عناصر قاعدة V ببعد V ويرمز له بالرمز V فضاء متجهات منتهي البعد V

 $\dim(V) = \dim \operatorname{ension} \operatorname{of} V$

مثال (11) :

(1) هو n اي ان \mathbb{R}^n اي ان \mathbb{R}^n لاحظ ان بعد \mathbb{R}^n

مثال (12) :

ليكن V هو الفضاء C^n على الحقل C^n بذلك يكون $\dim V = n$ اما اذا اعتبرنا V هو الفضاء C^n على الحقل V فإن $\dim V = 2n$

قاً ن هذا المثال بالمثال رقم (7).

مثال (13):

. (5) قارن هذا المثال بالمثال (5) . dim $(M_2(R)) = 4$

مثال (14):

. (6) قارن هذا المثال بالمثال ($P_n(R)$) = n+1

ملاحظة:

على ضوء المبرهنة (1.8.2) لايمكن لاي فضاء ان يكون فضاءاً منتهي البعد، اذا احتوى على مجموعة لانهائية من المتجهات المستقلة خطياً. لتطبيق هذه الفكرة نورد المثال التالى:

مثال (15) :

لقد لاحظنا في مثال (2) ان الفضاء (R) و P ليس فضاءاً منتهي البعد. نلاحظ هذا من خلال الملاحظة اعلاه. متعددات الحدود

$$A_1(x) = x$$
, $A_2(x) = x^2$, ..., $A_n(x) = x^n$,...

تكوّن مجموعة مستقلة خطياً ولانهائية وبذلك وحسب الملاحظة اعلاه لايمكن للفضاء (R) - المحتوى على تلك المتعددات بأن يكون منتهي البعد.

مبرهنة (1.8.4):

لتكن $\{A_1,\dots,A_n,A_n\}$ قاعدة لفضاء المتجهات المنتهي البعد $A\in V$. ان اي متجه $A\in V$ يمكن كتابته بطريقة واحدة وواحدة فقط كتركيب خطي :

$$A = a_1 A_1 + \dots + a_n A_n$$

البرهان:

ما ان B قاعدة الى V فإن المتجه $\mathbf{A} \in \mathbf{V}$ يكون تركيباً خطياً لعناصرها $\mathbf{A}_1, \dots, \mathbf{A}_n$ ولنفرض انه بالصيغة :

$$A = a_1 A_1 + \dots + a_n A_n$$

= $a_1 A_1 + \dots + a_n A_n$

اي ان A كتب بطريقتين مختلفتين . بذلك نحصل على

$$(a_1 - a_1) A_1 + \dots + (a_n - a_n) A_n = 0$$

بما ان المجموعــة $\{A_1,...,A_n\}$ مستقلــة خطيــاً، فعليــه يكـــون: $a_1-a_1'=...=a_n-a_n'=0$

من هذا نستنتج على ان $a_1=a_1^-,\dots,a_n=a_n^-$ اي ان A يكتب بطريقة واحدة فقط كتركيب خطى من متجهات القاعدة B .

(و . هـ . م .)

مبرهنــة (1.8.5):

ليكن V فضاء متجهات منتهي البعد ولتكن $A_1, \, \dots, \, A_m$ متجهات مستقلة خطياً في V . V توجد متجهات $B_1, \, \dots, \, B_n$ في V . يوجد متجهات $\{A_1, \, \dots, \, A_m, \, B_1, \, \dots, \, B_n \}$ تكون قاعدة الى V .

البرهان:

V اذا کان $A_1, ..., A_m$ ، اي ان المجموعة $A_1, ..., A_m$ تولد $A_1, ..., A_m$ اذا کان $A_1, ..., A_m$ ولا يوجد شيء يبرهن . بخلاف ذلك فإنه يوجد متجه فأنها ستكون قاعدة الى $A_1, ..., A_m$ ولا يوجد من المتجهات $A_1, ..., A_m$ کتابته کترکیب خطي من المتجهات $A_1, ..., A_m$

بذلك نستنتج على ان المجموعة $\{A_1,\;\dots,\;A_m,\;B_1\}$ تكون مجموعة مستقلة خطياً لانه لو كانت مرتبطة خطياً لامكن لاحد متجهاتها ان يكتب كتركيب خطي من المتجهات التي تسبقه (مبرهنة 1.7.4).

 $\{A_1, ..., A_m\}$ المتجه لايمكن ان يكون A_k هذا المتجه المحموعة

مستقلة خطياً، ولا يمكن ان يكون B_1 وذلك بالفرض. الان اذا كانت المجموعة مستقلة خطياً، ولا يمكن ان يكون A_1 , ..., A_m , B_1 فإن البرهان قد انتهى، بخلافه يوجد متجه $B_2 \in V$ لا يمكن ان يكتب كتركيب خطي من المتجهات A_1 , ..., A_m , B_1 , وبذلك نستنتج بأن المجموعة A_1 , ..., A_m , A_1 , ..., A_m , A_1 , A_1 , A_2 مستقلة خطياً للاسباب السابقة نفسها وهكذا. فأذا كانت مولدة انتهى البرهان وان لم تكن فنضيف متجهاً جديداً. بما ان V فضاء منتهي البعد، فإن هذه العملية لابد لها من نهاية ولابد ان نصل الى محموعة مولدة بعد اضافة عدد محدود من المتجهات A_1 , ..., A_n .

(و . هـ . م .)

ملاحظة:

المبرهنة اعلاه تنص على انه بإمكان اي مجموعة جزيئة مستقلة خطياً من فضاء متجهات منتهي البعد ان تكون مجموعة جزئية من قاعدة لذلك الفضاء. بهذه الحالة نقول بأن تلك المجموعة الجزئية قد وسعت الى قاعدة لذلك الفضاء.

مثال (16):

. \mathbb{R}^2 الى قاعدة الى \mathbb{R}^2 الحزئية من المجموعة الى الحراقية الى المجموعة الى المحروبية المحروبية

الحل: بما ان 2 = (2n). إذن اي قاعدة الى R^2 يجب ان تحتوي على متجهين. فلاحظ بأن المتجه (1,0) لا يمكن ان يكتب كتركيب خطي من المتجه (1,2). بذلك تكون المجموعة $\{(1,2), (1,0)\}$ قاعدة الى R^2 . المجموعة $\{(3,5), (3,5)\}$ تكون قاعدة أخرى وهكذا.

مثال (17) :

جد قاعدة للفضاء $P_3\left(R\right)$ على الحقل R تحتوي على مجموعة المتجهات $\left\{x+1,2x^2\right\}$ المسالة خطياً .

الحل: يجب اضافة متجهين للمجموعة اعلاه وذلك لأن اي قاعدة الى $P_3(R)$ تحتوي $P_3(R)$

على اربعة متجهات بسبب ان $4 = \dim(P_3(R)) + 4$. للسهولة نتبع الخطوات التالية في جميع المسائل من هذا النوع.

الخطوة الأولى: نضيف متجهات القاعدة الطبيعية للمجموعة المعطاة. بهذه الحالة $x+1,2x^2,1,x,x^2,x^3$

الخطوة الثانية: نحذف ابتداء من اليسار كل متجه يمكن كتابته كتركيب خطي من المتجهات التي تسبقه.

x+1, المتجه 1 لايمكن ان يكتب كتركيب خطي من المتجهات $2x^2$

 $x = 1.(x+1) + 0.(2x^2) + (-1).1$ عا ان:

نحذف x وننظر للمجموعة $\{x+1, 2x^2, 1, x^2, x^3\}$ هذه المجموعة مستقلة خطياً ومولدة للفضاء $P_3(R)$ وبذلك تكون قاعدة محتوية على المجموعة المستقلة $\{x+1, 2x^2\}$.

نورد الان بعض النتائج للمبرهنات التي ذكرناها.

نتيجة (1.8.6):

n+1 في اي فضاء متجهات ذي بعد n، اي مجموعة جزئية تحتوي على n+1 من المتجهات تكون مرتبطة خطياً.

البرهان:

لو كانت المجموعة الجزئية مستقلة خطياً لاصبح بالامكان وحسب (مبرهنة 1.8.5) ايجاد قاعدة تحتوي عليها وبذلك يكون عدد متجهات تلك القاعدة اكبر او يساوي n+1، اي ان بعد الفضاء يكون اكبر او مساوياً الى n+1، وهذا تناقص.

(و. هـ ، م.)

نتيجة (1.8.7):

 $\dim M \leq \dim V$ اذا كان M فضاءاً جزئياً من فضاء المتجهات M فإن M=V ، بالاضافة الى ذلك فإنه اذا كان M=V .

البرهان:

ان اي قاعدة الى M تكون مستقلة خطياً وبذلك تكون جزء من قاعدة الى V ، وعليه يكون عدد متجهات تلك القاعدة الى V اكبر او مساوي الى عدد متجهات قاعدة M نستنتج من هذا على ان M M M M M .

اذا كان M = dim V فإن اي قاعدة الى M تكون قاعدة الى V وبذلك يكون M = V .

(و . هـ . م .)

نتيجة (1.8.8):

اذا كان V فضاء متجهات ذا بعد n فإن:

- V متكونة من N من المتجهات تكون قاعدة الى N اذا كانت مستقلة خطباً.
- V من المتجهات تكون قاعدة الى V متكونة من V من المتجهات تكون قاعدة الى V اذا كانت تولد V .

البرهان :

- المبرهنة $S = \{A_1, ..., A_n\}$ تكن $S = \{A_1, ..., A_n\}$ عموعة جزئية T = T بحيث ان T مستقلة خطياً و (1.8.1)

V = [S] = [T] لكن V = [S] = [T] وبهذا نحصل على تناقض V = [S] = [T] في حالة عدم كون V = [S] = [T] قاعدة الى V = [S]

(و . هـ . م .)

النتيجة اعلاه مفيدة لانه اذا عرفنا بعد الفضاء فيكفي للمجموعة الجزئية المتكونة من عدد من المتجهات مساوي الى بعد الفضاء بأن تكون قاعدة اذا كانت مستقلة خطياً او مولدة لذلك الفضاء.

اذا كان كل من M و N فضاءاً جزئياً من فضاء المتجهات V فإنه بالامكان تعريف الفضاء الجزئي M+N (راجع البند M+N). المبرهنة التالية تحسب لنا بعد M+N .

مبرهنة (1.8.9):

 $\dim(M+N) = \dim(M) + \dim(N) - \dim(M \cap N)$

البرهان:

 $\mathsf{M} \cap \mathsf{N} \neq \{0\}$ قاعدة الى $\mathsf{M} \cap \mathsf{N}$ ، على فرض ان $\mathsf{A}_1, \dots, \mathsf{A}_n$.

بما ان $M \cap N \subset M$ و $M \cap N \subset N$ ، فعليه يمكننا ان نوسع المجموعة $M \cap N \subset M$ الى $M \cap N \subset M$..., A_r ...

$$\dim (M \cap N) = r$$
, $\dim M = r + s$, $\dim N = r + t$

لكي نثبت المبرهنة بقى ان نبرهن على ان r+s+t ان لمجموعة $\{A_1,...,A_r,B_1,...,B_s,C_1,...,C_t\}$ ونحاول ان نثبت المغرض، ننظر للمجموعة $\{M+N\}$ وبما ان عدد متجهاتها يساوي $\{m+s+t\}$ فعليه عاصدة للفضاء الجزئي $\{m+s+t\}$ وبما ان عدد متجهاتها يساوي $\{m+s+t\}$ فعليه يكون $\{m+s+t\}$ وبدلك يكتمل البرهان في حالة يكون

 $M \cap N = \{O\}$. نبرهن اولاً ان المجموعة اعلاه مجموعة مولدة الى $M \cap N = \{O\}$ الغرض نأخذ اي متجه $A \in M + N$ ونكتب $A \cap A = B + C$ عيث $A \in M + N$ متجه $A \in M + N$ تكون قاعدة الى $A \in M + N$ تكون قاعدة الى تكون قاعدة

 $B = x_1A_1 + ... + x_1A_r + y_1B_1 + + y_sB_s$

بما ان المجموعة $\{A_1, ..., A_r, C_1, ..., C_t\}$ تكون قاعدة الى N فعليه توجد اعداد قياسية يا نا المتجه $Z_1, ..., Z_r, w_1, ..., w_t$ على الشكل:

 $C = z_1 A_1 + ... + z_r A_r + w_1 C_1 + ... + w_r C_r$

بهذا يكون لدينا:

 $A = B + C = (x_1 + z_1)A_1 + \dots + (x_r + z_r)A_r + y_1B_1 + \dots + y_sB_s + w_1C_1 + \dots + w_rC_r$

اي ان A أمكن كتابته كتركيب خطى من متجهات المجموعة

وهذا يعني انها مجموعة مولدة للفضاء $\{A_1,...,A_r,B_1,...,B_s,C_1,...,C_t\}$ وهذا يعني انها مجموعة مولدة للفضاء الجزئي M+N نبوهن الان على ان المجموعة $\{A_1,..A_r,B_1,...,B_s,C_1,...,C_t\}$ مستقلة خطياً .

ليكن:

 $x_1A_1+...+x_rA_r+y_1B_1+...+y_sB_s+z_1C_1+...+...+z_tC_t=0$ تركيباً خطياً مساوياً للصفر . المطلوب برهانه هنا ان جميع الاعداد القياسية تركيباً خطياً مساوياً للصفر . $x_1,...,x_r,y_1,...,y_s,z_1,...,z_t$ اعلاه بالصيغة :

 $x_1A_1 + ... + x_rA_r + y_1B_1 + ... + y_sB_s = -z_1C_1 - z_tC_t$ الطرف الايسر للمعادلة اعلاه عبارة عن متجه في M وذلك لانه تركيب خطي من متجهات قاعدة M وهو يساوي الطرف الايمن الذي يعتبر متجهاً في N لانه تركيب

خطي من متجهات منتمية الى N . بذلك ينتمي كلا الطرفان الى كل من M و N ، اي الى التقاطع $M\cap N$. بهذه الحالة يمكن كتابة كل من الطرفين كتركيب خطي : $W_1A_1+\ldots+W_rA_r$ من متجهات قاعدة $M\cap N$ ، وبذلك نحصل على

$$x_1A_1 + ... + x_rA_r + y_1B_1 + ... + y_sB_s = w_1A_1 + ... + w_rA_r$$

 $-z_1C_1 - ... - z_tC_t = w_1A_1 + ... + w_rA_r$

بالأمكان كتابة المعادلتين اعلاه بالصيغة التالية:

$$(x_1 - w_1) A_1 + ... + (x_r - w_r) A_r + y_1 B_1 + ... + y_s B_s = 0$$

$$w_1A_1 + + w_rA_r + z_1C_1 + ... + z_tC_t = 0$$

المعادلتان اعلاه تمثلان تركيبين خطيين مساويين للصفر لمجموعتي متجهات مستقلتين خطياً، بذلك نستنتج على ان جميع المعاملات تكون مساوية للصفر اي ان:

$$x_1-w_1=0, ..., x_r-w_r=0, y_1=0, ..., y_s=0, w_1=0, ..., w_r=0, z_1=0, ..., z_t=0$$

 $x_1=0,...,x_r=0,\ y_1=0,...,\ y_s=0,\ z_1=0\ ,...,\ z_t=0$ هذا يعنى ان $\{A_1,...,A_r,\ B_1,...,\ B_s,C_1,...,C_t\}$ مستقلة خطياً. في وبذلك تكون المجموعة $\{A_1,...,A_r,\ B_1,...,\ B_s,C_1,...,C_t\}$ مستقلة خطياً. في حالة كون $\{0,1\}$ مستقلة خطياً.

نفرض ان المجموعة $\{A_1,\dots,A_m,B_1,\dots,B_n\}$ تكون قاعدة الى M والمجموعة $\{A_1,\dots,A_m,B_1,\dots,B_n\}$ تكون قاعدة الى N ونحاول ان نبرهن على ان المجموعة اعلاه مجموعة موّلدة الى $M+N=M\oplus N$ وذلك قاعدة الى $M+N=M\oplus N$ المجموعة اعلاه مجموعة موّلدة الى $M+N=M\oplus N$ للبرهنة على ان يمكن برهنته بسهولة وبطريقة مماثلة للحالة الاولى ($\{0\}\}$ $\{0\}\}$ للبرهنة على ان المجموعة $\{A_1,\dots,A_m,B_1,\dots,B_n\}$ مستقلة خطياً . نأخذ تركيباً خطياً مساوياً للصفي :

$$\mathbf{x_1} \mathbf{A_1} + ... + \mathbf{x_m} \mathbf{A_m} + \mathbf{y_1} \mathbf{B_1} + ... + \mathbf{y_n} \mathbf{B_n} = \mathbf{O}$$
 : ونكتبه بالصيغة

$$x_1A_1 + ... + x_mA_m = (-y_1)B_1 + ... + (-y_n)B_n$$

الطرف الايسر متجه في M ويساوي الطرف الايمن الذي بدوره يكون متجهاً في M وبالتالي ينتمي كلا الطرفين الى كل من M و M اي الى التقاطع $M \cap M$. لكن $M \cap M \cap M$ بالفرض. إذن

$$x_1A_1 + \dots + x_mA_m = \hat{\mathbf{O}}$$

$$(-y_1) B_1 + ... + (-y_n) B_n = O$$

بما ان المجموعتين $\{A_1, ..., A_m\}$ مستقلتان خطياً ، فعليه نستنتج :

$$x_1 = 0, ..., x_m = 0, y_1 = 0, ..., y_n = 0$$

بذلك تكون المجموعة $\{A_1,...,A_m,B_1,...,B_n\}$ مستقلة خطياً . هذا يثبت ان $\dim(M \oplus N) = m+n$ وهذا يتفق مع النتيجة العامة في حالة كون $\dim(M \cap N) = 0$. $\dim(M \cap N) = 0$

(و . هـ . م .)

· مثال (18) :

اذا علـمت ان R^3 من R^3 اذا علـمت ان M+N جد بعد الفضاء الجزئي M+N من $N=\{(x,y,z): 2x+5y=0\}$ م برهن على ان $N=\{(x,y,z): x-2y+z=0\}$. $M+N=R^3$

الحل: بتطبيق المبرهنة (1.8.9) نلاحظ ان

 $\dim (M + N) = \dim M + \dim N - \dim (M \cap N)$

لذلك نحاول ان نجد ابعاد الفضاءات الجزئية M, N, M \ N بالامكان وصف M, N, M بالصيغة التالية:

$$M = \{(x,y,z): x = x, y = y, z = -x + 2y \}$$

$$N = \{(x,y,z): x = x, y = (-2/5)x, z = z \}$$

وكما وضحنا في الأمثلة السابقة فإنه بالامكان اختيار المجموعتين:

 $C = \{(1, -2/5, 0), (0,0,1)\}, B = \{(1,0,-1), (0,1,2)\}$

كقواعد الى كل من M و N على الترتيب. بذلك يكون لدينا:

 $\dim N = 2$, $\dim M = 2$

لحساب $M \cap N$ نفترض ان المتجه $M \cap N \in M$ بذلك يكون لدينا z = -x+2y وعند التعويض نحصل على :

z = -x + 2(-2/5)x = (-9/5)x

عندئذ يمكن وصف التقاطع بالصيغة:

 $M \cap N = \{(x,y,z): x = x, y = (-2/5)x, z = (-9/5)x \}$

وبهذا یکون لدینا متغیر واحد حر وهو x وبأحتیار القیمة x=5 نحصل علی المتجه (۶- ,2-) الذي بدوره یکون قاعدة الی $M \cap N$.

هذا يعني ان 1 = (M \bigcap N) . المعادلة المذكورة في المبرهنة (1.8.9) تنتج:

 $\dim (M + N) = 2 + 2 - 1 = 3$

 $\dim (M + N) = \dim (R^3)$ ای أن

وبما ان M+N فضاء جزئي من R^3 فعليه وحسب نتيجة (1.8.7) يكون :

 $M + N = R^3$

تمارين (1.8)

 R^3 اي من المجموعات الجزئية التالية تكون قاعدة الى R^3 .

 $E = \{(-1,2,0), (0,1,0), (1,2,3)\}$

 $F = \{(1,2,0), (0,5,7), (-1,1,3)\}$

 $G = \{(-1,1,4), (0,2,0), (1,1,1), (0,2,5)\}$

 $H = \{(0,5,7), (-1,2,-3), (-2,9,1)\}$

على الحقل $P_2(R)$ على الحقل الخلاء و الحقل الخموعات الجزئية التالية تكون قاعدة للفضاء $P_2(R)$

E =
$$\{-1, 1-x, -2x^2\}$$

F = $\{1, (x-2), (x-2) (x+1)\}$
G = $\{1 + x-x^2, 2-x + 3x^2, 1-2x + 4x^2\}$
H = $\{1 + x + x^2, x^2, x^2-2\}$

م اعتبر $M_2(C)$, 2×2 الحقل R ، ثم اعتبر $M_2(C)$ على الحقل $M_2(C)$ ، ثم اعتبر $M_2(C)$ فضاءاً على حقل الاعداد الحقيقية $M_2(C)$

برهن على ان كل من المجموعتين : \mathbf{C} على الحقل \mathbf{C} ، برهن على ان كل من المجموعتين :

$$M = \{(a,o,o,b): a,b \in C \}$$

 $N = \{(c,o,d,o): c,d \in C \}$

تكون فضاءاً جزئياً ثم جد قاعدة له. جد قاعدة الى كل من $M \cap N$ و M + N ثم حقق معادلة البعد في (1.8.9).

5 _ جد قاعدة الى كل من الفضاءات الجزئية التالية من R³ .

$$M = \{(x,y,z): x + y = o\}$$

$$N = \{(x,y,z): 2x + y - z = o\}$$

$$V = \{(x,y,z): x = o, y - 2z = o\}$$

$$W = \{(x,y,z): x = y - 3z\}$$

. $P_3(R)$ من الفضاءات الجزئية التالية من $P_3(R)$

$$M = \{a_0 + a_1x + a_2x^2 + a_3x^3 : 2a_1 + a_2 - a_3 = 0\}$$

$$N = \{P(x): d/dx \ P(x) = o\}$$

$$V = \{P(x): P(-x) = -P(x)\}$$

$$W = \{P(x): P(o) = o\}$$

$$Z = \{P(x): P(x) = a_0 + a_2 x^2 \}$$

- 7 _ جد بعد جميع الفضاءات الجزئية في التمارين (5) ، (6) .
- من $N = \{(o,b,b)\}$ ، $M = \{(a,o,o)\}$ فضاءاً جزئياً من $M = \{(a,b,b)\}$ من $M = \{(a,b,b)\}$ من $\{(a,b,b)\}$ من $\{$
- 9 _ تحت اي شرط على العدد الحقيقي a تكون مجموعة المتجهات (0,1,a)، (1,a,o) مرتبطة خطياً .
 - 10 _ اعتبر V هو الفضاء الجزئي المولد من قبل المتجهات:

$$A_1(x) = 2$$
, $A_2(x) = Sin^2x$, $A_3(x) = Cos2x$

وذلك في فضاء الدوال الحقيقية المعرفة على المستقيم الحقيقي بأكمله.

- . اثبت ان $S = \{A_1, A_2, A_3\}$ لیست قاعدة الی $S = \{A_1, A_2, A_3\}$ اثبت ان
 - (ب) جد قاعدة للفضاء الجزئي V.
- ايضاً $\{B_1, B_2, B_3\}$ ان $\{B_1, B_2, B_3\}$ قاعدة للفضاء $\{B_1, B_2, B_3\}$ ان قاعدة ، حث :

.
$$B_1 = A_1$$
 , $B_2 = A_1 + A_2$, $B_3 = A_1 + A_2 + A_3$

- عندما $\dim(M_n(C)) = n^2 \epsilon \dim(M_m(R)) = mn$ عندما $= 12 \dim(M_n(C)) = 2n^2$ عندما متجهات على الحقل $= 12 \dim(M_n(C)) = 2n^2$ عندما متجهات على الحقل $= 12 \dim(M_n(C)) = 2n^2$
- عندما $M_n(C)$ یکون فضاء متجهات علی الحقل $M_n(C)$ عندما $M_n(C)$ یکون فضاء $M=\{(x,y,z)\colon x+2y-z=0\}$ فجد 13

 $M + N = R^3$ و $M = \{O\}$ ميث يكون $M = \{O\}$ و $M + N = R^3$ و $M \cap N = \{O\}$

(ارشاد : اختار قاعدة الى M ثم وسعها الى قاعدة الى (R^3)) .

(1.9) الاحداثيات وتغيير القواعد

Coordinates and change of bases

اذا كان V فضاء متجهات منتهي البعد وعلى الحقل F ، واذا كانت $S=\{A_1,\dots,A_n\}$ قاعدة آلى V فإن اي متجه $S=\{A_1,\dots,A_n\}$ واحدة فقط كتركيب خطي من متجهات تلك القاعدة (مبرهنة $X_1,\dots,X_n\in F$) . اي ان $A=X_1A_1+\dots+X_nA_n$ اعداد قياسية وحيدة .

من الآن فصاعداً ، سوف نهتم بترتیب المتجهات فی القاعدة ، ای اننا سنتعامل مع قواعد مرتبه ، لکن لسهولة التعبیر ، سنطلق فقط اسم قاعدة ویفهم من ذلك انها قاعدة مرتبة . فمثلاً القاعدة $\{A_1=(1,0),\,A_2=(0,1)\}$ للفضاء $\{A_1=(0,1),\,A_2=(1,0)\}$ علی الرغم من کونهما محموعتین متساویتین ، لکن الاحتلاف هنا بترتیب المتجهات .

نرجع الان للفضاء V اعلاه ، ونأخذ A ف اي متجه .

تعریف:

متجه احداثیات $A \in V$ بالنسبة للقاعدة $S = \{A_1,...,A_n\}$ نقصد $X = (x_1, x_2,...,x_n)$ هي الأعداد القياسية المتجه $X = (x_1, x_2,...,x_n)$ هي الأعداد القياسية الوحيدة التي تحقق $A = x_1A_1 + ... + x_nA_n$

مثال (1):

بالنسبة A=(5,6) بالنسبة A=(5,6) بالنسبة $S=\{A_1=(1,2),\,A_2=(-1,4)\}$ بالنسبة للقاعدة الطبيعية ثم بالنسبة للطبيعية ثم بالنسبة للطبيعية ثم بالنسبة للطبيعية ثم بالطبيعية ثم بالطبيعية ألم بالطبيعية

.
$$\{A_1=(1,0),\,A_2=(0,1)\}$$
 هي $\{R^2\}$ هي $\{A_1=(1,0),\,A_2=(0,1)\}$ هي $\{A_1=(5,6)=5\,(1,0)+6\,(0,1)\}$ هي ان $\{A_1=(5,6)=5\,(1,0)+6\,(0,1)\}$

اذن يكون متجه احداثيات A = (5,6) = A بالنسبة للقاعدة الطبيعية مساوياً للمتجه نفسه ، اي X = (5,6) = X .

اعلاه ، نكتب: A = (5,6) اعلاه ، نكتب: A = (5,6)

$$A=(5,6)=x_1A_1+x_2A_2 \ =x_1(1,2)+x_2(-1,4) \ =(x_1-x_2,2x_1+4x_2) \ .x_1=13/3\ ,x_2=-2/3$$
 where $X_1=13/3$ is $X_2=-2/3$ where $X_1=13/3$ and $X_2=-2/3$ where $X_1=13/3$ and $X_2=-2/3$ are $X_1=13/3$ and $X_2=-2/3$ and $X_1=13/3$ are $X_1=13/3$ and $X_2=13/3$

مثال (2):

بالنسبة A=1- x^2 النسبة متجه احداثیات المتجه $P_2(R)$ بالنسبة $S=\{A_1=3,\,A_2=-1+x\,,\,A_3=x^2\}$ للقاعدة

الحل: نكتب:

$$A = 1-x^2 = a(3) + b(-1+x) + \underline{c}(x^2)$$

= (3a-b) + bx + \bar{c}x^2

فنحصل على المعادلات:

$$3a-b = 1, b = 0, c = -1$$

a = 1/3, b = 0, c = -1

عندئذ یکون متجه احداثیات المتجه $X = 1 - x^2$ بالنسبة للقاعدة X = (1/3, 0, -1) .

لقد لاحظنا ان متجه احداثيات اي متجه يعتمد كلياً على المتجه والقاعدة، فأذا تغيرت القاعدة، تغير متجه الاحداثيات. سوف ندرس العلاقة بين احداثيات متجه بالنسبة لقاعدتين مختلفتين، لكن قبل ذكر العلاقة بصورة عامة سنحاول دراستها من خلال المثال التالي.

مثال (3):

$$S^*=\{A^*_1,A^*_2\}$$
و R^2 قاعدة الى $S=\{A_1,A_2\}$ اذا كانت R^2 كيث ان R^2 عيث ان R^2 عيث ان R^2 عيث ان

نان . $A_2=cA^{\star}_1+dA^{\star}_2$ ، $A_1=aA^{\star}_1+bA^{\star}_2$. اذا کان X=(x,y) هو متجه احداثیات المتجه X=(x,y)

. S^* متجه احداثیات A بالنسبة للقاعدة الجدیدة $X^* = (x^*, y^*)$

الحل:

$$A = x A_{1} + y A_{2}$$

$$= x (aA^{*}_{1} + bA^{*}_{2}) + y (cA^{*}_{1} + dA^{*}_{2})$$

$$= (xa + yc) A^{*}_{1} + (xb + yd) A^{*}_{2}$$

$$x^{*} = xa + yc, y^{*} = xb + yd : b$$

$$|b|_{b} |c|_{b}$$

$$X^* = (x^*, y^*) = (xa + yc, xb + yd)$$

$$= (x, y) \begin{cases} a & b \\ c & d \end{cases}$$

$$= (x, y) \begin{cases} a & b \\ c & d \end{cases}$$

$$\Rightarrow A = \begin{bmatrix} a \cdot b \\ c & d \end{cases}$$

$$\Rightarrow A = \begin{bmatrix} a \cdot b \\ c & d \end{cases}$$

نصبح

$$X^* = XP$$

الصف الأول للمصفوفة P هو متجه احداثيات A_1 بالنسبة للقاعدة الجديدة . والصف الثاني هو متجه احداثيات A_2 بالنسبة للقاعدة الجديدة .

سنسمي المصفوفة P اعلاه مصفوفة الانتقال من القاعدة S الى القاعدة *S.

بصورة عامة، اذا كانت $\{A_1,...,A_n\}$ قاعدة الى $\{A_1,...,A_n\}$ قاعدة جديدة الى $\{A_1,...,A_n\}$ فأنه بالامكان كتابة كل متجه في $\{A_1,...,A_n\}$ متجهات $\{A_1,...,A_n\}$ وعلى النحو التالي :

$$A_{1} = P_{11}A^{*}_{1} + P_{12}A^{*}_{2} + \dots + P_{1n}A^{*}_{n}$$

$$A_{2} = P_{21}A^{*}_{1} + P_{22}A^{*}_{2} + \dots + P_{2n}A^{*}_{n}$$

$$\vdots$$

$$A_{n} = P_{n1}A^{*}_{1} + P_{n2}A^{*}_{2} + \dots + P_{nn}A^{*}_{n}$$

عندئذ تسمى المصفوفة

$$P = \begin{pmatrix} P_{11} P_{12} \dots P_{1n} \\ P_{21} P_{22} \dots P_{2n} \\ P_{n1} P_{n2} \dots P_{nn} \end{pmatrix}$$

مصفوفة الانتقال من القاعدة S الى القاعدة *S

لاحظ ان الصف k للمصفوفة P هو متجه احداثيات $A_k \in S$ بالنسبة للقاعدة الجديدة S^* . اي ان مصفوفة الانتقال من S الى S^* هي المصفوفة التي تنتج من كتابة متجهات S بدلالة متجهات S^* على الترتيب .

مثال (4) :

$$S = \{A_1 = (2,1), A_2 = (0,3\}$$
 جد مصفوفة الانتقال من القاعدة $A_1^* = (-1,0), A_2^* = (3,3)$ الى القاعدة $A_1^* = (-1,0), A_2^* = (3,3)$

الحل: نكتب

$$A_1 = (2,1) = p_{11}A_1^{\star} + p_{12}A_2^{\star}$$

 $A_2 = (0,3) = p_{21}A_1^{\star} + p_{22}A_2^{\star}$

بذلك نحصل على:

$$(2,1) = p_{11}(-1,0) + p_{12}(3,3) = (-p_{11} + 3p_{12}, 3p_{12})$$

$$(0,3) = p_{21}(-1,0) + p_{22}(3,3) = (-p_{21} + 3p_{22}, 3p_{22})$$

اي ان

$$-p_{11} + 3p_{12} = 2$$
, $3p_{12} = 1$

$$-p_{21} + 3p_{22} = 0$$
, $3p_{22} = 3$

والحل يكون

$$p_{11} = -1, p_{12} = 1/3, p_{21} = 3, p_{22} = 1$$

عندئذ تكون مصفوفة الانتقال من القاعدة S الى القاعدة *S هي

$$P = \begin{bmatrix} -1 & 1/3 \\ 3 & 1 \end{bmatrix}$$

مبرهنة (1.9.1):

اذا كانت S قاعدة لفضاء المتجهات المنتهي البعد V و S^* قاعدة جديدة الى S بحيث ان مصفوفة الانتقال من S الى S^* هي S^* واذا كان S هو متجه احداثيات المتجه S^* بالنسبة للقاعدة S فإن S^* يكون متجه احداثيات S بالنسبة للقاعدة S^* .

البرهان :

$$S^* = S = \{A_1, ..., A_n\}$$
 لنفرض ان بعد $N = V$ و $N = V$ لنفرض ان بعد $N = V$ مو متجه احداثیات $N = V$ هو متجه احداثیات $N = V$ بالنسبة للقاعدة $N = V$. اذن

$$A = x_1 A_1 + \dots + x_n A_n$$

بما ان
$$(p_{ij}) = P$$
 هي مصفوفة الانتقال من S الى S^* . اذن

$$\begin{aligned} A_{1} &= p_{11} A_{1}^{*} + \dots + p_{1n} A_{n}^{*} \\ \vdots & & \vdots \\ A_{n} &= p_{n1} A_{n_{1}}^{*} + \dots + p_{nn} A_{n}^{*} \end{aligned}$$

بالتعويض نحصل على

$$A = x_1 A_1 + \dots + x_n A_n$$

$$= x_{1} (p_{11}A_{11}^{*} + ... + p_{1n}A_{n}^{*}) + ... + x_{n} (p_{n1}A_{1}^{*} + ... + p_{nn}^{*}A_{n}^{*})$$

$$= (x_1 p_{11} + x_2 p_{21} + ... + x_n p_{n1}) A_1^* + ... + (x_1 p_{1n} + x_2 p_{2n} + ... + x_n p_{nn}) A_n^*$$

 S^* متجه احداثیات A بالنسبة للقاعدة $X^* = (x_1^* \ , \ ..., \ x_n^*)$ اذا کان (X^* على العلاقات التالية .

$$x^{*}_{1} = x_{1}p_{11} + x_{2}p_{21} + \dots + x_{n}p_{n1}$$

$$x^{*}_{2} = x_{1}p_{12} + x_{2}p_{22} + \dots + x_{n}p_{n2}$$

$$x^{*}_{n} = x_{1}p_{1n} + x_{2}p_{2n} + \dots + x_{n}p_{nn}$$

بمراجعة ضرب المصفوفات، يمكن كتابة المعادلات اعلاه بالصيغة

$$(x_1^{4}, x_2^{4}, ..., x_n^{4}) = (x_1, x_2, ..., x_n)$$

$$\begin{bmatrix}
p_{11} p_{12} ... p_{1n} \\
\vdots & \vdots \\
p_{n1} p_{n2} ... p_{nn}
\end{bmatrix}$$

$$X^{*} = XP : 0$$

(و . هـ . م .)

مثال (5):

اذا علمت بأن X=(1,2,-1) هو متجه احداثیات المتجه X بالنسبة للقاعدة $S=\{1/2,-x,2x^2\}$ فجد $S=\{1/2,-x,2x^2\}$

$$P = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

هي مصفوفة الانتقال من S الى القاعدة $S^*=\{A^*_{\ 1},A^*_{\ 2},A^*_{\ 3}\}$ فجد متجه احداثيات A بالنسبة للقاعدة $S^*=\{A^*_{\ 1},A^*_{\ 2},A^*_{\ 3}\}$

$$A = (1)(1/2) + (2)(-x) + (-1)(2x^{2})$$

$$= 1/2 - 2x - 2x^{2}$$

. اذن S^{\star} اذن A^{\star} بالنسبة للقاعدة $X^{\star}=(a^{\star}_{\ 1}\,,a^{\star}_{\ 2},a^{\star}_{\ 3})$ ليكن $X^{\star}=XP$

$$= (1, 2, -1) \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$
$$= (4, 2, -1)$$

مثال (6) :

اذا علمت بأن مصفوفة الانتقال من القاعدة $S^* = \{A^*_1, A^*_2\}$ هي $S = \{A^*_1, A^*_2\}$

 \cdot الى \cdot الى S أم جد مصفوفة الانتقال من \cdot الى \cdot الى S أب

$$A_1 = (2,1) = 1/\sqrt{5} A_1^* + 2/\sqrt{5} A_2^* \dots (1)$$

$$A_2 = (0,3) = -2/\sqrt{5} A_1^* + 1/\sqrt{5} A_2^* \dots (2)$$

بضرب المعادلة الاولى في 2 وجمعها مع المعادلة الثانية ، نحصل على

$$(4,5) = 5/\sqrt{5} A_2^* = \sqrt{5} A_2^*$$

$$A^{\star}_{2} = (4/\sqrt{5}, 1/\sqrt{5})$$
 . اذن

من المعادلة الاولى نحصل على

$$1/\sqrt{5} A_{1}^{*} = (2,1) - 2/\sqrt{5} A_{2}^{*}$$

$$= (2,1) - 2/\sqrt{5} (4/\sqrt{5}, 1/\sqrt{5})$$

$$= (2,1) - (8/5, 2/5) = (2/5, 3/5)$$

$$A_{1}^{*} = (2/\sqrt{5}, 3/\sqrt{5}) : 3/\sqrt{5}$$

لنفرض ان

$$Q = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}$$

هي مصفوفة الانتقال من القاعدة * S الى القاعدة S ، فيكون لدينا

$$A_{1}^{\star} = q_{11}A_{1} + q_{12}A_{2}$$
 $A_{2}^{\star} = q_{21}A_{1} + q_{22}A_{2}$

$$(2\sqrt{5}, 3\sqrt{5}) = q_{11}(2,1) + q_{12}(0,3) : 1\sqrt{5}, 1\sqrt{5}, 1\sqrt{5}) = q_{21}(2,1) + q_{22}(0,3)$$

$$Q = \begin{bmatrix} 1.45 & -245 \\ & & & \\ 2.45 & & & \\ 2.45 & & & \\ 2.45 & & & \\ & & & \\ 2.45 & & & \\ & &$$

 $Q = P^{-1}$ لاحظ ان

مبرهنة (1.9.2) :

اذا كانت

 $S^* = \{A_1,..., A_n^*\}, S = \{A_1,..., A_n^*\}$ $S^* = \{A_1,..., A_n^*\}, S^* =$

البرهان:

تمرين بسيط بضرب المصفوفات ويترك للقارىء.

نتيجة (1.9.3):

 P^{-1} اذا كانت P مصفوفة الانتقال من قاعدة S الى قاعدة S فإن S^{+} تكون مصفوفة الانتقال من S^{+} الى S .

البرهان:

Q الى S هي المصفوفة الخايدة . فإذا كانت S مصفوفة الخايدة . فإذا كانت S مصفوفة الانتقال من S الى S فإن S ، تكون مصفوفة الانتقال من S الى S ، اي

$$PQ = I$$

 $Q = P^{-1}$ وبذلك يكون

(و. هـ ، م.)

مثال (7):

جد المتجه
$$A$$
 في $P_2(R)$ الذي متجه احداثياته بالنسبة للقاعدة $X=(-2,0,1)$ هو المتجه $S=\left\{A_1=-1,A_2=1+x,A_3=2x^2\right\}$

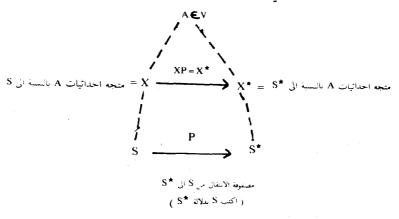
الحل: من تعريف متجه الاحداثيات نحصل على:

$$A = (-2) A_1 + (0) A_2 + (1) A_3$$

= (-2) (-1) + (0) (1 + x) + (1) (2x²)
= -2 + 2x²

ملاحظة:

المخطط التالي يساعد الطالب في تذكر ماورد في مبرهنة (1.9.1)



تماريسن (1,9)

$$R^2$$
 وذلك بالنسبة $S=\{A_1=(2,-1),A_2=(3,0)\}$ وذلك بالنسبة . $S=\{A_1=(2,-1),A_2=(3,0)\}$. $A=(2,-1),B=(0,0)$, $C=(0,1),D=(a,b)$

 ${\bf C}$ على الحقل ${\bf M}_2({\bf C})$ بالنسبة للقاعدة :

$$S = \begin{cases} A_{1} = \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix}, A_{2} = \begin{pmatrix} 0 & 1+i \\ 0 & 0 \end{pmatrix} A_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$, A_{4} = \begin{pmatrix} 1 & 0 \\ 0 & 1-i \end{pmatrix}, A = \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix} B = \begin{pmatrix} 0 & 1+i \\ 1-i & 2+3i \end{pmatrix}$$

$$C = \begin{pmatrix} 2-5i & 0 \\ 0 & 7+i \end{pmatrix}, D = \begin{pmatrix} 1+i & -i \\ i & i \end{pmatrix} E = \begin{pmatrix} 1 & 2i \\ -5i & 3 \end{pmatrix}$$

ناسبة $P_2(R)$ وذلك بالنسبة $P_2(R)$ وذلك بالنسبة للقاعدة :

$$S = \{1-x, 1+x, 2-x^2\}$$

.
$$A = \sqrt{2} + x - (1/3)x^2$$
, $B = 2x + 7x^2$, $C = 3$

1

رأ) اعتبر C^2 فضاء متجهات على الحقل C^2 وجد متجه احداثيات A = (1,-i)

$$S = \{A_1 = (-1,0), A_2 = (0,2+3i)\}$$

(ب) اعتبر C^2 فضاء متجهات على الحقل R وجد متجه احداثيات A = (1,-i)

$$S = \{A_1(-1,0), A_2 = (1+i,0), A_3 = (0,2i), A_4 = (1,1+i)\}$$

$$S = \{A_1 = (1,2), A_2 = (2,3)\}$$
 حد مصفوفة الانتقال من القاعدة $S^* = \{A_1^* = (-1,0), A^*_2 = (1,-2)\}$ الى القاعدة R^2 بنفسه والم

$$S = \{A_1 = 2, A_2 = 1 - x + x^2, A_3 = 2x + 3x^2\}$$

للفضاء (P2(R الى القاعدة

$$. S^* = \{A^*_1 = 1 + x, A^*_2 = x^2, A^*_3 = 3 + 4x + 5x^2\}$$

المتجهين V مو الفضاء المولد من قبل المتجهين
$$A_2(x) = Cosx, A_1(x) = Sinx$$

$$B = \{B_1(x) = 2Sinx + Cosx, B_2(x) = 3Cosx\}$$
 اثبت ان $\{D_1(x) = 2Sinx + Cosx, B_2(x) = 3Cosx\}$. V تكون قاعدة للفضاء

(ب) جد مصفوفة الانتقال من القاعدة
$$A = \{A_1, A_2\}$$
 الى القاعدة $B = \{B_1, B_2\}$

رج) جد متجه احداثیات
$$C(x) = -2 \sin x + 3 \cos x$$
 بالنسبة للقاعدة (ج) جد متجه احداثیات $B = \{B_1, B_2\}$ من عملك بحساب ذلك المتجه بصورة مباشرة .

الى القاعدة
$$B = \{B_1, B_2\}$$
 الى القاعدة $A = \{A_1, A_2\}$

$$S=\{A_1,A_2\}$$
 الى $S=\{A_1,A_2\}$ الى $S=\{A_1,A_2\}$ الى $S=\{A_1,A_2\}$ الى $S^*=\{A^*\}$ المنافقة القاعدة $S^*=\{A^*\}$ المنافقة القاعدة $S^*=\{A^*\}$ المنافقة القاعدة $S^*=\{A^*\}$ المنافقة ا

فجد متجهات القاعدة S.

فجد متجهات القاعدة *S.

X = (1,2,0,4) . X = (1,2,0,4)

الذي متجه احداثياته بالنسبة $P_2(C)$ على الحقل $P_2(C)$ الذي متجه احداثياته بالنسبة للقاعدة :

.
$$X = (-1+i , -i,3)$$
 هو المتجه $S = \{i, 1 + (1-i)x, (1+i)x^2\}$

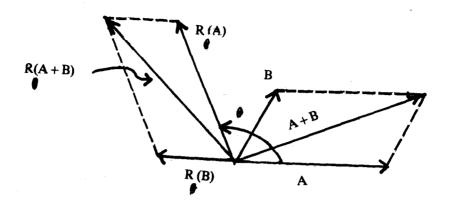
الفصل الثانى

التحويلات الخطية: Linear Transformations

(2.0) مقدمــة:

في موضوع الجبر الخطي، توجد تطبيقات عديدة على موضوع فضاء المتجهات والدوال بين فضاءات المتجهات، ومن اهم هذه التطبيقات التي تستعمل في الفيزياء والعلوم الهندسية والعلوم الاجتاعية، والافرع المختلفة من الرياضيات هي التحويلات الخطية، وهي عبارة عن دوال مجالها المقابل عبارة عن فضائي متجهات بحيث تنقل كل تركيب خطي لمتجهات في الفضاء الاول (المجال) الى التركيب الخطي نفسه لمتجهات احرى في الفضاء الثاني (المجال المقابل).

انظر الشكل رقم (1).



شكل (1)

. $R_{g}(rA) = rR_{g}(A)$ تحقق $R_{g}(rA) = rR_{g}(A)$ تحقق $R_{g}(rA) = rR_{g}(rA)$ عدد حقیقی فإن الدالة $R_{g}(rA) = rR_{g}(rA)$

هذا تحويل خطي من المستوى الى نفسه، وفي البند (2.1) سوف التعريف العام للتحويلات الخطية ثم نعطي امثلة توضح فكرتها. البند (2.2) سوف يركز على الامور النظرية، ويعطي حصائص التحويلات الخطية، وعلاقتها بالفضاءات الجزئية والابعاد. في البند (2.3) سنتناول دراسة تركيب التحويلات الخطية والتحويلات النظيرة اما البند (2.4) فقد خصص لدراسة العلاقة بين المصفوفات والتحويلات الخطية، تلك العلاقة الوطيدة التي تمكن من معرفة وبرهنة خصائص المصفوفات بأستعمال التحويلات الخطية وبالعكس. المبند (2.5) سيتناول دراسة تغيير القواعد وعلاقة ذلك بمصفوفة التحويل الخطي ويجيب على تساؤلات تطرح في البند (2.4).

(2.1) التحويلات الخطية (2.1)

تعریف :

ليكن W,V فضائي متجهات على الحقل F نفسه، ولتكن W,V → CT:V → W نفسه، ولتكن W → CT:V → W

(i)
$$T(A + B) = T(A) + T(B)$$

(ii) $T(rA) = rT(A)$

وذلك لاي متجهات A,B & ولاي عدد قياسي r & F. بهذه الحالة نسمي تحويلاً خطياً من V الى W.

مثال (1):

اليكن
$$V=R^3$$
 ولتكن $W=R^2$ دالة معرفة بالصيغة : $T(x,y,z)=(x+y,z)$

 $A=(a_1,\,a_2,\,a_3),$ الى R^2 ، ولبرهنة ذلك نأخذ R^3 من R^3 من R^3 الى R^3 ، ولبرهنة ذلك نأخذ R^3 . R^3 بهذا يكون

$$T(A + B) = T(a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$= ((a_1 + b_1) + (a_2 + b_2), (a_3 + b_3))$$

$$= (a_1 + a_2, a_3) + (b_1 + b_2, b_3)$$

$$= T(A) + T(B)$$

لو كان r R اي عدد حقيقي فإنه:

$$T(rA) = T(ra_1, ra_2, ra_3)$$

$$= (ra_1 + ra_2, ra_3)$$

$$= (r(a_1 + a_2), ra_3)$$

$$= r(a_1 + a_2, a_3)$$

$$= rT(A)$$

$$= rT(A)$$

$$= rT(A)$$

$$= rT(A)$$

$$= rT(A)$$

مثال (2):

الدالة
$$P_2(R) \rightarrow M_2(R)$$
 المعرفة بالصيغة

$$T(a+bx+cx^{2}) = \begin{bmatrix} a-2b & o \\ o & a+c \end{bmatrix}$$

تكون تحويلاً خطياً والتحقيق كما في مثال (1)

مثال (3):

اذا كان V و W اي فضائي متجهات على الحقل F ، فإن الدالة الثابتة $T:V \rightarrow W$ $T:V \rightarrow W$ والمعرفة بالصيغة $T:V \rightarrow W$ لكل $T:V \rightarrow W$ يسمى بالتحويل الصغري (Null Transformation) ونترك الاثبات على ان T تحويلاً خطياً كتمرين .

مثال (4):

اذا كان V اي فضاء متجهات فإن الدالة $T:V \longrightarrow T:V$ المعرفة بالصيغة T(A) = A لكل T(A) = A

(Identity transformation) . الأثبات تمرين .

مثال (5):

برهن على ان الدالة
$$\mathbf{R}^2 \to \mathbf{R}$$
 المعرفة بالصيغة
$$\mathbf{T}(\mathbf{x},\mathbf{y}) = \mathbf{x}\mathbf{y} + \mathbf{1}$$
لست تحويلاً خطباً .

البرهان:

. B =
$$(b_1, b_2)$$
 ، A = (a_1, a_2) ليكن

$$T(A + B) = T(a_1 + b_1, a_2 + b_2)$$

$$= (a_1 + b_1) (a_2 + b_2) + 1$$

$$= a_1 a_2 + b_1 b_2 + a_1 b_2 + b_1 a_2 + 1$$

لكن

$$T(A) + T(B) = (a_1a_2 + 1) + (b_1b_2 + 1)$$

= $a_1a_2 + b_1b_2 + 2$

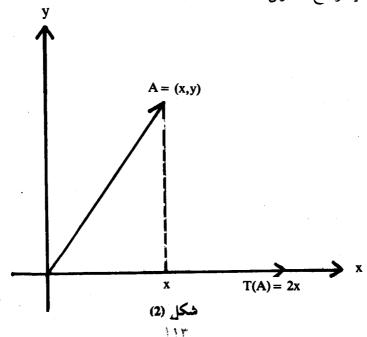
وبهذا اصبح واضحاً ان $T(A+B) \neq T(A) + T(B)$ عندما يكون $T(A+B) \neq T(A) + T(B)$ اي زوج من المتجهات في R^2 .

مثال (6):

الدالة $R \rightarrow T:R^2$ المعرفة بالصيغة

$$T(x,y) = 2x$$

تكون تحويلاً خطياً. والتحقيق مشابه تماماً للمثال (1). انظر الشكل رقم (2) الذي يوضح التحويل T اعلاه هندسياً.



المبرهنة التالية تعطى بعض الخصائص البسيطة للتحويلات الخطية.

مبرهنة (2.1.1) :

F على الحقل W,V على الحقل T:V o W على الحقل الخوان الخان W,V على الحقل الحقل أبان

$$T(O) = O(1)$$

(ب) لأي مجموعة متجهات $A_1, A_2,, A_n \in V$ ولأي مجموعة اعداد $x_1, x_2, ..., x_n \in F$ قياسية $x_1, x_2, ..., x_n \in F$

$$T(x_1A_1 + x_2A_2 + ... + x_nA_n) = x_1T(A_1) + x_2T(A_2) + ... + x_nT(A_n)$$

البرهان:

(أ) بما ان 0.A=0 لأي متجه A €V، عليه يكون 0.O=0، وبالتالي وحسب الشرط (2) من تعريف التحويل الخطى يكون لدينا:

$$T(O) = T(O,O) = 0.T(O) = O$$

(ب) حسب الشرط (1) من تعريف التحويل الخطى نستنتج

$$T(x_1A_1 + ... + x_nA_n) = T(x_1A_1) + ... + T(x_nA_n)$$

اما الشرط الثاني من التعريف فيعطى النتيجة المطلوبة لان

$$T(x_k A_k) = x_k T(A_k)$$

لکل k: 1,2,...,n

المبرهنة التالية توضح لنا كيف انه بالامكان معرفة التحويل الخطي بمجرد معرفة قيمته على عناصر اي قاعدة كانت.

مبرهنة (2.1.2):

اذا كان V فضاء متجهات منتهى البعد وكانت $\{A_1,\,...,\,A_n\}$ قاعدة الى V ، فإنه لأي مجموعة $\{B_1,\,...,\,B_n\}$ متكونة من V من المتجهات العشوائية في V ، وجد تحويل خطى وحيد V V يحقق :

$$T(A_1) = B_1, ..., T(A_n) = B_n$$

ولأي اعداد قياسية $x_1,...,x_n$ يكون:

$$T(x_1A_1 + ... + x_nA_n) = x_1B_1 + ... + x_nB_n$$

البرهان:

$$\mathbf{A} = \mathbf{x}_1 \mathbf{A}_1 + \ldots + \mathbf{x}_n \mathbf{A}_n$$

$$_{\bullet} T(A) = x_1 B_1 + ... + x_n B_n$$
 لو وضعنا

لنكون قد عرفنا دالة $W \longrightarrow T:V \longrightarrow W$ ولغرض التحقق من ان الدالة اعلاه تكون تحويلاً خطياً نأخذ $A=x_1A_1+\ldots+x_nA_n$ اي متجهة في V ولنفرض ان A, $C=y_1A_1+\ldots+y_nA_n$ بذلك يكون :

$$A + C = (x_1 + y_1) A_1 + ... + (x_n + y_n) A_n$$

ومن تعريف الدالة T اعلاه نحصل على:

$$T(A + C) = (x_1 + y_1) B_1 + ... + (x_n + y_n) B_n$$

$$= x_1 B_1 + y_1 B_1 + ... + x_n B_n + y_n B_n$$

$$= (x_1 B_1 + ... + x_n B_n) + (y_1 B_1 + ... + y_n B_n)$$

$$= T(A) + T(C)$$

ليكن الان r اي عدد قياسي

$$rA = (rx_1) A_1 + ... + (rx_n) A_n$$
 : اذن

وعليه يكون

$$T(rA) = (rx_1) B_1 + ... + (rx_n) B_n$$

 $= r (x_1 B_1 + ... + x_n B_n)$
 $= rT (A)$

بهذا نكون قد برهنا على ان الدالة T اعلاه تكون تحويلاً خطياً محققاً الشروط المذكورة. مثل هذا التحويل يكون وحيداً، لانه لو كان $W \longrightarrow S:V \longrightarrow W$ اي تحويلاً خطياً محققاً للشروط.

$$S(A_1) = B_1, ..., S(A_n) = B_n$$

فإن

$$S(x_1A_1 + ... + x_nA_n) = x_1 S(A_1) + ... + x_nS(A_n)$$

= $x_1B_1 + ... + x_nB_n$

وبالتالي يحقق S الشرط الثاني ويكون مساوياً الى T .

المثال التالي يوضح ماجاء في المبرهنة اعلاه .

مثال (7):

اعتبر المجموعة $\{A_1=(1,0),\,A_2=(2,7)\}$ قاعدة الى R^2 . ثم جد تحويلاً خطياً $T:R^2 \to P_2(R)$ عقق :

$$T(A_1) = 1 + x, T(A_2) = -1 + x-3x^2$$

الحل: المطلوب ايجاد T(A) لاي متجه R^2 A=(a,b) $\in \mathbb{R}^2$ ايجاد اعداد عداد X_1 , X_2 تحقق

$$A = x_1 A_1 + x_2 A_2$$

اى ان المطلوب حل المعادلة

$$(a,b) = x_1(1,0) + x_2(2,7)$$

= $(x_1 + 2x_2, 7x_2)$

بهذا نحصل على معادلتين:

$$x_1 + 2x_2 = a$$
$$7x_2 = b$$

والحل يكون $\mathbf{x}_1 = \mathbf{a} - (\mathbf{2b/7})$, $\mathbf{x}_2 = \mathbf{b/7}$ الان نعرف $\mathbf{T}: \mathbf{R}^2 \longrightarrow \mathbf{P}_2(\mathbf{R})$ بالان نعرف التالية :

$$T(A) = T(a,b) = x_1(1+x) + x_2(-1+x-3x^2)$$

$$= (a-2b/7)(1+x) + (b/7)(-1+x-3x^2)$$

$$= (a-3b/7) + (a-b/7)x + (-3b/7)x^2$$

ملاحظة:

المبرهنة (2.1.2) توضح ان التحويلات الخطية ليست دوالاً عادية وكذلك فإن قواعد فضاءات المتجهات ليست مجموعات جزئية عادية. فمجرد معرفتنا لقيم التحويل الخطي على عناصر القاعدة نكون قد حددنا التحويل الخطي وعرفنا قيمته على جميع عناصر الفضاء.

مثال (8):

هل يوجد تحويل خطي واحد فقط
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 يحقق $T(1,2) = (0,3,0)$

الحل: نلاحظ هنا ان المعروف فقط قيمة T على متجه واحد وهو (1,2) وبما ان المجموعة (1,2) لاتصلح بأن تكون قاعدة الى R^2 فعليه نتوقع وجود اكثر من تحويل واحد.

الان اذا كان
$$T$$
 تحويلاً خطياً بحيث $T(1,2) = (0,3,0)$ فإن $T(x,2x) = T(x(1,2)) = xT(1,2)$ $= x(0,3,0) = (0,3x,0)$

هذا يعني اننا سنعرف قيم T على جميع المتجهات ذات الصيغة (x,2x) فمثلاً المتجه (z,3) لايكون بالصيغة اعلاه وبالتالي لانعرف اين يرسله z0 لكن لو اعطينا اي قيمة الى (z,30 مثل

$$T(2,3) = (1,1,0)$$

لاصبح بالامكان معرفة (a,b) لاي متجه (a,b) من R² وذلك كما في المثال (7). هذا يعني وجود تحويلات كثيرة ترسل المتجه (1,2) الى المتجه (0,3,0) لكنها تختلف بكيفية ارسالها للمتجهات ذات الصيغة (a,b) حيث b≠2a.

الان نعرف جمع التحويلات الخطية وضربها بأعداد قياسية .

تعریف:

الله فضائي متجهات V و W على الحقل F نفسه، ولأي تحويلين V خطيين V عكن تعريف دالة .

$$S+T:V \rightarrow W$$

بالصيغة

$$(S+T)(A) = S(A) + T(A)$$
 $S(A) + T(A)$ كذلك فإنه لأي عدد قياسي $S(A) + T(A)$ $S(A) + T(A)$ $S(A) + T(A)$ $S(A) + T(A)$

بالصيغة

$$(rT)(A) = rT(A)$$

مثال (9):

: كان $\mathbf{R}^2 \longrightarrow \mathbf{R}^2$ تحويلين خطيين معرفين بالصيغتين

$$S(x,y) = (x,2y), T(x,y) = (y,0)$$

فجد الدوال التالية:

$$2S$$
, -5T, S+T; $2S$ -5T

الحل: من التعريف اعلاه ينتج

$$(2S)(x,y) = 2 S(x,y) = (2x,4y)$$

$$(-5T) (x,y) = (-5) T (x,y) = (-5y,0)$$

$$(2S-5T) (x,y) = 2S(x,y) + (-5T) (x,y)$$

$$= (2x,4y) + (-5y,0)$$

$$= (2x-5y,4y)$$

$$(S+T) (x,y) = S(x,y) + T(x,y)$$

$$= (x,2y) + (y,0) = (x+y,2y)$$

مبرهنة (2.1.3):

لأي تحويلين خطيين $W \longrightarrow S,T:V \to W$ ولأي عدد قياسي r تكون كل من الدالتين T تحويلاً خطياً

البرهان:

نأخذ A , B اي متجهين في V ونحسب كما يلي :

$$(S+T)(A+B) = S(A+B) + T(A+B)$$

= $S(A) + S(B) + T(A) + T(B)$
= $S(A) + T(A) + S(B) + T(B)$
= $(S+T)(A) + (S+T)(B)$

ولأي عدد قياسي x يكون

$$(S+T)(xA) = S(xA) + T(xA)$$

= $x S(A) + x T(A)$
= $x(S(A) + T(A))$
= $x((S+T)(A))$

بذلك تكون الدالة S+T تحويلاً خطياً .

بالنسبة الى rT فإن البرهان مماثل ونتركه كتمرين.

(و.هـ،م)

مبرهنة (2.1.4)

اذا كان كل من W,V فضاء متجهات على الحقل F فإن مجموعة جميع التحويلات الخطية من V الى V والتي يرمز لها بالرمز L(V,W) تكون فضاء متجهات على الحقل F.

البرهان :

المبرهنة (2.1.3) تفيد بأنه بالامكان تعريف جمع التحويلات الخطية وضربها بأعداد قياسية وبالنسبة لهاتين العمليتين تتحق جميع الشروط المذكورة في البند الاول حول تعريف فضاء المتجهات ونترك التفاصيل للطالب.

(و.ه. م)

مثال (10):

اذا كان V فضاء متعددات الحدود بـ x من اي درجة وذات المعاملات من اي حقل F فإن V يكون فضاء متجهات على الحقل F .

اتكن $V \rightarrow V$ دالة معرفة بالصيغة:

$$S(P(x)) = P(x), (P(x))$$

و T:V - V و الله معرفة بالصيغة:

$$T(P(x)) = x P(x)$$

فبرهن على ان كل من T,S يكون تجويلاً خطياً. ثم جد

 $T(x + x^2 - 2x^5)$, $S(2 - x + x^3)$

$$S(p(x) + q(x)) = (p(x) + q(x))$$

$$= p(x) + q(x) = S(p(x)) + S(q(x))$$

$$S(rp(x)) = (rp(x)) = rp(x) = rS(p(x))$$

عليه يكون S تحويلاً خطياً .

$$T(P(x) + q(x)) = x(P(x) + q(x))$$

$$= xP(x) + xq(x) = T(P(x)) + T(q(x))$$
 $T(rp(x)) = x(rp(x)) = r(xp(x))$
 $= rT(p(x))$
عليه يكون T تحويلاً خطياً ايضاً . والان
 $S(2-x+x^3) = (2-x+x^3)$
 $= -1 + 3x^2$
 $T(x+x^2-2x^5) = x(x+x^2-2x^5)$
 $= x^2 + x^3 - 2x^6$

تمارين (2.1)

الموال التالية يكون تحويلاً خطياً .

$$T(x,y) = (x-2y, 3y), T:R^2 \to R^2 \text{ (} \text{) }$$

$$T(x,y) = (x^2, xy), T:R^2 \to R^2 \text{ (} \text{) }$$

$$T(x,y) = (x^2, xy), T:R^2 \to R^2 \text{ (} \text{) }$$

$$T(x) = (x,2x,0), T:R \to R^3 \text{ (} \text{) }$$

$$T(a+bx) = (2a,b+1), T:P_1(R) \to R^2 \text{ (} \text{) }$$

$$T(x) = (x-y,0,z+w), T: M_2(R) \to R^3 \text{ (} \text{) }$$

$$T(x,y) = (x-y,0,z+w), T: M_2(R) \to R^3 \text{ (} \text{) }$$

$$T(x,y) = (iz_1, z_1-z_2, -iz_2), T:C^2 \to C^3 \text{ (} \text{) }$$

$$T(x,y,z) = (iz_1, z_1-z_2, -iz_2), T:C^2 \to C^3 \text{ (} \text{) }$$

$$T(x,y,z) = x+2y-z, T:R^3 \to R \text{ (} \text{) }$$

$$T: \begin{cases} a & b \\ c & d \end{cases}$$

$$T(x,y,z) = x+2y-z, T:R^3 \to R \text{ (} \text{) }$$

$$T:R^2 \to R^3 \text{ (} \text{) }$$

$$T:R^2 \to R^3 \text{ (} \text{) }$$

$$T:R^2 \to R^3 \text{ (} \text{) }$$

$$T(x,y) = (x+y,x-y,2x)$$

و
$$S: R^2 \rightarrow R^3$$
 تحويلاً خطياً معرفاً بالصيغة $S(x,y) = (0,0,2x+3y)$ فجد كل مما يلي : $T-S, 2T+3S, \sqrt{2}T+4S$

4 _ جد التحويل الخطى R4 _ T: C 2 → الذي يحقق

$$T(2,0) = (1,1,1,1), T(1+i,0) = (0,0,1,0)$$

 $T(0,-2i) = (0,1,-1,0), T(0,1) = (0,0,0,0)$

. R هو فضاء متجهات على حقل C^2

$$T_1, T_2: \mathbb{R}^2 \to \mathbb{R}^3$$
 عققان علین خطین مختلفین $T_1, T_2: \mathbb{R}^2 \to \mathbb{R}^3$ عققان .
$$T_1(1,-5) = T_2(1,-5) = (2,4,0)$$

6 _ اذا كانت R² → R³ دالة تحقق

$$f(1,1,0) = (2,3), f(1,0,1) = (-1,2)$$

(1,3) جطياً؟ . f(2,1,1) = (1,3) فهل يمكن لf(2,1,1) = (1,3)

 $T:C^2$ فضاء متجهات على الحقل C^2 ثم جد تحويلاً خطياً C^2 فضاء متجهات على الحقل C^2 بعضاء C^2 فضاء متجهات على الحقل C^2 بعضاء C^2 فضاء متجهات على الحقل C^2

(ب) اعتبر C^2 فضاء متجهات على الحقل R ثم جد تحويلاً خطياً $S: C^2 \longrightarrow C^2$

$$S(-1,0) = (i,1-i), S(0,3) = (0,1+i)$$

(ج) برهن على وجود تحويل خطي واحد فقط في (أ) واكثر من واحد في (ب).

8 _ ليكن $W \to V$ تحويلاً خطياً ولتكن $\{A_1,...,A_n\}$ مجموعة متجهات في V. اذا كانت $\{T(A_1), ..., T(A_n)\}$ مستقلة خطياً من المتجهات في W فبرهن على ان المجموعة $\{A_1, ..., A_n\}$ تكون ايضاً مستقلة خطياً.

 $V \to R$ اذا كان $V \to R$ تحويلين خطيين على فضاء متجهات $V \to R$ على الحقل $V \to R$ فبرهن على ان الدالة

 $S:V \rightarrow R^3$

المعرفة بالصيغة

 $S(A) = (T_1(A), O, T_2(A))$

تكون تحويلاً خطياً.

__ 10

(أ) ليكن $T:R \to R$ تحويلاً خطياً. برهن على وجود عدد $T:R \to R$ (أ) ليكن T(x) = tx بحيث T

(ب) اذا كان $T:R \to R$ تحويلاً خطياً بحيث $T:R \to R$ فإحسب $T(-\sqrt{3})$

(2.2) الرتبة والصفرية (Rank and Nullity)

تعریف :

لأي تحويل خطي W → T:V بين فضائي متجهات، يمكن تعريف مايلي:

1 ــ صورة T (Image of T) ويرمز لها بالرمز ImT وتعرف كالآتي :

 $Im(T) = \{ B \in W : B = T(A), A \in V \}$

: ويرمز لها بالرمز KerT ويرمز لها بالرمز (kernel of T) ويرمز لها بالرمز

 $KerT = \{A \in V: T(A) = 0 \}$

لاحظ أن ImTCW و KerTCV.

مثال (1):

اذا كان $R^3 \to R^3$ تحويلاً خطياً معرفاً بالصيغة :

T(x,y,z) = (x+2y,0,3z)

فجد انجموعات الجزئية ImT, KerT

T(x,y,z) = (0,0,0) التي بدورها تعصي الحل : T(x,y,z) = T(x,y,z) التي بدورها تعصي ثلاث معادلات

$$x + 2y = 0$$

$$0 = 0$$

$$3z = 0$$

عندئذ يكون : x=-2y و z=0 حلاً لتلك المعادلات . بهذا يمكن وصف z=0 كالاتى :

KerT = $\{(x,y,z): x = -2y, y = y, z = o\}$

التي $B = (a,b,c) \in \mathbb{R}^3$ التي المتجهات $B = (a,b,c) \in \mathbb{R}^3$ التي المتجهات T(x,y,z) = B التي تحقق T(x,y,z) = B

$$x + 2y = a$$

$$o = b$$

$$3z = c$$

نلاحظ هنا بأن b = 0، اما بالنسبة الى c,a فلا يوجد شرط خدد قيمهما ولا توجد علاقة تربطهما، وبالتالي يمكن وصف ImT كالاتي:

 $ImT = \{(a,b,c): a=a, b=o, c=c\}$

وبهذا نلاحظ ان T(a,o,c/3) = (a,o,c) ، اي انه لاي متجه $T(a,o,c/3) = (a,o,c/3) \in \mathbb{R}^3$. $T(a,o,c/3) = (a,o,c/3) \in \mathbb{R}^3$ يوجد $T(a,o,c/3) \in \mathbb{R}^3$

مبرهنة (2.2.1):

 \mathbf{V} ن تحويل خطى $\mathbf{W} \leftarrow \mathbf{T}$. يكون لدينا

1 ـــ KerT ـــ 1 فضاء جزئي من V .

2 __ ImT فضاء جزئي من W .

البرهان:

النسبة ان KerT هو فضاء جزئي، يجب ان نبرهن انه مغلق بالنسبة ${\rm KerT}$ و ${\rm RerT}$ للجمع والضرب في اعداد قياسية. نأخذ ${\rm A}_2, {\rm A}_1$ متجهين في ${\rm KerT}$ اي عدد قياسي. فيكون

$$T(A_1 + A_2) = T(A_1) + T(A_2)$$

= O + O = O

اذن A + B € KerT ايضاً.

$$T(rA_1) = rT(A_1) = r.O = O$$

اي ان rA في KerT .

ImT و ImT و ImT و ImT هو ImT هو ImT و ImT و ImT هو ImT و ImT انسا بجسب ان نجد متجهيس ImT و ImT انسا بجسب ان نجد متجهيس ImT و ImT ImT و ImT و ImT و ImT و ImT

حیث ان B_1,B_2 فی B_1,B_2 فی ImT فیوجد متجهان A_1,A_2 فی A_1,A_2 فی ImT حیث یکون A_1,A_2 فیکون A_1,A_2 فیکون A_1,A_2 فیکون

$$T(A) = T(A_1 + A_2) = T(A_1) + T(A_2) = B_1 + B_2$$

$$T(C) = T(rA_1) = rT(A_1) = rB_1$$

اي ان rB₁ € ImT.

هذا يعنى ان كل من ImT, KerT يكون فضاءاً جزئياً.

(و . هـ . م)

على ضوء المبرهنة اعلاه نقدم التعريف الآتي:

تعریف:

بصفرية Nullity of T) T) نقصد بعد الفضاء الجزئي KerT اي (Nullity of T) ، dim(ImT) . dim(ImT) . اي (dim(ImT) .

مثال (2):

جد صفرية ورتبة التحويل الخطي T المعرف في المثال (8).

الحل: من المثال (8) نلاحظ ان

KerT =
$$\{(x,y,z): x = -2y, y = y, z = o\}$$

 $ImT = \{(a,b,c): a = a, b = o, c = c \}$

عندئــذ تكون المجموعــة $S = \{(-2,1,0)\}$ قاعــدة الى KerT، والمجموعـة $H = \{(1,0,0), (0,0,1)\}$ قاعدة الى ImT، وبالتالي يكون:

dim(KerT) = 1, dim(ImT) = 2

ای ان صفریة T = 1 ، رتبة T = 2 .

المبرهنة ادناه تعتبر من المبرهنات المهمة في موضوع الجبر الخطي وهي تربط بعد مجال التحويل الخطي بأبعاد نواته وصورته.

مبرهنة (2.2.2) :

.
$$V \rightarrow T$$
 بعد $T \rightarrow W$ اذا کان $T \rightarrow W$ بعد $T \rightarrow W$ اذا کان $V \rightarrow W$ اذا کان $V \rightarrow W$ بعد $V \rightarrow W$

البرهان :

لنفرض ان KerT و . $\dim(\text{KerT}) = k$, $\dim V = n$ فضاءاً جزئياً . $k \leq n$ لنفرض ان $k \leq n$ وحسب من V ، فعليه يكون $k \leq n$. نأخذ قاعدة $\{A_1, \ldots, A_k\}$ الى

مبرهنة (1.8.5) فإنه توجد متجهات $A_{k+1},...,A_n$ بحيث ان المجموعة مبرهنة (1.8.5) فإنه توجد متجهات بكون قاعدة الى V . لننظر الى المجموعة $\{A_1,...,A_k,\ A_{k+1},...,A_n\}$ تكون قاعدة الى A_k . A_k .

$$A = x_1 A_1 + ... + x_k A_k + x_{k+1} A_{k+1} + ... + x_n A_n$$
 عندئذ یکون :

$$B = T(A) = x_1 T(A_1) + ... + x_k T(A_k) + x_{k+1} T(A_{k+1}) + ... + x_n T(A_n)$$

$$= x_1.0 + ... + x_k.0 + x_{k+1} B_1 + ... + x_n B_{n-k}$$

= $x_{k+1}B_1 + ... + x_n B_{n-k}$

وهذا يعنى انه بالامكان كتابة اي متجه $B \in ImT$ كتركيب خطي من المتجهات $B_1, \ldots, B_n, \ldots, B_n$ تكون مجموعة المتجهات B_1, \ldots, B_{n-k} تكون محموعة مولدة الى A_1, \ldots, A_n بالاضافة الى ماتقدم فإن المجموعة A_1, \ldots, A_n بالاضافة الى ماتقدم فإن المجموعة مستقلة خطياً . ولرؤية ذلك نأخذ تركيباً خطياً مساوياً للصفر لمتجهات تلك المجموعة مثل:

$$y_1 B_1 + ... + y_{n-k} B_{n-k} = 0$$

وعند التعويض نحصل على

$$y_1T(A_{k+1}) + ... + y_{n-k}T(A_n) = 0$$

اي ان

$$T(y_1A_{k+1} + ... + y_{n-k}A_n) = 0$$

وهذا يعني ان المتجه $\mathbf{y}_{1}\mathbf{A}_{k+1}+\ldots+\,\mathbf{y}_{n-k}\mathbf{A}_{n}$ \in KerT وبالتالي يمكن كتابته كتركيب خطي من المتجهات $\mathbf{A}_{1},\ldots,\,\mathbf{A}_{k}$ التي تكون قاعدة الى KerT ان :

 $y_1 A_{k+1} + \ldots + y_{n-k} A_n = x_1 A_1 + \ldots + x_k A_k$ المعادلة اعلاه يمكر. ان تكتب بالصيغة

 $x_1A_1 + ... + x_kA_k - y_1A_{k+1} - ... - y_{n-k}A_n = 0$ $\text{each τ} \text{ is small} \text{ is a small } \text{ is a small} \text{ is a$

 $x_1 = 0, ..., x_k = 0, y_1 = 0, ..., y_{n-k} = 0$

وعليه تكون المجموعة $\{B_1,\dots,B_n,\dots,B_{n-k}\}$ مستقلة خطياً ، وبما انها مولدة الى $\operatorname{Im} T$ فتكون قاعدة له . وبما ان عدد المتجهات في تلك القاعدة يساوي $\operatorname{n-k}$ نستنتج على ان $\operatorname{dim}(\operatorname{Im} T)=\operatorname{n-k}$.

وهذا يكمل البرهان •

(و . هـ . م)

مثال (3):

جد رتبة و صفرية التحويل الخطي $R^2 \rightarrow R^3$ المعرف بالصيغة T(x,y,z) = (y,z)

 $ImT = R^2$ اذن رتبة ImT = R^2 اخل: التحويل اعلاه يكون دالة شاملة وعليه فإن $ImT = R^2$ اذن رتبة وبتطبيق المبرهنة (2.2.2) نحصل على

dim(KerT) = 3-dim (ImT)= 3-2 = 1

مثال (4):

برهن على ان اي تحويل شامل $R^n \to T: R^n \to T:$ يجب ان يكون متبايناً .

البرهان:

. n مساویة الی T ان T شامل. اذن $T = R^n$ وعلیه تکون رتبة T مساویة الی T بتطبیق مبرهنة (2.2.2) نحصل علی ان

وهدا يعني ان A-B € KerT . اي ان A-B = O وبالتالي فإن A = B وبالتالي فإن T متباين .

جزء من فكرة المثال اعلاه عبارة عن نتيجة هامة لابد من تدوينها .

مرهنة (2.2.3)

اذا كان W → T:V تحويلاً خطياً فإن:

. Ker T = $\{O\}$ متباین اذا وفقط اذا $\{O\}$

(-1) اشامل اذا وفقط اذا T شامل اذا

(و.ه.م)

البرهان:

(أ) مبرهن في مثال (4) و (ب) نتيجة مباشرة للتعاريف.

مثال (5):

 $A_1 = (1,-1,0),$ جد تحویلاً خطیاً $R^2 \to R^3 \to R^2$ بحیث ان المجموعة $A_2 = (2,0,1)$ تکون قاعدة لنواته .

الحل: التحويل المطلوب يجب ان يحقق:

$$T(A_1) = T(1,-1,0) = (0,0)$$

 $T(A_2) = T(2,0,1) = (0,0)$

المبرهنة (2.1.2) تضمن لنا ايجاد التحويل بعد معرفتنا لقيمه على عناصر اي قاعدة كانت. لنأخذ المتجه $A_3 = (0,0,1) = A$ ونلاحظ ان المجموعة

$$\left\{ A_1 = (1,-1,0), \ A_2 = (2,0,1), \ A_3 = (0,0,1)
ight\}$$
 تكون قاعدة الى R^3 لنرسل المتجه A_3 بواسطة T الى اي متجه غير صفري في وليكن وليكن

$$T(A_3) = T(0,0,1) = (1,-1)$$

(عند وضع (0,0) = $T(A_3)$ فإن A_3 فإن $T(A_3)$ وبذلك يكون $T(A_3)$ والتحويل T لن يكون التحويل المطلوب).

الان اذا كان

$$(x,y,z) = aA_1 + bA_2 + cA_3$$

فإن

$$T(x,y,z) = aT(A_1) + bT(A_2) + cT(A_3)$$

= a(0,0) + b(0,0) + c(1,-1)
= c(1,-1)

اذن المطلوب انجاد c . المعادلة

$$(x,y,z) = aA_1 + bA_2 + cA_3$$

تؤدي الي

$$(x,y,z) = (a+2b, -a, b+c)$$

اذن

$$a + 2b = x$$

$$-a = y$$

$$b + c = z$$

حل هذه المعادلات يؤدي الي

$$a = -y$$
, $b = (1/2)(x + y)$, $c = z - (1/2)(x + y)$

اذن

$$T(x,y,z) = c(1,-1)$$
= $(z - (1/2) x - (1/2) y, (1/2) x + (1/2) y - z)$

والأن الطالب مدعو لتحقيق ان نواة T لها القاعدة المعطاة .

مثال (6):

 $\left\{ B_{1}=(1,1,0),\;$ جد تحويلاً حطياً $T:R^{3}$ \longrightarrow R^{3} خطياً حطياً $B_{2}=(-2,1,3) \right\}$ تكون قاعدة لصورته .

لنأحد

$$S = \{A_1 = (1,0,0), A_2 = (0,1,0), A_3 = (0,0,1)\}$$

 It is a set of the set

$$T(A_1) = T(1,0,0) = B_1 = (1,1,0)$$

$$T(A_2) = T(0,1,0) = B_2 = (-2,1,3)$$

$$T(A_3) = T(0,0,1) = B_3 = (0,0,0)$$

ای متجه فی \mathbf{R}^3 ادن $\mathbf{A} = (\mathbf{x}, \mathbf{y}, \mathbf{z})$

$$A = (x,y,z) = xA_1 + yA_2 + zA_3$$

اذن

$$T(A) = xB_1 + yB_2 + zB_3$$

(راجع إثبات المبرهنة (2.1.2). بالتعويض نحصل على

$$T(A) = x (1,1,0) + y(-2,1,3) + z(0,0,0)$$

= (x-2y, x + y, 3y)

اذن

$$T(x,y,z) = (x-2y, x + y, 3y)$$

: و قاعدة الى KerT و قاعدة الى ImT في كل مما يلي
$$\operatorname{Ker} T$$
 . T:R³ \to R² ه $\operatorname{T}(x,y,z) = (2x,y+z)$ (أ)

. T:
$$P_1(C) \rightarrow C$$
 . $T(a_0 + a_1 x) = 2a_0 - ia_1 (-1)$

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $T(x,y) = (x,2x,3x)$ (τ)

$$\Gamma: M(R) \to R^{2r} \qquad 1 \left[\begin{array}{c} x & y \\ y & w \end{array} \right] = (x-w, y+2z) (z)$$

2 _ جد صفرية ورتبة جميع التحويلات في تمريد (1).

ناف کان R^2 کویلین خطیین معرفین بالصیغة S ، T: $R^3 \rightarrow R^2$ اذا کان S(x,y,z)=(x,y) . S(x,y,z)=(x,2x)

فجد رتبة وصفرية كل من التحويلات التالية:

T, S, 2T + S, T-5S

- $T:V \to V$ فضاء متجهات منتهي البعد وعلى الحقل F وكان V فضاء متجهات منتهي البعد وعلى الله T فريلاً خطياً متبايناً فبرهن على ان T فبرهن على ان T فبرهنتين (2.2.3), (2.2.3)).
 - تويسلاً خطياً معرفاً بالصيغة $T:P_2(R) \to P_2(R)$ معرفاً بالصيغة $T:P_2(R) \to P_2(R)$ فجد رتبة وصفرية T
 - تحقق $T:R^2 \to R^2$ الذي يحقق $T:R^2 \to R^2$ الذي يحقق $T(1,-2) = (-\sqrt{3}, -\sqrt{2}), T(1,1) = (\sqrt{2}, \sqrt{3})$
- متجهاً يحقق $T:V \to W$ و $A_0 \in V$ متجهاً يحقق $T:V \to W$ و $T:V \to W$ على ان اي حل المعادلة T(X) = B يجب ان يكون بالصيغة $T(A_0) = B$ لمتجه ما T(X) = B بالصيغة $X = A_0 + C$
- . R على حقل الاعداد الحقيقية $M_n(R)$ فضاء المصفوفات $M_n(R)$ على حقل الاعداد الحقيقية $M_n(R)$ لتكن $T\colon M_n(R) \to M_n(R)$ دالة معرفة بالصيغة

$$T(A) = (A - A^T)/2$$

(transpose) A حيث A^T تساوي مدورة المصفوفة

(أ) برهن على ان T تكون تحويلاً خطياً .

(ب) صف KerT وجد بعده.

دالة معرفة بالصيغة $S: M_n(R) \rightarrow M_n(R)$ دالة معرفة بالصيغة = 9

 $S(A) = (A + A^T)/2$

فبرهن على ان S تكون تحويلاً خطياً ثم برهن على ان

ImS = Ker T

حيث T هو التحويل الخطي المعرف في تمرين (8).

$$T: M_2(R) \to M_2(R)$$
 وليكن $M = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ تحويلاً خطباً مع فأ بالصبغة:

تحويلاً خطياً معرفاً بالصيغة: T(A) = AM - MA

جد قاعدة الى نواة Ker T) T).

تبولد من قبل (ImT) T بعيث ان صورة $T:R^3 \to R^4$ تتولد من قبل المتجهين (B $_1=(1,0,2,-3),\, B_2=(-1,1,0,0)$

$$T:M_2(R) \to R^3$$
 نحويلاً خطياً $S=\left\{\begin{array}{ccc} 1 & 1 \\ 0 & -2 \end{array}\right\}$ بخيث ان المجموعة $S=\left\{\begin{array}{ccc} A_2=\begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}, A_1=\begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}\right\}$

 C^2 عنبر C^2 فضاء متجهات على الحقل R ثم جد تحويلاً خطياً $S = \{A_1 = (i,1), A_2 = (0,-i)\}$ بخيث ان المجموعة $C^2 \rightarrow P_2(R)$ تكون قاعدة لنواته والمجموعة $C^2 \rightarrow P_2(R)$ تكون قاعدة لصورته .

(2.3) التحويلات النظيرة Inverse transformations

سندرس في هذا البند تركيب التحويلات الخطية والتي سنعتمد عليها في تعريف التحويلات النظيرة . ستؤدي هذه الدراسة الى معرفة خصائص اضافية

للتحويلات الخطية وكذلك تؤدي الى تصنيف فضاءات المتجهات.

تعریف:

اذا كان كل من W,V,U فضاء متجهات على الحقل F ، واذا كان كل $T:V \longrightarrow W$ ، $S:U \longrightarrow V$ من $V \longrightarrow W$ ، $S:U \longrightarrow V$

$$ToS(A) = T(S(A))$$
 : الصيغة $ToS:U \rightarrow W$. (Composition of S, T) T,S هذه الدالة تسمى تركيب الدالتين

مثال (1):

جد تركيب الدالتين $R^3 \rightarrow R$ ، $S:R^2 \rightarrow R^3$ المعرفتين بالصيغتين T(x,y,z) = x-y+z , S(x,y)=(2x,y,o)

الحل: التركيب ToS يكون دانة من R² الى R معرفة بالصيغة

ToS
$$(x,y) = T(S(x,y))$$

= $T(2x, y, o)$
= $(2x) - (y) + (o)$
= $2x - y$

ملاحظية:

في المثال اعلاه، التركيب SoT لايكون معرفاً وذلك لان انجال المقابل للدالة T لايساوي مجال الدالة S.

مبرهنــة (2.3.1):

Yن تحویلین خطین $V \to W$, $S:U \to V$ یکون الترکیب $T:V \to W$ ایضاً تحویلاً خطیاً .

البرهان:

لنأخذ
$${\bf A_1}, {\bf A_2}$$
 اي متجهين في ${\bf r}, {\bf U}$ اي عدد قياسي ، فيكون لدينا :

$$ToS(A_1 + A_2) = T (S(A_1 + A_2))$$
= $T(S(A_1) + S(A_2))$
= $T(S(A_1)) + T(S(A_2))$
= $ToS(A_1) + ToS(A_2)$

كذلك يكون لدينا

$$ToS(rA_1) = T(S(rA_1)) = T(rS(A_1))$$
$$= rT(S(A_1)) = r ToS(A_1)$$

بذلك تكون الدالة ToS تحويلاً خطياً.

(و.ه. م)

لقد ذكرنا في مثال (4) من البند (2.1) ان الدالة المحايدة على فضاء متجهات تكون تحويلاً خطياً على ذلك الفضاء. سوف نرمز لتلك الدالة برمز خاص في التعريف التالى:

تعریف:

V على حقل V. التحويل $V \to V$ المعرف الحرف V المعرف التحويل الحايد على بالتحويل المحايد على المحايد على المحايد على (Identity transformation on V). V

تعریف:

اذا كان كل من $W \to V$, $T:V \to W$ تحويلاً خطياً فنعرف النظير الايمن والايسر كما يأتي :

. T فإن S يسمى نظير ايسر الى S SoT = 1_v (أ) اذا كان (left inverse)

 $ToS = 1_w$ نظیر ایمن آلی ToS (ب) اذا کان $ToS = 1_w$ (right inverse)

ملاحظـة:

اذا كان S نظيراً يسارياً الى T فإن T يكون نظيراً يمينياً الى S كذلك فإنه اذا كان S نظيراً يمينياً الى T يكون نظيراً يسارياً الى S.

مثال (2):

اذا كان $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ التحويل الخطى المعرف بالصيغة :

$$T(x,y) = (x,x+2y, x-y)$$

فبرهن على ان التحويل الخطى $R^2 \to S: R^3$ المعرف بالصيغة:

$$S(x,y,z) = (x,y-2x+z)$$

يكون نظيراً يسارياً الى T ، لكن لايكون نظيراً يمينياً .

. SoT (x,y) = (x,y) الطلوب برهانه هو ان $SoT = 1_{R^2}$ ، اي ان الطلوب برهانه هو ان

SoT
$$(x,y) = S(T(x,y)) = S(x,x+2y, x-y)$$

= $(x,(x+2y)-2(x) + (x-y))$
= (x,y)

الآن: $R^3 \rightarrow R^3$ يكون معرفاً بالصيغة.

$$ToS(x,y,z) = T(S(x,y,z)) = T(x,y-2x+z)$$

$$= (x,x+2(y-2x+z), x-(y-2x+z))$$

$$= (x,-3x+2y+2z, 3x-y-z)$$

من هنا نلاحظ ان (x,y,z) \not (x,y,z) اي ان ToS (x,y,z) وبذلك الايمكن لـ S ان يكون نظيراً يمينياً .

تعريف:

S اذا كان كل من $W \to V$, $T:V \to W$ تحويلاً خطياً فإن $T:V \to W$ يسمى نظيراً الى T اذا وفقط اذا كان S نظيراً الى T .

ملاحظة:

اذا كان S نظيراً الى T فإن T يكون نظيراً الى S.

مثال (3):

اذا كان
$$R^4$$
 التحويل الحطي المعرف بالصيغة: $T:M_2(R) \to R^4$ الذا كان $T \begin{bmatrix} \overline{a} & \overline{b} \\ c & d \end{bmatrix} = (-b, a, (1/5)c, (1/2)d)$

فبرهن على ان التحويل الخطي $\mathrm{S:R^4} o \mathrm{M_2(R)}$ المعرف بالصيغة :

$$S(x,y,z,w) = \begin{bmatrix} y & -x \\ 5z & 2w \end{bmatrix}$$

يكون نظيراً الى T.

Iالحل: يجب ان نبرهن على ان I يكون نظيراً يسارياً ويمينياً الى I . هذا يعني انه يجب البرهنة على ان $I_{M_2(R)} = I_{M_2(R)}$

$$SoT\begin{bmatrix} a & b \\ c & d \end{bmatrix} = S\left(T\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)$$

= S(-b, a,(1/5c,(1/2)d)

$$= \begin{bmatrix} a & & & \\ 5(1/5c) & 2(1/2)d \end{bmatrix} \qquad \begin{bmatrix} a & & b \\ c & & d \end{bmatrix}$$

. SoT =
$$1_{R^4}$$
 الأن نبرهن ان $SoT = 1_{M_2(R)}$ الأن نبرهن ان $SoT(x,y,z,w)$ = $S(T(x,y,z,w))$ = $S(T(x,y,z,w))$

٠ مبرهنة (2.3.1)

لیکن $W \to T:V$ تحویلاً خطیاً . اذا امتلك T نظیراً یساریاً ونظیراً يمينیاً فیجب علیهما انتساوی . ای انه اذا وجد تحویلین $S,S;W \to V$ خیث S=S فإن S=S . SoT=1

البرهان:

$$S = So 1_{W} = So(ToS)$$

$$= (SoT)o S = 1_{V}o S = S$$

تعريف

(non - معتلاً عبر معتلاً $T:V \to W$ بسمى لتحويل خطي $T:V \to W$ بالمحصيل المحصيل Singular) الذا وجاد تحميلاً خطياً $S=T^{-1}$ بالمحصيل المحصيل $S=T^{-1}$ عندئاً نكتب $S:W \to V$ ونسميه نظير T

المرهنة (2.3.1) تضمن محمد نظير ماجد فقط ال وجد.

تعریف:

اذا وجد تشاكل $W \to T:V \to W$ بين الفضاءين V فنقول بأن الفضاء V يشاكل الفضاء V يشاكل الفضاء V

قبل اعطاء امثلة على مفهوم التشاكل، سوف نذكر بعض المبرهنات التي تفيدنا في انشاء التشاكلات، وفي تحقيق بعض ماسندعيه في الامثلة.

مبرهنة (2.3.2) :

ليكن $\mathbf{W} \leftarrow \mathbf{S}$: \mathbf{W} خطياً . اذا وجدت دالة $\mathbf{V} \leftarrow \mathbf{W}$ تحقق : \mathbf{S} ان تكون تحويلاً خطياً . \mathbf{S} عقق : \mathbf{S} SoT = $\mathbf{I}_{\mathbf{V}}$

البرهان:

لناً خذ $\mathbf{B}_1,\,\mathbf{B}_2$ اي عدد قياسي، المطلوب برهانه ان :

$$S(B_1 + B_2) = S(B_1) + S(B_2)$$

 $S(rB_1) = rS(B_1)$

ضع:
$$S(B_2) = A_2$$
, $S(B_1) = A_1$ غم لاحظ

$$B_1 = 1_w(B_1) = ToS(B_1) = T(S(B_1)) = T(A_1)$$

وبالطريقة نفسها نحصل على
$$B_2=T(A_2)$$
 . وذلك لان $ToS=1_w$ بالفرض . $B_2=T(A_2)$ على الفرض . العلاقات : $SoT=1_v$, $B_2=T(A_2)$, $B_1=T(A_1)$:

$$S(B_1 + B_2) = S(T(A_1) + T(A_2))$$

$$= S(T(A_1 + A_2))$$

$$= SoT(A_1 + A_2)$$

$$= 1_v(A_1 + A_2) = A_1 + A_2$$

$$= S(B_1) + S(B_2)$$

$$S(rB_1) = S(rT(A_1)) = S(T(rA_1) = SoT(rA_1)$$

$$= 1_v(rA_1) = rA_1 = rS(B_1)$$

بذلك تكون الدالة S تحويلاً خطياً .

(و. هـ ، م)

المبرهنة التالية تفيدنا في المسائل العملية وتدلنا على الطريقة لايجاد النظير الايمر الايسر للتحويل الخطى بين الفضاءات المنتهية البعد.

مبرهنة (2.3.3) :

اذا كان $\mathbf{W} \to \mathbf{T} : \mathbf{V} \to \mathbf{W}$ خطياً بين الفضاءين المنتهيين البعد \mathbf{V} و \mathbf{W} فإن :

- (أ) يوجد الى T نظير ايمن اذا وفقط اذا كان T شاملاً.
- (ب) يوجد الى T نظير ايسر اذا وفقط اذا كان T متبايناً .

البرهان:

نظیر ایمن الی T. عندئذ یکون لدینا S $W_i \longrightarrow V$ انفرض ان نبرهن علی ان T یکون تحویلاً شاملاً . لهذا الغرض نأخذ T $S=1_w$ ای متجه ونضع A=S(B) ونلاحظ ان :

$$T(A) = T(S(B)) = ToS(B) = 1_w(B) = B$$

اذن یکون T تحویلاً شاملاً . علی العکس لنفرض ان $W \to T:V \to W$ تحویلاً شاملاً . یجب علینا ایجاد تحویل حطی $V \to V$ یحقق $V \to V$.

ليكن m, dim(V) = m, dim W = n. بما ان T تحويل شامل، اذن: dim(V) = m, lim(ImT) = dimW = n. المبرهنة (2.2.2) تنتج ان:

dim(KerT) = dim(V) - dim(ImT) = m-n

وعليه نأخذ قاعدة الى KerT ولتكن $\{A_1,\;...,\;A_{m-n}\}$ ونوسعها الى قاعدة , V الى $\{A_1,\;...,\;A_{m-n},\;B_1,\;...,\;B_n\}$

ضع: $C_1 = T(B_1), ..., C_n = T(B_n)$ تكون قاعدة الى $C_1 = T(B_1), ..., C_n = T(B_n)$ تكون قاعدة الى W = ImT (راجع اثبات المبرهنة (2.2.2) . يُعرف الآن التحويل الخطي $W = S: W_1 \longrightarrow V$ في $W \longrightarrow W$ كما في $W \longrightarrow W$

مبرهنة (2.1.2) .

$$S(C_1) = B_1, ..., S(C_n) = B_n$$
 $B = y_1 C_1 + ... + y_n C_n$ بنكن $B \in W$ ختب $B(B) = y_1 B_1 + ... + y_n B_n$ ويكون : $B(B) = y_1 B_1 + ... + y_n B_n$ والان نبرهن على ان التحويل $B(B) = y_1 B_1 + ... + y_n B_n$ والان نبرهن على ان التحويل $B(B) = y_1 B_1 + ... + y_n B_n$

والان نبرهن على ان التحويل S اعلاه يكون نظيرا يمينيا الى T . V S $B = y_1 C_1 + ... + y_n C_n$

$$ToS(B) = T(S(B)) = T(y_1B_1 + ... + y_nB_n)$$

$$= y_1T(B_1) + ... + y_nT(B_n)$$

$$= y_1C_1 + ... + y_nC_n$$

$$= B$$

هذا يكمل برهان (أ).

(ب) لنفرض ان $V \rightarrow S:W \rightarrow V$ نظیر ایسر الی T.

عندئذ يكون : $SoT = 1_v$. يجب البرهنة على إن T يكون متبايناً .

النفرض ان $T(A_1) = T(A_2)$ بتطبيق S على الطرفين نحصل على:

$$S(T(A_1)) = S(T(A_2))$$

 $SoT(A_1) = SoT(A_2)$
 $1_v(A_1) = 1_v(A_2)$

 $A_1 = A_2$

لنفرض الآن ان T تحويلاً متبايناً. ولنفرض ان $KerT = \{O\}$ متبايناً على آن $\{O\}$ وعليه فإن المبرهنة (2.2.2) تنتج:

dim(ImT) = dim(V) - dim(KerT) = m - o = m

نختار قاعدة $\{A_1,...,A_m\}$ الى V ثم نضع:

 $B_1 = T(A_1),, B_m = T(A_m)$ $\Rightarrow A_0 = A_0$ $\Rightarrow A_0$ $\Rightarrow A_0 = A_0$ $\Rightarrow A_0$

$$y_1 T(A_1) + ... + y_m T(A_m) = O$$

 $T(y_1 A_1 + ... + y_m A_m) = O$

هذا يعني ان $y_1A_1+...+y_mA_m \in \mathrm{Ker}\ T$ متباين وهذا يعني ان $y_1A_1+...+y_mA_m \in \mathrm{Ker}\ T=\{0\}$

 $\mathbf{y}_{1}\mathbf{A}_{1}+\ldots +\mathbf{y}_{m}\mathbf{A}_{m}=\mathbf{O}$

لكن $\{A_1, ..., A_m\}$ محموعة مستقلة خطياً من المتجهات وذلك لكونها قاعدة الى $y_1 = y_2 = = y_m = 0$. اذن $y_1 = y_2 = = y_m = 0$. اذن $\{B_1, ..., B_m, C_1, ..., C_{n-m}\}$ الى $\{B_1, ..., B_m, C_1, ..., C_{n-m}\}$ الى قاعدة $\{B_1, ..., B_m, C_1, ..., C_{n-m}\}$ الى تامدة الى قاعدة الى

نعرف الان التحويل الخطي $S:W \to V$ على عناصر القاعدة اعلاه وذلك $S(B_1)=A_1,\,\ldots,\,S(B_m)=A_m$ بأخذ .

$$S(C_1) = O \dots, S(C_{n-m}) = O$$

ولمعرفة قيمة S على اي متجه BEW ، نكتب:

$$\mathbf{B} = \mathbf{x_1} \mathbf{B_1} + \ldots + \mathbf{x_m} \mathbf{B_m} + \mathbf{y_1} \mathbf{C_1} + \ldots + \mathbf{y_{n-m}} \mathbf{C_{n-m}}$$
 .

$$S(B) = x_1 A_1 + ... + x_m A_m + y_1 O + ... + y_{n-m} \cdot O$$

= $x_1 A_1 + ... + x_m A_m$

. SoT = 1_v الآن نبرهن على ان S يكون نظيراً يسارياً الى T . اي ان S اعلاه لنأخذ $A=r_1A_1+\ldots+r_mA_m$ اعلاه نخصل على :

SoT(A) = S(T(A)) = S(
$$r_1$$
T(A_1) + ... + r_m T(A_m))
= S(r_1 B₁ + ... + r_m B_m)
= r_1 A₁ + ... + r_m A_m = A

هذا يكمل برهان (ب).

(و . هـ . م)

نتيجة (2.3.4):

آذا كان $W \leftarrow T:V$ تحويلاً بين فضاءين منتهيي البعد فإن W يكون تحويلاً غير معتل (W تشاكل) اذا وفقط اذا كان W متبايناً (W السلاط) أشاملاً (W السلاط) .

البرهان:

افرض ان T تحويل غير معتل. عندئذ يوجد تحويل خطي $V \to S$ يحقق T افرض ان T العلاقة الأولى تنص على ان S نظير أيسر وبالتالي فإن S يكون متبايناً حسب المبرهنة (2.3.3) والعلاقة الثانية تنص على ان S نظير أيمن الى S وبالتالى فإن S يكون شاملاً.

على العكس اذا كان T متبايناً وشاملاً فإن المبرهنة (2.3.3) تنص على وجود نظير ايسر وآخر ايمن الى T وبالتالي وحسب المبرهنة (2.3.1) نستنتج على تساوي النظيرين وبالتالي يكون T تحويلاً غير معتل.

(و. هـ ، م)

المبرهنة (2.3.3) تفيد بمعرفة وجود التحويلات النظيرة وكذلك فإنها تعطى الطريقة العملية لايجادها. سوف نذكر الان عدة امثلة على الافكار التي طرحناها في هذا البند.

مثال (4):

برهن على وجود نظير ايمن للتحويل الخطي $T:R^3 \to R^2$ المعرف T(x,y,z)=(x+y,2x-z) بالصيغة : ثم جد واحداً .

الحل: اذا كان T شاملاً فسوف يوجد له نظير ايمن وذلك حسب مبرهنة (2.3.3). نلاحظ اولاً.

T(x,y,z) = x(1,2) + y(1,0) + z(0,-1) وبما [1,2), (1,0), (0,-1) وبما يعنى ان [1,2), (1,0), (0,-1) وبما

أن هذه المجموعة تحتوي على المجموعة المستقلة خطياً $\{(1,0), (0,-1)\}$ فإن $\dim(\operatorname{Im} T) = 2$

لايجاد نظير ايمن نتبع الخطوات التي وردت في برهان مبرهنة (2.3.3) (أ) الهلاَ: خد قاعدة الى KerT . غذا الغرض ضه

T(x,y,z) = (x + y,2x-z) = (0,0)

x + y = 0 : فنحصل على المعادلتين

2x-z = 0

 $A_1=$ المنتجه على المتجه $x=x,\ y=-x,\ z=2x$ وبأخذ x=1 لحصل على المتجه $x=x,\ y=-x,\ z=2x$ وبأخذ x=1 المنتجه المتحون قاعدة الى $x=x,\ y=-x,\ z=2x$ المنتجه والحق المتحون قاعدة الى قاعدة الى قاعدة الى قاعدة $\{A_1=(1,-1,2),\ B_1=(1,0,0),\ B_2=(0,1,0)\}$ ستكون قاعدة المتحود قاعدة $\{A_1=(1,-1,2),\ B_1=(1,0,0),\ B_2=(0,1,0)\}$

 $C_1 = T(B_1) = T(0,1,0) = (1,2)$ ثانیاً نضع : $C_2 = T(B_2) = T(0,1,0) = (1,0)$

والآن نحاول كتابة المتجه العام $(x,y) \in \mathbb{R}^2$ كتركيب خطي من متجهات القاعدة $\{C_1, C_2\}$ الى $\{C_1, C_2\}$

(x,y) = a(1,2) + b(1,0)= (a+b, 2a)

b = x-(1/2)y, a = (1/2)y : فنحصل على : والان نعرف التحويل الخطي $S: R^2 \longrightarrow R^3$

 $S(x,y) = (1/2)y (B_1) + (x-(1/2)y)B_2$ = (1/2)y (1,0,0) + (x-(1/2)y) (0,1,0) = ((1/2)y, x-(1/2)y, o)

والان القارىء مدعو لتحقيق كون S نظيراً يمينياً للتحويل T.

ملاحظة:

في حل المثال اعلاه كان اختيار $B_1,\,B_2$ عشوائياً بشرط ان تكون المجموعة $A_1,\,B_1,\,B_2$ قاعدة الى R^3 قاعدة الى R^3 قاعدة الى نظير ايمن آخر .

مثال (5):

برهن على وجود نظير ايسر للتحويل الخطي $R^3 \longrightarrow T:P_1(R)$ المعرف الصيغة .

T(a + b x) = (a, -b, 2a)

ثم جد والحداً.

الحل: لكي يوجد نظيراً يسارياً للتحويل T يجب ان يكون متبايناً وهذا يكافىء كون. KerT={0}. فإذا وضعنا

T(a+bx) = (a,-b, 2a) = (0,0,0)

. KerT= **40}** فنحصل على b = 0 , a = 0 .

لايجاد نظير ايسر نتبع خطوات البرهان للمبرهنة (2.3.3) (ب). نختار قاعدة الى $P_1(R)$ ولتكن القاعدة الطبيعية $P_1(R)$ في قاعدة الى القاعدة الطبيعية والمبرود القاعدة الطبيعية والمبرود القاعدة الطبيعية والمبرود القاعدة الطبيعية والمبرود القاعدة المبرود المب

 $B_1 = T(A_1) = T(1) = (1,0,2)$

 $B_2 = T(A_2) = T(x) = (0,-1,0)$

الآن المجموعة (0,-1,0) $B_2=(0,-1,0)$ تكون مجموعة مستقلة خطياً من المجموعة ($B_1=(1,0,2),\,B_2=(0,-1,0)$ الى R^3 الى R^3 الى R^3 الى R^3

بدلك نعرف التحويل الخطي $P_1(R) \longrightarrow S:R^3 \to P_1(R)$ على عناصر القاعدة

$$S(B_1) = A_1 = 1$$

$$S(B_2) = A_2 = x$$

$$S(C_1) = O$$

ولانجاد
$$(y_1, y_2, y_3)$$
 نکتب $(S(y_1, y_2, y_3))$ کترکیب حطي من $(S(y_1, y_2, y_3))$ المتجهات $(y_1, y_2, y_3) = a(1,0,2) + b(0,-1,0) + c(0,0,1)$ $= (a, -b, 2a + c)$ $= (a, -b, 2a + c)$ وعلیه نحصل علی $(c = y_3 - 2y_1, b = -y_2, a = y_1)$ $= (c + b)$ $=$

والقارىء مدعو لتحقيق كون S نظيراً يسارياً الى T.

مثال (6):

برهن على ان الفضاءين $P_n(R)$ و R^{n+1} متشاكلان وذلك لاي عدد طبيعي n .

الحل: نعزف التحويل الخطى R^{n+1} بالصيغة الحل: نعزف التحويل الخطى

 $T(a_0 + a_1x + + a_nx) = (a_0, a_1, ..., a_n)$

ثم نبرهن على ان T يكون تشاكلاً ولهذا الغرض نعرف التحويل الخطي $S: \mathbb{R}^{n+1} \longrightarrow P_n(\mathbb{R})$

 $S(b_1, ..., b_{n+1}) = b_1 + b_2 x + ... + b_{n+1} x^n$ T . $S = T^{-1}$. $S = T^{-1}$. $S = T^{-1}$

 $M_2(R),\, P_3(R),\,$ ان فكرة تشاكل الفضاءات بسيطة ، فمثلاً الفضاءات ون فكرة تشاكل الفضاءات بسيطة ، R^4

 $a + bx + cx^2 + dx^3 \in P_3(R)$, $(a, b, c, d) \in R^4$

نلاحظ ان كل متجه من هذه المتجهات . للحظ ان كل متجه من هذه المتجهات . يتحدد بأربعة اعداد حقيقية a, b, c, d مرتبة بصيغة معينة . من الامثلة السابقة نلاحظ ان بعد كل من هذه الفضاءات يساوي a, وبالتالي تشترك بصفة واحدة . ويكون اي اثنين منهما متشاكلين .

المبرهنة التالية تصنف الفضاءات المنتهية البعد وعلى الحقل نفسه.

مبرهنة (2.3.5):

اذا كان كل من $W,\,V$ فضاء متجهات منتهي البعد وعلى الحقل F نفسه فإن V يشاكل W اذا وفقط اذا V اذا وفقط اذا V

البرهان:

لنفرض ان V يشاكل W. اذن يوجد تشاكل $W \to T:V$. النتيجة W لنفرض ان W يشاكل W يشاكل W اذن يوجد W يوجد الى : W W W (2.2.2) تؤدي الى : W W (2.3.4) W (2.3.4) W (2.3.4) W (3.3.4) W (4.3.4) W (4.3.4) W (5.3.4) W (6.3.4) W (8.4) W (8.4) W (9.4) W (9.4) W (9.4) W (1.4) W (9.4) W (9.4) W (1.5) W (1.5) W (1.5) W (1.6) W

على العكس لنفرض ان $n=\dim(V)=\dim(W)$. أي العكس لنفرض ان $n=\dim(V)=\dim(W)$ المردد M ولتكن A_1,\dots,A_n قاعدة الى $A_$

 $T(A_1) = B_1,, T(A_n) = B_n$

ولأي متجه $\mathbf{A} = \mathbf{x_1} \mathbf{A_1} + \ldots + \mathbf{x_n} \mathbf{A_n}$ في \mathbf{V} يكون

 $T(A) = x_1 B_1 + \dots + x_n B_n$

هذا التحويل الخطي يجب ان يكون تشاكلاً وذلك لانه بالامكان تعريف

 $S:W \rightarrow V$

 $S(B) = S(y_1 B_1 + ... + y_n B_n) = y_1 A_1 + ... + y_n A_n$ بالصيغة $S(B) = S(y_1 B_1 + ... + y_n B_n)$. T نظيراً الى $S(B) = S(y_1 B_1 + ... + y_n B_n)$

(و: هـ ، م)

بمراجعة بعد الفضاءات نحصل على النتائج التالية .

مثال (7)

. n متشاكلين وذلك لاي عدد طبيعي $M_n(R)$ ، R^{n^2}

(ب) الفضاء C^n على الحقل R يشاكل الفضاء R^{2n} الذي بدوره يشاكل الفضاء $P_{2n-1}(R)$. وذلك لاي عدد طبيعي n .

(ج) الفضاء C^{n+1} على الحقل C يشاكل الفضاء C^{n+1} على الحقل C وذلك لأي عدد طبيعي C

مثال (8):

اختبر التحويلين الخطيين التاليين من ناحية التشاكل. ثم جد نظير التشاكل.

$$T_1: R^3 \to R^3$$
 $T_1(x,y,z) = (x, y,z-x)$

$$T_2: R^3 \rightarrow R^3$$
 $T_2(x,y,z) = (x,y,x+y)$

الحل: نعتمد على نتيجة (2.3.4) في الاجابة. نحاول حساب $KerT_2$, $KerT_1$ في الاجابة. نحاول حسابات بسيطة كالسابق تظهر ان:

 $KerT_1 = \{O\}, KerT_2 = \{(x,y,z): x = 0, y = 0, z = z\}$

عليه فأن T_2 لايكون تشاكلاً في حين ان مبرهنة (2.2.2) تنص على ان: $\dim(\mathrm{Im}T_1) = 3 - \dim(\mathrm{Ker}T_1 = 3 - o = 3$

وبالتالي يكون T₁ متبايناً وشاملاً وعليه يكون تشاكلاً.

لايجاد نظير T_1 ، نتبع احدى الطرق في مثال (5) او مثال (4) وذلك لان اي نظير ايسر الى T_1 مسوف يساوي اي نظير ايمن وذلك حسب مبرهنة (2.3.1). نأخذ اولاً قاعدة مثل القاعدة الطبيعية .

$${A_1 = (1,0,0), A_2 = (0,1,0), A_3 = (0,0,1)}$$

نضع

$$B_1 = T_1(A_1) = T_1(1,0,0) = (1,0,-1)$$

$$B_2 = T_1(A_2) = T_1(0,1,0) = (0,1,0)$$

$$B_3 = T_1(A_3) = T_1(0,0,1) = (0,0,1)$$

. B_1, B_2, B_3 من حطي من (x,y,z) والآن نكتب

$$(x,y,z) = a(1,0,-1) + b(0,1,0) + c(0,0,1)$$

= $(a, b, c-a)$

$$a = x$$
, $b = y$, $c = z + x$

$$S(x,y,z) = aA_1 + bA_2 + cA_3$$

$$= xA_1 + yA_2 + (z + x) A_3$$

$$= x (1,0,0) + y(0,1,0) + (z + x) (0,0,1)$$

$$= (x, y, z + x)$$

هذا هو نظیر . T ، ای یکننا ان نکتب

$$T_{-1}^{-1}(x,y,z) = (x,y,z+x)$$

مبرهنة (2.3.6) :

اذا کان کل من
$$V \to W$$
 ، $T_1:U \to V$ اذا کان کل من $T_2:V \to W$ ، $T_1:U \to V$ یکون تشاکلاً و $T_2:T_1:U \to W$ یکون تشاکلاً و $T_2:T_1:U \to W$

البرهان:

$$S_2: \mathbf{W} \to \mathbf{V}$$
 ، $S_1: \mathbf{V} \to \mathbf{U}$ نظیرہ ان .
$$\mathbf{S}_2: \mathbf{W} \to \mathbf{V} \text{ is } \mathbf{S}_1: \mathbf{V} \to \mathbf{U}$$
 .
$$\mathbf{S}_2 = \mathbf{I}_w \text{ or } \mathbf{S}_2 = \mathbf{I}_v \text{ or } \mathbf{S}_1 = \mathbf{I}_u$$

$$S = S_1 \circ S_2 : W \rightarrow V \qquad : \omega$$

لاحظ ان S تحويلاً حطياً ويحقق

$$(T_2 \circ T_1) \circ S = (T_2 \circ T_1) \circ (S_1 \circ S_2)$$

= $T_2 \circ (T_1 \circ S_1) \circ S_2$
= $T_2 \circ (1_v \circ S_2) = T_2 \circ S_2 = 1_w$

S وبالطريقة نفسها اعلاه يمكن البرهنة على ان $T_0 = T_0$ عندئذ يكون T_0 عندئذ يكون T_0 وهذا يعنى ان T_0 T_1 يكون تشاكلاً .

. اذن $\mathbf{T}_1 = \mathbf{T}_1$ و $\mathbf{S}_1 = \mathbf{T}_1^{-1}$ اذن $\mathbf{S}_2 = \mathbf{T}_1^{-1}$ اذن

 $(T_2 \circ T_1)^{-1} = S = S_1 \circ S_2 = T_1^{-1} \circ T_2^{-1}$

(و.ه.،م)

عارين (2.3)

- 2 ــ اذا كان V فضاء متجهات منتهي البعد و $V \to V$ تحويلا خطيا فيرهن على ان $KerT^2$ $KerT^2$ و $T^2 = ToT$
 - 3 _ اذا كان كل من S:U → V و S:U → W تحويلاً خطساً خيث . Ker (ToS) = (ToS) فبرهن على ان (Ker (ToS) = (ToS) فبرهن على ان
- V فضاء متجهات و $V \to T_1,\, T_2 : V \to V$ تحویلین خطیین علی V . نخبت:

.
$$T_1 + T_2 = I$$
 (أ) (أ)

$$T_{2} \circ T_{1} = O \cdot T_{1} \circ T_{2} = O$$
 (\smile)

$$T_2 \circ T_2 = T_2 \circ T_1 \circ T_1 = T_1$$
 (Ξ)

 $V = ImT_1 \oplus ImT_2$ برهن على ان

کی $T \neq 0$ کین حطیاً بحیث $T: R^2 \rightarrow R^2$ لکن $T: R^2 \rightarrow R^2$

$$T(B) = O$$
 فبرهن على وجود قاعدة A, B الى A, B الى A, B فبرهن على وجود A, B فبرهن على وجود A, B

- 6 ــ جد ان امكن نظير ايمن او نظير ايسر لكل من التحويلات الخطية التالية وقرر فيما اذا كان التحويل غير معتلاً.
 - . T(x,y,z) = (x+y, y-2z), $T: R^3 \longrightarrow R^2$ ()
 - $T(a + bx) = (a, b, -2b, a+b) \cdot T:P_1(R) \rightarrow R^4(-)$
 - ". $T(x,y,z) = (x + y, 2x + 2y-3z, 15z) \cdot T:R^3 \rightarrow R^3$ (7)
- وضاء \mathbf{C}^2 اعتبر $\mathbf{T}(z_1,z_2)=(iz_1,\,2z_1-z_2)$ ، $\mathbf{T}:\mathbf{C}^2\to\mathbf{C}^2$ (عضاء \mathbf{C} منجهات علی الحقل \mathbf{C}
 - 7 _ جد نظير كل من التحويلات التالية:
 - . T(x,y,z) = (x-y, x+z, x+y+2z), $T:R^3 \to R^3$
 - . $T(x,y,z) = (2x-y+z, x+y, 3x+y+z) \cdot T: \mathbb{R}^3 \to \mathbb{R}^3$ (\smile)
- ان کان $T:V \to V$ تحویلاً خطیاً بحیث $T:V \to V$ فہرہن علی ان $T:V \to V$ اذا کان $T:V \to V$ فہرہن علی ان $T:V \to V$ التحویل المحاید، $T:V \to V$ المحاید، $T:V \to V$
- ان $T^2 T + I = O$ قبرهن على ان $T:V \to \overline{V}$ فبرهن على ان $T^2 T + I = O$ اذا كان $T:V \to \overline{V}$ فبرهن على ان T^{-1} موجود ويساوي $T:V \to \overline{V}$
- . $T^2 + 2T + I = O$ مجد تحویلاً خطیاً بحیث $T:V \to V$ فجد $T^2 + 2T + I = O$ مجد T^{-1}
 - واذا کان $T^2=T$ تحویلاً حطیاً بحیث $T:V \to V$ واذا کان $V=M \bigoplus N$ فرهن علی ان V=KerT , M=ImT

 $A \in V$ متجه V = M + N اکتب متجه V = M + N ارشاد: لکی نبرهن علی از A = A - T(A) + T(A) بالصیغة $A \in V$

(2.4) مصفوفة التحويل الخطي

Matrix of a Linear transformation

يوضح هذا البند العلاقة بين التحويلات الخطية والمصفوفات وسنفترض لدى القارىء المام بجبر المصفوفات وخصائصها الرئيسة.

F اذا كان كل من V و w فضاء متجهات منتهي البعد وعلى الحقل $T;V \to W$ ، واذا كان W = n واذا كان V = m نفسه بحيث ان $m \times m$ فإنه بالأمكان ايجاد مصفوفة $m \times m$ عناصرها من الحقل T وتعتمد اعتماداً كلياً على التحويل الحظى T وعلى القواعد المختارة الى كل من V و W وعلى النحو التالي .

 $S = \{B_1, ..., B_n\}$ وان V وان $H = \{A_1, ..., A_m\}$ النفرض ان W وان W وبالتالي يمكن W وبالتالي يمكن W وبالتالي يمكن W وبالتالي يمكن كتابته كتركيب خطي من المتجهات W وبطريقة واحدة فقط. اذا بنا دادا دادا

$$T(A_1) = a_{11}B_1 + \dots + a_{1n}B_n$$

$$T(A_2) = a_{21}B_1 + \dots + a_{2n}B_n$$
(2.4.1)

$$T(A_m) = a_{m1}B_1 + \dots + a_{mn}B_n$$

$$M_T = egin{bmatrix} a_{1i} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$
 : فنحصل على مصفوفة :

علاقة هذه المصفوفة بالتحويل الخطي T وبالقواعد H و S موضحة في المبهنة التالية:

مبرهنة (2.4.2):

اذا كان $(x_1, ..., x_m)$ متجه احداثیات $A \in V$ بالنسبة للقاعدة $X = (x_1, ..., x_m)$ بالنسبة $X = (x_1, ..., x_m)$ بالنسبة $Y = (y_1, ..., y_n)$ و $Y = \{A_1, ..., A_m\}$ بالنسبة $S = \{B_1, ..., B_n\}$ بالنسبة للقاعدة $S = \{B_1, ..., B_n\}$ بالنسبة للقواعد $S = \{B_1, ..., B_n\}$ بالنسبة في $S = \{B_1, ..., B_n\}$ بالنسبة للقواعد $S = \{A_1, ..., A_m\}$ والمستخرجة في $S = \{A_1, ..., A_m\}$

$$Y = X M_T$$

H= اذا کان $(x_1,...,x_m)$ متجه احداثیات A بالنسبة للقاعدة $X=(x_1,...,x_m)$ اذا کان $X=(x_1,...,x_m)$ فإن $X=(x_1,...,x_m)$ فإن $X=(x_1,...,x_m)$ فإن $X=(x_1,...,x_m)$ فإن $X=(x_1,...,x_m)$ فإن $X=(x_1,...,x_m)$ في خطياً فعليه يكون $X=(x_1,...,x_m)$ في خطياً في خطياً في خاص المحالي في خاص

$$T(A) = x_1(\sum_{j=1}^{n} a_{ij}B_j) + \dots + x_m(\sum_{j=1}^{n} a_{mj}B_j)$$

$$=\sum_{j=1}^{n} (\sum_{k=1}^{m} x_k a_{kj}) B_j$$

لكن $Y = (y_1, ..., y_n)$ بالنسبة للقاعدة $Y = (y_1, ..., y_n)$ بالنسبة للقاعدة $S = \{B_1, ..., B_n\}$. $S = \{B_1, ..., B_n\}$ يا نام $S = \{B_1, ..., B_n\}$ يا ن

بما ان كل متجه في W يمكن كتابته بطريقة واحدة فقط كتركيب خطي من متجهات القاعدة S ، فعليه نستنتج على ان :

$$y_j = \sum_{k=1}^m x_k a_{kj}$$
 $j = 1, ..., n$

العلاقة المحمد المصفوفات تحصل من النتيجة اعلاه على العلاقة

 $Y = XM_T$ وهذا يعنى ان

(و، هـ، م)

ملاحظـة:

1 - 2 المبرهنة اعلاه اعتبرنا المتجهات X و Y على انها مصفوفات 1×1 و 1×1

على التوالي .

2 ــ بما ان متجه الاحداثيات بالنسبة لقاعدة معينة يعيين المتجه بصورة كلية فإن المبرهنة (2.4.2) توضح ان معرفة مصفوفة التحويل الخطي تعني معرفة التحويل كلياً وكما موضح في الامثلة أدناه.

مثال (1):

T(x,y) = (x, x+y, 2x-y)

. R^3 و R^2 مصفوفة T بالنسبة للقواعد الطبيعية الى كل من

 $A_1 = (1,0), A_2 = (0,1)$ الحل: القاعدة الطبيعية الى R^2 تتكون من المتجهات , $B_2 = (0,1,0)$, $B_3 = (0,0,1)$, نتكون من المتجهات , $B_3 = (0,0,1)$. $B_1 = (1,0,0)$

لغرض حساب مصفوفة التحويل الخطى T نتبع الخطوات المذكورة في (2.4.1).

$$T(A_1) = T(1,0) = (1,1,2) = (1) B_1 + (1) B_2 + (2) B_3$$

$$T(A_2) = T(0,1) = (0,1,-1) = (0) B_1 + (1) B_2 + (-1) B_3$$

بذلك تكون مصفوفة T بالنسبة للقواعد الطبيعية كما يلى:

$$M_{T} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \end{pmatrix}$$

مثال (2):

اذا كان $R^2 \to T: P_2(R) \to R^2$ اذا كان

$$T(a + bx + cx^2) = (2a, b - c)$$

$$H=\left\{A_1=5,\,A_2=2x,\,A_3=x^2
ight\}$$
 فجد مصفوفة T بالنسبة للقاعدة $S=\left\{B_1=(-1,0),\,B_2=(0,3)
ight\}$ الى $P_2(R)$ الى الى $P_2(R)$

الحل:

$$T(A_1) = T(5) = (10,0) = (-10) B_1 + (0) B_2$$

$$T(A_2) = T(2x) = (0,2) = (0) B_1 + (2/3) B_2$$

$$T(A_3) = T(x^2) = (0,-1) = (0) B_1 + (-1/3) B_2$$

بدلك تكون مصفوفة T بالنسبة للقواعد اعلاه كا يلي:

$$\mathbf{M}_{\mathrm{T}} = \begin{bmatrix} -10 & 0 \\ 0 & 2/3 \\ 0 & -1/3 \end{bmatrix}$$

مثال (3):

جد التحويل الخطي
$$T:R^2 \to M_2(R)$$
 الذي مصفوفته بالنسبة للقاعدة $B_{\bf s}=(0.0,A_1=0.0)$, $B_{\bf s}=(0.0,A_1=0.0)$, $B_{\bf s}=(0.0,A_1=0.0)$ ${\bf S}=\{B_1=(0.0,A_1=0.0),B_2=(0.0,A_1=0.0)\}$ ${\bf M}_{\bf T}=\{1.1.10,3.00.0\}$

الحل: نستخلص طريقة الحل من المبرهنة (2.4.2). المطلوب ايجاد (a,b). نحاول اولاً حساب متجه احداثيات (a,b) بالنسبة للقاعدة H ولهذا الغرض نكتب: (a,b) = x(2,0) + y(1,1)

فنحصل على المعادلتين:

$$2x + y = a$$
$$y = b$$

وبهذا يكون : y = b ، x =(1/2)(a-b) .

وعليه فإن متجه احداثيات (a,b) بالنسبة للقاعدة X = (1/2)(a - b), b)

T(a,b) بضرب هذا المتجه في المصفوفة $M_{\rm T}$ نحصل على متجه احداثيات بالنسبة للقاعدة S وكما يلى:

$$Y = XM_T = (1/2)(a-b), b$$

$$\begin{cases} 1 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \end{cases}$$

=(1/2)(a+5b), (1/2)(a-b), (-1/2)(a-b), 2b)

بمعرفة متجه الاحداثيات بالنسبة الى قاعدة معينة يمكننا معرفة المتجه وكما يلي:

$$T(a,b) = (1/2)(a+5b) B_1 + (1/2)(a-b) B_2 - (1/2)(a-b)B_3 + 2bB_4$$

$$= (1/2)(a+5b) \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} + (1/2)(a-b) \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} - (1/2)(a-b)$$

$$\begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} + 2b \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{pmatrix} a+5b & (3/2)(a-b) \\ (1/2)(a-b) & b \end{pmatrix}$$

مثال (4):

جد مصفوفة التحويل الخطي
$$P_1(R) \rightarrow P_2(R)$$
 المعرف بالصيغة :
$$T(a+bx) = ax+bx^2$$

اولاً: بالنسبة للقواعد الطبيعية ثم بالنسبة لقاعدة ($P_1(R)$ المكونة من المتجهات ($P_1(R)$ عاد الطبيعية ثم بالنسبة لقواعد ($P_2(R)$ وقاعدة ($P_1(R)$ وقاعدة ($P_2(R)$ المكونة من المتجهات ($P_1(R)$ وقاعدة ($P_2(R)$ وقاعدة ($P_2(R)$ بالنسبة لقواعد ($P_1(R)$ وقاعدة ($P_2(R)$) وقاعدة ($P_2(R)$ وقاعدة ($P_2(R)$) وقاعدة ($P_2(R)$ وقاعدة ($P_2(R)$) وقاعدة ($P_2(R)$ ($P_2(R)$) ($P_2(R)$) ($P_2(R)$ ($P_2(R)$) ($P_2(R)$) ($P_2(R)$ ($P_2(R)$) ($P_2(R)$ ($P_2(R)$) ($P_2(R)$) ($P_2(R)$) ($P_2($

الحل:

$$T(1) = 1.x$$
 = 0 + 1.x + 0.x²
 $T(x) = x^2$ = 0 + 0.x + 1.x²

بذلك تكون مصفوفة T بالنسبة للقواعد الطبيعية كإيلى:

$$\mathbf{M}_{\mathbf{T}} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ & & \\ 0 & 0 & 1 \end{array} \right]$$

نستخرج مصفوفة T بالنسبة للقواعد الجديدة كما يلي:

$$T(A_1) = T(2) = 2x = 0.B_1 + (2/3)B_2 + 0.B_3$$

$$T(A_2) = T(1-x) = x-x^2 = 0.B_1 + (1/3)B_2 + (1/2)B_3$$

بذلك تكون مصفوفة T بالنسبة للقواعد المعطاة كما يلي:

$$\mathbf{M}_{\mathsf{T}} = \left[\begin{array}{ccc} 0 & 2/3 & 0 \\ & & \\ 0 & 1/3 & 1/2 \end{array} \right]$$

المبرهنة التالية تحسب مصفوفة تركيب تحويلين خطيين.

مبرهنــة (2.4.3) :

F اذا كان كل من $W,\,V,\,U$ فضاء متجهات منتهي البعد وعلى الحقل $H=\{B_1,\,...,\,B_n\}$ قاعدة الى $H=\{B_1,\,...,\,B_n\}$ قاعدة الى $J=\{C_1,\,...,\,C_p\}$ قاعدة الى V و $\{C_1,\,...,\,C_p\}$

 $V\to V$ و $T:U\to V$ تحویلین خطین بحیث ان مصفوفة T بالنسبة للقواعد M_T و M_T مصفوفة M_T بالنسبة للقواعد M_T و M_S بالنسبة للقواعد M_S و M_T ، M_S و M_T ، M_S

$$M_{SoT} = M_T \cdot M_S$$

البرهان:

: عليه يكون لدينا .
$$\mathbf{M}_{\mathrm{S}} = (\mathbf{b}_{\mathrm{ij}})$$
 ، $\mathbf{M}_{\mathrm{T}} = (\mathbf{a}_{\mathrm{ij}})$ انفرض ان

$$S(B_j) = \sum_{i=1}^{p} h_{ii} C_i, T(A_k) = \sum_{i=1}^{n} a_{ki} B_i$$

لغرض حساب مصفوفة التركيب SoT يتوجب علينا حساب $SoT(A_k)$ وذلك لكل $k\colon 1,...,m$

$$SoT(A_{k}) = S(T(A_{k})) = S(\sum_{i=1}^{n} a_{ki} B_{i})$$

$$= \sum_{i=1}^{n} a_{ki} S(B_{i})$$

$$= \sum_{i=1}^{n} a_{ki} (\sum_{l=1}^{p} b_{il} C_{l})$$

$$= \sum_{l=1}^{p} (\sum_{i=1}^{n} a_{ki} b_{il}) C_{l}$$

(و. هـ . أم)

,
$$T:R^2 \to R^4$$
 $M_S = \begin{bmatrix} 1 & 0 & -1 \\ -2 & -1 & -2 \\ 0 & 2 & 5 \\ 4 & 3 & 0 \end{bmatrix}$

 ${
m R}^3$, من كل من ${
m S}: {
m R}^4
ightarrow {
m R}^3$ التحويل الخطى ${
m S}: {
m R}^4
ightarrow {
m R}^3$. SoT: $R^2 \rightarrow R^3$ فجد مصفوفة التحويل R^4 , R^2

$$M_{T} \circ M_{S} = \begin{bmatrix} -1 & 0 & 3 & -1 \\ 2 & 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ -2 & -1 & -2 \\ 0 & 2 & -5 \\ 4 & 3 & 0 \end{bmatrix}$$

$$\left\{
\begin{array}{ccc}
-5 & 3 & 16 \\
2 & 4 & 5
\end{array}
\right\}$$

عليه تكون مصفوفة التركيب SoT بالنسبة للقواعد الطبيعية .

$$M_{SoT} = \begin{bmatrix} -5 & 3 & 16 \\ 2 & 4 & -5 \end{bmatrix}$$

نتيجة (2.4.4):

اذا كان كل من V و W فضاء متجهات منتهي البعد فإن اي تحويل خطي $W \leftarrow T:V \rightarrow W$ يكون تشاكلاً اذا وفقط اذا كانت مصفوفة T بالنسبة V زوج من القواعد مربعة وقابلة للقلب.

البرهان:

لنفرض ان $W \to T: V \to W$ يكون تشاكلاً بهذه الحالة فإن المبرهنة (2.3.5) تنتج ان $V = \dim V$ وبذلك تكون مصفوفة T بالنسبة لاي زوج من القواعد مصفوفة مربعة. لنأخذ $E = \{A_1, ..., A_n\}$ قاعدة الى V و F, E قاعدة الى W لنفرض ان E مصفوفة E بالنسبة لزوج القواعد E بما ان E تشاكلاً عليه يوجد تحويل خطي E خليه E عليه يوجد تحويل خطي E خاتش E عليه يوجد تحويل خطي E بالنسبة لزوج القواعد E بالنسبة لزوج القواعد E بما ان E تشاكلاً عليه يوجد تحويل خطي E بالنسبة لزوج القواعد كالمنسبة لزوج القواعد كالمنسبة لزوج القواعد كالمنسبة لزوج القواعد كالمنسبة للنسبة لا لا للنسبة للنسبة لا للنسبة للنسب

 $. ToS = 1_v \cdot SoT = 1_v$

لتكن N مصفوفة S بالنسبة لزوج القواعد E, F من المبرهنة (2.4.3) ينتج مايلي :

- وأ) مصفوفة التركيب $V \rightarrow V$ SoT: $V \rightarrow V$ بالنسبة لزوج القواعد E,E تساوي MN .
- $F, \ F$ بالنسبة لزوج القواعد ToS: $W \to W$ بالنسبة لزوج القواعد $SoT = 1_W$ با ان NM بما ان NM
- $$\begin{split} & \text{SoT}(A_k) = A_k = oA_1 + \ldots + oA_{k-1} + 1.A_k + oA_{k+1} + \ldots + 0.A_n \\ & \text{ective LSOID} \quad \text{Notions} \quad \text{Soting and one of the limits} \quad \text{In the problem of the limits} \quad \text{Notions} \quad \text{In the local content of the local content of$$

لنفرض العكس، اي ان مصفوفة التحويل الخطي $T:V \to W$ بالنسبة لزوج من القواعد E,F عبارة عن مصفوفة مربعة M قابلة للقلب ولنفرض ان MN=I مصفوفة تحقق MN=I و MN=I .

ليكن $V \to V$ تحويلاً خطياً ناتجاً عن المصفوفة N بأستعمال زوج القواعد القواعد F, E بذلك تكون مصفوفة التركيب $V \to V$ بالنسبة لزوج القواعد E مساوية للمصفوفة المحايلة E وعليه اذا اخذنا اي متجه E وفرضنا ان متجه احداثياته بالنسبة للقاعدة E هو المتجه E فإن متجه احداثيات E يكون:

X(MN) = X.I = X

اي ان SoT (A) = A. وبالطريقة نفسها نبرهن على ان ToS (B) = B لاي اي ان SoT (A) = A اي ان SoT اي الن SoT اي ان SoT اي الن SoT ال

(و. هـ. م)

من النتائج الاخرى للمبرهنة (2.4.3) هي الحصول على خاصية لضرب المصفوفات والتي يكون برهانها صعباً وطويلاً اذا استخدمنا خصائص المصفوفات فقط.

نتيجة (2.4.5):

اذا كانت كل من M و N مصفوفة مربعة ذات رتبه $n \times n$ وعلى الحقل $N \times M$ فإن $N \times M \times M$ (هذا يعني انه في حالة اختبار كون المصفوفة $M \times M \times M$ نظيرة للمصفوفة $M \times M \times M$ نظيرة للمصفوفة $M \times M \times M$ نكون بحاجة فقط لاختبار احد الشرطين $M \times M \times M$).

البرهان:

N, M ليكن $F^n \to F$ تحويلين خطيين ناتجين عن المصفوفتين على التوالي وبالنسبة لزوج القواعد الطبيعية E,E بحيث

 $E = \left\{ A_1 = (1,0,...,0), \ A_2 = (0,1,0,...,0), \ ..., \ A_n = (0,...,0,1) \right\}$ $ToS = 1_{I^n} \text{ also in items}, \ MN = I \text{ items}, \ M_1 = N \text{ items}, \ M_2 = M \text{ items}, \ M_3 = M \text{ items}, \ M_5 = M \text{ items},$

يالرجوع للمصفوفات نحصل على : SoT = 1_{F^n} و ToS = 1_{F^n} الرجوع للمصفوفات نحصل على : $I = M_{1_{F^n}} = M_{SoT} = M_T \,.\, M_S = NM$ (و . هـ . م)

حيث ان البرهان اعلاه يبدو صعباً او معقداً بعض الشيء فإننا ندعو القارىء الى ان يجرب برهنة النتيجة اعلاه بالحسابات المباشرة (حتى الحالة 3 × 3 تكون طويلة جداً).

لغرض دراسة التحويلات الخطية سوف نلجاً دائماً الى تمثيل التحويل الخطي بمصفوفة وذلك لبرهنة بعض النتائج او عمل بعض الحسابات. ان التمثيل المصفوفي للتحويل الخطي $W \leftarrow T:V$ يعتمد اعتاداً كلياً على اختيار القواعد الى كل من V و W. فلو كان اختيارنا للقواعد عشوائياً لربما حصلنا على مصفوفة معقدة لاتعكس خصائص T بسهولة فعلية نغير القواعد في كل من V و V للحصول على مصفوفة ابسط ان امكن وذلك لان تغير القواعد لايؤثر على التحويل الخطي وانما يؤثر على متجه الاحداثيات لمتجهات V و V. عليه فإن الاسئلة التالية تطرح نفسها.

T هل يمكن ايجاد قاعدة الى V وقاعدة الى W بحيث تكون مصفوفة V بالنسبة لذلك الزوج من القواعد بأبسط صيغة.

2 __ ماعلاقة مصفوفتين تمثلان التحويل الخطي نفسه لكن بالنسبة لزوجين
 ختلفين من القواعد.

M و M لهما نفس الدرجة فمتى وتحت اي شرط M و M لهما نفس الدرجة فمتى وتحت اي شرط يمكننا ان نقول بأن هاتين المصفوفتين تمثلان تحويلاً خطياً واحداً بالنسبة لقواعد مختلفة .

الاجابة على الاسئلة اعلاه تمثل مادة البند التالي.

تماريان (2.4)

1 _ جد مصفوفة كل من التحويلات التالية وذلك بالنسبة للقواعد الطبيعية .

$$T(x,y) = (x-2y,0) \cdot T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 (1)$$

.
$$T(a + bx) = (a-b, 2b-a, 3b) \cdot T:P_1(R) \rightarrow R^3$$

$$T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a-b, c+d) , T: M_2(R) \rightarrow R^2 (z)$$

$$T(x) = (x, 2x, 0), T: R \rightarrow R^3$$

$$T(z_1, z_2) = (2z_1, z_1 - z_2, z_1 + z_2) \cdot T; C^2 \rightarrow C^3$$

2 _ في كل مما يلي، جد التحويل الخطي T الذي مصفوفته بالنسبة للقواعد المعطاة تكون:

$$G = \{A_1 = \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, A_4 = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} \}$$

$$A_4 = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} \}$$

$$H = \{B_1 = (1, -1), B_2 = (0, 3)\} \text{ i. } T: R^3 \rightarrow P_2(R) (7)$$

رج)
$$M = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \\ 7 & 1 & 4 \end{pmatrix}$$
 , $T: R^3 \rightarrow P_2(R)$ (ج) H= $\{A_1 = 2, A_2 = 1 + x, 0\}$ والقاعدة الطبيعية الى R^3 والقاعدة الطبيعية الى R^3

$$H = \{A_1 = 2, A_2 = 1 + x, \text{ eliberts} R^3 \text{ elements} R^3 \}$$

$$P_1(R) = -x^2 I$$

الى $P_2(R)$ لى $A_3 = -x^2$ الى $A_3 = -x^2$ بالنسبة للقاعدة $M = \begin{pmatrix} i & -i & 1+i \\ -2 & 1 & -1+2i \end{pmatrix}$, $T; C^2 \rightarrow C^3$ (هـ) (C^2) . C^3 الى C^2 والقاعدة الطبيعية الى $G = \{(1,2), (i,0)\}$

C فضاءات على الحقل C 3.

$$a, b, c \in R$$
 حيث $A = \begin{cases} 0 & 0 & 0 \\ a & 0 & 0 \\ b & 0 & c \end{cases}$ حيث $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & c \\ 0 & 0 & c \\ 0 & 0 & 0 \end{cases}$ فبرهن على ان $A^3 = O$ بدون استخدام ضرب المصفوفات.

(ارشاد: جد التحويل الخطى $R^3 \to R^3$ الذي مصفوفته بالنسبة للقواعد الطبيعية تكون A).

بيبية عون
$$M = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$$
 واعتبر ان $A_2 = (-1,4)$, $A_1 = (1,3)$ هي $A_2 = (-1,4)$. $A_1 = (1,3)$ مصفوفة التحويل $A_2 = (-1,4)$. $A_2 = (-1,4)$ بالنسبة للقاعدة $A_2 = (-1,4)$ هي $A_2 = (-1,4)$ هي

رأ) جد متجه احداثیات کا من $T(A_1)$ ، $T(A_2)$ بالنسبة للقاعدة S

 $T(A_2)$, $T(A_1)$ \Rightarrow

$$T(7,4) = T(7,4)$$

رج) جد (جر) .
$$T(7,4)$$
 . $T(7,4)$. $T(7,4$

بالنسبة $T(A_3)$ ، $T(A_2)$ ، $T(A_1)$ من $T(A_3)$ ، النسبة) جد متجه احداثیات کل من للقاعدة S.

.
$$T(A_3)$$
 , $T(A_2)$, $T(A_1)$ جد (ب)

$$T(1 + x)$$
 جد.

قاعدة لفضاء متجهات V على حقل $S = \{A_1, A_2, A_3, A_4\}$ على حقل F فجد المصفوفة بالنسبة الى S للتحويل الخطي V \to V المعرف بواسطة :

$$T(A_3) = A_4, T(A_2) = A_3, T(A_1) = A_2, T(A_4) = A_1$$

D(P) التحويل الخطي المعرف بواسطة $D: P_2(R) \to P_2(R)$ التحويل الخطي المعرف بواسطة $P_2(R)$ بالنسبة $P_2(R)$. في الجزأين (أ) ، (ب) اوجد مصفوفة $P_2(R)$ بالنسبة $P_2(R)$. $P_2(R)$ القاعدة $P_2(R)$. $P_2(R)$ القاعدة $P_2(R)$ القاعدة $P_2(R)$ التحالية $P_2(R)$

$$A_1 = 1, A_2 = x, A_3 = x^2$$
 (1)

$$A_1 = 2, A_2 = 2-3x, A_3 = 2-3x + 8x^2$$

8 _ في كل جزء، $\{f_1, f_2, f_3, f_3, f_3, V\}$ من فضاء $S = \{f_1, f_2, f_3, f_3, V\}$ المتحمات الذي يحتوي على الدوال ذات القيم الحقيقية المعرفة على المستقيم الحقيقي . اوجد المصفوفة بالنسبة الى S للتحويل الخطي S (تحويل المشتقة) . .

$$f_1 = 1, f_2 = Sinx, f_3 = Cosx (1)$$

.
$$f_1 = 2$$
, $f_2 = e^x$, $f_3 = e^{2x}$ ($-$)

$$f_1 = e^{2x}, f_2 = xe^{2x}, f_3 = x^2e^{2x}$$

T:
$$M_2(R) \rightarrow M_2(R)$$
 وليكن $N = \begin{pmatrix} 1 & 5 \\ 0 & -3 \end{pmatrix}$ التحويل $= 9$

T(A) = AN - NA : المعرف بالصيغة

$$T$$
 (أ) جد T $\begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}$ بصورة مباشرة .

(ب) حد مصفوفة T بالنسبة للقاعدة الطبيعية .

(ج) حد مصفوفة T بالنسبة للقاعدة:

$$S = \{A_1 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, A_4 = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$

 $T\begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}$ = $A = (1 \ 1) (2 \ 4)$ = A = (

: التحويل الخطى المعرف بالصيغة تلكن ($M_3(R) \rightarrow M_3(R)$ التحويل الخطى المعرف بالصيغة

$$T(A) = (A - A^T)/2$$

حيث $\mathbf{A}^{\mathbf{T}}$ تساوي مدورة المصفوفة \mathbf{A} (transpose of \mathbf{A}) جد مصفوفة \mathbf{T} بالنسبة للقاعدة الطبيعية .

(2.5) تغيير القواعد والصيغ الاعتيادية

Change of Bases & Normal forms

لقد طرحنا في نهاية البند السابق ثلاثة اسئلة. الاجابة على السؤال الاول ستكون في المرهنة (2.5.1) ادناه. السؤالين الثاني والثالث تكون الاجابة عليهما في المرهنة (2.5.2).

ميهنة (2.5.1):

اذا كان كل من V و W فضاء متجهات منتهى البعد بحيث ان dim w=n , $\dim V=m$ و كان $W \to T:V \to W$ خطياً ذا رتبه تساوي v فإنه بالأمكان دائس حاد قاعدة لى v وقاعدة الى v بعيث ان مصفوفة v بالنسبة لذلك الزوج من تقوعد تكون بالصيغة :

$$M_{T} = \begin{bmatrix} I_{r} & & O \\ & & O \end{bmatrix}$$

حيث ان \mathbf{I}_r تمثل المصفوفة انحايدة $\mathbf{r} imes \mathbf{r}$. هذه الصبغة تسمى الصيغة الاعتيادية .

البرهان:

بما ان رتبة T تساوي r عليه تكون صفرية r مية الى m-r ختار A_1,\dots,A_r,B_1,B مثل $\{B_1,\dots,B_m,B_m,B_1,B\}$ ثم نوسعها الى قاعدة $\{C_1=T(A_1),\dots,C_r=T(A_r)\}$ تكون مستقلة عطياً ولغرض برهنة ذلك نَأْخَذ تركيباً خطياً من تلك المتجهات ونساويه بالصفر .

$$y_1 C_1 + ... + y_r C_r = O$$

 $y_1 T (A_1) + ... + y_r T (Ar) = O$

بما ان T تحويلاً خطياً فينتج

 $T(y_1 A_1 + ... + y_r A_r) = O$

 $y_1A_1+\ldots+y_rA_r$ **(** KerT : عليه نستنتج على ان

هذا يعنى انه توجد اعداد قياسية $x_1,\,...,\,x_{m-r}$ تحقق:

 $y_1A_1 + ... + y_rA_r = x_1B_1 + ... + x_{m-r}B_{m-r}$

وهذا يعني ان:

 $y_1 A_1 + \dots + y_r A_r - x_1 B_1 - \dots - x_{m-r} B_{m-r} = 0$

: ان المجموعة $\{A_1, ..., A_r, B_1, ..., B_{m-r}\}$ مستقلة خطياً فينتج ان

 $y_1 = 0, ..., y_r = 0, x_1 = 0, ..., x_{m-r} = 0$

وبالتالي تكون المجموعة $\{C_1,\,...,\,C_r\}$ مستقلة خطياً نوسع هذه المجموعة إلى قاعدة $\{C_1,\,...,\,C_r,\,D_1,\,...\,D_{n-r}\}$

 $T(A_1) = C_1 = 1. C_1 + o.C_2 + ... + o.C_r + o.C_1 + ... + o.C_{n-r}$

 $T(Ar) = Cr = o.C_1 + ... + o.C_{r-1} + 1C_r + o.D_1 + ... + oD_{n-r}$

$$T(B_1) = O = 0.C_1 + ... + o.C_2 + 0.D_1 + ... + oD_{n.r.}$$

$$T(B_{m-r}) = O = \hat{o}.C_1 + ... + o.C_r + o.D_1 + ... + o.D_{n-r}$$

 $\{A_1,\,...,\,A_r,\,B_1,\,...,\,B_{m-r}\}$ عليه تكون مصفوفة T بالنسبة المقاعدة والمقاعدة والمقاعدة للما V بالصبعة الما V والقاعدة والمقاعدة والمق

$$\mathbf{M_{T}} = \begin{bmatrix} & & & & & & & & & & & & \\ & 100 & \dots & 0 & & & & & & & & \\ & 010 & \dots & 0 & & & & & & & \\ & 0....01 & & & & & & & & \\ & 0....01 & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

وهذه المصفوفة يمكن ان تكتب بالصيغة القالبية على الشكل

$$M_{T} = \begin{bmatrix} I_{r} & & O \\ --- & -O \\ O & O \end{bmatrix}$$

نوضح فكرة البرهان اعلاه بالمثال التالي:

مثال (1):

جد قاعدة الى R^4 وقاعدة الى R^3 لكي تكون مصفوفة التحويل الخطي $T: R^4 \longrightarrow R^3$ بالصيغة الاعتيادية ، حيث ان

$$T(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_1 + x_2 - x_3, 2x_3)$$

 $T(x_1, x_2, x_3, x_4) = 0$ فبذا الغرض نضع . KerT الحاد قاعدة الى المعادلات ونحصل على المعادلات

$$x_1 + x_2 = 0$$

 $x_1 + x_2 - x_3 = 0$
 $2x_3 = 0$

والتي بدورها تؤدي الى : $x_1 = -x_2$, $x_3 = 0$. بذلك يكون

KerT = $\{(x_1, x_2, x_3, x_4): x_1 = -x_2, x_2 = x_2, x_3 = 0, x_4 = x_4)\}$

KerT بذلك تكون المجموعة $\{B_1=(-1,\,1,\,0,\,0),\,B_2=(0,0,0,1)\}$ قاعدة الى $A_1=(1,0,0,0),\,A_2=(0,0,1,0)$ لكي تكون يكننا الآن اضافة المتجهين $\{A_1=(1,0,0,0),\,A_2=(0,0,1,0)\}$ قاعدة الى $\{A_1,\,A_2,\,B_1,\,B_2\}$ قاعدة الى $\{A_1,\,A_2,\,B_1,\,B_2\}$

الان نضع

$$C_1 = T(A_1) = T(1, 0,0,0) = (1,1,0)$$

$$C_2 = T(A_2) = T(0,0,1,0) = (0,-1,2)$$

م يمكننا الآن اضافة المتجه $\{C_1,C_2,D_1\}$ الحي تصبح المجموعة $\{C_1,C_2,D_1\}$ قاعدة الحي الخموعة $\{C_1,C_2,D_1\}$ قاعدة الحي الآن تكون مصفوفة $\{C_1,C_2,D_1\}$ النسبة للقواعد اعلاه بالصيغة الحي الحي المحتون مصفوفة $\{C_1,C_2,D_1\}$

$$\mathbf{M}_{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

وهذه هي الصيغة الاعتيادية المطلوبة .

ملاحظة:

ان اضافة المتجهين A_1 , A_2 عملية اختيارية فلو اخترنا متجهين آخرين A_1 , A_2 , A_3 , A_4 , A_5 ان المجموع المحدد المح

نجيب الان على السؤالين المطروحين في نهاية البند السابق حول مسألة تغير القواعد وستكون الاجابة في المبرهنة التالية:

مبرهنة ـ (2.5.2) :

افرض ان كل من M و *M مصفوفة ذات درجة $m \times m$ ، وان V فضاء متجهات ذا بعد m و W فضاء متجهات ذا بعد m عندئذ تمثل المصفوفتان M التحويل الحطي نفسه M M M التحويل الحطي نفسه M القواعد اذا وفقط اذا وجدت مصفوفتين قابلتين للقلب M و M بحيث ان :

 $M^* = PMQ^{-1}$

(الحظ ان P مصفوفة $m \times m$ و Q مصفوفة $n \times n$) .

V=W في حالة كون P=Q على وجه الخصوص تكون

البرهان :

لنفرض اولاً ان المصفوفتين M و \star M تمثلان التحويـل الخطي نفسـه M النسبة الى (ربما) زوجين مختلفين من القواعد. بذلك تكون لدينا M تألي M بحيث ان M وقاعدة M وقاعدة M الى M بحيث ان M بحيث النسـبة لتـلك القواعـد تكون M ، وكـذلك يكون لديـنا قاعـدة M وقاعدة M وقاعدة M وقاعدة M بحيث ان مصفوف M الى M وقاعدة تكون M الى بحيث ان مصفوف M بالنسبة لتلك القواعد تكون M ..., M

المطلوب ایجاد مصفوفتین قابلتین للقلب P و Q بحیث ان $M^* = PMQ^{-1}$

لتكن P مصفوفة الانتقال من القاعدة \star الى القاعدة Q و Q مصفوفة الانتقال من القاعدة Q الى القاعدة Q الى القاعدة Q الى متجه القاعدة Q وليكن Q متجه احداثيات Q بالنسبة للقاعدة Q و d متجه احداثيات Q بالنسبة للقاعدة Q و النتيجة (1.9.3) والنتيجة (1.9.3) تنصان على ان :

 $X^* = XP^{-1}$

المبرهنة (2.4.2) تنص على ان متجه احداثيات (T(A) بالنسبة للقاعدة XM يكون XM، ومتجه احدثياته بالنسبة للقاعدة XM سـوف يكـون مسـاوياً الى X X الى القاعدة X الى القاعدة X الذن X X المبرهنة (1.9.1) والنتيجة (1.9.3) تنصان على ان:

 $XM = X^{\star}M^{\star}Q$

بالتعويض عن *X نحصل على العلاقة:

 $XM = X P^{-1}M^*Q$

العلاقة اعلاه صحيحة لجميع المتجهات X. هذا يعنى تساوي المصفوفتين:

 $M = P^{-1}M * Q$ $M * = PMO^{-1}$

بما ان كل من P, Q مصفوفة انتقال فعليه تكون كل منها قابلة للقلب. على العكس لو فرضنا ان P,Q مصفوفة قابلة $M^* = PMQ^{-1}$ مصفوفة قابلة للقلب. علينا ان ننشىء تحويلاً خطياً $W \to T:V \to W$ وزوجين من القواعد الى V و للقلب. علينا ان ننشىء تحويلاً خطياً $M \to T$ وزوجين من القواعد الى V و يحيث ان M تمثل T بالنسبة لزوج و M تمثل T بالنسبة للزوج الآخر. لهذا الخسرض نختسار اولاً اي قاعدة $\{A_1,...,A_m\}$ الى V وأي قاعدة $\{A_1,...,A_m\}$ الى W. ليكن الان $\{A_1,...,A_m\}$ ذاك التحويل الحطي الذي مصفوفته بالنسبة لزوج القواعد اعلاه تكون $\{A_1,...,A_m\}$

(راجع مثال 3 من البند 2.4). الأن نستخدم المصفوفتين Q, P للحصول على قواعد جديدة

 $H^* = \{B_1^*, ..., B_n^*\}, G^* = \{A_1^*, ..., A_m^*\}$

بحیث تکون P مصفوفة الانتقال من القاعدة G^* الى القاعدة Q^* تکتب بدلالة Q^* و Q^* مصفوفة الانتقال من القاعدة Q^* الى القاعدة Q^* تکتب بدلالة Q^*) .

المطلوب الآن ان نبرهن على أن المصفوفة M^* التي تساوي المصفوفة PMQ^{-1} بالفرض، هي مصفوفة التحويل الخطي T الذي انشأناه لكن بالنسبة لزوج القواعد الجديد G^* الى V و H^* الى W. لنفرض اولاً أن مصفوفة T بالنسبة لزوج

 $M^*=PMQ^{-1}$ وعليه تكون $M^*=PMQ^{-1}$ بالفرض. اذن $M^*=PMQ^{-1}$ وعليه تكون $M^*=PMQ^{-1}$ مصفوفة التحويل الخطى $M^*=PMQ^{-1}$ بالنسبة لزوج القواعد $M^*=PMQ^{-1}$.

اذا كان $\mathbf{R}^2 \longrightarrow \mathbf{R}^3$ أنا كان $\mathbf{R}^3 \longrightarrow \mathbf{R}^2$ أنا كان أبالصيغة .

T(x, y, z) = (x - y, y + 3z)

فجد كل ممايلي:

(أ) المصفوفة M التي تمثل T بالنسبة للقواعد الطبيعية.

(-1,1,0), (1,-1,0) التي تمثل T بالنسبة للقاعدة M^* التي R^3 والقاعدة R^3 والقاعدة R^3 الى R^3 .

 $M^* = PMQ^{-1}$ الميث ان قابلتان للقلب P,Q بحيث ان ان المعنوفتان قابلتان اللقلب

الحل:

(أ) القاعدة الطبيعية الى ${
m R}^3$ تتكون من المتجهات:

$$A_1 = (1,0,0), A_2 = (0,1,0), A_3 = (0,0,1)$$

والقاعدة الطبيعية الى R² تتكون من المتجهات:

$$B_1 = (1,0), B_2 = (0,1)$$

لايجاد المصفوفة M نلاحظ:

$$T(A_1) = T(1,0,0) = (1,0) = (1) B_1 + (0) B_2$$

$$T(A_2) = T(0,1,0) = (-1,1) = (-1)B_1 + (1)B_2$$

$$T(A_3) = T(0,0,1) = (0,3) = (0) B_1 + (3)B_2$$

عليه تكون المصفوفة M كما يلي:

$$\mathbf{M} = \left[\begin{array}{ccc} 1 & & 0 \\ -1 & & 1 \\ 0 & & 3 \end{array} \right]$$

(ب) ضع

$$A_1^* = (1,1,0), A_2^* = (1,-1,0), A_3^* = (0,0,1)$$

 $B_1^* = (1,2), B_2^* = (2,1)$

عليه يكون لدينا:

$$T(A_1^*) = T(1,1,0) = (0,1) = (2/3) B_1^* + (-1/3) B_2^*$$

 $T(A_2^*) = T(1,-1,0) = (2,-1) = (-4/3) B_1^* + (5/3) B_2^*$
 $T(A_3^*) = T(0,0,1) = (0,3) = (2)B_1^* + (-1)B_2^*$

 $^{^{*}}(A_{1}^{*}, A_{2}^{*}, A_{3}^{*})$ اذن تكون مصفوفة T بالنسبة لزوج القواعد

: يلي $\{B_1^{\star}, B_2^{\star}\}$ علي

$$M^* = \begin{pmatrix} 2/3 & -1/3 \\ -4/3 & 5/3 \\ 2 & -1 \end{pmatrix}$$

(ج) لغرض ایجاد المصفوفتین Q ، P اللتین تحققان $M^* = PMQ^{-1}$ نراجع یا نرح علی ان :

P مصفوفة الانتقال من القاعدة الجديدة $\{A_1^*, A_2^*, A_3^*\}$ الى القاعدة القديمة (القاعدة الطبيعية) .

ك تكون مصفوفة الانتقال من القاعدة الجديدة $\{B_1^*, B_2^*, B_1^*\}$ الى القاعدة القديمة (القاعدة الطبيعية).

وعليه يكون لدينا:

$$A_1^* = (1,1,0) = (1) A_1 + (1) A_2 + (0) A_3$$

 $A_2^* = (1,-1,0) = (1) A_1 + (-1) A_2 + (0) A_3$
 $A_3^* = (0,0,1) = (0) A_1 + (0) A_2 + (1) A_3$

اذن

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ولايجاد Q نكتب القاعدة B_1^* , B_2^* بدلالة القاعدة الطبيعية

$$B_1^{\star} = (1,2) = (1) B_1 + (2) B_2$$

 $B_2^{\star} = (2,1) = (2) B_1 + (1) B_2$

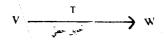
$$Q = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

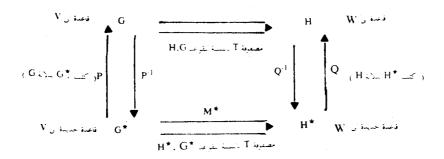
واذن

$$Q^{-1} = \begin{pmatrix} -1/3 & 2/3 \\ 2/3 & -1/3 \end{pmatrix}$$

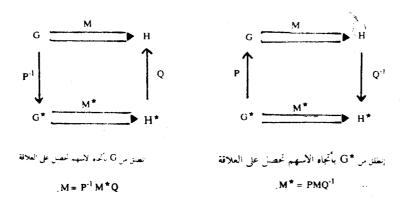
. $M^* = PMQ^{-1}$ الأن حسابات بسيطة تظهر ان

المخطط التالي يذكر الطالب بالبتائج التي حصلنا عليها.





المخطط اعلاه يؤدي الى المخططين المتكافئين:



- 1 _ تذكر دائماً انه اذا كانت لديك مصفوفة انتقال من قاعدة رقم (1) الى قاعدة رقم (2). فإن مقلوب تلك المصفوفة تكون مصفوفة الانتقال من قاعدة رقم (2) الى قاعدة رقم (1).
- 2 _ لايمكنك بصورة عامة عكس اسهم M*, M وذلك لانها بصورة عامة مصفوفات غير قابلة للقلب.

عارين (2.5)

1 ــ جد قواعد تجعل مصفوفة كل من التحويلات الخطية التالية مصفوفة بالصيغة الاعتيادية.

$$T(x,y,z) = (x+2y, -z+5x) \cdot T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2 (1)$$

$$T(x,y) = \begin{pmatrix} x+y & -x \\ -y & x-y \end{pmatrix} \qquad T:R^2 \to M_2(R) \ (\smile)$$

.
$$T(z_1, z_2) = (z_1 - z_2, 2z_1 - 2z_2, 0)$$
 . $T: C^2 \rightarrow C^3$ (5)

.
$$T(a + bx + cx^2) = (a + b) x^3$$
, $T: P_2(R) \rightarrow P_3(R)$

2 _ اذا كان $R^4 \to T:R^2 \to R^4$ عرفاً بالصيغة :

$$T(x,y) = (x + y, 2x-y, 3x + 4y, 0)$$

(أ) جد المصفوفة M التي تمثل T بالنسبة للقواعد الطبيعية.

(+) جد قاعدة الى \mathbb{R}^2 وقاعدة الى \mathbb{R}^4 بالنسبة لهما تكون مصفوفة \mathbb{R}^2 ولتكن \mathbb{R}^4 بالصيغة العمودية .

.
$$M^* = PMQ^{-1}$$
 قابلتين للقلب تحققان P,Q قابلتين القلب عام جد مصفوفتين

PMQ بالصيغة P,Q بالصيغة I_r مصفوفات قابلة للقلب I_r المصفوفة المحايدة . I_r محيث I_r المصفوفة المحايدة .

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -1 & 5 \\ 3 & 4 & 11 & 2 \end{bmatrix} \quad (\smile) , \quad M = \begin{bmatrix} 1 & 1 & 2 \\ -1 & -3 & 8 \\ 4 & -3 & -7 \\ 1 & 12 & -3 \end{bmatrix} \quad (\uparrow)$$

: التحويل الحظي المعرف بالصيغة T:
$$P_2(R) \to P_4(R)$$
 التحويل الحظي المعرف بالصيغة T(a + bx + cx²) = ax² + bx³ + cx⁴

- (أ) جد المصفوفة M التي تمثل T بالنسبة للقواعد الطبيعية.
- (ب) جد قواعد تجعل من مصفوفة T بالنسبة لها بالصيغة الاعتيادية .
- الصيغة P,Q تكون بالصيغة P,Q قابلتين للقلب تحققان P,Q تكون بالصيغة الاعتيادية .

الفصل الثالث

انظمة المعادلات الخطية

Systems of Linear Equations

(3.0) مقدمة

ان انظمة المعادلات الخطية اداة معبرة في كثير من المواضيع كالفيزياء والهندسة الكهربائية والعلوم الاقتصادية بالاضافة الى اهميتها الكبيرة في الرياضيات م يمكن كتابة نظام للمعادلات الخطية بالصيغة:

$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n = b_1$$

 $a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n = b_2$

(★)

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m$$

حيث ان X_1 , ..., X_n تمثل المجاهيل التي يتوجب ايجادها. الاعداد x_1 , ..., x_n ان المحن ان تكون اعداداً في اي حقل لكننا سنعتبرها اعداداً حقيقية وذلك للسهولة لكن القاري المهتم يستطيع ان يضع جميع النتائج التي سنحصل عليها باللغة العامة عندما تكون a_{ij} عناصراً في اي حقل كان. هذه الاعداد تسمى معاملات النظام (\star) . كذلك فان b_1,\dots,b_m تكون اعداداً حقيقية.

ان اي حل للنظام (*) اعلاه عبارة عن قوس مرتب $(S_1,\,...,\,S_n)$ من الاعداد تحقق جميع المعادلات في النظام ، اي ان :

$$a_{11}S_1 + ... + a_{1n}S_n = b_1$$

 $a_{21}S_1 + ... + a_{2n}S_n = b_2$

$$\vdots$$

 $a_{m1}S_1 + ... + a_{mn}S_n = b_m$

ان عبارة حل نظام المعادلات (*) تعني ايجاد جميع الحلول الممكنة. المثال التالي يذكرنا بما كنا نمارسه في المدارس الثانوية والمراحل الاولية من الجامعة.

مثال (1) :

حل النظام الخطي:

$$x_1 - x_2 + x_3 = 2$$

 $3x_1 + x_2 - x_3 = 1$
 $x_1 + 3x_2 - 3x_3 = -3$

الحل : من معلوماتنا السابقة يتضح ان احدى طرق الحل تكون كما يلي : اولاً نرقم المعادلات

$$x_1 - x_2 + x_3 = 2$$
 (1)

$$3x_1 + x_2 - x_3 = 1 (2)$$

$$x_1 + 3x_2 - 3x_3 = -3 \tag{3}$$

نضرب المعادلة الاولى في (3-) ونضيفها الى المعادلة الثانية لنحصل على المعادلة (1) ثم نطرح المعادلة الاولى من المعادلة الثالثة لنحصل على المعادلة (3).

$$x_1 - x_2 + x_3 = 2 \tag{1}$$

$$4x_2 - 4x_3 = -5 (2)$$

$$4x_2 - 4x_3 = -5 (3)'$$

$$x_1-x_2+x_3==2$$
 : $x_2-x_3=-5/4$: $x_2-x_3=-5/4$

$$x_1 = x_2 - x_3 + 2$$
 : وهذا يكافيء
$$x_2 = x_3 - 5/4$$

$$x_1 = 3/4$$

$$x_2 = x_3 - 5/4$$

عندئذ تكون الحلول بالصيغة : $(3/4,x_3-5/4,x_3)$ ، حيث ان x_3 تتغير عشوائياً . فمثلاً : (3/4,2,1),(3/4,0,5/4) و (3/4,2,1) تعتبر حلولاً لكن (3/4,2,1) و (3/4,2,1) ليست حلولاً .

ليست جميع الانظمة الخطية قابلة للحل فمثلاً النظام:

$$x_1 - x_2 + x_3 = 1$$
$$2x_1 - 2x_2 + 2x_3 = 5$$

غير قابل للحل وذلك لأنه بعد ضرب المعادلة الاولى في 2 نحصل على الطرف الايسر من المعادلة الثانية وهذا يؤدي الى ان 2=5 وهذا غير ممكن. لذلك يجب علينا معرفة الشروط التي تجعل النظام الخطي قابلاً للحل وبعدها نطور طرقاً لايجاد الحلول وهذا ماسندرسه في البندين (3,1) و (3.2).

(3.1) الصيغة المصفوفية للانظمة الخطية

Matrix Form For Linear Equations

لنكتب المصفوفات التالية:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ a_{m1} & a_{m2} & a_{mn} \end{pmatrix} X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

المصفوفة A تسمى مصفوفة المعاملات للنظام الخطي (*) والمصفوفة B تسمى مصفوفة الثوابت. عندئذ يمكننا كتابة النظام الخطي (*) بصيغة بسيطة كمعادلة مصفوفية:

$$AX = B$$
 $(\#)$

هذه الصيغة تعرف بالصيغة المصفوفية للنظام الخطى (*).

 $T:R^n \to R^m$ الان نوضح كيف ان المعادلة (#) تعطينا تحويلاً خطياً $R^m \to R^m$ وبدراسة ذلك التحويل الخطي نستطيع معرفة معلومات عن قابلية حل النظام الخطي (*).

ىناخد مدورة طرفي المعادلة (🏻 #) فنحصل على

 $X^T A^T = B^T$

وبالتفصيل نحصل على المعادلة:

$$(x_{1}, x_{2}, ..., x_{n}) \begin{bmatrix} a_{11} a_{21} ... a_{m1} \\ a_{12} a_{22} ... a_{m2} \\ \\ \\ a_{in} a_{2n} ... a_{mn} \end{bmatrix} = (b_{1}, ..., b_{m}) (\#)^{T}$$

بأعتبار المصفوفة A^T ذات الدرجة n imes m مصفوفة تحويل خطي $T: R^n o R^m$ بالنسبة للقواعد الطبيعية نحصل على المبرهنة التالية .

مبرهنة (3.1.1) :

النظام الخطي(*) يكون قابلاً للحل اذا وفقط اذا كان المتجه $(b_1,...,b_m)$ منتمياً الى صورة التحويل الخطي $R^m \to R^m$ الناتج من المصفوفة A^T بالنسبة للقواعد الطبيعية . اي اذا وفقط اذا $(b_1,...,b_m) \in ImT$.

البرهان:

نلاحظ اولاً انه باستعمال القاعدة الطبيعية الى \mathbf{R}^{k} فان كل متجه يساوي متجه احداثياته وذلك لكل k .

بمراجعة المبرهنة (2.4.2) نحصل على مايلي :

اذا كان $(x_1,...,x_n)$ عن متجهاً في R^n فان متجه احداثياته بالنسبة للقاعدة الطبيعية يكون مساوياً له وبالتالي يكون متجه احداثيات T(Z) مساوياً الى ZA^T (تذكر ان A^T مصفوفة T بالنسبة للقواعد الطبيعية) . لكن متجه احداثيات T(Z) بالنسبة للقاعدة الطبيعية يكون مساوياً له . . اي ان

 $T(Z) = ZA^T$

لكن النظام الخطي (*) هو نفسه المعادلة \ref{prop} واي حل للمعادلة \ref{prop} يكون حلاً للمعادلة \ref{prop} وبالعكس. هذا يعني ان النظام (*) يكون قابلاً للحل اذا وفقط الممعادلة \ref{prop} وبالعكس. هذا يعني ان النظام (*) يكون قابلاً للحل اذا وفقط اذا وجد متجه $Z=(x_1,\dots,x_n)$ اي ان $Z=(b_1,\dots,b_m)$.

هذا يعني ان النظام (*) يكون قابلاً للحل اذا وفقط اذا (b1,...,bm) EImT

(و. هـ. م)

المبرهنة اعلاه تبدو جيدة لكن من الناحية النظرية حيث انه كيف يمكننا معرفة ما اذا كان المتجه $(b_1,\,...,\,b_m)$ منتمياً الى $(b_1,\,...,\,b_m)$ معرفة ما اذا كان المتجه $(b_1,\,...,\,b_m)$ مصفوفة المعاملات $(a_1,\,...,\,b_m)$ الموز . ضع

$$A_1 = (a_{11}, a_{21}, ..., a_{m1})$$

$$\vdots$$

$$A_n = (a_{1n}, a_{2n}, ..., a_{mn})$$

. A من المتجهات في R^m وهي تمثل اعمدة المصفوفة A^T اي انها تمثل صفوف المصفوفة A^T وبما ان A^T اعتبرت مصفوفة تحويل خطي $T:R^n \to R^m$

$$T(E_1) = A_1$$

$$T(E_2) = A_2$$

$$\vdots$$

$$T(E_n) = A_n$$

حيث ان $(0,0,..,1,0,..,0) = E_1$ متجهات القاعدة الطبيعية . الان نلاحظ ان مجموعة المتجهات $\{T(E_1),..,T(E_n)\}$ توّلد $\{E_1,...,E_n\}$ وذلك لان $\{E_1,...,E_n\}$ قاعدة الى $\{E_1,...,E_n\}$ تولد $\{E_1,...,E_n\}$ قاعدة الى $\{E_1,...,E_n\}$ منتمياً الى $\{E_1,...,E_n\}$ تركيباً خطياً من المتجهات $\{E_1,...,E_n\}$ منتمياً الى $\{E_1,...,E_n\}$ من المتجهات $\{E_1,...,E_n\}$

ماتوصلنا اليه، يمكن التعبير عنه بصورة افضل بعد تقديم التعريف التالي.

تعریف:

اذا كانت (A) = A مصفوفة ذات درجة A فان فضاء الاعمدة Column المولد من قبل اعمدة Space) للمصفوفة A يكون ذلك الفضاء الجزئي من A المولد من قبل اعمدة المصفوفة :

$$A_1 = (a_{11}, a_{21}, ..., a_{m1})$$

$$A_2 = (a_{12}, a_{22}, ..., a_{m2})$$

$$\mathbf{A}_{n} = (\mathbf{a}_{1n}, \mathbf{a}_{2n}, \dots, \mathbf{a}_{mn})$$

 R^m التي تعتبر n من المتجهات في

مثال (1) : ماهي المتجهات التي تمثل اعمدة المصفوفة :

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 4 & 0 \end{bmatrix}$$

وما هو فضاء الاعمدة للمصفوفة اعلاه.

الحل : المتجهات التي تمثل اعمدة المصفوفة هي المتجهات :

$$A_1 = (2, -1, 0, 4)$$

$$A_2 = (1, 1, 1, 0)$$

في \mathbb{R}^4 . ان فضاء الاعمدة للمصفوفة \mathbf{A} هو الفضاء الجزئي من \mathbb{R}^4 الذي يحتوي على كل التركيبات الخطية للمتجهين اعلاه . اي

$$aA_1 + bA_2 = (2a + b, -a + b, b, 4a)$$

وهذا يعنى ان فضاء الاعمدة الذي نرمز له بالرمز N يكون :

$$N = \{ (x_1, x_2, x_3, x_4) : x_1 = (1/2)x_4 + x_3, x_2 = (-1/4)x_4 + x_3 \}$$

$$N = \{ (x_1, x_2, x_3, x_4) : 2x_1 - x_4 - 2x_3 = 0, 4x_2 + x_4 - 4x_3 = 0 \}$$

من النقاش اعلاه يمكننا الان تدوين النتائج التي حصلنا عليها بالمبرهنة التالية.

> **مبرهنة (3.1.1)** : افرض ان

$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n = b_1$$

$$a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n = b_2$$

$$a_{m1}X_1 + a_{m2}X_2 + \dots + a_{mn}X_n = b_m$$

نظام معادلات خطية . ضع

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

عندئذ يكون النظام اعلاه قابلاً للخُول اذا وفقط اذا كان المتجه $\mathbf{B}=(b_1,...,b_m)$ في فضاء الاعمدة للمصفوفة \mathbf{A} ، اي ان المتجه \mathbf{B} يمكن أن يكتب كتركيب خطى من المتجهات التي تمثل اعمدة المصفوفة \mathbf{A} .

مثال (2) :

قرر فيما اذا كان النظام

$$x_1 + x_2 + 2x_3 - x_4 = 1$$

 $-x_1 + x_2 - 2x_3 - x_4 = -3$
 $x_1 + 3x_2 + 2x_3 - 3x_4 = 2$

قابلاً للحلل.

الحل: ان قابلية النظام اعلاه للحل تعتمد على مدى امكانية كتابة المتجه (3,2-,1) كتركيب خطي من المتجهات التي تمثل اعمدة مصفوفة النظام

$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ -1 & 1 & -2 & -1 \\ 1 & 3 & 2 & -3 \end{bmatrix}$$

والتي تكون :

$$A_1 = (1,-1,1) A_2 = (1,1,3), A_3 = (2,-2,2), A_4 = (-1,-1,-3)$$

لاحظ ان A_3 = 2 A_1 و التالي يكون فضاء الاعمدة مولداً من قبل المتجهين A_1 . فاذا كان

$$(1,-3,2) = a (1,-1,1) + b (1,1,3)$$

$$a+b=1$$

$$-a+b=-3$$

$$a+3b=2$$

نلاحظ أن مايحقق المعادلتين الاوليتين اعلاه لايحقق الثالثة وهذا يناقض مفهوم الحل الذي ذكرناه. اذن النظام اعلاه غير قابل للحل.

بعد هذا الاستعراض العام نجزيء دراستنا للمعادلات الخطية الى جزئين فنناقش اولاً انظمة المعادلات المتجانسة ثم انظمة المعادلات غير المتجانسة.

(3.2): انظمة المعادلات الخطية المتجانسة.

Systems of Homogeneous Linear Equations

تعريف

نظام المعادلات الخطية AX = B (مكتوب بالصيغة المصفوفية) يسمى نظاماً متجانساً اذا وفقط اذا كان

$$\mathbf{B} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} = \mathbf{O}$$

سنناقش في هذا البند حلول النظام المتجانس.

مبرهنة (3.2.1) :

افرض ان AX=O نظام معادلات خطیة متجانس حیث ان AX=O افرض ان AX=O نظام معادلات خطیة متجانس حیث ان AX=O ذات درجة AX=O عندئذ تکون مجموعة ذات درجة AX=O مصفوفة المجاهیل ذات الدرجة AX=O مصفوفة المجاهیل خاص AX=O مصفوفة المجاهیل خاص AX=O مصفوفة AX=O المحاوث مصفوفة AX=O مصفوفة AX=O مصفوفة المحاوث مصفوفة المحاوث مصفوفة AX=O مصفوفة AX=O مصفوفة AX=O مصفوفة AX=O مصفوفة AX=O مصفوفة AX=O مصفوفة المحاوث مصفوفة AX=O مصفوفة AX=O مصفوفة AX=O مصفوفة AX=O مصفوفة AX=O مصفوفة AX=O مصفوفة المحاوث المحاوث مصفوفة المحاوث مصفوفة المحاوث مصفوفة المحاوث المحا

التحويل الخطى الذي مصفوفته بالنسبة للقواعد الطبيعية تكون A^T فان

$$S = Ker T$$

البرهان:

اذا کـــان X_1 و X_2 حـــلان للنظـــام $A(X_1+X_2)=AX_1+AX_2=O+O=O$ واذا کان r ای عدد حقیقی فان

 $A(rX_1) = rAX_1 = r.O = O$

عليه يكون كل من $X_1 + X_2$ و rX_1 حلاً للنظام وبالتالي تكون مجموعة حلول النظام عبارة عن فضاء جزئي من \mathbb{R}^n .

اذا لاحظیاً ان AX=0 اذا وفقط اذا $X^TA^T=0$ فیکون $X^TA^T=0$ اذا وفقط اذا کان $X^T=(S_1,...,S_n)$ اذا کان $X^T=(S_1,...,S_n)$ اذا کان $X^T=(S_1,...,S_n)$ المرهنة (3.1.1) المرهنة (3.1.1)).

(و.هـ.م)

ندرج النتيجة البديهة التالية

نتيجة (3.2.2) :

المتجه الصفري (0,0,..,0) يكون دائماً حلاً لاي نظام متجانس. وهذا الحل يسمى بالحل التافه (Trivial Solution)

بذلك يكون من المهم البحث عن حلول غير تافهة Non – Trivial) (Solutions لانظمة المعادلات الخطية المتجانسة. وسوف نلخص حل هذه المسألة بالمبرهنة التالية.

مبرهنة (3.2.3) :

النظام المتجانس

$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

الذي يحتوي على m من المعادلات و n من المجاهيل لديه دائماً الحل التافه $(x_1,\dots,x_n)=(0,\dots,0)$ وإذا كانت r بعد فضاء الاعمدة لمصفوفة النظام فان النظام اعلاه يمتلك n-n من الحلول المستقلة خطياً والتي تكون حلولاً غير تافهة .

تذكر دائماً ان اي حل لاي نظام معادلات حطية عبارة عن متجه في r=n وعلى وجه الخصوص، اذا كانت r=n فان للنظام فقط الحل التافه.

البرهان:

الجزء الاول حول الحل التافه فبديهي . بمراجعة المبرهنة (3.1.1) يتضح أن فضاء الأعمدة الذي هو فضاء جزئي من R^m يساوي تماماً صورة التحويل الخطي A^T الذي مصفوفته بالنسبة للقواعد الطبيعية تكون A^T حيث ان A^m

هي مصفوفة النظام. هذا يعني ان r = dim(ImT)، اي ان r تساوي رتبة التحويل الخطي T. لكن

n = T بنبة T + صفرية

اذن : صفرية n-r = T

لكن صفرية T=(KerT) و dim(KerT)=T فضاء الحلول للنظام المتجانس حسب المبرهنة (3.2.1) .

اذن یکو ن هنالك n-r من الحلول غیر التافهة وهو مایساوي بعد فضاء الحلول. عندما n=r فانn=r فانn=r وبذلك یکون الحل التافه هو الحل الوحید.

(و. هـ. م)

نتيجة (3.2.4):

اذا كان m<n، اي ان عدد المعادلات اقل من عدد المجاهيل فيجب وجود حلول غير تافهة للنظام

البرهان:

بما ان التحويل الخطى $R^m \longrightarrow T: R^n$ فان

r = T رتبة $= \dim (ImT) \leq m$

عليه يكون r≤m<n وبالتالي يكون n-r عدداً موجباً وهذا يعني وجود حلول غير تافهة .

(و. هـ. م)

نتيجة (3.2.5) :

اذا كان m=n ، فان النظام لديه حل غير تافه اذا وفقط اذا كانت مصفوفته A مصفوفة غير قابلة للقلب .

البرهان:

 $KerT \neq \{O\}$ كان (60 وفقط اذا وفقط اذا كان AX = O حل غير تافه اذا وفقط اذا كان AX = O وذلك حسب المبرهنة (3.2.3). الآن $R^n \to R^n$ ($R^n \to R^n$). بذلك يكون $R^n \to R^n$ اذا وفقط اذا لم يكن $R^n \to R^n$ تكون $R^n \to R^n$ المنسجة اذا لم يكن $R^n \to R^n$ المنسجة الأي وخلك حسب النتيجة (2.3.4) وهذا يكافيء كون مصفوفة غير قابلة للي روج من القواعد مصفوفة غير قابلة للقلب وعليه للقلب وذلك حسب النتيجة (2.4.4). اي ان $R^n \to R^n$ مصفوفة غير قابلة للقلب وعليه تكون $R^n \to R^n$

(و. هـ. م)

ملاحظة

- ا __ نذكر القاريء بان المصفوفة المربعة A تكون غير قابلة للقلب اذا وفقط اذا $A^T = A$.
- (m > n) ان الحالة التي يكون بها عدد المعادلات اكبر من عدد المجاهيل (m > n) تحتم على ان (m n) من المعادلات ليست جديدة وانما تعتمد خطياً على باقي المعادلات وذلك لانه لا يمكننا الحصول على اكثر من m من المتجهات المستقلة خطياً في R^m .

ان جميع النتائج اعلاه عبارة عن وصف لمجموعة حلول النظام المتجانس، لكن كيف يمكننا « ايجاد » جميع الحلول لنظام متجانس يعطى لنا ؟ . الطريقة الاساسية تسمى طريقة كاوس للحذف (Gauss elimination) وتتلخص باختزال النظام الى نظام اخر مكافيء له (اي لديه الحلول نفسها) لكن هذا النظام المكافيء يكون بسيطاً ويمكن رؤية الحلول بسهولة .

المفتاح للطريقة اعلاه يكون بملاحظة ان اجراء احدى العمليات التالية على اي نظام معادلات خطية سوف ينتج نظاماً مكافئاً، بغض النظر ان كان النظام متجانساً ام غير متجانس.

- 1 _ استيدال معادلتين.
- 2 _ جمع مضاعف معادلة مع معادلة اخرى.

3 _ ضرب معادلة بعدد غير صفري.

انه لمن الواضح ان عملية من نوع (1) اعلاه لاتؤثر على مجموعة حلول النظام. ان عملية من نوع (2) لاتؤثر على مجموعة حلول اي نظام خطي مثل:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n = b_2$$
 (*)

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

فلو افترضنا ان المعادلة i ضربت بالعدد t ثم جمعت مع المعادلة j لتحول النظام اعلاه الى النظام:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

$$(a_{j1} + ta_{i1}) x_1 + ... + (a_{jn} + ta_{in}) x_n = b_j + tb_i$$
 (#)

$$a_{m1}x_1 + \ldots + a_{mn}x_n = b_m$$

واضح ان اي حل للنظام () يكون حلاً للنظام () و اضافة مقادير $X = (S_1, ..., S_n)$ للنظام ($X = (S_1, ..., S_n)$ متساوية لاخرى متساوية تنتج متساوية). على العكس لو كان $X = (S_1, ..., S_n)$ كلقق كل معادلة من معادلات () ماعدا ربما المعادلة $X = (S_1, ..., S_n)$ كلمعادلتين $X = (S_1, ..., S_n)$ ينتج :

$$\mathbf{a}_{i_1}\mathbf{S}_1 + \dots + \mathbf{a}_{i_n}\mathbf{S}_n = \mathbf{b}_i$$

$$(a_{j1} + ta_{i1})S_1 + \dots + (a_{jn} + ta_{in})S_n = b_j + tb_i$$

الان لو ضربنا المعادلة الاولى بـ (t-) وجمعنا الناتج مع المعادلة الثانية لحصلنا على

$$a_{j_1}S_1 + + a_{j_n}S_n = b_j$$

. (*) المعادلة j في النظام (*) مبذلك يحقق $X = (S_1, ..., S_n)$

ان برهنة كون عملية من النوع (3) لاتغير حلول النظام تترك للطالب كتمرين.

يمكن تلَّخيص طريقة كاوس بالخطوات التالية:

الخطوة الاولى: بأعادة ترتيب المعادلات ان اقتضت الضرورة اجعل المعادلة الاولى معادلة محتوية على .x

 X_1 الكي تجعل معامل X_1 الكولى أن معكوس معامل الكولى المعادلة الأولى الجديدة .

الخطوة الثالثة: احدف x من بقية المعادلات.

الخطوة الرابعة: "ثبت المعادلة الأولى واعد الخطوات الثلاثة اعلاه بالنسبة الى X₂.

الخطوة الخامسة استمر هكذا الى ان تتوقف العملية.

يمكن توضيح الطريقة اعلاه بالمثال التالي:

مثال (1): ناقش حلول النظام المتجانس:

$$2x_{2}-x_{3} = 0$$

$$x_{1}-2x_{2} + 3x_{3} = 0$$

$$2x_{1} + x_{2} + 5x_{3} = 0$$

$$-x_{1} + 4x_{2} + x_{3} = 0$$

الحمل اللاحظ هنا أن المعاهلة الأولى لاتحتوي على x_1 لذلك نعيد ترتيب المعادلات ومن الافضال الحتيار المعادلة التي يكون بها معامل x_1 مساوياً للواحد .

$$x_1 - 2x_2 + 3x_3 = 0$$
(1)

$$2x_2 - x_3 = 0 \dots$$
 (2)

$$2x_1 + x_2 + 5x_3 = 0$$
(3)
 $-x_1 + 4x_2 + x_3 = 0$...(4)

نبدأ الان بتطبيق الخطوة الثالثة وهي حذف X من بقية المعادلات .

$$x_1 - 2x_2 + 3x_3 = 0$$
 . . . (1)

$$2x_2-x_3=0$$
 ... (2)

$$5x_2-x_3 = 0 \dots (3)' = -2(1) + (3)$$

$$2x_2 + 4x_3 = 0$$
 ... $(4) = (1) + (4)$

حيث ان (3) + (2(1) - = (3) تعني ان المعادلة الثالثة الجديدة حصلنا عليها بعد ضرب المعادلة الاولى في 2- وجمعها مع المعادلة (3). بضرب المعادلة الثانية في 1/2 نحصل على النظام.

$$x_1 - 2x_2 + 3x_3 = 0 \dots (1)$$

$$x_2 - (1/2)x_3 = 0....(2)$$

$$5x_2 - x_3 = 0 \dots (3)$$

$$2x_2 + 4x_3 = 0 \cdot \cdot \cdot \cdot (4)$$

نبدأ الان بحذف x, من المعادلتين (3) و (4) فنحصل على النظام

$$x_1 - 2x_2 + 3x_3 = 0$$
 (1)

$$x_2 - (1/2) = 0$$
 . . . (2)

$$(3/2)x_3 = 0 \dots -5(2) + (3)$$

$$5x_3 = 0 \cdot \cdot \cdot -2(2) + (4)$$

المعادلتان الاخيرتان تؤديان الى $x_3=0$ وبالتعويض في المعادلة الثانية نحصل على $x_1=0$ وبالتعويض في المعادلة الاولى نحصل على $x_1=0$. هذا يعني ان النظام يمتلك فقط الحل التافه (الحل الصفري).

د (2) شال

اوجد قاعدة لفضاء الحلول للنظام المتجانس

$$x_1 + x_2 - x_3 + x_4 = 0$$
(1)

$$2x_1 + 3x_2 - x_4 = 0$$
 .(2)

$$-x_1 + 3x_2 + 5x_3 = 0$$
(3)

الحل: نلاحظ هنا أن عاد المعادلات أقل من عاد المجاهيل وعليه فأن النتيجة (3.2.4) تؤكد وجود حدول غير تافهة للنظام أعلاه.

على النظام المكافيء $x_1 + x_2 - x_3 + x_4 = 0...(1)$ $x_2 + 2x_3 - 3x_4 = 0...(1) + (2)$ $4x_2 + 4x_3 = 0...(1) + (2)$

الآن نثبت المعادلتين الأولى والثانية ثم نعذف x_2 من المعادلة الثالثة فنحصال على النظام المكافيء.

$$x_1 + x_2 - x_3 + x_4 = 0$$
(1)
 $x_2 + 2x_3 - 3x_4 = 0$ (2)
 $-4x_3 + 12x_4 = 0$ (3)

 $x_3 = 3x_4$ عملية الحذف تتوقّف الآن. من المعادلة الآخيرة نحصل على $x_3 = 3x_4$ وبالتعويض في المعادلة الثانية نحصل على :

 $x_2 = -2x_3 + 3x_4 = -2(3x_4) + 3\overline{x}_4 = -3x_4$

وبالتعويض في المعادلة الاولى نحصل على :

 $X_1 = -X_2 + X_3 - X_4 = -(-3X_4) + 4X_4 - X_4 = 5X_4$

نلاحظ هنا ان جميع المتغيرات قد كتبت بدلالة المتغير ،x عليه يمكن وصف فضاء الحلول كما يلي :

 $S = \left\{ (5x_4, -3x_4, 3x_4, x_4) : x_4 \in R \right\}$

عند التعويض عن x_4 باي قيمة غير صفرية ولتكن مثلاً $x_4=1$ نحصل على الحل $X_4=1$ الذي يكون قاعدة للفضاء X=(5,-3,3,1)

تمارين (3.2)

:
$$x-2y+z=0$$
 : $(\frac{1}{2})$:

$$kx-y-z = o$$
$$x-ky+z = o$$

ودّلك لقيم مختلفه الى k .

4 _ جد فضاء الحلول للنظام:

$$2x_1 - 3x_2 - x_3 + x_4 = 0$$

$$3x_1 + 4x_2 - 4x_3 - 3x_4 = 0$$

$$17x_2 - 5x_3 - 9x_4 = 0$$

برهن على وجود حل واحد فقط من الحلول اعلاه يحقق ايضاً نظام المعادلات:

$$x_1 + x_2 + x_3 + x_4 = -1$$

$$x_1 - x_2 - x_3 - x_4 = 3$$

5 _ جد بعد فضاء الحلول لكل من الانظمة التالية:

$$x + 2y - z = 0 \tag{f}$$

$$x-y = 0$$

$$3x-2y+4z=0 (-)$$

$$x-2y+z+3w=0$$
 (7)

$$2x + z - w = 0$$

$$3x + 4z - y + w = 0$$

6 _ جد مجموعة حلول كل من الانظمة المتجانسة التالية :

$$x + y = 0$$

$$x + y + z = 0$$

$$2x + 6y - z + w = 0 \tag{\downarrow}$$

$$x-y+z-w=o$$

$$-x-3y + 3z + 2w = 0$$

$$3x + y - z = 0$$

 $-x + y + z = 0$
 $2x - y - 3z = 0$
 $x - 2y - z = 0$

(3.3) انظمة المعادلات الخطية غير المتجانسة

Systems of non - homogeneous equations

تعریف:

نظام المعادلات الخطية AX = B (مكتوب بالصيغة المصفوفية) يسمى نظاماً غير متجانساً اذا وفقط اذا كان $B \neq O$.

لقد لاحظنا في البند (3.2) وعلى وجه التحديد في مبرهنة (3.2.1) ان مجموعة حلول اي نظام متجانس مكون من m من المعادلات بـ n من المجاهيل تكون فضاءاً جزئياً من R^n وهذا يعني ان جمع اي حلين يعطي حلاً جديداً وضرب اي حل بعدد يعطي حلاً . السؤال هنا حول طبيعة حلول النظام غير المتجانس . المبرهنة (3.3.1) ادناه تعطي مايشبه مبرهنة (3.2.1) ، حول طبيعة مجموعة حلول النظام غير المتجانس .

مبرهنة (3.3.1) :

اذا كان $\mathbf{AX} = \mathbf{B}$ حلاً ثابتاً للنظام غير المتجانس $\mathbf{AX} = \mathbf{S}_0, \dots, \mathbf{S}_n$ فان . $\mathbf{AX} = \mathbf{O}$ اي حل آخر يجب ان يكون بالصيغة $\mathbf{Y} + \mathbf{X}$ حيث \mathbf{Y} اي حُل للنظام

البرهان :

Y اذن $AX_0 = B$ اذن AX = B افرض ان AX = B اذن AX = O . افرض ان AX = O للنظام AX = O . اذن AX = O

 $A(X_o + Y) = AX_o + AY = B + O = B$ AX = B للنظام $X_o + Y$ بذلك يكون $X_o + Y$ حلاً للنظام

هذا يعني ان جمع حلّ للنظام غير المتجانس مع حل للنظام المتجانس التابع له ينتج حلاً جديداً للنظام غير المتجانس.

لنفرض الآن ان X_1 یکون حلاً آخر للنظام AX=B سوف نبرهن علی ان $X_1=X_0+Y$ لبعض $X_1=X_0+Y$

 $X_1 = X_0 + (X_1 - X_0)$

ضع $Y = X_1 - X_0$ ضع

 $AY = A(X_1 - X_0) = AX_1 - AX_0 = B - B = O$

 $X_1 = X_0 + Y$ ويحقق AX = O بذلك يكون Y حلاً للنظام

(و، هـ، م)

المبرهنة اعلاه تنص على ان ايجاد حل واحد فقط للنظام غير المتجانس AX = D وليكن AX = D ويجاد جميع حلول النظام المتجانس التابع له AX = D يتيح لنا وصف جميع حلول النظام غير المتجانس بالصورة :

$$S = \{X_o + Y : AY = O, AX_o = B'\}$$

يسمى حلاً حاصاً (Particular Solution). Y يسمى الحل العام للنظام المتجانس (General Solution) عليه فان الحل العام للنظام غير المتجانس يساوي حاصل جمع حل حاص مع حل عام للنظام المتجانس التابع له .

مثال (1) :

جد الحل العام للنظام غير المتجانس:

$$x_1 + x_3 + x_5 = 1$$

 $x_2 + x_3 + 2x_5 + x_6 = 2$
 $x_4 + 3x_5 = 3$

1 + 1 الدينا ثلاث معادلات بست متغيرات وهذه المعادلات بابسط صيغة من حيث طريقة كاوس، اي ان x_1 محذوف من المعادلة الثالثة و x_2 محذوف من المعادلة الثالثة . بذلك نستطيع ان نجد الحل مباشرة وذلك بكتابة :

$$x_4 = 3-3x_5$$

$$x_2 = 2 - x_3 - 2x_5 - x_6$$

$$x_1 = 1 - x_3 - x_5$$

بوضع $x_3 = x_5 = x_6 = 0$ نحصل على حل خاص وهو

$$X_0 = (1,2,0,3,0,0)$$

الان نحاول ايجاد الحل العام للنظام المتجانس التابع للنظام المعطى.

$$x_1 + x_3 + x_5 = 0$$

$$x_2 + x_3 + 2x_5 + x_6 = 0$$

$$x_4 + 3x_5 = 0$$

$$x_4 = -3x_5$$
 الحل يكون

$$x_2 = -x_3 - 2x_5 - x_6$$

$$X_1 = -X_3 - X_5$$

بذلك يكون المتجهات الثلاثة

$$A_1 = (-1, -1, 1, 0, 0, 0)$$

$$A_2 = (-1, -2, 0, -3, 1, 0)$$

$$A_3 = (0,-1,0,0,0,1)$$

قاعدة لفضاء الحلول للنظام المتجانس. عليه فان الحل العام للنظام غير المتجانس يكون بالصيغة

$$(s_1, s_2, s_3, s_4, s_5, s_6) = (1, 2, 0, 3, 0, 0) + aA_1 + bA_2 + cA_3$$

وهذا يعني ان اي حل للنظام يمكن الحصول عليه باختيار قيم مناسبة

للاعداد a,b,c

مثال (2) :

جد الحل العام للنظام غير المتجانس

$$x_1 + 3x_2 - 2x_3 - x_4 + 2x_5 = 1$$

$$2x_1 + 6x_2 - 4x_3 - 2x_4 + 4x_5 = 2$$

$$x_1 + 3x_2 - 2x_3 + x_4 = -1$$

$$2x_1 + 6x_2 + x_3 + -x_4 = 4$$

الحل: نطبق طريقة كاوس لتبسيط النظام اعلاه. نحذف x_1 من المعادلات الثانية والثالثة والرابعة فنحصل على النظام المكافيء.

$$x_1 + 3x_2 - 2x_3 - x_4 + 2x_5 = 1$$

o = 0
 $2x_4 - 2x_5$ = -2
 $5x_3 + x_4 - 4x_5$ = 2

والان نستبدل المعادلة الثانية بالرابعة ونضرب المعادلة الثانية الجديدة بـ x_3 ثم نحذف x_3 من المعادلة الاولى . نتيجة هذا كله تكون :

$$x_1 + 3x_2 - (3/5)x_4 + (2/5)x_5 = 9/5$$

$$x_3 + (1/5)x_4 - (4/5)x_5 = 2/5$$

$$2x_4 - 2x_5 = -2$$

$$0 = 0$$

الآن نضرب المعادلة الثالثة بـ 1/2 ثم نستخدم المعادلة الناتجة لحذف x_4 من بقية المعادلات:

$$x_1 + 3x_2 - (1/5)x_5 = 6/5$$

 $x_3 - (3/5)x_5 = 3/5$
 $x_4 - x_5 = -1$
 $0 = 0$

الطريقة تتوقف الآن . لغرض الحصول على حل خاص نعوض عن X_5 باي قيمة فنحصل على X_4 من المعادلة الثالثةو X_5 من المعادلة الثالثة . والآن تعويض آخر عن X_5 باي قيمة يعطي X_5 من المعادلة الأولى . فعلى سبيل المثال لو اخذنا $X_5=2$ و $X_2=0$ لحصلنا على $X_5=1$

$$x_3 = 3/5 + (3/5)x_5 = 9/5$$

 $x_1 = (6/5) - 3x_2 + (1/5)x_5$
 $= 8/5$

وبذلك يكون (8/5,0,9/5,1,2) حلاً خاصاً. ان النظام المتجانس التابع للنظام المعطى والمبسط بطريقة كاوس هو

$$x_1 + 3x_2 - (1/5)x_5 = 0$$

 $x_3 - (3/5)x_5 = 0$

$$\mathbf{x}_4 - \mathbf{x}_5 = \mathbf{0}$$

$$\mathbf{x}_4 = \mathbf{x}_5$$

$$x_3 = (3/5)x_5$$

 $x_1 = -3x_2 + (1/5)x_5$

بذلك تكون المتجهات

والحل العام يكون

$$A_1 = (-3,1,0,0,0)$$

 $A_2 = (1/5,0,3/5,1,1)$

قاعدة لفضاء حلول النظام المتجانس وعليه يكون الحل العام.

$$(S_1, S_2, S_3, S_4, S_5) = (8/5, 0, 9/5, 1, 2) + aA_1 + bA_2$$

= $(8/5 - 3a + (1/5)b, a, 9/5 + (3/5)b, 1 + b, 2 + b)$

كا رأينا فان حل اي نظام يتطلب حسابات كثيرة. يمكننا تقليل الجهد الى حد معين بملاحظة انه لاضرورة ولا حاجة لنقل المتغيرات في مراحل طريقة كاوس. الصيغة المصفوفية تسهل هذه العملية.

لو اعطینا نظاماً خطیاً AX = B، فیمکننا تکوین مصفوفة جدیدة [A:B].

وذلك باضافة عمود جديد هو B على يمين المصفوفة A وبذلك نحصل على مصفوفة جديدة تسمى المصفوفة المصعدة للنظام AX = B . Matrix)

الآن، العمليات الثلاث السابقة الذكر والتي نستخدمها لتبسيط انظمة المعادلات

سوف تقابل العمليات التالية على المصفوفة المصعدة.

(1): استبدال صفين.

(2): جمع مضاعف صف مع صف آخر.

(3): ضرب صف بعدد غير صفري.

مثال (3)

المصفوفة المصعدة للنظام الخطى في مثال (2) تكون

$$\begin{bmatrix} 1 & 3 & -2 & -1 & 2 & : & 1 \\ 2 & 6 & -4 & -2 & 4 & : & 2 \\ 1 & 3 & -2 & 1 & 0 & : & -1 \\ 2 & 6 & 1 & -1 & 0 & : & 4 \end{bmatrix}$$

سنحاول اجراء عمليات مماثلة لتلك التي اجريناها في مثال (2) لكن على صفوف المصفوفة المصعدة.

$$\begin{bmatrix} 1 & 3 & -2 & -1 & 2 & : & 1 \\ 0 & 0 & 0 & 0 & 0 & : & 0 \\ 0 & 0 & 0 & 2 & -2 & : & -2 \\ 0 & 0 & 5 & 1 & -4 & : & 2 \end{bmatrix} \quad \begin{matrix} R_1 \\ R_2 - 2R_1 \\ R_3 - R_1 \\ R_4 - 2R_1 \end{matrix}$$

حيث ان R_2 - $2R_1$ تعني الصف الثاني مضاف اليه (2-) في الصف الأول وهكذا . نستبدل الصف الثاني بالرابع ثم نقسم الثاني الجديد على 5 .

$$\begin{bmatrix}
1 & 3 & 0 & -3/5 & 2/5 & : & 9/5 \\
0 & 0 & 1 & 1/5 & -4/5 & : & 2/5 \\
0 & 0 & 0 & 1 & -1 & : & -1 \\
0 & 0 & 0 & 0 & 0 & : & 0
\end{bmatrix}$$

$$\begin{array}{c}
R_1 + 2R_2 \\
R_2 \\
(1/2)R_3 \\
R_4$$

$$\begin{bmatrix} 1 & 3 & 0 & 0 & -1/5 : 6/5 \\ 0 & 0 & 1 & 0 & -3/5 : 3/5 \\ 0 & 0 & 0 & 1 & -1 : -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} R_1 + (3/5)R_3 \\ R_2 + (1/5)R_3 \\ R_3 \\ R_4 \end{bmatrix}$$

ان النظام الخطى الذي يقابل هذه المصفوفة سيكون

$$x_1 + 3x_2 - (1/5)x_5 = 6/5$$

 $x_3 - (3/5)x_5 = 3/5$
 $x_4 - x_5 = -1$
 $0 = 0$

وهذا هو النظام المبسط نفسه الذي حصلنا عليه في مثال (2) لكن بجهد اقل حيث اننا لم نكتب المتغيرات في كل مرة . مثال (4) :

, ()

' ناقش حلول النظام + 2x + x = 8

$$x_1 + 2x_2 + x_3 = 8$$

 $-2x_1 - 3x_2 - x_3 = -11$
 $x_1 + 4x_2 + 4x_3 = 21$

الحل: الصمفوفة المصعدة للنظام اعلاه

$$\begin{bmatrix}
1 & 2 & 1 & : & 8 \\
-2 & -3 & -1 & : & -11 \\
1 & 4 & 4 & : & 21
\end{bmatrix}$$

والان نجري العمليات الصفية : بضرب الصف الاول في (2) واضافته للصف الثالث نحصل واضافته للصف الثالث نحصل على :

$$\begin{bmatrix}
1 & 2 & 1 & : & 8 \\
0 & 1 & 1 & : & 5 \\
0 & 2 & 3 & : & 13
\end{bmatrix}
\qquad
\begin{array}{c}
R_1 \\
R_2 + 2R_1 \\
R_3 - R_1
\end{array}$$

بضرب الصف الثاني في (2-) واضافته للصف الاول ثم للصف الثالث نحصل على

$$\begin{pmatrix}
1 & 0 & -1 & : & -2 \\
0 & 1 & 1 & : & 5 \\
0 & 0 & 1 & : & 3
\end{pmatrix}
\qquad
R_1-2R_2 \\
R_2 \\
R_3-2R_2$$

بضرب الصف الثالث في (1-) واضافته الى الصف الثاني ثم جمع الصف الثالث مع الأول نحصل على :

$$\begin{bmatrix}
1 & 0 & 0 & : & 1 \\
0 & 1 & 0 & : & 2 \\
0 & 0 & 1 & : & 3
\end{bmatrix}$$

$$R_1 + R_3$$

$$R_2 - R_3$$

$$R_3$$

ان النظام الذي يقابل هذه المصفوفة المبسطة يكون

$$x_1 = 1$$

$$x_2 = 2$$

$$x_3 = 3$$

وهذا يعني ان للنظام غير المتجانس حل واحد فقط هو.

$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 3$

د (5) :

ناقش حلول النظام الخطي:

$$x_1 + 2x_2 - 3x_3 = 13$$

 $2x_1 - x_2 + x_3 = -2$
 $x_1 - 3x_2 + 4x_3 = 7$

الحل : المصفوفة المصعدة للنظام اعلاه تكون

$$\begin{bmatrix}
1 & 2 & -3 & : & 13 \\
2 & -1 & 1 & : & -2 \\
1 & -3 & 4 & : & 7
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 \\
R_2 \\
R_3$$

بضرب الصف الأول في (2-) واضافته للصف الثاني ثم ضرب الصف الأول في (1-) واضافته الى الصف الثالث نحصل على :

$$\left(\begin{array}{ccc}
1 & 2 & -3 & : & 13 \\
0 & -5 & 7 & : & -28 \\
0 & -5 & 7 & : & -6
\end{array}\right) \qquad \begin{array}{c}
R_1 \\
R_2 - 2R_1 \\
R_3 - R_1
\end{array}$$

بضرب الصف الثاني في (1-) ثم اضافة الصف الثاني الجديد الى الصف الثالث وضرب الصف الثاني الجديد في (2/5-) واضافته للصف الأول نحصل على:

$$\begin{bmatrix} 1 & 0 & -1/5 & : & 9/5 \\ 0 & 5 & -7 & : & 28 \\ 0 & 0 & 0 & : & \cdot & 22 \end{bmatrix} \quad \begin{array}{c} R_1 + (2/5)R_{14} \\ -R_2 \\ R_3 - R_2 \end{array}$$

ان نظام المعادلات الذي يقابل هذه المصفوفة المبسطة هو:

$$x_1 - (1/5)X_3 = 9/5$$

 $5x_2 - 7x_3 = 28$
 $0x_3 = 22$

نلاحظ هنا ان المعادلة الثالثة تعني ان 22=0 وهذا تناقض. هذا يعني ان النظام غير قابل للحل.

في البند الأول ذكرنا مبرهنة (3.1.1) التي اعطت شرطاً ضرورياً وكافياً لكن يكون اي نظام خطي قابلاً للحل. جميع الانظمة المتجانسة تمتلك حلولاً لكن النظام غير المتجانس AX = B يكون قابلاً للحل اذا وفقط اذا كان المتجه B منتمياً الى فضاء اعمدة المصفوفة A. ان عملية تبسيط المصفوفة المصعدة A بعمليات صفية تكشف عن عدم انتاء B الى فضاء اعمدة A وذلك بالوصول الى تناقض كالذي وصلنا اليه في مثال (5) اعلاه. سوف لن ندخل في تفاصيل البرهان العام لان ذلك يتطلب منا الدخول في مفاهم جديدة كرتبة المصفوفة واختزال المصفوفات.

تمارين (3.3)

:
$$z = 1$$
 : $z = 1$: z

$$2x + 6y - z + w = 3$$

$$x-y+z-w=2$$

$$-x-3y + 3z + 2w = 0$$

$$3x + y - z = 10$$

$$-x + y + z = 0$$

$$2x-y-3z = 7$$

$$x-2y-z = -2$$

$$x + y - z - w = -1 \tag{2}$$

$$3x + 4y - z - 2w = 3$$

$$x + 2y + z = 5$$

2 ـــ اوجد قيم k التي تجعل النظام التالي قابلاً للحل ثم اوجد مجموعة الحلول في تلك الحالة :

$$x + ky - z = 1$$

$$2x + y + 2z = 5k + 1$$

$$x-y+3z=4k+2$$

$$x-2ky + 7z = 10k-1$$

3 _ برهن على ان النظام:

$$x_1 + 2x_2 + 3x_3 - 3x_4 = k_1$$

$$2x_1 - 5x_2 - 2x_3 + 12x_4 = k_2$$

$$7x_1 + x_2 + 8x_3 + 5x_4 = k_3$$

يكون قابلاً للحل أذا وفقط اذا $9k_3 = 0$ $9k_1 + 13k_2 + 9k_3 = 0$ اوجد جميع الحلول عندما $k_3 = 7, k_2 = 2, k_1 = 1$

الفصل الرابع

القيم الذاتية والمتجهات الذاتية

Eigenvalues and Eigenvectors

(4.0) مقدمــة:

اذا كان كل من V و W فضاء متجهات منتهي البعد وعلى الحقل نفسه، وكان $W \to T:V \to W$ وكان $W \to T:V \to W$ ، فقد برهنا في الفصل الثاني (مبرهنة (2.5.1)) انه بالأمكان دائماً ايجاد قاعدة آلى كل من V و W بحيث تكون مصفوفة T بالنسبة لذلك الزوج من القواعد بالصيغة الاعتيادية، اي بصيغة بيطة . عندما يكون dim V = dim W فإن مصفوفة T تكون مصفوفة قطرية .

وفي حالة كون V=W فإنه ليس من الضروري ان نستطيع ايجاد قاعدة واحدة الى V تستخدم في المجال والمجال القابل للتحويل V \rightarrow V بالنسبة لتلك القاعدة تكون قطرية وكما موضح في المثال التالي .

T(x,y) = (-y,x) لنأحذ $T:R^2 \rightarrow R^2$ تحويلاً خطياً معرفاً بالصيغة : $T:R^2 \rightarrow R^2$ لو اردنا ايجاد القواعد التي تجعل مصفوفة T بالنسبة لها بالصيغة الاعتيادية (صيغة قطرية بهذه الحالة) لطبقنا الطريقة التي وردت في برهان المبرهنة (2.5.1) والموضحة في المثال (1) من البند (2.5) . نلاحظ ان :

KerT =
$$\{(x,y): (-y,x) = (0,0)\}$$

= $\{(0,0)\}$

نكمل الى قاعدة الى R2 (انجال) ولتكن تلك القاعدة المكونة من:

$$A_1 = (1,0), A_2 = (0,1)$$

$$B_1 = T(A_1) = (0,1), B_2 = T(A_2) = (-1,0)$$

بهذه الحالة يمكننا ان نستخدم القاعدة $\{A_1, A_2\}$ في المجال والقاعدة $\{B_1, B_2\}$ في المجال المقابل، لكي تكون مصفوفة T بالنسبة للزوج اعلاه من القواعد بالصيغة الاعتبادية:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $B_1 \neq A_2$ ، $B_1 \neq A_1$ الكن لاحظ ان

المسألة المراد دراستها في هذا الفصل هي المسألة التالية:

اذا كان $V \to V$ تحويلاً خطياً على فضاء منتهى البعد فمتى وتحت اي شروط يمكن الجاد قاعدة واحدة الى V تستخدم في المجال والمجال المقابل لكي تكون مصفوفة T مصفوفة قطرية (ليس من الضروري ان تكون جميع عناصر القطر مساوية الى T).

المثال اعلاه يوضح انه ليست جميع التحويلات تتمتع بهذه الخاصية. وذلك لانه في حالة وجود قاعدة مكونة من المتجهين

$$A_1 = (x_1, y_1), A_2 = (x_2, y_2)$$

خيث ان مصفوفة T بالنسبة للقاعدة اعلاه تكون قطرية.

$$\begin{bmatrix} a_1 & o \\ o & a_2 \end{bmatrix}$$

فإنه يتوجب على T ان يحقق:

$$T(A_1) = a_1 A_1 + oA_2 = a_1 A_1$$

 $T(A_2) = o.A_1 + a_2 A_2 = a_2 A_2$

وهذا يعني أن:

$$(-y_1, x_1) = a_1(x_1, y_1)$$

 $(-y_2, x_2) = a_2(x_2, y_2)$

عند حل المعادلتين اعلاه ينتج:

$$-y_1 = a_1 x_1, x_1 = a_1 y_1$$
 $-y_2 = a_2 x_2, x_2 = a_2 y_2$
 $-y_1 = a_1^2 y_1, -y_2 = a_2^2 y_2$
نون:

 $y_2 \neq 0$ في حالة $y_1 \neq 0$ نحصل على 1- $a_1^2 = -1$ وهذا تناقض، كذلك فإنه في حالة $a_2 \neq 0$ خصل ايضاً على تناقض في المعادلة $a_2^2 = -1$.

: نال في حالة كون $y_1 = 0$ و $y_2 = 0$ فإن المتجهين A_1 , A_2 يصبحان بالصيغة $A_1 = (x_1, o), A_2 = (x_2, o)$

وبهذه الحالة لايكونان قاعدة الى R² .

نستنتج من هذا استحالة وجود قاعدة الى R^2 تجعل من مصفوفة في الترك $T:R^2 \to R^2$ المعرف اعلاه مصفوفة قطرية في حالة استخدام تلك القاعدة في المجال وانجال المقابل وهذا يوضح عدم بداهة أو بساطة المسألة المطروحة والتي سنحاول الاجابة عليها من خلال بنود هذا الفصل. كذلك فإن عملية تمثيل تحويل خطي $T:V \to V$ بمصفوفة قطرية تنطوي عليها كثير من التطبيقات وتسهل كثيراً من المسائل كم سنرى في الامثلة المقبلة. سوف نرى ان حا المسألة اعلاه بعتمد على وجود متجهات $A \to A$ غير صفرية واعداد قياسية $A \to A$ خقق $A \to A$ هذا النوع من المتجهات يطلق عليه اسم المتجهات الذاتية وتلك الاعداد القياسية ستسمى قيم ذاتية للتحويل الخطي $A \to A$. سندرس هذا في البند (4.1) ثم نناقش في البند (4.2) مسألة تمثيل التحويلات الخطية بمصفوفات قطرية. اما البندين , (4.4)

(4.3) فقد خصصالدراسة المصفوفات المتشابهة لبرهنة نظرية مهمة في الجبر الخطي تسمى مبرهنة كيلي ـــ هاملتون.

(4.1) القم الذاتية والمتجهات الذاتية والمعادلة المميزة

Eigenvalues and Eigenvectors and The Characteristic equation

اذا كان V فضاء متجهات منتهى البعد وعلى الحقل F فنعرف مايلي:

تعريف:

المتجه غير الصفري $A \neq O$ يسمى متجهاً ذاتياً (Eigenvector) للتحويل الخطي $V \rightarrow V$ ، اذا وفقط اذا وجد عدد قياسي $X \in F$

$$\Gamma(A) = \lambda A$$

تعريف:

العدد القياسي $\lambda \in F$ يسمى قيمة ذاتية (Eigenvalue) المتحويل $\lambda \in F$ يسمى أدا وقط اذا وجد متجه $A \neq O$ في $A \neq V$.

$$T(A) = \lambda A$$

ملاحظة :

حسب التعريفين اعلاه نلاحظ ان المتجه الذاتي يجب ان يكون متجهاً غير صفري لكن لاشيء يجبر القيمة الذاتية بأن تكون غير مساوية للصفر.

عندما یکون A €V متجها غیر صفری و A €F ای عدد قیاسی بحيث

 $T(A) = \lambda A$

فنقول بأن A متجه ذاتي للتحويل الخطي T تابعاً للقيمة الذاتية

ليس من الضروري ان تتواجد متجهات وقم ذاتية لاي تحويل خطي، كما في المثال ادناه.

مثال (1):

التحويل الخطى $R^2 \rightarrow R^2$ المعرف بالصيغة: T(x,y) = (-y, x)

ليس لديه متجهات ذاتية ولا قم ذاتية ، وذلك لانه اذا كان

 $T(x,y) = \lambda(x,y)$

 $(-y,x) = \lambda(x,y)$ فإن:

 $\lambda x = -v$ اي:

 $\lambda y = x$

بالتعويض نحصل على المعادلتين:

 $(\lambda^2 + 1)x = 0, (\lambda^2 + 1)y = 0$

ويما ان 0 $\neq 1+2$ فعليه نحصل على

x = 0, y = 0

هذا يعنى عدم وجود متجهات غير صفرية (x,y) تحقق (x,y) تحقق عدم وجود متجهات غير صفرية

مثال (2) :

جد القيم والمتجهات الذاتية للتحويل الخطى $R^2
ightarrow R^2$ ، المعرف . T(x,y) = (x + 2y, 3x + 2y) : بالصيغة

الحل: لغرض ايجاد القيم والمتجهات الذاتية للتحويل T، علينا ايجاد تلك الاعداد الحقيقية لم التي تحقق:

$$T(A) = \lambda A$$

حيث ان A ≠ (x,y) اذا كان A ≠ O ، فإن

$$T(x,y) = \lambda(x,y)$$

$$(x+2y, 3x+2y) = (\lambda x, \lambda y) \qquad \qquad : \mathcal{L}(x+2y) = (\lambda x, \lambda y)$$

هذا يعني أنه يتوجب علينا معرفة متى يكون لنظام المعادلات

$$x + 2y = \lambda x$$

$$3x + 2y = \lambda y$$

حلاً غير تافه. النظام اعلاه يكافيء النظام المتجانس:

$$(1-\lambda)x + 2y = 0$$

$$3x + (2-\lambda)y = 0$$

وهذا النظام المتجانس يمتلك حلاً غير تافه اذا وفقط اذا كانت مصفوفة النظام، مصفوفة غير قابلة للقلب وذلك حسب (نتيجة 3.2.5).

اي ان:

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{vmatrix} = O$$

لكن:

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda) - 6$$

$$= 2 - 3\lambda + \lambda^2 - 6$$

$$= \lambda^2 - 3\lambda - 4$$

$$= (\lambda - 4)(\lambda + 1)$$

اذن تكون القم الذاتية الى T تلك القم التي تحقق المعادلة

 $(\lambda-4)(\lambda+1)=0$

اي :

 $\lambda = 4$, $\lambda = -1$

الآن يجب ايجاد المتجهات الذاتية التابعة لتلك القم.

هذا يعنى حل النظام المتجانس:

-3x + 2y = 0

3x-2y=0

في حالة $\lambda=4$. وحل النظام المتجانس:

2x + 2y = 0

3x + 3y = 0

في حالة 1- = ٦ .

y = (3/2)x

النظام الأول يكون حله:

y = -x

والنظام الثاني يكون حله:

وبأخذ x=2 في النظام الاول و x=1 في النظام الثاني نحصل على:

المتجه (2,3) A=4 يكون متجهاً ذاتياً تابعاً للقيمة الذاتية A=4 .

. $\lambda = -1$ يكون متجهاً ذاتياً تابعاً للقيمة الذاتية B = -1 .

بذلك تكون القيم الذاتية للتحويل T عبارة عن 4 و 1-، وان جميع المتجهات الذاتية التابعة الى $\lambda=4$ تكون مضاعفات للمتجه (2,3) $\lambda=4$ ، اما المتجهات الذاتية التابعة للى $\lambda=4$ فهي مضاعفات للمتجه (1,1-) $\lambda=4$.

يبدو ان عملية حساب القيم الذاتية لتحويل حطى $V \rightarrow T:V \rightarrow V$ عملية طويلة ومتشعبة لكن الحقيقة عكس ذلك وذلك لانه لاتوجد لدينا في الوقت الحاضر اي طرق لايجادها وانما استخدمنا التعريف فقط.

المبرهنة التالية عبارة عن الخطوة الاولى لايجاد طريقة سريعة لحساب القيم الذاتية .

مبرهنة (4.1.1) :

اذا كان $Y \to V$ تحويلاً خطياً وكانت M مصفوفة T بالنسبة لقاعدة اخرى $G = \{A_1, ..., A_n\}$ للقاعدة $G^* = \{A_1^*, ..., A_n^*\}$ فإن:

وذلك لاي عدد قياسي I. 7 تمثل المصفوفة المحايدة.

البرهان:

بما ان M و $^{\star}M$ مصفوفتان لتحويل خطي واحد لكن بالنسبة لقواعد $M^{\star}=PMP^{-1}$ ختلفة ، فعليه توجد مصفوفة قابلة للقلب P تحقق وذلك حسب المبرهنة (2.5.2) .

الان نلاحظ:

$$\det (M^* - \lambda I) = \det(PMP^{-1} - \lambda I)$$

$$= \det (PMP^{-1} - \lambda PIP^{-1})$$

$$= \det [P(M - \lambda I)P^{-1}]$$

$$= \det(P) \cdot \det(M - \lambda I) \cdot \det(P^{-1})$$

$$= \det(M - \lambda I) \cdot \det(P) \cdot \det(P^{-1})$$

$$= \det(M - \lambda I) \cdot 1$$

$$= \det(M - \lambda I)$$

 $\det (M - \lambda I) = \det (M^* - \lambda I)$

(و.هـ،م)

اذا كانت $(a_{ij}) = M$ مصفوفة التحويل الخطي $M = (a_{ij})$ بالنسبة الى قاعدة معينة فإن

$$\det (\mathbf{M} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

وبفك المحدد اعلاه نحصل على:

$$det(M - \lambda I) = (-1)^n \lambda^n + b_1 \lambda^{n-1} + ... + b_{n-1} \lambda + b_n$$

المبرهنة (4.1.1) تنص على ان متعددة الحدود اعلاه لاتتغير عندما M تستبدل بالمصفوفة M^{\star} التي هي مصفوفة التحويل الخطي M نفسه ، لكن بالنسبة الى قاعدة الحرى . هذا يمكننا من وضع التعريف التالى .

تعريف:

اذا كان $V \leftarrow T:V$ تحويلاً حطياً على فضاء المتجهات المنتهي البعد V ، حيث $dim\ V=n$ ، وكانت M مصفوفة M بالنسبة لأي قاعدة كانت فإن متعددة الحدود :

$$\Delta(t) = (-1)^n t^n + b_{n-1} t^{n-1} + ... + b_1 t + b_0 = \det(M - tI)$$

تسمى متعددة الحدود المميزة (Characteristic Polynomial) للتحويل الخطى T.

حيث ان t متغير ، والمعام \mathbf{b}_{n-1} حقل \mathbf{b}_{0} ، ..., \mathbf{b}_{n-1} حقل \mathbf{v} متغير ، والمعام \mathbf{v} .

مثال (3) :

المعرف
$$T:R^2 \to R^2$$
 المعرف $T:R^2 \to R^2$ المعرف جد متعددة الحدود المميزة للتحويل الخطي $T(x,y) = (2x - y, 4x)$

الحل: اولاً نحاول حساب مصفوفة T بالنسبة لأي قاعدة. أبسط القواعد هي القواعد الطبيعية. كما في البند (2.4)، يتضح ان المصفوفة.

$$M = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$$

تكون مصفوفة T بالنسبة للقاعدة الطبيعية .

$$\triangle (t) = \det (M - tI)$$

$$= \det \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} - t \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \det \begin{bmatrix} 2 - t & 1 \\ -1 & -t \end{bmatrix}$$

$$= (2-t)(-t)-(1)(-1)$$
$$= t^2-2t+1$$

عليه تكون متعددة الحدود المميزة للتحويل الخطى T اعلاه .

$$\Delta (t) = t^2 - 2t + 1$$

مثال (4) :

بعد معددة الحدود المميزة للتحويل الخطي $C^2 \rightarrow C^2$ المعرف بالصيغة:

$$T(Z_1,Z_2)=(Z_1-iZ_2,(1+i)\,Z_1-3iZ_2)$$
 . ($1+i$ $1+$

الحل: مصفوفة T بالنسبة للقاعدة الطبيعية تكون:

$$M = \begin{bmatrix} 1 & 1+i \\ & & \\ -i & -3i \end{bmatrix}$$

عليه تكون متعددة الحدود المميزة:

$$= (1-t) (-3i-t) - (1+i) (-i)$$

= $t^2 + (-1+3i) t - (1+3i)$

 $T:V \longrightarrow V$ نرجع الان لمسألة القيم الذاتية للتحويل الخطي

مبرهنة (4.1.2) :

اذا كان $V \to T:V$ تحويلاً خطياً على فضاء متجهات منتهي البعد وبعده يساوي n وكانت Δ المعادلة المميزة الى T فإن λ تكون قيمة ذاتية للتحويل T اذا وفقط اذا كانت λ جذراً للمعادلة Δ Δ ، اي Δ Δ .

البرهان:

لنفرض ان X قيمة ذاتية للتحويل T. عليه يوجد متجهاً غير صفري AEV

$$T(A) = \lambda . A = \lambda I(A)$$

حيث ان $V \longrightarrow I:V$ يمثل التحويل المحايد. بمراجعة جمع التحويلات الخطية وضربها بأعداد قياسية نستنتج ان

$$(T - \lambda I) A = O$$

وهذا يعني ان: $(T-\lambda I) \neq 0$. لكن $A \neq 0$. لكن $A \in Ker (T-\lambda I) \neq 0$ لايكون وعليه فأن نتيجة (2.3.4) تنص على ان التحويل A = 0 بالنسبة لاي قاعدة كانت تشاكلاً. الان النتيجة (2.4.4) تنتج ان مصفوفة A = 0 بالنسبة لاي قاعدة كانت تكون مصفوفة غير قابلة للقلب. فاذا كانت A = 0 بالنسبة لأي قاعدة فأن A = 0 بالنسبة لاي قاعدة . اي ان المصفوفة A = 0 بالنسبة لتلك القاعدة . اي ان المصفوفة A = 0 غير قابلة للقلب . وهذا يعني ان محددها يكون مساوياً للصفر . اي ان :

$$\Delta(\lambda) = \det(M - \lambda I) = O$$

على العكس لو كان $O = (\lambda) \Delta$ فإن المصفوفة $M - \lambda I$ ستكون غير قابلة للقلب وعليه سوف لايكون $T - \lambda I$ تشاكلاً وبالتالي يكون $A \in Ker(T - \lambda I)$ في $V + \lambda$ في $V + \lambda$ أن $A \in Ker(T - \lambda I)$.

وهذا یعني ان
$$T(A) \cdot \lambda I(A) = O$$

$$T(A) - \lambda I(A) = O$$

$$T(A) - \lambda A = O$$

$$T(A) = \lambda A$$

$$T(A) = \lambda A$$

اي بمعنى ان λ تكون قيمة ذاتية للتحويل الحطي T .

(و.هـ،م)

المعادلة $\Delta(t)=0$ تسمى بالمعادلة المميزة للتحويل الخطي T والمبرهنة اعلاه تنص على ن القيم الذاتية للتحويل الخطي T هي جذور المعادلة المميزة .

مثال (5):

جد القيم الذاتية للتحويل الخطي $R^2 \to R^2$ المعرف في المثال (2) من هذا البند .

الحل:

بمراجعة المثال (2) يتضح ان

T(x,y) = (x + 2y, 3x + 2y)

مصفوفة T بالنسبة للقاعدة الطبيعية تكون

$$\mathbf{M} = \begin{bmatrix} 1 & 3 \\ & \\ 2 & 2 \end{bmatrix}$$

المعادلة المميزة الى T تكون

$$\Delta (t) = \det (M - tI) = \det \begin{bmatrix} 1-t & 3 \\ 2 & 2-t \end{bmatrix} = 0$$

$$(1-t)(2-t)-6=0$$

$$t^2-3t-4=0$$

أو
$$(t-4)\,(t+1)=0$$
 . $t=-1$, $t=4$ عبارة عن قيمتان $t=-1$, $t=1$

مثال (6):

المعرف
$$T:P_1(R) \rightarrow P_1(R)$$
 المعرف جد القيم الذاتية للتحويل الخطي $T(a+bx)=-b+ax$

الحل: مصفوفة T بالنسبة للقاعدة الطبيعية {1, x} تكون

$$\mathbf{M} = \begin{pmatrix} 0 & 1 \\ & & \\ -1 & 0 \end{pmatrix}$$

عليه تكون المعادلة المميزة الى T

$$det(M-t1) = det \begin{bmatrix} -t & 1 \\ -1 & -t \end{bmatrix} = 0$$

$$t^2 + 1 = 0$$

لكن هذه المعادلة غير قابلة للحل على حقل الاعداد الحقيقية وعليه ليس لها جذور وبالتالي لاتوجد قيم ذاتية للتحويل اعلاه.

مثال (7):

 $T:P_{1}(C) \rightarrow P_{1}(C)$ جد القيم والمتجهات الذاتية للتحويل الخطي T(a+bx)=-b+ax

 $m{+}$ ا الحل: مصفوفة $m{T}$ بالنسبة للقاعدة الطبيعية $m{\{1,x\}}$ تكون

$$\mathbf{M} = \begin{bmatrix} 0 & 1 \\ & & \\ -1 & 0 \end{bmatrix}$$

T في المثال (6) اعلاه ، تكون المعادلة المميزة الى

$$t^2 + 1 = 0$$

وبما ان الحقل بهذه الحالة هو حقل الاعداد العقدية C ، فعليه يكون للمعادلة اعلاه حلان هما i و i - . بهذا توجد قيمتان ذاتينان هما i على المعادلة اعلاه حلان هما أو i . بهذا توجد قيمتان ذاتينان هما أنتحويل الخطي (i لاحظ هنا ان الفرق بين هذا المثال والمثال (i) هو تغير الحقل، اما التحويل الخطي

 \mathbf{T} فهو بالصيغة نفسها، بمجرد تغير الحقل تحولت حالة \mathbf{T} من عدم امتلاك قيم ذاتية الى امتلاكها.).

لغرض ايجاد المتجهات الذاتية التابعة للقيمة الذاتية λ ، نلاحظ انه لأي قيمة ذاتية يوجد متجه ذاتي غير صفري λ يحقق

 $(T - \lambda I) A = O$

فإذا افترضنا ان المتجه A=a+bx فإن متجه احداثيات A بالنسبة للقاعدة الطبيعية X=(a,b) هو المتجه X=(a,b) هو المتجه X (M - XI) = O

حيث ان M مصفوفة T بالنسبة للقاعدة الطبيعية .

عندما $\lambda = i$ نحصل على المعادلة

$$(a,b)\begin{bmatrix} -i & 1 \\ & & 1 \\ -1 & -i \end{bmatrix} = O$$

-ia - b = 0 a - ib = 0

هاتان المعادلتان عبارة عن معادلة واحدة على حقل الاعداد العقدية حيث ان المعادلة b=-ia الثانية عبارة عن i مضروبة في المعادلة الاولى . عليه يكون الحل :

عند وضع a=1 نحصل على b=-i وبالتالي المتجه

$$X = (1, -i)$$

الذي يمثل متجه احداثيات $A \in P_1(C)$. اذن A = 1 - ix وان اي مضاعف لهذا المتجه يكون ايضاً متجهاً ذاتياً تابعاً للقيمة الذاتية $\lambda = 1$.

بالطريقة نفسها نحصل على المتجه $B=1+i\,x$ كمتجه ذاتي تابع للقيمة الذاتية $\lambda=-i$.

تماريسن (4.1)

1 _ اوجد القيم الذاتية والمتجهات الذاتية لكل من التحويلات الخطية الاتية:

$$T(x,y) = (3x + 3y, x + 5y) \cdot T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 (1)$$

$$T(x, y, z) = (x + y + z, 2y + z, 2y + 3z), T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 (4)

 $T:P_2(R) \rightarrow P_2(R)$ (τ)

$$T(a_0 + a_1x + a_2x^2) = (5a_0 + 6a_1 + 2a_2) - (a_1 + 8a_2)x + (a_0 - 2a_2)x^2$$

 $T:M_2(R) \to M_2(R) \ (2)$

$$T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2c & a+c \\ b-2c & d \end{bmatrix}$$

.
$$T(z_1, z_2) = (z_1 - z_2, 2z_1)$$
 $T: C^2 \rightarrow C^2$ (\Rightarrow)

(اعتبر ${f C}^2$ فضاءا على حقل الاعداد العقدية ${f C}$.

يعرف اثر (trace) المصفوفة المربعة على انه مجموع العناصر في القطر الرئيسي . اثبت ان المعادلة المميزة لأي تحويل خطي $R^2 \to R^2$ تكون من النوع :

 $t^2 - tr(M) t + det(M) = o$

حيث ان M مصفوفة T بالنسبة لأي قاعدة .

- 3 ــ برهن على ان الحد الثابت في متعددة الحدود المميزة لأي تحويل خطي يساوي محدد مصفوفة التحويل بالنسبة لأي قاعدة كانت.
- 4 _ برهن على ان التحويل الخطى $V \to V$ يكون تحويلاً معتلاً اذا وفقط اذا كانت $\lambda = 0$ قيمة ذاتية الى $\lambda = 0$
- اذا كان V ou T: تحويلاً غير معتل و $A \in V$ متجه ذاتي الى T تابعاً $A \in V$

- للقيمة الذاتية λ فبرهن على ان λ يكون متجهاً ذاتياً الى λ تابعا للقيمة الذاتية λ .
- $T^k = To To ...oT = O$ اذا كان $V \to V$ تحويلاً حطياً بحيث $T:V \to V$ المحدد صحيح موجب K فبرهن على ان جميع القيم الذاتية الى K تكون مساوية للصفر .
- 7 _ اذا كان $A \in V$ متجهاً ذاتياً للتحويل الخطي $T:V \to V$ تابعاً للقيمة الذاتية λ فبرهن على ان λ يكون متجهاً ذاتياً الى λ تابعاً للقيمة الذاتية λ وذلك لأى عدد طبيعى λ .
- TS = ST اذا كان كل من $V \rightarrow V$ آخويلاً خطياً بحيث ان S, T: $V \rightarrow V$ واذا كان كان كذلك $A \in V$ متجهاً بحيث $A \in V$ اذا كان كذلك $S(A) \neq 0$ فبرهن على ان S(A) يكون متجهاً ذاتياً للتحويل T تابعاً للقيمة الذاتية S(A) .
 - و _ اذا كان $R^3 \rightarrow T: R^3 \rightarrow R^3$ تحويلاً خطياً معرفاً بالصيغة:

T(x, y, z) = (o, x, y)

 T^3 ، T^2 ، T من کل من T ، T^3 ، T^3

- تابع A=(1,2) عتلك $R^2 \to R^2$ كمتجه ذاتي تابع $T:R^2 \to R^2$ كمتجه ذاتي تابع للقيمة الذاتية R=0 .
- متجه A=1+x كمتجه $T:P_2(R) \to P_2(R)$ عملك A=1+x كمتجه A=1+x كمتجه ذاتي تابع للقيمة الذاتية A=1+x كمتجه ذاتي تابع للقيمة الذاتية A=1+x كمتجه ذاتي تابع للقيمة A=1+x كمتجه ذاتي تابع للقيمة A=1+x كمتجه ذاتي تابع للقيمة الذاتية A=1+x
- 12 __ اذا كان V فضاء متجهات على الحقل F و F متجه ذاتي لكل من التحويل F فبرهن على ان F فبرهن على ان F فبرهن على التحويل F فبرهن على ان F فبرهن على التحويل F فبرهن على التحويل F فبرهن على عددين قياسين F فبرهن فبره فبرهن فبره فبرهن فبرهن فبرهن فبرهن فبره فبرهن فبرهن فبرهن فبرهن فبرهن فبرهن فبرهن فبرهن فبرهن فب

(4.2) الفضاء الذاتي وقابلية تمثيل تحويل خطى بمصفوفة قطرية

Eigen Space and Diagonalization of a linear transformation

$$V_{\lambda} = \{A \in V: T(A) = \lambda A\}$$

اي ان V_{λ} عبارة عن تلك المجموعة المحتوية على جميع المتجهات الذاتية التابعة للقيمة الذاتية λ بمعية المتجه الصفري. يمكن بسهولة التحقق من ان المجموعة λ تكون فضاءاً جزئياً من λ . هذا الفضاء الجزئي يسمى الفضاء الذاتي التابع للقيمة الذاتية λ .

مثال (1):

جد القيم الذاتية والفضاءات الذاتية التابعة لها، للتحويل الخطى

 $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$

$$T(x, y, z) = (x, y, -2z)$$
 : identify:

الحل: ان مصفوفة T بالنسبة للقاعدة الطبيعية تكون

$$\mathbf{M} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{array} \right]$$

عليه تكون المعادلة المميزة الى T كالأتى:

$$\begin{vmatrix} M - t I & = 0 \\ 1 - t & 0 & 0 \\ 0 & 1 - t & 0 \\ 0 & 0 & -2 - t \end{vmatrix} = 0$$

$$\Delta (t) = (1 - t)^{2} (-2 - t) = 0$$

بذلك توجد قيمتان ذاتيتان مختلفتان

$$\lambda_1 = 1, \lambda_2 = -2$$

(لاحظ ان القيمة الذاتية $\lambda_i = 1$ مكررة مرتين).

لايجاد الفضاء الذاتي V1 يجب علينا حل نظام المعادلات

$$(x, y, z) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{bmatrix} = (0, 0, 0)$$

وهذا يؤدي الى ان z = o .

هذا يعني انه حتى يكون المتجه $A=(x,\,y,\,z)$ غير الصفري، متجهاً ذاتياً تابعاً للقيمة الذاتية $\lambda=1$ ، يجب ان يكون $\lambda=1$. بهذا يمكن وصف الفضاء الذاتي $\lambda=1$ كالآتي :

$$(x, y, z) (M + 2I) = (0,0,0)$$

$$(x, y, z) \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix} = (0, 0, 0)$$

وهذا النظام يؤدي الى معادلتين هما

x = 0, y = 0

هذا يعني ان

 $V_{-2} = \{(0,0,z): z \in R\}$

نلاحظ من المثال اعلاه ان القيم الذاتية يمكن ان تتكرر لذلك نضع التعريف التالي.

تعریف:

اذا كان $V \longrightarrow T:V$ تحويلاً خطياً ، وكانت λ قيمة ذاتية للتحويل T ، فبتكرار λ الجبري نقصد اس الحد $(t-\lambda)$ في متعددة الحدود المميزة بعد تحليلها الى عواملها الاولية وبتكرار λ الهندسي نقصد بعد الفضاء الذاتي λ ، اي λ ، dim λ .

ملاحظة :

اذا کان تکرار λ الجبري α فإن متعددة الحدود المميزة الى λ تکون بالصيغة $\beta(t)$ ، حيث ان $\beta(t)$ متعددة حدود بحيث ان $\beta(t)$ لاتکون جذراً لها .

مثال (2):

جد التكرار الجبري والهندسي لكل قيمة ذاتية ظهرت في المثال (1).

$$\Delta(t) = (1-t)^2(-2-t)$$
 The street large of the distribution of th

بهذا یکون التکرار الجبري للقیمة الذاتیة $\lambda=1$ یساوي 2. اما التکرار الجبري للقیمة الذاتیة $\lambda=2$ فیساوي 1. لایجاد التکرارات الهندسیة یجب علینا $\lambda=1$ فیساوی 1. لایجاد التکرارات الهندسیة یجب علینا $\lambda=1$ معرفة بعد کل من الفضاءین $\lambda=1$. $\lambda=1$ نلاحظ بأن المتجهین $\lambda=1$. $\lambda=1$ فرنان قاعدة الی $\lambda=1$ وبذلك یکون $\lambda=1$. $\lambda=1$. $\lambda=1$ وبذلك یکون $\lambda=1$.

. dim $V_2 = 1$ البعد اي $V_2 = 1$

 $2 = \lambda$ الهندسي = 2

 $\lambda = 1$ الهندسي = 1.

المبرهنة التالية تعطى العلاقة بين التكرارين الجبري والهندسي.

مبرهنــة (4.2.1) :

لأي تحويل خطى V - V:V على فضاء متجهات منتهى البعد V ولأي قيمة ذاتية λ لذلك التحويل يكون:

تکرار کہ الجبري کے تکرار کم الهندسي

ا لبرهان:

$$T(A_i) = \lambda A_i$$
, (i: 1, ..., k)

V الى قاعدة $\{A_1, ..., A_k, A_{k+1}, ..., A_n\}$ الى قاعدة $\{A_1, ..., A_k\}$ الى كمل المجموعة $\{A_1, ..., A_k\}$ الى تكون مصفوفة $\{A_1, ..., A_k\}$ المالك تكون مصفوفة $\{A_1, ..., A_k\}$ المالك تكون مصفوفة $\{A_1, ..., A_k\}$ المالك بالصيغة :

$$M = \begin{bmatrix} \lambda & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \lambda & 0 & & & & \\ 0 & \cdots & \lambda & 0 & \cdots & \cdots & 0 \\ a_{k+1}, a_{k+1}, a_{k+1}, a_{k+1}, & \cdots & a_{k+1}, \\ a_{n,1} & a_{n,2} & \cdots & a_{n,k} & \cdots & a_{n,n} \end{bmatrix}$$

يمكن تجزئة المصفوفة اعلاه الى قوالب وكتابتها بالصيغة

$$M = \begin{bmatrix} \lambda I_k & O \\ B & C \end{bmatrix}$$

حيث ان I_k تمثل المصفوفة المحايدة B , $k \times k$ مصفوفة ذات درجة $N \times k$ حيث ان $N \times k$ مصفوفة ذات درجة $N \times k$ ($N \times k$ درجة $N \times k$ ($N \times k$) حيث $N \times k$.

المعادلة المميزة للتحويل T تكون:

$$\Delta (t) = \det (M-tI)$$

$$= \det \begin{bmatrix} \lambda I_k & O \\ B & C \end{bmatrix} - t \begin{bmatrix} I_k & O \\ O & I_{n-k} \end{bmatrix}$$

$$= \det \begin{bmatrix} (\lambda - t) I_k & O \\ B & C - tI_{n-k} \end{bmatrix}$$

= det $(\lambda - t)I_k$. det $(C - tI_{n-k})$

= $(\lambda - t)^k \det (C - t I_{n-k})$

بهذا یکون $(1 - \lambda)$ عامل من عوامل متعددة الحدود الممیزة (1) Δ وعلیه فإن تکرار λ الجبري یکون اکبر او مساویاً الی λ .

(و.ه.، م)

غن الان في موقع يسمح لنا بالاجابة على السؤال الذي طرحناه في بداية هذا الفصل ولغرض ان نعيد طرح السؤال بلغة اسهل نقدم التعريف التالي:

تعريف:

اذا كان $V \to V$ تحويلاً خطياً على فضاء متجهات منتهي البعد واذا وجدت قاعدة الى V تستخدم في المجال والمجال المقابل خيث ان مصفوفة T بالنسبة لتلك القاعدة تكون مصفوفة قطرية فنقول بأن T قابل للاقطار (Diagonalizable).

السؤال الذي طرحناه في بداية هذا الفصل هو: تحت اي شروط يكون التحويل الحطى T قابلاً للاقطار.

الجواب يكمن في المبرهنة (4.2.3) دره ونغرض البرهان سوف نكون خاجة الى المبرهنة التالية:

مبرهنة (4.2.2) :

ليكن $T:V \to V$ تحويلاً خطياً . لتكن $\lambda_1,\dots,\lambda_m$ قيماً ذاتية مختلفة الى T ولتكن A_1,\dots,A_m متجهات ذاتية تابعة للقيم الذاتية $\lambda_1,\dots,\lambda_m$ على التوالي . عندئذ تكون المتجهات A_1,\dots,A_m مستقلة خطياً .

البرهان:

لنفرض ان المجموعة $\{A_1, ..., A_m\}$ مرتبطة خطياً. عندئذ يمكن كتابة احد المتجهات كتركيب خطي من المتجهات التي تسبقه وذلك حسب المبرهنة (1.7.4) بتطبيق هذه الفكرة عدة مرات يمكننا ان نفترض على ان المتجه $\{A_k, A_k, A_k, A_k, A_k, A_k\}$ كتبته كتركيب خطى من المتجهات المستقلة خطياً $\{A_k, ..., A_k, A_k\}$ اي ان .

$$A_k = x_1 A_1 + x_2 A_2 + ... + x_{k-1} A_{k-1} ... (1)$$

عندئذ يكون:

 $T(A_k) = x_1 T(A_1) + x_2 T(A_2) + ... + x_{k-1} T(A_{k-1})$ على ان A_i يكون متجهاً ذاتياً تابعاً للقيمة الذاتية A_i وذلك لكل A_i فإذن

 $\lambda_k A_k = x_1 \lambda_1 A_1 + \dots + x_{k-1} \lambda_{k-1} A_{k-1} \dots (2)$

بضرب المعادلة (1) في λ_k ينتج:

 $\lambda_k A_k = x_1 \lambda_k A_1 + ... + x_{k-1} \lambda_k A_{k-1}(3)$

بطرح المعادلة (2) من المعادلة (3) ينتج:

$$O = (x_1 \lambda_k - x_1 \lambda_1) A_1 + \ldots + (x_{k-1} \lambda_k - x_{k-1} \lambda_{k-1}) A_{k-1}$$

بما ان المتجهات , A1, ..., A1 مستقلة خطياً بالفرض . اذن

$$\mathbf{x}_{1}(\boldsymbol{\lambda}_{k}-\boldsymbol{\lambda}_{1})=\mathbf{x}_{2}(\boldsymbol{\lambda}_{k}-\boldsymbol{\lambda}_{2})=\ldots=\mathbf{x}_{k-1}(\boldsymbol{\lambda}_{k}-\boldsymbol{\lambda}_{k-1})=\mathbf{0}$$
 با ان $\mathbf{\lambda}$ نا $\mathbf{\lambda}$ نا ان الفرض فإن

$$\lambda_{k} - \lambda_{1} \neq 0, \ \lambda_{k} - \lambda_{2} \neq 0, ..., \lambda_{k} - \lambda_{k-1} \neq 0$$

$$x_{1} = 0, x_{2} = 0, ..., x_{k-1} = 0$$

$$\sum_{k=1}^{k} a_{k-1} \neq 0$$

$$\sum_{k=1}^{k} a_{k-1} \neq 0$$

بالتعويض في المعادلة (1) نستنتج ان $A_k = O$.

اكن A_k متجه ذاتي ولا يمكن ان يكون مساوياً للصفر .

هذا التناقص نتج من الفرضية القائلة بأن المجموعة $\left\{A_1,\;...,\;A_m
ight\}$ مرتبطة خطياً وعليه يُجب ان تكون مستقلة خطياً .

(و. هـ ، م)

مبرهنة (4.2.3)

ليكن T:V → V تحويلاً خطياً على فضاء المتجهات المنتهي البعد V وليكن dimV = n عندئذ يكون T قابلاً للاقطار اذا وفقط اذا تحقق الشرطان التاليان:__

ا سوده الحدود المميزة الى T تتحلل الى حاصل ضرب عوامل خطية ، اي ان : $\Delta_{t}(t) = (t - \lambda_{t})^{r_{t}}(t - \lambda_{t})^{r_{t}}$... $(t - \lambda_{t})^{r_{k}}$.

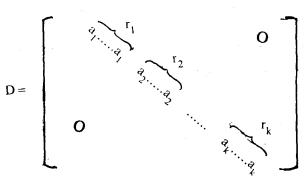
کل قیمهٔ ذاتیهٔ λ الی T یکون Δ

تكرار 🕻 الجبري = تكرار 🕻 الهندسي

(اي ان هنالك عدداً من المتجهات الذاتية المستقلة خطياً والتابعة للقيمة الذاتية مساوياً الى تكرار مراجبري).

البرهان :

لنفرض ان T یکون قابلاً للاقطار . هذا یعنی انه توجد قاعدة $A_1,...,A_n$ یکون مصفوفه T بالنسبه لتلك القاعدة تکون مصفوفه قطریه : V



 $r_1 + r_2 + \dots + r_k = n$ حيث ان

بذه الحالة تكون متعددة الحدود المميزة الى T.

$$\Delta$$
 (t) = $(a_1 - t)^{r_1} (a_2 - t)^{r_2} \dots (a_k - t)^{r_k}$

وهذا عبارة عن حاصل ضرب عوامل خطية. بذلك اثبتنا الشرط الأول. ولاثبات الشرط الثاني نلاحظ ان المصفوفة D تعطينا مايلي:

$$T(A_1) = a_1 A_1, ..., T(A_{\tau_1}) = a_1 A_{\tau_1}$$

$$T(A_{r_1+r_2}) = a_2 A_{r_1+r_2}, ..., T(A_{r_1+r_2}) = a_2 A_{r_1+r_2}.$$

$$T(A_{n-r_k+1}) = a_k A_{n-r_k+1}, ..., T(A_n) = a_k A_n$$

هذا يعني ان

بحسوعة المتجهات داتية تابعة المقيمة الماتية المتجهات داتية تابعة المقيمة الماتية $\Lambda_1, \dots, \Lambda_{l_1}$. $\lambda = a_1$

محموعة المتجهات ${\bf A}_{r_11},\,...,\,{\bf A}_{r_{n_1}},\,...,\,{\bf A}_{r_{n_n}}$ تكون متجهات ذاتية تابعة للقيمة الذاتية مرعة المتجهات . ${\bf A}_{r_{n_n}}$

وهكار حنى لصل أن:

مجموعة المتجهات ذاتية تابعة للقيمة الذاتية $\Lambda_{n,i_{k}+1},\,\,\dots,\,\,\Lambda_{n}$ تكون متجهات ذاتية تابعة للقيمة الذاتية مجموعة . $\lambda=a_{k}$

بدان مجموعة المتجهات A_1,\dots,A_n تكون مجموعة مستقلة خطياً. اذن كل من المجموعات الجزئية اعلاه تكون مستقلة خطياً وبهذا يكون لدينا تكرار a_i المجبري $a_j = r_j = 1$ المخدسي . وذاك لكن a_i $a_j = 1$ $a_j = 1$

وېما ان $a_1,\,...,\,a_k$ همو کال مايوجاد من قيم د تية .

اذن تحقق الشرط الثاني .

على العكس، لنفرض ان الشرطين الأول والثاني يتحققان. المطلوب ان نبرهن على ان T يكون قابلاً للاقطار.

الشرط الأول ينتج ان متعددة الحدود المميزة الى T تكون بالصيغة

 $\Delta(t) = (t - \lambda_1)^{r_1} (t - \lambda_2)^{r_2} \dots (t - \lambda_k)^{r_k}$ $. i \neq j \text{ such all } \lambda i \neq \lambda j \text{ if } \lambda j$

هذا يعني ان كل من λ تكون قيمة ذاتية الى T بتكرار جبري يساوي r_i وذلك لكل i=1,...,k .

الشرط الثاني ينتج ان: تكرار λ الهندسي $\mathfrak{r}_i = \mathfrak{r}_i$.

$$(i=1,\ldots,k)$$
 و $\dim V_{\pmb{\lambda}_i} = r_i$ هذا یعنی \perp

اي انه توجد r_1 من المتجهات الذاتية A_1,\dots,A_{r_1} المستقلة خطياً والتابعة للقيمة الذاتية $\overline{\Lambda}_1$.

وتوجد r_2 من المتجهات الذاتية $A_{r_1-1},\dots,A_{r_1-r_2}$ المستقلة خطياً والتابعة المقيمة $A_{n,r_k+1,\dots},$ وهكذا حتى نصل الى و جود r_k من المتجهات الذاتية λ_1 وهكذا حتى نصل الى و جود λ_2 من المتجهات الذاتية λ_1 المستقلة خطيا والتابعة للقيمة الذاتية λ_1 حيث اننا استخدمنا العلاقية λ_1 λ_2 . λ_3 λ_4 . λ_4 . λ_4 . λ_5 . λ_6 . λ_7 . λ_8 . λ_8

الان المجموعة:

 $\{A_1,...,A_{r_1},A_{r_1+1},...,A_{r_2},...,A_{n-r_k+1},....A_n\}$

تكون مستقلة خطياً وذلك حسب المبرهنة (4.2.2) لانها متجهات ذاتية تابعة القيم ذاتية عليه تكون قاعدة ذاتية مختلفة. بما ان عدد المتجهات في المجموعة اعلاه يشاوي \mathbf{r} ، فعليه تكون قاعدة للفضاء \mathbf{v} وذلك لان بعد \mathbf{v} يساوي \mathbf{r} بالفرض. الان نحسب مصفوفة \mathbf{r} بالنسبة لهذه القاعدة.

$$T(A_1) = \lambda_1 A_1$$

$$T(A_2) = \lambda_1 A_2$$

$$\begin{array}{l}
\vdots \\
T(A_{r_1}) = \lambda_1 A_{r_1} \\
T(A_{r_1+1}) = \lambda_2 A_{r_1+1} \\
\vdots \\
T(A_{r_1+r_2}) = \lambda_2 A_{r_1+r_2} \\
T(A_{n-r_k+1}) = \lambda_k A_{n-r_k+1} \\
\vdots \\
T(A_n) = \lambda_k A_n
\end{array}$$

عليه تكون مصفوفة T بالصيغة

 $D = \begin{pmatrix} \lambda_1 & & & & & \\ & \lambda_1 & & & & \\ & & \lambda_2 & & & \\ & & & \lambda_2 & & \\ & & & & \lambda_k & \\ & & & & \lambda_k & \\ & & & & & \lambda_k & \\ & & & & & \lambda_k & \\ & & &$

اي انها مصفوفة قطرية.

(و . هـ . م)

ملاحظة:

نستخلص من البرهان اعلاه النتيجة التالية:

نتيجة (4.2.4) :

التحويل الخطي $V \longrightarrow T:V$ يكون قابلاً للاقطار اذا وفقط اذا وجدت قاعدة الى V مكونة من متجهات ذاتية الى T .

سنذكر فيما يلي نتيجة لها فائدة كبيرة في مسألة معرفة قابلية الاقطار لأي تحويل خطي.

نتيجة (4.2.5):

اذا كان للتحويل الخطي $V \longrightarrow T:V$ قيم ذاتية مختلفة ومساوية بالعدد لبعد الفضاء V فإن T يكون قابلاً للاقطار .

البرهان:

القيم الذاتية المختلفة تعطى متجهات ذاتية مستقلة خطياً وذلك حسب المبرهنة (4.2.2)، عدد هذه المتجهات المستقلة خطياً يساوي بعد الفضاء V وبالتالي تكون المتجهات الذاتية الى V قاعدة الى V والان النتيجة (4.2.4) تعطى المطلوب.

مثال (3) :

قرر فيما اذا كان التحويل الخطي $R^3 \to R^3$ ، المعرف بالصيغة $T(x,y,z)=(-x,\,6x-13y-9z,\,-12x\,+\,30y\,+\,20z)$ قابلاً للاقطار .

الحل: مصفوفة T بالنسبة للقاعدة الطبيعية تكون كما يلي

$$\mathbf{M} = \begin{bmatrix} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{bmatrix}$$

المعادلة المميزة الى T تكون كما يلى

$$\Delta$$
 (t) = det (M - tI) = 0
 $\begin{vmatrix}
-1-t & 6 & -12 \\
0 & -13-t & 30 \\
0 & -9 & 20-t
\end{vmatrix}$ = 0

عند نشر المحدد اعلاه ينتج 0 = (t+1) (t-2) (t-2) (t+1) اذن تكون القيم الذاتية للتحويل اعلاه كما يلي

$$\lambda_1 = -1$$
, $\lambda_2 = 2$, $\lambda_3 = 5$

وهذه قيم ذاتية مختلفة وعددها يساوي 3 الذي هو بعد الفضاء R³. اذَّنَ حسب النتيجة (4.2.5) يكون T قابلاً للاقطار.

ان النتيجة (4.2.5) تعطي شرطاً كافياً لكي يكون التحويل الخطي قابلاً للاقطار لكن هذا الشرط (وجود قيم ذاتية مختلفة مساوية بالعدد لبعد الفضاء) ليس ضرورياً كما موضح في المثال التالى:

مثال (4):

قرر فيما اذا كان التحويل الحطي
$$R^3 - R^3 - R^3$$
 المعرف بالصيغة
$$T(x,y,z) = (x-2z,o,-2x+4z)$$

قابلاً للاقطار .

الحل: مصفوفة T بالنسبة للقاعدة الطبيعية تكون كما يلي:

$$M = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$$

المعادلة المميزة الى T تكون كما يلى:

$$-t^3 + 5t^2 = 0$$

$$t^2(-t + 5) = 0$$

 $\lambda_2 = 5, \lambda_1 = 0$: القيم الذاتية الى T القيم الذاتية الى

هنا يكون عدد القيم الذاتية المختلفة غير مساو الى بعد الفضاء. لذلك نلجأ الى المبرهنة (4.2.3) ومنها نجد ان T يكون قابلاً للاقطار اذا وفقط اذا كان:

 $\dim V_5 = 1, \dim V_o = 2$

هذا الغرض نحاول حساب الفضاءات الذاتية $V_s,\ V_o$ بطريقة مماثلة للمثال (1) من هذا البند نحد ان:

 $V_0 = \{(2z, y, z): y, z \in R\}$

وهذا يعني ان $V_{\rm o}$ له قاعدة مكونة من متجهين ذاتيين مثل (2,0,1) و (0,1,0) أي dim $V_{\rm o}=2$

 $\dim\ V_5=1$ بما ان لكل قيمة ذاتية يوجد متجه ذاتي على الأقل فإن T والان نستطيع القول بأن T قابل للاقطار .

مثال (5) :

 $T:P_2(R) \longrightarrow P_2(R)$. Literagy like the property of the prope

 $T(a + bx + cx^2) = 2a + (a + b + 2c) x + (-b + 4c) x^2$ ثم قرر فيما اذا كان T قابلاً للاقطار .

: الحل مصفوفة T بالنسبة للقاعدة الطبيعية $\{1,x,x^2\}$ تستخرج كما يلي $T(1)=2+x=2(1)+1(x)+0(x^2)$

$$T(x) = x - x^2 = o(1) + 1(x) + (-1)(x^2)$$

$$T(x^2) = 2x + 4x^2 = o(1) + 2(x) + (4)(x^2)$$

بهذا تكون مصفوفة T بالنسبة للقاعدة الطبيعية كما يلي.

$$M = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}$$

المعادلة المميزة الى T تكون:

$$\Delta(t) = -(t-2)^2(t-3) = 0$$

، $\lambda=2$ م ذاتية الى $\lambda=3$ بهذا تكون $\lambda=2$

$$\lambda=1$$
 الجبري = 2، تكرار $\lambda=1$ الجبري = 1. لايجاد الفضاءات الذاتية يجب علينا حل النظام الخطي ادناه .

(a, b, c)
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix} = (0,0,0)$$

وذلك بالنسبة للقيمة الذاتية $\lambda=2$ ، وحل النظام الخطى

(a, b, c)
$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix} = (0,0,0)$$

وذلك بالنسبة للقيمة الذاتية 3 = λ . النظام الاول يؤدي الى المعادلتين

$$a - b + 2c = 0$$

$$-b + 2c = 0$$

الحل بهذه الحالة يكون: a = 0 و a = 2c

(تذكر بأننا سنحصل على متجه احداثيات المتجه الذاتي)، بذلك يكون الفضاء الذاتي التابع للقيمة الذاتية $2 = \lambda$ ، كما يلي .

$$V_2 = \{a + bx + cx^2 : a = 0, b = 2c \}$$

= \{2cx + cx^2 : c \in R\}

من هنا نلاحظ ان المتجه $A=2x+x^2$ يكون قاعدة الى V_2 وعليه فإن التكرار الهندسي للقيمة الذاتية $\lambda=1$ ($\lambda=2$) النظام الخطي الثاني يؤدي الى المعادلات

$$-a = 0$$

$$a - 2b + 2c = 0$$

$$-b+c=o$$

$$a = o, b = c$$

والحل بهذه الحالة يكون:

أي ان.

$$V_1 = \{a + bx + cx^2 : a = 0, b = c\}$$

$$= \{ bx + bx^2; b \in R \}$$

- V_1 من هنا نلاحظ ان المتجه $B = x + x^2$ يكون قاعدة الى

بما ان تكرار $\mathbf{\lambda}=2$ الهندسي اصغر من تكرارها الجبري فنستخلص من ان \mathbf{T} غير قابل للاقطار .

مثال (6):

جد قاعدة الى \mathbb{R}^3 بحيث تكون مصفوفة التحويل الخطسي R^3 ، المعرف في المثال (3) من هذا البند مصفوفة قطرية . R^3

الحل: لقد كانت مصفوفة T بالنسبة للقاعدة الطبيعية كالاتى:

$$\mathbf{M} = \begin{bmatrix} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{bmatrix}$$

. $\lambda_3 = 5$ ، $\lambda_2 = 2$ ، $\lambda_1 = -1$ وكانت

على ضوء النتيجة (4.2.4) ، قاعدة \mathbb{R}^3 التي تجعل من مصفوفة \mathbb{T} بالنسبة لها قطرية يجب ان تكون مكونة من متجهات ذاتية الى \mathbb{T} .

عليه يجب علينا ايجاد متجهات ذاتية تابعة للقيم الذاتية 5, 2, 5-.

عندما 1- =
$$\lambda$$
 يجب حل النظام الخطي $\lambda = -1$ عندما 1- $\lambda = -12$ عندما $\lambda = -1$

لذي يؤدي الى المعادلات:

$$2x - 6y - 3z = 0$$

$$-12x + 30y + 21z = 0$$

وهد ننظام من المعادلات يكافىء النظام

$$2x - 6y - 3z = 0$$

$$-6y + 3z = 0$$

حل النظام اعلاه كالاتي: ــ

$$x = 3z, y = (1/2)z, z = z$$

. $\lambda = -1$ متجه ذاتي تابع للقيم الذاتية A = (6,1,2) جذا يمكننا اخذ المتجه

وبالطريقة نفسها يكون المتجه B=(0,-3,5) متجهاً ذاتياً تابعاً للقيمة . $\lambda=3$. والمتجه ($\lambda=3$ والمتحه ($\lambda=3$

الان بالنسبة للقاعدة

قطرية T قطرية $\{A_1=(6,1,2),\,A_2=(0,-3,5)\,,\,A_3=(0,-1,2)\}$ تكون مصفوفة T قطرية .

$$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

ملاحظــة:

ان خلاصة ماتوصلنا اليه من خلال المبرهنات والامثلة تكون كما يلي: اذا كان لدينا تحويلاً خطياً $V \to V$ واردنا معرفة ان كانت هنالك قاعدة الى $V \to V$ بحيث تكون مصفوفة T بالنسبة لها قطرية . يجب علينا اتباع الخطوات التالية:

اولاً: نحسب مصفوفة T بالنسبة لاي قاعدة والافضل حسابها بالنسبة للقاعدة الطبيعية وذلك للسهولة والسرعة. لتكن تلك المصفوفة M.

ثانياً : نحسب متعددة الحدود المميزة $\Delta_{,}(t)$ وذلك بفك المحددة $\Delta_{,}(t)$ det $\Delta_{,}(t)$ أنياً : نحسب متعددة الحدود المميزة $\Delta_{,}(t)$ وذلك بفك المحددة الحدود المحدود المح

الحالة (أ): عدد جذور المعادلة المميزة بحساب التكرار كذلك، لا يساوي بعد الفضاء V. (هذا يكافيء عدم تحلل المعادلة المميزة الى حاصل ضرب

عوامل خطية) عندئذ نقول بأن T غير قابل للاقطار اي انه لاتوجد قاعدة الى V تجعل من مصفوفة T قطرية .

الحالة (ب): عدد جذور المعادلة المميزة بحساب التكرار كذلك، يساوي بعد الفضاء V. (هذا يكافيء تحلل المعادلة المميزة الى حاصل ضرب عوامل خطية).

عندئذ يكون هنالك املاً بأن يكون T قابلاً للاقطار وهذا الامل يعتمد على المتجهات الذاتية وهي خطوة جديدة .

ثالثاً:

- (أ) ان كان المطلوب فقط معرفة قابلية T للاقطار فنحسب بعد الفضاء الذاتي (الذي يساوي التكرار الهندسي) للقيم الذاتية المكررة اكثر من مرة، اي نحسب التكرار الهندسي لكل قيمة ذاتية تكرارها الجبري اكبر من واحد وهنا يكون لدينا حالتان:
- (أ) $_1$: عند وجود قيمة ذاتية تكرارها الهندسي اصغر من تكرارها الجبرى فنقول بأن \mathbf{T} غير قابل للاقطار .
 - (أ) 2: بخلافه يكون T قابلاً للاقطار.
- (ب) في حالة كون T قابلاً للاقطار والمطلوب ايجاد قاعدة للفضاء V تجعل من مصفوفة T قطرية فيجب حساب كل المتجهات الذاتية وسوف تكون القاعدة المطلوبة.
- (+) تكون العناصر القطرية عبارة عن القيم الذاتية للتحويل T وترتيبها يرتبط بترتيب المتجهات الذاتية في القاعدة .

سنختم بندنا هذا بمجموعة من الامثلة المتنوعة.

مثال (7) :

 T^2 ان $T^2=T_0T=I$ ان $T^2=T_0V\to V$ اذا كان $T^2=T_0V\to V$ الخايد فبرهن على ان $T^2=T_0T=I$ هي القيم الذاتية الوحيدة $T^2=I$. $T^2=I$.

 $T(A) = \lambda A$ افرض بأن λ قيمة ذاتية و λ متجه ذاتي تابع لها. اذن من هذه المعادلة ينتج

$$A = I(A) = T^2(A) = T(\lambda A) = \lambda T(A) = \lambda^2 A$$

$$(1 - \lambda^2)A = O$$

وبما ان A متجه ذاتي فإن $A \neq 0$ وعليه يكون A = 0 - 1 ومن هذه المعادلة نستنتج على ان $\lambda = 1$ - 1, $\lambda = 1$ هي القم الذاتية الوحيدة .

مثال (8):

افرض بأن λ قيمة ذاتية للتحويل الخطي $T:V \to V$ وان A متجه ذاتي لها. برهن على ان χ^n تكون قيمة ذاتية للتحويل χ^n وان χ^n يكون متجهاً ذاتياً تابعاً لها وذلك لاي عدد صحيح موجب χ^n .

$$T(A) = \lambda A$$
 الحل: عندنا

بأخذ T لطرفي المعادلة اعلاه وملاحظة ان T تحويل خطي ، نحصل على $T^2(A) = T(T(A)) = T(\lambda A) = \lambda T(A)$

$$T^2(A) = \lambda (\lambda A) = \lambda^2 A$$
 وبالتعويض نحصل على

هذا يعني ان المتجه A يكون متجهاً ذاتياً للتحويل الخطي T^2 تابعاً للقيمة الذاتية χ^2 . وبالاستقراء الرياضي نحصل على النتيجة المطلوبة .

مثال (9):

جد تحويلاً خطياً $T:R^2 \to R^2$ يمتلك قيمة ذاتية R=1 ومتجهاً ذاتياً R=1 وقيمة ذاتية اخرى R=1 ومتجهاً ذاتياً R=1

الحل: من تعريف القيم والمتجهات الذاتية ينتج

$$T(A) = T(1,-1) = 1(1,-1) = (1,-1)$$

$$T(B) = T(2,3) = 0(2,3) = (0,0)$$

المطلوب ايجاد (T(x,y). لهذا الغرض نكتب

$$(x,y) = a(1,-1) + b(2,3)$$

$$(x,y) = (a + 2b, -a + 3b)$$

هذا يؤدي إلى المعادلتين:

$$a + 2b = x$$

$$-a + 3b = y$$

$$a = (1/5)(3x-2y), b = (1/5)(x+y)$$
 : $2 = (1/5)(3x-2y), b = (1/5)(x+y)$

$$T(x, y) = aT(1, -1) + bT(2,3)$$

$$= (1/5)(3x - 2y)(1, -1) + (1/5)(x + y)(0,0)$$

$$= (1/5)(3x - 2y, 2y - 3x)$$

مثال (10):

اذن :

التحويل الخطى المعرف بالصيغة : $T:P_1'(C) \rightarrow P_1(C)$

$$T(a + bx) = 2a + (5a - b)x$$

جد قاعدة للفضاء (P1(C بالنسبة اليها تكون مصفوفة T قطرية .

الحل: نتبع الارشادات التي وردت سابقاً ونجد مصفوفة T بالنسبة للقاعدة الطبيعية $\{1,x\}$. هذه المصفوفة تحسب كما في الامثلة السابقة .

$$T(1) = 2 + 5x$$

$$T(x) = -x$$

عليه تكون مصفوفة T بالنسبة للقاعدة الطبيعية كما يلي

$$\mathbf{M} = \begin{bmatrix} 2 & 5 \\ 0 & -1 \end{bmatrix}$$

القيم الذاتية ستكون $\lambda = 2$, $\lambda = 2$. القاعدة المطلوبة ستكون مؤلفة من المتجهات الذاتية $\lambda = 2$ ومتجه $\lambda = 2$ تابع المتجهات الذاتية $\lambda = 3$. بالنسبة للقاعدة $\lambda = 3 + 5$ تكون مصفوفة $\lambda = 3 + 5$ تكون $\lambda = 3 + 5$ تكون $\lambda = 3 + 5$ تكون مصفوفة $\lambda = 3 + 5$ الما بالنسبة للقاعدة $\lambda = 3 + 5$ تكون مصفوفة $\lambda = 3 + 5$ الما بالنسبة للقاعدة $\lambda = 3 + 5$ الما بالنسبة للقاعدة $\lambda = 3 + 5$ تكون مصفوفة $\lambda = 3 + 5$ الما بالنسبة للقاعدة $\lambda = 3 + 5$ الما بالنسبة الما بالما بال

تماريان (4.2)

1 __ اوجد القيم الذاتية وقواعد للفضاءات الذاتية لكل من التحويلات الخطية التالية:

$$T(x,y) = (y, 2x) \cdot T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \cdot \mathbb{I}$$

.
$$T(x,y,z) = (3x-z,y-x+2z, 4z), T:R^3 \rightarrow R^3$$

$$T(x, y, z, w) = (x + y, y, 2z, y + 2z + 2w) (T:R4 \rightarrow R4)$$

.
$$T(P(x)) = x. d/dx (P(x))$$
, $T: P_2(R) \rightarrow P_2(R)$

.
$$T(P(x)) = d/dx (x p(x))$$
, $T: P_2(C) \rightarrow P_2(C)$

$$(C_1)_2 + P_2(C_2)$$
 فضاءاً على الحقل $(C_1)_2 + P_2(C_2)$).

3 ـ قرر فيما اذا كانت التحويلات التالية قابلة للاقطار.

.
$$T(x, y, z) = (2x + y, y - z, 2y + 4z)$$
, $T:R^3 \rightarrow R^3$ (1)

.
$$T(x, y, z) = (x - 2z, 0, -2x + 4z), T:R^3 \rightarrow R^3$$

.
$$T(x, y, z) = (o, x, y) \cdot T:R^3 \longrightarrow R^3$$

.
$$T(x, y, z) = (-x, -z, y) : T:R^3 \rightarrow R^3$$

.
$$T(u, v, w) = (-u, -w, v)$$
, $T:C^3 \rightarrow C^3$

$$T: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$$

T(x, y, z, w) = (x, 2x + 5y + 6z + 7w, 3x + 8z + 9w, 4x + 10w)

- 4 ــ جد قاعدة لمجال كل تحويل حطى قابل للاقطار في تمرين (3) تجعل من مصفوفة ذلك التحويل بالنسبة لها قطرية.
- 5 _ اذا كان $V \to T^2 = T$ تحويلاً خطياً ، بحيث $T^2 = T$. بين ان T يكون قابلاً للاقطار .
- ن الله على الكن $V \to V$ تحويلاً خطياً غير معتلاً وقابلاً للاقطار فبرهن على ال $T^{-1}:V \to V$ يكون ايضاً قابلاً للاقطار .

(4.3) المصفوفات المتشابهة (4.3)

لقد ناقشنا في البند السابق مسألة وجود قاعدة للفضاء V بالنسبة اليها تكون مصفوفة التحويل الخطي $V \to V$ مصفوفة قطرية. فإذا كانت مصفوفة التحويل T بالنسبة لقاعدة معينة هي M فإن المسألة اعلاه تكافىء السؤال عن وجود تغيير للقاعدة بحيث تكون المصفوفة الجديدة قطرية. من المبرهنة (2.5.2)، المصفوفة الجديدة للتحويل T ستكون PMP^{-1} بحيث ان PMP^{-1} هي مصفوفة قابلة للقلب. هذا يؤدى بنا إلى الصياغة التالية بالمصفوفات للمسألة اعلاه.

مسألة: اذا اعطينا مصفوفة مربعة M، فهل توجد مصفوفة قابلة للقلب P بحيث تكون PMP-1 قطرية؟.

هذا يوحي بالتعريف التالي:

تعریف:

M مصفوفتين مربعتين من الدرجة نفسها فنقول بأن N اذا كانت N مصفوفة P قابلة للقلب محيث ان N اذا وفقط اذا وجدت مصفوفة N قابلة للقلب محيث ان N انه لمن السهل البرهنة على المبرهنة التالية .

مبرهنة (4.3.1):

علاقة تشابه المصفوفات تكون علاقة تكافؤ اي ان M تشابه M N مصفوفة M واذا كانت M تشابه M فإن M تشابه M وإذا M تشابه M فإن M تشابه M فإن M تشابه M وأن M تشابه M وأن M تشابه M وأن M تشابه M أن M أ

ويمكن طرح المسألة اعلاه بلغة جديدة .

مسألة: اذا اعطينا مصفوفة مربعة M فمتى تكون مشابهة الى مصفوفة قطرية.

سنكون بحاجة لهذه المسألة في الفصل السادس، ولغرض حل المسألة اعلاه سنقدم التعاريف التالية.

تعريف:

اذا كانت M مصفوفة $n \times n$ عناصرها مأخوذة من حقل F فإن العدد $X=(x_1,\frac{1}{n},\frac{1}{n})$ يسمى قيمة ذاتية للمصفوفة M اذا وفقط اذا وجد متجهاً $X=(x_1,\frac{1}{n},\frac{1}{n})$ يسمى ويحقق XM=rX .

بهذه الحالة نقول بأن المتجه X متجه ذاتي تابع للقيمة الذاتية r.

لاحظنا في البند السابق ان القيم الذاتية والمتجهات الذاتية للتحويلات الداتية كانت تستخرج من مصفوفة التحويل الخطي وعليه يمكن ان نعرف ونستخرج مايلي:

- . M-tI = 0 تكون M تكون M-tI .
 - 2 ــ القيم الذاتية للمصفوفة المربعة تكون جذور المعادلة المميزة .
 - 3 _ المصفوفات المتشابهة لها متعددة الحدود المميزة نفسها.

الاجابة على المسألة المطروحة في بداية بندنا هذا تكمن في المبرهنة التالية:

مبرهنــة (4.3.2):

المصفوفة المربعة M ذات الدرجة $n \times n$ تكون مشابهة لمصفوفة قطرية اذا وفقط اذا امتلكت n من المتجهات الذاتية المستقلة خطياً .

$$D = \left[\begin{array}{c} \% & O \\ O & \% \end{array} \right]$$
 افرض ان M تشابه المصفوفة القطرية

بهذه الحالة وحسب تعريف التشابه فإنه توجد مصفوفة قابلة للقلب P

بحيث

البرهان:

$$PMP^{-1} = D$$

.PM = DP

وهذا يعني ان

 P_k الآن افرض ان P_k هو الصف P_k في المصفوفة P_k ، بذلك يمكن رؤية المصفوفة P_k كالاتى:

$$\mathbf{P} = \left\{ \begin{array}{c} \mathbf{P}_1 \\ \vdots \\ \mathbf{P}_n \end{array} \right\}$$

عليه يكون:

$$PM = \begin{pmatrix} P_1 M \\ P_n M \end{pmatrix} , DP = \begin{pmatrix} d_1 P_1 \\ d_n P_n \end{pmatrix}$$

وبما ان PM = DP فنستنتج من ان:

$$\begin{split} P_1 M = \, d_1 P_1, \, P_2 M = \, d_2 P_2, \, ..., \, P_n M = \, d_n P_n \\ \text{aichigate} \quad M \quad \text{through} \quad P_1, \, ..., \, P_n \quad \text{otherwise} \quad M \quad \text{through} \quad d_1, \, ..., \, d_n \end{split}$$

بما ان P مصفوفة قابلة للقلب فإن صفوفها تكون مستقلة خطياً اي ان P_1, \ldots, P_n المتجهات الذاتية P_1, \ldots, P_n تكون مستقلة خطياً .

على العكس، لو افترضنا وجود n من المتجهات الذاتية المستقلة خطياً X_1, \dots, X_n على التوالي، للمصفوفة M ولتكن: X_1, \dots, X_n تابعة للقيم الذاتية: X_1, \dots, X_n على التوالي، فنضع

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_n \end{bmatrix} , D = \begin{bmatrix} \ddots & O \\ O & \ddots & \ddots \end{bmatrix}$$

بذلك تتكون لدينا مصفوفة مربعة X ذات درجة $n \times n$ وتكون هذه المصفوفة قابلة للقلب وذلك للاستقلال الخطى لصفوفها.

الآن يمكن التحقيق بسهولة على أن XM = DX اي ان

 $XMX^{-1} = D$

اذن M تكون مشابهة لمصفوفة قطرية D.

(و، هـ ، م)

مثال (1):

جد ان امكن مصفوفات قطرية مشابهة لكل من المصفوفات التالية:

$$\mathbf{M}_{1} = \left[\begin{array}{ccc} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{array} \right], \quad \mathbf{M}_{2} = \left[\begin{array}{ccc} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{array} \right]$$

$$M_{3} = \begin{bmatrix} 17 & -10 & -5 \\ 45 & -28 & -15 \\ -30 & 20 & 12 \end{bmatrix} , M_{4} = \begin{bmatrix} 1 & -5 \\ 1 & -1 \end{bmatrix}$$

: (1) المعادلة المميزة للمصفوفة \mathbf{M}_1 تكون

$$\begin{bmatrix} -1 - t & 6 & -12 \\ 0 & -13 - t & 30 \\ 0 & -9 & 20 - t \end{bmatrix} = 0$$

. (t+1)(t-2)(t-5) = 0 بفتح انحدد اعلاه تنتج المعادلة

وبذلك تكون القم الذاتية للمصفوفة M كالاتي:

$$\lambda_1 = -1$$
, $\lambda_2 = 2$, $\lambda_3 = 5$

بما ان هذه القيم الذاتية مختلفة فنستنتج على ان المتجهات الذاتية التابعة لها تكون مستقلة خطياً وبذلك تكون المصفوفة M_1 مشابهة الى المصفوفة القطرية:

$$D = \begin{bmatrix} -1 & O \\ 0 & 5 \end{bmatrix}$$

القارىء نجب ان نحقق على ان المتجهات:

 $A_1 = (1, -1, 2), A_2 = (0, 3, -5), A_3 = (0, 0, 2)$

تكون متجهات ذاتية تابعة للقيم الذاتية $\lambda_1, \lambda_2, \lambda_3$ على التوالي وعليه اذا وضعنا:

$$P = \left[\begin{array}{cccc} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 0 & 0 & 2 \end{array} \right]$$

 $PM_1P^{-1} = D$: فإنه بالأمكان التحقق من ان

 M_2 نناقش الآن المعادلة المميزة للمصفوفة M_2

$$\begin{bmatrix} 2-t & -1 & 0 \\ 1 & -t & 0 \\ 0 & 0 & 3-t \end{bmatrix} = O$$

$$(3-t)(t-1)^2=0$$

اي ان:

 $\lambda_1 = 3, \lambda_2 = 1$ القيم الذاتية للمصفوفة M_2 تكون :

لغرض حساب المتجهات الذاتية التابعة للقيمة الذاتية 1 علينا ايجاد حل للمعادلة:

$$(x, y, z) \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = (0,0,0)$$

x + y = 0

وهذه تؤدي الى:

2z = 0

x = -y, y = y, z = o

والحل يكون:

وبهذا نحصل على متجه ذاتي مثل (1,1,0) وجميع المتجهات الذاتية الاخرى تكون بالصيغة (-1,1,0) حيث -1 عدد حقيقي. عليه سوف يوجد متجهان ذاتيان مستقلان خطياً احدهما يتبع القيمة الذاتية -1 وبالتالي وحسب المبرهنة -1 فإن المصفوفة -1 لاتكون مشابهة لمصفوفة قطرية.

: كون M_3 المعادلة المميزة للمصفوفة M_3 تكون

 $(t+3)(t-2)^2 = 0$

 $\lambda_1 = -3, \, \lambda_2 = 2$ عليه يكون للمصفوفة M_3 قيمتان ذاتيتان هما

لغرض حساب المتجهات الذاتية التابعة للقيمة الذاتية 2 ، علينا ايجاد حل للمعادلة:

$$(x, y, z) \begin{bmatrix} 15 & -10 & -5 \\ 45 & -30 & -15 \\ -30 & 20 & 10 \end{bmatrix} = (0,0,0)$$

x + 3y - 2z = 0 : وهذه تؤدي الى

اما بقية المعادلات فتكون معتمدة على المعادلة اعلاه.

عليه يكون الحل كالاتي:

x = 2z - 3y, y = y, z = z

بذلك يمكن الحصول على متجهين ذاتيين مستقلين خطياً مثل:

$$A_1 = (-3, 1, 0), A_2 = (2, 0, 1)$$

و اطریقة نفسها نحصل علی المتجه (-3, 2, 1) كمتجه ذاتی تابع للقیمة الذاتیة 3- $\lambda_1 = -3$.

اذا وضعنا:

$$P = \begin{bmatrix} -3 & 1 & 0 \\ 2 & 0 & 1 \\ -3 & 2 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 \\ 2 & 0 \\ 0 & -3 \end{bmatrix}$$

فإنه بالامكان التحقق من ان:

 $PM_{3}P^{-1}=D$

عليه فإن M3 تشابه مصفوفة قطرية.

. $t^2 + 4 = 0$: كون M₄ تكون المصفوفة الميزة للمصفوفة الميزة الميزة المصفوفة الميزة المي

بما انه لايوجد حل للمعادلة اعلاه على حقل الاعداد الحقيقية فإنه لاتوجد M_4 وذلك على حقل الاعداد الحقيقية ، اي انه لايمكن للمصفوفة M_4 ان تكون مشابهة لمصفوفة قطرية ذات عناصر قطرية حقيقية .

، $\lambda_1=2i$ اذا اردنا استخدام اعداد عقدية فإنه توجد قيمتان ذاتيتان هما اذا اردنا استخدام اعداد عقدية فإنه توجد وبالتالي يتبعهما متجهان ذاتيان مستقلان خطياً وعليه تكون المصفوفة $\lambda_2=-2i$

القارىء .
$$D=egin{pmatrix} -2i & O \\ O & 2i \end{pmatrix}$$
 . In the decision of the dec

مثال (2):

برهن على ان المصفوفتين M و N متشابهتان ، حيث

$$M = \begin{bmatrix} 12 & & -7 \\ 14 & & -9 \end{bmatrix}, N = \begin{bmatrix} -2 & & O \\ -14 & & 5 \end{bmatrix}$$

 P^{-1} ، وهذا حله صعب بالطريقة $P^{-1}=N$ ، وهذا حله صعب بالطريقة المباشرة . لذلك نحاول ان نستخدم القم الذاتية والمتجهات الذاتية .

$$(t-5)(t+2) = 0$$
 : تكون M تكون M تكون M

M وعليه فإنه يوجد متجهان ذاتيان مستقلان خطياً للمصفوفة M. اذن تكون $P_1MP_1^{-1}=D_1$ تقق P_1 تقود P_1 اي انه توجد مصفوفة P_1 تقود P_1 المعادلة الميزة الى P_1 تكون P_2 P_3 P_4 (5 -t) = 0 بالطريقة نفسها فإنه توجد مصفوفة P_3 تقق P_4 P_5 P_5 حيث ان P_5 مصفوفة قطرية .

الآن نلاحظ ان العناصر القطرية لكل من المصفوفتين D_2 ، D_1 عبارة عن القم الذاتية للمصفوفتين D_1 على التوالى .

عليه يكون:

$$D_1 = D_2 = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}$$

وذلك لان القيم الذاتية للمصفوفة M تكون القيم الذاتية نفسها للمصفوفة

.N

$$P_1MP_1^{-1} = P_2NP_2^{-1}$$

وعلیه یکون (
$$P_2^{-1}P_1$$
) M ($P_1^{-1}P_2$) = N وعلیه یکون $P = P_1^{-1}P_2$ وعلیه تکون $P = P_1^{-1}P_2$ وبوضع وبوضع

ملاحظة:

اذا طلب منا ایجاد P فیتوجب علینا ایجاد کل من P_2 , P_1 وذلك حسب الطریقة في المثال (1) .

تماريسن (4.3)

1 _ جد مصفوفات قطرية مشابهة للمصفوفات التالية:

$$\begin{bmatrix} -1 & 4 & -2 \\ 0 & 3 & -2 \\ 0 & 4 & -3 \end{bmatrix} (z) \begin{bmatrix} 1 & -5 & 9 \\ 2 & 0 & -1 \\ 1 & 2 & -4 \end{bmatrix} (-) \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$
 (1)

2 _ اوجد لكل من المصفوفات التالية كل القيم الذاتية والمتجهات الذاتية .

$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 5 & 4 \\ 4 & 2 \end{bmatrix} \quad C = \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix}$$

 $P_3 C P_3^{-1}$ مصفوفات قابلة للقلب P_1, P_2, P_3 بحیث تکون کل من $P_1 C P_3^{-1}$ و $P_2 B P_2^{-1}$ مصفوفة قطریة . حیث ان $P_2 B P_2^{-1}$ هي مصفوفات تمرين 2 .

4 ــ كرر المطلوب في التمرينين 3,2 على المصفوفات

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix} , \mathbf{B} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{bmatrix}$$

$$C = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

وذلك على حقل الاعداد العقدية.

6 _ قرر فيما اذا كانت كل من المصفوفات التالية مشابهة ألى مصفوفة قطرية وذلك على حقل الاعداد الحقيقية.

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -1 \\ 0 & 0 & 7 \end{bmatrix} , \begin{bmatrix} 1 & 2 \\ -2 & -2 \end{bmatrix} , \begin{bmatrix} 3 & 2 \\ -2 & 3 \end{bmatrix}$$

$$\left(\begin{array}{cc} 1 & 2 \\ -2 & -2 \end{array}\right) \qquad ,$$

$$\begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & 2 \\ -3 & -6 & -6 \end{bmatrix} \qquad , \qquad \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & -1 \end{bmatrix}$$

مدداً عقدياً فبرهن على ان المصفوفة
$$a \neq 0$$
 اذا كان $a \neq 0$ اذا كان $a \neq 0$ اذا كان $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$

A, اذا كآنت A مصفّوفة مربعة و A^{T} مدورة المصفوفة A فبرهن على ان Aطما متعددة الحدود المميزة نفسها. A^T

 $oldsymbol{\mathsf{P}} = oldsymbol{\mathsf{P}}$ برهن على ان للمصفوفتين $oldsymbol{\mathsf{A}}, oldsymbol{\mathsf{A}}^\mathsf{T}$ قيمتان ذاتيتان متساويتان. اورد مثالاً تبين منه ان للمصفوفتين A, A^T متجهان ذاتيان مختلفان .

$$A = \begin{bmatrix} -25 & -36 \\ 18 & 26 \end{bmatrix}$$
 اذا کانت $A = \begin{bmatrix} -25 & -36 \\ 18 & 26 \end{bmatrix}$

 A^{12} فجد مصفوفة H تحقق $^{-}$ HAH تكون قطرية ، ثم جد

11 _ برهن على ان المصفوفتين A, B متشابهتان، حيث: أ

$$A = \begin{pmatrix} -2 & 0 \\ -14 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 12 & -7 \\ 14 & -9 \end{pmatrix}$$

12 _ اذا كانت A مصفوفة مربعة $n \times n$ على حقل الاعداد الحقيقية واذا كانت λ قيمة ذاتية الى λ فبرهن على ان λ تكون قيمة ذاتية الى λ فبرهن على ان λ استنتج من ذلك ان λ تكون قيمة ذاتية الى λ ، حيث λ متعددة حدود معاملاتها اعداد حقيقية .

$$A = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix}$$
 thomself $A = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix}$

وحقق مباشرة ان القيم الذاتية للمصفوفة A² تكون

مربعات القم الذاتية للمصفوفة A.

$$M = \begin{bmatrix} 1+i & 0 & 0 \\ 2-2i & 1-i & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Identity of the second s

على حقل الاعداد العقدية C ثم قرر فيما اذا كانت مشابهة لمصفوفة قطرية.

الميزة $n \times n$ مصفوفة مربعة $n \times n$ قابلة للقلب ومتعددة حدودها المميزة $A-tI = (-1)^n t^n + b_{n-1} t^{n-1} + \dots + b_1 t + b_0$ فبرهن على ان متعددة الحدود المميزة للمصغوفة A^{-1} تكون

 $(-1)^n [t^n + (b_1 / |A|) t^{n-1} + + (b_{n-1} / |A|) t + (-1)^n / |A|]$

(4.4) مبرهنة كيلي ــ هاملتون وتطبيقاتها

(Cayley - Hamilton Theorem)

نخصص هذا البند لبرهنة نتيجة هامة في موضوع الجبر الخطي لها تطبيقات كثيرة في الاحصاء وبقية فروع الرياضيات وهي مبرهنة كيلي ــ هاملتون • هذه المبرهنة تنص على ان اي مصفوفة مربعة تحقق معادلتها المميزة ولتوضيح ذلك نفرض ان المعادلة المميزة للمصفوفة المربعة M ذات الدرجة n × n تكون:__

$$t^n + a_1 t^{n-1} + a_2 t^{n-2} + \dots + a_{n-1} t + a_n = 0$$
 الناتجة من فتح المحدد في المعادلة 0 $|M-t| = 0$

ان مبرهنة كيلي هاملتون تنص على ان

$$M^n + a_1 M^{n-1} + + a_{n-1} M + a_n I = O(*)$$
 . $n \times n$ في الطرف الأيمن للمعادلة (*) يمثل المصفوفة الصفرية O في الطرف الأيمن المعادلة (*)

مبرهنة (4.4.1) (كيلي ــ هاملتون)

اي مصفوفة مربعة تحقق معادلتها المميزة.

البرهان:

لتكن M مصفوفة مربعة $n \times n$ عناصرها من الحقل F ومعادلتها المميزة $t^n + a_1 t^{n-1} + \ldots + a_{n-1} t + a_n = o$ لتكن : $N = Adj \ (M-tI)$

ان العنصر N_{ij} عبارة عن المحدد الناتج من حذف الصف N_{ij} والعمود M - M - M وهذا المحدد مضروب في M - M - M وهذا المحدد مضروب في M - M - M - M

بذلك تكون عناصر N عبارة عن متعددات حدود في t ذات درجة N تتعدى n-1 . بذلك يمكننا ان نكتب N بالصيغة

 $N=t^{n-1}\,N_{n-1}\,+\,t^{n-2}\,N_{n-2}\,+\,\,....\,+\,t\,N_1\,+\,N_o$ حیث ان : $n\times n$ مصفوفات مربعة $N_o,\,N_1,\,...,\,N_{n-1}$: ناصرها ثابتة من الحقل . F

ان المصفوفة N تحقق مايلي:

(M-tI) N = det (M-tI). I

والمعادلة اعلاه يمكن التحقق منها من تعريف N ومن خصائص انحددات في معظم كتب التفاضل والتكامل.

بهذا يكون لدينا المعادلة التالية:

 $(M - tI) (t^{n-1}N_{n-1} + t^{n-2}N_{n-2} + ... + tN_1 + N_0) = (t^n + a_1t^{n-1} + ... + a_{n-1}t + a_n)I$

 $0 \leq k \leq n$ ي طرفي المعادلة اعلاه وذلك لكل t^k

نحصل على

 $-N_{n-1} = I$

 $-N_{n-2} + MN_{n-1} = a_1I$

 $-N_{n-3} + MN_{n-2} = a_2I$ \vdots $MN_0 = a_nI$

بضرب هذه المعادلات في $I, M,, M^{n-1}, M^n$ على التوالي وجمعها ينتج مايلي : $M^n + a_1 M^{n-1} + + a_{n-1} M + a_n I = O$ (و . هـ . م)

نورد الان تطبيقين للمبرهنة اعلاه .

العطبيق (1): حساب معكوس مصفوفة مربعة.

افرض ان M مصفوفة مربعة قابلة للقلب. بهذه الحالة تكون المعادلة المميزة الى M بالصيغة

$$t^{n} + a_{1}t^{n-1} + \dots + a_{n-1}t + a_{n} = 0$$

بحيث ان $a_n \neq 0$. فلو كان $a_n = 0$ لكان t = 0 احد جذور المعادلة المميزة وبالتالي يكون قيمة ذاتية للمصفوفة M. لكن المعادلة المميزة جاءت من المعادلة

$$det(M-tI)=0$$

لقلب آذن M قابلة للقلب آذن det M = 0 وعليه لاتكون M قابلة للقلب آذن $a_n \neq 0$

$$M^{n} + a_{1}M^{n-1} + + a_{n-1}M + a_{n}I = O$$

بما ان a_n ≠ o اذن

$$I = (-1/a_n)(M^n + a_1M^{n-1} + + a_{n-1}M)$$

بضرب طرفي المعادلة اعلاه في M-1 نحصل على:

$$M^{-1} = (-1/a_n)(M^{n-1} + a_1M^{n-2} + ... + a_{n-1}I)$$

مثال (1) :

بتطبیق مبرهنة کیلي هاملتون ، جد \mathbf{M}^{-1} اذا علمت بأن :

$$M = \begin{bmatrix} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{bmatrix}$$

الحل: المعادلة المميزة الى M تكون كما يلى:

$$t^3 - 6t^2 + 3t + 10 = 0$$

مبرهنة كيلي ــ هاملتون تنص على ان M تحقق المعادلة اعلاه ، أي

$$M^3 - 6M^2 + 3M + 10I = O$$

$$M^{-1} = (-1/10)(M^2 - 6M + 3I)$$
 : اذن

$$\mathbf{M}^2 = \begin{bmatrix} 1 & 24 & -48 \\ 0 & -101 & 210 \\ 0 & -63 & 130 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} -1 & 6/5 & -12/5 \\ 0 & 2 & -3 \\ 0 & 9/10 & -13/10 \end{bmatrix}$$

التطبيق (2):

التعبير عن $(k \ge n)M^k$ بدلالة $(i \le n)M^k$) بدلالة $(k \ge n)M^k$ ذات درجة غير يمكن التعبير عن $(k \ge n)M^k$ كمتعددة حدود في $(k \ge n)M^k$ متعدية الى n-1 وذلك على النحو التالي :

M تحقق معادلتها المميزة ، اي ان

$$M^{n} + a_{1}M^{n-1} + ... + a_{n-1}M + a_{n}I = O$$

عندما $\mathbf{M}^{\mathbf{k}-\mathbf{n}}$ ، نضرب المعادلة اعلاه في $\mathbf{M}^{\mathbf{k}-\mathbf{n}}$ فنخصل على :

$$M^k + a_1 M^{k-1} + \dots + a_{n-1} M^{k-n+1} + a_n M^{k-n} = O$$

هذا يعني انه بالامكان كتابة M^k كمتعددة حدود بدرجة اقل او تساوي k-1 . وبتطبيق ذلك عدة مرات نتوصل الى ان M^k يمكن كتابته كمتعددة حدود بدرجة لاتتعتدى n-1 وكما موضح في المثال التالي .

مثال (2):

$$\mathbf{M} = \begin{bmatrix} -4 & 6 \\ -3 & 5 \end{bmatrix}$$
 id along the state of \mathbf{M}^7 and \mathbf{M}^7

الحل: المعادلة المميزة الى M تكون:

$$t^2 - t - 2 = 0$$

بتطبيق مبرهنة كيلي ــ هاملتون نحصل على

$$M^2 - M - 2I = O$$

اذن $M^2=M^2=M^3=M^2+2M$ وعليه يكون $M^2=M^3=M^3=M^3=3M+2I$ وهكذا نحصل على على $M^3=M^3=3M+2I$ اي $M^3=M^3=3M+2I$ وهكذا نحصل على

 $M^7 = 21M^2 + 22M = 43M + 42I$

$$= 43 \begin{bmatrix} -4 & 6 \\ & & 5 \end{bmatrix} + 42 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} -130 & 258 \\ -129 & 257 \end{bmatrix}$$

 M^5 في $M^2 = M + 2I$ في الجراء عملية الحساب كالآتي: بضرب المعادلة M^5 في M^5 في المحصل:

$$M^{7} = M^{6} + 2M^{5}$$

$$= (M^{5} + 2M^{4}) + 2M^{5} = 3M^{5} + 2M^{4}$$

$$= 3(M^{4} + 2M^{3}) + 2M^{4} = 5M^{4} + 6M^{3}$$

$$= 5(M^{3} + 2M^{2}) + 6M^{3} = 11M^{3} + 10M^{2}$$

$$= 11(M^{2} + 2M) + 10M^{2} = 21M^{2} + 22M$$

$$= 21(M + 2I) + 22M = 43M + 42I$$

ان التطبيقين اعلاه يكونان مفيدان في حالة كون درجة M كبيرة وهذا يقلل من عدد الخطوات ومن زمن الحاسبة الالكترونية ان استخدمت.

تماريسن (4.4)

$$A = \begin{bmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix}$$
 جد المعادلة المميزة للمصفوفة للمصفوفة كيلي عاملتون أم استخدم مبرهنة كيلي عاملتون

لبرهنة ان
$$A^9 = 3^8$$
. A لبرهنة ان $A^9 = 3^8$. A فجد المعادلة المميزة الى $A^5 = -1$ اذا كانت $A^{-1} = -1$ هاملتون . $A^{-1} = -1$ اذا كانت $A^{-1} = -1$ فجد المعادلة المميزة الى $A^{-1} = -1$ اذا كانت $A^{-1} = -1$ اخا كانت $A^{-1} = -1$ احسب $A^{-1} = -1$ الم

4 $_{-}$ جد $^{-1}$ بأستخدام مبرهنة كيلي هاملتون .

$$A = \begin{bmatrix} \sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & \sqrt{\sqrt{2}} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -1 \\ 0 & 0 & 7 \end{bmatrix}$$

$$A = \left[\begin{array}{ccc} 1 & & 2i \\ & & \\ 0 & & 2 \end{array} \right]$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

الفصل الخامس

الفضاءات الاقليدية

Euclidean Vector Spaces

(5.0) مقدمة

لقد تعرف الطالب في مواضيع التفاضل والتكامل والفيزياء وغيرها على R^2 الضرب الداخلي او الضرب النقطي (dot product) لمتجهين R^3 في المستوى وفي الفراغ R^3 . ان لهذا الضرب اهمية كبيرة في معرفة الزوايا بين المتجهات ومعرفة خصائص هندسية كثيرة .

ان الضرب القياسي اعلاه كان معرفاً على النحو التالي

 $A.B = ||A|| ||B|| ||Cos\theta|$

حيث ان |A| يمثل طول المتجه A و Θ هي الزاوية بين المتجهين A و B. ان التعريف اعلاه يبدو معقولاً في الفضاءين R^2 و R^3 وذلك لان اطوال المتجهات تعرف بسهولة وكذلك فان الزوايا يمكن قياسها وذلك للوضوح الهندسي لهذين الفضاءين.

في الدراسة التجريدية للجبر الخطي، حيث نناقش فضاء المتجهات من خلال بديهيات معينة، تكون الطريقة اعلاه في تعريف الضرب الداخلي غير معقوله وذلك لاننا مثلاً نقول فضاء المصفوفات 2×2 فماذا يعني عندئذ طول مصفوفة او الزاوية بين مصفوفتين.

سيكون هدفنا في هذا الفصل مناقشة هذه المسألة، حيث نبدأ في البند (5.1) بتعريف الضرب الداخلي (Inner product)على فضاء المتجهات من خلال طرح مجموعة من البديهيات.

في البند (5.2) سندرس اطوال المتجهات والزاويا بين المتجهات في الفضاءات المعرَّف عليها ضرباً داخلياً. سنطلق اسم فضاء اقليدي على اي فضاء متجهات منتهي البعد وعلى حقل الاعداد الحقيقية ومعرَّف عليه ضرباً داخلياً. سنرى كيف ان ماسنطرحه بالشكل العام ينطبق على ماهو معروف عن الضرب الداخلي والطول في المستوي R² والفراغ R³. سندرس في البند (5.3) تعامد المتجهات وكيفية ايجاد قاعدة متعامدة من المتجهات لفضاء اقليدي. البند الاخير خصص لدراسة الفضاءات المتممة العمودية.

(Euclidean Vector Spaces) الفضاءات الاقليدية

ليكن V فضاء متجهات على حقل الاعداد الحقيقية.

تعریف :

بضرب داخلي (Inner product) على 🗸 نقصد دالة

 $\langle , \rangle : VxV \rightarrow R$

 $A \in V$ وذلك لكل $A \in V$ وذلك لكل $A \in V$ وذلك لكل $A \in V$

rA,B⟩ = r ⟨A,B⟩ = ⟨A,rB⟩ _ 2 وذلك لكل A∈V ولكل عدد حقيقي r∈R ولكل عدد حقيقي

_ 3

$$\langle A+B,C \rangle = \langle A,C \rangle + \langle B,C \rangle$$
 (أ)
 $\langle A,B+C \rangle = \langle A,B \rangle + \langle A,C \rangle$ (ب)
 $\langle A,B,C \in V \rangle$

4 _ لكل متجه A∈V يكون (أ) O **≤**(A,A) (ب) A,A)= O اذا وفقط اذا A,A).

بالامكان تعريف الضرب الداخلي على فضاء متجهات على حقّل الاعداد العقدية لكن بطريقة تختلف عن الطريقة اعلاه لكننا سنركز اهتمامنا على الفضاءات المعرفة على حقّل الاعداد الحقيقية.

 R^2 من R^2 المعرف على كل من R^2 الفرب النقطي (dot product) المعرف على كل من R^3 بالطريقة Θ المال الما

سنوضح فكرة الضرب الداخلي بالإمثلة التالية :

مثال (1) :

الضرب الداخلي الاعتيادي على R^n . $B=(b_1,...,b_n),\,A=(a_1,...,a_n)$ اذا كان $A,B>=a_1b_1+a_2b_2+...+a_nb_n$

ان الدالة $R^n \to R^n$: $R^n \to R^n$ المعرفة اعلاه تكون ضرباً داخلياً على R^n ولغرض التحقق من ذلك يجب علينا فحص البديهيات الاربعة التي وردت في التعريف. الان بما ان ضرب الاعداد الحقيقية يكون ابدالياً فعليه ينتج $A_n \to A_n$ الان بما ان ضرب $A_n \to A_n$ $A_n \to$

$$\langle rA,B \rangle = (ra_1)b_1 + ... = (ra_n)b_n$$

$$= r(a_1b_1 + ... + a_nb_n) = r \langle A,B \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(rb_n) = \langle A,rB \rangle$$

$$= a_1(rb_1) + + a_n(r$$

$$\langle A + B, C \rangle = (a_1 + b_1)c_1 + ... + (a_n + b_n)c_n$$

 $= a_1c_1 + b_1c_1 + ... + a_nc_n + b_nc_n$
 $= a_1c_1 + ... + a_nc_n + b_1c_1 + ... + b_nc_n$
 $= \langle A, C \rangle + \langle B, C \rangle$

تحقیق (ب، 3) یکون مماثلاً . اخیراً نلاحظ

 $\langle A,A \rangle = a_1^2 + a_2^2 + ... + a_n^2$

وبما ان حاصل جمع مربعات اعداد حقيقية يكون دائماً عدداً حقيقياً موجباً او صفراً، ويكون مساوياً للصفر فقط في حالة كون جميع الحدود مساوية للصفر فعليه تكون البديهية (4) قد تحققت. بهذا يكون ﴿ و ﴾ ضرباً داخلياً على . Rⁿ.

ملاحظة :

إن الضرب الداخلي المعرف اعلاه ينطبق على تعريف الضرب النقطي n=3 او n=3 في حالة كون n=3

مثال (2) :

اذا كان (
$$\mathbf{R}^2$$
 متجهين في $\mathbf{B}=(b_1,b_2),\,\mathbf{A}=(a_1,a_2)$ فان $\langle \mathbf{A},\mathbf{B} \rangle = 5a_1b_1 + 2a_2b_2$ يعرف ضرباً داخلياً على \mathbf{R}^2 . لاثبات ذلك ، لاحظ اولاً انه اذا أبدلنا في هذه المعادلة

B,A فان الطرف الايمنّ يبقى كما هو . وعليه

$$\langle A,B \rangle = \langle B,A \rangle$$

اذا کان $C = (c_1, c_2)$ فان

$$\langle A + B, C \rangle = 5(a_1 + b_1)c_1 + 2(a_2 + b_2)c_2$$

= $5a_1c_1 + 5b_1c_1 + 2a_2c_2 + 2b_2c_2$
= $(5a_1c_1 + 2a_2c_2) + (5b_1c_1 + 2b_2c_2)$
= $\langle A, C \rangle + \langle B, C \rangle$

وهذا يحقق البديهية (أ، 3) وتحقيق (ب، 3) يكون مماثلاً. وايضاً، اذا كان r عدداً حقيقياً فإن

$$\langle rA,B \rangle = 5(ra_1)b_1 + 2(ra_2)b_2$$

= $r(5a_1b_1 + 2a_2b_2) = r \langle A,B \rangle$
= $5a_1(rb_1) + 2a_2(rb_2) = \langle A,rB \rangle$
 e^{-1}

 $\langle A, A \rangle = 5a_1^2 + 2a_2^2$

واضح ان A,A > 0 وان A,A > 0 اذا وفقط اذا كان $A = (a_1,a_2) = 0$. لذلك فان البديهية الرابعة متحققة .

يختلف الضرب الداخلي في هذا المثال عن الضرب الداخلي الاعتيادي على \mathbb{R}^2 في المثال الاول وهذا يبين ان فضاء المتجهات يمكن ان يكون له اكثر من ضرب داخلي واحد.

سنوضح الآن كيفية وجود ضرب داخلي على فضاءات مثل فضاء متعددات الحدود وذات الدرجة التي لاتتعدى $P_n(R),n$. وفضاء المصفوفات $M_{mn}(R)$ ، وغيرها.

عثال (3) :

$$A(x) = a_0 + a_1 x + ... + a_n x^n$$

 $B(x) = b_0 + b_1 x + ... + b_n x^n$

متعددتي حدود في الفضاء $P_n(R)$ فنعرف $A(x), B(x) > = \int_{-1}^{1} A(x). B(x) dx.$

المعادلة اعلاه تعرف ضرباً داخلياً على Pn(R). لاثبات ذلك، لاحظ اولاً تحقق البديهية (1) بسهولة.

خصائص التكامل تنتج مايلي:

$$\langle rA(x),B(x)\rangle = \int_{0}^{1} (rA(x))B(x)dx$$

= $r\int_{0}^{1} A(x)B(x)dx = r \langle A(x),B(x)\rangle$
= $\int_{0}^{1} A(x)(rB(x)dx = \langle A(x),rB(x)\rangle$

هذا يعنى تحقق البديهية الثانية.

$$\langle A(x) + B(x), C(x) \rangle = \int_{0}^{1} (A(x) + B(x))C(x)dx$$

$$= \int_{0}^{1} (A(x)C(x) + B(x)C(x))dx$$

$$= \int_{0}^{1} A(x)C(x)dx + \int_{0}^{1} B(x)C(x)dx$$

$$= \langle A(x), C(x) \rangle + \langle B(x), C(x) \rangle$$

الآن $(A(x))^2$ دالة موجبة او صفر ومن مبرهنات التفاضل والتكامل نستنتج من ان

 $(A(x))^2 dx \ge 0$ وان $(A(x))^2 dx = 0$ اذا وفقط اذا $(A(x))^2 dx = 0$ الكن $(A(x))^2 dx = 0$ الكثر $(A(x))^2 dx = 0$ المعادلة $(A(x))^2 dx = 0$ المعادلة المحدود الصفرية $(A(x))^2 dx = 0$ المعادلة المحدود المح

وهذا يعني تحقق البديهية الرابعة.

مثال (4)

اذا كانت

 $B(x) = x + 3x^2$

A(x) = 2-x

(3) فجد
$$\langle A(x), B(x) \rangle$$
 فجد $\langle A(x), B(x) \rangle$ فبد $\langle A(x), A(x), A(x) \rangle$ فبد $\langle A(x), A(x), A(x) \rangle$ فبد $\langle A(x), A(x), A(x) \rangle$ فبد $\langle A(x), A(x), A(x), A($

مثال (5) :

الضرب الداخلي الاعتيادي على فضاء المصفوفات (Mmn(R).

نذكر القاريء بان الفضاء (R) هو فضاء المصفوفات ذات الدرجة $M_{mn}(R)$ اذا كانت $B=(b_{ij}),\,A=(a_{ij})$. mxn

$$\langle A,B \rangle = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}b_{ij}$$

تعرف ضرباً داخلياً على Mmn(R) والتحقيق مشابه للامثلة السابقة.

د (6) :

اذا كانت

$$A = \begin{bmatrix} 1 & 0 & -1 \\ & & \\ 0 & 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 2 & 5 \\ & & \\ 1 & 2 & -2 \end{bmatrix}$$

. (5) مصفوفتين في $M_{23}(B)$ فجد A,B کما معرف في المثال

الحل :

A,B =
$$(1)(0) + (0)(2) + (-1)(5) + (0)(1) + (2)(2) + (3)(-2)$$

= -7

مثالنا الاخير يوضح طريقة عامة وبسيطة لتعريف ضرب داخلي على اي فضاء متجهات منتهى البعد.

مثال (7) :

الضرب الداخلي الناشيء من الاحداثيات.

لنفرض ان V فضاء متجهات على حقل الاعداد الحقيقية R ، منتهي البعد وبعده يساوي n . اذن V متجهين $G=\{A_1,\dots,A_n\}$. اذن A_n يساوي A_n . افرض ان A_n توجد اعداد قياسية وحيدة : A_n . A_n و A_n . A_n توجد اعداد قياسية وحيدة : A_n

$$\mathbf{A} = \mathbf{x}_1 \mathbf{A}_1 = \dots + \mathbf{x}_n \mathbf{A}_n$$
$$\mathbf{B} = \mathbf{y}_1 \mathbf{A}_1 + \dots + \mathbf{y}_n \mathbf{A}_n$$

نعرف :

$$\langle \mathbf{A}, \mathbf{B} \rangle = \mathbf{x}_1 \mathbf{y}_1 + \dots + \mathbf{x}_n \mathbf{y}_n$$

V يكن التحقق بسهولة من ان التعريف اعلاه يمثل ضرباً داخلياً على الونترك الاثبات للطالب. لاحظ بان الضرب الداخلي اعلاه يعتمد على القاعدة المختارة ونترك الاثبات للطالب. لاحظ بان الضرب الداخلي الطعناء ومثلاً لو اخترنا القاعدة الطبيعية للفضاء R^2 لحصلنا على الضرب الداخلي الاعتبادي اما اذا اخترنا القاعدة المكونة من المتجهين $A_1 = (1,0)$, $A_1 = (1,0)$ حصلنا على $A_1 = a_1b_1 - a_1b_2 - b_1a_2 + 2a_2b_2$

 $B = (b_1, b_2), A = (a_1, a_2)$ وذلك لاي متجهين وللتحقق من ذلك نلاحظ:

A =
$$(a_1, a_2)$$
 = $(a_1-a_2)(1,0) + a_2(1,1)$
B = (b_1, b_2) = $(b_1-b_2)(1,0) + b_2(1,1)$

وعليه يكون (A,B > كما في التعريف كلاتي

 $\langle A,B \rangle = (a_1-a_2)(b_1-b_2) + a_2b_2$ = $a_1b_1-a_1b_2-a_2b_1 + 2a_2b_2$

لقد سمى الضرب الداخلي اعلاه بالضرب الناشيء من الاحداثيات لانه يعتمد على احداثيات المتجهات بالنسبة لقاعدة معينة.

نعتقد باننا اوردنا عدداً لابأس به من الأمثلة ونرجع الان لطرح مفاهيم اخرى.

تعریف:

بفضاء متجهات اقليدي (Euclidean Vector Space) نقصد فضاء متجهات V على حقل الاعداد الحقيقية ومنتهي البعد، بمعية ضرب داخلي V معرف عليه . ونرمز له بالرمز (V, V)

مثال (8):

اذا كان $_1$ (,) هو الضرب الداخلي الاعتيادي على $_1$ و $_2$ (,) هو الضرب الداخلي المعرف في المثال (2) فان كل من $_2$ (,) $_2$ و ($_2$ (,) $_2$) و ($_2$ ($_2$ ($_3$) يكون فضاءاً اقليدياً لكنهما غير متساويين كفضاءين اقليدين وذلك لاختلاف الضرب الداخلي على كل منهما . نذكر الان متباينة مهمة تسمى بمتباينة كوشي _ شوارتز Cauchy-Schwartz نذكر الان متباينة مهمة تسمى بمتباينة كوشي _ شوارتز Inequality)

مبرهنة (5.1.1) :

اذا كان A,B اي زوج من المتجهات في اي فضاء اقليدي (V, < , >) فان $(A,B)^2 \le (A,A) < (B,B)$

البرهان :

اذا كان B=O فان A,B > O و A,B > O وبهذه الحالة B=O اذا كان B=O فان $B \neq O$ وضع تكون المتباينة متحققة . افرض ان $A,B \neq O$ وضع

$$C = B \sqrt{B,B}$$
 $\langle C, C \rangle = \langle B \sqrt{\langle B,B \rangle}, B \sqrt{\langle B,B \rangle} \rangle$ $\langle C,C \rangle = \langle B \sqrt{\langle B,B \rangle}, B \rangle$ $\langle C,C \rangle = \langle B / \langle B,B \rangle \rangle$ $\langle C,C \rangle = \langle B / \langle B,B \rangle \rangle$ $\langle C,C \rangle = \langle C,A \rangle \rangle$ $\langle C,C \rangle$ $\langle C,$

 $P_2(R)$ على $P_2(R)$ والمعرف في $P_2(R)$ على $P_2(R)$ والمعرف في مثال (3).

$$B = x + 2x^2$$
, $A = -1 + x - x^2$ ()

$$B = \sqrt{3} + 4x + 5x^2$$
, $A = \sqrt{3} + 4x + 5x^2$ ($-$)

والمعرف في $M_{mn}(R)$ باستخدام الضرب الداخلي على $M_{mn}(R)$ والمعرف في مثال (5).

$$B = \begin{bmatrix} 0 & 4 \\ 1 & 3 \end{bmatrix} \quad A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix} \quad (5)$$

$$B = \begin{bmatrix} 0 & & -2 \\ 3 & & 7 \\ & 1 & & \sqrt{2} \end{bmatrix} , \qquad A = \begin{bmatrix} 2 & & 1 \\ 3 & & 4 \\ 0 & & -1 \end{bmatrix} (-)$$

$$B = \begin{pmatrix} -3 \\ -7 \\ 1 \\ 2 \end{pmatrix} , \qquad A = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 (ε)

ما يلي يكون ضرباً داخلياً $B=(x_2,y_2)$, $A=(x_1,y_1)$ على $B=(x_2,y_2)$, $A=(x_1,y_1)$ على B^2 . في الحالات التي لايكون فيها الضرب داخلياً اذكر الشروط التي لاتتحقق .

$$\langle A,B \rangle = x_1 x_2 + 7y_1 y_2$$
 (1)

$$\langle A,B \rangle = x_1^2 x_2^2 + y_1^2 y_2^2$$

$$\langle A,B \rangle = 3x_1x_2 + 2x_1y_2 + 3x_2y_1 + 4y_1y_2$$
 (7)

$$\langle A,B \rangle = x_1 x_2 - y_1 y_2 \tag{2}$$

$$\langle A,B \rangle = 2x_1x_2 + x_1y_2 + x_2y_1 + 3y_1y_2$$
 (4.4)

A,B تعرف ضرباً داخلياً على الفضاء A,B تعرف ضرباً داخلياً على الفضاء A

لعناصر $M_2(R)$ هو اثر المصفوفة X ويساوي حاصل جمع العناصر على القطر الرئيسي .

8 _ احسب (A, B) باستخدام الضرب الداخلي في مثال (7).

$$B = x + 4x^2$$
, $A = 2-x + 5x^2$ ()
 $B = -6 + 7x$, $A = 1+(1/2)x + x^2$ (\rightarrow)

. $P_{2}(R)$ للفضاء $A_{1}=2$, $A_{2}=2+x$, $A_{3}=-x^{2}$ للفضاء وذلك بالنسبة للقاعدة

9 _ حقق متباينة كوشى _ شوارتز لكل من:

(أ) B = (0,3), A = (-1,-1) الاعتيادي B = (0,3), A = (-1,-1)

(7) مثال (1, 3) مثال (2, 6) A = (1, 3) (ب) B = (2, 6) , A = (1, 3) الى $A_1 = (1, 3)$ الى $A_2 = (-1, 5)$ الى ثانسية للقاعدة $A_1 = (1, 3)$ الى $A_2 = (-1, 5)$

(ج)
$$B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
, $A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$ الشرب الداخلي في مثال (5)

10 _احسب (A,B) باستخدام الضرب الداخلي في مثال (7).

$$B = x + 4x^2$$
, $A = 2-x + 5x^2$ (1)

$$B = x + x^2$$
, $A = -3 + 2x$

$$B = -1 + 3x-7x^2$$
, $A = 2-x + 4x^2$

11 _ اثبت انه في متباينة كوشي_ شوارتز يتحقق التساوي اذا كان A,B مرتبطين خطياً.

اثبت ان
$$B = (x_2, y_2, z_2), A = (x_1, y_1, z_1)$$
 اثبت ان ___ 12 __ $A,B > = (x_1 + y_1)(x_2 + y_2) + y_1y_2 + (y_1 + 2z_1)(y_2 + 2z_2)$ یکون ضه با داخلیا علی R^3 .

(5.2) الطول والزاوية في الفضاءات الاقليدية .

نستخدم في هذا البند متباينة كوشي _ شوارتز لتطوير مفاهيم الطول والزاوية في الفضاءات الاقليدية مثل فضاء المصفوفات او فضاء متعددات حدود وغيرها. بما ان $0 \leq A$, A وذلك لاي متجه A في فضاء اقليدي فعليه يمكننا ان نعرف الطول والمسافة على النحو التالي :

تعریف :

اذا كان (<, <, <) فضاءاً اقليدياً فان طول المتجه A يرمز له بالرمز ||A|| ويعرف بواسطة :

$$|A| = \sqrt{\langle A, A \rangle}$$

كذلك فانه لاي زوج من المتجهات A,B في V نرمز للمسافة بين A و B بالرمز d (A,B) وتعرف بواسطة :

$$d(A,B) = ||A-B||$$

مثال (1) :

 \mathbf{R}^{n} منجهين في $\mathbf{B}=(b_{1},...,b_{n}),\ \mathbf{A}=(a_{1},...,a_{n})$ اذا كان ($\mathbf{B}=(b_{1},...,b_{n})$) فان الضرب الداخلي الاعتيادي (راجع مثال (1) في البند (5.1)) فان

$$||A|| = \sqrt{A, A} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

$$d(A,B) = ||A-B||$$

$$= \sqrt{(a_1-b_1)^2 + \dots + (a_n-b_n)^2}$$

لاحظ ان هذين هما بالضبط صيغتا الطول والمسافة الاعتيادية التي عرفناها في دروس الفيزياء والتفاضل والتكامل.

مثال (2):

نفرض ان R^2 له الضرب الداخلي المعرف في المثال (2) من البند السابق $\langle A,B \rangle = 5a_1b_1 + 2a_2b_2$ اي : $A=(a_1,a_2)$ $A=(a_1,a_2)$ عندما $A=(a_1,a_2)$ و $A=(a_1,a_2)$. اذا كان $A=(a_1,a_2)$ فجد طول كل من $A=(a_1,a_2)$ ثم جد المسافة بينهما .

الحل:

$$||A|| = \sqrt{A,A} = \sqrt{5(2)(2) + 2(3)(3)} = \sqrt{38}$$

$$||B|| = \sqrt{5(0)(0) + 2(-1)(-1)} = \sqrt{2}$$

$$d(A,B) = ||A-B|| = ||(2,4)|| = \sqrt{5(2)(2) + 2(4)(4)} = \sqrt{52}$$

من المهم ان نتذكر دائماً ان كل من الطول والمسافة يعتمد على الضرب A=(2,3)=A يساوي 38 الداخلي المستخدم. ففي المثال (2) اعلاه كان طول المتجه (2,3) A=(2,3)=A يساوي في حين ان طوله الاعتيادي (الطول الناشيء من الضرب الداخلي الاعتيادي) يساوي في حين ان طوله A=(2,3)=A المسافة الاعتيادية بين A=(2,3)=A تساوي A=(2,3)=A المسافة الاعتيادية بين A=(2,3)=A المسافة الاعتبادية بين A=(2,3)=A المسافة الاعتبادية بين A=(2,3)=A المسافة الاعتبادية بين A=(2,3)=A المسافة الاعتبادية بين A=(2,3)=A

د (3) مثال

جد طول المصفوفة $\begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ وذلك بالاعتاد على الضرب الداخلي على الفضاء $M_{23}(R)$ المعرف في المثال (5) من البند (5.1).

$$||A|| = \sqrt{A,A}$$

$$= \sqrt{(1)(1) + (2)(2) + (0)(0) + (-1)(-1) + (0)(0) + (1)(1)} = 7$$

د (4) غال (4)

الان:

$$A(x) = 2x-1$$
, $B(x) = x + 2$

وذلك بالنسبة للضرب الداخلي على الفضاء $P_1(R)$ المعرف في المثال (3) من البند (5.1)

$$d(A(x), B(x) = ||A(x)-B(x)||$$
= ||x-3||
= $\sqrt{x-3,x-3}$

$$\langle x-3, x-3 \rangle = \int_{2}^{1} (x-3)(x-3)dx$$

= $\int_{2}^{1} (x^{2}-6x+9)dx$
= 19/3

$$d(A(x), B(x)) = \sqrt{19/3}$$

قبل البدء باعطاء خصائص الطول والمسافة سنذكر الصورة البديلة لمتباينة كوشي _ شوارتز التي برهناها في البند السابق.

بما ان : $\langle A,A \rangle = ||B||^2 = \langle B,B \rangle$, $||A||^2 = \langle A,A \rangle$ وذلك في اي فضاء اقليدي (V, <, >). عليه بأخذ الجذر التربيعي لطرفي المتباينة $\langle A,B \rangle = \langle A,A \rangle$ المتباينة $\langle A,B \rangle = \langle A,A \rangle \langle B,B \rangle$

 $|\langle A,B\rangle| \leq ||A|| ||B||$

وهذه هي صيغة متباينة كوشي ــ شوارتز بدلالة الطول.

المبرهنتان التاليتان تعطيان الخصائص الاساسية للطول والمسافة.

مبرهنة (5.2.1)

اذا كان (<,>,۷) فضاء متجهات اقليدي، فان الطول [[] يحقق مايلي

1 _ لكل A=O (| A|| و o = | | A|| اذا ونقط اذا A=O .

|rA|| = |r| |A|| یکون |A|| = |rA|| یا عدد حقیقی |rA|| = |rA|| یکون |rA|| = |rA|| عدد حقیقی |rA|| عن القیمة المطلقة للعدد الحقیقی |rA||

3 ـــ لاي زوج من المتجهات B,A يكون ||B|| + ||A|| ||A+B||

(المتباينة اعلاه تسمى بالمتباينة المثلثية (Triangle inequality)

مبرهنة (5.2.2) :

اذا كان (<,>,>) فضاء متجهات اقليدي، فان المسافة d تحقق مايلى:

. A = B اذا وفقط اذا d(A,B) = 0 و d(A,B) = 0 _ 1

. A,B وذلك لاى زوج من المتجهات d (A,B) = d (B,A) _ 2

3 _ لاي ثلاثة متجهات A,B,C في V يكون

 $d(A,B) \leq d(A,C) + d(C,B)$

(المتباينة اعلاه تسمى ايضاً المتباينة المثلثية)

ان برهان الخصائص اعلاه سهل جداً ويعتمد على التعاريف بشكل مباشر ماعدا المتباينة المثلثية التي سنذكر برهانها .

برهان المتباينة المثلثية للطول:

$$||A + B||^2 = \langle A + B, A + B \rangle$$

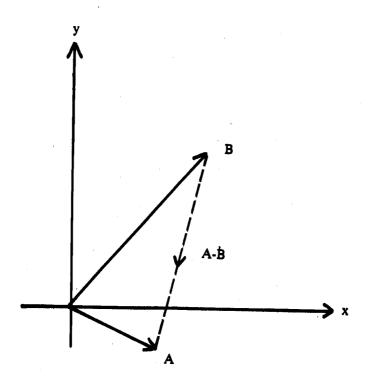
= $\langle A, A \rangle + 2 \langle A, B \rangle + \langle B, B \rangle$
 $\leq A, A \rangle + 2 ||\langle A, B \rangle|| + \langle B, B \rangle$

بأستخدام متباينة كوشي ـــ شوارتز نحصل على

 $||A + B||^{2} \le A, A > +2 ||A|| ||B|| + \le B, B >$ $= ||A||^{2} + 2 ||A|| ||B|| + ||B||^{2}$ $= (||A|| + ||B||)^{2}$

اخذ الجذر التربيعي يعطي ||A+B||ك||A|||| الما|ك||A+B|| (و . هـ . م)

المتباينة اعلاه سميت بالمتباينة المثلثية للسبب التالي . في المستوى R² ، لدينا الصورة التالية :



عند ابدال B + بـ B - في المتباينة المثلثية ، نحصل على المال A-B | كا A-B | كا A-B | كا المال كا المال كا المال

وهذا يعني ان حاصل جمع طولي اي ضلعين في مثلث يكون اكبر او مساوياً لطول الضلع الثالث (حقيقة معروفة في الهندسة المستوية) من هذا نرى ان معظم الخصائص الهندسية للطول والمسافة قد تعممت الى فضاءات مجردة (الفضاءات الاقليدية).

تعریف :

اذا كان B,A متجهين غير صفريين في فضاء اقليدي (V, < , >) فان الزاوية بين A و B تعرف بالمعادلة :

$$\cos 0 = \frac{\langle A,B \rangle}{||A|| ||B||}$$

حيث: حيث: 4€0

ملاحظة : من متباينة كوشي ــ شوارتز التي تنص على ان

$$|\langle A,B \rangle| \le ||A|| ||B||$$

 $-1 \le \frac{\langle A,B \rangle}{||A|| ||B||} \le 1$ oaki sais io $|\langle A,B \rangle|$
 $-1 = \frac{||A|| ||B||}{||A|| ||B||} \le 1$

من هذا تتضح شرعية التعريف، اي انه توجد زاوية وحيدة Θ بحيث يكون . $O \leq \Theta \leq T$ و $Cos\theta = \langle A,B \rangle / \|A\| \|B\|$

مثال (5) :

 R^2 وذلك في الفضاء A=(0,1)=A و الفضاء في الفضاء A=(1,0) المعرف عليه الضرب الداخلي الاعتبادي .

$$||B|| = 1, ||A|| = 1, \langle A,B \rangle = (1)(0) + (0)(1) = 0$$
 الحل : $\Theta = \sqrt[3]{2}$ عليه تكون $O(1.1 = 0)$ عليه تكون $O(1.1 = 0)$

مثال (6) :

 $A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$ جد جيب تمام الزاوية بين المصفوفتين $B = \begin{pmatrix} -1 & 2 \\ 0 & 3 \end{pmatrix}$ المعرف عليه الضرب الداخلي الذي نوقش في المثال (5) من البند (5.1) .

$$A,B > = (1)(-1) + (0)(2) + (2)(0) + (-1)(3) = -4$$

$$||A|| = \sqrt{(1)^2 + (0)^2 + (2)^2 + (-1)^2} = 6$$

$$||B|| = \sqrt{(-1)^2 + (2)^2 + (0)^2 + (3)^2} = 10$$

$$\cos\theta = \frac{-4}{\sqrt{6}} = \frac{-2}{\sqrt{15}}$$

تعریف :

اذن:

في فضاء اقليدي (V, < , >)، يكون المتجهان B,A متجهين متعامدين اذا كان A,B>=0.

من هذا التعریف ومن تعریف الزاویة فان المتجهین B,A یکونان متعامدین اذا وفقط اذا کانت الزاویة بینهما تساوی $2\sqrt{-7}$.

مثال (7) :

برهن على ان المتجهين A=1 , A=1 يكونان متعامدين وذلك $A,B > = \int_0^1 A(x)B(x)dx$: في الفضاء $P_1(R)$ المعرف عليه الضرب الداخلي : $P_1(R)$ المعرف عليه الضرب الداخلي : $P_1(R)$ المعرف عليه الضرب الداخلي : $P_1(R)$ المعرف عليه المعرفة . $P_1(R)$ المعرفة . $P_1(R)$ متعامدين وذلك $P_1(R)$ المعرفة .

مبرهنة (5.2.3) :

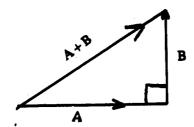
اذا كان A و B متجهين متعامدين في فضاء اقليدي ($\langle V, \langle , \rangle \rangle$) فان $||A + B||^2 = ||A||^2 + ||B||^2$.

$$||A + B||^2 = \langle A + B, A + B \rangle$$
 : البرهان :
= $\langle A, A \rangle + 2 \langle A, B \rangle + \langle B, B \rangle$
= $||A||^2 + ||B||^2$

وذلك لان A,B>= 0

(و، هـ، م)

لاحظ \mathbb{R}^2 أو \mathbb{R}^3 مع الضرب الداخلي الاعتيادي تختزل هذه المبرهنة الى نظرية فيثاغورس لعادية . لاحظ الشكل التالى :



في نهاية هذا البند نذكر القاريء بان مفاهيم الطول والمسافة والزاوية تعتمد على الضرب الداخلي المعرف على الفضاء وبما انه يمكن تعريف اكثر من ضرب داخلي واحد، فعليه يمكن ايجاد اكثر من طول واحد مثلاً للمتجه ونرجو ان هذه المسألة لاسبب تشتت في ذهن الطالب. الطول يكون واحداً وثابتاً عندما يثبت الضرب الداخلي، وهكذا.

عارين (5.2)

 $A,B >= 5x_1y_1 + x_2y_2$ له الضرب الداخلي $R^2 >= 1$ له الضرب الداخلي $A = (x_1,y_1) B = (x_2,y_2)$ له كل مما

$$B = (0,3), A = (2,1)$$

$$B = (2,2), A = (-1,-1)$$

$$B = (4,0), A = (0,4)$$

2 _ كرر تمرين (1) باستخدام الضرب الداخلي الاعتيادي.

 $P_3(R)$ على على d(A,B), ||B||, ||A|| = 3 =

$$B = 2 + x - x^2$$
, $A = 1 - x^3$.

$$B = x-x^2-x^3$$
, $A = 4 + x^2-(1/2)x^3$

4 _ احسب الداخلي على d (A,B), ||B||, ||A|| باستخدام الضرب الداخلي على $M_{mn}(R)$.

.
$$M_2(R)$$
 , $M_2(R)$, $M_2(R)$

.
$$M_{23}(R)$$
 ، في الفضاء (B = $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & 5 \end{bmatrix}$, $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$ (ب)

- . 4,3,2,1 في كل جزء من التمارين A,B في كل جزء من التمارين A,B
- وذلك $||A-B||^2 + ||A+B||^2 = 2(||A||^2 + ||B||)^2$ وذلك ||A-B|| + ||A-B|
- A,B برهن على ان : $||A-B|| \ge ||B|| ||A|||$ وذلك لاي متجهين V, < V, < V .
- وذلك لاي (A,B > = $1/4(||A+B||^2-||A-B||^2)$ وذلك لاي متجهين A,B في فضاء اقليدي (\checkmark , \checkmark).
 - 9 _ برهن على ان:
 - θ ا[A| ||A|| ||A-B|| = ||A|| = ||A|| حيث ان θ مى الزاوية بين A,B. وذلك في اي فضاء اقليدي (∇ , ∇).
- |A| = |A| كان |A,B| متجهين في فضاء اقليدي (|A|) بحيث ان |A| الحال فرهن على ان |A+B| يكون عمودياً على |A-B|.
- اوجد $(V, \subset A, B)$ متجهین غیر صفریین فی فضاء اقلیدی $(C, \subset V, \subset A, B)$. اوجد اقصر متجه C = A + tB علی C = A + tB (ارشاد : احسب طول C = A + tB شم استخدم افکار التفاضل والتکامل) .
- A,B يكون R^2 له الضرب الداخلي الاعتيادي. لاي من قيم R^2 يكون R^2 متعامدين R^2 .

$$A = (1,2,1-r)$$
, $B = (-1,3,5)$

$$A = (2r,7,2)$$
, $B = (r/2,-r,3)$

- 13 _ اذا كان V = C[0,1] فضاء الدوال الحقيقية والمستمرة والمعرفة على الفترة V = C[0,1] ، فان : V = C[0,1] ،
- وأ) هل ان الدالتين $g(x) = \cos 2 \pi x$, $f(x) = \sin 2 \pi x$ متعامدتان ؟ ·
- $g(x) = Cos 2 \pi nx$, $f(x) = Sin2 \pi mx$ (ب) هل ان الدالتين متعامدتان \cdot ب
- (ج) اوجد متعددة حدود من الدرجة الثانية تكون عمودية على كل من g(x) = x, f(x) = 1
- 14 _ برهن الاجزاء (1), (2) في مبرهنة (5.2.1) والاجزاء (1), (2), في مبرهنة (5.2.2) . مبرهنة (5.2.2).
- الفضاء الاقليدي R^2 مع الضرب الداخلي الاعتيادي، اوجد المحل R^2 المندسي لجميع المتجهات R التي تحقق R السم شكلاً.

(5.3) القواعد المتعامدة الاحادية ــ طريقة كرام ــ شميدت

Orthonormal bases and Gram - Schmidt process

لاحظنا في الفصل الاول ان كل فضاء متجهات منتهي البعد يكون له قاعدة. بالحقيقة توجد اكثر من قاعدة واحدة والمسائل التي تطرح تحدد نوعية القاعدة المطلوبة. في معظم هذه المسائل نحاول دائماً ايجاد قاعدة بسيطة المتجهات. في الفضاءات الاقليدية، تكون الحالة غالباً ان افضل اختيار للقاعدة هو الاختيار الذي تكون فيه جميع المتجهات متعامدة كل على الاخر. سنبين في هذا الند كيف يكن بناء مثل هذه القواعد.

تعريف:

لتكن S مجموعة جزيئة من المتجهات في فضاء اقليدي (V, <, >). يقال بان S مجموعة متعامدة اذا وفقط اذا كان اي متجهين مختلفين في S متعامدين.

المجموعة المتعامدة تسمى مجموعة متعامدة احادية اذا وفقط اذا كان طول كل متجه فيها مساوياً الى 1.

مثال (1) :

المجموعة $\{(1,1,1), (0,0,0)\}$ تكون مجموعة متعامدة في الفضاء \mathbb{R}^3 مع الضرب الداخلي الاعتيادي، لكنها ليست مجموعة متعامدة احادية وذلك لان \mathbb{R}^3 الاعتيادي.

مثال (2) :

المجموعة المتكونة من المتجهات

$$A_1 = (0,1,0), A_2 = (1/\sqrt{2},0,1/\sqrt{2}), A = (1/\sqrt{2},0,-1/\sqrt{2})$$

تكون مجموعة متعامدة احادية في الفضاء ${\bf R}^3$ مع الضرب الداخلي الاعتيادي. وذلك لان

$$\langle A_1, A_2 \rangle = \langle A_1, A_3 \rangle = \langle A_2, A_3 \rangle = 0$$

 $||A_1|| = ||A_2|| = ||A_3|| = 1$

مثال (3) :

$$\{A_1 = \binom{1}{1}A_2 = \binom{0}{1}, A_3 = \binom{0}{1} - \binom{1}{1} \}$$
 المجموعة متعامدة وذلك لان 0 محر (A_1, A_2) . وذلك في الفضاء (A_2, A_2) مع الضرب الداخلي الاعتيادي .

لنفترض الآن ان A متجه غير صفري في فضاء متجهات اقليدي B = (1/||A||) A

يكون متجهاً احادي الطول وذلك لان 1 = ||A|| (||A||) = ||A (||A||) || = ||B||

اذن يمكن دائماً ايجاد متجه احادي الطول من متجه غير صفري. اهمية ايجاد قاعدة متعامدة احادية لفضاء اقليدي تكمن جزئياً بالمبرهنة التالية التي توضح انه من البساطة بدرجة غير عادية ان نعبر عن متجه في الفضاء كتركيب خطي من متجهات تلك القاعدة.

مبرهنة (5.3.1) :

اذا كانت $S=\{A_1,...,A_n\}$ قاعدة متعامدة احادية لفضاء اقليدي $S=\{A_1,...,A_n\}$ وكان A اي متجه في V ، فان

 $A = \langle A, A_1 \rangle A_1 + \langle A, A_2 \rangle A_2 + \dots + \langle A, A_n \rangle A_n$

البرهان: بما ان S قاعدة الى V. اذن يمكن للمتجه A ان يكتب كتركيب خطي من متجهات S، ليكن

 $A = x_1 A_1 + x_2 A_2 + ... + x_n A_n$

لكل متجه A_k في S يكون

$$\langle A, A_k \rangle = \langle x_1 A_1 + x_2 A_2 + \dots + x_n A_k, A_k \rangle$$

= $x_1 \langle A_1, A_k \rangle + \dots + x_k \langle A_k, A_k \rangle + \dots + x_n \langle A_n, A_k \rangle$

بما ان المجموعة S متعامدة احادية ، عليه يكون

. $(A_i,A_i)=i$ اذن نحصل من $(A_i,A_i)=i$ اذن نحصل من المعادلة اعلاه على مايلى :

<A,A_k>=x_k

وذلك لكل: k = 1,2,...,n ، اى ان

$$A = \langle A, A_1 \rangle A_1 + \dots + \langle A, A_n \rangle A_n$$

$$(\circ \cdot - \circ)$$

مثال (4): ليكن

$$A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} A_3 : \begin{pmatrix} 3/5 & 0 \\ 4/5 & 0 \end{pmatrix} A_2 : \begin{pmatrix} -4/5 & 0 \\ 3/5 & 0 \end{pmatrix} A_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

من السهل التأكد من ان المجموعة $S = \{A_1, A_2, A_3, A_4\}$ تكون قاعدة من السهل التأكد من ان المجموعة $S = \{A_1, A_2, A_3, A_4\}$ المنطقة $M_2(R)$ بالنسبة للضرب الداخلي الاعتيادي . عبر عن المتجه متعامدة احداثيات $A = \begin{pmatrix} 6 & -5 \\ 1 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 6 &$

 $A = -5A_1 - (21/5)A_2 + (22/5)A_3$

هذا المثال يوضح فائدة المبرهنة (5.3.1)، حيث انه اذا كانت القاعدة ليست متعامدة احادية فأنه يتوجب علينا حل نظام من المعادلات لكي نعبر عن المتجه بدلالة القاعدة (راجع الفصل الاول).

ان متجه احداثیات A اعلاه یکون (X=(-5,-21/5,22/5,0)

يمكن ايضاً معرفة احداثيات المتجهات بالنسبة الى قاعدة متعامدة ، فاذا كانت $S = \{B_1, ..., B_n\}$ وكان $A \in V$

 $A = (\langle A, B_1 \rangle / ||B_1||^2) B_1 + + (\langle A, B_n \rangle / ||B_n||^2) B_n$ والبرهان مماثل تماماً لبرهان المبرهنة (5.3,1) ويترك كتمرين.

مبرهنة (5.3.2) :

اذا كانت $\{A_1,...,A_n\}$ مجموعة متعامدة من المتجهات غير الصفرية في فضاء اقليدي (V, ,) فان $\{V, , \}$ نفاء في فضاء الميدي (

. $x_1A_1 + x_2A_2 + + x_nA_n = 0$ البرهان : افرض ان k:1,2,...,n لكل k:1,2,...,n

$$o = \langle A_k, O \rangle = \langle A_k, x_1 A_1 + \dots + x_n A_n \rangle$$

$$= x_1 \langle A_k, A_1 \rangle + \dots + x_k \langle A_k, A_k \rangle + \dots + x_n \langle A_k, A_n \rangle$$

$$= x_k \langle A_k, A_k \rangle$$

وذلك لأن

 $S = x_i + i$ لكل $i \neq j$ لكل $A_i, A_j = 0$ غير صفرية، عليه ينتج $A_i, A_j = 0$ وبالتالي فان $x_1 = x_2 = \dots = x_n = 0$ بهذا تكون المجموعة $x_1 = x_2 = \dots = x_n = 0$ مستقلة خطياً.

(و.هـ،م)

مثال (5) :

اذا كان $A_1=(1,1,1),\ A_2=(0,1,-1),\ A_3=(-2,1,1)$ فبرهن على اذا كان $S=\{A_1,A_2,A_3\}$ تكون قاعدة الى R^3 ثم عبر عن المتجه ان A=(1,-1,1)

الحل: أن السؤال اعلاه يمكن حله بالطرق المطروحة في الفصل الاول لكنها طرق طويلة. هنا نلاحظ ان المجموعة S تكون متعامدة وبالتالي وحسب المبرهنة (5.3.2) نستنتج من ان S مستقلة خطياً وبما ان عدد متجهاتها يساوي بعد الفضاء R^3 فانها حتماً ستكون قاعدة. لغرض كتابة المتجه A = (1,-1,1) = A نستخدم الملاحظة التي تلت مثال (4). اي

$$A = \frac{\langle A, A_1 \rangle}{||A_1||^2} A_1 + \frac{\langle A, A_2 \rangle}{||A_2||^2} A_2 + \frac{\langle A, A_3 \rangle}{||A_3||^2} A_3$$

الان عمليات حسابية بسيطة تظهر

$$\langle A, A_1 \rangle = 1, \langle A, A_2 \rangle = -2, \langle A, A_3 \rangle = -2$$

 $||A_1||^2 = 3, ||A_2||^2 = 2, ||A_3||^2 = 6$

عليه يكون لدينا:

 $A = (1/3)A_1 - A_2 - (1/3)A_3$

القواعد المتعامدة الاحادية تفيد ايضاً لمعرفة الضرب الداخلي بسرعة وكما موضح في المبرهنة التالية :

مبرهنة (5.3.3)

اذا کانت $S = \{A_1, ..., A_n\}$ قاعدة متعامدة احادیة لفضاء اقلیدی (V, \checkmark, \gt) وکان

$$A = a_1 A_1 + ... + a_n A_n$$
 $B = b_1 A_1 + ... + b_n A_n$
 $A,B >= a_1 b_1 + ... + a_n b_n$

$$A,B >= \langle a_1A_1 + + a_nA_n, b_1A_1 + ... + b_nA_n \rangle$$
 البرهان
$$= \sum_{i,j} a_ib_j \langle A_i, A_j \rangle$$

$$= a_1b_1 + ... + a_nb_n$$

$$\langle A_i, A_j \rangle = \begin{cases} i & i = j \\ 0 & i \neq i \end{cases}$$

$$(A_i, A_j) = \begin{cases} i & i = j \\ 0 & i \neq i \end{cases}$$

(و. هـ. م)

ناقشنا في البند (1.9) من الفصل الأول مسألة الاحداثيات وقلنا بانه اذا $S = \{A_1, ..., A_n\}$ كانت المجموعة $S = \{A_1, ..., A_n\}$ قاعدة الى فضاء متجهات $X = (x_1, ..., x_n) \in F^n$ يسمى بمتجه أحداثيات $X = (x_1, ..., x_n)$ بالنسبة للقاعدة S.

في حالة كون V فضاءاً اقليدياً فانه حتماً وحسب التعريف سيكون فضاءاً على حقل الاعداد الحقيقية. بذلك تكون متجهات احداثيات متجهات V

واقعة في R^n . المبرهنة اعلاه تنص على ان الضرب الداخلي لاي متجهين في فضاء متجهات اقليدي (V, <, >) يساوي الضرب الداخلي الاعتيادي في R^n لمتجهي احداثياتهما بالنسبة لاي قاعدة متعامدة احادية الى V. المثال الآتي يوضح مانقصده.

مثال (6):

برهن على ان $S=\left\{1/\sqrt{2},\left(\sqrt{3}/\sqrt{2}\right)x\right\}$ تكون قاعدة متعامدة $P_1(R)$ المعرف عليه الضرب الداخلي $P_1(R)=\{A,B\}=\{1,A(x)\}$

A = 2-x, B = 3 + 5x ثم جد الضرب الداخلي للمتجهين

$$A_2 = \sqrt{3}/\sqrt{2}x$$
, $A_1 = 1/\sqrt{2}$ ضع $A_1, A_2 > 0$ أ $A_1, A_2 > 0$ ضع A_1, A_2

$$||A_1||^2 = \langle A_1, A_1 \rangle = \int_1^1 (-1/2) dx = 1$$

 $||A_2||^2 = \langle A_2, A_2 \rangle = \int_1^1 (3/2)x^2 dx = 1$

بما ان $P_1(R)=0$ dim $P_1(R)=0$ و $P_1(R)=0$ مستقلة خطياً لانها متعامدة وبما ان طول كل متجه فيها يساوي 1 فان $P_1(R)=0$.

يمكننا ايجاد الضرب الداخلي
$$< 2-x,3+5x >$$
 باستخدام التعريف أي $< 2-x,3+5x > = \int_{-1}^{1} (2-x)(3+5x) dx = 26/3$

لكن لو اردنا تطبيق ماورد في المرهنة (5.3.3) والملاحظة التي تليها

فيجب علينا ان نجد قيمة احداثيات كل من 5x, 2-x بالنسبة للقاعدة S. نلاحظ مايلي

$$3 + 5x = 3\sqrt{2}(1/\sqrt{2}) + (5\sqrt{2}/\sqrt{3})(\sqrt{3}/\sqrt{2})(x)$$

$$2-x = 2\sqrt{2}(1/\sqrt{2}) + (-\sqrt{2}/\sqrt{3})(\sqrt{3}/\sqrt{2})(x)$$

 $X = (3\sqrt{2}, \sqrt{2}/\sqrt{3})$, اذن يكون متجه احداثيات 3 + 5x بالنسبة للقاعدة $(3\sqrt{2}, \sqrt{2}/\sqrt{3})$, $(3\sqrt{2}, \sqrt{2})$ الان $(2\sqrt{2}, \sqrt{2}/\sqrt{3})$, النسبة للقاعدة $(3\sqrt{2}, \sqrt{2}/\sqrt{3})$ بالنسبة للقاعدة $(3\sqrt{2}, \sqrt{2}/\sqrt{3})$

$$\langle X, Y \rangle = (3\sqrt{2})(2\sqrt{2}) + (5\sqrt{2})\sqrt{3})(-\sqrt{2})\sqrt{3}$$

= 12-10/3 = 26/3
 $\langle 3 + 5x, 2 - x \rangle = 26/3$: اذن

بعد ان استعرضنا فوائد القواعد المتعامدة الاحادية في الفضاءات الاقليدية، نتجه الان الى محاولة معرفة كيفية ايجاد تلك القواعد. نبدأ بالمبرهنة التالية التي ترينا كيفية ايجاد قاعدة متعامدة احادية، اذا عرفنا قاعدة متعامدة.

مبرهنة (5.3.4) :

البرهان:

انه لمن الواضح ان اطوال متجهات H مساوية للواحد. الان بما ان

$$\langle A_i / || A_i ||, A_j / || A_j || \rangle = (1/|A_i|| ||A_j||) \langle A_i, A_j \rangle$$

= $\frac{1}{||A_i|| ||A_j||} o = o$

وذلك لكل i ≠ j.

اذن تكون المجموعة H متعامدة احادية. لنأخذ $A \in [S]$ عليه توجد اعداد حقيقية a_1, \dots, a_n تحقق

 $\mathbf{A} = \mathbf{a}_1 \mathbf{A}_1 + \ldots + \mathbf{a}_n \mathbf{A}_n$

المعادلة اعلاه يمكن ان تكتب بالصيغة

 $A = (a_1 | ||A_1||)A_1 / ||A_1|| + ... + (a_n ||A_n||)A_n / ||A_n||$

وعليه يكون A قد كتب كتركيب خطي من متجهات H وبالتالي يكون A وعليه يكون A وبالتالي يكون $A \in [H]$. اما اذا كان $B \in [H]$ فانه توجد اعداد حقيقية b_1, \dots, b_n

$$B = b_1(A_1/||A_1||) + ... + b_n(A_n/||A_n||)$$

 $=(b_1/||A_1||)A_1+...+(b_n/||A_n||)A_n$

واذن [S] = [H] وبالتالي يكون [S] = [H] وبالتالي يكون [S] = [S] . (و . هـ . م)

مبرهنة (5.3.5): (طريقة كرام _ شمدت للتعامد الاحادي)

لكل فضاء جزئي من فضاء اقليدي (\checkmark , \checkmark) توجد قاعدة متعامدة احادية .

البرهان:

M فضاء منتهي البعد فان $S = \{A_1, ..., A_n\}$ فضاء منتهي البعد فان $S = \{A_1, ..., A_n\}$ وذلك يكون فضاءاً منتهي البعد وعليه توجد قاعدة الى $S = \{A_1, ..., A_n\}$ وذلك حسب المبرهنة (1.8.3). سوف نطبق طريقة معينة لبناء قاعدة متعامدة احادية الى M وذلك باستخدام القاعدة S كادة اولية. هذه الطريقة تعرف بطريقة كرام M شمدت.

$$B_1 = A_1$$

$$B_2 = A_2 - (\langle B_2, B_1 \rangle / ||B_1||^2) B_1$$

$$\begin{split} \mathbf{B}_{\mathrm{n}} &= \mathbf{A}_{\mathrm{n}} - (\langle \mathbf{A}_{\mathrm{n}}, \mathbf{B}_{\mathrm{n-1}} \rangle / ||\mathbf{B}_{\mathrm{n-1}}||^2) \; \mathbf{B}_{\mathrm{n-1}} - \dots - (\langle \mathbf{A}_{\mathrm{n}}, \mathbf{B}_{\mathrm{1}} \rangle / ||\mathbf{B}_{\mathrm{1}}||^2) \; \mathbf{B}_{\mathrm{1}} \\ & \quad \ \ \, \vdots \\ & \quad \ \ \, \vdots \\ & \quad \ \, \vdots \\ \end{split}$$

- ا القسمة على ال $|B_i| \neq 0$. عندئذ يحق لنا القسمة على ال $|B_i|$ في المعادلات اعلاه .
 - بالمجموعة $H = \{B_1, \dots, B_n\}$ تكون مجموعة متعامدة . 2
 - 3 _ المجموعة H اعلاه تكون قاعدة الى M .

عندئذ يمكننا ايجاد قاعدة متعامدة احادية الى M وذلك باستخدام المبرهنة (5.3.4) التي تقسم المتجهات على اطوالها.

لبرهنة (1) اعلاه نلاحظ انه في حالة وجود k بحيث $0=|B_k|$ فأن خصائص الطول تحتم على ان $B_k=0$ وعند تعويض ذلك في المعادلة التي تعرف B_k نحصل على :

 $O = A_k - (\langle A_k, B_{k-1} \rangle / ||B_{k-1}||^2) B_{k-1} - \dots - (\langle A_k, B_1 \rangle / ||B_1||^2) B_1$

 $A_k = (\langle A_k, B_{k-1} \rangle / ||B_{k-1}||^2)B_{k-1} + ... + (\langle A_k, B_1 \rangle / ||B_1||^2)B_1$

لكن عند التعويض عن كل من $A_{k-1},...,A_1$ بدلالة $B_{k-1},...,B_2,B_1=A_1$ نحصل على ان A_k يكون تركيباً خطياً من $A_{k-1},...,A_{k-1}$ وهذا تناقض لان المجموعة $A_1,...,A_k$ مستقلة خطياً .

n,...,2,1:k اذن $B_k \neq 0$

سوف نبرهن (2) اعلاه بالاستقراء الرياضي وكما يلي:

اولاً: المجموعة B1,B2 متعامدة وذلك لان

$$\langle B_1, B_2 \rangle = \langle A_1, A_2 - (\langle A_2, A_1 \rangle / ||A_1|||^2) A_1 \rangle$$

$$= \langle A_1, A_2 \rangle - (\langle A_2, A_1 \rangle / ||A_1||^2) \langle A_1, A_1 \rangle$$

$$= \langle A_1, A_2 \rangle - (\langle A_2, A_1 \rangle / ||A_1||^2) ||A_1||^2$$

=0

ثانیاً : لنفرض ان المجموعة $\{B_1, B_2, ..., B_k\}$ متعامدة . عندئذ ستكون المجموعة $\{B_1, B_2, ..., B_k, B_k, ..., 2, 1=i\}$ متعامدة ايضاً وذلك لانه لكل $\{B_1, B_2, ..., B_k, B_{k+1}\}$ يكون لدينا

$$\langle B_{k+1}, B_i \rangle = \langle A_{k+1} - (\langle A_{k+1}, B_k \rangle / ||B_k||^2) B_k - ... - (\langle A_{k+1}, B_k \rangle / ||B_k||^2) B_k$$

$$= \langle A_{k+1}, B_{i} \rangle - \sum_{j=1}^{k} (\langle A_{k+1}, B_{j} \rangle / ||B_{j}||^{2}) \langle B_{j}, B_{i} \rangle$$

بما ان $\{B_1,...,B_k\}$ مجموعة متعامده بالفرض، لهذا يكون $\{B_1,...,B_k\}$ وذلك لكل $j \neq i$ بالتعويض نحصل على :

$$\langle B_{k+1}, B_i \rangle = \langle A_{k+1}, B_i \rangle - (\langle A_{k+1}, B_i \rangle / ||B_i||^2) \langle B_i, B_i \rangle$$

= 0

نستنتج من الاستقراء الرياضي على ان المجموعة $\{B_1,...,B_n\}$ تكون مجموعة متعامدة . بما ان كل مجموعة متعامدة من المتجهات غير الصفرية تكون مستقلة خطياً (مبرهنة 5.3.2) فعليه تكون $\{B_1,...,B_n\}$ قاعدة الى M وذلك لاحتوائها على عدد من المتجهات المستقلة خطياً مساوياً لبعد الفضاء الجزئي $\{B_1,...,B_n\}$ وذلك حسب نتيجة $\{B_1,...,B_n\}$. بعد حصولنا على قاعدة متعامدة $\{B_1,...,B_n\}$ وذلك بأخذ $\{B_1,...,B_n\}$ وذلك بأخذ $\{B_1,...,B_n\}$ وذلك بأخذ $\{B_1,...,B_n\}$ وذلك بأخذ $\{B_1,...,B_n\}$

(و . هـ . م)

مثال (7):

جد قاعدة متعامدة احادية للفضاء الجزئي

 $M = \{(x,y,z,w): x + y-2w = 0 \}$

س الفضاء الاقليدي \mathbb{R}^4 مع الضرب الداخلي الاعتيادي .

الحل :

نحاول اولاً ایجاد ای قاعدة الی M ثم نبنی القاعدة المتعامدة الاحادیة منها . M نکست M بالصبغ M الصبغ $M = \{(x,y,z,w): x = 2w-y = y = y, z = z, w = w \}$

 $A_1=(-1,1,0,0)$, $A_2=(0,0,1,0)$, $A_3=(2,0,0,1)$ المتجهات (2,0,0,1) متعامدة تكون قاعدة الى M . الآن نطبق طريقة كرام _ شمدت لاستخراج قاعدة متعامدة احادية . ضع

 $B_1 = A_1 = (-1, 1, 0, 0)$

$$B_2 = A_2 - (\langle A_2, B_1 \rangle / ||B_1||^2) B_1$$

$$B_3 = A_3$$
- $(\langle A_3, B_2 \rangle / ||B_2||^2) B_2$ - $(\langle A_3, B_1 \rangle / ||B_1||^2) B_1$

$$\langle A_2, B_1 \rangle = 0$$

$$||B_1||^2 = (-1)^2 = (1)^2 = 2$$

$$B_2 = (0,0,1,0)(-0/2)(-1,1,0,0)$$

$$=(0,0,1,0)$$

الان:

$$\langle A_3, B_2 \rangle = 0$$
, $\langle A_3, B_1 \rangle = -2$, $||B_2||^2 = 1$

بالتعويض نحصل على

$$B_3 = (2,0,0,1) (-2/2)(-1,1,0,0)$$

$$=(2,0,0,1)+(-1,1,0,0)$$

$$=(1,1,0,1)$$

$$\|B_1\| = \sqrt{2}, \|B_2\| = 1, \|B_3\| = \sqrt{3}$$

$$C_1 = B_1 / \|B_1\| = (-1/\sqrt{2}, 1/\sqrt{2}, 0, 0)$$

$$C_2 = B_2 / \|B_2\| = (0,0,1,1)$$

$$C_3 = B_3 / \|B_3\| = (1/\sqrt{3}, 1/\sqrt{3}, 0, 1/\sqrt{3})$$

نكون قد حصلنا على قاعدة متعامدة احادية للفضاء الجزئي M ، مكونة من المتجهات C_1, C_2, C_3 .

مثال (8) :

جد قاعدة متعامدة للفضاء الاقليدي
$$P_2(R)$$
 مع الضرب الداخلي $\langle A,B \rangle = \int_{a}^{b} A(x)B(x)dx$

الحل: نبدأ بالقاعدة الطبيعية المكونة من المتجهات

$$A_1 = 1$$
, $A_2 = x$, $A_3 = x^2$

ونطبق طريقة كرام _ شمدت وذلك بأخذ

 $\mathbf{B}_1 = 1$

$$B_2 = x - (\langle x, B_1 \rangle / ||B_1||^2) B_1$$

$$B_3 = x^2 - (\langle x^2, B_2 \rangle / ||B_2||^2)B_2 - (\langle x^2, B_1 \rangle / ||B_1||^2)B_1$$

$$||B_1||^2 = \langle B_1, B_1 \rangle = \int_0^1 (1)(1) dx = 1$$

$$\langle x, B_1 \rangle = \langle x, 1 \rangle = \int_0^1 x \, dx = 1/2$$

$$\langle x^2, B_1 \rangle = \langle x^2, 1 \rangle = \int_0^1 x^2 dx = 1/3$$

$$B_2 = x-1/2$$

$$||B_2||^2 = \langle B_2, B_2 \rangle = \int_0^1 (x-1/2)^2 dx = 1/12$$

$$\langle x^2, B_2 \rangle = \int_0^1 x^2 (x-1/2) dx = 1/12$$

بالتعويض نحصل على

$$B_3 = x^2 - (1/12)/(1/12)(x-1/2) - ((1/3)/1)(1)$$

$$= x^2 - x + 1/6$$

بما ان اي فضاء متجهات يمكن اعتباره كفضاء جزئي من نفسه وبما أنه يمكن دائماً ايجاد قاعدة متعامدة احادية لاي فضاء جزئي من فضاء اقليدي، اذن نكون قد حصلنا على مايلي.

نتيجة (5.3.6) :

لكل فضاء اقليدي (V, <, >) توجد قاعدة متعامدة احادية .

تمارين (5.3)

المعامدة R^2 له الضرب الداخلي الاعتيادي . اي مما يلي يكون مجموعة متعامدة من المتجهات .

$$(-1,2)$$
, $(4,5)$ $(-1,0)$, $(0, 3)$ $(1,0)$

$$(1/\sqrt{2},1/\sqrt{2}),(1)$$
 $(-1/\sqrt{2},1/\sqrt{2}),(0,\sqrt{2})$ $(-1/\sqrt{2},1/\sqrt{2})$

$$(1/\sqrt{5},2/\sqrt{5}),(-1/\sqrt{5},2/\sqrt{5})$$
 (a)

اي من المجموعات اعلاه يكون مجموعة متعامدة احادية ؟.

2 ــ ليكن R³ له الضرب الداخلي الاعتيادي. اي مما يلي يكون مجموعة متعامدة احادية من المتجهات.

$$(1,1,0)$$
, $(-1,1,0)$, $(0,0,1)$ ($\frac{1}{1}$)

$$(1/\sqrt{2},1/\sqrt{2},0), (-1/\sqrt{2},1/\sqrt{2},0), (0,0,1)$$

$$(2/3, -2/3, 1), (2/3, 1/3, -2/3), (1/3, 2/3, 2/3)$$

$$(1/\sqrt{6},1/\sqrt{6},-2/\sqrt{6}),(1/\sqrt{2},-1/\sqrt{2},0)$$

 $P_3(R)$ له الضرب الداخلي المعرف في مثال (3) من البند (5.1). اي مما يلي يكون مجموعة متعامدة من المتجهات ؟.

$$1,x-1$$
 (ب) $(1,x-1/2)$

$$x,3x^2-2,2x^3$$
 (x,x^2-1 (x,x^2-1

الداخلي $3x_1y_1 + 2x_2y_2 > A,B$ ولا تكون متعامدة احادية في حالة الضرب الداخلي الاعتيادي .

5 _ اثبت ان:

$$A_1 = (2,0,0,3), A_2 = (-3,2,-1,2), A_3 = (0,3,6,0)$$

 $A_4 = (-6, -52/5, 26/5, 4).$

تكون مجموعة متعامدة من المتجهات في \mathbb{R}^4 مع الضرب الداخلي الاعتيادي. بجعل طول كل من هذه المتجهات يساوي واحد، احصل على مجموعة متعامدة احادية.

متجه احداثیات المتجه (5,7,6) A=(1,-5,7,6) بالنسبة للقاعدة المتعامدة A=(1,-5,7,6) الموجودة في تمرين (5). (استخدم الملاحظة التي تلي مثال (4)).

- 7 _ اوجد متجه احداثیات المتجه C=(-2,1) بالنسبة للقاعدة المتعامدة R^2 الموجودة في تمرين R^2 (استخدم مبرهنة R^2).
 - 8 ـ ليكن R^2 له الضرب الداخلي الاعتيادي. استخدم طريقة A,B كرام ـ شميدت لتحويل القاعدة A,B الى قاعدة متعامدة احادية.

$$B = (1,0), A = (5,-2)$$
 (ب) $B = (4,1), A = (1,4)$

$$A = (1,0) (3)$$
 $B = (-3,6), A = (1/\sqrt{2}, 1/\sqrt{2}) (5)$
 $B = (0,7)$

- 9 _ ليكن $P_2(R)$ له الضرب الداخلي المعرف في مثال (3) من البند (5.1) المحدم طريقة كرام _ شميدت لتحويل القاعدة الطبيعية $\{1,x,x^2\}$ الى قاعدة متعامدة احادية .
- حيث $\langle A,B \rangle = x_1x_2 + 3y_1y_2 + 5z_1z_2$ حيث R^3 له الضرب الداخلي $B = (x_2,y_2,z_2), A = (x_1,y_1,z_1)$ استخدم طريقة كرام شميدت لتحويل المجموعة :

$$\left\{ \, {\rm A}_1^{} = \, (1,2,3) \, , \, {\rm A}_2^{} = \, (-2,1,0), \, {\rm A}_3^{} = \, (0,-3,0) \, \, \right\}$$
الى مجموعة متعامدة أحادية .

11 ــ ليكن R⁴ له الضرب الداخلي الاعتيادي. أوجد قاعدة متعامدة أحادية للفضاء الجزئي الموَّلد من قبل المجموعة:

$$\{A_1 = (1,1,2,2), A_2 = (-1,1,2,2), A_3 = (0,1,3,5)\}$$

12 _ اذا كانت المجموعة $S=\{A_1,A_2,...,A_n\}$ قاعدة متعامدة احادية للفضاء الاقليدي ($V, \checkmark, \gt)$ فإثبت انه اذا كان A متجهاً في V فان :

$$||A||^2 = \langle A, A_1 \rangle^2 + \langle A, A_2 \rangle^2 + \dots + \langle A, A_n \rangle^2$$
 المنتقلة خطياً في فضاء إقليذي $|A, B, C|$ فيرهن على أنه بالأمكان دائماً ايجاد متجه بالصيغة:

A + t B + sC . C عمودياً على كل من B و C .

Orthogonal Compliments المتممات العمودية

ناقشنا في البند الخامس من الفصل الاول مسألة الجمع المباشر للفضاءات الجزئية. فاذا كان V اي فضاء متجهات منتهي البعد وعلى اي حقل F، وكان M اي فضاء جزئي من V فانه دائماً بالامكان ايجلد فضاء جزئي آخر مثل N بحيث ان V = M⊕N (مبرهنة 5.4.1) ادناه ان وجود N يعتمد على القواعد المختارة وممكن تواجد فضاءات جزئية كثيرة محتلفة عندما تجمع مع M تعطي V ، هذا ماسنراه من خلال الامثلة القادمة. في الفضاءات الاقليدية يمكن ان نعرف مايسمي بالفضاء المتمم العمودي لاي فضاء جزئي وهذا عندما يجمع مع الفضاء الجزئي المعطى ينتج كل الفضاء .

نعریف :

اذا كان V اي فضاء متجهات على اي حقل F وكان M فضاءاً جزئياً من V ، فنقول بان N فضاء متمم الى M اذا وفقط اذا كان N فضاءاً جزئياً من $V = M \oplus N$.

برهنة (5.4.1) :

لأي فضاء جزئي M من اي فضاء متجهات منتهي البعد V ، يوجد فضاء متمم .

البرهان:

ختار اي قاعدة الى M ولتكن $\{A_1,\dots,A_m\}$. هذه عبارة عن مجموعة مستقلة خطياً من المتجهات في V عليه وحسب المبرهنة (1.8.5)، فانه توجد محموعة متجهات $\{B_1,\dots,B_n\}$ بكيث ان المجموعة متجهات $\{B_1,\dots,B_n\}$ تكون

قاعدة الى V . اذا كان N هو الفضاء الجزئي الموَّلد من قبل مجموعة المتجهات $V = M \oplus N$ فان $V = M \oplus N$.

(و. هـ. م)

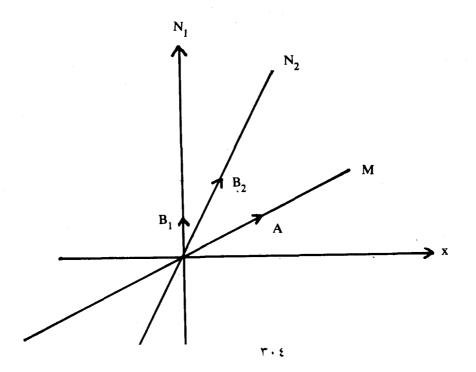
مثال (1) :

اذا کان $M = \{(x,y): x - 2y = 0\}$ فجد فضاءین مختلفین کل منهما یکون متمماً الی $M = \{(x,y): x - 2y = 0\}$

 $B_2 = (1,2)$, : في المجموعة $\{A = (2,1)\}$ تكون قاعدة الى M . ضع $B_1 = (0,1)$

لاحظ ان المجموعة $\{A,B_1\}$ تكون قاعدة الى R^2 والمجموعة $\{A,B_1\}$ تكون قاعدة اخرى وهكذا فانه يمكننا اختيار متجهات مختلفة تحقق الحاصية التالية : عند وضعها مع A تنتج قاعدة الى R^2 .

فاذا كان N_1 هو الفضاء الجزئي الموَّلد من قبل المتجه المضاف B_1 . و N_2 هو الفضاء الجزئي الموَّلد من قبل المتجه المضاف B_2 فان $R^2 = M \oplus N_1$ و الفضاء $R^2 = M \oplus N_2$. الشكل التالي يوضح الفكرة .



وهذا يعني ان اي مستقيم مار بنقطة الاصل وغير منطبق مع M يكون فضاءاً متمماً الى المستقيم M.

ان فكرة ايجاد فضاء متمم فكرة سهلة وتعتمد على اختيار قاعدة للفضاء الجزئي وتوسيعها الى قاعدة لكل الفضاء وهذا النوع من الامثلة قد نوقش سابقاً في الفصل الاول. ان هدفنا في هذا البند مناقشة نوع خاص من المتممات سنسميه المتممات العمودية.

نركز اهتمامنا الان على فضاء اقليدي (V, ८, ১) ونأحذ MCV، اي فضاء جزئي من V. نعرف المجموعة الجزئية : M = {A &V: <A,B>= 0, \ B & M}

اي ان M هي تلك المجموعة الجزئية التي تحتوي على المتجهات التي تكون عمودية على كل متجه في M . نلاحظ مايلي :

مبرهنة (5.4.2) :

اذا كان M فضاءاً جزئياً من الفضاء الاقليدي (٧, ١, ٧).

فان:

ا _ M^{\perp} يكون فضاءاً جزئياً .

 $M \cap M' = \{0\} \perp 2$

 $V = M \oplus M^{\perp} - 3$

 $(M^{-1})^{\perp} = M - 4$

البرهان:

1 __ افرض ال A,B €M . المطلوب ان نبرهن على ان A,B €M + المطلوب ان نبرهن على ان A+B €M فذا د الغرض نأخذ C اي متجه في M فنلاحظ

$$\langle C,A+B\rangle = \langle C,A\rangle + \langle C,B\rangle$$

= 0 + 0

=0

اذن يكون A+B عمودياً على اي متجه في M وبالتالي يكون A+B عمودياً على اي متجه في A+B و A+B عدد حقيقي و A+B الطريقة نفسها، لو كان A+B و A+B و A+B اي متجه في A+B فان A+B اي A+B اي متجه في A+B فان A+B اي متجه في A+B فان A+B يكون فضاءاً جزئياً من A+B وهذا يعنى ان A+B يكون فضاءاً جزئياً من A+B

2 _ خذ A €M \(\bar{M} \) عليه ومن التعريف ينتج

 $\langle A, A \rangle = 0$

ومن خصائص الضرب الداخلي نحصل على A=0 واذن $M \cap M^{\dagger} = \{0\}$

 $A \in V$ متجه $V = M \oplus M$ نبرهن انه لکل متجه $V = M \oplus M$ نبرهن انه لکل متجه A = B + C یوجد A = B + C کیث ان A = B + C فتار قاعدة متعامدة احادیة الی M ولتکن $\{A_1, ..., A_m\}$. (طریقة کرام M مثمدت).

 $B = \langle A, A_1 \rangle A_1 + ... + \langle A, A_m \rangle A_m$ نفط نفط ناه لمن الواضح ان $B \in M$. فاذا برهنا على ان $C \in M$ نكون قد اكملنا البرهان . فلاحظ اولاً ان $C \in M$ عمودياً على كل متجه في قاعدة $C \in M$ ، اي

$$\langle C, A_k \rangle = \langle A - B, A_k \rangle$$

$$= \langle A, A_k \rangle - \langle B A_k \rangle$$

$$= \langle A, A_k \rangle - \langle \sum_{i=1}^{m} \langle A, A_i \rangle A_i, A_k \rangle$$

$$= \langle A, A_k \rangle - \sum_{i=1}^{m} \langle A, A_i \rangle \langle A_i, A_k \rangle$$

 $i \neq k$ لکل $\langle A_i,A_k \rangle = 0$ به ان المجموعة $\{A_1,...,A_m\}$ متعامدة احادية فان $\langle A_k,A_k \rangle = 1$. بالتعويض نحصل على $\langle C,A_k \rangle = \langle A,A_k \rangle - \langle A,A_k \rangle < A_k,A_k \rangle$

 $=\langle A, A_k \rangle - \langle A, A_k \rangle = 0$

 $D \in \sum_{i=1}^{m} r_i A_i$ یکون $D \in M$ وبہذا نحصل علی $D \in M$

$$\langle D,C \rangle = \langle \sum_{i=1}^{M} r_i A_i, C \rangle$$

$$= \sum_{i=1}^{M} r_i \langle A_i, C \rangle$$

$$= \sum_{i=1}^{M} r_i, 0 = 0$$

$$C \in M \quad \text{i.s.} \quad M$$

عليه يكون $C \in M$ عمودياً على كل متجه في M وبالتالي يكون $C \in M$.

 $A \in M$ ونلاحظ $A \in M$ لكل $A \in M$ لكل $A \in M$ ونلاحظ $A \in M$ لكل $A \in M$ اذا وفقط اذا $A \in (M^{\frac{1}{2}})$.

(و. هـ. م)

تعریف :

اذا كان (V,<,>) فضاءاً اقليدياً و M فضاءاً جزئياً من V فان الفضاء الجزئي M يسمى الفضاء المتمم العمودي الى M .

الان لو اعطى لنا فضاءٌ جزئي M من فضاء اقليدي (V,<,>) وطلب منا ايجاد M فنتبع الخطوات التالية :

- $A_1,...,A_m$ ولتكن M ولتكن واعدة الى M
- $A_1,\ldots,A_m,B_1,\ldots,B_n$ وينوسع القاعدة اعلاه الى قاعدة A_1,\ldots,A_m
- قاعدة متعامدة _ نطبق طريقة كرام _ شمدت للحصول على قاعدة متعامدة _ $A_1, ..., A_m, B_1, ..., B_n$ }

عندئذ ستكون المجموعة $\{B_1,\dots,B_n\}$ قاعدة متعامدة الى M وذلك لان كل متجه فيها يكون عمودياً على كل متجه في M .

مثال (2) :

جد الفضاء المتمم العمودي للفضاء الجزئي

 $M = \{(x,y): x-2y = o \}$

وذلك في الفضاء الاقليدي R^2 مع الضرب الداخلي الاعتيادي .

M الحظنا في المثال (1) من هذا البند ان $A = \{2,1\}$ تكون قاعدة الى $A = \{3,1\}$

نأخذ
$$\{A=(2,1),B=(0,1)\}$$
 كقاعدة الى \mathbb{R}^2 الان نطبق طريقة كرام _ شمدت

$$A = A = (2,1)$$

$$B = B - (\langle B, A \rangle / ||A||^2)A'$$

$$=(0,1)-1/5(2,1)=(-2/5,4/5)$$

$$\mathbf{B} = (-2/5,4/5)$$
 ليكن \mathbf{M} الفضاء المولد من قبل المتجه $\mathbf{M} = \{a(-2/5,4/5): a \in \mathbb{R} \}$

$$=\{(x,y):2x+y=0\}$$
 . M عبارة عن مستقيم عمودي على المستقيم M

اذا كان M فضاءً جزئياً من فضاء اقليدي $(\checkmark, \checkmark, \checkmark)$ فان $V = M \oplus M$ ان $V = M \oplus M$ ان $V = M \oplus M$ وذلك حسب المبرهنة (5.4.2). اذن يمكن لاي متجه في M ومتجه في M ومتجه في M ومتجه في M .

تعریف:

B منا المتجه $A \in V$ اذا كان $C \in M^+$ B M, A = B + C فان المتجه $A \in V$ يسمى مسقط (Projection) المتجه $A \in V$ المتجه $A \in V$

مثال (3) ·

جد مسقط المتجه
$$A = (3,4)$$
 على الفضاء الجزئي $M = \{(x,y): x-2y=0\}$

وذلك في الفضاء الاقليدي R2 مع الضرب الداخلي الاعتيادي.

الحل : لقد لاحظنا في المثال (2) ان المجموعة

 $\left\{A_1=(2,1),\,A_2=(-\,2/5,4/5)\,
ight\}$ تكون قاعدة متعامدة الى R^2 . R^2 بتطبيق مبرهنة (5.3.4) تحون قاعدة متعامدة الى

$$\{A_1 = (2/\sqrt{5}, 1/\sqrt{5}), A_2 = (-1/\sqrt{5}, 2/\sqrt{5})\}$$

 M_0 قاعدة متعامدة احادية الى A_1 كقاعدة متعامدة الحدة الى A_2 قاعدة الى A_1 كقاعدة متعامدة الحدة الى A_1 , A_2 كتركيب خطى من A=(3,4) تعلمنا كيف نكتب $A=(3,4)=\langle A,A_1\rangle$ $A_1^{\prime}+\langle A,A_2\rangle$ A_2^{\prime}

$$= 2\sqrt{5}(2/\sqrt{5},1/\sqrt{5}) + \sqrt{5}(-1/\sqrt{5},2/\sqrt{5})$$

$$=(4,2)+(-1,2)$$

نلاحظ هنا ان $B = (4,2) \in M^{\perp}$ وعليه يكون المتجه $B = (4,2) \in M$ مسقط A = (3,4). A = (3,4)

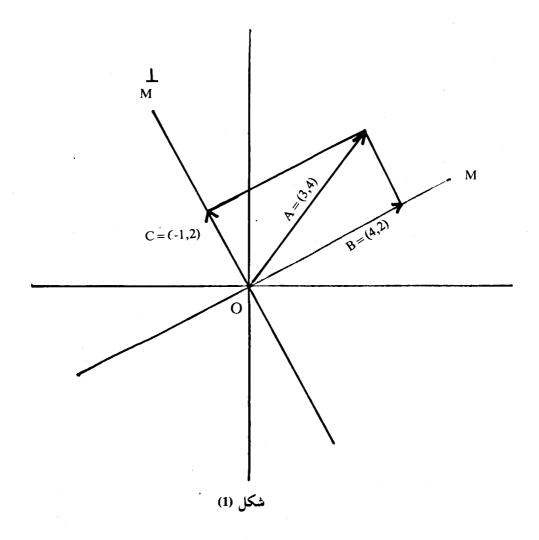
نلاحظ هنا ان ايجاد قاعدة متعامدة احادية الى الفضاء الجزئي M يكفي لايجاد مسقط اي متجه على M وذلك بتطبيق المبرهنة (5.3.1). الشكل 1 يوضح فكرة المسقط على فضاء جزئي.

يَمَكننا ان نلخص طريقة ايجاد المساقط على فضاء جزئي M من فضاء اقليدي (V, <, >) كالاتي :

 $\{A_1,...,A_m\}$ ي ولتكن $\{M_1,...,A_m\}$.

: على M يكون يكون $A \in V$ على M يكون

 $B = \langle A, A_1 \rangle A_1 + ..., + \langle A, A_m \rangle A_m$



مثال (4):

جد مسقط المتجه A=(2,1,0,1) على الفضاء الجزئي جد مسقط المتجه $M=\{(x,y,z,w):x+y-z=0,z+2w=0\}$ الداخلي الاعتيادي .

الحل: نكتب M بالصيغة

$$\begin{split} M = & \{(x,y,z,w) : x = -y-2w,z = -2w \} \\ \text{in } M & \text{if } A_2 = (-2,0,-2,1), A_1 = (-1,1,0,0) \} \text{ where } A_2 = (-2,0,-2,1), A_1 = (-1,1,0,0) \} \\ \text{in } M & \text{if } A_2 = (-2,0,-2,1), A_1 = (-1,1,0,0) \} \\ \text{in } M & \text{if } A_1 = A_1 \\ B_1 = A_1 \\ B_2 = A_2 - (A_2,B_1 / ||B_1||^2) B_1 \\ = (-2,0,-2,1) - (2/2)(-1,1,0,0) \end{split}$$

$$C_1 = B_1 / ||B_1|| = (-1/\sqrt{2}, 1/\sqrt{2}, 0,0)$$

 $C_2 = B_2 / ||B_2|| = (-1/\sqrt{7}, -1/\sqrt{7}, -2/\sqrt{7}, 1/\sqrt{7})$

=(-1,-1,-2,1)

اذن تكون المجموعة $\{C_1,C_2\}$ قاعدة متعامدة احادية الى M ، وعليه يكون مسقط المتجه A=(2,1,0,1) على A=(2,1,0,1)

$$B = \langle A, C_1 \rangle C_1 + \langle A, C_2 \rangle C_2$$

$$= (-1/\sqrt{2})(-1/\sqrt{2}, 1/\sqrt{2}, 0, 0) + (-2/\sqrt{7})(-1/\sqrt{7}, -1/\sqrt{7}, -2/\sqrt{7}, 1/\sqrt{7})$$

$$= (1/2, -1/2, 0, 0) + (2/7, 2/7, 4/7, -2/7)$$

$$= (11/14, -3/14, 4/7, -2/7)$$

تمارين (5.4)

الصورة A=(2,3) له الضرب الداخلي الاعتيادي. عبر عن A=(2,3) بالصورة A=1 له المولد من قبل A=B+C عيث A=B+C عيكون عمودياً على A=(-1,4)

اذا علمت بان $M=\{(x,y,z):x+2y-z=o\ \}$ القضاء المتمم العمودي $M=\{(x,y,z):x+2y-z=o\ \}$

وذلك في الفضاء ${\bf R}^3$ مع الضرب الداخلي الاعتيادي . اوجد مسقط المتجه ${\bf M}$. ${\bf M}$ على ${\bf M}$.

4 _ كرر التمرين (3) مع الفضاء الجزئي M المولد من قبل مجموعة المتجهات . $B = (-1,-1,0,0).\{A_1 = (1,-2,3,5),A_2 = (0,1,1,4).\}$

له الضرب الداخلي $M_2(R)$ له الضرب الداخلي

 $\langle A,B \rangle = a_1b_1 + 2a_2b_2 + 3a_3b_3 + 4a_4b_4$

$$B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \qquad A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$$

$$M = \left\{ \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} : a_4 = 0, a_1 - a_2 + a_3 = 0 \right\}$$
 $\exists a_4 = 0, a_1 - a_2 + a_3 = 0$

in
$$M^{\perp}$$
 . Moreover, in M^{\perp} . Moreover

 \mathbf{M} عبر عن كل من المتجهات اعلاه كحاصل جمع متجهين احدهما في \mathbf{M} والاخر يكون عمودياً على \mathbf{M} .

$$(V, <, >)$$
 ليكن كل من M و N فضاءاً جزئياً من الفضاء الاقليدي M فضاءاً جزئياً من الفضاء الاقليدي M ان $M + N$ برهن على ان :

$$(M \cap N) = M + N$$

(5.5): التحويلات العمودية (Orthogonal trnsformations)

عند دراسة الدوال بين الزمر، تدرس تلك الدوال التي تحفظ البنية الجبرية، اي الدوال التي تحفظ العملية الثنائية وهذه الدوال تسمى تماثلات (homorphisms). عند دراستنا للدوال بين فضاءات المتجهات، درسنا التحويلات الخطية التي كل منها يحفظ الجمع ويحفظ الضرب القياسي. الفضاءات الاقليدية هي عبارة عن فضاءات متجهات منتهية البعد وعلى حقل الاعداد الحقيقية لكن معرف عليها بنية جبرية اضافية وهي الضرب الداخلي، لذلك فمن الطبيعي ان ندرس تلك التحويلات الخطية التي تحفظ الضرب الداخلي، لكننا سندرس حالة خاصة وهي ان المجال يساوى المجال المقابل.

تعریف: ٠

 $T:V \rightarrow V$ اذا كان (V, <, >) فضاءاً اقليدياً فان اي تحويل خطي (V, <, >) اذا كان يسمى تحويلاً عمودياً (orthogonal transformation) اذا وفقط اذا كان $\langle T(A), T(B) \rangle = \langle A, B \rangle$

وذلك لاي زوج من المتجهات A,B EV.

مثال (1) :

برهن على ان التحويل الخطي $R^2 \rightarrow R^2$ ، المعرف بالصيغة ، $T(x,y) = \left((1/\sqrt{2})x - (1/\sqrt{2})y, (1/\sqrt{2})x + (1/\sqrt{2})y\right)$ يكون تحويلاً عمودياً وذلك بالنسبة للضرب الداخلي الاعتيادي على R^2 .

الحل : نأخذ اي زوج من المتجهات

$$A_1 = (x_1, y)$$
, $A_2 = (x_2, y_2)$

ونلاحظ مايلي

 $\langle A_1, A_2 \rangle = x_1 x_2 + y_1 y_2$

$$\langle T(A_1), T(A_2) \rangle = ((1\cancel{2})x_1 - (1\cancel{2})y_1) ((1\cancel{2})x_2 - (1\cancel{2})y_2) + ((1\cancel{2})x_1 + (1\cancel{2})y_1) ((1\cancel{2})x_2 + (1\cancel{2})y_2)$$

$$= (1/2)(x_1x_2 - x_1y_2 - y_1x_2 + y_1y_2) + (1/2)(x_1x_2 + x_1y_2 + y_1x_2 + y_1y_2)$$

$$=(1/2)(2x_1^2x_2^2+2y_1^2y_2^2)$$

$$= x_1 x_2 + y_1 y_2$$

$$\langle A_1, A_2 \rangle = \langle T(A_1), T(A_2) \rangle$$

اذن

لهذا يكون T تحويلاً عمودياً .

مبرهنة (5.5.1) :

اذا كان (V, <, >) فضاءاً اقليدياً و $V \leftrightarrow V$ تحويلاً خطياً فان العبارات التالية تكون متكافئة .

- T _ 1 تحويل عمودي.
- یکون $A \in V$ یحفظ اطوال المتجهات ، بعبارة اخری ، لکل $A \in V$ یکون T = 2
- الطول T(V) متجه احادي الطول $A \in V$ ، يكون المتجه الحادي الطول الصاً .

البرهان :__

: لنفرض ان $V \leftrightarrow T:V$ تحويل عمودي . لكل $A \to V$ يكون لدينا : $|T(A)|^2 = \langle T(A), T(A) \rangle = \langle A, A \rangle = ||A||^2$

عليه فان T يحفظ اطوال المتجهات. الآن نبرهن العكس.

 $\langle T(A+B),T(A+B) \rangle - \langle T(A-B),T(A-B) \rangle$

$$= 4 \langle T(A), T(B) \rangle \tag{1}$$

الطرف الايسر للمعادلة اعلاه يساوي:

 $||T(A + B)||^2 - ||T(A - B)||^2$

لكن T يحفظ اطوال المتجهات ، عليه يكون الطرف الايسر مساوياً الى $|A+B|^2-|A-B|^2$

يمكننا كتابة المقدار اعلاه بالصيغة:

 $\langle A+B,A+B \rangle - \langle A-B,A-B \rangle$

عند التبسيط نحصل على ان المقدار اعلاه يكون مساوياً الى

4 <A,B >

بالرجوع الى المعادلة (1) نحصل على :

 $4 \langle T(A), T(B) \rangle = 4 \langle A, B \rangle$

$$\langle T(A), T(B) \rangle = \langle A, B \rangle$$
 اي ان

بذلك يكون T تحويلاً عمودياً. بهذا نكون قد برهنا على ان العبارة (1)

تكافيء العبارة (2) ونترك تكافؤ العبارتين (2) و (3) وتكافؤ العبارتين (3) و (1) للقاريء.

(و. هـ. م)

المبرهنة اعلاه تنتج ان التحويل العمودي V
ightarrow V يحفظ الزاوية بين المتجهات.

مبرهنة (5.5.2) :

اذا كان $V \to T:V$ تحويلاً عمودياً فان T يكون تحويلاً غير معتل (تشاكلاً).

البرهان:

سنبرهن اولاً على ان $\{o\}$. KerT= $\{o\}$. لهذا الغرض نفرض ان $A \in V$. بحيث T(A) = O . T(A) = O . T(A) = O الضرب الداخلي وتعريف التحويل العمودي نحصل على ان A = O . بذلك يكون A = O . بما ان A = O فضاءً اقليدي . فانه يكون منتهي البعد . الان المبرهنة (2.2.3) تنص على ان

T وبذلك يكون dim(Im(V) = dim(V)) عليه نحصل على dim(Im(V) = dim(V)) وبذلك يكون تشاكلاً حسب المبرهنة (2.3.3).

(و. هـ.م)

 $\dim(\ker T) + \dim \operatorname{Im}(V) = \dim(V)$

مبرهنة (5.5.3) :

تركيب اي تحويليين عموديين يكون تحويلاً عمودياً.

البرهان:

اذا كان كل من $V \leftrightarrow V$, $T:V \rightarrow V$ تحويلاً عمودياً فانه لاي متجه $A \in V$ متجه

||SoT(A)|| = ||S(T(A))|| = ||T(A)|| = ||A|| المرهنة (5.5.1) تنص على ان التحويل يكون عمودياً اذا وفقط اذا حفظ اطوال

المتجهات. بما ان SoT يحفظ اطوال المتجهات كما مبين اعلاه فانه يكون تحويلاً عمودياً.

(و. ه. م)

ان مصفوفة التحويل العمودي بالنسبة لقاعدة متعامدة احادية تكون مصفوفة خاصة ، سنوضح خصائصها في المبرهنة التالية .

مبرهنة (5.5.4) :

اذا كانت $\{A_1,A_2,...,A_n\}$ قاعدة متعامدة احادية للفضاء $S=\{A_1,A_2,...,A_n\}$ و $V \leftrightarrow V$ تحويلاً عمودياً على V ، مصفوفته بالنسبة للقاعدة S هي M ، فان

ا سے کل صف من صفوف M یکون احادی الطول، وذلك باعتباره متجهاً في R^n بالنسبة للضرب القیاسی الاعتبادی .

2 _ صفوف M تكون مجموعة متعامدة من المتجهات.

النسبة لاعمدة (2),(2) اعلاه تتحققان بالنسبة لاعمدة $M^{-1} = M^T = 3$. M

البرهان:

لنفرض ان $M = (a_{ij})$ من تعریف مصفوفة التحویل الحطي بالنسبة لقاعدة معینة ، نحصل علی :

 $T(A_i) = a_{i1}A_1 + a_{i2}A_2 + \dots + a_{in}A_n$

وذلك لكل i:1,...,n بذلك نحصل على

$$\langle A_i, A_i \rangle = \langle T(A_i), T(A_i) \rangle$$

$$= \left\langle \sum_{k=1}^{n} a_{ik} A_{k}, \sum_{l=1}^{n} a_{il} A_{l} \right\rangle$$

$$= \sum_{k=1}^{n} \sum_{l=1}^{n} a_{ik} a_{jk} \left\langle A_{k}, A_{l} \right\rangle$$

$$= \sum_{k=1}^{n} a_{ik} a_{jk}$$

 $\langle A_k,A_k \rangle =1$ و $k \neq 1$ و متعامدة $\langle A_k,A_l \rangle =0$ عندما $k \neq 1$ و دلك لان القاعدة $S=\{A_1,\dots,A_n\}$ متعامدة احادية .

 $X_i = (a_{i1}, a_{i2}, \dots, a_{in})$: the equation $i = (a_{i1}, a_{i2}, \dots, a_{in})$

لاصبح المتحه $X_i \in \mathbb{R}^n$ ، يمثل الصف i للمصفوفة M . ومن العلاقة اعلاه نحصل على ان

$$\langle X_i, X_i \rangle = \langle A_i, A_i \rangle$$

$$\langle X_i, X_i \rangle = ||X_i||^2 = 1$$
 : بذلك نحصل على

$$\langle X_i, X_j \rangle = 0$$

وذلك لكل i ≠ j . هذا يبرهن (1),(2) .

(و. هـ. م)

مثال (2) :

جد مصفوفة التحويل العمودي $R^2 - R^2$ ، المعرف بالصيغة $T(x,y) = \left((1/\sqrt{2})x - (-1/\sqrt{2})y, (1/\sqrt{2})x + (1/\sqrt{2})y\right)$

وذلك بالنسبة للقاعدة المتعامدة الاحادية $S = \{A_1, A_2\}$ حيث وذلك بالنسبة للقاعدة المتعامدة الاحادية $A_2 = (-2/\sqrt{5}, 1/\sqrt{5}), A_1 = (1/\sqrt{5}, 2/\sqrt{5})$ وردت في المبرهنة (5.5.4).

$$T(A_1) = (1/\sqrt{10}, 3/\sqrt{10}) = (1/\sqrt{2})A_1 + (1/\sqrt{2})A_2$$
 : in the second of the seco

 $T(A_2) = (-3/\sqrt{10}, -1/\sqrt{10}) = (-1/\sqrt{2})A_1 + (1/\sqrt{2})A_2$ عليه ، تكون مصفوفة T بالنسبة للقاعدة اعلاه

$$\mathbf{M} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

نلاحظ ان طول كل صف وكل عمود يساوي واحد، كذلك فان صفي للصفوفة $M^T\!=\!M^{-1}$ وبالتالي يكون $M^T\!=\!M^{-1}$ المصفوفة M متعامدين ، وكذلك فان

تعریف:

اذا كانت M مصفوفة مربعة على حقل الاعداد الحقيقية فان M تسمى مصفوفة عمودية اذا وفقط اذا $MM^T = I$

المبرهنة (5.5.4) تنص على ان مصفوفة التحويل العمودي بالنسبة لاي قاعدة متعامدة احادية تكون مصفوفة عمودية. ان العكس يكون صحيحاً ايضاً، اي ان المصفوفة العمودية تؤدي الى تحويل عمودي كما في المبرهنة التالية.

مبرهنة (5.5.5) :

اذا كانت M مصفوفة عمودية ذات درجة $n \times n$ واذا كانت $S = \{A_1, ..., A_n\}$ قاعدة متعامدة احادية للفضاء الاقليدي $S = \{A_1, ..., A_n\}$ فانه يوجد تحويل عمودي $T:V \to V$ ، مصفوفته بالنسبة للقاعدة S تساوي S

البرهان:

اذا کان
$$A = x_1 A_1 + ... + x_n A_n$$
 فان

$$T(A) = y_1 A_1 + \dots + y_n A_n$$

$$(y_1, y_2, ..., y_n) = (x_1, x_2, ..., x_n)M$$

واضح ان T يكون تحويلاً خطياً والان نبرهن على انه تحويلاً عمودياً . اولاً لاحظ ان

$$||T(A)||^2 = \langle T(A), T(A) \rangle$$

$$= y_1^2 + ... + y_n^2$$

وذلك حسب المبرهنة (5.3.3) لان S قاعدة متعامدة احادية. عليه نحصل على :

$$||T(A)||^2 = (y_1, y_2, ..., y_n)(y_1, y_2, ..., y_n)^T$$

$$= (\mathbf{x}_1, \dots, \mathbf{x}_n) \mathbf{M} \mathbf{M}^{\mathrm{T}} (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\mathrm{T}}$$

$$= (x_1, ..., x_n)I(x_1, ..., x_n)^T$$

$$= x^2 + ... + x^2$$

$$= ||A||^2$$

بذلك يكون T تحويلاً عمودياً . نترك تحقيق ان M تكون مصفوفة T بالنسبة للقاعدة S ، للقارىء

(و. هـ. م)

مثال (3)

جد التحويل العمودي $R^3 \to R^3$ ، الذي مصفوفته بالنسبة للقاعدة الطبيعية (المتعامدة الاحادية) تكون المصفوفة العمودية :

$$M = \begin{bmatrix} 2/3 & 2/3 & 1/3 \\ -2/3 & 1/3 & 2/3 \\ 1/3 & -2/3 & 2/3 \end{bmatrix}$$

 R^3 الحل: $A = (x_1, x_2, x_3)$ الحل: لتأخذ $A = (x_1, x_2, x_3)$

$$A_1 = (1,0,0), A_2 = (0,1,0), A_3 = (0,0,1)$$

عناصر القاعدة الطبيعية. اذن

$$A = x_1 A_1 + x_2 A_2 + x_3 A_3$$

$$(y_1, y_2, y_3) = (x_1, x_2, x_3) M$$

= $(1/3)(2x_1-2x_2+x_3, 2x_1+x_2-2x_3, x_1+2x_2+2x_3)$

$$T(A) = T(x_1, x_2, x_3) = y_1 A_1 + y_2 A_2 + y_3 A_3$$

$$= (1/3)(2x_1 - 2x_2 + x_3, 2x_1 - x_2 - 2x_3, x_1 + 2x_2 + 2x_3)$$

مثال (4) :

جد مصفوفة عمودية 3×3 ، صفها الأول يكون المتجه $X_1 = (1/\sqrt{2}, 0, 1/\sqrt{2})$

الحل: بما ان صفوف المصفوفة العمودية عبارة عن متجهات متعامدة واحادية الطول فعلينا ايجاد متجهين Y_2,Y_3 متعامدين وكل منهما يكون احادي الطول وعمودي على فعلينا ايجاد متحهها الاول هو لمسألة تكافيء ايجاد قاعدة متعامدة احادية الى \mathbb{R}^3 ، متجهها الاول هو X_1 . نطبق طريقة كرام — شمدت على المتجهات.

$$\begin{split} X_1 &= (1/\sqrt{2},0,1/\sqrt{2}), A_2(1,0,0), A_3 = (0,1,0) \\ B_2 &= A_2 - (\langle A_2, X_1 \rangle / \| X_1 \|^2) X_1 \\ B_3 &= A_3 - (\langle A_3, B_2 \rangle / \| B \|^2) B_2 - (\langle A_3, X_1 \rangle / \| X_1 \|^2) X_1 \\ \text{yet } &= A_2 - (\langle A_3, X_1 \rangle / \| X_1 \|^2) X_1 \\ B_2 &= (1,0,0) - (1/\sqrt{2}) (1/\sqrt{2},0,1/\sqrt{2}) = (1/\sqrt{2},0,-1/\sqrt{2}) \\ B_2 &= (1,0,0) - (1/\sqrt{2}) (1/\sqrt{2},0,1/\sqrt{2}) = (1/\sqrt{2},0,-1/\sqrt{2}) \\ B_3 &= (0,1,0) \\ Y_2 &= B_2/\| B_2 \| = (1/\sqrt{2},0,-1/\sqrt{2}) \\ Y_3 &= B_3 = (0,1,0) \\ M &= 1/\sqrt{2} \qquad 0 \qquad 1/\sqrt{2} \\ M &= 1/\sqrt{2} \qquad 0 \qquad -1/\sqrt{2} \end{split}$$

تكون مصفوفة عمودية وتحقق المطلوب.

تمارين (5.5)

المعرف الداخلي الاعتيادي . برهن على ان التحويل
$$R^2 \to R^2$$
 $T:R^2 \to R^2$ $T:R^2 \to R^2$ $T(x,y) = (x \cos \theta + y \sin \theta , -x \sin \theta + y \cos \theta)$.
 يكون تحويلاً عمودياً وذلك لاي قيمة الى θ .
 يكون تحويلاً عمودياً وذلك لاي قيمة الى θ .
 2 — اي من التحويلات التالية يكون تحويلاً عمودياً .
 $T(x,y,z) = (y,2x,z)$ ، $T:R^3 \to R^3$ (أ) $T(x,y,z) = (x,-y,-z)$ ، $T:R^3 \to R^3$ (ب) $T:P_2(R) \to P_2(R)$ ($T:P_2(R) \to P_2(R)$) $T(a+bx+cx^2) = a+((b+c)/\sqrt{2})x+((-b+c)/\sqrt{2})x^2$

$$(T:P_3(R) → P_3(R) (c)$$

 (C)

$$T(a+bx+cx^2+dx^3) = -b+ax+dx^2-cx^3$$

 $1/\lambda$ اذا كانت λ قيمة ذاتية للمصفوفة العمودية λ فبرهن على ان λ تكون ايضاً قيمة ذاتية الى λ

4 _ برهن على ان كل من المصفوفات التالية تكون مصفوفة عمودية .

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \qquad \begin{bmatrix} 1/2 - \sqrt{3}/2 & 0 \\ 0 & 0 & -1 \\ \sqrt{3}/2 & 1/2 & 0 \end{bmatrix}$$

تكون مصفوفة عمودية لاي قيمة للعُدد الحقيقي a . "

فرهن $B^T=-B$ مصفوفة حقيقية مربعة ومتناظرة متخالفة ($B^T=-B$) فبرهن على ان المصفوفة I+B تكون مصفوفة قابلة للقلب وان المصفوفة $A=(I-B)(I+B)^{-1}$

$$B = \begin{pmatrix} 0 & a \\ 0 & -a \end{pmatrix}$$
 اوجد A في تمرين (6) ثم حقق $B = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$

كونها مصفوفة عمودية.

8 _ اوجد مصفوفة عمودية يكون صفها الاول (5/13,12/13,0)

9 __ اوجد مصفوفة عمودية يكون صفها الاول (2/3, -2/3,1) وصفها الثاني (1/3,2/3,2/3).

الول والثاني كما يلي
$$\begin{bmatrix} 0 \\ 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}$$
 مصفوفة عمودية يكون عموداها الاول والثاني كما يلي $\begin{bmatrix} -1/\sqrt{2} \\ \sqrt{2}/3 \\ -1/3\sqrt{2} \\ \sqrt{2}/3 \end{bmatrix}$

- ان AB مصفوفة عمودية $n \times n$ فبرهن على ان AB تكون ايضاً مصفوفة عمودية .
 - $det(A) = |A| = \pm 1$: اذا كانت A مصفوفة عمودية فبرهن على ان

الفصل السادس

الصيغ ثنائية الخطية والصيغ التربيعية Bilinear and Quadratic Forms

(6.0) مقدمــة

الشروط الثلاثة الاولى تنص على ان تلك الدالة تكون خطية في كل متغير . سندرس في هذا الفصل تلك الدوال التي تحقق الشروط الثلاثة الاولى وليس بالضرورة ان تحقق الشرط الرابع وسنطلق عليها اسم الدوال ثنائية الخطية . هذه الدراسة ستؤدي بنا الى دراسة الصيغ التربيعية . فمثلاً الطرف الايسر للمعادلة

$$x^2 + 2xy + y^2 = 3$$

عبارة عن صيغة تربيعية بالمتغيرين X,y. في التفاضل والتكامل هذا النوع من المعادلات يمثل قطع مخروطي، لكن وجود الحد «2xy» كان عائق في معرفة نوعية القطع المخروطي، لذلك كنا نلجأ الى مسألة تدوير المحاور وكتابة المعادلة اعلاه متغيرات جدد من دون ان يكون بها حد ضرب تقاطعي Cross product)

(term. ان مسألة تحويل صيغة تربيعية الى صيغة بسيطة (قطرية) هي موضوع دراستنا في هذا الفصل حيث سنستخدم معظم المفاهيم السابقة التي درسناها للبرهنة على ان اي صيغة تربيعية بأي عدد من المتغيرات يمكن ان تتحول الى صيغة قطرية بمتغيرات جدد بعد ذلك نقدم الامثلة التطبيقية في معرفة القطوع المخروطية.

لقد جزأنا هذا الفصل الى بندين الأول يناقش الدوال ثنائية الخطية وخصائصها والثاني يناقش الدوال التربيعية والصيغ التربيعية وتطبيقاتها.

(6.1) الدوال ثنائية الخطية

تعریف :

اذا كان V فضاء متجهات على حقل F ، فبدالة ثنائية الخطية على V ، نقصد دالة :

 $f: V \times V \rightarrow F$

تحقق مايلي

- A_1 , وذلك لأي متجهات $f(A_1 + A_2, B) = f(A_2, B) + f(A_1, B) _ 1$. $A_2, B \subseteq V$
- A, وذلك لأي متجهات $f(A, B_1 + B_2) = f(A, B_1) + f(A, B_2) _ 2$. $B_1, B_2 \in V$
- A, B \in V وذلك لاي معهوات $f(rA, B) = rf(A, B) = f(A, rB) _ 3$. $r \in F$ ولأي عدد قياسي عدد قياسي

ر مثال (1):

نعرف دالة
$$F = R$$
 ، $V = R^n$

 $f: R^n \times R^n \rightarrow R$

 $f(A, B) = a_1b_1 + a_2b_2 + + a_nb_n$

بالصيغه

وذلك لاي زوج من المتجهات $A=(a_1,\,...,\,a_n),\,B=(b_1,\,...,\,b_n)$ الدالة $A=(a_1,\,...,\,a_n),\,B=(b_1,\,...,\,b_n)$ اعلاه تكون دالة ثنائية الخطية لانها تعرف الضرب الداخلي الاعتيادي على $A=(a_1,\,...,\,a_n)$ اعلاه تكون دالة ثنائية الخطية لانها تعرف الضرب الداخلي الاعتيادي على $A=(a_1,\,...,\,a_n)$ اعلاه تعرف البند (5.1) من البند (5.1)).

مثال (2):

بصورة عامة، اذا كان (V, <, ,) فضاءاً اقليدياً فإن دالة الضرب الداخلي

 $, : V \times V \rightarrow R$

تكون دالة ثنائية الخطية. (راجع تعريف الضرب الداخلي في الفصل الخامس).

مثال (3):

اذا كانت $M=(a_{ij})$ مصفوفة $n \times n$ على الحقل F فأنه يمكن تعريف دالة ثنائية الحطية على F^n كالاتي :

 $f: F^n \times F^n \longrightarrow F$

 $f(X, Y) = XMY^T$

$$\mathbf{Y} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \dot{\mathbf{y}}_n \end{pmatrix}$$

$$\mathbf{Y} = \begin{pmatrix} \mathbf{y}_1, \, \dots, \, \mathbf{y}_n \end{pmatrix}, \, \mathbf{X} = (\mathbf{x}_1, \, \dots, \, \mathbf{x}_n)$$
 الم

عند حساب الصيغة اعلاه نحصل على:

 $f(X,Y) = \sum_{j} \sum_{i} x_{i} a_{ij} y_{j},$

سوف نوضح كيف ان كل دالة ثنائية الخطية تعطى مصفوفة وبالعكس.

مبرهنة (6.1.1) :

ليكن V فضاء متجهات منتهي البعد وعلى الحقل F ، ولتكن $S = \{A_1, \ldots, A_n\}$

M(f) على V تعين مصفوفة $F: V \times V \longrightarrow F$ على V تعين مصفوفة السبة للقاعدة S بحث ان

 $f(A, B) = X M (f) Y^{T}$

B , A احداثیات $Y=(y_1,\,...,\,y_n),\,X=(x_1,\,...,\,x_n)$ التوالي ، وذلك بالنسبة للقاعدة S .

على الحقل F تعين دالة ثنائية الخطية $n \times n$ على دالة ثنائية الخطية M مصفوفة M ذات درجة $V \times V$ على F .

البرهان: (1) لتكن

$$M(f) = \begin{bmatrix} f(A_1, A_1) & f(A_1, A_2) \dots & f(A_1A_n) \\ \vdots & \vdots & \vdots \\ f(A_n, A_1) & f(A_n, A_2) & \dots & f(A_n, A_n) \end{bmatrix}$$

 $X=(x_1,\,x_2,\,...,\,x_n)$ اي متجهين في Y بحيث ان $X=(x_1,\,x_2,\,...,\,x_n)$ متجه احداثيات $X=(y_1,\,y_2,\,...,\,y_n)$ و $X=(y_1,\,y_2,\,...,\,y_n)$ هو متجه احداثيات $X=(y_1,\,y_2,\,...,\,y_n)$ هذا يعنى ان :

$$\mathbf{A} = \mathbf{x}_1 \mathbf{A}_1 + \ldots + \mathbf{x}_n \mathbf{A}_n$$

$$B = y_1 A_1 + \dots + y_n A_n$$

بأستخدام خصائص الدوال ثنائية الخطية يمكننا ان نجري الحسابات التالية:

$$f(A, B) = f(x_1A_1 + ... + x_nA_n, y_1A_1 + ... + y_nA_n)$$

=
$$y_1 f(x_1 A_1 + + x_n A_n, A_1) + + y_n f(x_1 A_1 + + x_n A_n, A_n)$$

$$= y_1 \sum_{i=1}^{n} x_i f(A_i, A_i) + ... + \chi \sum_{i=1}^{n} x_i f(A_i, A_n)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} f(A_{i}, A_{j})$$

لكن $f(A_i,\,A_j)$ هو العنصر في الصف i والعمود $f(A_i,\,A_j)$ هذا عليه بمراجعة ضرب المصفوفات نرى بأن الصيغة اعلاه مساوية الى $XM(f)Y^T$. هذا يبرهن (1) .

نعرف آننا اعطینا مصفوفة M ذات درجة $n \times n$ وعلی الحقل -1. نعرف دالة ثنائیة الخطیة .

 $f: V \times V \rightarrow F$

$$f(A, B) = XMY^T$$

بالصيغة

حيث ان X هو متجه احداثيات Y, A هو متجه احداثيات B. بهذه الحالة يكون لدينا M(f)=M وذلك لان متجه احداثيات A_i بالنسبة للقاعدة S يكون المتجه A_i بالنسبة للقاعدة A_i يكون A_i بالكان A_i بالنسبة للقاعدة A_i بالكان A_i بالكان A_i بالنسبة للقاعدة A_i بالكان A_i بالكان A_i بالنسبة للقاعدة A_i بالكان A_i بالكان بالكان A_i بالكان بالكا

$$f(A_{i}, A_{j}) = (0, ..., 1, 0, ..., 0) M \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$= m_{ij}$$

ميث ان m_{ij} هو العنصر في الصف i و العمود m_{ij} للمصفوفة m_{ij}

(و. هـ. م)

. مثال (4):

جد مصفوفة الدالة ثنائية الخطية

 $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$

المعرفة بالصيغة:

$$f: ((x_1, x_2), (y_1, y_2)) = 2x_1y_1 - 3x_1y_2 + 4x_2y_1 - x_2y_2$$

$$S = \begin{cases} A_1 = (1, -1), A_2 = (2, 1) \end{cases}$$
either this parameter of the state of th

الحل:

$$M(f) = \begin{cases} (f(A_1, A_1) & f(A_1, A_2) \\ (f(A_2, A_1) & f(A_2, A_2) \end{cases}$$

$$f(A_1, A_1) = f((1,-1), (1,-1)) = 2 + 3 + 4 - 1 = 8$$

$$f(A_1, A_2) = f((1,-1), (2,1)) = 4 - 3 - 8 + 1 = -6$$

$$f(A_2, A_1) = f((2,1), (1,-1)) = 4 + 6 + 4 + 1 = 15$$

$$f(A_2, A_2) = f((2,1), (2,1)) = 8 - 6 + 8 - 1 = 9$$

لهذا تكون مصفوفة f هي المصفوفة التالية:

$$M(f) = \begin{bmatrix} 8 & -6 \\ 15 & 9 \end{bmatrix}$$

مثال (5) :

جد الدالة ثنائية الخطية

. f: $P_2(R) \times P_2(R) \longrightarrow R$

التي تنتج من المصفوفة

$$M=\left(egin{array}{cccc} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 2 & -1 & 0 \end{array}\right)$$
 . $P_2(R)$ الى $S=\left\{1,x,x^2\right\}$ وذلك بالنسبة للقاعدة الطبيعية

الحل: ليكن:

$$A = a_0 + a_1 x + a_2 x^2$$

$$B = b_0 + b_1 x + b_2 x^2$$

 (a_0,a_1,a_2) عليه يكون متجه احداثيات A هو $P_2(R)$ عليه يكون متجه احداثيات B هو المتجه B وذلك بالنسبة للقاعدة B بمراجعة مبرهنة (6.1.1) نحصل على B

$$f(A, B) = (a_0, a_1, a_2) M \begin{cases} b_0 \\ b_1 \\ b_2 \end{cases}$$

$$f(A, B) = (a_0, a_1, a_2) \begin{cases} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 2 & -1 & 0 \end{cases} \begin{cases} b_0 \\ b_1 \\ b_2 \end{cases}$$

$$= (a_0 + 2a_2, a_0 - a_2, -a_0 + a_1)$$

$$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$

=
$$(a_0 + 2a_2) b_0 + (a_0 - a_2) b_1 + (-a_0 + a_1) b_2$$

$$= a_0 b_0 + 2a_2 b_0 + a_0 b_1 - a_2 b_1 - a_0 b_2 + a_1 b_2$$
 لنه الآن تأثير تغير القاعدة على مصفوفة الدوال ثنائية الخطية .

مبرهنة (6.1.2) :

اذا كانت $F: V \times V \rightarrow F$ دالة ثنائية الخطية على فضاء المتجهات $S= \{A_1,, A_n\}$ المنتهى البعد M(f) مصفوفة M(f) عيث ان :

$$M^{\star}(f) = PM(f) P^{T}$$

البرهان :

لتكن P مصفوفة الانتقال من القاعدة S^* الى القاعدة S . فإذا كانت $P = (p_{ij})$

$$A^{\star}_{k} = \sum_{j=1}^{n} P_{kj} A_{j}, , k = 1, ..., n$$

ليكن الان B ، A اي متجهين في V وليكن:

. S متجه احداثيات A بالنسبة للقاعدة X

 X^* متجه احداثیات A بالنسبة للقاعدة X^*

Y متجه احداثيات B بالنسبة للقاعدة Y

* Y متجه احداثيات B بالنسبة للقاعدة *S.

من المبرهنة (1.9.1) نحصل على مايلي

 $Y = Y^*P$, $X = X^*P$

والمصفوفة P تكون مصفوفة قابلة للقلب. (تذكر بأن مصفوفة الانتقال من S الى S^* تساوي S^*).

بتطبيق مبرهنة (6.1.1) نحصل على

 $f(A, B) = X M (f) Y^{T}(1)$

وذلك V وذلك S وذلك S وذلك S و المنسبة للقاعدة S الكن $M^*(f)$ هي مصفوفة f بالنسبة للقاعدة S^* اذن

 $f(A, B) = X^* M^*(f) Y^{*T}....(2)$

عند التعويض عن $Y = Y^*P, X = X^*P$ في (1) اعلاه ينتج

 $f(A, B) = (X^*P) M (f) (Y^*P)^T$

 $= X^{\star} (PM(f)P^{T})Y^{\star T}$

بالمقارنة مع (2) نحصل على

 $X^{\star}PM(f)P^{T}Y^{\star T} = X^{\star}M^{\star}(f)Y^{\star T}$

وذلك لأي X^*, X^* في F^n . من هذا نحصل على

 $M^{\star}(f) = PM(f)P^{T}$

(و. ه. . م)

يوجد نوع مهم من الدوال ثنائية الخطية وهو مايسمى بالدوال ثنائية الخطية المتناظرة.

تعریف :

(Symmetric) الثنائية الخطية تسمى متناظرة $f:V\times V\to F$ الثنائية الخطية الذا كان

f(A, B) = f(B, A)

وذلك لأي زوج من المتجهات A, B في V.

مثال (6):

 $f: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ الدالة ثنائية الخطية

المعرفة بالصيغة:

 $f((x_1, y_1), (x_2, y_2)) = x_1x_2 - y_1y_2$

تكون دالة متناظرة وذلك لأن

 $f((x_1, y_1), (x_2, y_2)) = f((x_2, y_2), (x_1, y_1))$

مثال (7) :

 $g: R^2 \times R^2 \longrightarrow R$ الدالة ثنائية الخطية

المعرفة بالصيغة:

 $g((x_1, y_1), (x_2, y_2)) = x_1y_2 - y_1x_2$

تكون دالة غير متناظرة وذلك لان

 $g((x_2, y_2), (x_1, y_1)) = x_2y_1 - y_2x_1$ $g(A, B) \neq g(B, A)$ 0

ان مصفوفات الدوال ثنائية الخطية المتناظرة تكون مصفوفات متناظرة وذلك بالنسبة لأي قاعدة.

مثال (8) :

جد مصفوفة الدالة ثنائية الخطية المتناظرة والمعرفة في المثال (6) اعلاه وذلك بالنسبة للقاعدة
$$S = \{(1,2), (-1,0)\}$$

الان
$$A_2 = (-1, 0)$$
 ، $A_1 = (1, 2)$ الان

$$f((1,2), (1,2)) = (1)(1) - (2)(2) = -3$$

$$f((1,2), (-1,0)) = (1)(-1) - (2)(0) = -1$$

$$f((-1,0), (1,2)) = (-1)(1) - (0)(2) = -1$$

$$f((-1,0), (-1,0)) = (-1)(1) - (0)(0) = 1$$

عليه تكون مصفوفة الدالة المتناظرة f بالنسبة للقاعدة S اعلاه

$$M(f) = \begin{pmatrix} -3 & -1 \\ -1 & 1 \end{pmatrix}$$

لاحظ كيف انها مصفوفة متناظرة.

ان النتيجة الاساسية في هذا الفصل والتي سنطبقها في البند اللاحق تكمن في المبرهنة التالية.

مبرهنة (6.1.3) :

اذا كانت $F: V \times V \to R$ دالة ثنائية الخطية متناظرة على فضاء منتهى $S = A_1, ..., A_n$ على حقل الاعداد الحقيقية R فإنه توجد قاعدة V على حقل الاعداد الحقيقية $F(A_i, A_j)$ بالنسبة لها تكون قطرية ، اي ان V ، بحيث ان مصفوفة V بالنسبة لها تكون قطرية ، اي ان V ، عندما V عندما V عندما V عندما V

بمراجعة المبرهنة (6.1.2) وملاحظة كون مصفوفة الدالة ثنائية الخطية المتناظرة تكون مصفوفة متناظرة، يمكننا ان نعبر عن المبرهنة اعلاه بصيغة المصفوفات وكما يلى:

مبرهنــة (6.1.4) :

لأي مصفوفة متناظرة M على حقل الاعداد الحقيقية، توجد مصفوفة قابلة للقلب P، بحيث تكون P^{-1} مصفوفة قطرية. (اي ان كل مصفوفة حقيقية متناظرة تكون مشابهة الى مصفوفة قطرية).

لغرض برهنة المبرهنة اعلاه سنكون بحاجة لبضعة نتائج سوف نسمي كل منها مبرهنة تمهيدية ، لكن قبل البدء بهذه المبرهنات التمهيدية سنذكر القارىء ببعض الامور التى سنكون بحاجة لها في البراهين.

n imes n ذات درجة M في مصفوفة حقيقية

نقول بأن العدد الحقيقي r يكون قيمة ذاتية الى M اذا وفقط اذا وجد $X=(x_1,...,x_n)$ متجه غير صفري $X=(x_1,...,x_n)$ في $X=(x_1,...,x_n)$

XM = rX

عندئذ يسمى X متجهاً ذاتياً تابعاً للقيمة الذاتية r .

ي كن $Y=(y_1,\,...,\,y_n)$ ، $X=(x_1,\,...,\,x_n)$ في $X=(x_1,\,...,\,x_n)$ يمكن للتعبير عن الضرب الداخلي الاعتيادي :

$$\langle X, Y \rangle = x_1 y_1 + x_2 y_2 + ... + x_n y_n$$

بالصيغة المصفوفية وكما يلي.

$$< X, Y > = XY^T$$

$$= (x_1, ..., x_n)$$

$$\begin{cases} y_1 \\ \vdots \\ y_n \end{cases} = x_1 y_1 + ... + x_n y_n$$

M مصفوفة عمودية اذا وفقط اذا كان $MM^T=I$ وهذا يؤدي الى كون صفوف المصفوفة M عبارة عن n من متجهات R^n متعامدة وأحادية الطول . قبل البدء بالمبرهنة التمهيدية ، لابلد من ذكر الخاصية المهمة للمتجهات الذاتية التابعة لقيم ذاتية مختلفة لمصفوفة حقيقية متناظرة .

مبرهنة (6. 1. 5) :

اذا كانت M مصفوفة حقيقية متناظرة وكانت X_1 قيمتين X_1 قيمتين X_1 ذاتيتين مختلفتين للمصفوفة X_1 وكان X_1 متجهين ذاتيين تابعين للقميتين X_1 وكان X_2 اي التوالي فإن X_1 يكون عمودياً على X_2 اي ان

البرهان:

عندنا العلاقات التالية

$$X_1M = \lambda_1X_1 \dots (1)$$

$$X_2M = \lambda_2 X_2 \dots (2)$$

بأخذ مدورة طرفي المعادلة (2) نحصل على:

 $\mathbf{M}^{\mathrm{T}}\mathbf{X}_{2}^{\mathrm{T}} = \mathbf{\lambda}_{2} \mathbf{X}_{2}^{\mathrm{T}}$

 $M=M^T$ لكن M مصفوفة متناظرة وهذا يعني ان

اذن

 $\mathbf{MX_2}^{\mathsf{T}} = \mathbf{\lambda}_2 \mathbf{X_2}^{\mathsf{T}}$

بضرب هذه المعادلة في X_1 من اليسار ، نحصل على :

 $X_1 M X_2^T = \lambda_2 X_1 X_2^T$

بالتعويض عن X_1M بما يساويه من المعادلة (1) نحصل على : $X_1X_1X_2^T = \mathbf{X}_1X_1X_2^T$

 $(\lambda_1 - \lambda_2) X_1 X_2^{T} = 0$ اي $(\lambda_1 - \lambda_2) X_1 X_2^{T} = 0$ يذك $(\lambda_1 - \lambda_2) X_1 X_2^{T} = 0$ يذك $(\lambda_1 - \lambda_2) X_1 X_2^{T} = 0$ يذك $(\lambda_1 - \lambda_2) X_1 X_2^{T} = 0$

(و، هـ، م)

المبرهنة اعلاه تنص على ان المتجهات الذاتية التابعة الى قيم ذاتية مختلفة تكون متعامدة وذلك لأي مصفوفة حقيقية متناظرة.

مبرهنة عهيدية (1):

اذا كانت M مصفوفة حقيقية متناظرة فإن كل قيمة ذاتية الى M تكون عدداً حقيقياً وكل متجه ذاتي يكون متجهاً في R^n . R^n = درجة المصفوفة M) .

البرهان:

افرض ان λ هي قيمة ذاتية للمصفوفة λ وان λ متجهاً ذاتياً تابعاً للقيمة الذاتية λ اذن .

$$XM = \lambda X$$
(1)

غن بخوف من كون λ عدد عقدي وأحد مركبات المتجه $\lambda = \lambda$ و $\lambda = \lambda$ يكون عدداً عقدياً. لذلك سوف نبرهن على ان $\lambda = \lambda$ و $\lambda = \lambda$ عدداً حقيقياً حيث ان $\lambda = \lambda$ هو مرافق العدد العقدي $\lambda = \lambda$ عندئذ يكون $\lambda = \lambda$ عدداً حقيقياً و $\lambda = \lambda$ متجهاً في $\lambda = \lambda$ مافق طرفي المعادلة اعلاه ، نحصل على :

$$\overline{XM} = \overline{\lambda} X$$

M حيث ان $(\overline{x}_1, \overline{x}_2, ..., \overline{x}_n)$ وعناصر \overline{M} هي مرافقات عناصر \overline{X} -اذن مصفوفة حقيقية ومرافق اي عدد حقيقي يساوي نفسه، وعليه $\overline{M}=\overline{M}$. اذن

$$\overline{X}M = \overline{\lambda}\overline{X}$$
 (2)

بأخذ مدورة طرفي المعادلة (1) وملاحظة ان
$$\mathbf{M}^{\mathrm{T}}=\mathbf{M}$$
 ، نحصل على : $\mathbf{M}\mathbf{X}^{\mathrm{T}}=\mathbf{\lambda}\,\mathbf{X}^{\mathrm{T}}$

بضرب المعادلة اعلاه في X من اليسار نحصل على:

 $XMX^{T} = \lambda X X^{T} \qquad \dots (3)$

بضرب المعادلة (2) من اليمين في X^T ، نحصل على :

 $\overline{X}MX^T = \overline{\lambda} \overline{X} X^T$ (4)

بطرح (4) من (3) نحصل على

 $O = (\lambda - \overline{\lambda}) \overline{X} X^{T}$

 $\overline{X} X^{T} = \overline{x}_{1} x_{1} + \dots + \overline{x}_{n} x_{n} = \prod X \prod^{2} \neq 0$

وذلك لان $X \neq 0$ متجه ذاتي ._

اذن $\lambda = \lambda$ وعليه $\lambda = \lambda$ وبذلك يكون $\lambda = \lambda$ عدداً حقيقياً . الان المتجه $\lambda = 0$ الخادلات المتأتية من المعادلة المصفوفية : $\lambda = 0$ $\lambda = 0$ المعادلات المتأتية من المعادلة المصفوفية : $\lambda = 0$

بما ان معاملات تلك المعادلات تأتي من المصفوفة الحقيقية M - Λ I فعليه تكون الحلول حقيقية وبالتالي تكون جميع مركبات المتجه X حقيقية وعليه يكون $X \in R^n$

(و. هـ ، م)

مبرهنة تمهيدية (2):

لكل مصفوفة متناظرة حقيقية ذات درجة $n \times n$ ، توجد n من القيم الذاتية الحقيقية . (ليس بالضرورة ان تكون مختلفة) .

البرهان:

لننظر الى المعادلة المميزة للمصفوفة M، ولتكن

$$M - \lambda I = (-1)^n \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$$

لو نظرنا الى حلول المعادلة أعلاه في حقل الاعداد العقدية لوجدنا ان لتلك المعادلة n من الحلول ولتكن $\lambda_1, \lambda_2, \ldots, \lambda_n$ وذلك ماتنص عليه المبرهنة الاساسية في الجبر .

لكن المبرهنة التمهيدية (1) تنص على ان جميع تلك الحلول تكون اعداداً حقيقية.

(و . هـ . م)

المبرهنة التالية تنتج المبرهنة (6.1.4) ومنها المبرهنة (6.1.3).

مبرهنة (6.1.6) :

لأي مصفوفة حقيقية متناظرة M، توجد مصفوفة عمودية P بحيث ان P^T تكون مصفوفة قطرية .

البرهان:

لتكن $\lambda_1, ..., \lambda_n$ القيم الذاتية الحقيقية للمصفوفة $\lambda_1, ..., \lambda_n$ عليه المبرهنة التمهيدية $\lambda_1, ..., \lambda_n$

اختار X_1 متجهاً ذاتياً للمصفوفة M تابعاً للقيمة الذاتية X_2 بحيث ان $IIX_1II=1$. سوف نفترض بأن القارىء يفهم الضرب القالبي Multiplication)

 X_1 إختار قاغدة متعامدة احادية الى \mathbb{R}^n متجهها الأول هو X_1 ولتكن

$$\{X_1, Y_2,, Y_n\}$$

عند ترتيب عناصر القاعدة اعلاه نحصل على مصفوفة

$$\begin{aligned} Q_1 &= \left(\begin{array}{c} X_1 \\ Y_2 \\ \vdots \\ Y_n \end{array} \right) \\ & \otimes V_1 \cdot Q_1 \, Q_1^{\ T} = I \, \otimes V \otimes V_2 \\ Q_1 M Q_1^{\ T} &= \left(\begin{array}{c} X_1 M \\ Y_2 M \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 M \\ Y_2 M \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 \\ Y_2 M \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 \\ Y_2 M \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 \\ Y_2 M \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 \\ Y_2 M \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left(\begin{array}{c} X_1 X_1 X_1 X_1 X_1 \\ \vdots \\ Y_n M \end{array} \right) \\ & = \left$$

بما ان
$$\{X_1, Y_2, ..., Y_n\}$$
 قاعدة متعامدة احاديّة ، عليه نحصل على ان $X_1, Y_2, ..., Y_n\}$ وذلك لكل $X_1 Y_1^T = \{X_1, Y_2 = 0 \}$ وذلك لكل $X_1 X_1^T = IIX_1 II^2 = 1$ وذلك فإن تدوير طرفي المعادلة : $X_1 X_1 = \lambda_1 X_1$

ينتج:

$$MX_1^T = \lambda_1 X_1^T$$

وذلك لان M مصفوفة متناظرة.بذلك نلاحظ على ان

$$Y_{j}MX_{1}^{T} = Y_{j}\lambda_{1}X_{1}^{T} =$$

$$= \lambda_{1}Y_{j}X_{1}^{T} = \lambda_{1} \langle Y_{j}, X_{1} \rangle$$

$$= \lambda_{1} \cdot \circ = \circ$$

وذلك لكل j:**:2,** ..., n

 $Q_{1}MQ_{1}^{T} = \begin{cases} \lambda_{1} & O \\ \vdots & B_{1}^{(n-1)} \times (n-1) \end{cases}$

المصفوفة $B_1 = (n-1) \times (n-1)$. كذلك فإن

B, _ 1 مصفوفة متناظرة .

 $\lambda_2, \ldots, \lambda_n$ القيم الذاتية للمصفوفة λ_1 تكون القيم الذاتية المصفوفة الم

نكرر العملية نفسها على المصفوفة B كالأتي:

 $m{\chi}_2$ احتر متجهاً ذاتياً احادي الطول وليكن $m{\chi}_2$ تابعاً للقيمة الذاتية للمصفوفة $m{B}_1$ اي ان

$$X_2B_1 = \lambda_2X_2$$

 Q_2 بتطبيق الفكرة اعلاه فأنه توجد مصفوفة عمودية ($X_2 \in \mathbb{R}^{n-1}$). بتطبيق الفكرة اعلاه فأنه توجد مصفوفة عمودية ذات درجة (n-1) \times (n-1) تحقق

$$Q_2 B_1 Q_2^{-T} = \left\{ \begin{array}{ccc} \lambda_2 & O \\ O & B_2 \end{array} \right\}$$

حيث ان B_2 مصفوفة ذات درجة (n-2) \times (n-2) متناظرة وقيمها الذاتية تكون $\mathbf{x}_0,\dots,\mathbf{x}_n$

$$Q_2 = \left(\begin{array}{ccc} & \cdot & \\ 1 & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & Q_2 \end{array}\right)$$

الان لاحظ: $n \times n$ الان الحظ بالمصفوفة عمودية ذات درجة ا

نكرر العملية نفسها على المصفوفة B_2 فنحصل على مصفوفة عمودية Q_3 ومصفوفة B_3 ذات درجة (n-3) \times (n-3) دات درجة (n-3) خات درجة (n-3) متناظرة وتحقق :

$$Q_{3}(Q_{2} Q_{1} M Q_{1}^{T} Q_{2}^{T}) Q_{3}^{T} = \begin{bmatrix} \lambda_{1} & O & & \\ O & \lambda_{2} & & \\ & ---- & & \\ O & & B_{3}^{(n-2) \times (n-2)} \end{bmatrix}$$

وهكذا الى ان نحصل على Q_{n-1} بحيث ان:

$$Q_{n-1}(Q_{n-2} \dots Q_1 M Q_1^T \dots Q_{n-2}^T) Q_{n-1}^T = \begin{pmatrix} \lambda_1 & O \\ \lambda_2 & O \\ O & \lambda_n \end{pmatrix}$$

$$\begin{aligned} \mathbf{P} &= \mathbf{Q}_{\mathbf{n-1}} \, \mathbf{Q}_{\mathbf{n-2}} \cdots \mathbf{Q}_{\mathbf{2}} \mathbf{Q}_{\mathbf{1}} \\ \mathbf{P}^{\mathsf{T}} &= \mathbf{Q}_{\mathbf{1}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{2}}^{\mathsf{T}} \cdots \mathbf{Q}_{\mathbf{n-2}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{n-1}}^{\mathsf{T}} \end{aligned}$$

$$\mathbf{P}^{\mathsf{T}} = \begin{pmatrix} \boldsymbol{\lambda}_{\mathbf{1}} & \boldsymbol{\lambda}_{\mathbf{2}} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{\lambda}_{\mathbf{n}} \end{pmatrix} \qquad \boldsymbol{-} : \mathbf{P}^{\mathsf{T}} \mathbf{Q}_{\mathbf{n-1}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{n-1}}^{\mathsf{T}}$$

اي ان PMP^T مصفوفة قطرية . بما ان P حاصل ضرب مصفوفات عمودية فأذن تكون مصفوفة عمودية .

(و . هـ . م)

بما ان كل مصفوفة عمودية عبارة عن مصفوفة قابلة للقلب فإن هذا يبرهن المبرهنة (6.1.4).

الان المبرهنة (6.1.4) تنص على ان كل مصفوفة حقيقية متناظرة تكون مشابهة الى مصفوفة قطرية.

بالرجوع الى المبرهنة (4.3.2) نلاحظ مايلي:

اذا كانت M مصفوفة متناظرة حقيقية فإن العلاقة :

$$PMP^{-1} = D$$

حيث ان D مصفوفة قطرية، تنتج ان صفوف المصفوفة P تكون متجهات ذاتية الى M وعناصر المصفوفة القطرية تكون قيماً ذاتية الى M .

ان خلاصة ماتقدم تكمن في مايلي:

اذا كانت M مصفوفة متناظرة حقيقية فإن M يكون لها n من القيم الذاتية ولتكن $X_1,\,X_2,\,\dots,\,X_n$ متجهات ذاتية متعامدة واحادية الطول تابعة للقيم الذاتية اعلاه على التوالي للمصفوفة M فإن المصفوفة M التي صفوف مكونة من المتجهات الذاتية اعلاه تكون مصفوفة عمودية . اي انه اذا كانت

$$P = \left(\begin{array}{c} X_1 \\ X_2 \\ \vdots \\ X_n \end{array}\right) \quad \Rightarrow \quad D = \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{array}\right)$$

فإن P مصفوفة عمودية وتحقق

$$PMP^{-1} = PMP^{T} = D$$

ملاحظــة:

ان الحصول على مجموعة متجهات ذاتية متعامدة واحادية الطول يتم بتطبيق طريقة كرام ــ شمدت.

يمكن توضيح ماجاء اعلاه بالمثال التالي: ــ

مثال (9):

جد مصفوفة عمودية P ، تحقق PAP^T تكون مصفوفة قطرية ، حيث ان A مصفوفة متناظرة .

$$\mathbf{A} = \left[\begin{array}{rrr} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array} \right]$$

الحل: المعادلة المميزة للمصفوفة A هي

$$\det (A-\lambda I) = \begin{vmatrix} 4-\lambda & 2 & 2 \\ 2 & 4-\lambda & 2 \\ 2 & 2 & 4-\lambda \end{vmatrix} = (\lambda -2)^2 (\lambda -8) = 0$$

عندئذ تكون القيم الذاتية للمصفوفة $\lambda=8$ ، $\lambda=8$. يمكن بالطرق المستخدمة في الفصل الرابع اثبات ان المتجهين :

$$A_1 = (-1, 1, 0), A_2 = (-1, 0, 1)$$

يكونان قاعدة للفضاء الذاتي التابع للقيمة الذاتية $\mathbf{Z}=\mathbf{Z}$. تطبيق طريقة كرام — شمدت على \mathbf{A}_1 , \mathbf{A}_2 يؤدي الى مجموعة متعامدة أحادية من المتجهات الذاتية التالية (حقق ذلك).

$$B_1 = (-1/\sqrt{2}, 1/\sqrt{2}, 0)$$
 $B_2 = (-1/\sqrt{6}, -1/\sqrt{6}, 2/\sqrt{6})$

الفضاء الذاتي التابع للقيمة الذاتية 8 = ٦٦ له القاعدة

$$A_3 = (1, 1, 1)$$

تطبیق طریقة کرام - شمدت علی A_3 یؤدی الی المتجه الاحادی الطول $B_3=($ $\sqrt{3}$ ، $\sqrt{3}$)

اخيراً بأستخدام B_1, B_2, B_3 كصفوف نحصل على المصفوفة

$$P = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{6} & -1/\sqrt{6} & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$

$$D = egin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$
 قطرية قطرية $D = egin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 8 \end{bmatrix}$ التي تحول المصفوفة $D = D$ والقارىء مدعو لتحقيق ذلك . PAP والقارىء مدعو لتحقيق ذلك . الان نيرهن المبرهنة (6.1.3) .

برهان المبرهنة (6.1.3):

الى V- لتكن $M=\{B_1,...,B_n\}$ الى V- لتكن $H=\{B_1,...,B_n\}$ الدالة ثنائية الخطية المتناظرة

 $f: V \times V \rightarrow R$

بالنسبة للقاعدة H اعلاه.

M مصفوفة متناظرة حقيقية ، عليه توجد مصفوفة عمودية P تحقق

 $PMP^{T} = D$

حيث ان D مصفوفة قطرية . (ذلك بتطبيق المبرهنة (6.1.6)) . نستخدم P لتغيير القاعدة والحصول على قاعدة جديدة :

$$S = \left\{ A_1, ..., A_n \right\}$$

حيث

$$A_1 = P_{11} \qquad B_1 + \dots + P_{1n} B_n$$

$$\mathbf{A}_{\mathbf{n}} = \mathbf{P}_{\mathbf{n}1} \mathbf{B}_{1} + \dots + \mathbf{P}_{\mathbf{n}n} \mathbf{B}_{\mathbf{n}}$$

اي ان P مصفوفة الانتقال من القاعدة S الى القاعدة H . المبرهنة (6.1.2) تنص على ان مصفوفة الدالة f بالنسبة للقاعدة S تكون

 $PMP^{T} = D$ (e. a. a)

مثال (10) :

جد قاعدة للفضاء R² تجعل من مصفوفة الدالة ثنائية الخطية

 $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$

المعرفة بالصيغة:

$$f((x_1,y_1),(x_2,y_2)) = x_1x_2 + 2y_1x_2 + 2x_1y_2 + y_1y_2$$

 . مصفوفة قطرية .

 R^2 القاعدة الطبيعية الى $S=\{A_1=(1,0),A_2=(0,1)\}$ القاعدة الطبيعية الى R النام مصفوفة f بالنسبة لهذه القاعدة .

$$M(f) = \begin{bmatrix} f(A_1, A_1) & f(A_1, A_2) \\ & & \\ f(A_2, A_1) & f(A_2, A_2) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

لاحظ ان هذه المصفوفة متناظرة لكن ليست قطرية. لغرض تحويلها الى مصفوفة قطرية يجب علينا ايجاد القم الذاتية.

المعادلة المميزة للمصفوفة (M(f تكون

$$t^2 - 2t - 3 = 0$$

$$\lambda_1 = 3, \lambda_2 = -1$$
 القم الذاتية:

لغرض الحصول على المتجهات الذاتية النابعة للقيمة الذاتية 3 علينا حل المعادلة المصفوفية:

$$(x,y)$$
 $\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$ = $(0,0)$

التي تؤدي الى معادلة خطية واحدة:

$$-2 x + 2y = O$$
$$y = x$$

لذلك فإن $(2\sqrt{2},1/\sqrt{2})$ يكون متجهاً ذاتياً احادي الطول تابعاً للقيمة الذاتية $X_1=(1/\sqrt{2},1/\sqrt{2})$ وبالطريقة نفسها نحصل على $X_2=(-1/\sqrt{2},1/\sqrt{2})$ كمتجه ذاتي احادي الطول تابع للقيمة الذاتية $X_2=(-1/\sqrt{2},1/\sqrt{2})$ لذلك نحصل على مصفوفة عمودية .

$$P = \begin{pmatrix} 1 \times 7 & 1 \times 7 \\ -1 \times 7 & 1 \times 7 \end{pmatrix}$$

هذه المصفوفة تحقق:

$$PMP^{T} = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

 B_1, B_2 الى قاعدة مكونة من المتجهين S الى القاعدة S الى المتجهين حيث:

$$B_1 = (1/\sqrt{2})A_1 + (1/\sqrt{2})A_2 = (1/\sqrt{2}, 1/\sqrt{2})$$

$$B_2 = (-1/\sqrt{2})A_1 + (1/\sqrt{2})A_2 = (-1/\sqrt{2}, 1/\sqrt{2})$$

: it is amily in the second of the second of

$$D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

تمارين (6.1)

من R^2 فأي من $B=(x_2,\,y_2)$, $A=(x_1,\,y_1)$ فأي من R^2 فأي من R^2 فأي من R^2 فأي من الدوال R^2 فأي من R^2 فأي من الدوال R^2 فأي من الدوال R^2

$$f(A, B) = x_1 x_2 + 5y_1 y_2 + 3$$

.
$$f(A, B) = 7x_1 y_2 - 2x_2 y_1$$
 (-)

.
$$f(A, B) = 1 + x_1 x_2 - y_1 y_2$$
 (7)

$$f(A, B) = 2x_1^2 + 3y_2^2$$
 (2)

$$f(A, B) = x_1 y_1 x_2 y_2$$
 (4.4)

B= (u_2,v_2,w_2) ، $A=(u_1,v_1,w_1)$ الفضاء = 2 على الحقل = 1 فأي من الدوال = 1 وأي من الدوال = 1 يكون دالة ثنائية = 1 الحطية على = 1 . = 1

$$f(A, B) = u_1 u_2 - i v_1 w_2 + (1 + i) w_1 v_2$$

$$f(A, B) = (2-3i) + u_1 w_2 - v_1 u_2$$
 ($(-)$

$$f(A, B) = -iu_1 w_2 \tag{7}$$

$$f(A, B) = u_1^2 + v_1^2 + w_1^2 - iu_2^2 + (1 + i)w_2^2$$

$$f(A, B) = (2+4i)u_1 - v_2 + w_2$$
 (-A)

له القاعدة الطبيعية $\{1,\ x,\ x^2\}$. اوجد الدوال انتشقية $P_2(R) \to P_2(R) \to R$ الخطية $P_2(R) \to P_2(R) \to R$ الخطية $P_2(R) \to R$ الخطية $P_2(R) \to R$

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 3 & 4 & -1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 0 & -1 & \sqrt{2} \end{bmatrix}$$

ليكن R^4 له القاعدة المكونة من المتجهات 4

$$A_1 = (0, 1, 0, 0), A_2 = (-2, 0, 0, 0), A_3 = (0, 0, 1/2, 0),$$

 $A_4 = (0, 0, 0, 3)$

اوجد الدوال الثنائية الخطية $R
ightarrow R^4 imes R^4$ التي تنتج من المصفوفات

$$\begin{pmatrix}
0 & 1 & 0 & -1 \\
4 & 0 & 1 & 1 \\
7 & 5 & 6 & -3 \\
2 & 1 & 2 & 2
\end{pmatrix};
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 0 & 1 & -1 \\
3 & 1 & \sqrt{2} & 0 \\
4 & -1 & 0 & 6
\end{pmatrix}$$

وجد مصفوفة الدالة ثنائية الخطية $f\colon C^2\times C^2\to C$ المعرفة بالصيغة $f\colon (z_1,\,z_2),\,(w_1,\,w_2)=iz_1w_2-(1+i)\,z_2w_1$. $S=\left\{A_1=(i,o)\,,\,A_2=(0,-1)\right\}$

- وذلك R^2 في تمرين (1) وذلك R^2 في تمرين (1) وذلك R^2 بالنسبة للقاعدة الطبيعية .
- روزلك C^3 وذلك روجد مصفوفة كل دالة ثنائية الخطية على C^3 ظهرت في تمرين (2) وذلك بالنسبة للقاعدة الطبيعية .
- المعرفة f: $P_1(R) \times P_1(R) \to R$ المعرفة الدالة ثنائية الخطيمة $f: P_1(R) \times P_1(R) \to R$ المعرفة يالسبة $f(a_1 + b_1x, a_2 + b_2x) = 2a_1b_2 a_2b_1$ وذلك بالنسبة $S = \{A_1 = -1 + x, A_2 = 3x\}$ للقاعدة $S = \{A_1 = -1 + x, A_2 = 3x\}$
- و __اذا كان (R^3 ي متجهين في $B=(x_2,\,y_2,\,z_2)$, $A=(x_1,\,y_1,\,z_1)$ اي متجهين في R^3 فأي من الدوال ثنائية الخطية $R^3 \to R$ تكون متناظرة .

$$f(A, B) = x_1 x_2 - 2y_1 y_2 + 3z_1 z_2$$

$$f(A, B) = 2x_1 y_2 + 3y_1 z_2 - z_1 x_2$$
 (ψ)

$$f(A, B) = 2x_1x_2 - 3x_1z_2 + y_1z_2 + 4y_1x_2 - z_1y_2$$
 (5)

$$f(A, B) = x_1 x_2 + 2y_1 x_2 + 2x_1 y_2 - z_1 y_2 - y_1 z_2$$
 (2)

. اوجد مصفوفة عمودية P تحقق PAP^T تكون مصفوفة قطرية PAP^T

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 5 \end{pmatrix}, A = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix}, A = \begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix}$$

11 _ كرر تمرين (10) بالنسبة للمصفوفات

$$\begin{pmatrix}
6 & 0 & 0 \\
0 & 3 & 3 \\
0 & 3 & 3
\end{pmatrix}
\begin{pmatrix}
\frac{7}{25} & 0 & \frac{-24}{25} \\
0 & -1 & 0 \\
\frac{-24}{25} & 0 & \frac{7}{25}
\end{pmatrix}
\begin{pmatrix}
4 & 4 & 0 & 0 \\
4 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

المتناظرة
$$R^2$$
 المتناظرة الخطية المتناظرة R^2 المتناظرة المتناظرة وجد قاعدة الم R^2 المتناظرة والمصفوفة قطرية ، حيث $R^2 \times R^2 \to R$ تكون كما يلي :

$$f((x_1, y_1), (x_2, y_2)) = 5x_1x_2 + 3\sqrt{3}x_1y_2 + 3\sqrt{3}y_1x_2 - (1)$$

$$f((x_1, y_1), (x_2, y_2)) = 3x_1x_2 + x_1y_2 + x_2y_1 + 3y_1y_2$$
 (\smile)

13 $_{\rm c}$ والدوال التالية : $^{\rm R}$ والدوال التالية :

$$f(A, B) = 2x_1x_2 - x_1y_2 - x_1z_2 - y_1x_2 + 2y_1y_2 - y_1z_2$$

$$-z_1x_2 - z_1y_2 + 2z_1z_2$$
(1)

$$f(A, B) = -2x_1x_2 - 36x_1z_2 - 3y_1y_2 - 36z_1x_2 - 23z_1z_2$$
 (\smile)

$$B = (x_2, y_2, z_2)$$
 , $A = (x_1, y_1, z_1)$ حيث ان

(6.2) الدوال التربيعية والصيغ التربيعية.

Quadratic Functions & Quadratic Forms

لأي حقل F ، التخصيص $k \leftarrow k^2$ يعرف دالة تربيعية متجانسة q(-k) = q(k) . q(-k) = q(k) ، والثانية والدالة خاصيتين مميزتين : الأولى q(-k) = q(k) . $q(k+t) - q(k) - q(t) = (k+t)^2 - k^2 - t^2 = 2kt$ والصيغة $q(k+t) - q(k) - q(t) = (k+t)^2 - k^2 - t^2 = 2kt$

$$q: V \rightarrow F$$

المعرفة بالصيغة:

$$q(A) = \sum_{j=1}^{n} x_j^2$$

حيث ان $(x_1,...,x_n)$ هو متجه احداثيات A بالنسبة لقاعدة ثابتة الى V ، تكون دالة تربيعية متجانسة تحقق الخاصيتين اعلاه. هاتان الخاصيتان سوف تستخدمان لتعريف الدوال التربيعية بصورة عامة. بعد التعريف سنقدم تطبيقاً مهماً في موضوع التفاضل والتكامل. سنركز دراستنا على الدوال التربيعية على فضاءات على حقل الاعداد الحقيقية.

تعریف:

اذا كان V فضاء متجهات على حقل الاعداد الحقيقية، فبدالة تربيعية متجانسة على V نقصد دالة:

$$Q: V \rightarrow R$$

تحقق:

- $A \in V$ لکل Q(A) = Q(-A)
 - $f: V \times V \rightarrow R$ الدالة (2)

المعرفة بالصيغة:

$$f(A, B) = (1/2)(Q(A + B) - Q(A) - Q(B))$$

تكون دالة ثنائية الخطية على V .

مثال (1):

$$Q(x,y) = x^2 + 2y^2$$
 العرفة بالصيغة $Q: R^2 \rightarrow R$ الدالة

تكون دالة تربيعية متجانسة وذلك لان:

$$Q(x,y) = Q(-x, -y)$$
 (1)

$$h((x_1, y_1), (x_2, y_2)) = (1/2) (Q((x_1, y_1) + (x_2, y_2)) - Q(x_1, y_1) - Q(x_2, y_2))$$

$$\cdots$$
 (2)

=
$$(1/2) (Q(x_1 + x_2, y_1 + y_2) - Q(x_1, y_1) - Q(x_2, y_2))$$

=
$$(1/2) ((x_1 + x_2)^2 + 2(y_1 + y_2)^2 - (x_1^2 + 2y_1^2) - (x_2^2 + 2y_2^2))$$

= $(1/2) (2x_1x_2 + 4y_1y_2) = x_1x_2 + 2y_1y_2$

هذه الدالة عبارة عن دالة ثنائية الخطية على R².

$$Q\left[egin{array}{cccc} x_1 & x_2 \\ x_3 & x_4 \end{array}
ight] = x_1^2 \end{array} \begin{array}{cccc} : (2) & : (2) \\ : (2) & : (3) \\ : (3) & : (4) \\ : (4) & : (4)$$

تكون دالة تربيعية متجانسة والتحقيق مماثل للمثال (1) اعلاه.

مثال (3):

الدالة $R \rightarrow R$ المعرفة بالصيغة

$$Q(x, y, z) = x^2 - xy + yz$$

تكون دالة تربيعية متجانسة على \mathbb{R}^3 وذلك لان:

$$Q(-x, -y, -z) = (-x)^{2} - (-x)(-y) + (-y)(-z)$$

$$= x^{2} - xy + yz$$
(1)

$$= Q(x, y, z)$$

$$(1/2)[Q((x_1, y_1, z_1) + (x_2, y_2, z_2)) - Q(x_1, y_1, z_1) - Q(x_2, y_2, z_2)]$$

=(1/2)
$$(x_1 + x_2)^2 - (x_1 + x_2) (y_1 + y_2) + (y_1 + y_2) (z_1 + z_2)$$

 $(x_1^2 - x_1y_1 + y_1z_1) - (x_2^2 - x_2y_2 + y_2z_2)]$

=
$$x_1 x_2 - (1/2) x_1 y_2 - (1/2) x_2 y_1 + (1/2) y_1 z_2 + (1/2) y_2 z_1$$

. R^3 . R^3 . R^3 . R^3 .

سوف نبرهن بعض الخصائص التي تتمتع بها الدوال التربيعية المتجانسة.

مرهنة (6.2.1)

كل دالة تربيعية متجانسة $R \to Q: V \to R$ على فضاء متجهات منتهي البعد V على حقل الاعداد الحقيقية ، تحقق :

$$Q(O) = O (1)$$

$$A \in V$$
 ککل متجه $Q(2A) = 4Q(A)$ (2)

البرهان:

$$Q(A + B + C) - Q(A) - Q(B + C) = 2f(A, B + C)$$

:حيث ان $R \to R$ تلك الدالة ثنائية الخطية التي تحقق

$$Q(A + B) - Q(A) - Q(B) = 2f(A, B)$$

اذن:

$$Q(A + B + C) - Q(A) - Q(B + C) = 2 (f(A, B) + f(A, C))$$

$$= 2f(A, B) + 2f(A, C)$$

$$= Q(A + B) - Q(A) - Q(B) + Q(A + C) - Q(A) - Q(C)$$

$$= 2f(A, B) + 2f(A, C)$$

$$= 2f(A, B) + 2f$$

$$Q(A + B + C) - Q(A + B) - Q(A + C) - Q(B + C) + Q(A) + Q(B) + Q(C) = O$$

اذا وضعنا A = B = C = O في المعادلة اعلاه ، نحصل على

$$Q(O) = O$$

اما اذا عوضنا: B = A, C = -A فنحصل على

$$Q(A) - Q(2A) + Q(A) + Q(A) + Q(-A) = O$$

عا ان Q(A) = Q(-A) اذن

$$Q(2A) = 4Q(A)$$

(و.ه.م)

لأي دالة تربيعية متجانسة R o Q: V o R ، الدالة ثنائية الخطية

$$h: V \times V \rightarrow R$$

المعرفة بالصيغة:

$$h(A, B) = (1/2)[Q(A + B) - Q(A) - Q(B)]$$

تكون دالة ثنائية الخطية متناظرة وتسمى الدالة ثنائية الخطية الناتجة من استقطاب (Polarizing) الدالة التربيعية المتجانسة Q.

سوف نبرهن على ان كل دالة ثنائية الخطية ومتناظرة يمكن الحصول عليها بأستقطاب دالة تربيعية متجانسة وحيدة.

درهنة (6.2.2):

ليكن V فضاء متجهات منتهي البعد وعلى حقل الاعداد الحقيقية . كل دالة ثنائية الخطية متناظرة R \rightarrow V \rightarrow V \rightarrow R بالصيغة :

$$Q(A) = f(A, A), A \in V$$

هذه الدالة التربيعية المتجانسة هي الوحيدة التي تحقق:

$$f(A, B) = 1/2 [Q(A + B) - Q(A) - Q(B)]$$

البرهان:

نبرهن اولاً على ان الدالة $\mathbf{Q} : \mathbf{V} \leftarrow \mathbf{R}$ المعرفة بالصيغة اعلاه تكون دالة تربيعية متجانسة. لهذا الغرض نلاحظ اولاً:

$$Q(-A) = f(-A, -A) = (-1)^2 f(A, A) = Q(A)$$

بما ان f ثنائية الخطية ومتناظرة فنحصل على:

(1/2)[Q(A + B) - Q(A) - Q(B)] = (1/2)[f(A + B, A + B) - f(A,A) - f(B,B)]

$$=(1/2)[f(A, B) + f(B, A)]$$

$$= f(A, B)$$

بذلك تكون الدالة Q المعرفة اعلاه تربيعية متجانسة وذلك بضوء التعريف على العكس ، لو فرضنا ان $Q:V \to R$ دالة تربيعية متجانسة تحقق :

$$f(A,B) = (1/2)(Q(A + B) - Q(A) - Q(B))$$

فإن:

$$2f(A, A) = \dot{Q}(2A) - \dot{Q}(A) - \dot{Q}(A)$$

$$= \dot{Q}(2A) - 2\dot{Q}(A)$$

$$= 4\dot{Q}(A) - 2\dot{Q}(A)$$

$$= 2\dot{Q}(A)$$

واذن:

$$Q(A) = f(A, A) = Q(A)$$

Q = Q اي ان $A \in V$ وذلك لكل

(و . هـ . م)

مثال (4):

بحد الدالة ثنائية الخطية المتناظرة $R imes R^3 imes R^3 o R$ التي تنتج من والمعرفة بالصيغة : Q(x,y,z)=xy+2yz

الحل: ليكن $A = (x_1, y_1, z_1)$ و $A = (x_2, y_2, z_2)$ الدالة ثنائية الحطية المتناظرة $A = (x_1, y_1, z_1)$ التي تنتج من استقطاب $A = (x_1, y_1, z_1)$ التي تنتج من استقطاب $A = (x_1, y_1, z_1)$

$$f(A, B) = (1/2)(Q(A + B) - Q(A) - Q(B))$$

=(1/2)(
$$Q(x_1 + x_2, y_1 + y_2, z_1 + z_2) - Q(x_1, y_1, z_1)$$
.

$$Q(x_2, y_2, z_2)$$

=
$$(1/2)((x_1 + x_2) (y_1 + y_2) + 2(y_1 + y_2) (z_1 + z_2) - x_1y_1 - 2y_1z_1-x_2y_2 - 2y_2z_2)$$

$$=(1/2)(x_1y_2 + x_2y_1 + 2y_1z_2 + 2y_2z_1)$$

مثال (5):

جد الدالة التربيعية المتجانسة $R \to R^3$ المرتبطة بالدالة ثنائية الخطية المتناظرة $R \to R^3 \times R^3$ والمعرفة بالصيغة :

$$f((x_1, y_1, z_1), (x_2, y_2, z_2)) = x_1x_2 - y_1z_2$$

$$Q(A) = f(A, A)$$

$$Q(x, y, z) = f((x, y, z), (x, y, z))$$

$$= (x) (x) - (y) (z)$$

$$= x^{2} - yz$$

لقد رأينا في البند السابق ان الدالة ثنائية الخطية المتناظرة تتعين بصورة كاملة بمصفوفة متناظرة وقاعدة للفضاء المعرفة عليه. كذلك رأينا في هذا البند ان الدالة التربيعية المتجانسة على فضاء تتعين بصورة كاملة بدالة ثنائية الخطية ومتناظرة على ذلك الفضاء وبالعكس (مبرهنة 6.2.2). وعليه فإن اي مصفوفة متناظرة وقاعدة للفضاء V تعينان دالة تربيعية متجانسة على V وبالعكس فإن اي دالة تربيعية متجانسة وقاعدة الى V تعين مصفوفة متناظرة و كما موضح في المثال التالى:

مثال (6) :

 $Q:R^2 \to R$ جد المصفوفة المتناظرة التي تمثل الدالة التربيعية المتجانسة $Q:R^2 \to R$ المعرفة بالصيغة: $Q(x,y) = x^2 - xy + 3y^2$ وذلك بالنسبة للقاعدة الطبيعية.

 $f: R^2 \times R^2 \longrightarrow R$ الدالة التربيعية اعلاه تعرف دالة ثنائية الخطية متناظرة المربيعية اعلاه تعرف بالصيغة :

$$f(A, B) = (1/2)(Q(A + B) - Q(A) - Q(B))$$

: لتكن A = (1,0) عناصر القاعدة الطبيعية عليه يكون لدينا:

$$f(A,A) = Q(A) = (1)^2 - (1)(0) + 3(0)^2 = 1$$

$$f(A, B) = (1/2)(Q(1,1) - Q(1,0) - Q(0,1))$$

$$=(1/2)(3-1-3)=-1/2$$

$$f(B, A) = f(A, B) = -1/2$$

$$f(B, B) = Q(B) = 3$$

اذن تكون مصفوفة f بالنسبة للقاعدة الطبيعية كما يلي.

$$M = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 3 \end{pmatrix}$$

هذه هي مصفوفة الدالة التربيعية اعلاه ولغرض التحقق من ذلك لاحظ ان متجه احداثيات A = (x,y) نفسه ، عليه يكون .

$$Q(A) = f(A, A) = (x, y) M \begin{cases} x \\ y \end{cases}$$

$$Q(x,y) = (x,y) \begin{cases} 1 & -1/2 \\ -1/2 & 3 \end{cases} \begin{cases} x \\ y \end{cases}$$

$$(x,y) = (x,y) \begin{cases} 1 & -1/2 \\ -1/2 & 3 \end{cases}$$

=
$$(x - (1/2)y, (-1/2)x + 3y)$$
 $\begin{pmatrix} x \\ y \end{pmatrix}$

$$= x^2 - xy + 3y^2$$

ان طريقة حل المثال اعلاه، طريقة بدائية وطويلة، حيث وجدنا مصفوفة الدالة التربيعية المتجانسة من خلال الدالة ثنائية الخطية التي تنتج من استقطابها. لندرس الحالة بصورة اكثر تفصيلاً.

لنفرض انسا اعطینا دالة تربیعیة متجانسة $Q\colon V\to R$ ولنفرض ان $S=\{A_1,\,...,\,A_n\}$ قاعدة ثابتة الى V . لتكن M المصفوفة المتناظرة التي تنتج من الدالة ثنائية الخطية $f\colon V\times V\to R$ التي نحصل عليها من استقطاب Q ، اي ان :

$$f(A, B) = (1/2)[Q(A + B) - Q(A) - Q(B)]$$

 $X = (x_1, x_2, ... x_n)$ اذا کان $A \in V$ متجه Q(A) = f(A, A) وبذلك يكون Q(A) = f(A, A) متجه احداثيات $A \in V$ بالنسبة للقاعدة $A \in V$ فإن

$$Q(A) = f(A, A) = XMX^T$$

- مصفوفة f بالنسبة للقاعدة $M=(a_{ij})$ ان ذكرنا ، ان $M=(a_{ij})$

الان:

$$Q(A) = (x_{1}, x_{2}, ..., x_{n})$$

$$\begin{pmatrix} a_{11} a_{12} ... a_{1n} \\ \vdots & \vdots \\ a_{n1} a_{n2} ... a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$Q(A) = a_{11}x_1^2 + a_{22}x_2^2 + ... + a_{nn}x_n^2 + 2\sum_{i \le j} a_{ij} x_i x_j$$

تعريف: يُسمى التعبير:

$$\sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_{j} = a_{11} x^{2} + ... + a_{nn} x_{n}^{2} + 2 \sum_{i < j} a_{ij} x_{i} x_{j}$$

 $X_1,\,\ldots,\,X_n$ صيغة تربيعية متجانسة بالمتغيرات

اذاً وجد مايشير الى ثبوت قاعدة الفضاء V ، فإنه بالامكان كتابة .

$$Q(x_1, x_2, ..., x_n) = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_i x_j$$

 $X_{1}, X_{2}, ..., X_{n}$ ونسمى هذا صيغة تربيعية بالمتغيرات

مثال (7) :

جد المصفوفات المتناظرة لكل من الصيغ التربيعية التالية:

$$Q(x, y) = x^2 - xy + 3y^2 \dots (i)$$

$$Q(x, y, z) = -x^2 + 4xy + 2y^2 + 6xz - 5yz(ii)$$

 $Q(x_1, x_2, ..., x_n)$ الحل: كما لاحظنا اعلاه ، فإنه في المصفوفة (a_{ij}) التي تمثل (عنصرين العنصرين a_{ji} ، (a_{ij}) مساوياً لعنصر القطري $(x_i)^2$ مساوياً لنصف معامل $(x_i)^2$ وهكذا فإن :

تكون
$$Q(x,y) = x^2 - xy + 3y^2$$
 تكون (i)

$$M = \begin{pmatrix} 1 & -1/2 \\ \\ -1/3 & 3 \end{pmatrix}$$

تکون
$$Q(x,y,z) = -x^2 + 4xy + 2y^2 + 6xz - 5yz$$
 تکون (ii)

$$M = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 2 & -5/2 \\ 3 & -5/2 & 0 \end{array}\right)$$

المسألة الاساسية في بندنا هذا تتمثل في امكانية كتابة الصيغة التربيعية بمتغيرات جدد بحيث تتحول الى صيغة بسيطة. المبرهنة (6.1.3) تنص على وجود قاعدة للفضاء $V \times V \longrightarrow R$ بالنسية لها قطرية.

تعریف :

الصيغة التربيعية : $a_{11}x_1^2+\ldots+a_{nn}x_n^2$ تسمى صيغة قطرية . التعريف اعلاه ورد لكون مصفوفة الصيغة اعلاه قطرية .

مبرهنة (6.2.3) :

V دالة تربيعية متجانسة على فضاء المتجهات $Q: V \to R$ المنتهي البعد وعلى حقل الاعداد الحقيقية ، فإنه توجد قاعدة الى V تجعل من مصفوفة Q بالنسبة لها قطرية .

المبرهنة اعلاه نتيجة مباشرة للمبرهنة (6.1.3) ولعلاقة الدوال التربيعية المتجانسة بالدوال ثنائية الخطية المتناظرة.

ان النتيجة بالنسبة للصيغ التربيعية وتحويلها الى صيغ قطرية بمتغيرات جدد تكمن في المبرهنة التالية ، التي هي صورة اخرى من صور المبرهنة (6.2.3) اعلاه .

مبرهنة (6.2.4) :

كل صيغة تربيعية
$$a_{ij}x_ix_j^n = \sum_{i=1}^n a_{ij}x_ix_j^n$$
 بالمتغيرات كل صيغة تربيعية والمي ميغة قطرية x_1,x_2,\dots,x_n قابلة للتحول الى صيغة قطرية y_1,\dots,y_n وذلك على حقل الاعداد الحقيقية . y_1,\dots,y_n المبرهنة اعلاه ، هي ايضاً نتيجة مباشرة لكل ماذكرناه سابقاً .

مثال (8) :

جد قاعدة للفضاء
$$R^2$$
 تجعل من مصفوفة الدالة التربيعية O: $R^2 \rightarrow R$

المعرفة بالصيغة:

$$Q(x, y) = x^2 + 4xy + y^2$$

مصفوفة قطرية.

الحل:

ان مصفوفة الدالة التربيعية اعلاه بالنسبة للقاعدة الطبيعية ، تكون $M = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

راجع المثال (7)، لكيفية استخراج هذه المصفوفة. نحاول الان ايجاد مصفوفة P تحقق: PMP تكون قطرية. والحل يكمن بأيجاد القيم والمتجهات الذاتية للمصفوفة M وهذا موجود في المثال (9) من البند السابق، حيث تكون:

$$P = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

والمصفوفة القطرية:

$$D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

والقاعدة المطلوبة ، هي تلك القاعدة الناتجة من تأثير المصفوفة P على القاعدة والقاعدة $S=\{A_1=(1,0),A_2=(0,1)\}$ $B_1=\{1/\sqrt{2}A_1+1/\sqrt{2}A_2=(1/\sqrt{2},1/\sqrt{2})\}$

$$B_2 = -1/\sqrt{2}A_1 + 1/\sqrt{2}A_2 = (-1/\sqrt{2}, 1/\sqrt{2})$$

مثال (9):

اكتب الصيغة التربيعية

 $Q(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2$

بمتغيرات جدد y₁, y₂ بحيث تكون قطرية.

الحل:

السؤال اعلاه مشابه الى حد ما السؤال في المثال السابق. لقد رأينا في

: كون $S = \{A_1, A_2\}$ المثال السابق ان مصفوفة $S = \{A_1, A_2\}$ تكون

$$\mathbf{M} = \left[\begin{array}{cc} 1 & 2 \\ \\ 2 & 1 \end{array} \right]$$

المصفوفة:
$$P = \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{pmatrix}$$
 : تحقق

$$PMP^{T} = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

ان مصفوفة Q اعلاه بالنسبة للقاعدة

$$\begin{cases} B_1 = (1/\sqrt{2}, 1/\sqrt{2}), B_2 = (-1/\sqrt{2}, 1/\sqrt{2}) \end{cases}$$

$$\text{The initial part of the point of the p$$

$$(y_1, y_2) = (x_1, x_2) P^{-1}$$

 $\{B_1, B_2\}$ متجه احداثیات (x_1, x_2) بالنسبة للقاعدة الجدیدة الصبح (y_1, y_2) مصفوفة عمودیة ، اذن $P^{-1} = P^T$.

$$\begin{aligned} (y_1, y_2) &= (x_1, x_2) & \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \\ &= \left((1/\sqrt{2})(x_1 + x_2), (1/\sqrt{2})(-x_1 + x_2) \right) \\ y_1 &= (1/\sqrt{2})(x_1 + x_2) \end{aligned}$$
 at $y_2 = (1/\sqrt{2})(-x_1 + x_2)$

هي المتغيرات الجدد التي تحقق:

$$Q(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2$$

$$= (x_1, x_2) M (x_1, x_2)^T$$

$$= (y_1, y_2) PM((y_1, y_2) P)^T$$

$$= (y_1, y_2) PMP^T (y_1, y_2)^T$$

$$= (y_1, y_2) \begin{cases} 3 & 0 \\ 0 & -1 \end{cases} (y_1, y_2)^T$$

$$=3y_1^2-y_2^2$$

المثال اعلاه يوضح مسألة تدوير المحاور فلو طلب منا على سبيل المثال رسم المنحني الذي معادلته: $x_1^2 + 4x_1x_2 + x_2^2 = 1$ لعرفنا انها معادلة من الدرجة الثانية ويجب ان تمثل احد القطوع المخروطية. في التفاضل والتكامل كانت هذه المسألة تأخذ جانباً مهماً وكان الطالب يفهم بإن التعويض:

$$x_1 = (1/\sqrt{2})(y_1 - y_2)$$

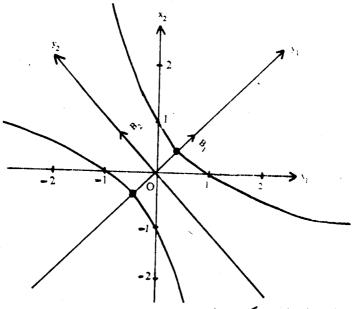
$$x_2 = (1/\sqrt{2})(y_1 + y_2)$$

يؤدي الى حذف الحد x1x2 الذي هو سبب الاشكال والغموض في معرفة ماتمثله المعادلة من قطع مخروطي.

التعويض اعلاه يؤدي الى تدوير المحاور والحصول على معادلة

$$3y_1^2 - y_2^2 = 1$$

والتي تمثل قطع زائد (Hyperbola) . مظر الشكل ادناه .



ان رؤس هذا القطع الزائد تكون عبارة عن

$$(y_1, y_2) = (\pm 1/\sqrt{3}, 0)$$

اما الاحداثيات (x1, x2) لهذه الرؤوس فإنها ستكون:

$$(x_1, x_2) = \pm (1/\sqrt{3})(1/\sqrt{2}, 1/\sqrt{2})$$

مثال (10) :

صف القطع المخروطي C الذي معادلته هي

$$5x^2 - 4xy + 8y^2 - 36 = 0$$

الحل: ان الصيغة المصفوفية للمعادلة اعلاه هي

$$XAX^T - 36 = 0$$

$$A = \begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix} \qquad X = (x, y)$$

لغرض تبسيط المعادلة اعلاه ، نحول الصيغة التربيعية $\mathbf{X}\mathbf{A}\mathbf{X}^{\mathrm{T}}$ الى صيغة قطرية وذلك بإيجاد القيم الذاتية والمتجهات الذاتية للمصفوفة A.

المعادلة المميزة للمصفوفة A هي

$$\det(\mathbf{A} - \mathbf{\lambda}\mathbf{I}) = \begin{vmatrix} 5 - \mathbf{\lambda} & -2 \\ -2 & 8 - \mathbf{\lambda} \end{vmatrix} = (\mathbf{\lambda} - 9) (\mathbf{\lambda} - 4) = 0$$

واذن القيمتان الذاتيتان للمصفوفة A هما $\lambda = 0$, $\lambda = 1$ المتجهات الذاتية التابعة للقيمة $\lambda = 1$ هي الحلول غير الصفرية للنظام.

$$(x, y)$$
 $\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} = 0, 0$

x = 2y الذي يؤدى الى المعادلة :

وبذلك يكون المتجه: (2, 1) قاعدة للفضاء الذاتي التابع للقيمة 4= . تأخذ المتجه:

$$A_1 = (-2/\sqrt{5}, -1/\sqrt{5})$$

احادى الطول.

وبالمثل یکون ($\sqrt{5}$, $\sqrt{5}$, متجهاً ذاتیاً $A_3=(-1/\sqrt{5}, 2/\sqrt{5})$ $\lambda = 9$ احادى الطول تابعاً للقيمة الذاتية

$$P = \begin{pmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$$

عندئذ يكون:

$$PAP^{T} = D = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$$

والتعويض:

$$X = (x, y) = (x', y') P = XP$$

يؤدي الى :

$$(XP) A (XP)^{T} - 36 = 0$$

$$\mathbf{X}(\mathbf{P}\mathbf{A}\mathbf{P}^{\mathsf{T}})\mathbf{X}^{\mathsf{T}} - 36 = 0$$

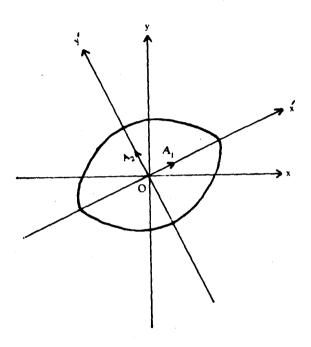
$$(x,y)$$
 $\begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$ $\begin{bmatrix} x \\ y \end{bmatrix}$ $-36=0$

$$4x^2 + 9y^2 - 36 = 0$$

هذه المعادلة يمكن كتابتها بالصيغة

$$x^2/9 + y^2/4 = 1$$

وهذه معادلة قطع ناقص رسمه في الشكل ادناه.



مثال (11) :

صف السطح الذي معادلته

$$4x^2 + 4y^2 + 4z^2 + 4xy + 4xz + 4yz - 3 = 0$$

الحل: ان الصيغة المصفوفية للمعادلة اعلاه هي $XAX^T - 3 = 0$ حيث ان:

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix} , X = (x, y, z)$$

كما تبين في مثال (9) من البند (6.1)، القيم الذاتية للمصفوفة A هي عدد المعاونة المعاودية المعاود

$$P = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{6} & -1/\sqrt{6} & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$

حيث ان متجهي الصفين الأولين في P هما متجهان ذاتيان تابعان للقيمة الذاتية R=2 .

ان تحويل الاحداثيات:

$$X = (x, y, z) = (x, y, z)P = XP$$

يمول المعادلة $3 = 3 - XAX^T$ ، عند التعويض الى المعادلة :

$$(\mathbf{X}\mathbf{P})\mathbf{A}(\mathbf{X}\mathbf{P})^{\mathrm{T}} - 3 = 0$$

$$\mathbf{X}(\mathbf{P}\mathbf{A}\mathbf{P}^{\mathrm{T}})\mathbf{X}^{\mathrm{T}}-3=0$$

لكن:

$$PAP^{T} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

اذن المعادلة اعلاه تصبح

$$(x, y, z) \begin{cases} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{cases} \begin{bmatrix} x \\ y \\ z \end{bmatrix} - 3 = 0$$

$$2x^{2} + 2y^{2} + 8z^{2} = 3$$

وهذه يمكن كتابتها على الصورة

$$x^2/(3/2) + y^2/(3/2) + z^2/(3/8) = 1$$

وهي معادلة سطح ناقص (Ellipsoide).

مثال (12):

إرسم المنحنى الذي تمثله المعادلة

$$16x^2 - 24xy + 9y^2 - 30x - 40y = 0$$

الحل: ان المشكلة الاساسية في معرفة ماتمثله المعادلة اعلاه من قطع مخروطي تكمن في الحد Xy. لذلك بأمكاننا اولاً النظر الى الصيغة التربيعية المتجانسة والموجودة في المعادلة اعلاه. هذه الصيغة هي:

$$16x^2 - 24xy + 9y^2$$

مصفوفة الصيغة اعلاه هي المصفوفة

$$A = \begin{bmatrix} 16 & -12 \\ -12 & 9 \end{bmatrix}$$

سوف نحول الصيغة اعلاه الى صيغة قطرية.

اولاً: نحسب القيم الذاتية

$$\det (A - tI) = \begin{vmatrix} 16 - t & -12 \\ -12 & 9 - t \end{vmatrix}$$

$$= (16 - t) (9 - t) - 144$$

$$= t^2 - 25t + 144 - 144$$

$$= t^2 - 25t = t (t - 25)$$

القيم الذاتية للمصفوفة $\bf A$ نكون : $\bf A$ منافعة للمصفوفة الذاتية الذاتية الخلول غير الصفرية للنظام $\bf A$ التابعة للقيمة الذاتية $\bf A$ الحلول غير الصفرية للنظام

$$(x, y) \begin{pmatrix} 16 & -12 \\ -12 & 9 \end{pmatrix} = (0,0)$$

الذي يؤدي الى المعادلتين الخطيتين:

$$16x - 12y = 0$$

$$-12x + 9y = 0$$

هاتان المعادلتان عبارة عن معادلة واحدة 0=4x-3y=0 والحل سيكون X=3. A=(3/5,4/5) ومنه نحصل على المتجه X=3 ومنه نحصل على المتجه (3/5,4/5) ومنه خصل على المتجه ذاتي احادي الطول تالع للقيمة الذاتية $\lambda_1=0$.

بالمثل نحصل على المتجه (3/5 , 3/5) و المتجه ذاتي احادي الطول تابع للقيمة الذاتية $\lambda_2 = 25$ الطول تابع للقيمة الذاتية

الآن ضع
$$P = \sqrt{3/3}$$
 ولاحظ ان P مصفوفة عمودية تحقق $-4/5$ عمودية تحقق $-4/5$ عمودية تحقق

$$P A P^{T} = \begin{bmatrix} 0 & 0 \\ 0 & 25 \end{bmatrix}$$

$$l(x,y) = (x', y') P$$

$$(x,y) = (x',y') \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

$$x = \frac{1}{5} (3x' - 4y') \begin{bmatrix} 3x' - 4y' \\ 5 & \frac{3}{5} \end{bmatrix}$$

$$y = \frac{1}{5} (4x' + 3y')$$

فعند التعويض عن x,y بالمتغيرات الجدد y' بالصيغة التربيعية

$$16x^2 - 24xy + 9y^2$$

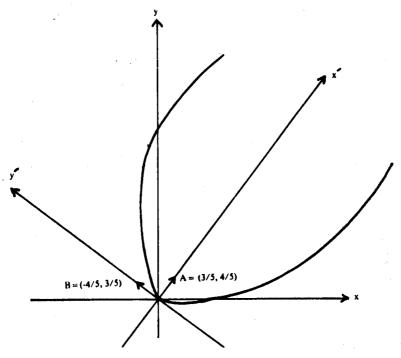
نحصل على الميغة القطرية : نرجع الان الى المعادلة الاصلية

$$16x^2 - 24xy + 9y^2 - 30 x - 40 y = 0$$

ونعوض المتغيرين البود
$$x', y'$$
 فنصل على المعادلة $25y'^2-30.\frac{1}{5}(3x'-4y') - 40.\frac{1}{5}(4x'+3y') = 0$
 $25y'^2-18x'+24y'-32x'-24y'=0$
 $25y'^2-50 x'=0$

$$v^{12} = 2x^{1}$$

الان يمكن تبيز المعادلة اعلام كمعادلة قطع مكافى (Eurobole) ورسم المنحني في الشكل ادناه



ملاحظة : بضبط اشارات المتجهات الذاتية احرس على إن يكون

ا += | ٢ | لكي يكون التحويل الخطي العمودي الناشي من تدويراللمحاور

$$Q(x,y)=x^2-2xy+6y^2 , Q: R^2 \longrightarrow R^{t}$$
 (1)

$$Q(x,y,z)=x^2+xz-2yz+3xy,Q: R^3 \longrightarrow R \qquad ()$$

$$Q(a+bx+cx^2)=abc$$
 , $Q: P_2(R) \longrightarrow R$ (ϵ)

$$Q(\begin{array}{cc} x & y \\ z & w \end{pmatrix} = x^2 + y^2 + z^2 + w^2 + 2 , \quad Q:M_2(R) \longrightarrow R \quad (A)$$

- 2 __ اوجد الدوال ثناثية الخطية الناتجة من استقطاب كل من الدوال التربيعية المتجانسة التالية.
 - $Q(x, y) = 3x^2 xy$, $Q: \mathbb{R}^2 \longrightarrow \mathbb{R}$ (1)

$$Q(z_1, z_2) = z_1^2 - 2 z_2^2 \cdot Q : C^2 \rightarrow R ()$$

حيث ان °C فضاء متجهات على حقل الاعداد الحقيقية.

.
$$Q(x, y, z) = xy - xz + 3yz - \sqrt{2}y^2$$
, $Q: \mathbb{R}^3 \longrightarrow \mathbb{R}$ (5)

.
$$Q(x,y,z,w) = xz + 3yw + x^2 - w^2$$
, $Q: \mathbb{R}^4 \longrightarrow \mathbb{R}$

- وربیعیه متجانسه فبرهن علی Q: V -- R اذا کانت = 3 داله تربیعیه متجانسه فبرهن علی Q(rA) = r^2 Q(A) دان

5 _ اي من الصيغ التالية يكون صيغة تربيعية بالمتغيرات x, y, z _

$$2x^2 - 2xy + xz + y$$
 (1)

$$x^2 - y^2 + z^2 + 3yz$$
 ($-$)

$$10 + x^2 - y^2 + 3xy - xz$$

6 _ اكتب كل من الصيغ التربيعية التالية بالصيغة المصفوفية.

$$2x^{2} + 3xy - 4xz + yz - 2y^{2} + 3z^{2}$$
 (1)

$$x^2 + xy - xz + 4yz - 3xw + y^2 + 9z^2 - w^2$$

$$(1/2) x^2 + w^2 - z^2 + 3y^2 + 4xz - 3xw + yw + 6xy$$
 (ح) (x, y, z, w ملاحظة: ترتیب المتغیرات)

7 _ اوجد الدوال التربيعية المتجانسة الناتجة من الدوال ثنائية الخطية في كل مما يلي:

$$h(A, B) = x_1 x_2 - y_1 y_2 + x_1 y_2$$
, $h: R^2 \times R^2 \rightarrow R$ (1)

.
$$h(C, D) = y_1 z_2 - x_1 y_2 + 3 z_1 x_2 - y_1 x_2$$
, $h: R^3 \times R^3 \rightarrow R$

$$C = (x_1, y_1, z_1)$$
 $B = (x_2, y_2), A = (x_1, y_1)$

.
$$D = (x_2, y_2, z_2)$$

8 _ اكتب كل من الصيغ التربيعية التالية بمتغيرات جدد بحيث تكون قطرية .

$$3x^2 + 5xy + 7y^2$$

$$.21x^2 + 6xy + 13y^2$$

$$.4x^{2} + 4y^{2} + 4z^{2} + 4xy + 4xz + 4yz (z)$$

$$.7x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz$$
 (2)

$$.8x^2 - 12xy + 17y^2 - 80 = 0$$
 (1)

$$3x^{2} + 2xy + 3y^{2} - 4 = 0 (ب)$$

$$5x^{2} - 8xy + 5y^{2} - 9 = 0 ()$$

$$.11x^{2} - 24xy + 4y^{2} + 6x + 8y + 15 = 0 ()$$

$$.16x^{2} - 24xy + 9y^{2} - 30x + 40y - 5 = 0 ()$$

المسادر باللفة الانكليزية

- (1) Birkhoff and MacLane: A Survey of Modern Algebra (MACMILLAN) 1965.
- (2) T. J. Fletcher: Linear Algebra through its applications (Van Nostrand Reinhold) 1972.
- (3) Greub Werner: Linear Algebra (Springer- Verlage) 1975.
- (4) B. HARTLEY and T. O. HAWKES: Rings, Modules and Linear Algebra (Chapman and Hall) 1970.
- (5) S. Lang: Linear Algebra (Addison Wesley) 1973.
- (6) MacLane, Birkhoff: Algebra (MACMILLAN) 1971.
- (7) Mostow and Sampson: Linear Algebra (Mc Graw Hill) 1969.
- (8) Paige L. J, J. D. Swift: Elements of Linear Algebra (Blaisdell Publishing Company) 1961.
- (9) Paige L. J., J. D. Swift, T. A. Slobko: Elments of Linear Algebra; Second Edition (XEROX College Publishing, Lexington) 1974.

- (10) Smith L.: Linear Algebra (Springer Verlage) 1978.
- (11) STEWART F. M.: Introduction to Linear Algebra (Van-Nostrand, East West Press) 1963.

المصادر باللغة العربية

1 ـــ هوارد انتون: الجبر الخطى المبسط (الطبعة الثانية) 🛴

WILEY ARABOOK (1982)

2 ــ سيمور ليبشتز: نظريات ومسائل في الجبر الخطي سلسلة ملخصات سشوم (دار ماكجر وهيل للنشر) (1976).

معجم المصطلحات

عربي ــ انكليزي

Union	اتحاد
Trace	آث ر
Coordinates	احداثيات
Linear Dependance	ارتباط خطى
Polarizing	استقطاب
Linear Independance	إستقلال خطى
Dimension	بُعد
Trivial	تافه
Associative	تجميعي
Linear Transformation	تحويل خطي
Orthogonal Transformation	تحويل عمودي
Identity transformation	تحويل محايد
Composition of functions	تركيب الدوال
Isomorphism	تشاكل
Intersection	تقاطع
Algebraic Multiplicity	تكرار جبري .
Geometric Multiplicity	تكرار هندسي
Bilinear	ثنائي الخطية
Direct Sum	جمع مباشر
Field	حقل
Real	حقیقی حطی
Linear	خطي
Function	دالة

	• •
Identity function	دالة محايدة
Rank	رتبه
Group	زمرة
Abelian Group	زمرة تبادلية
Nullity	صفرية
Image	صورة
Normal Form	ميفة اعتيادية
Quadratic Form	صيغة تهيمية
Inner Product	ضرب داخل
Block multiplication	ضرب قالبی
Scalor Product	ضرب قیاسی
Dot product	ضرب نقطی
Complex	عقدي
Orthogonal	عمودي
Identity element	عنصر محايد
Non - Singular	غير معتل
Subspace	فضاء جزئي
Vector Space	فضاء متجهات
Diagonalizable	قابل للاتعطار
Invertable	قابل للقلب
Basis	قاعدة
Natural Basis	قاعدة طبيعية
Orthogonal Basis	قاعدة متعامدة
Orthonormal Basis	فاعدة متعاقدة احادية
Hyperbola	قطع زائد
Conic Section	قنطع مخروطي
Parabola	تطع مكانىء

Ellipse	قطع ناقص
Eigen Value	قيمة ذاتية
Homogeneous	متجانس
Eigen Vector	متجه ذاتي
Polynomial	متعددة حدود
Orthogonal Complement	متمم عمودي
Symmetric	متناظر
Skew Symmetric	متناظر متخالف
Determinant	عدد *
Component	مركبة
Transpose	مدورة '
Continuous	مستمر
Plane	مستوي
Projection	مسقط
Similar	مشابه
Identity matrix	مصفوفة محايدة
Orthogonal matrix	مصفوفة عمودية
Diagonal matrix	مصفوفة قطرية
Singular	معتل
Inverse	ننكب
Left inverse	نظميب أيسر
Right inverse	نظويب ايمن
Characteristic	مميزة
Kernel	نواة