Takamichi Yamagishi

21.1 Introduction

The stereochemical control of a reaction is a continuing challenge in the synthesis of complex organic compounds, especially those with stereogenic center(s) or molecular chirality. Homogeneous catalytic hydrogenation is a simple and widely applicable method for the construction of stereogenic centers and enantioselective hydrogenation using chiral transition metal complexes. It has undergone striking development during the past two decades [1]. In enantioselective hydrogenation, prochiral substrates with unsaturated linkages are converted to chiral compounds by using chirally modified transition metal complexes based on rhodium, iridium, ruthenium, cobalt, and lanthanide metals, etc. In enantioselective hydrogenation, stereochemical control is performed through the selection of one diastereomeric intermediate composed of a prochiral (achiral) substrate and a chiral metal complex. For this purpose, many chiral ligands (representatives of which include chiral diphosphine ligands) have been developed to realize the production of almost homochiral products with stereogenic center(s). In the hydrogenation of compounds with a stereogenic center, an achiral metal complex can induce a new stereogenic center selectively, by utilizing the steric factor of the stereogenic center in the substrate to afford compounds with two or more stereogenic centers. These diastereoselective hydrogenations also go through the selection of diastereomeric intermediates by differentiating the reaction face of unsaturated bonds. This is termed "intramolecular asymmetric induction".

21.2 Hydrogenation of Alkenes, Ketones, and Imines

In the hydrogenation of alkenes, rhodium–, ruthenium– and iridium–phosphine catalysts are typically used [2–4]. Rhodium–phosphine complexes, such as Wilkinson's catalyst, are effective for obtaining alkanes under atmospheric pres-

Substrate	Major diastereomer	Catalyst	mol%	P _{H2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
1 $\overset{1}{\bigvee}$ R	\mathbf{A} $\mathbf{R} = \mathbf{i} \cdot \mathbf{B} \mathbf{u}$	Sm	10	1 atm	c-C ₅ H ₁₀	r.t.	100:0	1.7	9
	$ \begin{array}{c} & R = Me \\ & R = FBu \\ & R = FBu \\ & R = Ph \\ & R = (CH_2)_3 NMe \end{array} $	Sm Sm Sm 2 Sm	ы Г С Г С С С С С С С С С С С С С С С С	1 atm 1 atm 1 atm 1 atm	$c-C_5H_{10}$ $c-C_5H_{10}$ $c-C_5H_{10}$ $c-C_5H_{10}$	–20 r.t. 50	93:7 100:0 1100:0 91:9	5.1 6.3 6.4 6.4	0 0 0 0
$= \bigvee_{\omega}^{\omega}$	$\bigwedge_{R=n\cdot Bu}$	Sm	ŝ	1 atm	c-C ₅ H ₁₀	0	60:40	5.6	9
$= \bigoplus_{\pi}^{4}$	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Yb	<i>ი</i> , ი,	1 atm 1 atm	c-C ₅ H ₁₀ c-C ₅ H ₁₀	-20 -20	61:39 73:27	4.9 5.3	و و
	R=t-Bu	Yb Cat: Cp [*] LnCH(SiMe ₃	3)2 (Ln=Sn	1 atm 1, Yb)	c-C ₅ H ₁₀	-20	77:23	4.9	و

Table 21.1 Diastereoselective hydrogenation of olefinic bonds.

Table 21.1 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
6 Me Me Me (1S.5S)-cx-pinene	Me Me Me (15,2R,5S)- <i>cis</i> -pinane	Ru ₂ (- CO)4(OAc) ₂ (PPh ₃) ₂	0.9	50 bar	THF	06	98.3:1.7	2.7	А
- Me	H H	[Ir(PCy ₃)(py)(nbd)] ⁺	20	1 atm	CH ₂ Cl ₂	rt.	100:0	0.87	×
»	N N N N N N N N N N N N N N N N N N N	[Ir(PCy ₃)(py)(nbd)] ⁺	15	1 atm	CH ₂ Cl ₂	r.t.	100:0	0.27	ø
9 Aco OAc galactose BocHN ⁻¹ CO ₂ Me	Aco Aco Aco Aco BocHN CO2Me	[Rh(diphos-4)] ⁺ [Rh((<i>R,R</i>)-Me-Du- phos)] ⁺ [Rh((<i>R,R</i>)-Et-Duphos) [Rh((<i>R,R</i>)-Pr-Du- phos)] ⁺	<u>+_</u>	90 psi 90 psi 90 psi 90 psi	МеОН МеОН МеОН МеОН		50:50 79:21 91:9 88.5:11.5		6

21.2 Hydrogenation of Alkenes, Ketones, and Imines 633

Substrate	Major diastereomer	Catalyst mol%	P _{H2}	Solvent Te	emp. Dias C] meri ratio	ttereo- TOF	Reference
10 Accorrect mannose BocHNr CO2Me	Aco CoAc Aco CoAc BocHN ^V CO2ME	[Rh(diphos-4)] ⁺ [Rh((<i>R</i> , <i>R</i>)-Me-Du- phos)] ⁺ [Rh((<i>R</i> , <i>R</i>)-Ft-Duphos)] ⁺ [Rh((<i>R</i> , <i>R</i>)-Pr-Du- phos)] ⁺	90 psi 90 psi 90 psi	Меон Меон Меон Меон	50:51 87:11 >97 >97	0 5:2.5 5:2.5	6
11 B _{ZHN}	BZHN O (18) (38)	[Rh(Ph-B-glup-OH)] ⁺ 1 [Rh(Ph-B-glup-OH)] ⁺ 1 [Rh(Me-a-glu)] ⁺ 1 [Rh(Me-a-glu)] ⁺ 1	0.1 MPa 0.1 MPa 0.1 MPa 0.1 MPa 0.1 MPa	MeOH benzene acetone benzene	96.3 91:9 86:1- 75:2	:3.7 4 5	10
12 BZHN 0 (15)	BZHN O (155/)	[Rh(Ph-β-glup-OH)] ⁺ 1 [Rh(Ph-β-glup-OH)] ⁺ 1 [Rh(Me-a-glu)] ⁺ 1 [Rh(Me-a-glu)] ⁺ 1	0.1 MPa 0.1 MPa 0.1 MPa 0.1 MPa 0.1 MPa	MeOH benzene MeOH benzene	97.4 79:2 66:3 14:8	:2.6 1 6	10
13 Me Me	Me Me Me	Ru(OAc) ₂ ((.S)-3,5- 0.2 xylyl-biphep)	60 bar	HO ₁ Q-1	80:2	0	11
14 Me Me	Me Me	Ru(OAc) ₂ ((S)-3,5- 0.2 xylyl-biphep)	60 bar	HOrd-4	92:8	25	11

Table 21.1 (continued)

Table 21.2 Diastereoselect	ive hydrogenation of ketones a	nd imines.								
Substrate	Major diastereomer		Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- selectivity	TOF	Reference
С	HO	R=Me	Ru	0.2	4 atm	<i>i</i> -PrOH	28	92:8	485	12
)—		R = Ph	Ru	0.2	4 atm	i-PrOH	28	96:4	500	12
<u>–</u> т	<u>م</u>	R= <i>t</i> -Bu	Ru	0.2	4 atm	i-PrOH	28	98.4:1.6	500	12
0=	HO-									
² →		R=Me	Ru	0.2	4 atm	<i>i</i> -PrOH	28	96:4	500	12
0=	HO	R=Me	Ru	0.2	4 atm	i-PrOH	28	98:2	475	12
¥ m		R= <i>t</i> -Bu	Ru	0.2	4 atm	<i>i</i> -PrOH	28	>99.8:0.2	500	12
0=	HO-									
4 R	К	R=Me	Ru	0.2	4 atm	i-PrOH	28	99:1	500	12
0=	: HO :									
5 Me Me	Me		Ru	0.2	4 atm	i-PrOH	28	98.7: 1.1:0.2		12

Substrate	Major diastereomer		Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- selectivity	TOF	Reference
0=	НŎ	R=Me	Ru-a	0.2	4 atm	i-PrOH	28	96:4 05 r		12
Me	Me	K=Me	Ku-b	0.2	4 atm	1-PrOH	78	5:56		12
`~ `~	×	R=Me	Ru	0.2	4 atm	<i>i</i> -PrOH	28	86:14	480	12
و ب	\prec	R = n-Bu	Ru	0.2	4 atm	<i>i</i> -PrOH	28	93:7	480	12
\supset	Syn	R=Ph	Ru	0.2	4 atm	i-PrOH	28	98:2	480	12
С	НО	Ru		0.2	4 atm	<i>i</i> -PrOH	28	81:19	66.4	13
∖ ⊨	\prec	$RuCl_2((S))$	-binap)(dmf)m	-(R,R)-DP	EN-KOH/i-	PrOH				
) 			0.2	4 atm	i-PrOH	28	100:0	143	13
	$\left\langle \right\rangle$	$RuCl_2((R))$	-binap)(dmf)m	-(S,S)-DPI	EN-KOH/i-	PrOH				
 (<i>R</i>)-carvone				0.2	8 atm	i-PrOH	28	34:66	29.4	13
c	- HO	RuCl ₂ ((S)	-binap)(dmf)m	-(S,S)-DPI	EN-KOH/i-1	PrOH				
×				0.4	8 atm	i-PrOH	28	98:2	15.1	13
, 	, 	$RuCl_2((R))$	-binap)(dmf)m	-(<i>R</i> , <i>R</i>)-DP	EN-KOH/i	PrOH				
(R)-pulegone	\langle			0.4	8 atm	<i>i</i> .PrOH	28	95:5	14	13
Ph	Ph	[RhCl(dip	hos-3)]Cl	2	1000 psi	MeOH	r.t.	91:9		14
-		[RhCl((<i>S</i> ,	S)-bdpp)]Cl	2	1000 psi	МеОН	r.t.	99.7:0.3		
9 Ne		[RhCl((-)	-diop]Cl	2	1000 psi	MeOH	r.t.	93:7		
Ph/ Me (R)	Ph⁄ `Me (R,R)									

Table 21.2 (continued)

Table 21.2 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- selectivity	TOF	Reference
10 Ph S) (S)	Ph HN Bh Me (S,S)	[RhCl((S,S)-bdpp)]Cl	2	1000 psi	МеОН	rt	93.8.6.2		14
11 o-MeOC ₆ H4 Me	o-MeOC ₆ H 4 Me	[RhCl((S,S)-bdpp)]Cl	7	1000 psi	MeOH	r.t.	98.1:1.9		14
12 PhCH2CH2 Me	PhCH ₂ CH ₂ Me (R,R)	[RhCl(diphos-3)]Cl [RhCl((S,S)-bdpp)]Cl	7.7	1000 psi 1000 psi	MeOH MeOH	rt. rt	67:33 84:16		14
Ru=RuCl ₂ (PPh ₃) ₃ -EN-KOH; Rı	$u-a = RuCl_2(P(C_6H_4-p-OMe)_3)_{3^-}$	EN-KOH; Ru-b=RuCl ₂ (P(C ₆)	H4-P-Me)3)3	-EN-KOH					

sure. The reactivity of rhodium complexes in homogeneous hydrogenation is sensitive to the degree of substitution on the olefinic bond, and trisubstituted or tetrasubstituted alkenes are intact in the hydrogenation, whereas iridium catalysts can hydrogenate the multi-substituted olefins under atmospheric hydrogen pressure. The unreactivity of trisubstituted alkenes towards rhodium complexes is overcome by increasing the hydrogen pressure, and the selectivity is comparable to (or a little better than) that obtained with iridium catalysts under atmospheric pressure [5]. The results of the hydrogenation of alkenes with lanthanide, ruthenium and iridium catalysts are listed in Table 21.1 [6-8]. In these reductions, the catalyst approaches the face of the double bond from the less-hindered side, and selection of the diastereoface of the substrate is straightforward when the stereogenic center is disposed adjacent to the double bond [6]. In the hydrogenation of double bonds in steroidal compounds, diastereoselectivity induced by iridium catalysts is very high [8]. In the reduction of dehydroamino acid derivatives with a chiral unit, an achiral rhodium catalyst resulted in stereorandom products (Table 21.1, entries 9 and 10) [9]. In the reaction of pyrone, the hydrogenation does not stop at the dihydropyrone stage, and *cis*-lactone is obtained in high diastereoselectivity, whereas hydrogenation of (R)-dihydropyrone afforded cis-lactone in lower diastereoselectivity, suggesting the complex character of the second hydrogenation step (Table 21.1, entries 13 and 14) [11]. Ruthenium-phosphine complexes combined with a diamine ligand effectively reduced ketones with a stereogenic center, and high diastereoselectivities are obtained (Table 21.2, entries 1-6) [12, 13]. The apparent effect of an adjacent stereogenic center was also observed in the reduction of imines [14]. For high stereoinduction, the proximity of the aromatic ring to the C=N bond seems to be essential.

21.3

Substrate-Directive Diastereoselective Hydrogenation

21.3.1

Hydrogenation of Cyclic Alcohols with Endo- or Exo-Cyclic Olefinic Bond

In the diastereoselective hydrogenation of olefinic, keto or imino double bonds, enhanced diastereoface differentiation will be possible by utilizing the interaction of functional groups in the substrates with the metal or with the ligand of the complex. Heteroatom(s) in the functional group would ligate to the metal and serve to fix the coordination mode of the substrate onto the catalyst. The key factor in the enantioselective hydrogenation of dehydroamino acids and esters is the formation of the rhodium–enamide chelate complex in which olefinic and amidocarbonyl units ligate to the metal [15]. Also in the diastereoselective hydrogenation, chelation of the substrate would serve to control the course of the hydrogenation. This potentiality of functional group-directed hydrogenation was first disclosed by Thompson and McPherson in 1974. In the hydrogenation of a cyclic homoallyl alcohol derivative by RhCl(PPh₃)₃, the reaction did not even proceed under forced conditions (100 psi at 50 $^{\circ}$ C), but the substrate was hydrogenated by converting the alcohol to the potassium alkoxide 1 to afford the *cis*-product predominantly [Eq. (1)] [16].

It was proposed that the chloride ion is displaced by the alkoxide ion from the coordination sphere of the dihydride complex, while delivery of the hydride to the unsaturated bond is controlled to afford the *cis*-product. In the case of the alcohol form, the chloride ion is not displaced, and the substrate is strongly resistant to hydrogenation by RhCl(PPh3)3. The heteroatom-directive hydrogenation would generally require vacant sites on the metal complex for the binding of H₂, the olefin unit and the directing heteroatom to the metal under hydrogenation conditions; thus, an active catalyst would be of 12-electron structure. Cationic [Rh(diphosphine)(cod)]⁺ complex and cationic iridium complex (e.g., [Ir(P-Cy₃)(py)(nbd)]⁺: Crabtree's catalyst [18]) and ruthenium complexes (e.g., Ru(binap)(OAc)₂) could hydrogenate the olefinic substrate with a directing heteroadiastereoselective tom moiety to cause hydrogenation. Using [Rh(diphosphine)(cod)]⁺ or [Ir(PCy₃)(py)(nbd)]⁺ complexes, coordinating dienes are easily reduced by treatment with H₂, and 12-electron species are easily formed in a non-coordinating solvent such as dichloromethane (DCM). Brown reported the selective hydrogenation of acyclic allylic alcohols to produce chiral acyclic alcohols diastereoselectively using [Rh(diphos-4)]⁺ catalyst in 1982 [19, 20]. Crabtree and Stork reported the highly diastereoselective hydrogenation of diverse types of cyclic alcohols in 1983 (allyl and homoallyl alcohols), using the cationic iridium complex ($[Ir(PCy_3)(py)(nbd)]PF_6$: Ir^+) [21, 22]. The data provided in Tables 21.3, 21.4 and 21.5 indicate the hydrogenation of diverse types of cyclic allylic and homoallylic alcohols.

In these reactions, the major diastereomer is formed by the addition of hydrogen *syn* to the hydroxyl group in the substrate. The cationic iridium catalyst $[Ir(PCy_3)(py)(nbd)]^+$ is very effective in hydroxy-directive hydrogenation of cyclic alcohols to afford high diastereoselectivity, even in the case of bishomoallyl alcohols (Table 21.4, entries 10–13) [5, 34, 35]. An intermediary dihydride species is not observed in the case of rhodium complexes, but iridium dihydride species are observed and the interaction of the hydroxyl unit of an unsaturated alcohol with iridium is detected spectrometrically through the presence of diastereotopic hydrides using NMR spectroscopy [21].

Table 21.3 Diastereoselec	tive hydrogenation of cyclic a	allyl alcohols.							
Substrate	Major diastereomer	Catalyst	mol%	P_{H_3}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference(s)
НО	НО	${ m Rh}^+$	3.5	375 psi			290:1	28	23
		Ir^+	20	15 psi	CH_2Cl_2	rt.	98.5:1.5	>2.5	22
1	/		20	15 psi	CH_2Cl_2	r.t.	98:2	>2.5	24
Me	Me.		2.5	15 psi	CH_2Cl_2	rt.	$140 \sim 150:1$	20, 80	24, 25
HO	НО								
² Me	Me	Ir^+	2.5	1 atm	CH_2Cl_2	rt.	99:1	80	25
Me	Me								
HO	ЧŎ								
		Ir+	2.5	1 atm	CH ₂ Cl ₂	rt.	940:1	80	25
	DIA								
5 - √ ∢	5< ∢								
4 Me		Ir+	2.5	1 atm	CH ₂ Cl ₂	rt.	98.5:1.5	80	25
	Č								
5-	5 <								
2 W		Ir+	2.5	1 atm	CH_2Cl_2	rt.	96:4	80	25
đ	e M								
<u>}</u>	<u>}</u>	+	1	-					1
HO	HO	Kh.	30	800 psi 1 atm	1HF CH ₂ Cl ₂		98.6:1.4 highly selective		5 26

Table 21.3 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference(s)
HO MG	T T T	Ir+	20	1 atm	CH_2Cl_2		100:0		26
8 Me	H	Rh+	CJ	55 atm	THF		95:5	~	27
9 Me OTBS	Me OTBS	Ir ⁺ +	20	40 psi	CH_2Cl_2		highly selective	0.16	28
10 Me OTBS	Me OTBS	Rh	25	40 psi	benzene		75:25	0.15	28
11 Me	OMe	Ir+	2.5	1 atm	CH_2Cl_2		>99.9:0.1	80	25

ontinued)	
able 21.3 (co	

Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference(s)
12 Meo	e Wind Geo	lr+	2.5	1 atm	CH ₂ Cl ₂		>99.9.0.1	80	25
13 Mecoo	Meccoo	Ir.+	20	40 psi	CH ₂ Cl ₂		100:0	0.13	28
14 Me	Me, ,, Me	Ir+	2.5	15 psi	CH ₂ Cl ₂		62:38	36	25
15 Me Me	Me.,	Lr+	2.5	15 psi	CH ₂ Cl ₂		99:1	80	25

Table 21.4 Diastereosele	ctive hydrogenation of cyclic	homoallyl and bishon	roallyl alcol	iols.					
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
1 MP	HO	Ir+	20	15 psi	CH ₂ Cl ₂	r.t.	96.5:3.5	>2.5	22
HO R	۲ ۹	$R = Me Ir^+$ $R = {}^i Pr Ir^+$	20 2.3	15 psi 1 atm	CH ₂ Cl ₂ CH ₂ Cl ₂	rt. 0	>100:1 1000:1	>2.5 28.7	22 21
₩ ₩ ₩		Rh+ Ir+	10 20 2.5	640 psi 15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂	rt. rt.	98.5:1.5 97:3 98.1:1.9	10 >2.5 20	5 24 24
Hore the second	Me Me	τr*	20	15 psi	CH ₂ Cl ₂	rt.	86:14	>2.5	22
2 S	How	IT*	20	15 psi	CH ₂ Cl ₂		96:4	<0.21	22

21.3 Substrate-Directive Diastereoselective Hydrogenation 643

-
£
ē
÷
2
0
.U.
\sim
4
4.
21.4 (
21.4 (
e 21.4 (
ble 21.4 (
able 21.4 (

Table 21.4 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	P _{H2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
HO	НО								
	-	${ m Rh}^+$ ${ m Ir}^+$	10 20	1000 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	r.t. r.t.	95:5 96.2:3.8	10 >2.5	ы N
–₩ c	Sec.								
	13°,	+	Ľ			ł	1.10		, c
	HO	Ц	2	15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	rt.	c:cc 9.0:4:06	12.5	34 34
DOC	DOC	+							L
Me OH OH	Me OH OH	Rh^+	1 6	ısq cı	CH ₂ Cl ₂ CH ₂ Cl ₂		>90:10		çç
		Rh	100		toluene		6:94		
-	Me								
Месон он	Меронон								
13 4	T	Ir^+	0.5	15 psi	CH_2Cl_2		>99:1		35
Me Me	H								
									Ĩ
$Rh = RhCl(PPh_3)_3; Rh^+ = [Rh_3)_3;$	$(diphos-4)(cod)]^+; Ir^+ = [Ir(PCy_3)(py)(nb-$	d)] ⁺							

21.3 Substrate-Directive Diastereoselective Hydrogenation 645

Table 21.5 Diastereoselectiv	ve hydrogenation of alcohols	with exocyclic	double bor	.pi					
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
H O T	HO Me	Rh+	2	15 psi			>98:2		36
HO Z	OH Me	Rh+ Rh+	3.5	500 psi 15 psi			75:25 45:55		23 36
Ho	OH Me	Rh+	7	15 psi			47:53		36
4	Me WHBz	Rh ⁺ Ir ⁺	35 17.5	15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	r.t. r.t.	100:0 72:28	0.12	37 37

Table 21.5 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
5 OBz OBz	Me ^{in,i} , NHBz	Rh	100 3.6	15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	rt. rt	95:5 no reaction		37 37
6 Not	Me Boc	Ir^+	ŝ	15 psi	CH_2Cl_2	rt.	>97.5:2.5	1.67	38
HO Nor Nor Nor Nor Nor Nor Nor Nor Nor Nor	Boc	Ir^{+}	m	15 psi	CH ₂ Cl ₂	rt.	>97.5:2.5	1.7	38
8 Boc Boc	Boc	±1	ŝ	15 psi	CH ₂ Cl ₂	rt	94:6	1.85	œ

Table 21.5 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
, ,	Ą	אלא +	2	15 nsi	CH,Cl,		95.5	10	29
Но	OH Me	Ir+	5 -	15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂		99.7:0.3 99.7:0.3	1500 6000	<u> </u>
10 HO	HO	Ľr+	5	15 psi	CH ₂ Cl ₂		55:45	16.7	29
Ţ	Z								
11 OMe	OMe	$ m Rh^+$ Ir ⁺	2 2	15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂		86.5:14.5 97.4:2.6	600 1000	29 29

 $Rh = Rh Cl(PPh_3)_3; Rh^+ = [Rh(diphos-4)(cod)]^+; Ir^+ = [Ir(PCy_3)(py)(nbd)]^+$

Thus, coordination of the OH-group controls the selection of the face to be reduced, and in some cases may also induce higher reactivity compared with the simple olefins not bearing OH-groups. Even in the presence of exceptional levels of steric congestion which are disposed to override the directivity of hydroxyl group, the addition of hydrogen occurs predominantly on the diastereoface bearing the hydroxyl group (Table 21.3, entry 6) [5, 26]. The concentration of the iridium catalyst strongly affects the stereoselectivity: a low concentration of the iridium complex is necessary to effect high diastereoselectivity, the decreases in stereoselectivity at a higher iridium concentration is ascribed to the formation of more than one complex, including trinuclear cluster complexes [24] in solution (Table 21.3, entry 1 and Table 21.4, entries 2 and 3). Cationic rhodium complexes such as [Rh(nbd)(diphos-4)]⁺ are also effective for directive-hydrogenation of cyclic unsaturated alcohols, although in terms of selectivity they are somewhat inferior to the iridium catalysts. In entry 9 of Table 21.3, an attempt to obtain the trans-hydroindane product using a cationic iridium catalyst (Crabtree's catalyst) unexpectedly produced cis-hydroindanol highly selectively [28]. This suggests direction by the ether linkage of the TBSO unit. In contrast, hydrogenation by 25 mol.% of Wilkinson's catalyst in benzene (entry 10) afforded the trans-hydroindanol as a 3:1 mixture by the approach of rhodium catalyst from the less-hindered face of the double bond [28]. Even an exocyclic hydroxyl group can direct high diastereoselectivity with a rhodium or iridium catalyst in entries 7 and 9 of Table 21.4 [31, 33], though in entry 8 the directivity of the hydroxyl group is depressed by competition with the carbamate unit [32]. The hydroxyl group in bishomoallyl type alcohols also serves to direct the hydrogenation course to afford high diastereoselectivity. In entries 10-13 of Table 21.4, a cationic iridium complex can induce high diastereoselectivity by adding hydrogen from the face bearing the hydroxyl group [5, 34, 35]. With the Wilkinson catalyst, however, the reversed diastereoselectivity was again observed by the approach of the complex from the less-hindered side of the double bond without interaction with a hydroxyl unit (Table 21.4, entry 12).

Cationic iridium and rhodium catalysts are also effective for the hydrogenation of exocyclic olefinic alcohols (see Table 21.5), except for 2-exomethylenecyclohexanol and 2-methylenecyclohexanemethanol (entries 2 and 3). In entry 4, a cationic rhodium catalyst gave a single product whilst a cationic iridium catalyst induced only modest selectivity (72:28).

This lowering of the selectivity may be attributed to competitive binding between the hydroxyl and amide groups to iridium [37]. In entries 6, 7 and 8, the directivity of the hydroxyl group at the bishomoallylic position effectively overrides the effect of the carbamate unit [38]. In the hydrogenation of methylenebi-

cyclo[2.2.2]octan-2-ol, the exo hydroxyl group does not serve as a directive group, and stereorandom hydrogenation proceeds contrary to the hydrogenation of methylenebicyclo[2.2.2]octan-2-ol with an endo hydroxyl group (entries 9 and 10) [29]. In entry 11 of Table 21.5, the methylenebicyclo[2.2.2]octane compound is hydrogenated in lower selectivity but at a higher rate than the parent alcohol with rhodium catalyst [29].

As exemplified by Thompson for the case of tricyclic alcohol **1** [Eq. (1)], alkoxide has a strong coordinative ability to the metal, and high diastereoselectivity is realized in spite of the presence of a proximal bulky substituent in dihydrofuran derivatives [Eqs. (3) and (4)] [17].

Other functional groups which have a heteroatom rather than a hydroxyl group capable of directing the hydrogenation include alkoxyl, alkoxycarbonyl, carboxylate, amide, carbamate, and sulfoxide. The alkoxy unit efficiently coordinates to cationic iridium or rhodium complexes, and high diastereoselectivity is induced in the reactions of cyclic substrates (Table 21.3, entries 11–13) [25, 28]. An acetal affords much lower selectivity than the corresponding unsaturated ketone (Table 21.3, entries 14 and 15) [25].

Table 21.6 indicates the hydrogenation results of substrates with ester and carboxyl functionalities. An ester functionality also serves well as a directive unit, and high selectivity is reported for β , γ -unsaturated esters with both rhodium and iridium catalysts (Table 21.6, entries 1 and 2) [40, 41]. Directivity of the alkoxycarbonyl unit of an γ , δ -unsaturated ester is slightly diminished (entry 3) [25, 40, 41], and an acyloxy unit in the homoallylic position does not direct apparent stereoselectivity (entry 4) [41]. In the Wilkinson catalyst, hydroxyl, ether, esters or amide units cannot displace chloride ion from the metal, but carboxylate – being a better nucleophile – may be able to replace the chloride ion. In the hydrogenation of β , γ -carboxylic acids (Table 21.6, entries 8 and 9), the carboxylates are generated *in situ* by the addition of triethylamine, and the hydrogenation proceeds cleanly under 60 psi. As a consequence, one diastereoisomer is formed predominantly with a high selectivity of more than 99% diastereomeric

Iane ZI. Diaster coselectiv	e injurgenation of double	הסוות ווו הארווי	ה בסובו ס מוור	י במו טטאווכ מ	cius.				
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
-Me	Re								
	·<	${ m Rh}^+$	2	1 atm	CH_2Cl_2	r.t.	97:3	>1.8	40
CO ₂ Me	CO ₂ Me	Ir^{*}	2	1 atm	CH ₂ Cl ₂	rt.	99.9:0.1	300	40
Me	Me.								
2 Me	E CO ₂ Me	Ir^+	Ŋ	1 atm	CH ₂ Cl ₂	r.t.	99:1	$4.5 \sim 9$	41
M.C		${ m Rh}^+$	2	1 atm	CH_2Cl_2	r.t.	88:12	<0.23	40
		Ir^+	2	1 atm	CH_2Cl_2	r.t.	89:11	200	40
3 		Ir^+	2.5	1 atm	CH_2Cl_2	r.t.	95:5	77	25
✓ CO₂Me	✓ `CO₂Me	Ir^+	5	1 atm	CH_2Cl_2	r.t.	97.6:2.4	4.5–9	41
Me	Me,,,								
4	OCOME	Ir^+	Ŋ	1 atm	CH_2Cl_2	r.t.	50:50		41
Me	Mering								
5 CO2M	e CO ₂ Me	Ir+	Ŋ	1 atm	CH_2Cl_2	r.t.	54.5:45.5		41
	-Me								
و	'	${ m Rh}^+$	2	1 atm	CH_2Cl_2	r.t.	90:10	0.88	40
CO ₂ Me	CO ₂ Me	Ir+	2	1 atm	CH ₂ Cl ₂	r.t.	81:19	300	40
	I								

carbovulic acide 740 -i Junio of double bond in \$ selective hydro Tahle 21 6 Diacte

	Temp. [°C]	rt.
	Solvent	CH_2Cl_2
	P_{H_2}	1 atm
	mol%	2
	Catalyst	Rh+
	Major diastereomer	Ð Sini (
Table 21.6 (continued)	Substrate	

	40	40		42	42		42	
	<0.33	8.3		1.7	1.0			
meric ratio	50:50	88:12		>99.5:0.5	94:6		>99.5:0.5	
[°C]	rt.	r.t.						
	CH ₂ Cl ₂	CH ₂ Cl ₂		THF/EtOH(1/9) (1.5 eq TEA)	THF/EtOH(1/9) (0 eq TEA)		THF/EtOH(1/9) (1.5 eq TEA)	
	1 atm	1 atm		60 psi	60 psi		60 psi	
	2	2		2	Ŋ		Ŋ	
	Rh^+	Ir^+		H Rh	Rh		Rh	
	e and a second	∕	/":	H CO2		H NCO2H		2
		O ₂ H	H202-1	ſ	ž	Me,,CO ₂ H		
	-	Š			Meo		Meo	

×

6

 $Rh = Rh Cl(PPh_3)_3; Rh^+ = [Rh(diphos-4)(cod)]^+; Ir^+ = [Ir(PCy_3)(py)(nbd)]^+$

652 21 Diastereoselective Hydrogenation

Reference

Diastereo- TOF

excess (d.e.). The carboxylate anion binds to the rhodium complex, and discrimination of the diastereoface is caused by minimizing interaction of the stereogenic center with the peri-aromatic proton [42]. Even in the absence of amine, hydrogenation using the Wilkinson catalyst induces moderate reactivity and selectivity (88% d.e.) (entry 8), because part of the carboxylic acid undergoes dissociation to afford carboxylate in polar tetrahydrofuran (THF)/EtOH solution. In entry 7, the hydrogenation proceeds incompletely in DCM under the standard conditions. This implies the formation of inactive carboxylate complex in dichloromethane.

The amide group shows a prominent directivity in the hydrogenation of cyclic unsaturated amides by a cationic iridium catalyst, and much higher diastereoselectivity is realized than in the corresponding ester substrates (Table 21.7). In the case of β , γ -unsaturated bicyclic amide (entry 3), the stereoselectivity surpasses 1000:1 [41]. An increase of the distance between the amide carbonyl and olefinic bond causes little decrease in the selectivity (δ , ε -unsaturated amide, entry 6) compared with the case of the less-basic ester functionality (Table 21.6, entry 5).

In the case of cyclopentenyl carbamate in which a directive group is present at the homoallyl position, the cationic rhodium $[Rh(diphos-4)]^+$ or iridium $[Ir(PCy_3)(py)(nbd)]^+$ catalyst cannot interact with the carbamate carbonyl, and thus approaches the double bond from the less-hindered side. This affords a *cis*product preferentially, whereas with the chiral rhodium–duphos catalyst, directivity of the carbamate unit is observed (Table 21.7, entry 7). The presence of a hydroxyl group at the allyl position induced hydroxy-directive hydrogenation, and higher diastereoselectivity was obtained (entry 8) [44].

21.3.2 Hydrogenation of Acyclic Allyl and Homoallyl Alcohols

The hydrogenation of acyclic allyl alcohols with a 1,1-disubstituted olefinic bond are listed as entries 1 to 5 of Table 21.8. The reduction of (*a*-hydroxyalkyl)acrylates proceeds stereoselectively with the cationic rhodium catalyst [Rh(diphos-4)- (nbd)]⁺, and 1,2-*anti*-compounds are obtained as the major product by the direction of the hydroxyl group. Under these reaction conditions, isomerization of the olefinic unit occurs to afford about 20% of the corresponding methyl ketone. If the isomerization occurs prior to the hydrogenation, diminished stereoselectivity would be observed, even if the individual reduction mode were to occur discriminately [5]. With a cationic iridium catalyst, the degree of isomerization is greater than with the rhodium catalyst, and the hydrogenation occurs with lower diastereoselectivity (Table 21.8, entries 5–7). This is in contrast to the high stereoinduction ability of iridium catalysts for cyclic unsaturated compounds, but the isomerization can be suppressed by increasing the hydrogen pressure. The concentration of iridium catalyst strongly affects the stereoselectivity, and at higher concentration stereorandom hydrogenation almost occurs

Table 21.7 Amido-directive dias	tereoselective hydrogenation.							
Substrate	Major diastereomer	Catalyst	mol%	P _{H2}	Solvent	Diastereo- meric ratio	TOF	Reference
	We	Ir+	5	1 atm	CH ₂ Cl ₂	170:1	4~8	41
2 Mel H OMe	Me	Ir+	CJ	1 atm	CH ₂ Cl ₂	530:1	4.5~9	41
We	₩ N N N N N N N N N N N N N N N N N N N	Ir*	Ŋ	1 atm	CH ₂ Cl ₂	>1000:1	$4.5 \sim 9$	41
4 Me Me Nin Nin Nin Nin Nin Nin Nin Nin Nin Nin		Ir+ Ir+	ىر _ك	1 atm 1 atm	CH ₂ Cl ₂ CH ₂ Cl ₂	>99:1 >99:1	$4.5 \sim 9$ 3.3	41
Me North Nor	We	Lr+	5 L	1 atm	CH2Cl2	130:1	$4.5 \sim 9$	41

Tabl	le 21.7 (continued)								
	Substrate	Major diastereomer	Catalyst	%lom	P _H 3	Solvent	Diastereo- meric ratio	TOF	Reference
9	Me	Me ^m	lr^+	S	1 atm	CH ₂ Cl ₂	>100:1	4.5~9	41
	NHBoc	NHBoc	Ir ⁺ Rh ⁺	1 1	5 atm 5 atm	CH ₂ Cl ₂ MeOH	92.5:7.5 78.5:21.5	7.1 7.1	44 44
	MeO ₂ C	MeO ₂ C	[Rh((<i>R</i> , <i>R</i>)-Me- [Rh((<i>S</i> , <i>S</i>)-Me-]	Duphos)] ⁺ 1 Duphos)] ⁺	5 atm	МеОН	20:80	7.1	44
				1	5 atm	МеОН	9:91	7.1	44
×	NHBoc	NHBoc	$^{ m Ir^+}_{ m Rh^+}$		5 atm 5 atm	CH ₂ Cl ₂ MeOH	97:3 80:20	7.1 7.1	44 44
)	MeO ₂ C	MeO ₂ C	[Kh((<i>K</i> , <i>K</i>)-Me- [Rh((<i>S</i> ,S)-Me-]	Duphos)]' 1 Duphos)] ⁺	5 atm	МеОН	4:96	7.1	44
				1	5 atm	МеОН	33.5:66.5	7.1	44

 $Rh^{+}=[Rh(diphos-4)(cod)]^{+}; Ir^{+}=[Ir(PCy_{3})(py)(nbd)]^{+}$

21.3 Substrate-Directive Diastereoselective Hydrogenation 655

Table 21.8 Hydroxy-directed	hydrogenation of acyclic a	llyl aclohols.							
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
1 Me Ph	Me Ph	Rh^+	2	15 psi	CH ₂ Cl ₂	0	97:3		19
2 Me Cozet	Me Cozet	Rh+	1	15 psi	CH ₂ Cl ₂ MeOH		100:1 100:1	50	45 45
³ Me CO ₂ Me	Me CO ₂ Me	Rh(OAc) ₂ (Rh(OAc) ₂ ((S)-binap) (R)-binap)	4 atm 4 atm	МеОН МеОН	25 25	>23:1 >23:1		46
⁴ Ph Cozet	Ph Co_Et	Rh ⁺	1	15 psi	CH ₂ Cl ₂ MeOH	20 20	100:1 97.5:2.5	50	45
5 Et	Et K	Rh+ Ir+ Ir+	17.5 20 2.5	640 psi 15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂	25 25 25	93:7 57:43 85:15	>2.8 >2.5 >20	5 24 24
6 Me Me Me	Et CH O Me	$ m Rh^+$ $ m Irr^+$ $ m Irr^+$	17.5 20 2.5	640 psi 15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂	25 25 25	91:9 43:57 73:27	>2.8 >2.5 >20	5 24 24

Table 21.8 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
7 Ph		Rh ⁺	17.5 2.5	640 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	25 25	94:6 48:52	>2.8 <0.4	24 24
8 C Ph Me Ph Me Ph	o M M M M M M M M M M M M M M M M M M M	Rh⁺ Ph	10	45 bar	CH ₂ Cl ₂		75:25	1.1	47
e Me Me Me	Dh Cl Me	Rh ⁺	10	45 bar	CH ₂ Cl ₂		80:20	1.3	47
10 OH /-Pr SnBu ₃	OH SnBu3	Rh^{+}	Ŋ	1500 psi	CH ₂ Cl ₂	rt.	300:1	0.47	48

Table 21.8 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Temp. [°C]	Diastereo- meric ratio	TOF	Reference
11 OH SnBu ₃ Me n-Bu	Me SnBu ₃	Rh+	5	1500 psi	CH_2Cl_2	rt.	>100:1	0.2	48
12 OH SiMe2Ph Me	OH SiMe2Ph	Rh^+	Ŋ	1500 psi	CH ₂ Cl ₂	rt.	>500:1	0.4	48
13 OH SiMe2Ph Me h-h-Bu	OH SiMe2Ph Me	Rh^{+}	Ŋ	1500 psi	CH ₂ Cl ₂	rt.	>500:1	0.4	48
14 OH NHCbz CO ₂ Bu ^t OSiMe2 ^t Bu	OH NHCbz Č OSiMe2 ^f Bu	[Rh((<i>R,R</i>)-di	ipamp)] ⁺ 0.7	3 bar	МеОН		highly selective	11.8	49

 $Rh^{+} = [Rh(diphos-4)(cod)]^{+}; Ir^{+} = [Ir(PCy_{3})(py)(nbd)]^{+}$

(Table 21.8, entries 5 and 6) [5, 24], similarly to the reduction of cyclic compounds.

The configuration of the product in diastereoselective hydrogenation – whether 1,2-*syn* or 1,2-*anti* – is related to the substitution pattern of the starting alkene. The allyl alcohol with a 1,1-disubstituted olefin unit affords the *anti*-product, while the *syn*-product is formed from the allyl alcohol with a trisubstituted olefinic bond (Table 21.8, entries 6–9). The complementarity in diastereoselective hydrogenation of di- and tri-substituted olefins may be rationalized based on the conformation analysis of the intermediary complex (Scheme 21.1) [23].

In entries 10–13 (Table 21.8) of trisubstituted alkenes, very high diastereoselectivity is realized by the use of a cationic rhodium catalyst under high hydrogen pressure, and the 1,3-syn- or 1,3-anti-configuration naturally corresponds to the (E)- or (Z)-geometry of the trisubstituted olefin unit [48, 49]. The facial selectivity is rationalized to be controlled by the A(1,3)-allylic strain at the intermediary complex stage (Scheme 21.2) [48].

Entries 8–13 in Table 21.9 illustrate the effect of S–O coordination on the hydrogenation of allyl alcohols. The hydrogenation of (*a*-hydroxyalkyl)vinyl sulfones follows the same stereochemical course as the corresponding acrylate via HO coordination (entries 8 and 9). However, the hydrogenation of (*a*-hydroxyalkyl)vinyl sulfoxides is directed by S–O coordination, which overrides the HO-participation in the stereochemical course (entries 10–13) [56]. The directing power of S–O may be limited to vinylic examples, as compounds having the S–O and double bond in an allylic relationship failed to reduce under the standard conditions.

The hydrogenation of acyclic homoallylic alcohols with a 1,1-disubstituted olefinic bond by cationic $[Rh(diphos-4)]^+$ catalyst proceeds in modest to moderate stereoselectivity, generally forming 1,3-*anti* compounds (Table 21.10, entries 1, 4 and 5), and the effect of the stereogenic center at the allylic position overrides the directivity of hydroxyl group. The 1,3-*syn* product is then observed though in poor selectivity (entry 3) [19, 57, 58]. Inspection of the hydrogenation prod-

Scheme 21.1

Scheme 21.2

ucts indicates that the substituent at the allylic position dictates the stereochemistry to afford the 1,2-syn product preferentially. The observed stereochemistry in 1,1-disubstituted homoallylic alcohols can be explained by considering the conformational analysis of the alkene complexes (Scheme 21.3). In conformation A, unfavorable A(1,2) interactions between R and R¹ are minimized and through A and C the 1,3-*anti* product will be formed. In the case of homoallylic alcohols without an allylic substituent, the group at the homoallylic carbon will adapt the pseudoequatorial orientation to afford the 1,3-*anti* product. In homoallylic alcohols with a stereogenic center at the allyl position, the group in the allylic position will also prefer the pseudoequatorial orientation so that the A(1,2) strain will be minimized [23, 57].

In the case of tri-substituted alkenes, the 1,3-syn products are formed in moderate to high diastereoselectivities (Table 21.10, entries 6~12). The stereochemistry of hydrogenation of homoallylic alcohols with a trisubstituted olefin unit is governed by the stereochemistry of the homoallylic hydroxy group, the stereogenic center at the allyl position, and the geometry of the double bond (Scheme 21.4). In entries 8 to 10 of Table 21.10, the product of 1,3-syn structure is formed in more than 90% d.e. with a cationic rhodium catalyst. The stereochemistry of the products in entries 10 to 12 shows that it is the stereogenic center at the allylic position which dictates the sense of asymmetric induction

Scheme 21.3 Conformation of 1,1-disubstituted alkenes in the hydrogenation.

Table 21.9 Functinoal group-	directed hydrogenation.							
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Diastereo- meric ratio	TOF	Reference
1 Me Me	Me Me Me Me	[RhCl(PPh ₃) ₃]		50 bar	benzene	99:1		50
	DH OTBS	RhC(PPh3)3	Me S < OBn	15 bar	benzene	>99:1		51
3 TBDMSIO		Ru(OAc) ₂ ((R)-tol-binap) Ru(OAc) ₂ ((S)-tol-binap) H RuBr ₂ ((R)-MeO-biphep)	0.2 0.2	1 atm 1 atm 15 bar	Меон Меон	99.9.0.1 22:78 >99:1	10.4 10.4	52 52 53
4 CO2Me	H OH	[RuCl((R)-binap)]2NEt3	7	70 atm	МеОН	99:1	1.07	54
5 ZN SUHBOC		$[\operatorname{Rh}((S,S)\operatorname{-dipamp}))]^+$ $[\operatorname{Rh}((R,R)\operatorname{-dipamp})]^+$	0.23 0.23	3 bar 3 bar	МеОН Меон	80:20 20:80	28.6	49 49

21.3 Substrate-Directive Diastereoselective Hydrogenation 661

Table 21.9 (continued)								
Substrate	Major diastereomer	Catalyst	%Jom	P_{H_2}	Solvent	Diastereo- meric ratio	TOF	Reference
6 Bh2U NHCHO	Bn ₂ N E Me CO ₂ Et	[Rh(diphos-2)] ⁺	10	25 atm	MeOH	88:12	0.25	55
7 Bn2N NHCHO	Bn ₂ N E CO ₂ Et	[Rh(diphos-2)] ⁺	10	85 atm	MeOH rt	90:10	0.24	55
⁸ Me So ₂ Ph	Me So ₂ Ph OH	Rh ⁺	1	15 psi	CH ₂ Cl ₂ MeOH	99.85:0.15 99.5:0.5		56
⁹ Ph So ₂ Ph	Ph So2Ph OH	Rh⁺	1	15 psi	CH ₂ Cl ₂ MeOH	99.85:0.15 400:1		56
10 Me $A_{S^*,RS^*)}$ Ph $O_{(S^*,RS^*)}$	Me Ph OH S (S*,Ss*)	Rh ⁺	1	15 psi	Cl(CH ₂) ₂ Cl MeOH	99.5:0.5 97.5:2.5		56
$11 \qquad \underset{(R^*,R_S^*)}{\operatorname{Mex}} \operatorname{Ph}_{S^*}$	Me Sing Ph OH O (R*,S*,SS*)	Rh+	1	15 psi	Cl(CH ₂) ₂ Cl MeOH	99:1 80:20		56

\sim
σ
e
Ξ
÷
2
8
J
-
0.
5.
2
đ
_

Table 21.9 (continued)								
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Diastereo- meric ratio	TOF	Reference
12 Ph S Ph	Phone	Rh+	1	15 psi	CH ₂ Cl ₂ MeOH	99.5:0.5 92.5:7.5		56
13 Ph S Ph	Ph DH OH OH (R*,Ss*)	Rh+	1	15 psi	CH ₂ Cl ₂ MeOH	98.5:1.5 90.5:9.5		56
Rh ⁺ =[Rh(diphos.4)(cod)] ⁺ ; Ir ⁺ =	=[Ir(PCy ₃)(py)(nbd)] ⁺							

and the state of an ava-an acted	intal obcination of action inor	indanyi arconola.						•
Substrate	Major diastereomer	Catalyst	mol%	P _H	Solvent	Diastereo- selectivity	TOF	Reference
1 Me Ph	OH Me	Rh+	2	15 psi	THF	88:12		19
2	OH Et	Rh+	S	15 psi	МеОН	89:11	1	57
3 CONHME	OH Me	Rh⁺	Ŋ	15 psi	МеОН	67:33	1	57
4	OH Me CONHMe	Rh+	L.	15 psi	МеОН	91:9	1	57
5 Eto2c GH OSHBUPh	Eto2c	Rh ⁺ [Rh((<i>S</i> ,S)-Et-Duphos)] ⁺ [Rh((<i>R</i> ,R)-Et-Duphos)] ⁺ 2 [Rh(<i>R</i>)-phanephos)] ⁺ Ir ⁺		1000 psi 1000 psi 1000 psi 1000 psi 1000 psi	CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂	60:40 95:5 40:60 25:75 35:65		5 8 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5
6 OH	OH Me Me	Rh+ Ir+	5 2.5	15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	95:5 73:27		59 59

Table 21.10 Hydroxy-directed hydrogenation of acyclic homoallyl alcohols.

Substrate	Maior diastaraomar	Catalvet	% 0 m		Solvent	Diastarao. TOF	Rafaranca
		catal of		- H ₂		selectivity	
7 OH 	OH Me OTBS	$ m Rh^+$	Ŋ	15 psi	CH ₂ Cl ₂	9:19	59
8 OH Bzo ^R Et Me	DH BZO ² Et Me	Rh + Irr ⁺	20 2.5	15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	97:3 97:3	59
9 OH BZO ^R Et Me	Bzo Et Me	Rh+ Ir+	20 2.5	15 psi 15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	99:1 97:3	59
10 Et OH TBSO Me	HO HO TBSO	Rh+ Ir+	20 2.5	15 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	97:3 94:6	59
11 Et OBz TBSO Me	HO HO Me OBz	Rh ⁺ [Rh((+)-binap)] ⁺ [Rh((-)-binap)] ⁺	20	15 psi 1000 psi 1000 psi	CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂	89:11 97:3 92:8	59 59

Table 21.10 (continued)

Table 21.10 (continued)								
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Diastereo- selectivity	TOF	Reference
12 Me Me Me	Me Me Me	Et Rh+ [Rh((+)-binap)] ⁺		1000 psi 1000 psi	CH ₂ Cl ₂ CH ₂ Cl ₂	85:15 98:2		60 59
13 Me e Me Me Me	2Me Me	CO ₂ Me Rh ⁺						
		$ m Rh^+$	2	15 psi	CH_2Cl_2	94:6	1.6	61
14 MeO ₂ C	O ₂ Me MeO ₂ C	CO ₂ Me						
		[Rh(diphos-4)(nbd)] ⁺	16	1000 psi	CH_2Cl_2	19:2.2:1	1.56	62
15 Me HO Me	Land a	[Rh(diphos-4)(nbd)] ⁺	×	640 psi	1,5-asymr	80:20 netric inducti	uo	23

 $Rh^{+} = [Rh(diphos-4)]^{+}; Ir^{+} = [Ir(PCy_{3})(py)(nbd)]^{+}$

Scheme 21.4 Conformation of trisubstituted alkenes in the hydrogenation.

in combination with the direction by the hydroxyl group [59, 60]. In entries 6 and 7 of Table 21.10, the alkyl group at the allylic stereogenic center is small and the diastereoselectivity is ca. $80 \sim 90\%$ d.e. In the directive hydrogenation of a 5-hydroxy-4,6-dimethoxy-2,7-nonadienedioic acid derivative, which was part of the synthesis of the C₁₀-C₁₉ fragment of the immunosuppressive agent FK-506 (entry 14), the diastereoselectivity is controlled by the methoxy units at the allylic positions, and not by the hydroxy group, to afford a product with two 1,3-*syn* disposition in the structure [62].

In some cases of enantioselective hydrogenation of dehydroamino acids with a chiral cationic rhodium catalyst, the less-stable substrate-metal complex (minor species) reacts with hydrogen far more rapidly (~1000-fold faster) than the more stable complex (major species), and the stereochemistry of the predominant enantiomer is determined by the reaction of the minor species [63]. In these cases, the stereochemical outcome is not related to the initial equilibrium of the substrate-metal complex, and a higher hydrogen pressure and rise in reaction temperature suppress the enantioselectivity. In contrast to the enantioselective hydrogenation of dehydroamino acids, olefinic alcohols are hydrogenated with higher diastereoselectivity at higher hydrogen pressure and at lower reaction temperature [24, 48]. This implies that the major substrate-metal complex determines the stereochemical outcome of the hydrogenation.

In entry 15 of Table 21.10, it is noted that even a remote hydroxyl group directed hydrogenation by the cationic $[Rh(diphos-4)(nbd)]^+$ catalyst to afford a moderate diastereoselectivity (80:20) [23]. This is an interesting example of long-range 1,5-asymmetric induction.

21.3.3 Ester Unit- or Amide-Directive Hydrogenation

The diastereoselective hydrogenation of itaconate derivatives by cationic rhodium catalysts are listed in Table 21.11. The observed high diastereoselectivity indicates a strong directivity by the alkoxycarbonyl unit in the reduction of acyclic systems (entries 1 and 2). Decrease of stereoselectivity in entry 3 indicates the definite effect of the ether functionality on the sense of asymmetric induction, competing with the directivity exerted by the alkoxycarbonyl group [64]. An amide or a carbamate group also serves as an admirable directing group in acrylic acid derivatives (entries 4–6) [65–67], although the hydrogenation of an amine or its corresponding trifluoroacetate salt was quite unselective (entry 7) [65].

Tab	le 21.11 Directive hydroge	enation of acrylic acid deriva	itives.						
	Substrate	Major diastereomer	Catalyst	%Jom	P _H	Solvent	Diastereo- meric ratio	TOF	Reference
1	MeO2C Me	MeO ₂ C ¹ MeO2C ² Me	Rh^+	2	1 atm	MeOH	99.6:0.4	50	64
5	MeO2C Ph	MeO ₂ C CO2Me	Rh+	2	1 atm	MeOH	99.5:0.5		64
ŝ	MeO2C CO2Me	MeO ₂ C	Rh+	2	1 atm	MeOH	98:2		64
4	MeO ₂ C Me	MeO ₂ C Me	Rh+ Rh+	N N	1 atm	CH ₂ Cl ₂ MeOH	99:1 100:0		65 65
LO .	MeO2C Ph NHCO2Me	MeO ₂ C	[Rh(diphos-2)] ⁺ [Rh(diphos-2)] ⁺ Ru(TFA) ₂ (PPh ₃) ₂ Ru(TFA) ₂ (PPh ₃) ₂ [Rh((S)-skewphos)] ⁺ [Rh((S)-chiraphos)] ⁺ [Rh((R)-binap)] ⁺		30 atm 30 atm 30 atm 75 atm 30 atm 30 atm	THF MeOH THF MeOH MeOH MeOH MeOH	95:5 98:2 58:42 99:1:0.9 93:7 96:4 71:29	2.1 2.1 0.8 2.5 5.9 5.7	66 66 67 67

Table 21.11 Directive hydroge	enation of acrylic acid derivat	ives.					
Substrate	Major diastereomer	Catalyst	mol%	P _H	Solvent	Diastereo- TOF meric ratio	Reference
6 MeO ₂ C Me	MeO ₂ C Me NHCO ₂ Bu ^t	Rh ⁺ Rh ⁺	N N	1 atm	CH2Cl2 MeOH	99:1 100:0	65 65
7 MeO ₂ C Me	MeO ₂ C Me	Rh+	Ω.		CH ₂ Cl ₂	50:50	65
8 MeO ₂ C Me	MeO ₂ C Me	Rh+	Ŋ		CH ₂ Cl ₂	94:6	65
Rh ⁺ =[Rh(diphos-4)(cod)] ⁺							

As described hitherto, diastereoselectivity is controlled by the stereogenic center present in the starting material (intramolecular chiral induction). If these chiral substrates are hydrogenated with a chiral catalyst, which exerts chiral induction intermolecularly, then the hydrogenation stereoselectivity will be controlled both by the substrate (substrate-controlled) and by the chiral catalyst (catalyst-controlled). On occasion, this will amplify the stereoselectivity, or suppress the selectivity, and is termed "double stereo-differentiation" or "double asymmetric induction" [68]. If the directions of substrate-control and catalyst-control are the same this is a matched pair, but if the directions of the two types of control are opposite then it is a mismatched pair.

Striking examples of this phenomenon are presented for allyl and homoallyl alcohols in Eqs. (5) to (7). The stereodirection in Eq. (5) is improved by a chiral (+)binap catalyst and decreased by using the antipodal catalyst [60]. In contrast, in Eq. (6) both antipode catalysts induced almost the same stereodirection, indicating that the effect of catalyst-control is negligible when compared with the directivity exerted by the substrate [59]. In Eq. (7), the sense of asymmetric induction was inversed by using the antipode catalysts, where the directivity by chiral catalyst overrides the directivity of substrate [52]. In the case of chiral dehydroamino acids, where both double bond and amide coordinate to the metal, the effect of the stereogenic center of the substrate is negligibly small and diastereoface discrimination is unsuccessful with an achiral rhodium catalyst (see Table 21.1, entries 9 and 10) [9].

21.4 Hydrogenation of Dehydrooligopeptides

The hydrogenation of dehydrodipeptides and -tripeptides is a versatile method for the synthesis of oligopeptides of various compositions. In the homogeneous hydrogenation of dehydrodipeptide derivatives, coordination of the olefin and the amidocarbonyl oxygen to the metal is also anticipated (similar to the reduction of dehydroamino acid derivatives), and this presents the question of whether the reaction proceeds by substrate-control or by catalyst-control. In general, the chiral center in the dehydrodipeptide was found to have little influence on the stereoselectivity, and this small degree of substrate-control enables the synthesis of dipeptides or tripeptides having a desired configuration at will, with the newly forming chiral center being controlled by the external effect of the chiral catalysts [70, 71, 77, 78]. The structure of dehydrodipeptides also influences stereoselectivity, and dehydrodipeptides of the RCO-AAA-AA-OR' type can be hydrogenated with high stereoselectivities, while those of the RCO-Gly- Δ AA-OR' type could be converted with only moderate to good stereoselectivities. Ojima conducted the diastereoselective hydrogenation of various dehydrodipeptides and -tripeptides, and succeeded in preparing Leu-enkephalin analogues in high diastereoselectivity by coupling the dipeptide and tripeptide formed via hydrogenation using Rh-(R,R)-dipamp and Rh-Ph-CAPP catalysts [70, 73]. In these hydrogenations of dehydrodipeptides, the direction of asymmetric induction generally turned out to be the same as that observed in the asymmetric hydrogenation of (Z)-a-acylaminocinnamic acid. Kagan reported the diastereoselective synthesis of Leu-enkephalin analogues by the Rh-catalyzed hydrogenation of dehydroenkephalins Cbz-(O)Bn-(S)Tyr-(Gly)2-ΔPhe-(S)Leu-OMe 8 or Cbz-(O)Bn- Δ Tyr-(Gly)₂-(S)Phe-(S)Leu-OMe 9, with a diastereoselectivity up to 98:2 ((S,S,S): (S,R,S)) using $[Rh((R,R)-dipamp)]^+$ [79] [Eqs. (8) and (9)]. The substitution of a glycyl residue by (R)alanyl in the above dehydropentapeptide had minimal effect on the stereochemical course of the hydrogenation (diastereoselectivity was 89:11).

In the enantioselective hydrogenation of dehydroamino acids, many diphosphine ligands are reported to give high enantioselectivity (often >95% ee). However, in the diastereoselective hydrogenation of dehydrodipeptides, many ligands – with very few exceptions – induce a somewhat lower stereoselectivity, especially in the case of mismatched pairs. Dipamp and Et-Duphos ligands retain their high chiral induction ability in the reduction of dehydrodipeptides [69, 70, 73, 76, 86, 87] (Table 21.12).

In the hydrogenation of dehydrodipeptides possessing a free carboxyl unit, the chiral ligands with an amine moiety would form an ion pair with the substrate which is expected to amplify the stereodifferentiation in the hydrogenation. Yamagishi realized high stereoinduction between 90 and 98% d.e. in the hydrogenation of dehydrodipeptides of the Ac- Δ Phe-AA-OH type in ethanol, using chiral diphosphinite ligands containing a dimethylamino moiety ((*S*,*S*)-POP-AEs) (Eq. (10)) [80]. In these systems, the chiral induction is governed by the chiral center of the substrate (substrate-control) and (*S*,*S*)- and (*R*,*R*)-products are formed highly selectively (Eq. (11)) [81].

These diphosphinite ligands are not effective for the hydrogenation of Ac- Δ Phe-AA-OR-type substrates. This striking substrate-controlled behavior is also observed in the hydrogenation of RCO- Δ Phe-AA-OH-type substrates using an *achiral* diphos-3 ligand with a 2-dimethylaminoethyl unit at the 2-position (DPP-AE ligand). The [Rh(I)(DPP-AE)]⁺ catalyst induced high diastereoselectivity (up to 96% d.e.) in the hydrogenation of Ac- Δ Phe-AA-OH in alcoholic solvents [82]. The kinetic parameters (Δ AS[‡] and Δ AH[‡]) indicate that Δ AG[‡] is governed by the T Δ AS[‡] term, and not by the Δ AH[‡] in the reactions where electrostatic interaction is possible. Moreover, the effect of solvent polarity and of the added amine on stereoselectivity also support the contribution of the attractive electrostatic interaction to the stereodifferentiation. NMR and circular dichroism spec-

Substrate	Major diastereomer	Catalyst	%lom	P_{H_2}	Solvent	Diastereo- meric ratio	TOF	Reference
1 B2-HN CONH	Bz-HN CO2Me	$[Rh(diphos-4)]^+$ $[Rh((R, R)-dipamp)]^+$ $[Rh((+)-diop)]^+$ $[Rh((-)-diop)]^+$ $[Rh(Br-Ph-CAPP)]^+$		1 atm 10 atm 5 atm 1 atm	EtOH EtOH EtOH EtOH EtOH	62.2:37.8 97.8:2.2 83.6:16.4 84.1:15.9 0.8:99.2	17 6.7 6.7 33	69 70 70 69
2 Control	Ac-HN CONH CO2Me	[Rh((+)-diop)] ⁺ RhCl((+)-diop) RhCl((-)-diop) [Rh(Br-Ph-CAPP)] ⁺		5 atm 1 atm 1 atm 5 atm	EtOH MeOH MeOH EtOH	92.7:7.3 95:5 10:90 2:98	4.2	70 71 70
3 C Me	Ac-HN CONH CO2Me	[Rh(Br-Ph-CAPP)] ⁺ [Rh((+)-diop)) ⁺ [RhCl((+)-diop)] [RhCl((-)-diop)]	1 1 3.5 3.5	5 atm 5 atm 1 atm 1 atm	EtOH EtOH MeOH MeOH	1:99 91.4:8.6 85.6:14.4 10.2:89.8	5.5 10.6	70 72 72
4	Ac-HN CONH CO2ME	$[\mathrm{Rh}((R,R) ext{-diparmp})]^+$	2	20 atm	EtOH	97.8:2.2	2.5	73
5 Me Me Court Court	Me Cb2-HN, CONH CO2h	[Rh((<i>R,R</i>)-Et-Duphos)) ⁺ [Rh((<i>S,S</i>)-Et-Duphos)] ⁺ Me	4 4	2 atm 2 atm	MeOH MeOH	>99.5:0.5 5:95	0.9 0.4	74 74

 Table 21.12
 Diastereoselective hydrogenation of dehydrodipeptides.

()								
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Diastereo- meric ratio	TOF	Reference
6 Me	Me	[Rh((<i>R,R</i>)-Et-Duphos)] ⁺ [Rh((<i>S,S</i>)-Et-Duphos)] ⁺	4 4	2 atm 2 atm	MeOH MeOH	91:9 11:89	$\frac{1}{0.9}$	74 74
7 F3C CONH CONH C	C2Me Cb2-HN"" CONH CO2 F3C C C C C C C C C C C C C C C C C C C	Me [Rh((<i>S</i>)-Pindophos)] ⁺ Me		0.1 MPa	МеОН	95.5.4.5		75
8 Advit Acont Acont Acont	H2Ph AdNH CONH OCH2	[Rh(diphos-4)] ⁺ [Rh((+)-BPPM)] ⁺ ph [Rh(Ph-CAPP)] ⁺	$\begin{array}{c} 0.33\\1\\1\\1\end{array}$	5 atm 5 atm 5 atm	EtOH	58.7:41.3 99.1:0.9 1.3:98.7	7.6 2.5 2.4	76 76 76
9 Ac-HN CONH CO2H	AG-HN CONH CO2H	$ \begin{split} & [\text{Rh}(\text{diphos-4})]^{+} \\ & [\text{Rh}((R,R)-\text{dipamp})]^{+} \\ & [\text{Rh}((R,R)-\text{bppm})]^{+} \\ & [\text{Rh}(DIOXOP)]^{+} \\ & [\text{Rh}((S,S)-\text{Chrizaphos})]^{+} \\ & [\text{Rh}((S,S)-\text{MeO-POP-AE})]^{+} \\ & [\text{Rh}(DPP-AE)]^{+} \end{split} \end{split}$		10 atm 5 atm 10 atm 1 atm 1 atm 1 atm 1 atm	Etoh Etoh Etoh Etoh Etoh Etoh Meoh	65.9:34.1 98.6:1.4 99.4:0.6 93:7 39.1:60.9 >99:1 27:3	5.9 4.5 4.9 1 1 200 100	69 69 69 80 82

Table 21.12 (continued)

Table 21.12 (continued)								
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Diastereo- meric ratio	TOF	Reference
10 Ac-HN CO2H	Ac-HN CO2H	[Rh((<i>S</i> , <i>S</i>)-MeO-POP-AE)] ⁺ [Rh((<i>S</i> , <i>S</i>)-POP-AE)] ⁺	2	1 atm 1 atm	EtOH EtOH	93:7 93:7	2.8 2.8	81 81
11 Ac-HN CONH CO2H	Ac-HN CONH CO2H	[Rh((<i>S</i> , <i>S</i>)-MeO-POP-AE)] ⁺ [Rh(DIOXOP)] ⁺ [Rh(DPP-AE)] ⁺ [Rh((-)-diop)] ⁺	1 2 4 2 1	1 atm 1 atm 1 atm 1 atm	EtOH EtOH MeOH EtOH/ C6H ₆	98:2 86:14 94:6 9:91	100 1 63	80 77 82 78
12	AGNH CONH CO2H	[Rh(DPP-AE)] ⁺ [Rh((–)-bppm)] ⁺	5 2	1 atm 1 atm	MeOH MeOH	94.5:5.5 >99:1	50	83 83
		[Rh(diphos-3)] ⁺ [Rh(DPP-AE)] ⁺ [Rh((-)-bppm)] ⁺	5 2 2	1 atm 1 atm 1 atm	МеОН МеОН МеОН	59:41 94.5:5.5 94.5:5.5	>1.7 150 5	8 83 83

troscopy suggest that the change of catalyst conformation occurs by electrostatic interaction between the (*S*)-substrate and the achiral ligand (induced fitting) to form a complex of the λ -conformation preferentially. Without electrostatic interaction, the rhodium complex exists as a 1:1 mixture of δ - and λ -conformations [82]. The effect of attractive electrostatic interactions on chiral induction was also reported by Hayashi, for the enantioselective hydrogenation of acrylic acid derivatives. A ferrocenyldiphosphine ligand having a dimethylaminoalkyl moiety induced a high enantioselectivity of more than 95% by utilizing electrostatic interactions with the substrate [84].

Kagan reported tandem asymmetric syntheses from achiral bisdehydrodipeptides by the sequential hydrogenation of two prochiral units [85]. With the $[Rh((R,R)-dipamp)]^+$ catalyst, a high diastereoselectivity ratio of 98:2 ((*RR* and *SS*)/(*RS* and *SR*) ratio) was reported (Table 21.13, entries 1–3). In this case, the major diastereomer has a high ee-value (97.6% (*S*,*S*)), and the minor diastereomer has a negligible ee (15% (*S*,*R*)). This result indicates that, in each step of the reaction, the same stereoselectivity is realized. In the symmetrical bis(dehydroamino acid) derivatives, similar high diastereo-differentiation of 95–99% d.e. is realized using dipamp or duphos ligands, and in some cases the enantioselectivity of the major diastereomer reaches 100% (Table 21.13, entries 7 and 8) [86, 87]. Because of the high chiral induction ability of the catalyst, almost all of the minor monohydrogenated enantiomer is converted to the *meso*-product in the second hydrogenation step, and this results in an extremely high enantioselectivity of the major product.

Several attempts towards the asymmetric reduction of *N*-(*a*-ketoacyl)-*a*-amino acid derivatives by rhodium catalysts are reported to give chiral depsipeptide building blocks, *N*-(*a*-hydroxyacyl)-*a*-amino acid derivatives (Table 21.14). Using rhodium catalysts containing an electron-rich chiral diphosphine (Cydiop) or a chiral diphosphinite (Cy-POP-AE) ligand, the hydrogenation proceeds under atmospheric hydrogen pressure affording moderate to good diastereoselectivity (entries 2, 3 and 6) [89, 90], while the catalysts based on diop or bppm required high hydrogen pressure and only low selectivity is obtained [88].

21.5

Diastereoselective Hydrogenation of Keto-Compounds

For the hydrogenation of keto-compounds, ruthenium–phosphine catalysts are efficient in obtaining compounds with a stereogenic hydroxyl unit, though the reduction usually requires high hydrogen pressure. Ruthenium–diphosphine–diamine catalyst plus strong base, as was first reported by Noyori, functions well at lower pressures in the hydrogenation of keto-compounds [91, 92]. For enan-tio- and diastereoselective hydrogenation of keto-compounds, atropisomeric diphosphines such as binap [93], bichep [94], biphemp or biphep [95] are used effectively.

bonds
double
n two
s witł
dipeptide
lidehydrc
of c
hydrogenation
asymmetric
lem
Tano

.

Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Diastereo- meric ratio	%ee of major diastereo- mer	TOF Refer- ence	
		$[\operatorname{Rh}((R,R)\operatorname{-di-}_{2,2,2,2,1})^{1+}$	3.5	1 atm	MeOH	98:2	99 (S,S)	85	
		[Rh((<i>S</i> , <i>S</i>)- [3.5	1 atm	MeOH	74.8:25.2	85 (R,R)	85	
AdNH CONH CO2ME	AGNH COMP COME	[Rh(+)-(R,R)- diop)] ⁺	3.5	1 atm	МеОН	55:45	60 (R,R)	85	
2 Med Acht Columbia	Meo Control Acourt	[Rh((<i>R</i>)-di- pamp)] ⁺	3.5	1 atm	МеОН	98:2	97.6 (S,S)	85	
3 AdNH CO-NH CO ₂ Me	AdNH CO-NH CO-2Me	[Rh((<i>R</i> , <i>R</i>)-di- pamp)] ⁺	3.5	79 atm	МеОН	68:32	90.9 (<i>S</i> , <i>S</i>)	0.71 85	
4 BnO2C HBoc BocHN CO2Bn	BnO2C HBoc BochN	[Rh(cod)((<i>R</i> , <i>R</i>)- dipamp)] ⁺	2	2.8 atm	MeOH	>99:1	>98 (S,S)	0.52 86	
5 BnD2C NHBoc CO2Bn	BnO2C HHBoc CO2Bn	[Rh(cod)(S,S)- Me-Duphos)] ⁺	1.8	2.7 atm	МеОН	>99:1	>98 (S,S)	12.3 86	

Ца	ble 21.13 (continued)								
	Substrate	Major diastereomer	Catalyst	wolk	P _{H2} Solvent	Diastereo- meric ratio	%ee of major diastereo- mer	TOF	Refer- ence
9	BnO ₂ C-NHBoc BocHN-CO ₂ Br	1 BnO2C NHBoc BocHN	вл [Rh(cod)((<i>R,R</i>)- dipamp)] ⁺	3.6	3.5 atm MeOH/ THF	>99:1	>98 (S,S)	0.31	86
\sim	BocHN	BocHN	[Rh(cod)((S,S)- Et-Duphos)] ⁺	0.84	60 psi	99.5:0.5	100 (S,S)	6.6	87
	MeO ₂ C CO ₂ Me	MeO ₂ C CO ₂ Me	[Rh(cod)((S,S)- Me-Duphos)] ⁺		60 psi	98.5:1.5	100 (S,S)		87
			$[Rh(cod)((R,R)-dipamp)]^+$		60 psi	97.5:2.5	100 (S,S)		87
			[RuCl ₂ (binap)] ₂ (TEA)		60 psi	85:15			87
			[Rh(cod)((<i>R</i> , <i>R</i>)- Chiraphos)] ⁺	0.84	60 psi	69.4:30.6	86 (R,R)	6.6	87
00	BodHN CO2Me MeO2C NHBoc	BodHN CO2Me MeO2C NHBoc	[Rh(cod)((S,S)- Et-Duphos)] ⁺	0.84	60 psi	98.5:1.5	100 (<i>S</i> , <i>S</i>)	6.6	87

	a managementaria a acminaria achar							
Substrate	Major diastereomer	Catalyst	mol%	P_{H_2}	Solvent	Diastereo- meric ratio	TOF	Reference
4	*	RhCl(PPh ₃) ₃	1	50 atm	C_6H_6	60:40	S	88
1	/	RhCl((+)-diop)	1	50 atm	C_6H_6	63:37	5	88
	J OH	RhCl((+)-bppm)	1	50 atm	C_6H_6	64:36	5	88
)—		RhCl((-)-cydiop)	5	1 atm	THF	73:27	0.8	89
Me CONH COA	Me Me CONH CO2Me	RhCl((+)-Cydiop)	5	1 atm	THF	26:74	0.7	89
\$	\$							
2		RhCl((–)-Cydiop)	5	1 atm	THF	86:14	1	89
~~~	Ş ÖH	RhCl((+)-Cydiop)	5	1 atm	THF	16:84	1	89
$\langle \cdot \rangle$								
PUC TONH	de Ph∕ `CONH∕ `CO₂Me							
OMe	HOMe		1					:
3		RhCl((–)-Cydiop)	S	1 atm	THF	83:17	-	89
		RhCl((+)-Cydiop	5	1 atm	THF	18:82	1	89
		RhCl((S,S)-Cy-POP-AE)	2	1 atm	MeOH	33.5:66.5	2.1	90
4		RhCl/(S_S)-Cv-POP-AF)	6	1 atm	MeOH	75.25	7 1	06
		[Rh((S,S)-Cy-POP-AE)] ⁺	- 2	1 atm	MeOH	76.5:23.5	2.1	90
	) 							
Ph CONH CO2	H Ph CONH CO2H							

 Table 21.14
 Diastereoselective hydrogenation of dehydrodepsipeptide.

Table 21.14 (continued)								
Substrate	Major diastereomer	Catalyst	mol%	$P_{H_2}$	Solvent	Diastereo- meric ratio	TOF	Reference
5		[Rh(( <i>S</i> , <i>S</i> )-Cy-POP-AE)] ⁺	2	1 atm	МеОН	73.5:26.5	2.1	06
Ph ⁺ CONH ⁺ CO₂H	Ph CONH CO2H							
6 Ph CONH CO2H	HO Ph CONH CO ₂ H	RhCl((S,S)-Cy-POP-AE)	2	1 atm	MeOH	83.5:16.5	2.1	06

## 21.5.1 Substrate-Directive Hydrogenation of Keto-Compounds

Several examples of substrate-directive reduction (hydroxyl, alkoxyl, carbamate or sulfoxide groups) have been reported in the hydrogenation of keto-compounds with ruthenium catalysts. In the reduction of  $\beta$ -keto ester derivatives, the  $\gamma$ - or  $\delta$ -stereogenic center in the substrates significantly affects the degree of diastereoselection (Table 21.15). The hydrogenation of a  $\beta$ -keto ester with a carbamate unit at the  $\gamma$ -position ((S)-substrate) in the presence of Ru-(R)-binap (matched pair) exclusively afforded the threo product with the (3S,4S) configuration, whereas in the presence of Ru-(S)-binap (mismatched pair) the (3R,4S)product was formed preferentially (Table 21.15, entry 1) [96]. The  $\beta$ -keto esters with a pyrrolidine unit showed similar behavior (entry 4) [97]. A silvloxy group at the  $\delta$ -position could dictate the sense of asymmetric induction, and high diastereoselectivity is induced by using an achiral ruthenium catalyst, whereas the chiral ruthenium (R)-binap catalyst and the (S)-binap catalyst (matched and mismatched pairs, respectively) afford the same diastereomer, albeit in different selectivity (entry 7). On the other hand, the directivity of a hydroxy group was overwhelmed by the chirality of the catalyst, and a different diastereomer was formed preferentially by the antipode ruthenium catalysts (entry 8) [99].

In the hydrogenation of chiral sulfoxide **12**, the sulfoxide unit exerts strong stereodirectivity and, with axially stereogenic diphosphine ligands, high diastereoselectivity is realized whilst the antipode ligand affords lower diastereoselectivity (Scheme 21.5) [100]. The sense of asymmetric induction is rationalized by the favored conformation **E**, where the *p*-tolyl unit is disposed at a quasiequatorial position with a sulfoxide oxygen ligating to ruthenium [100].



Scheme 21.5

Substrate	Major diastereomer R	Catalyst	%lom	PH ²	Solvent	Diastereo- 9 meric (; ratio	óee syn)	TOF	Refer- ence
1 R O O	NHBAC PhCH2 R I CH2CHMe2 OH O C-C6H11CH2	RuBr ₂ (( <i>R</i> )-binap) RuBr ₂ (( <i>S</i> )-binap) RuBr ₂ (( <i>R</i> )-binap) RuBr ₂ (( <i>R</i> )-binap)	0.2 0.2 0.2 0.2	100 atm 100 atm 100 atm 100 atm	EtOH EtOH EtOH EtOH	>99:1 9 9:91 > 9:92 1 9:0 9 9:10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 66 00	3.6	96 96 96
2 TBSO. Boc 0 0	DBut N.H. OBut Boc OH O	RuCl ₂ (( <i>R</i> )-binap)1/2NEt ₃ RuCl ₂ (( <i>S</i> )-binap)1/2NEt ₃	0.1 0.1	5 atm 5 atm	THF/MeOH THF/MeOH	96:4 ca 1:1		19.2 <2	97 97
3 TBSO	TBSO, NHMe NHMe Boc OH O	RuCl ₂ ((S)-binap)1/2NEt ₃	0.1	5 atm	THF/MeOH	34.5.65.5		32.9	97
4 HO N	HO, bu ^t N - OBu ^t	RuCl ₂ (( <i>R</i> )-binap)Et ₂ NH	0.25	150 psi	MeOH 0.75 mol%	>99:<1			67
O= 900000 80000	Boc ÕH Ö	RuCl ₂ ((S)-binap)Et ₂ NH	0.25	150 psi	HCl MeOH 0.75 mol% HCl	12:88			67
5 Boc 0 0	HO, IMe N, HMe Boc OH O	RuCl ₂ ((S)-binap)1/2NEt ₅	0.1	5 atm	THF/MeOH	23.5:76.5		5.5	98

Table 21.15Hydroxy-directedhydrogenationof $\beta$ -ketoesters.

Table 21.15 (continued)								
Substrate	Major diastereomer	R Catalyst	mol%	<b>P</b> ^H	Solvent	Diastereo- %ee meric (s <i>yn</i> ) ratio	TOF	Refer- ence
6 HO HCI O O NHME	HCI OH OH	RuCl2((S)-binap)1/21	NEt ₃ 0.1	5 atm	THF/MeOH	1:99	35.4	98
7 Meo OTBS	Meo	RuBr ₂ (diphos-2) RuBr ₂ ((R)-binap) RuBr ₂ ((S)-binap)	5 5 5	1 atm 1 atm 1 atm	MeOH MeOH MeOH	95:5 >99:1 82:18	0.5 2.1 1.5	66 66
8 Me0 0 0 0 0 H	Meo	RuBr ₂ (( <i>R</i> )-binap) RuBr ₂ (( <i>S</i> )-binap)	5 2	1 atm 1 atm	МеОН МеОН	85:15 10:90	2.1 1.0	66
9 MeO2C - OMe	MeO2C	RuBr ₂ ((R)-binap) RuBr ₂ ((S)-binap)	7 7	1 atm 1 atm	МеОН МеОН	90:10 5:95	2.1 2.1	66 66

#### 21.5.2

#### Hydrogenation of Diketo Esters and Diketones

Reduction of  $\beta$ , $\delta$ -diketo esters using various atropisomeric diphosphine ligands afforded generally the *anti*-3,5-dihydroxy products in moderate to good diastereoselectivity, and in high enantioselectivity (Table 21.16) [101–104]. This suggests that stereocontrol in the hydrogenation of diketo esters is, in general, very similar to that found in the hydrogenation of diketones with Ru–binap (*vide infra*) [105, 106].

In these cases, using an (S)-axially chiral ligand, (3R)-3-hydroxy-5-oxoalkanoate is exclusively formed as monohydrogenation product, while the second hydrogenation step is a hydroxy-directed reduction by the Ru-catalyst bearing an (S)-axially chiral ligand to afford the (3R,5S)-dihydroxy product preferentially (Scheme 21.6) [103 a]. With Ru–(R)-binap, this (3R)-3-hydroxy-5-oxoalkanoate is mainly converted to the (3R,5R)-syn dihydroxy compound. Formation of the 3-hydroxy-5-oxoalkanoate intermediate is also supported by the reduction experiment of (5R)-5-hydroxy-3-oxoalkanoate by Ru–(R)-binap to afford the (3R,5R)-syn diol as the major product [102]. There is a competitive ligation of functionalities to the Ru atom (Scheme 21.7). Because of the intervention of an enolic structure in 14 and the high final anti-selectivity, it is plausibly assumed that hydrogenation of the C-3 carbonyl unit of 14 arises mainly from a  $\beta$ -diketone chelated intermediate, which gives preferentially the (3R)-enantiomer using Ru-(S)-binap as catalyst. This is in contrast to the results with simple  $\beta$ -keto esters, which afford the (3S)-hydroxy product upon use of a Ru-(S)-axially chiral diphosphine catalyst [106, 107, 109].

In the consecutive hydrogenation of  $\beta$ , $\delta$ -diketo esters (Table 21.16), selection of the chiral ligand can determine the sense of diastereoselection, and the 3,5syn dihydroxy product was formed predominantly upon use of a Ru–(*S*)-aminophosphinephosphinite-((*S*)-AMPP) catalyst, although the enantioselectivity of the syn-product is poor (Table 21.16, entry 7) [103 a]. Syn 3,5-diol formation





Scheme 21.7 Competitive chelation mode onto a Ru-(S)-binap type catalyst.

would lead to the synthesis of inhibitors of HMG-coenzyme A reductase [102]. In this case, an almost complete reversal of the diastereoselectivity was observed by changing the solvent from DCM to a polar solvent consisting of 1:1 DCM-methanol. In pure DCM, the Ru–(*S*)-AMPP catalyst induces the *syn*-rich diol (max. 92% d.e.), while in the DCM-methanol mixture the same catalyst leads to the formation of *anti*-rich product (72–84% d.e.). This reversal of diastereoselectivity was also observed in the reduction of  $\beta$ -diketones (Table 21.17, entry 13) [103 b].



In the hydrogenation of diketones by Ru–binap-type catalysts, the degree of *anti*-selectivity is different between *a*-diketones and  $\beta$ -diketones [Eqs (13) and (14)]. A variety of  $\beta$ -diketones are reduced by Ru-atropisomeric diphosphine catalysts to indicate admirable *anti*-selectivity, and the enantiopurity of the obtained *anti*-diol is almost 100% (Table 21.17) [105, 106, 110–112]. In this two-step consecutive hydrogenation of diketones, the overall stereochemical outcome is determined by both the efficiency of the chirality transfer by the catalyst (catalyst-control) and the structure of the initially formed hydroxyketones having a stereogenic center (substrate-control). The hydrogenation of monohydrogenated product ((*R*)-hydroxy ketone) with the antipode catalyst ((*S*)-binap catalyst) (mis-

Substrate	Major diastereomer	Catalyst	%Jom	P _{H2}	Solvent	Diastereo- meric ratio anti∶syn	%e.e. of major diastereomer	TOF	Reference
1 Me CO ₂ R	Me Co ₂ R OH OH	RuCl ₂ (PPh ₃ ) ₃ [RuCl ₂ ((S)- hin 2011 NF+	0.5 0.5	100 atm 100 atm	CH ₂ Cl ₂ CH ₂ Cl ₂	73:27 83:17	0 94 (3 <i>R</i> ,5 <i>S</i> )	2.6 8.7	101 101
		[RuCl ₂ ((S)- [kuCl ₂ ((S)- hin 2n/l ₂ NFt-	0.5	100 atm	МеОН	76:24	96 (3 <i>R</i> ,5 <i>S</i> )	8.7	103
		RuBr ₂ ((S)-Tolbinap) RuBr ₂ ((S)-MeO-	0.5	100 atm 100 atm	CH ₂ Cl ₂ CH ₂ Cl ₂	83:17 84:16	94 (3 <i>R</i> ,5 <i>S</i> ) 98 (3 <i>R</i> ,5 <i>S</i> )	9.5 5.1	101 101
		bipnep) [RuCl ₂ ((S)- bizzant ME+	0.1	100 atm	MeOH	81:19	78 (3 <i>R</i> ,5 <i>S</i> )	10.4	102
		[RuCl ₂ ((R)-binap)] ₂ . NEt ₃	0.1	100 atm	МеОН	80:20	77 (3 <i>S</i> ,5 <i>R</i> )	10.4	102
2 Me CO ₂ Me	Me CO ₂ Me	RhCl((S)-MeO- hinhen)	0.5	50 atm	toluene	54:\$6	79 (3 <i>R</i> ,5 <i>S</i> )	0.26	101
=0	HO HO	RhCl((S)-bppm) RhCl((S)-Cy,Cy-	0.5 0.5	50 atm 50 atm	toluene toluene	54:46 65:35	58 (3 <i>R</i> ,5 <i>S</i> ) 80 (3 <i>R</i> ,5 <i>S</i> )	0.78 0.43	101 101
		oxoProNOP) RhCl((R,R)-Me- Duphos)	0.5	50 atm	toluene	46:54		0.07	101
3 C ₃ H7 CO,Me	C ₃ H7	$[RuCl_2((S)-I)]$	0.1	100 atm	МеОН	76:24	78 (3 <i>R</i> ,5 <i>S</i> )	10.4	102
=0 =0	но но	[RuCl ₂ ((N ^{Lt3} ) [RuCl ₂ ((R)- binap)] ₂ (NEt ₃ )	0.1	100 atm	МеОН	78:22	77 (3 <i>S</i> ,5 <i>R</i> )	10.4	102
4 C5H11 C5H11 C02	Et C₅H11 CO₂Et OH OH	[RuCl((S)- binap)(p-cymene)]C	1	40 atm	МеОН	95:5 ~ 99:1	$93 \sim 95$ (4 <i>S</i> ,6 <i>S</i> )		104

Table 21.16 Diastereoselective hydrogenation of  $\beta_i \delta^2$ -diketo esters.

Table 21.16 (continued)										
Substrate	Major diastereomer		Catalyst	mol%	P _{H3}	Solvent	Diastereo- meric ratio	%ee of major diastereomer <i>anti:syn</i>	TOF	Reference
5 Me CO2Me	Me CO ₂ Me	15 ee (%) 66 ( <i>R</i> ) 67 ( <i>R</i> )	Ru(TFA) ₂ (( <i>R</i> )- binan)	2	100 atm	CH ₂ Cl ₂	10:90	75 (3 <i>R</i> ,5 <i>R</i> )	2.4	103
( <i>R</i> )-15		67 (R)	$Ru(TFA)_2((R)-to TFA)_2(R)$	2	100 atm	CH ₂ Cl ₂	19:81	67 (3 <i>R</i> ,5 <i>R</i> )	2.4	103
			Ru(TFA) ₂ ((R)- MeO-biphep)	2	100 atm	CH ₂ Cl ₂	14:86	72 (3 <i>R</i> ,5 <i>R</i> )	2.2	103
( ( (	< < E	R=Me	Ru2Cl4((S)-	0.2	100 atm	МеОН	95:5			102
6 √ `CO2Bu ^r OH O ( <i>R</i> )- <b>18</b>	OH OH OH OH (S,R) or (R,R)	$R = C_3H_7$	binap) ₂ (Et ₃ ) Ru ₂ Cl ₄ (( <i>R</i> )-	0.2	100 atm	МеОН	40:60			102
			$\operatorname{Binap}_{2}(\mathrm{Et_{3}})$ $\operatorname{Ru_{2}Cl_{4}((S)-}$	0.2	100 atm	МеОН	78:22			102
			omap) ₂ (Et ₃ ) Ru ₂ Cl ₄ ((R)- binap) ₂ (Et ₃ )	0.2	100 atm	МеОН	43:57			102

Table 21.16 (continued)									
Substrate	Major diastereomer	Catalyst	mol%	$P_{H_2}$	Solvent	Diastereo- meric ratio	%ee of major diastereomer anti:syn	TOF	Reference
7 Me CO ₃ Me	MeCO ₃ Me	Ru((S)-AMPP)	0.5	100 atm	CH ₂ Cl ₂	13:87	14 (3 <i>R</i> ,5 <i>R</i> )	0.85	103
=0	CH C	Ru((S)-AMPP)	0.5		$CH_2Cl_2$	28:72	40 (3 <i>R</i> ,5 <i>R</i> )	1.4	103
		Ru((S)-AMPP)	0.5		$CH_2Cl_2$	4:96	<5 (3R,5R)	11.1	103
		Ru((S)-MTPA),	0.5		CH ₂ Cl ₂	8:92	5 (3R,5R)	2.9	103
		Ru((S)-AMPP) (TFA) ₂	0.5		CH ₂ Cl ₂ / MeOH	86:14	12 (3 <i>S</i> ,5 <i>R</i> )	1.9	103
		Ru((S)-AMPP)((R)- MTPA) ₂	0.5		(1/1) CH ₂ Cl ₂ / MeOH (1/1)	92:8	5 (3 <i>S</i> ,5 <i>R</i> )	0.85	103
		O-P-Ph Ru(RCO ₂ )2 N-P,Ph Ph cat 19							

	•									
Substrate	Diastereome	Catalyst	mol%	$P_{H_2}$	Solvent	Temp. [°C]	Diastereo- meric ratio anti:syn	%ee anti	TOF	Refer- ence
1 Me Me	Me Me Me Me Me Me	RuCl ₂ ((R)-binap)	0.05	72 atm	EtOH		99:1	>99 (R,R)	22.5	106
2 Me Me	$ \begin{array}{c} Me & Me & Me & Me \\ \stackrel{\bullet}{\overbrace{OH}} OH & OH & \stackrel{\bullet}{\xrightarrow{OH}} He & OH \\ OH & OH & OH \\ R^1 & R^2 \end{array} $	RuCl ₂ ((S)-binap)	0.05	72 atm	EtOH		15:85			106
° − 0 − 2 2 2 2	R ¹ + R ¹ + R ² + R ² + OH OH									
3	Me Me	Ru ₂ Cl ₄ ((R)- binap) ₂ (NEt ₃ )	0.2	50 atm	MeOH		99:1	>99 (R,R)	25	105
4	Me Et				МеОН		94:6	94 (R, R)	22	105
5	Me <i>i</i> Pr				MeOH		97:3	98 (S, R)	23	105
9	Me iBu				MeOH		91:9	98 (S, R)	21	105
7	Et Et				MeOH		98:2	96 (R,R)	23	105
8	Me Me	RuBr ₂ (( $R, R$ )-Me-	2	70 atm	MeOH	80	97:3	93 $(R,R)$	0.8	110
6	C,H,1 C,H,2	RuBr ₂ ((R)-MeO- hinhen)	2	100 atm	MeOH	r.t.	>99.5:0.5	>99 (S,S)	2.1	110
10	Bn Bn	(danch)	2	30 atm	МеОН	rt.	>97.5:2.5	>95 (R,R)	1.25	110
11 Me Me	Me Me Me Me Me Me	RuBr ₂ ((S)-MeO- biphep)	2	20	MeOH	r.t.	>99.5:0.5	>99 (S,S)	0.8	110
		RuCl ₂ (PPh ₃ )(( <i>S</i> )- biphep)	0.05	100 atm 100 atm	MeOH EtOH	50 50	94:6 99.4:0.6	>99 (S,S) >99 (S,S)	133 83.3	111 112

Table 21.17 Consecutive hydrogenation of diketones.

Table 21.17 (contir	nued)									
Substrate	Diastereome	Catalyst	mol%	$P_{H_2}$	Solvent	Temp. [°C]	Diastereo- meric ratic anti:syn	%ee anti	TOF	Refer- ence
12 ipr	^{iPr} ^{iPr} ^{iPr} ^{iPr} ^{iPr}	RuBr ₂ ((S)-MeO-bi- phep)	2	20 atm	MeOH	r.t.	>99.5:0.5	>99 (R,R)	0.8	110
13 Me Me	Me M	<b>19a</b> ( $R = CF_3$ )	0.5	100 atm 100 atm	CH ₂ Cl ₂ CH ₂ Cl ₂ / MeOH (1/1)		40:60 88:12	93 $(R,R)$ 20 $(R,R)$	8.3 8.3	103 103
		$19 b(R = (R) - PhC(CF_3)(OMe))$ $PhC(CF_3)(OMe))$ $PhC(CF_3)(OMe))$ $PhC(CO_2)_2$ $PhC(RCO_2)_2$ $PhC(RCO_2)$ $P$	0.5 0.5	100 atm 100 atm	CH ₂ Cl ₂ CH ₂ Cl ₂ / MeOH (1/1)		8:92 92:8	86 (R,R) 14 (R,R)	3.5	103
14 Me Me	Me Me Me Me Me	RuCl ₂ ((S)-(binap)	0.05	94 atm	EtOH		99:1	>99 (R,R)	35.5	106



Scheme 21.8 Consecutive hydrogenation of symmetrical dienes [111].

matched pair) affords a *meso*-diol exclusively (Table 21.17, entry 1). This indicates that the catalyst-control in the second step is much more dominant over the substrate-control favoring *anti*-diol formation; thus, the high enantiomeric purity of the *anti*-diol is the result of a double stereodifferentiation [68]. In the reaction of *a*-diketones, substrate-control in the second hydrogenation step favors *meso*-diol formation, while minor *anti*-diol is obtained with high enantiomeric purities [Eq. (14)] [106]. This *dl*- and *meso*-products formation is also observed in the hydrogenation of symmetrical dienes [113] by an iridium carbene catalyst **22** (Scheme 21.8), or in the symmetrical bis(dehydroamino acids) by rhodium diphosphine catalysts (see Table 21.13, entries 4–8) [86, 87].

## 21.6

#### Kinetic Resolution to Selectively Afford Diastereomers and Enantiomers

In the hydrogenation of a compound with a stereogenic center by a chiral catalyst, the two possible stereocombinations – the matched pair and the mismatched pair – often afford different degrees of stereoinduction. The reaction rate of the hydrogenation is different for these two combinations ( $k_R$  and  $k_S$ ,  $k_R \neq k_S$ ), and kinetic chemical resolution is possible starting from racemic substrate using chiral catalyst by controlling the chemical conversion [114]. Kinetic resolution is now recognized as a viable tool for obtaining certain optically active compounds. In the homogeneous hydrogenation of unsaturated alcohols with a stereogenic center, various chiral catalysts were applied for their kinetic resolution. Using Rh–(R,R)-dipamp, racemic methyl (a-hydroxyethyl)acrylate **23** was resolved in THF at 0 °C to afford the (S)-substrate in 93% ee and the *anti*product as the major product with a  $k_R:k_S$  ratio of 6.5:1 at 75% conversion [Eq.

(15)] [45]. With an increase of conversion, the enantiopurity of unreacted (*S*)-substrate increases and the diastereoselectivity of the product decreases. Using Ru–((*S*)-binap)(OAc)₂, unreacted (*S*)-substrate was obtained in more than 99% ee and a 49:1 mixture of *anti*-product (37% ee (2*R*,3*R*)) at 76% conversion with a higher  $k_R:k_S$  ratio of 16:1 [46]. In the case of a racemic cyclic allyl alcohol 24, high enantiopurity of the unreacted alcohol was obtained using Ru–binap catalyst with a high  $k_R:k_S$  ratio of more than 70:1 [Eq. (16)] [46]. In these two cases, the transition state structure is considered to be different since the sense of diastereoface selection with the (*S*)- or the (*R*)-catalysts is opposite if a similar OH/ C=C bond spatial relationship is assumed.



In the case of (*a*-acylaminoethyl)acrylate or (*a*-carbamoylethyl)acrylate, amido or carbamate functional groups work well in the direction of the kinetic resolution (Table 21.18). Reduction proceeded rapidly but then slowed markedly after consumption of 55–60% of the theoretical amount of H₂, indicating the large difference between the values of  $k_{\rm R}$  and  $k_{\rm S}$  (entries 1–3) [115]. The degree of enantiomer differentiation is considerably influenced by the hydrogen pressure, and higher  $k_{\rm f}/k_{\rm s}$  values were obtained at lower pressure with many substrates. The high selectivity should be noted, since binding of the substrate to rhodium through the olefin and amido units gives a fairly flexible chelate complex. In contrast, the reduction of (*a*-methoxyethyl)acrylate by the rhodium catalyst indicated a poor kinetic resolution (entry 4), in contrast to the effective OMe-directed hydrogenation with the iridium catalyst (see Table 21.3, entries 11 and 12) [25].

	Substrate	Major product	Recovered substrate	Catalyst	mol% F	H ²	Solvent	Conver- sion [%]	Diastereo- meric ratio	%ee recov.	k _f  k _s	TOF	Refer- ence
7	Aeo₂c Ae NHCO₂Bu ^t	MeO2C Me NHCO2Bu ^t	MeO2C Me	[Rh(nbd)(R,R)-dipamp)] ⁺	4	l atm	MeOH	56	highly sel.	87 (S)	15	14	115
5	AeO2C H2 NHCO2But	MeO ₂ C Me	MeO2C MHCO2BUt	$[\operatorname{Rh}(\operatorname{nbd})(R,R)$ - dipamp)] ⁺	4	l atm	МеОН	60	highly sel.	98 (S)	22	10	115
3	1eo2c Me NHCOMe	MeO2C Me	MeO2C Me	$[\operatorname{Rh}(\operatorname{nbd})(R,R)$ - dipamp)] ⁺	4	l atm	МеОН	56	highly sel.	96 (S)	21	17.4	115
4 ∠	AeO2C Me	MeO2C Me	MeO2C Me	[Rh(nbd)( <i>R</i> , <i>R</i> )- dipamp)] ⁺	4	l atm	МеОН	50	80:20	16 (S)	1.5	0.3	115
	Aeo2c Co2Me	MeO2C CO2Me	MeO2C CO2Me										
			R = Et R _ Ph	$[Rh((nbd)(R,R)-dimmed)]^+$	ء 1	l atm	MeOH	52.7		81 (S)	16	-	54
			R=OMe	[Rh((nbd)(R,R)-dimmed)]	2 1	atm	МеОН	62.3		82 (S)	7.2	-	54
				upamp)] [Rh((nbd)( <i>R</i> , <i>R</i> )- dipamp)] ⁺	1	l atm	МеОН	62.2		93 (S)	11.5	-	54

Table 21.18 Kinetic resolution of acrylic acid derivatives.

In the hydrogenation of 3-substituted itaconate ester derivatives by rhodium– dipamp, the alkoxycarbonyl group at the stereogenic center also exerts a powerful directing effect, comparable to that induced by OH in the kinetic resolution of (*a*-hydroxyethyl)acrylate, leading to a high enantiomer-discriminating ability up to  $k_R:k_s=16:1$  (Table 21.18, entry 5) [64].

## 21.7 Kinetic Resolution of Keto- and Imino-Compounds

Kinetic resolution results of ketone and imine derivatives are indicated in Table 21.19. In the kinetic resolution of cyclic ketones or keto esters, ruthenium atropisomeric diphosphine catalysts 25 induced high enantiomer-discriminating ability, and high enantiopurity is realized at near 50% conversion [116, 117]. In the case of a bicyclic keto ester, the presence of hydrogen chloride in methanol served to raise the enantiomer-discriminating ability of the Ru–binap catalyst (entry 1) [116].

Racemic 2,5-disubstituted 1-pyrrolines were kinetically resolved effectively by hydrogenation with a chiral titanocene catalyst **26** at 50% conversion, which indicates a large difference in the reaction rate of the enantiomers (Table 21.19, entries 4 and 5), while 2,3- or 2,4-disubstituted 1-pyrrolines showed moderate selectivity in the kinetic resolution (entries 6 and 7) [118]. The enantioselectivity of the major product with *cis*-configuration was very high for all disubstituted pyrrolidines. The high selectivity obtained with 2,5-disubstituted pyrrolines can be explained by the interaction of the substituent at C5 with the tetrahydroindenyl moieties of the catalyst [Eq. (17)].



In the kinetic resolution of acyclic chiral imines derived from *a*-methylbenzylamine and acetophenone derivatives, Rh(I)–(2*S*,4*S*)-bdpp catalyst forming a sixmembered chelate ring exerted good kinetic resolution results. Catalysts with 2carbon bridged diphosphines resulted in low reactivity and low selectivity (Table 21.19, entry 8). The hydrogenation of (*R*)-**27** by Rh(I)–(2*S*,4*S*)-bdpp gives an extremely high diastereomeric ratio of *RR*: *SR*=333:1 with *threo* stereochemistry, while in the reduction of (*S*)-**27** by Rh(I)–(2*S*,4*S*)-bdpp, the *threo* product is also formed in *SS*: *RS*=15.2:1 ratio, indicating strong substrate-controlled selectivity [14]. Under kinetic resolution conditions, however, the Rh–bdpp catalyst re-

	TOF Refer- ence	116	117	117	118
	k _r / ks		28	38	
	o- %ee recov.		el. 91 (S)	el. 94 ( <i>R</i> )	el. 99 (R)
	Diastered meric ratio	72:28 98:2 100:0	highly se	highly se	highly se 99% ee
	: Conver- sion [%]	98.4 43.5 33.0	[ 53	[ 53	50
	Solvent	МеОН	<i>i</i> -PrOH	<i>i</i> -PrOH	THF
	$P_{H_2}$	52 psi	8 atm	8 atm 2C6H3	80 psi
	HCI (mol%)	13.0 9.5 8.1		)- <b>25</b> ,,5-(CH ₃ ) ₂	
	mol%	1.2	0.05	0.05 Ph Ph ( <i>S,SS</i> Ar=3	Ŋ
	Catalyst	RuCl ₂ ((S)-binap)	(S,SS)- <b>25</b>	(S,SS)-25	Titanocene cat 26
ones and imines.	Recovered substrate	H CO ₂ Me		(2R)	Me
: resolution of ketc	Major diastereomer	H CO ₂ Me	OH + (1R,2R)	OH + OMe (1R.2S)	Me HR
Table 21.19 Kinetic	Substrate	H CO ₂ Me		3 Come	4 Me Ph

21.7 Kinetic Resolution of Keto- and Imino-Compounds 695

	/										
Substrate	Major diastereomer	Recovered substrate	Catalyst	mol% HCl (mol%)	$P_{H_2}$	Solvent	Conver- sion [%]	Diastereo- meric ratio	%ee recov.	k _R / TOF ks	Refer- ence
5 Me N Bn	Me	+ Me ^{.,,} N ⁺		2	80 psi	THF	50	highly sel. 98% ee	96 ( <i>R</i> )		118
e v bi		Ha Ha	Titanocene cat <b>26</b> Titanocene cat	2	80 psi	THF	50	85:15 >95% ee	75 (R)		118
7 Ph		HH N	Titanocene cat	2	80 psi	THF	50	75:25 99% ee	49 (R)		118
8 Ph Me rac-27	Ph HN Ph Me Ph Me Ph Me C S (S,R)-28	Ph ∑ Me Me	[RhCl((S,S)-bdpp)]Cl [RhCl((S,S)-chira- phos)]Cl	2	1000 psi 1000 psi	МеОН МеОН	67 82		83 (S) 7 (S)	5.7	14
9 p-MeOC6H4 ^{Me} Me	le Ph P-MeOC ₆ H₄∕∕Me ( <i>R,R</i> )	h he + N p-MeOC ₆ H ₄ Me (S)	[RhCl(( <i>S</i> , <i>S</i> )-bdpp)]Cl Me	2	1000 psi	МеОН	72		98 (S)		14

Table 21.19 (continued)

quired relatively high conversion in order to obtain (S)-chiral imine of high enantiomeric excess (entries 8 and 9) [14].

# 21.8 Dynamic Kinetic Resolution

In the kinetic resolution, the yield of desired optically active product cannot exceed 50% based on the racemic substrate, even if the chiral-discriminating ability of the chiral catalyst is extremely high. In order to obtain one diastereomer selectively, the conversion must be suppressed to less than 50%, while in order to obtain one enantiomer of the starting material selectively, a higher than 50% conversion is required. If the stereogenic center is labile in the racemic substrate, one can convert the substrate completely to gain almost 100% yield of the diastereomer formation by utilizing dynamic stereomutation.

In 1989, Noyori reported the first example of dynamic kinetic resolution in the enantioselective hydrogenation of *a*-substituted  $\beta$ -keto esters [119]. If the racemization of enantiomeric keto esters is rapid enough with respect to hydrogenation of the  $\beta$ -keto unit and the chiral discriminating ratio ( $k_R:k_S$ ) is high, the hydrogenation will afford only one diastereomer out of four possible stereoisomeric hydroxy esters. The efficiency of the dynamic kinetic resolution and the sense of diastereoselection and enantioselection are strongly dependent on the structure of the substrate and the reaction conditions, including the solvent. The results of the dynamic kinetic resolution of  $\beta$ -keto esters are presented in Tables 21.20 to 21.22.

In the hydrogenation of cyclic  $\beta$ -keto esters (ketones substituted with an alkoxycarbonyl moiety), Ru(II)–binap reduced a racemic substrate in DCM with high *anti*-diastereoselectivity to give a 99:1 mixture of the *trans*-hydroxy ester (92% ee) and the *cis*-hydroxy ester (92% ee), quantitatively [Eq. (18)] [119, 120].



On the other hand, racemic  $\beta$ -keto esters with an amide or carbamate group in the *a*-position were reduced with high *syn*-diastereoselectivity (99:1) and with high enantioselectivity, leading to threonine-type products [Eq. (19)]. In polar methanol solution, the diastereoselectivity diminished to 71:29 (Table 21.20, entry 1) [123]. Results obtained using isotope-labeling experiments suggest that the hydrogenation proceeds via the ketone, and not via the enol [64]. The origin of the *syn* selectivity directed by an amide or a carbamate group was explained by a transition state stabilized by hydrogen bonding between the CONH and ester OR units [119]. Anti-selectivity in the case of cyclic  $\beta$ -keto esters is rationalized by the steric constraint of the cyclic ketone moiety (Scheme 21.10).



Scheme 21.9 Dynamic kinetic resolution of  $\beta$ -keto ester.



Scheme 21.10

Genêt also reported the dynamic kinetic resolution of *a*-substituted  $\beta$ -keto esters using several atropisomeric diphosphine ligands [121, 122, 124, 125] with high diastereo- and enantioselectivity. The *syn:anti* preference is lower using 10 mol.% of catalyst than in the presence of 1 mol.% of catalyst in MeOH [120]. This supported the fact that the hydrogenation needs to be slower than the racemization of the chiral center in order to achieve high stereoselectivities. For effective dynamic kinetic resolution, high hydrogen pressure should generally be avoided. With a rhodium catalyst,  $\beta$ -keto esters were reduced in moderate to good diastereoselectivities, but with low enantioselectivities [121].

The sense of diastereoselectivity in the dynamic kinetic resolution of 2-substituted  $\beta$ -keto esters depends on the structure of the keto ester. The ruthenium catalyst with atropisomeric diphosphine ligands (binap, MeO-biphep, synphos, etc.) induced *syn*-products in high diastereomeric and enantiomeric selectivity in the dynamic kinetic resolution of  $\beta$ -keto esters with an *a*-amido or carbamate moiety (Table 21.21) [119–121, 123, 125–127]. In contrast to the above examples of *a*-amido- $\beta$ -keto esters, the TsOH or HCl salt of  $\beta$ -keto esters with an *a*-amino unit were hydrogenated with excellent *anti*-selectivity using ruthenium-atropiso-

Table 21.20 Dynamic kin	netic resolution c	of $eta$ -keto esters.								
Substrate	Major diastereomer	Minor diastereomer	Catalyst	mol%	$P_{H_2}$	Solvent	Temp. [°C]	Diastereo- meric ratio [ <i>anti</i> :syn]	%ee TOF (anti)	Refer- ence
1	0 НО	QH Q R=Et	[RuCl(C ₆ H ₆ )((R)- binan)lCl	0.085	100 atm	CH ₂ Cl ₂	50	99:1	92 (2R,3R) 16.7	119
, Controls	Children t	Por	$\operatorname{RuBr}_{2((R)-\operatorname{binap})}$		20 atm 100 atm	MeOH F+OH	80 80	97:3 96:4	94 (2R,3R) 25 85 (7P 3P) 21	122
	(10,12)	R=Me	[RuC((C ₆ H ₆ )((R)- binap)]Cl	0.085	100 atm	CH ₂ Cl ₂	50	99:1	92 (2R,3R) 16.7	120
2 0 0	OH O H	OH O	[Rucl(C ₆ H ₆ )((R)-	0.085	100 atm	$CH_2Cl_2$	50	95:5	90 (2R,3R) 16.7	120
			binap)]Cl	,	20 atm	CH ₂ Cl ₂	80	76.5:23.5	91 (2R,3R) 33	122
>	(2R,3R)	>	kuBr ₂ ((K)-binap) RuBr ₂ ((S)-binap)		20 atm	EtOH	80	40:54 73.5:26.5	88 (2K,3K) 50 91 (2S,3S) 33	122 133
³ R C C C C C C C C C C C C C C C C C C	HO	Roet + R	OH O							
$\left< \right>$	(2R,3R)		$\rangle$							
		R=H	RuBr ₂ ((R)-MeO- biphep)		10 atm	EtOH	80	98.5:1.5	95 (2 <i>R</i> , 3 <i>R</i> ) 1.2	133
		R=OMe	: RuBr ₂ ((R)-binap) RuBr ₂ ((R)-MeO-	с с	10 atm 10 atm	CH ₂ Cl ₂ MeOH	80 80	98.5:1.5 98.5:1.5	96 (2R,3R) 0.7 95 (2R,3R) 0.6	122 122
(			biphep)							
4 Me OEt	Me	+ Me OEt	RuBr ₂ ((R)-binap) [RuCl(C ₆ H ₆ )((R)- binan)lCl	0.083 0.085	100 atm 100 atm	EtOH CH ₂ Cl ₂	25 50	49:51 68:32	97 (2 <i>R</i> ,3 <i>R</i> ) 30 94 (2 <i>R</i> ,3 <i>R</i> ) 20	120 107
			In [[] Aming							

21.8 Dynamic Kinetic Resolution 699

Table 21.20 (continued	(									
Substrate	Major diastereomer	Minor diastereomer	Catalyst	%Jom	P _H ²	Solvent	Temp. [°C]	Diastereo- meric ratio [anti:syn]	%ee TOF (anti)	Refer- ence
5 Meo	DMe MeO	H Cl Meo ts)	OH CI CI							
			Ru(allyl) ₂ ((S)-binap) Ru(allyl) ₂ ((R-binap) [Ru((S)-MeO-biphep)]	$\begin{array}{c} 1\\ 0.5\\ 1\end{array}$	80 atm 5atm 60 bar	CH ₂ Cl ₂ MeOH CH ₂ Cl ₂	80 50 80	96:4 8.5:91.5 97.5:2.5	94 (2S,3S) 5.3 77 (2R,3R) 12.5 94 (2S,3S) 2.0	124 124 134
6 R OEt	R CI (2R,3R)	+ CI CI CI CI								
		R=Me	$Ru(allyl)_2((R)-binap)$	0.5	90 atm	$CH_2Cl_2$	80	99:1	99 (2R,3R) 20	124
				1	30 atm	EtOH	27	52:48	93 (2R,3R) 5	124
			[Ru((R)-MeO-biphep)]	1	80 bar	CH ₂ Cl ₂	80	99.5:0.5	98 (2R, 3R)	133
		P = Rh	[Ru((S)-binap)]	0.5	86 atm	$CH_2Cl_2$	80	96:4	83 (25,35) 42.7	124
			$RuBr_2((R)-binap)$	1	30 atm	EtOH	27	9.5:90.5	31 (2R,3R) 5	124

meric diphosphine catalysts to afford *anti-* $\beta$ -hydroxy-*a*-amino acids (Table 21.22, entries 1–4) [128–131]. In this case, a five-membered transition state is envisioned. High *anti*-selectivity was also observed in the reaction of an *a*-phthalimido- $\beta$ -keto ester in methanol (Table 21.22, entry 5) [132], and in the reduction of keto esters having an *a*-chloro group (Table 21.20, entries 5 and 6) [124, 133, 134].  $\beta$ -Keto esters with a cyclic keto unit also afforded *anti*-products selectively, as described [53, 119, 120, 122, 123, 133].

Dynamic kinetic resolution of  $\beta$ -keto phosphonic esters containing an *a*-amido group was examined using Ru–(*R*)-binap, and resulted in a phosphonate analogue of *a*-amino acids with (*R*,*R*)-*syn* configuration and very high selectivity ( $k_R/k_S = 39$ ;  $k_{inv}/k_S = 31$ ) [135]. The overall stereochemical outcome was explained on the basis of the Felkin-Anh model (Scheme 21.11), wherein  $\beta$ -keto phosphonic esters with *a*-bromo substituent were hydrogenated with high *syn*-selectivity [136].

In the hydrogenation of simple 2-alkyl-3-oxobutanoates, the interconversion between the enantiomers is relatively slow, and very poor resolution results are observed (see Table 21.20, entry 4) [107, 119, 120, 123]. Efficient dynamic kinetic resolution of 2-alkyl  $\beta$ -keto esters was first observed in the asymmetric hydrogenation of *a*-alkyl- $\beta$ -keto esters which are derived from (*S*)-proline bearing a stereogenic center at the  $\gamma$ -position. The type of *N*-protecting group played a dramatic role, and the *N*-Boc substrate **29b** afforded naturally occurring (2*R*,3*R*)-dolaproine with *syn*-configuration, while  $\beta$ -keto esters *N*-protected as an amine hydrogen chloride salt **29a** afforded an *anti*-adduct in moderate to high diastereoselectivity (Scheme 21.12) [137, 138].

Dynamic kinetic resolution is possible for *a*-alkyl or *a*-alkoxy cyclic ketones in the presence of KOH, which causes mutation of the stereogenic center; *syn*-alcohols were obtained selectively with high enantioselectivity using ruthenium–3,5-xyl-binap. Dynamic kinetic resolution of 2-arylcycloalkanones also proceeded with extremely high *syn*-selectivity and with high enantioselectivity using ruthenium–binap-diamine as catalyst (Table 21.23) [12, 139, 140].

# 21.9 Conclusions

By linking the steric factor of the stereogenic center of substrates with the chiralinducing ability of properly designed ligands, homogeneous diastereoselective hydrogenation can attain levels of stereoselectivity that will enable the industrial



Scheme 21.11 Felkin-Anh model for the hydrogenation of keto phosphate.



Scheme 21.12 Effect of N-protecting groups on the dynamic kinetic resolution.
Table 21.21 Dynamic	kinetic resolution of $\epsilon$	a-subsituted $eta$ -keto e:	sters.							
Substrate	Major diastereomer	Minor diastereomer	Catalyst	mol%	P _{H3}	Solvent	Diastereo- meric ratio [ <i>anti</i> :syn]	%ee (syn)	TOF	Refer- ence
1 Me OMe OMe NHCOMe	Me OH OME + M NHCOMe (2S,3R)	e OH Ome Infrome	$\begin{array}{l} Ru(O_2CCF_3)_2[(R)\mbox{-binap}]\\ RuBr_2[(-)\mbox{-chiraphos}]\\ [Rh(nbd)((-)\mbox{-dipamp})]^+\\ RuBr_2[(R)\mbox{-binap}]\\ RuBr_2[(R)\mbox{-binap}]\\ \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 0.4 \\ 0.4 \end{array}$	90 atm 90 atm 70 atm 100 atm 100 atm	CH ₂ Cl ₂ CH ₂ Cl ₂ THF CH ₂ Cl ₂ CH ₂ Cl ₂ MeOH	95:5 97:3 94:6 99:1 71:29	51 85 98 90	0.43 0.83 1.0 5	121 121 121 119 123
2 MHCOPh	OH OEt + VICOPh NHCOPh (2R,3S)	OH OEt NHCOPh	Ru Cl ₂ ((S)-binap)(dmf) _m Ru Br ₂ ((S)-synphos)	2 2	100 atm 130 bar	CH ₂ Cl ₂ CH ₂ Cl ₂	100:0 99.5:0.5	99 97	1.0 0.5	131 127
3 Carl 1 Carl	CgH111 OEt +	Contraction Oct	RuBr ₂ ((S)-synphos)	5	130 bar	CH ₂ Cl ₂	99:1	66	0.4	131
4 PhiN	Official of the official of the official officia	OMe COMe Tajor)	RuBr ₂ (( <i>R</i> )-MeO-biphep) RuBr ₂ (( <i>R</i> )-MeO-biphep)	0.5 1	100 bar 100 bar	CH ₂ Cl ₂ MeOH	>99:1 65:35		1.85 1.1	125 125
5 BodHN	LeoceH4-P-OBn NF	∭ MoMe R) (major)	RuBr ₂ (( <i>R</i> )-MeO-biphep)	-	130 bar	CH ₂ Cl ₂	96:5:3.5	94	1.1	126

21.9 Conclusions 703

	(n									
Substrate	Major diastereomer	Minor diastereomer	Catalyst	mol%	$P_{H_2}$	Solvent	Diastereo- meric ratio [anti:syn]	%ее (syn)	TOF	Refer- ence
6 Contraction of NHCO2H	te OH OM In NHCO2B	e +	RuBr ₂ [(R)-binap] OMe 22Bn	0.4	100 atm	$CH_2Cl_2$	99:1	92	2.4	119
7 Me OEt	Me OH OEt +	MetoPet	$[RuCl_2((R)-binap)]_2NEt_3 \\ [RuCl((R)-3,5-Bu_2^+) \\ binap((R-cwmee)] \\$	$\frac{1}{0.1}$	100 atm 50 atm	CH ₂ Cl ₂ CH ₂ Cl ₂ / MeOH	94:6 99:1	98 99	5 13.8	119 123
CH ₂ NHCOPh	ĊH ₂ NHCOPh (2S,3R)	CH ₂ NHCOP	"[RuBr((R)-binap)(ben- zene]]Br [RuBr((R)-binap)(benze-	1 1	50 atm 50 atm	CH ₂ Cl ₂ / H ₂ O MeOH	89.5:10.5 54.5:45.5	98 80	2.3 2.4	123 123
8 R P(OMe)2 NHCOMe	R P(OMe)2 + NHCOMe (1S,2R)	R P(OMe)2 NHCOMe R = Ph R = Me	ne]Br [RuCl ₂ (R)-binap](dmf) _n [RuCl ₂ (R)-binap](dmf) _n	1 0.17	4 atm 4 atm	MeOH MeOH MeOH	98:2 97:3 	95 >98	0.8	135 135
9 Me Prome)2	OH Q MeP(OMe)2 + Br (1R,2S)	OH Q P(OMe)2 Br	[RuCl ₂ (S)-binap](dmf) _n	0.05	4 atm	$k_{\rm R}/k_{\rm S} = 39$ MeOH $k_{\rm R}/k_{\rm S} = 13$	and $k_{inv}/k_S =$ 90:10 and $k_{inv}/k_S =$	98 11.5	0.8	136

Table 21.21 (continued)

Substrate										
	Major diastereomer	Minor diastereomer	Catalyst	%Jom	$P_{H_2}$	Solvent	Diastereo- meric ratio [ <i>anti:syn</i> ]	%ee (anti)	TOF	Refer- ence
1	OH O NH2·HCI (2S,3S)	OH O HO NH2·HCI	[RuCl ₂ (S)-binap](dmf) _n RuBr ₂ ((S)-MeO-biphep) RuBr ₂ ((S)-synphos)	4 1 2	100 atm 12 bar 12 bar	CH2Cl2 EtOH CH2Cl2/ 2-PrOH	98:2 99:1 99.5:0.5	92 87 97	0.5 4.2 1.9	128 131 130
2	OH NH2·HCI (2S,3S)	- OPri NH2-HCI	[Rucl(S)-binap](dmf) _n	4	100 atm	CH ₂ Cl ₂	>99:1	97	0.44	128
3 C ₅ H ₁ OEt	C ₅ H ₁₁ OEt O	+ C ₅ H ₁₁	RuBr ₂ ((S)-synphos)	2	12 bar	CH ₂ Cl ₂ (EtOH)	96.5:3.5	91	1.8	130
4	MI1 OPri OPri	+ + OH OH	RuBr ₂ (( <i>R</i> )-MeO-biphep) RuBr ₂ (( <i>R</i> )-MeO-biphep) RuBr ₂ (( <i>R</i> )-synphos)	2 2 2	20 bar 20 bar 12 bar	MeOH CH ₂ Cl ₂ CH ₂ Cl ₂ / MeOH	98:2 90:10 96:4	41 88 92	0.7 0.7 1.7	129 129 129
5 Me Aome	Me OMe	Me OH O	O-O-PPh ₂ O-O-PPh ₂ (R)-C ₃ -Tunephos [Ru(S)-C ₃ -Tunephos]	5	100 bar	НоэМ	>97:3	66<	0.7	132

Table 21.22 Dynamic kinetic resolution of a-substituted  $\beta$ -keto esters.

21.9 Conclusions 705

ketones.
of
resolution
kinetic
Dynamic
.33
21
Table

Substrate	Diastereomers	Catalyst	mol%	P _{H3}	Solvent	Diastereo- meric ratio [syn <i>: anti</i> ]	%ee (syn)	TOF	Reference
0=	НО НО	[RuCl ₂ ((S)-binap)] ₂ (NEt ₃ )	0.1	50 atm	i-PrOH	98.5:1.5	92 (R,S)	1000	139
T	(1R,2S)	-(2,2)-DFEN-ROLL [RuCl ₂ ((S)-3,5-xylyl-bi- nap]] ₂ (NEt ₃ ) -(S,S)-DPEN-KOH	0.1	50 atm	<i>i</i> .PrOH	99.5:0.5	99 (R,R)	50	139
2		RuCl ₂ ((S)-binap)(dmf)m -( <i>R</i> , <i>R</i> )-DPEN-KOH	0.2	4 atm	i, PrOH	99.8:0.2	93 $(R,R)$	45.5	12
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HO HO	RuCl ₂ (( <i>R</i> )-binap)(dmf)m -( <i>S</i> , <i>S</i> )-DPEN-KOH	0.2	4 atm	HOrd4	highly selec tive	Å		12
4 certification of the second	Ho Ho Ho Ho Ho	RuCl ₂ ((<i>R</i>)-tol-binap) (dmf)m -(<i>S</i> , <i>S</i>)-DPEN- ^{<i>t</i>} BuOK	0.05	8 atm	i, PrOH	100:0	97 (S,S)	500	140
5	OH + + - - - - - - - - - - - - - - - - -	RuCl ₂ ((<i>R</i>)-tol- binap)(dmf)m -(<i>R</i> , <i>R</i>)-DPEN. ² BuOK	0.05	8 atm	i,PrOH	98:2	93 (S,S)	125	140

21 Diastereoselective Hydrogenation

Table 21.23 (continu	ed)								
Substrate	Diastereomers	Catalyst	mol%	P_{H_2}	Solvent	Diastereo- meric ratio [syn:anti]	%ee (syn)	TOF	Reference
e e	HO HO HO HO HO HO HO HO HO HO HO HO HO H	RuCl ₂ ((R)-tol- binap)(dmf)m -(S,S)-DPEN- ^t BuOK	0.05	8 atm	<i>i</i> .PrOH	100:0	95 (<i>S,S</i>)	83	140
C-S-S-OME	C _{3H7}	RuCl ₂ ((.S)-tol- binap)(dmf)m -(<i>S</i> , <i>S</i>)-DPEN- ¹ BuOK	0.2	8 atm	<i>i</i> ,PrOH	>99:1	97 (S,R)	20.8	140

708 21 Diastereoselective Hydrogenation

preparation of optically active compounds with several stereogenic centers. Functional group-directed hydrogenation led to good results *via* the interaction of a heteroatom in the substrate with the metal or with the ligand, whilst by selecting the catalyst, diastereoselective hydrogenation can induce excellent stereoselectivity *via* double stereo-differentiation (matched pair). However, in general the activity of hydrogenation catalysts remains poor, especially for those substrates with bulky groups proximal to the reaction site. Consequently, it will be necessary to develop more efficient catalysts to produce higher turnover frequencies.

Abbreviations

d.e.	diastereomeric excess
DCM	dichloromethane

ee enantiomeric exces

ee enantiomeric excess TBSO tert-butyldimethylsilyloxy

- THF tetrahydrofuran

References

- 1 (a) Knowles, W.S., Sabacky, M.J., J. Chem. Soc., Chem. Commun. 1968, 1445; (b) Horner, L., Siegel, H., Buthe, H., Angew. Chem., Int. Ed. Engl. 1968, 7, 942; (c) Kagan, H.B., Chiral Ligands for Asymmetric Catalysis, in: Morrison, J.D. (Ed.), Asymmetric Synthesis, Academic Press, Inc.: Orlando, FL, 1985, Vol. 5, p. 1; (d) Koenig, K.E., The Applicability of Asymmetric Homogeneous Catalytic Hydrogenation, in: Asymmetric Synthesis; Morrison, J. D. (Ed.), Academic Press, Inc., Orlando, FL, 1985, Vol. 5, p. 71; (e) Brunner, H., Top. Stereochem. 1988, 18, 129; (f) Arntz, D., Schaefer, A., Asymmetric Hydrogenation, in: Noels, A.F., Graziani, M., Hubert, A.J. (Eds.), Metal Promoted Selectivity in Organic Synthesis, Kluwer Academic, Dordrecht, 1991, p. 161; (g) Takaya, H., Ohta, T., Noyori, R., Asymmetric Hydrogenation, in: Ojima, I. (Ed.), Catalytic Asymmetric Synthesis, VCH Publishers, Inc., New York, NY, 1993, p. 1.
- 2 Jardine, F.H., Prog. Inorg. Chem. 1984, 431, 265.
- 3 Halpern, J., Harrod, J. F., James, B. R., J. Am. Chem. Soc. 1961, 83, 753.

- 4 Crabtree, R. H., Felkin, H., Morris, G. E., J. Organomet. Chem. 1977, 141, 205.
- 5 Evans, D.A., Morrissey, M.M., J. Am. Chem. Soc. 1984, 106, 3866.
- 6 (a) Molander, G.A., Winterfeld, J., J. Organomet. Chem. 1996, 524, 275; (b) Molander, G.A., Dowdy, E.D., Top. Organomet. Chem. 1999, 2, 119.
- 7 Jenke, T., Süss-Fink, G., J. Organomet. Chem. 1991, 405, 383.
- 8 Suggs, J. W., Cox, S. D., Crabtree, R. H., Quirk, J. M., *Tetrahedron Lett.* 1981, 22, 303.
- 9 Debenham, S. D., Debenham, J. S., Burk, M. J., Toone, E. J., J. Am. Chem. Soc. 1997, 119, 9897.
- 10 Berens, U., Fischer, C., Selke, R., Tetrahedron: Asymm. 1995, 6(5), 1105.
- 11 Fehr, M. J., Consiglio, G., Scalone, M., Schmid, R., New J. Chem. 1998, 1499.
- Ohkuma, T., Ooka, H., Yamakawa, M., Ikariya, T., Noyori, R., *J. Org. Chem.* 1996, 61, 4872.
- 13 Ohkuma, T., Ikehira, H., Ikariya, T., Noyori, R., *Synlett* **1997**, 467.
- 14 Lensink, C., de Vries, J.G., Tetrahedron: Asymm. 1993, 4, 215.

- 15 Morrison, J. D. (Ed.), Asymmetric Synthesis, Vol. 5, Academic Press, New York, 1985.
- 16 Thompson, H.W., McPherson, E., J. Am. Chem. Soc. 1974, 96, 6232.
- (a) Paquette, L. A., Peng, X., Bondar, D., Org. Lett. 2002, 4(6), 937; (b) Peng, X., Bondar, D., Paquette, L. A., Tetrahedron 2004, 60, 9589.
- 18 Crabtree, R. H., Demou, P. C., Eden, D., Mihelcic, J. M., Parnell, C. A., Quirk, J. M., Morris, G. E., *J. Am. Chem. Soc.* 1982, 104, 6994.
- 19 Brown, J.M., Naik, R.G., J. Chem. Soc., Chem. Commun. 1982, 348.
- 20 Brown, J. M., Angew. Chem. Int. Ed. Engl. 1987, 26, 190.
- 21 Crabtree, R. H., Davis, M. W., Organometallics 1983, 2, 681.
- 22 Stork, G., Kahne, D. E., J. Am. Chem. Soc. 1983, 105, 1072.
- 23 Hoveyda, A. H., Evans, D. A., Fu, G. C., Chem. Rev. 1993, 93, 1307.
- 24 Evans, D.A., Morrissey, M.M., Tetrahedron Lett. 1984, 25(41), 4637.
- 25 Crabtree, R.H., Davis, M.W., J. Org. Chem. 1986, 51, 2655.
- 26 Corey, E. J., Engler, T. A., Tetrahedron Lett. 1984, 25, 149.
- 27 Sakurai, K., Kitahara, T., Morñi, K., Tetrahedron 1990, 46(3), 761.
- 28 Fernández, B., Martínez Pérez, J.A., Granja, J.R., Castedo, L., Mouriño, A., J. Org. Chem. 1992, 57, 3173.
- 29 Brown, J. M., Hall, S.A., Tetrahedron 1985, 41, 4639.
- 30 DeCamp, A. E., Verhoeven, T. R., Shinkai, I., J. Org. Chem. 1989, 54, 3207.
- 31 Poss, A.J., Smyth, M.S., Tetrahedron Lett. 1988, 29(45), 5723.
- 32 Kawai, A., Hara, O., Hamada, Y., Shioiri, T., Tetrahedron Lett. 1988, 29(48), 6331.
- 33 Watson, A.T., Park, K., Wiemer, D.F., J. Org. Chem. 1995, 60, 5102.
- 34 Del Valle, J. R., Goodman, M., Angew. Chem. Int. Ed. Engl. 2002, 41, 1600.
- 35 Bueno, J. M., Coterón, J. M., Chiara, J. L., Fernández-Moyaralas, A., Fiandor, J. M., Valle, N., *Tetrahedron Lett.* 2000, 41, 4379.
- 36 Brown, J. M., Hall, S.A., Tetrahedron Lett. 1984, 25, 1393.

- 37 Machado, A.S., Olesker, A., Castillon, S., Lukacs, G., J. Chem. Soc., Chem. Commun. 1985, 330.
- 38 Del Valle, J. R., Goodman, M., J. Org. Chem. 2003, 68, 3923.
- 39 Brown, J. M., Derome, A. E., Hall, S. A., *Tetrahedron* 1985, 41, 4647.
- 40 Brown, J. M., Hall, S. A., J. Organomet. Chem. 1985, 285, 333.
- 41 Schultz, A.G., McCloskey, P.J., J. Org. Chem. 1985, 50, 5905.
- 42 (a) Zhang, M., Zhu, L., Ma, X., *Tetrahe*dron: Asymm. 2003, 14, 3447; (b) Zhang, M., Zhu, L., Ma, X., Dai, M., Lowe, D., Org. Lett. 2003, 5(9), 1587.
- 43 Schultz, A.G., McCloskey, P.J., Court, J.J., J. Am. Chem. Soc. 1987, 109, 6493.
- 44 Smith, M.E.B., Derrien, N., Lloyd, M.C., Taylor, S.J.C., Chaplin, D.A., McCague, R., *Tetrahedron Lett.* 2001, 42, 1347.
- 45 Brown, J.M., Cutting, I., J. Chem. Soc., Chem. Commun. 1985, 578.
- 46 Kitamura, M., Kasahara, I., Manabe, K., Noyori, R., Takaya, H., *J. Org. Chem.* 1988, 53, 708.
- 47 Hameršak, Z., Gašo, D., Kovač, S., Hergold-Brundić, A., Vicković, I., Šunjić, V., *Helv. Chim. Acta* 2003, 86(6), 2247.
- (a) Lautens, M., Zhang, C. H., Crudden, C. M., Angew. Chem. Int. Ed. Engl. 1992, 31(2), 232; (b) Lautens, M., Zhang, C. H., Goh, B. J., Crudden, C. M., Johnson, M. J. A., J. Org. Chem. 1994, 59, 6208.
- 49 Schmidt, U., Stäbler, F., Lieberknecht, A., Synthesis 1992, 482.
- 50 Paterson, I., Bower, S., Tillyer, R. D., Tetrahedron Lett. 1993, 34(27), 4393.
- 51 Paterson, I., Bower, S., McLeod, M.D., *Tetrahedron Lett.* **1995**, *36*, 175.
- 52 Kitamura, M., Nagai, K., Hsiao, Y., Noyori, R., Tetrahedron Lett. 1990, 31, 549.
- 53 Genêt, J.-P., ACS Symposium Series 1996, 641 (Reductions in Organic Synthesis), 31.
- 54 Terada, M., Sayo, N., Mikami, K., Synlett 1995, 411.
- 55 Reetz, M. T., Kayser, F., *Tetrahedron: Asymm.* 1992, *3*, 1377.
- 56 Ando, D., Bevan, C., Brown, J. M., Price, D. W., J. Chem. Soc., Chem. Commun. 1992, 592.
- 57 Birtwistle, D.H., Brown, J.M., Herbert, R.H., James, A.P., Lee, K.-F., Taylor,

710 21 Diastereoselective Hydrogenation

R.J., J. Chem. Soc., Chem. Commun. 1989, 194.

- 58 Wehn, P. M., Du Bois, J., J. Am. Chem. Soc. 2002, 124, 12950.
- 59 Evans, D. A., Morrissey, M. M., Dow, R. L., Tetrahedron Lett. 1985, 26(49), 6005.
- 60 Evans, D.A., DiMare, M., J. Am. Chem. Soc. 1986, 108, 2476.
- 61 Evans, D.A., Dow, R.L., Tetrahedron Lett. 1986, 27(9), 1007.
- 62 Villalobos, A., Danishefsky, S.J., J. Org. Chem. 1990, 55, 2776.
- 63 Landis, C. R., Halpern, J., J. Am. Chem. Soc. 1987, 109, 1746.
- 64 Brown, J. M., James, A.P., J. Chem. Soc., Chem. Commun. 1987, 181.
- 65 Brown, J. M., Cutting, I., James, A. P., Bull. Soc. Chim. Fr. 1988, (2), 211.
- 66 (a) Yamamoto, K., Takagi, M., Tsuji, J., Bull. Chem. Soc. Jpn. 1988, 61, 319;
 (b) Yamamoto, K., Yuki Gousei Kagaku Kyokaishi 1989, 47(2), 123.
- 67 Takagi, M., Yamamoto, K., Tetrahedron 1991, 47(2), 8869.
- 68 Masamune, S., Choy, W., Petersen, J. S., Sita, L. R., Angew. Chem. Int. Ed. Engl. 1985, 24, 1.
- 69 Ojima, I., Kogure, T., Yoda, N., Suzuki, T., Yatabe, M., Tanaka, T., J. Org. Chem. 1982, 47, 1329.
- 70 Ojima, I., Suzuki, T., Tetrahedron Lett. 1980, 21, 1239.
- 71 Meyer, D., Poulin, J.-C., Kagan, H. B., Levin-Pinto, H., Morgat, J.-L., Fromageot, P., J. Org. Chem. 1980, 45, 4680.
- 72 El-Baba, S., Poulin, J.-C., Kagan, H.B., Tetrahedron 1984, 40, 4275.
- 73 (a) Ojima, I., Yoda, N., Yatabe, M., *Tetrahedron Lett.* 1982, 23, 3917; (b) Ojima, I., Yoda, N., Yatabe, M., Tanaka, T., Kogure, T., *Tetrahedron* 1984, 40, 1255.
- 74 Aguado, G.P., Moglioni, A.G., Brousse, B.N., Ortuño, R.M., *Tetrahedron: Asymm.*2003, 14, 2445; Aguado, G.P., Moglioni, A.G., García-Expósito, E., Branchadell, V., Ortuño, R.M., J. Org. Chem. 2004, 69, 7971.
- 75 Kreuzfeld, H.-J., Döbler, C., Schmidt, U., Krause, H.W., Chirality 1998, 10, 535.
- 76 Ojima, I., Yatabe, M., Chem. Lett. 1982, 1335.
- 77 Sinou, D., Lafont, D., Descotes, G., J. Organomet. Chem. 1981, 217, 119.

- 78 Onuma, K., Ito, T., Nakamura, A., Chem. Lett. 1980, 481.
- 79 Hammadi, A., Nuzillard, J.M., Poulin, J.C., Kagan, H.B., *Tetrahedron: Asymm.* 1992, 3(10), 1247.
- 80 (a) Yatagai, M., Zama, M., Yamagishi, T., Hida, M., Chem. Lett. 1983, 12036; (b) Yatagai, M., Zama, M., Yamagishi, T., Hida, M., Bull. Chem. Soc. Jpn. 1984, 57, 739.
- 81 Yatagai, M., Yamagishi, T., Hida, M., Bull. Chem. Soc. Jpn. 1984, 57, 823.
- 82 Yamagishi, T., Ikeda, S., Yatagai, M., Yamaguchi, M., Hida, M., J. Chem. Soc., Perkin Trans. 1 1988, 1787.
- 83 Ikeda, S., Yamagishi, T., Yamaguchi, M., Hida, M., *Chemistry Express* 1990, 5(1), 29.
- 84 Hayashi, T., Kawamura, N., Ito, Y., J. Am. Chem. Soc. 1987, 109, 7876.
- 85 (a) Poulin, J.-C., Kagan, H.B., J. Chem. Soc., Chem. Commun. 1982, 1261;
 (b) El-Baba, S., Poulin, J.-C., Kagan, H.B., Bull. Soc. Chim. Fr. 1994, 131, 525.
- 86 Ritzén, A., Basu, B., Chattopadhyay, S. K., Dossa, F., Frejd, T., *Tetrahedron:* Asymm. 1998, 9, 503.
- 87 Hiebl, J., Kollmann, H., Rovenszky, F., Winkler, K., J. Org. Chem. 1999, 64, 1947.
- 88 Ojima, I., Tanaka, T., Kogure, T., Chem. Lett. 1981, 823.
- 89 Tani, K., Tanigawa, E., Tatsuno, Y., Otsuka, S., *Chem. Lett.* 1986, 737.
- 90 Yamagishi, T., Ikeda, S., Egawa, T., Yamaguchi, M., Hida, M., Bull. Chem. Soc. Jpn. 1990, 63, 281.
- 91 (a) Ohkuma, T., Ooka, H., Hashiguchi, S., Ikariya, T., Noyori, R., J. Am. Chem. Soc. 1995, 117, 2675; (b) Ohkuma, T., Ooka, H., Ikariya, T., Noyori, R., J. Am. Chem. Soc. 1995, 117, 10417; (c) Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A. F., Ikariya, T., Noyori, R., Angew. Chem., Int. Ed. 1998, 37(12), 1703.
- 92 Abdur-Rashid, K., Lough, A. J., Morris, R. H., Organometallics 2001, 20, 1047.
- 93 Miyashita, A., Takaya, H., Souchi, T., Noyori, R., *Tetrahedron* 1984, 40(8), 1245.
- 94 Miyashita, A., Karino, H., Shimamura, J., Chiba, T., Nagano, K., Nohira, H., Takaya, H., Chem. Lett. 1989, 1849.

- 95 Schmid, R., Cereghetti, M., Heiser, B., Schönholzer, P., Hansen, H.-J., *Helv. Chim. Acta* 1988, 71(4), 897; Schmid, R., Foricher, J., Cereghetti, M., Schönholzer, P., *Helv. Chim. Acta* 1991, 74(2), 370.
- 96 Nishi, T., Kitamura, M., Ohkuma, T., Noyori, R., *Tetrahedron Lett.* 1988, 29(48), 6327.
- 97 Armstrong, III, J.D., Keller, J.L., Lynch, J., Liu, T., Hartner, Jr., F.W., Ohtake, N., Okada, S., Imai, Y., Okamoto, O., Ushijima, R., Nakagawa, S., Volante, R.P., *Tetrahedron Lett.* 1997, 38(18), 3203.
- 98 Ohtake, N., Jona, H., Okada, S., Okamoto, O., Imai, Y., Ushijima, R., Nakagawa, S., *Tetrahedron: Asymm.* 1997, 8(17), 2939.
- 99 (a) Drouillat, B., Poupardin, O., Bourdreux, Y., Greck, C., *Tetrahedron Lett.*2003, 44, 2781; (b) Thomassigny, C., Greck, C., *Tetrahedron: Asymm.* 2004, 15, 199.
- 100 Duprat De Paule, S., Piombo, L., Ratovelomanana-Vidal, V., Greck, C., Genêt, J.-P., Eur. J. Org. Chem. 2000, 1535.
- 101 Blandin, V., Carpentier, J.-F., Mortreux, A., Eur. J. Org. Chem. 1999, 1787.
- 102 Shao, L., Kawano, H., Saburi, M., Uchida, Y., *Tetrahedron* 1993, 49, 1997.
- 103 (a) Blandin, V., Carpentier, J.-F., Mortreux, A., *Eur. J. Org. Chem.* 1999, 3421; (b) Blandin, V., Carpentier, J.-F., Mortreux, A., *New. J. Chem.* 2000, 24, 309.
- **104** Schulz, S., *Chem. Commun.* **1999**, 1239.
- 105 Kawano, H., Ishii, Y., Saburi, M., Uchida, Y., J. Chem. Soc., Chem. Commun. 1988, 87.
- 106 Kitamura, M., Ohkuma, T., Inoue, S., Sayo, N., Kumobayashi, H., Akutagawa, S., Ohta, T., Takaya, H., Noyori, R., J. Am. Chem. Soc. 1988, 110, 629.
- 107 Noyori, R., Ohkuma, T., Kitamura, M., Takaya, H., Sayo, N., Kumobayashi, H., Akutagawa, S., J. Am. Chem. Soc. 1987, 109, 5856.
- 108 Burk, M.J., Harper, T.G.P., Kalberg, C.S., J. Am. Chem. Soc. 1995, 117, 4423.
- 109 Genêt, J.-P., Pinel, C., Ratovelomanana-Vidal, V., Mallart, S., Pfister, X., Bi-

schoff, L., Caño de Andrade, M.C., Darses, S., Galopin, C., Laffitte, J.A., *Tetrahedron: Asymm.* **1994**, *5*, 675.

- Blanc, D., Ratovelomanana-Vidal, V., Marinetti, A., Genêt, J.-P., Synlett 1999, (4), 480.
- 111 Mezzetti, A., Consiglio, G., J. Chem. Soc., Chem. Commun. 1991, 1675.
- 112 Mezzetti, A., Tschumper, A., Consiglio, G., J. Chem. Soc., Dalton Trans. 1995, 49.
- 113 Cui, X., Ogle, J.W., Burgess, K., Chem. Commun. 2005, 672.
- 114 Kagan, H. B., Fiaud, J. C., Top. Stereochem. 1988, 18, 249.
- 115 Brown, J. M., James, A. P., Prior, L. M., *Tetrahedron Lett.* **1987**, *28*, 2179.
- 116 Taber, D. F., Wang, Y., J. Am. Chem. Soc. 1997, 119, 22.
- 117 Ohkuma, T., Koizumi, M., Muñiz, K., Hilt, G., Kabuto, C., Noyori, R., J. Am. Chem. Soc. 2002, 124, 6508.
- 118 Viso, A., Lee, N. E., Buchwald, S. L., J. Am. Chem. Soc. 1994, 116, 9373.
- 119 Noyori, R., Ikeda, T., Ohkuma, T., Widhalm, M., Kitamura, M., Takaya, H., Akutagawa, S., Sayo, N., Saito, T., Taketomi, T., Kumobayashi, H., J. Am. Chem. Soc. 1989, 111, 9134.
- 120 Kitamura, M., Ohkuma, T., Tokunaga, M., Noyori, R., *Tetrahedron: Asymm.* 1990, 1, 1.
- 121 Genêt, J.-P., Pinel, C., Mallart, S., Juge, S., Thorimbert, S., Laffitte, J.A., *Tetrahedron: Asymm.* 1991, 2(7), 555.
- 122 Genêt, J.-P., Pfister, X., Ratovelomanana-Vidal, V., Pinel, C., Laffitte, J.A., *Tetrahedron Lett.* 1994, 35, 4559.
- 123 (a) Mashima, K., Matsumura, Y., Kusano, K., Kumobayashi, H., Sayo, N., Hori, Y., Ishizaki, T., Akutagawa, S., Takaya, H., J. Chem. Soc., Chem. Commun. 1991, 609; (b) Takaya, H., Ohta, T., Mashima, K., Advances in Chemistry Series 1992, 230, 123.
- 124 Genêt, J.-P., Caño de Andrade, M.C., Ratovelomanana-Vidal, V., *Tetrahedron Lett.* 1995, 36, 2063.
- 125 Coulon, E., Caño de Andrade, M.C., Ratovelomanana-Vidal, V., Genêt, J.-P., *Tetrahedron Lett.* 1998, 39, 6467.
- 126 Phansavath, P., Duprat de Paule, S., Ratovelomanana-Vidal, V., Genêt, J.-P., Eur. J. Org. Chem. 2000, 3903.

- 712 21 Diastereoselective Hydrogenation
 - 127 Makino, K., Okamoto, N., Hara, O., Hamada, Y., *Tetrahedron: Asymm.* 2001, 12, 1757.
 - 128 Makino, K., Goto, T., Hiroki, Y., Hamada, Y., Angew. Chem. Int. Ed. Engl. 2004, 43, 882.
 - 129 Labeeuw, O., Phansavath, P., Genêt, J.-P., *Tetrahedron: Asymm.* 2004, 15, 1899.
 - 130 Mordant, C., Dünkelmann, P., Ratovelomanana-Vidal, V., Genêt, J.-P., *Chem. Commun.* 2004, 1296.
 - 131 Mordant, C., Dünkelmann, P., Ratovelomanana-Vidal, V., Genêt, J.-P., *Eur. J. Org. Chem.* 2004, 3017.
 - 132 Lei, A., Wu, S., He, M., Zhang, X., J. Am. Chem. Soc. 2004, 126, 1626.
 - 133 Ratovelomanana-Vidal, V., Genêt, J.-P., J. Organomet. Chem. 1998, 567, 163.

- 134 Mordant, C., Caño de Andrade, C., Touati, R., Ratovelomanana-Vidal, V., Hassine, B.B., Genêt, J.-P., Synthesis 2003, (15), 2405.
- 135 Kitamura, M., Tokunaga, M., Pham, T., Lubell, W. D., Noyori, R., *Tetrahedron Lett.* **1995**, *36*(32), 5769.
- 136 Kitamura, M., Tokunaga, M., Noyori, R., J. Am. Chem. Soc. 1995, 117, 2931.
- **137** Genêt, J.-P. Pure Appl. Chem. **2002**, 74, 77.
- 138 Mordant, C., Reymond, S., Ratovelomanana-Vidal, V., Genêt, J.-P., *Tetrahedron* 2004, 60, 9715.
- 139 Matsumonto, T., Murayama, T., Mitsuhashi, S., Miura, T., *Tetrahedron Lett.* 1999, 40, 5043.
- 140 Ohkuma, T., Li, J., Noyori, R., Synlett 2004, (8), 1383.