
KEY TERMS AND 
DEFINITIONS 

3.1 INTRODUCTION 

This chapter is concerned with key terms and definitions in fluid flow. Since fluid 
flow is an important subject that finds wide application in engineering, the under- 
standing of “fluid” flow jargon is therefore important to the practicing engineer. 
The handling and flow of either gases or liquids is much simpler, cheaper, and 
less troublesome than solids. Consequently, the engineer attempts to transport most 
quantities in the form of gases or liquids whenever possible. It is important to note 
that throughout this book, the word “fluid” will always be used to include both 
liquids and gases. 

The mechanics of fluids are treated in most physics courses and form the basis of 
the subject of fluid flow and hydraulics. Key terms in these two topics that are of 
special interest to engineers are covered in this chapter. Fluid mechanics includes 
two topics: statics and dynamics. Fluid statics treats fluids at rest while fluid dynamics 
treats fluids in motion. The definition of key terms in this subject area is presented in 
Section 3.2. 

3.1.1 Fluids 

For the purpose of this text, a fluid may be defined as a substance that does not per- 
manently resist distortion. An attempt to change the shape of a mass of fluid will 
result in layers of fluid sliding over one another until a new shape is attained. 
During the change in shape, shear stresses (forces parallel to a surface) will result, 
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the magnitude of which depends upon the viscosity (to be discussed shortly) of the 
fluid and the rate of sliding. However, when a final shape is reached, all shear stresses 
will have disappeared. Thus, a fluid at equilibrium is free from shear stresses. This 
definition applies for both liquids and gases. 

3.2 DEFINITIONS 

Standard key definitions, particularly as they apply to fluid flow, follow. 

3.2.1 Temperature 

Whether in a gaseous, liquid, or solid state, all molecules possess some degree of 
kinetic energy; that is, they are in constant motion-vibrating, rotating, or translating. 
The kinetic energies of individual molecules cannot be measured, but the combined 
effect of these energies in a very large number of molecules can. This measurable 
quantity is known as temperature; it is a macroscopic concept only and as such 
does not exist on the molecular level. 

Temperature can be measured in many ways; the most common method makes use 
of the expansion of mercury (usually encased inside a glass capillary tube) with 
increasing temperature. (However, thermocouples or thermistors are more commonly 
employed in industry.) The two most commonly used temperature scales are the 
Celsius (or Centigrade) and Fahrenheit scales. The Celsius scale is based on the 
boiling and freezing points of water at l-atm pressure; to the former, a value of 
100°C is assigned, and to the latter, a value of 0°C. On the older Fahrenheit scale, 
these temperatures correspond to 212°F and 32"F, respectively. Equations (3.1) and 
(3.2) show the conversion from one scale to the other: 

"F = l.S("C) + 32 (3.1) 

"C = (OF - 32)/1.8 (3.2) 

where "F = a temperature on the Fahrenheit scale and "C = a temperature on the 
Celsius scale. 

Experiments with gases at low-to-moderate pressures (up to a few atmospheres) 
have shown that, if the pressure is kept constant, the volume of a gas and its tempera- 
ture are linearly related (see Chapter ll-Charles' law) and that a decrease of 
0.3663% or (1/273) of the initial volume is experienced for every temperature 
drop of 1°C. These experiments were not extended to very low temperatures, but if 
the linear relationship were extrapolated, the volume of the gas would theoretically 
be zero at a temperature of approximately -273°C or -460°F. This temperature 
has become known as absolute zero and is the basis for the definition of two absolute 
temperature scales. (An absolute scale is one that does not allow negative quantities.) 
These absolute temperature scales are the Kelvin (K) and Rankine (OR) scales; the 
former is defined by shifting the Celsius scale by 273°C so that OK is equal to 
-273°C. The Rankine scale is defined by shifting the Fahrenheit scale by 460". 
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Equation (3.3) shows this relationship for both absolute temperatures: 

K = "C + 273 

"R = "F + 460 
(3.3) 

3.2.2 Pressure 

There are a number of different methods used to express a pressure term or measure- 
ment. Some of them are based on a force per unit area (e.g., pound-force per square 
inch, dyne, and so on) and others are based on fluid height (e.g., inches of water, 
millimeters of mercury, etc.). Pressure units based on fluid height are convenient 
when the pressure is indicated by a difference between two levels of a liquid. 
Standard barometric (or atmospheric) pressure is 1 atm and is equivalent to 14.7 
psi, 33.91 ft of water, and 29.92 inches of mercury. 

Gauge pressure is the pressure relative to the surrounding (or atmospheric) 
pressure and it is related to the absolute pressure by the following equation: 

P = Pa + PR (3.4) 

where P is the absolute pressure (psia), Pa is the atmospheric pressure (psi) and PR is 
the gauge pressure. The absolute pressure scale is absolute in the same sense that 
the absolute temperature scale is absolute; i.e., a pressure of zero psia is the lowest 
possible pressure theoretically achievable-a perfect vacuum. 

In stationary fluids subjected to a gravitational field, the hydrostatic pressure 
dzrerence between two locations A and B is defined as 

where z is a vertical upwards direction, g is the gravitational acceleration, and p is the 
fluid density. This equation will be revisited in Chapter 10. 

Expressed in various units, the standard atmosphere is equal to 1.00 atmosphere 
(atm), 33.91 feet of water (ft  H20), 14.7 pound-force per square inch absolute 
(psia), 21 16 pound-force per square foot (psfa), 29.92 inches of mercury (in Hg), 
760.0 millimeters of mercury (mm Hg), and 1.013 x lo5 Newtons per square meter 
(N/m2). The pressure term will be reviewed again in several later chapters. 

Vapor pressure, usually denoted p', is an important property of liquids and, to a 
much lesser extent, of solids. If a liquid is allowed to evaporate in a confined 
space, the pressure in the vapor space increases as the amount of vapor increases. 
If there is sufficient liquid present, a point is eventually reached at which the pressure 
in the vapor space is exactly equal to the pressure exerted by the liquid at its own 
surface. At this point, a dynamic equilibrium exists in which vaporization and con- 
densation take place at equal rates and the pressure in the vapor space remains 
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constant. The pressure exerted at equilibrium is called the vapor pressure of the liquid. 
The magnitude of this pressure for a given liquid depends on the temperature, but not 
on the amount of liquid present. Solids, like liquids, also exert a vapor pressure. 
Evaporation of solids (called sublimation) is noticeable only for those with appreci- 
able vapor pressures. 

3.2.3 Density 

At a given temperature and pressure, a fluid possesses density, p, which is measured 
as mass per unit volume. The density of a fluid depends on both temperature and 
pressure; if a fluid is not affected by changes in pressure, it is said to be 
incompressible, and most liquids are incompressible. The density of a liquid can, 
however, change if there are extreme changes in temperature, and not appreciably 
affected by moderate changes in pressure. In the case of gases, the density may be 
affected appreciably by both temperature and pressure. Gases subjected to small 
changes in pressure and temperature vary so little in density that they can be con- 
sidered incompressible and the change in density can be neglected without serious 
error. Density, specific gravity, and other similar properties have the same signifi- 
cance for fluids as for solids. 

3.2.4 Viscosity 

Viscosity, p, is an important fluid property that provides a measure of the resistance 
to flow. The viscosity is frequently referred to as the absolute or dynamic viscosity. 
The principal reason for the difference in the flow characteristics of water and of 
molasses is that molasses has a much higher viscosity than water. Note also that 
the viscosity of a liquid decreases with increasing temperature, while the viscosity 
of a gas increases with increasing temperature. 

One set of units of viscosity in SI units is g/(cm. s), which is defined as a poise 
(P). Since this numerical unit is somewhat high for many engineering applications, 
viscosities are frequently reported in centipoises (cP) where one poise is 100 
centipoises. In English or engineering units, the dimensions of viscosity are in lb/ 
ft .s .  To convert from poises to this unit, one may simply multiply by (30.48/ 
453.6) or (0.0672); to convert from centipoises, multiply by 6.72 x lop4. To 
convert centipoises to lb/ft + hr, multiply by 2.42. 

Kinematic viscosity, u, is the absolute viscosity divided by the density (p/p)  and 
has the dimensions of (volume)/length . time. The corresponding unit to the poise is 
the stoke, having the SI dimensions of cm2/s. The specific viscosity is the ratio of the 
viscosity to the viscosity of a standard fluid expressed in the same units and measured 
at the same temperature and pressure. Although all real fluids possess viscosity, an 
ideal fluid is a hypothetical fluid that has a viscosity of zero and possesses no resist- 
ance to shear. 

The viscosity is a fluid property listed in many engineering books, including 
Perry's Handbook.'" Data are given as tables, charts, or nomographs. Figures B.l 
and B.2 (see Appendix) are two nomographs that can be used to obtain the absolute 
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(or dynamic) viscosity of liquids and gases, re~pectively.'~.~) In addition, the kin- 
ematic viscosities of some common liquids and gases at a temperature of 20°C are 

in Tables A.2 and A.3, respectively (see Appendix). 

Illustrative Example 3.1 To illustrate the use of nomograph, calculate the dynamic 
viscosity of a 98% sulfuric acid solution at 45°C. 

Solution From Fig. B. I in the Appendix, the coordinates of 98% H2S04 are given 
as X = 7.0 and Y = 24.8 (number 97). Locate these coordinates on the grid and call it 
point A. From 45"C, draw a straight line through point A and extend it to cut the vis- 
cosity axis. The intersection occurs at approximately 12 centipoise (cP). Therefore, 

p =  12cP=0.12P=0.12g/cm~s  

3.2.5 Surface Tension: Capillary Rise 

A liquid forms an interface with another fluid. At the surface, the molecules are more 
densely packed than those within the fluid. This results in surface tension effects and 
interfacial phenomena. The surface tension coefficient, a, is the force per unit length 
of the circumference of the interface, or the energy per unit area of the interface area. 
The surface tension for water is listed in Table A.4 (see Appendix). 

Surface tension causes a contact angle to appear when a liquid interface is in 
contact with a solid surface, as shown in Fig. 3.1. If the contact angle 8 is <90°, 
the liquid is termed wetting. If 8 > 90", it is a nonwetting liquid. Surface tension 
causes a fluid interface to rise (or fall) in a capillary tube. The capillary rise is 
obtained by equating the vertical component of the surface tension force, F,, to 
the weight of the liquid of height h, Fg (see Fig. 3.2). These two forces are shown 

I Contact-Angle 

Figure 3.1 Surface tension figure. 
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Figure 3.2 Capillary rise in a circular tube. 

in the following equations: 

F, = 21~Racos 8 

F, = pgrR2h 

Equating the above two forces gives: 

2mac0s 8 = pgrR2h 

2acos 8 h = -  
PgR 

where a i s  the surface tension (N/m), Bthe contact angle, pthe liquid density (kg/m3), 
g is the acceleration due to gravity (9.807 m/s2), and R is the tube radius (m). 

For a droplet, the pressure is higher on the inside than on the outside. The pressure 
increase in the interior of the liquid droplet is balanced by the surface tension force. 
By applying a force balance on the interior of a spherical droplet, see Fig. 3.3, one can 
obtain the force due to the pressure increase, Fp, which equals the surface tension 
force on the ring, F, (see Eqs. 3.9 and 3.10). This force balance neglects the 
weight of the liquid in the droplet 

Fp = m 2 A P  (3.9) 

F, = 2 m a  (3.10) 
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Figure 3.3 Surface tension in a spherical droplet. 

Equating the two forces gives, 

n?AP = 2m-cr 

The pressure increase is therefore, 

2 a  
A P = -  

r 

(3.11) 

(3.12) 

where AP is the pressure increase (Pa or psi) and r is the droplet radius (m or ft). 

Illustrative Example 3.2 A capillary tube is inserted into a liquid. Determine the 
rise, h, of the liquid interface inside the capillary tube. Data are provided below. 

Liquid-gas system is water-air 
Temperature is 30°C and pressure is 1 atm 
Capillary tube diameter = 8 mm = 0.008 m 
Water density = 1000 kg/m3 
Contact angle, 8 = 0" 

Solution The height equation is first written 

2ucos e 
PgR 

h = -  

The surface tension of water (see Table A.4 in the Appendix) at 30°C is 

u =  0.0712N/m = 0.0712kg/s2 



26 KEY TERMS AND DEFINITIONS 

The height is therefore 

(2)(0.0712) cos 0" 
(1000)(9.807)(0.004) 

= 0.00363 m = 3.63 mm 

h =  

Note that for most industrial applications involving pipes, the diameters are large 
enough that any capillary rise may be neglected. 

Illustrative Example 3.3 At 30"C, what diameter glass tube is necessary to keep 
the capillary height change of water less than one millimeter? Assume negligible 
angle of contact. 

Solution For air-water-glass, assume the contact angle 8 = 0, noting that cos(0") = 1. 
Obtain the properties of water from Table A.2 in the Appendix. 

p = 996 kg/m3 

(T = 0.071 N/m (surface tension) 

Use the capillary rise Equation (3.8) to calculate the tube radius 

= 0.0145 m = 14.5 mm 
2(0.071)( 1) 

- 
~ U C O S  e 

R = - -  
pgh (996)( 9.807)(0.O0 1 ) 

If the tube diameter is greater than 29 mm, then the capillary rise will be less than 1 mm. 

3.2.6 Newton's Law 

The relationship between force mass, velocity, and acceleration may be expressed by 
Newton's second law with force equaling the time rate of change of momentum, Ak. 

F =  1 d(mv) - d M - A k  
g, dt dt 

If the mass is constant, 

(3.13) 

ma F = -  
gc 

(3.14) 

where a = acceleration or dv/dt. 
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In the English engineering system of units, the pound-force (lbf) is defined as that 
force which accelerates 1 pound-mass (lb) 32.174 ft/s. Newton’s law must therefore 
include a dimensional conversion constant for consistency. This constant, g,, is 
32.174 (lb/lbf)(ft/s2). When employing SI units, the value of g, becomes unity 
and has no dimensions associated with it, i.e., g, = 1.0 (see previous chapter for 
more details). Thus, the g, term is normally retained in equations involving force 
where English units are employed. The SI unit of force is the Newton (N), which 
simply expresses force F as the product of mass m and acceleration a (see 
Equation 3.14 once again). The Newton is defined as the force, when applied to a 
mass of 1 kg, produces an acceleration of 1 m/s2; the term g, is not retained in this 
(and similar) equations when SI units are employed. 

The term g, is carried in most of the force and force-related terms and equations 
presented in this and the following chapters. Although both sets of units are employed 
in the Illustrative Examples and Problems, the reader should note that despite state- 
ments to the contrary by academics and theorists, English units are almost 
exclusively employed by industry in the US. 

As described earlier, pressure is a force per unit area. The conversion of force per 
unit area (S) to a height of fluid follows from Newton’s law, i.e., 

(3.15) 

and 

m=pSh (3.16) 

Thus, a vertical column of a given fluid under the influence of gravity exerts a 
pressure at its base that is directly proportional to its height so that pressure may 
also be expressed as the equivalent height of a fluid column. The pressure to 
which a fluid height corresponds may be determined from the density of the fluid 
and the local acceleration of gravity. 

Forces that act on a fluid can be classified as either bodyforces or sulfaceforces. 
Body forces are distributed throughout the material, e.g., gravitational, centrifugal, 
and electromagnetic forces. Bodyforces therefore act on the bulk of the object from 
a distance and are proportional to its mass; the most common examples are the 
aforementioned gravitational and electromagnetic forces. Surjiace forces are forces 
that act on the surface of a material. Surface forces are exerted on the surface of the 
object by other objects in contact with it; they generally increase with increasing 
contact area. Stress is a force per unit area. If the force is parallel to the surface, the 
force per unit area is called shear stress. When the force is perpendicular (normal) 
to a surface, the force per unit area is called nomzal stress or pressure. 

For a stationary (static, non-moving) fluid, the sum of all forces acting on the fluid 
(CF) is zero. Newton’s second law simplifies to 

CF=O (3.17) 
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When there are two opposing forces, for example, a gravity force and a pressure force, 
P, (acting on a surface) is then 

Fpres = Fgrav 

Fpres = P ( 9  

F p v  = m(g/gc) 

Equating the two forces gives the result described in Equation (3.15) 

m(g/gc) = ps (3.18) 

Illustrative Example 3.4 Given a force F = 10 lbf, acting on a surface of area S = 
2 ft2, at an angle 8 = 30" to the normal of the surface. Determine the magnitude of the 
normal and parallel force components, the shear stress, and the pressure. 

Solution 
parallel to that surface is F cos 8. Noting that cos(30") = 0.866. 

When a force acts at an angle to a surface, the component of the force 

F~~ = F C O S  e = IOCOS(W) 

= 8.661bf 

The normal (perpendicular) component of the force is F sin 8, noting that sin(30") = 
0.500. 

F,,, = F sin 8 = lOsin(30") 

= 5 lbf 

The shear stress, r, is defined as 

Fpara = 8-66 r=- - 
S 2 

= 4.33 psf 

Likewise, the pressure, P, is defined as 

= 2.50psf 

3.2.7 Kinetic Energy 

Consider a body of mass, m, that is acted upon by a force, F. If the mass is displaced a 
distance, dL, during a differential interval of time, dt, the energy expended is given by 

a 

gc 
dEk = m - d L  (3.19) 
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Since the acceleration is given by a = dv/dt, 

Noting that v = dL/dt, the above expression becomes: 

If this equation is integrated from u1 to v2, the change in energy is 

or 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

The term above is defined as the change in kinetic energy. 
The reader should note that for flow through conduits, the above kinetic energy term 

can be retained as written if the velocity profile is uniform; that is, the local velocities at 
all points in the cross-section are the same. Ordinarily, there is a velocity gradient across 
the passage; this introduces an error, the magnitude of which depends on the nature of 
the velocity profile and the shape of the cross section. For the usual case where the vel- 
ocity is approximately uniform (e.g., turbulent flow) (see Chapter 14), the error is not 
serious, and since the error tends to cancel because of the appearance of kinetic terms on 
each side of any energy balance equation, it is customary to ignore the effect of velocity 
gradients. When the error cannot be ignored, the introduction of a correction factor, that 
is used to multiply the v2/g, term, is needed. This is quantitatively treated in Chapter 8. 

3.2.8 Potential Energy 

A body of mass m is raised vertically from an initial position z I  to z2. For this con- 
dition, an upward force at least equal to the weight of the body must be exerted on it, 
and this force must move through the distance z2 - z l .  Since the weight of the body is 
the force of gravity on it, the minimum force required is again given by Newton’s law: 

(3.24) 

where g is the local acceleration of gravity. The minimum work required to raise the 
body is the product of this force and the change in vertical displacement, that is, 

(3.25) 

The term above is defined as the potential energy of the mass. 
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Illustrative Example 3.5 As part of a fluid flow course, a young environmental 
engineering major has been requested to determine the potential energy of water 
before it flows over a waterfall 10 meters in height above ground level conditions. 

Solution The potential energy of water depends on two considerations: 

1. the quantity of water, and 
2. a reference height. 

For the problem at hand, take as a basis 1 kilogram of water and assume the potential 
energy to be zero at ground level conditions. Apply Equation (3.25) based on the 
problem statement, set z1 = 0 m and z2 = 10 m, so that 

Az = 1Om 

At ground level conditions, 

PEI = 0 

Therefore 

A(PE) = PE2 - PEI = PE2 

PE2 = m(g/g,>z2 

= (1 kg)(9.8 m/s2)( 10 m) 

= 98 kg . m2/s2 

= 98J 
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