
NON-NEWTONIAN FLOW 

6.1 INTRODUCTION 

The study of the mechanics of the flow of liquids and suspensions comes under the science 
of Rheology. The name Rheology was chosen by h f .  John R. Crawford of Lafayette 
College, PA, and is defined as the study of the flow and deformation of matter. (The 
name is a combination of the Greek words “Rheo”-flow and “Logos”-theory.) 

The shear-stress equations developed in the previous chapter were written for 
fluids with a viscosity that is constant at constant temperature and independent of 
the rate of shear and the time of application of shear. Fluids with this property 
were defined as Newtonian fluids. All gases and pure low-molecular-weight liquids 
are Newtonian. Miscible mixtures of low-molecular-weight liquids are also 
Newtonian. On the other hand, high-viscosity liquids as well as polymers, colloids, 
gels, concentrated slurries and solutions of macromolecules generally do not exhibit 
Newtonian properties; i.e., a strict proportionality between stress and strain rate. 
Interestingly, non-Newtonian properties are sometimes desirable. For example, 
non-Newtonian behavior is exhibited in many paints. During brush working, 
certain paints flow readily to cover the surface, but upon standing, the original 
highly viscous condition returns and the paint will not run. 

The study of non-Newtonian fluids has not progressed far enough to develop many 
useful theoretical approaches. As noted in the previous chapter, if the liquid or 
suspension is found to be Newtonian, the pressure drop can be calculated from the 
“Poiseuille” equation for laminar flow (see Chapter 13) and the Fanning equation 
for turbulent flow (see Chapter 14), using the density and viscosity of the liquid or 
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suspension. For non-Newtonian liquids and suspensions, the viscosity is a variable, 
and the procedure for computing the pressure drop is more involved. 

The remainder of this section will discuss non-Newtonian liquids and suspensions. 
Useful engineering design procedures and prediction equations receive treatment that 
are limited to isothermal laminar (viscous) flow. The turbulent flow of non- 
Newtonian fluids (as with Newtonian ones) is characterized by the presence of 
random eddies and whirls of fluid that cause the instantaneous values of velocity 
and pressure at any point in the system to fluctuate wildly. Because of these fluctu- 
ations, flow problems cannot be easily solved. Since non-Newtonian turbulent flow 
rarely occurs, it has not received much attention. 

6.2 CLASSIFICATION OF NON-NEWTONIAN FLUIDS 

Fluids can be classified based on their viscosity. An imaginary fluid of zero viscosity 
is called a Pascalfluid. The flow of a Pascal fluid is termed inviscid (or non-viscous) 
flow. Viscous fluids are classified based on their rheological (viscous) properties. 
These are detailed below: 

1. Newtonian fluids, as described in the previous chapter, obey Newton’s law 
of viscosity (i.e., the fluid shear stress is linearly proportional to the 
velocity gradient). All gases are considered Newtonian fluids. Newtonian 
liquid examples are water, benzene, ethyl alcohol, hexane and sugar 
solutions. All liquids of a simple chemical formula are normally considered 
Newtonian fluids. 

2. Non-Newtonian fluids do not obey Newton’s law of viscosity. Generally 
they are complex mixtures (e.g., polymer solutions, slurries, and so on). 
Non-Newtonian fluids are classified into three types: 
a. Time-independent fluids are fluids in which the viscous properties do not 

vary with time. 
b. Time-dependent fluids are fluids in which the viscous properties vary 

with time. 
c. Visco-elastic or memory fluids are fluids with elastic properties that allow 

them to “spring back” after the release of a shear force. Examples include 
egg-white and rubber cement. 

Additional details on the first two classes of fluids follow. 
3. Time-independent, non-Newtonian fluids are further classified into three types. 

a. Pseudoplustic or shear thinning fluids are characterized by a fluid resistance 
decrease with increasing stress ( e g ,  polymers). 

b. Dilatant or shear thickening fluids increase resistance with increasing 
velocity gradient or applied stress. These are uncommon, but an example 
is quicksand. 
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c. Bingham plastics are fluids that resist a small shearing stress. At low shear 
stress these fluids do not move. At high shear the fluids move. The fluid just 
starts moving when sufficient stress is applied. This stress is termed the yield 
stress. When the applied stress exceeds the yield stress, the Bingham plastic 
flows. Examples are toothpaste, jelly, and bread-dough. 

4. Time-dependent, non-Newtonian fluids are further classified into two types. 
a. Rheopectic fluids are characterized by an increasing viscosity with time. 

b. Thixotropic fluids have a decreasing viscosity with time. Examples are 
Rubber cement is an example. 

slurries or solutions of polymers. 

6.2.1 Non-Newtonian Fluids: Shear Stress(‘) 

There are the aforementioned class of fluids that do not obey Newton’s law of 
viscosity. These were defined as non-Newtonian and several different types 
of these fluids exist. The shear stress equation equivalent to Equation (5.7) for one 
of the more common types of non-Newtonian fluids is given by the so-called 
“power law” equation: 

K is defined as the consistency number and may in special cases equal p .  The expo- 
nent n is defined as thejow-behavior index and is a real number that usually assumes 
a value other than unity. Although n is considered a physical property of the fluid, it is 
not necessarily a constant; rather, it may vary with the shear rate, dvy/dz. Equation 
(6.1) may be written in terms of the apparent viscosity pa for non-Newtonian 
fluids (most non-Newtonian fluids have apparent viscosities that are relatively high 
compared with the viscosity of water) 

or 

In order to remove the problem arising when the velocity gradient is a negative quan- 
tity, Equation (6.1) is rewritten as 

rZY = ---l-I K dv, dv, 

gc dz dz 
(6.3) 

A typical shear stress vs. shear rate (duy/dz) curve (often referred to as a rheogram), 
is shown for a non-Newtonian fluid in Fig. 6.1 on arithmetic coordinates. Newtonian 
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Shear Rate, dVv 
dz 

Figure 6.1 Fluid shear diagrams. 

behavior is also depicted in the diagram. Due to the exponential nature of the shear rate 
of this type of non-Newtonian fluid, a stmight line would be obtained on a log-log plot 
as demonstrated in Equations (6.4) and (6.5): 

log rZy = - log (f) + n log fz) 
One notes that a Newtonian fluid yields a slope of 1.0 on log-log coordinates. The 
slope of a non-Newtonian fluid generally differs from unity. The slope, n, can be 
thought of as an index to the degree of non-Newtonian behavior in that the farther 
that n is from unity (above or below), the more pronounced is the non-Newtonian 
characteristics of the fluid. 

Illustrative Example 6.1 For each of the following four classes of fluids, indicate 
the line type (straight or curved) on a logarithmic shear diagram, i.e., shear stress 
versus shear rate. 

1. Newtonian 
2. Pseudoplastic 
3. Dilatant 
4. Bingham plastic 
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Solution Refer to Fig. 6.1. 

1. Newtonian: Straight 
2. Pseudoplastic: Straight 
3. Dilatant: Straight 
4. Bingham plastic: Curved 

Illustrative Example 6.2 For each of the following four classes of fluids, indicate 
the line slope (> 1, 1, or C 1) on a logarithmic shear diagram, i.e., shear stress versus 
shear rate. 

1. Newtonian 
2. Pseudoplastic 
3. Dilatant 
4. Bingham plastic 

Solution Refer once again to Fig. 6.1. 

1. Newtonian: 1 
2. Pseudoplastic: <1 
3. Dilatant: > 1  
4. Bingham plastic: not applicable 

Illustrative Example 6.3 Classify the following substances according to their 
rheological behavior: paint, grease, toothpaste, tar, silly putty, and ordinary putty. 

Solution The classification is tabulated below: 

SUBSTANCE EXPLANATION 

Paint Shear-thinning (pseudo-plastic). Also rheopectic 
(it hardens with time) 

Grease 
Visco-elastic 

Toothpaste Ideal Bingham plastic 
Tar Pseudoplastic at high temperature 
Silly putty 
Ordinary putty Visco-elastic 

Bingham plastic (needs a yield stress before flowing). 

Dilatant (shear thickening). Visco-elastic 

6.3 MICROSCOPIC APPROACH 

Most non-Newtonian fluids either follow the power law relationship provided in 
Equation (6.4) or may be approximated by it for engineering purposes. The presen- 
tation below is therefore limited to power-law applications. 
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6.3.1 Flow in Tubes 

The reader is referred to the Microscopic Approach section in the previous chapter on 
Newtonian flow. One may now re-examine the flow of a fluid through a horizontal 
tube under the condition that it follows the power law relationship 

Wohl"' has shown that the velocity profile for the above system is given by 

(6.7) 

Illustrative Example 6.4 Verify that Equation (6.7) reduces to the velocity profile 
relationship provided in Equation (5.16) for a Newtonian fluid. 

Solution 
reduces to 

One notes that for n = 1, where the fluid is Newtonian, Equation (6.7) 

u, = (x) [R2 - ?] 
4PL 

This is, as one would expect, the same equation provided in the previous chapter for 
flow of a Newtonian fluid through a pipe (see Fiq. (5.16)). 

The above equation may also be written in terms of the maximum centerline 
velocity, urn-. 

u, = u,,, [ 1 - (;y');"] 
(6.8) 

Alternately, the local velocity can be expressed in terms of the average velocity, u,. 

For a Bingham plastic, the local velocity is given by 

AP 70 

"4& P 
u - -(R2 - ?) - - ( R  - r )  

(6.9) 

(6.10) 
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For values of rp < r < R where 

2LTo 
rp = - 

AP 
(6.1 1) 

For rp > r > 0, the describing equation 

AP 
U, = - ( R  - r)* 

2LI.L 
(6.12) 

6.3.2 flow Between Parallel Plates 

For flow between parallel plates of height H, length L, and width W, W ~ h l ' ~ '  has 
shown that the local velocity is given by 

(6.13) 

where z is the vertical Cartisian coordinate constrained by z = A _+ H/2. 

Illustrative Example 6.5 Refer to Equation (6.13). Generate an equation that 
describes the maximum velocity. 

Solution For the maximum velocity, set z = 0 in Equation (6.13). 

n+ I )/n 

n + l  

Illustrative Example 6.6 Starting with Equation (6.13), obtain the equation for the 
velocity profile if the fluid is Newtonian. 

Solution 
Equation (6.13). 

If the fluid is Newtonian, n = 1. Therefore, set n = 1 and K = p in 

AP 
2wL 

= -(H - 22) 
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Illustrative Example 6.7 Refer to Equation (6.13). Obtain an equation describing 
the volumetric flow rate q. 

Sohtion By definition, the integral below 

z = H / 2  

provides the volumetric flow rate passing the upper half of the system. Substituting 
for v ,  
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The total volumetric flow rate q is 

For n = 0.5 

q = r$) WH2 ( ~ ) 2  HAP 

= 8 WH2 (!!!!I 
1 HAP 

= - 8 WH2 (z) 
HAP 

6.3.3 Other Flow Geometries 

K~zicki‘~’ has developed simple and useful expressions for the flow of several time- 
independent non-Newtonian fluids in ducts of various shapes. The equations contain 
two shape factors, and a function of the stress, which characterize the fluid. Numerical 
values of the shape factors have been determined for circular, slit, concentric annular, 
rectangular, elliptical, and isosceles triangular ducts. The reader is referred to 
Kozicki’s work‘4’ for the formulas by which these shape factors are calculated, and 
for a tabulated list of values to four significant figures. The derived equations are 
for the average and the maximum velocities as functions of the shape factors, hydrau- 
lic radius, parameters of the constitutive equations, and average shear stress at the 
duct wall. This average shear stress is defined by: 

‘To = rH APIL (6.14) 
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NOTE: Additional problems are available for all readers at www.wiley.com. Follow 
links for this title. 
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